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Abstract

Accurate prediction of who is at risk of adverse outcomes can help improve cancer screening pro-

grammes. In this research, we have investigated whether we can improve the performance of the

previously applied predictive models by including knowledge on the stages of disease development

in the Dutch screening programme for colorectal cancer (CRC). We implement existing ordinal

models as well as provide a new finite mixture approach, constituting our finite mixture generalised

ordered logit model. This general model has - to the best of our knowledge - not yet been de-

scribed in the academic literature. This study confirms that age, gender, and previously measured

hemoglobin concentrations can predict future colonoscopy outcomes. This indicates that risk strat-

ification can increase the effectiveness of CRC screening programmes. Additionally, we find that

our finite mixture model outperforms the standard ordered logit model in terms of ordinal classi-

fication. Moreover, we implement a random forest algorithm that exceeds the predictive power of

regression models at the cost of interpretability. All our models can be used to compute individual

risk scores. We conclude that these risk scores can be used in a clinical study to evaluate the

effectiveness of risk stratification in CRC screening.

Keywords: colorectal cancer • screening • ordinal models • continuation ratio • generalised

ordered logit • finite mixture models • machine learning • risk stratification
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Acronyms

AA Advanced adenoma

AIC Akaike information criterion

AMAE Average mean absolute error

AN Advanced neoplasia

ANN Artificial neural network

AUC Area under the curve

BART Bayesian Additive Regression Trees

cdf Cumulative distribution function

CI confidence interval

CRC colorectal cancer

EM Expectation maximisation

FIMGOL Finite mixture generalised ordered logit

FIT Fecal immunochemical test

FMOL Finite mixture ordered logit

FSB Facilitaire Samenwerking Bevolkingsonderzoeken (Dutch center for screening programmes)

gologit Generalised ordered logit

Hb Hemoglobin

MAE Mean absolute error

MC Medical center

MMAE Maximum mean absolute error

NA Non-adenomatous lesion

NAA Non-advanced adenoma

pdf Probability distribution function

RIVM Rijksinstituut voor Volksgezondheid en Milieu (Dutch national institute for public health

and the environment)

ROC Receiver operating characteristic

For readability purposes, we will reexplain any acronym used in each section. Each section can

therefore be read separately. Vectors will be written in lowercase, bold letters. Matrices will be

written in uppercase, bold letters.



1 Introduction

Colorectal cancer (CRC) is one of the most common types of cancer in the Netherlands. In

2019, 12,900 people were diagnosed with CRC and 4,826 people died as a consequence of CRC.

Treatments to CRC are effective, provided that a patient is diagnosed at an early stage. For that

reason, the Dutch government has initiated a national screening programme for CRC. The first

evaluations conclude that the programme has been successful in detecting CRC and its precursors

at an early stage and thereby causing CRC mortality to decrease in the future (Lansdorp-Vogelaar

et al., 2019).

Currently, all Dutch citizens aged between 55 and 75 are biennially invited to participate in

the screening programme. Participants collect a small amount of stool and send a sample to the

screening organisations. Screening is then based on the Fecal Immunochemical Test (FIT), which

measures the level of hemoglobin (Hb) in the stool. A participant is invited for further research

- an endoscopic examination in the form of a colonoscopy - when the stool contains more than

a fixed cut-off level of Hb. Whether someone is asked to undergo a colonoscopy solely depends

on the outcome of the most recent FIT-concentration. Age, gender, and previously measured

FIT-concentrations are not taken into consideration.

Research however shows that age, gender, and historical FIT-concentrations contain predictive

power for the outcomes of colonoscopies. Meester (2021) uses a standard logistic regression model

to predict whether an advanced lesion is found in the endoscopic examination in the third Dutch

screening round for individuals who tested below the cut-off value in the first two screening rounds.

Based on the area under the Receiver Operating Characteristic (ROC) curve, one can conclude that

age, gender, and the two previously measured FIT-concentrations are well able to predict whether

CRC is detected in test round three.

In addition to detection, prevention of CRC is an important aspect of the screening programme.

As malignant tumours develop from harmless polyps, the detection and most often instant removal

of polyps during a colonoscopy, assures that the screening programme also prevents CRC cases.

The existing predictive models however, solely predict a binary outcome variable for advanced

stages of polyps. To draw conclusions on whether a colonoscopy was useful, it is desirable to also

include information about CRC prevention effects through the detection of other lesions. Instead

of a binary outcome model, we therefore opt for a multinomial modelling approach.

Rather than solely focusing on the predictive performance, we also wish to gain insight in the

behaviour of the disease development and its interaction with previously measured FIT-values.
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Understanding the path towards malignant lesions is essential in many simulation models that are

used to determine optimal cancer screening strategies (Loeve et al., 1999). We are particularly

interested in whether previously measured FIT-values are able to describe and predict the stage of

a lesion.

In this research, we aim to model the progression of colorectal lesions and improve the accuracy

of previously applied predictive models. We therefore pose the following research question:

Research Question: Can we improve the performance of the previously applied

predictive models by including knowledge on the stages of disease development in the

Dutch screening programme for colorectal cancer?

By including knowledge on the stages of disease development, we hope to be able to increase the

detection rate of CRC and its precursors and decrease the number of unnecessary colonoscopies.

Finally, our models should be able to compute individual risk scores. These risk scores can then be

used to personalise the screening procedure; the screening recurrence and/or the Hb cut-off value

could be altered based on the predicted risk.

1.1 Outlook

This research uses advanced regression and machine learning techniques to improve the predic-

tion accuracy of previously applied models. We propose new ordinal cluster models that, to the

best of our knowledge, have not hitherto been described in the academic literature. Our general

implementation of the new ordered models can be used in all other applications for which the order

of a multinomial outcome variable is relevant.

Our innovative methodological research is supported by its direct application in predicting

colonoscopy outcomes. Our models reaffirm that the values of previously measured negative FITs

are predictive for future colonoscopy outcomes. Particularly interesting to clinicians is that our

models show that FIT-values are well able to predict whether someone will obtain a FIT above the

cut-off value in future, but that they are not indicative for the progression of an advanced lesion.

In addition to advanced regression techniques, we apply machine learning methods in predicting

colonoscopy outcomes. Our random forest model outperforms the predictive performance of regres-

sion techniques in terms of the Area under the ROC-curve (AUC), at the cost of interpretability.

Our models provide additional evidence that risk stratification can improve the screening pro-

gramme for CRC. Though further research in the application of more advanced machine learning
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techniques could provide more evidence, we conclude that policy makers should consider risk per-

sonalisation in the screening for CRC at this point in time. We finally provide suggestions for both

methodological as well as clinical further research.

With this research question, this paper continues with a review of the relevant literature regard-

ing predictive modelling in CRC screening. We will then describe the data as provided by Erasmus

Medical Center (Erasmus MC). Subsequently, we will describe the existing ordinal methodology

and introduce our new models as generalisations of the existing frameworks. We will then evaluate

our models based on several numeric performance statistics and visualisations. Finally, we will

draw conclusions and provide suggestions for further research.

2 Literature Review

In this section, we review the existing literature regarding screening for colorectal cancer (CRC).

We start by describing the disease development and how CRC screening affects the public health,

followed by a description of the risk factors of CRC. We then review the previously applied models

to predict colonoscopy outcomes. We subsequently introduce ordinal models to predict stages of

lesions, rather than a binary outcome variable. Finally, we explain how we can model the existing

heterogeneity in our data according to the existing literature.

2.1 Colorectal cancer disease development

The development of CRC is generally a process in which a benignant lesion develops into a

malignant tumour. CRC mainly develops from a lesion known as an adenoma; a type of polyps

arising from the lining of the intestine (Cooper et al., 2010). Cottet et al. (2012) classify adenomas

into non-advanced and advanced adenomas, based on their size and histopathological features.

Adenomas are not harmful, as long as they do not progress into advanced stages with abnormal

tissue growth, also known as Advanced Neoplasia (AN) (Markowitz and Winawer, 1999). The

removal of an adenoma could however prevent it from growing into CRC. Because CRC only causes

symptoms until the tumour reaches a considerable size, patients are oftentimes diagnosed at a late

stage in the absence of a screening programme (Simon, 2016). Mandelblatt et al. (1996) conclude

that a late diagnosis rapidly deteriorates the prognosis of a patient.

Because patients benefit from the detection of the precursors of CRC, we wish to include the

development of the disease in our models. The stages follow a natural ordering, starting with small

adenomas growing into tumours. Our models should take this natural pathway into account.
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2.2 Cancer screening and risk stratification

Screening programmes are proven to be effective in decreasing CRC incidence and CRC mortal-

ity (Schreuders et al., 2015). Particularly for the Dutch screening programme, Lansdorp-Vogelaar

et al. (2019) conclude that the screening programme prevents one out of five CRC cases and one

out three CRC deaths. Cruzado et al. (2013) show that screening programmes can also be cost-

effective, as early detection can decrease the costs of treatment. Screening can therefore have a

large positive impact on the public health (Meester et al., 2015).

Despite the proven effectiveness of the Dutch screening programme in early CRC detection, one

can identify multiple disadvantages of cancer screening. First, screening programmes are costly

operations that are not cost-effective in all cases (Rodgers et al., 1990). Second, intensive screening

could lead to overdiagnosis: detecting a condition that would never have caused any symptoms

(Esserman et al., 2013). Overdiagnosis could lead to psychological stress and is particularly harmful

if it leads to unnecessary treatments. Finally, particularly in the case of colorectal cancer screening,

patients with a false-positive Fecal Immunochemical Test (FIT) carry the burden of an unnecessary

colonoscopy that contains some health risks on its own (de Wijkerslooth et al., 2012). Policy makers

therefore continuously weigh the harms and benefits of screening programmes.

For that reason, screening organisations continuously evaluate the effectiveness of a programme

and seek for improvement (Lansdorp-Vogelaar et al., 2019). A potential improvement of the CRC

screening programme is risk stratification (Auge et al., 2014). This implies that the intensity of

the screening depends on an individual’s estimated risk level. For CRC screening, this means that

the recurrence of invitations or the cut-off value of the FIT could be altered. Despite its potential

benefits, risk stratification is not yet applied in large-scale CRC screening programmes (Schreuders

et al., 2015).

If the models in this study can successfully distinguish participants with a higher risk on lesions

from participants with a lower risk, the screening intensity could be personalised based on the esti-

mated risk. This personalisation potentially increases the effectiveness of the screening programme,

making the programme more valuable to the public health.

2.3 Factors driving CRC

Both the CRC incidence as well as the speed of growth of adenomas are affected by a wide range

of factors next to age and gender. Crawford et al. (2012) for example find a higher CRC incidence

in rural and socially deprived areas in the UK. Next to social-demographic factors, Strum (2016)
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finds a positive association between CRC incidence and the consumption of alcohol, meat, and the

presence of obesity as well as protective factors such as consumption of fruit, vegetables, and regular

use of painkillers such as ibuprofen and diclofenac. Finally, molecular genetic studies show that the

presence of certain heritable single nucleotide polymorphisms increases the risk on CRC (Peters

et al., 2013). Data on these risk factors could increase the accuracy of risk prediction. However, to

assure a high participation rate, policy makers have chosen to avoid comprehensive surveys about

personal information and screen based on the FIT only (Toes-Zoutendijk et al., 2017).

The probability of getting CRC as well as the speed at which a lesion grows therefore de-

pend on several social-demographic, behavioural, and genetic factors that are not known by the

screening organisations. As it is clear that we do not observe all factors that influence CRC screen-

ing outcomes, we aim to improve the previously applied prediction models by incorporating this

unobserved heterogeneity in our frameworks.

2.4 Predicting binary colorectal cancer screening outcomes

Researchers have shown that the detection of AN, a collection of highly developed polyps and

tumours, in a colonoscopy can be predicted using historical values of the FIT. Meester (2021) has

implemented a logistic regression model based on age, gender, and two previously measured FITs in

the Dutch context. This logistic model has been implemented for several variable transformations

and interactions. Finally, the model has been optimised with respect to the area under the Receiver

Operating Characteristic (ROC) curve. The final model yields an Area Under the of the ROC-Curve

(AUC) of 0.77 (95% Confidence Interval (CI): 0.76-0.78). The model therefore clearly outperforms

random assignment, which would yield an AUC of 0.5.

Similarly, Cooper et al. (2018) predict the same binary outcome variable - whether AN is

detected in a colonoscopy - for a British dataset. In contrast to Meester (2021), this model includes

the most recent FIT-concentration and uses dummies for first-time invitees and previous non-

responders. Cooper et al. (2018) implement both a logistic regression model as well as an Artificial

Neural Network (ANN). Though the ANN outperforms the regression model in terms of the AUC,

a large share of interpretability is lost in this method; the model fails to explain why individuals

are assigned to a particular risk level.

In this research, we will start by reconstructing the model as implemented by Meester (2021).

We will extend the binary approach to a multinomial ordered framework. Though machine learn-

ing algorithms could yield better predictions, Cooper et al. (2018) describe major interpretability

5



disadvantages. As interpretability is essential in medical applications, we choose to examine the

performance of machine learning algorithms in this context, but to use advanced regression tech-

niques as our main approach.

Both Meester (2021) and Cooper et al. (2018) construct their main performance metric around

the ROC-curve. An ROC-curve is a graph with the false positives rate on the x-axis and the true

positives rate on the y-axis at different threshold settings (Gu et al., 2009). By its construction,

the area under this curve measures the ability of a test to distinguish between those with and those

without the disease (Cooper et al., 2018). As the ROC-curve is only applicable for a binary classifier,

the previously applied models cannot be compared to categorical models directly. Hand and Till

(2001) have developed a multinomial equivalent to the ROC-curve, but it is not yet applicable to

ordinal outcome data.

To compare our models to the previously applied binary outcome model, we will show how our

models can be reduced back to binary classifiers and evaluate the AUC. The AUC however fails to

reflect the value of our ordinal approach. We will therefore introduce new performance metrics to

evaluate the ordinal classification performance in our methodology section.

2.5 Regression models for predicting categories

While the previously applied models predict a binary outcome variable, we aim to model the

stage of lesions that can be found in a colonoscopy. As the stages follow upon each other, ordinal

models are suitable for this application. These models utilise the ordinal nature of the data by

describing various modes of stochastic ordering and hence eliminate the need for assigning scores

or otherwise assuming cardinality instead of ordinality (McCullagh, 1980).

McCullagh (1980) modelled the cumulative probabilities of the ordered outcomes as a monotonic

increasing transformation of a linear predictor onto the unit interval, assuming a logit or probit link

function. This multinomial ordered logit model has become a widely used standard ordinal model.

The framework, also called the proportional odds model, is however limited in the sense that it

assumes that the effect of explanatory variables on category shifts is the same for all category shifts

(Williams, 2016). This assumption, known as the parallel assumption, is often violated. Modellers

have therefore developed several generalisations of the ordered logit model in which the parallel

assumption is relaxed.

Both the Generalised Ordered Logit (gologit) model from Peterson and Harrell Jr (1990) as well

as the continuation ratio model as specified by Feinberg (1980) relax the parallel assumption of the
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proportional odds model. The gologit model selectively relaxes the parallel lines assumptions to

allow for non-proportional odds for (a subset of) the explanatory variables (Peterson and Harrell Jr,

1990). The continuation ratio model also relaxes the parallel assumption and is based on conditional

incremental cut points, with outcomes at a given level discarded after being compared to higher

levels (Mcgowan et al., 2000). The continuation ratio model therefore has the structure of a discrete

hazard model and is suitable to applications for which the outcomes follow a path over time (Ananth

and Kleinbaum, 1997).

Because clinicians do not know whether the blood emission increases in parallel to the growth

of the lesion size, the parallel assumption might be violated in our application. We therefore

implement a generalised version of an ordered model. As the lesions in our application also grow

over time, we will start by relaxing the parallel assumption through the continuation ratio model.

For its generality, we will use the gologit model as a starting point for a mixture model to allow

for unobserved heterogeneity.

2.6 Modelling heterogeneity

A popular way of modelling unobserved heterogeneity is by using a finite mixture model. Li

(2018), Deng et al. (2006) and Tuma and Decker (2013) show how finite mixture models are

able to determine similarly behaving segments in a dataset and improve the prediction accuracy

of the model in the contexts of traffic analysis, biostatistics, and marketing respectively. Finite

mixture regression models can therefore be a powerful method when observations are influenced by

unobserved factors.

In our context, we wish to implement a finite mixture model for ordered data as proposed by

Everitt and Merette (1990). It is supposed that the population is split into C classes and each

class has its own data-generating process (Boes and Winkelmann, 2006). This implies that we

relax the distributional assumption of the standard ordered model and its implied homogeneity.

The segmenting approach is particularly useful in this application, as practitioners finally wish to

use our results to define risk groups. Finite mixture ordered models can be implemented using the

Expectation-Maximisation algorithm from Dempster et al. (1977).

In this study, we aim to combine the existing gologit approach with the existing finite mixture

modelling techniques, hence creating a finite mixture generalised ordered model. This new model

is, to the best of our knowledge, a new model in the econometric literature.
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3 Data

In this research, we will use the data on the Dutch screening for Colorectal Cancer (CRC) as

executed by the Dutch National Institute for Public Health and the Environment (Rijksinstituut

voor Volksgezondheid en Milieu, RIVM ). The data will be provided by the Erasmus Medical Center

(Erasmus MC), which has acquired the data through the Dutch Center of Screening programmes

(Facilitaire Samenwerking Bevolkingsonderzoeken, FSB). We will start by introducing the study

population. We continue by describing the data on colonoscopy outcomes. Finally, we will describe

the four naturally ordered categories in this application.

3.1 Study population

In the time period 2013 until 2018, N1 = 3, 436, 106 people participated in one round of the

screening programme, N2 = 1, 555, 752 people participated in two rounds and N3 = 265, 881

people participated in three rounds. In this research, we aim to predict the outcome of endoscopic

examination after the third test round, based on age, gender, and the previous two values of the

Fecal Immunochemical Test (FIT) for individuals who tested below the cut-off value in the first

two rounds. This means that for this research, we will only use the 265,881 observations who

participated in all three test rounds.

The gender and age of the participants are known: 52% of the participants who consequently

participated when they received an invitation were female and the average ages of the participants

in the first three rounds were 64.1 years, 66.1 years and 69.0 years respectively. The follow-up

research based on a positive test as a percentage of the number of participants per round declined

from 5.1% in the first round, to 3.5% and 3.3% in the second and third round respectively. The

decrease in percentage of positive FITs is in line with experts’ expectations, as more cases of CRC

can be detected in primary screening rounds.
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Notes: This figure reports the distribution of the five outcome categories: no lesions, non-adenomatous lesions

(NA), non-advanced adenomas (NAA), advanced adenomas (AA), and colorectal cancer (CRC). Note that the

categories are ranked on the severity of the lesion.

Figure 1: Distribution of colonoscopy outcomes after a positive FIT in round three

3.2 Data on colonoscopy outcomes

Out of all 265,881 participants in screening round three, colonoscopy was performed on 8,806

people (3.3%) and five different outcomes can be distinguished:

1. No lesions found in colonoscopy;

2. Non-Adenomatous lesions (NA), including serrated polyps and hyperplastic polyps;

3. Non-Advanced Adenoma (NAA);

4. Advanced Adenoma (AA);

5. Colorectal Cancer (stage I and stage II) (CRC).

Note that the enumeration above is ranked based on the progression of the lesion. This means

that the severity of the diagnosed lesion is increasing by category; category five represents having

CRC. The higher the category level, the closer the polyp is to becoming a malignant tumour, hence

causing CRC. If desired for modelling or interpretation purposes, we can combine categories or

split categories two (serrated polyp, hyperplastic polyp) and five (CRC stage I, CRC stage II) into

smaller subsets. We have plotted the colonoscopy results after test round three in Figure 1.

3.3 Ordered categories

The ordinal models in this research allow for combinations and division of categories as reported

in Figure 1 as desired. We therefore compare our ordinal models for multiple category instances
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ranging from three to five categories. However, in this report we present the results of our models

using four categories:

1. No positive FIT-test in round three, hence no colonoscopy;

2. Positive FIT-test, no advanced lesions detected (including NA and NAA);

3. Positive FIT-test, AA detected;

4. Positive FIT-test, CRC detected.

Our choice of four categories makes our results easy and valuable to interpret. Clinicians

consider AA and CRC detection as relevant findings in terms of malignity. This means that our

second proposed category contains those participants with a false-positive FIT-result. The split

between AA and CRC is useful to understand whether we are able to predict the progression of

an advanced lesion. To obtain this insight, we will have to investigate the effect of measured

hemoglobin (Hb) concentrations on the probability of changing from category three to four.

We base our choice of four categories not only on reasons for interpretability, but also on our

knowledge on the distribution of the Hb concentration of positive FITs per outcome category. We

have included plots of these distributions per round and per outcome category in Figure 2 (Meester,

2021).

By inspection of the distribution of blood values per detected lesion, we observe, in line with

our expectation, that the distribution changes the most for more severe lesions. This is confirmed

by performing a Kolmogorov-Smirnov test (Smirnov et al., 1948). The distribution of FIT-values

per outcome and the corresponding p-values of the Kolmogorov-Smirnov test are also included in

Figure 2. Based on visual inspection, we see a large change in distribution between the AA and

CRC category. This constitutes another reason to keep AA and CRC as separate categories in

our proposed frameworks. Because the distribution of NA and NAA seem relatively similar, we

choose to combine those categories in the second category. This combination also solves potential

problems due to the small size of the NA category.

10



Notes: The p-value represents the statistical difference with the category ‘No Lesions’ according to a

Kolmogorov-Smirnov test.

Figure 2: Hemoglobin concentrations in the first, second, and third round among persons with a

positive FIT (hence undergo colonoscopy) per detected lesion (Meester, 2021)
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4 Methodology

In this research, we aim to improve the predictions of colonoscopy outcomes by including knowl-

edge on the stages of the disease development. This means that our models take the multi-class,

naturally ordered colonoscopy outcomes as a dependent variable. To avoid a loss of information,

we model the colonoscopy outcomes as an ordered dependent variable. In this section, we will

first introduce the previously applied binary outcome model. We then describe the ordered logit

model and generalise this model to constitute a new ordered outcome model that - to the best of

our knowledge - has not been implemented before. Finally, we will provide numeric statistics and

graphs to evaluate the performance of our models.

4.1 Baseline model

We will compare the new models in this research to the binary model as previously applied

by Meester (2021). The good performance of this model has shown that previously measured

hemoglobin (Hb) concentrations as measured by the Fecal Immunochemical Test (FIT) contain

predictive power for future colonoscopy outcomes. Similar to Meester (2021), we split the contin-

uous FIT-values into six categorical variables. Though this increases the amount of parameters

to be estimated, it allows for non-linearities, hence potentially improving the performances. The

discretisation also increases the interpretability of the coefficients to clinicians and practitioners.

Additionally, we will evaluate whether including polynomial and interaction terms of the explana-

tory variables improves the performance of the model.

4.2 Ordered logit

We will model the colorectal cancer (CRC) screening outcome. Let yi be this observed colonoscopy

outcome variable for individual i and let y be the N x 1 vector containing the outcome categories

of all N observations. Ordered response models are usually motivated by an underlying continuous

but latent process (Boes and Winkelmann, 2006). In this research, one could think of the growth

of the lesion - driven by socio-demographic, genetic and behavioural factors - as this unobserved

latent process y∗i for individual i. Let xi be a K x 1 vector of explanatory variables for individual

i. In this research, we will use age, gender, and two previously observed negative FIT-values as the

explanatory variables. We model the latent process y∗i as a function of the K explanatory variables:

y∗i = β0 + x′iβ + εi, (1)

12



where β is a K x 1 vector of parameters and εi the random error term belonging to observation i

and β0 an intercept value. For all observations N , we obtain in matrix notation:

y∗ = β0 + X′β + ε. (2)

Here, β0 is the N x 1 vector of β0, X is the K x N matrix with vectors xi and ε the N x 1 vector

containing the error terms εi .

We observe and finally wish to model the outcome variable yi, which can be one out of J

categories. We model yi as a function of the latent variable y∗i , depending on unobserved boundary

parameters α0, ..., αJ : 
yi = 1 if α0 < y∗i ≤ α1;

yi = j if αj−1 < y∗i ≤ αj ;

yi = J if αJ−1 < y∗i ≤ αJ .

(3)

We can then model P[yi = j|xi], the probability of yi being in outcome category j as follows:

P[yi = j|xi] = P[αj−1 < y∗i ≤ αj ]

= P[αj−1 < β0 + x′iβ + εi ≤ αj ]

= P[αj−1 − (β0 + x′iβ) < εi ≤ αj − (β0 + x′iβ)]

= F
(
αj − (β0 + x′iβ)

)
− F

(
αj−1 − (β0 + x′iβ)

)
for j = 2, .., J − 1, and

P[yi = 1|xi] = P[y∗i ≤ α1] = F
(
α1 − (β0 + x′iβ)

)
and

P[yi = J |xi] = P[αJ−1 < y∗i ] = 1− F
(
αJ−1 − (β0 + x′iβ)

)
,

(4)

where F (·) denotes the cumulative distribution of ε, where we set α0 = −∞ and αJ = +∞ such

that F (−∞) = 0 and F (+∞) = 1. For identification purposes, we impose β0 = 0.

In the ordered logit model, we then use the logistic function as the cumulative density function

(cdf) F (.) for εi:

F (αj − x′iβ) =
exp(αj − x′iβ)

1 + exp(αj − x′iβ)
. (5)

By taking the derivative using the chain rule, we obtain the partial effect with respect to xk,i:

P[yi ≤ j|xi]
δxk,i

= βk
(
f(αj−1 − x′iβ)− f(αj − x′iβ)

)
. (6)

Here f(·) represents the probability density function (pdf) corresponding to the cdf, in case of the

logistic function, it holds that:

f(αj − x′iβ) = βF (αj − x′iβ)
(
1− F (αj − x′iβ)

)
. (7)

13



We can compute odds ratios as follows:

P[yi ≤ j|xi]
P[yi > j|xi]

= exp(αj − x′iβ). (8)

We can estimate the standard ordered model by maximum likelihood optimisation. The likeli-

hood function that needs to be maximised equals:

lnL(θ|y,X) =

N∑
i=1

J∑
j=1

I[yi = j] ln
(
F (αj − x′iβ)− F (αj−1 − x′iβ)

)
, (9)

where parameter vector θ summarises the vector of boundary parameters α = (α1, ..., αJ−1)
′ and

the vector of regression coefficients β = (β1, ..., βK)′. I[yi = j] is a binary indicator function that

equals one when individual i belongs to outcome category j and zero otherwise. This means we

estimate (J − 1) +K parameters in this model.

Note that the estimated parameter β has the same value for all categories j. In other words,

the relationship between the explanatory variables xi and the odds of a response being in the next

higher order category j + 1, is the same regardless of which categories are to be compared. This

feature is called the parallel assumption (Grilli and Rampichini, 2014). As we have not been able

to observe a gradual shift in blood values per detected lesion for positive FITs in Figure 2, we have

reason to believe that the parallel assumption might neither hold for negative FITs. We therefore

relax this assumption and generalise the ordered logit model into the continuation ratio model.

4.3 Continuation ratio

To allow the parameters to vary per shift in outcome category, we implement the continuation

ratio model as initially proposed by Feinberg (1980). We can construct the continuation ratio

model by altering the odds ratio of the ordered logit model in (8). In the ordered logit model, the

numerator contains the probability that individual i belongs to the first j categories. We replace

this probability by the conditional probability that individual i belongs to category j, given that i

belongs to category j or a category higher than j. The odds ratio then becomes:

P[yi = j|yi ≥ j,xi]
P[yi > j|xi]

= exp(αj − x′iβj). (10)

Similar to the standard ordered model, we set β0,j = 0 for all categories j for identification

purposes and set α0 = −∞ and αJ = +∞ such that F (−∞) = 0 and F (+∞) = 1. This implies

that we use a binary logit model to model the choice between yi = j and yi > j given that yi ≥ j:

P[yi = j|yi ≥ j,xi] =
exp(αj − x′iβj)

1 + exp(αj − x′iβj)
. (11)
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Note that the parameter vector βj now contains a subscript j. This means that the estimated

parameters now depend on the outcome category j and that we have relaxed the parallel assumption.

We can use the conditional probabilities to compute the unconditional outcome probabilities:

P[yi = j|xi] = P[yi = j|yi ≥ j,xi]
j−1∏
l=1

(1− P[yi = l|yi ≥ l,xi])

=
exp(αj − x′iβ1,j)

1 + exp(αj − x′iβ1,j)

j−1∏
l=1

1

1 + exp(αj − x′iβ1,l)
for j = 2, .., J − 1, and

P[yi = J |xi] = 1−
J−1∑
l=1

P[yi = l|xi].

(12)

We can use these unconditional probabilities to construct the log-likelihood function:

lnL(θ|y,X) =

N∑
i=1

J−1∑
j=1

I[yi = j] ln

(
exp(αj − x′iβ1,j)

1 + exp(αj − x′iβ1,j)

j−1∏
l=1

1

1 + exp(αj − x′iβ1,l)

)

+ I[yi = J ] ln

(
1−

J−1∑
l=1

P[yi = l|xi]

)
. (13)

Here, parameter vector θ summarises (J−1) x 1 parameter vector α = (α1, ..., αJ−1)
′ and (J−1)∗K

x 1 parameter vector β = (β′1, ...,β
′
J−1)

′ = (β1,1, ..., β1,K , ..., βJ−1,1, ..., βJ−1,K)′. With this log-

likelihood function, we can estimate the model parameters through standard maximum likelihood

optimisation.

4.4 Finite mixture ordered logit

The previously discussed models ignore the unobserved heterogeneity in the dataset. A finite

mixture model creates a finite number of clusters within the data and then computes optimal logistic

regression parameters per cluster (Boes and Winkelmann, 2006), constituting the Finite Mixture

Ordered Logit (FMOL) model in our context. Let C be the number of clusters in the dataset, let

αj,c be the boundary parameter j belonging to cluster c, and let βc be the K x 1 parameter vector

belonging to cluster c. Similar to (4), we then obtain:

P[yi = j|xi] =
C∑
c=1

πc
(
F (αj,c − x′iβc))− F (αj−1,c − x′iβc)

)
for j = 2, .., J − 1, and

P[yi = 1|xi] =

C∑
c=1

πcP[y∗i ≤ α1,c] =

C∑
c=1

πcF (α1,c − x′iβc), and

P[yi = J |xi] =
C∑
c=1

πcP[y∗i > αJ−1,c] = 1−
C∑
c=1

πcF (αJ−1,c − x′iβc),

(14)
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where πc is the population probability of belonging to cluster c and can be interpreted as the

relative cluster sizes. Similar to the standard ordered model, for all clusters c we set β0,c = 0 for

identification purposes and set α0,c = −∞ and αJ,c = +∞ such that F (−∞) = 0 and F (+∞) = 1.

Note that the parameters within the logistic function now depend on cluster c.

Similar to (6), the partial effect with respect to xk,i can be obtained by taking the derivative:

P[yi ≤ j|xi]
δxk,i

=

C∑
c=1

πcβc,k
(
f(αj−1 − x′iβc)− f(αj − x′iβc)

)
, (15)

in which f(·) again represents the pdf as specified in (7).

We define the log-likelihood of the model:

lnL(θ,π | y,X) =
N∑
i=1

J∑
j=1

I[yi = j] ln

{
C∑
c=1

πcF
(
(αj,c − x′iβc)− F (αj−1,c − x′iβc)

)}
, (16)

where π is a C x 1 vector containing the cluster probabilities πc and parameter vector θ summarises

both (J − 1) ∗ C x 1 parameter vector α = (α1,1, ..., αJ−1,1..., α1,C , ..., αJ−1,C)′ and C ∗ K x 1

parameter vector β = (β′1, ...,β
′
C)′ parameters. This means that we have to estimate C ∗(J+K−1)

parameters in θ and C parameters in π. The total amount of parameters to estimate therefore

equals C ∗ (J +K).

Note that in (16), we have a summation within the logarithmic term. This makes the optimisa-

tion of the log-likelihood non-trivial. Rather than estimating the model through standard numerical

optimisation, we therefore estimate the model using an Expectation-Maximisation (EM) algorithm

as proposed by Dempster et al. (1977). For an EM-algorithm, we use the complete log-likelihood

function rather the standard log-likelihood function. In the complete log-likelihood function, we

assume that the unobserved individual class membership is known. This results in the following

function where I[ci = c] is a binary indicator function for individual class membership and N x 1

vector c contains these individual class memberships:

lnLcom(θ,π | y,X, c) =

N∑
i=1

J∑
j=1

I[yi = j]

C∑
c=1

I[ci = c]
{

lnπc + ln
(
F (αj,c − x′iβc)− F (αj−1,c − x′iβc)

)}
. (17)

As we however cannot observe class membership, we cannot maximise this function directly.

The EM-algorithm consists out of two steps in which we iteratively compute class membership in

the expectation-step (E-step), followed by parameter estimation in the maximisation-step (M-step).
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In the E-step, we take the expectation of (17) with respect to the class membership given the

observed data and the current fit of θ and π. By applying Bayes theorem, Boes and Winkelmann

(2006) show that this expectation yields the posterior probability pi,c that individual i belongs to

class c:

pi,c

(
yi,xi;θ

(q),π(q)
)

=
π
(q)
c

(
F (α

(q)
j,c − x′iβ

(q)
c )− F (α

(q)
j−1,c − x′iβ

(q)
c )
)

∑C
s=1 π

(q)
s

(
F (α

(q)
j,s − x′iβ

(q)
s )− F (α

(q)
j−1,s − x′iβ

(q)
s )
) , (18)

where the superscript (q) indicates the q-th iteration of the algorithm.

In the M-step, we subsequently maximise (17) with respect to θ and π, where we replace the

unobserved I[ci = c] by the computed pi,c from the E-step. Estimation of π can simply be done by

taking the averages 1
N

∑N
i=1 pi,c. Maximisation of θ can be done for each class separately. In other

words, we estimate C simple logit models while weighing the data (Boes and Winkelmann, 2006).

The EM-algorithm then iterates between the E-step and the M-step. After each iteration of

both an E-step and an M-step, we compute the log-likelihood. When the difference between two

consecutive values of the log-likelihood is below a stopping condition, we stop iterating.

Due to the iterative character, the algorithm is not guaranteed to attain a global optimum. We

will use multiple starting values to avoid this problem. Dempster et al. (1977) show that when

multiple starting values are used, the algorithm typically performs well.

4.5 Finite mixture generalised ordered logit

We have now generalised the standard ordered logit model in two ways. We have first generalised

the model with respect to the outcome categories in the continuation ratio model. Then, we have

generalised the ordered logit model with respect to clusters in our finite mixture model. In this

section, we will propose a method in which both generalisations are combined. The parameter

estimates are then able to vary per outcome category j as well as per cluster c. This new model is

- to the best of our knowledge - new in the econometric literature.

Starting again from the ordered model, we will first describe a different way to generalise

the ordered logit model with respect to the outcome categories j. Rather than the continuation

ratio model, we will use the generalised ordered logit (gologit) model as proposed by Peterson and

Harrell Jr (1990) in our finite mixture approach. We choose the gologit model over the continuation

ratio model for its generality and because it allows us to impose the required parameter restrictions

without changing the log-likelihood function.
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4.5.1 Generalised ordered logit

Similarly to the continuation ratio model, we now relax the parallel assumption, such that the

value of β could differ per outcome category j. This means that the β parameters from (4) will

again get a subscript j to indicate the category of interest. The probability that individual i belongs

to category j now equals:

P[yi = j|xi] = P[αj−1 ≤ y∗i ≤ αj |xi]

= F (αj − x′iβj)− F (αj−1 − x′iβj−1) for j = 2, .., J − 1 and

P[yi = 1|xi] = P[y∗i ≤ α1|xi] = F (α1 − x′iβ1) and

P[yi = J |xi] = P[αJ−1 < y∗i |xi] = 1− F (αj−1 − x′iβJ−1).

(19)

Similar to the continuation ratio model, we set β0,j = 0 for all categories j for identification

purposes and set α0 = −∞ and αJ = +∞ such that F (−∞) = 0 and F (+∞) = 1. Again, we

estimate the model by maximum likelihood. The likelihood function in this case equals:

lnL(θ|y,X) =
N∑
i=1

J∑
j=1

I[yi = j] ln(F (αj − x′iβj)− F (αj−1 − x′iβj−1)), (20)

where parameter vector θ summarises (J−1) x 1 parameter vector α = (α1, ..., αJ−1)
′ and (J−1)∗K

x 1 parameter vector β = (β′1, ...,β
′
J−1)

′ = (β1,1, ..., β1,K , ..., βJ−1,1, ..., βJ−1,K)′. In this model, we

therefore have to estimate (J − 1) ∗ (K + 1) parameters.

Though it is likely that the observations in our dataset are subject to unobserved heterogeneity,

the gologit model estimates the same parameters βj for all individuals i. For that reason, we will

now introduce our new model that allows for cluster-specific parameters within the gologit model.

4.5.2 Mixture approach in gologit

The Finite Mixture Generalised Ordered Logit (FIMGOL) model combines the gologit approach

from Peterson and Harrell Jr (1990) and a finite mixture approach, as already presented in the finite

mixture ordered logit model. To the best of our knowledge, a model as such has not been described

nor implemented in the academic literature hitherto.

In order to combine the gologit model and the FMOL model, the βj parameter in the log-

likelihood from (20) gets an extra subscript c, as we allow the parameter value to be both outcome-

and cluster-specific. This means that the log-likelihood now equals:

lnL(θ,π | y,X) =

N∑
i=1

J∑
j=1

I[yi = j] ln

{
C∑
c=1

πc
(
F (αj,c − x′iβj,c)− F (αj−1 − x′iβj−1,c)

)}
, (21)
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where θ summarises the C∗(J−1) x 1 boundary parameter vector α = (α1,1, ..., αJ−1,1..., α1,C , ..., αJ−1,C)′

and the C∗(J−1)∗K x 1 parameter vector β = (β′1, ...,β
′
C)′ = (β′1,1, ...,β

′
1,J−1, ...,β

′
C,1, ...,β

′
C,J−1)

′.

This means that parameter vector θ now contains C ∗ (J − 1) ∗ (K + 1) parameters. Similar to

the finite ordered logit model, we also need to estimate the C parameters in π, making a total of

C ∗ (J ∗ (K + 1)−K) parameters.

Similar to estimating the finite mixture model, estimation can be performed using the EM-

algorithm from Dempster et al. (1977). We define the complete log-likelihood by assuming observed

clusters and obtain:

lnLcom(θ,π | y,X, c) =
N∑
i=1

J∑
j=1

I[yi = j]
C∑
c=1

I[ci = c] {lnπc+

+ ln
(
F (αj,c − x′iβj,c)− F (αj−1,c − x′iβj−1,c)

)
. (22)

In the E-step of the algorithm, we take the expectation with respect to the class membership

and in the M-step, we maximise the complete log-likelihood from (22) with respect to the logistic

parameters for all j categories and c classes. We again apply Bayes theorem to obtain the following

posterior class membership probabilities pi,c

pi,c

(
yi,xi;θ

(q),π(q)
)

=
π
(q)
c

(
F (α

(q)
j,c − x′iβ

(q)
j,c )− F (α

(q)
j−1,c − x′iβ

(q)
j−1,c)

)
∑C

s=1 π
(q)
s

(
F (α

(q)
j,s − x′iβ

(q)
j,s )− F (α

(q)
j−1,s − x′iβ

(q)
j−1,s)

) , (23)

where the superscript (q) again denotes the q-th iteration of the algorithm. The iterative EM-

algorithm computes the log-likelihood as specified in (21) after each EM-iteration and reaches

convergence when the difference between two consecutive values is negligible. Again, we use multiple

starting values to reach a global optimum.

4.5.3 Restrictions

In both the log-likelihood function of the ordered logit model as specified in (13) as well as in

the regular and complete log-likelihood functions of the finite mixture ordered logit model in (16)

and (17) respectively, we obtain strictly positive terms in the logarithmic terms of the equations

by construction. Because parameters in the FIMGOL model can vary per category outcome j and

per cluster c, we might have:

F (αj,c − x′iβj,c) ≤ F (αj−1,c − x′iβj−1,c), (24)
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which could lead to negative probabilities, hence negative terms in the logarithmic term in the

(complete) log-likelihood. To properly define our model, we impose the following restriction:

βj,c ≥ βj+1,c∀(j, c). (25)

We will now prove that this restriction is sufficient in our model:

βj,c ≥ βj+1,c∀(j, c) ⇐⇒ βj,c ≤ βj−1,c∀(j, c) (26)

=⇒ −x′iβj,c ≥ −x′iβj−1,c∀(j, c) (27)

=⇒ αj,c − x′iβj,c > αj−1,c − x′iβj−1,c∀(j, c) (28)

⇐⇒ F (αj,c − x′iβj,c) > F (αj−1,c − x′iβj−1,c)∀(j, c) � (29)

In this proof, (27) follows from (26) and the fact that the explanatory variables in our application

are positive. Notice that we obtain a strict inequality in (28), because by construction of the

gologit model, αj,c > αj−1,c ∀(j, c). We obtain equivalence in (29) as the logistic function F (·) is

monotonically increasing. As our proposed restriction leads to (29), we can never have negative

terms in the logarithmic term of the (complete) log-likelihood.

Intuitively, our restriction implies that we impose that the parameter value always decreases for

higher category shifts. As we will see in the results of the continuation ratio model, our data are

not likely to behave in a different pattern. For other applications of our model, one could reverse

the order of categories in the ordinal set-up and assess the model in both directions.

Within each maximisation step of the EM-algorithm, we first compute the parameters for the

highest category shift βJ−1,c for each cluster c. We subsequently optimise values which we add to

the parameter for lower category shifts j = 1, ..., J − 2 after taking the exponential transformation.

By taking the exponential transformation of the optimised values (that could take any value in the

real number space), we adhere to the restriction as specified in (25).

4.6 Parameter estimation

We can estimate the parameters of the ordered logit and the continuation ratio model by

maximising the log-likelihood function. The estimation of the finite mixture models is performed

by our own implementation of an EM-algorithm as proposed by Dempster et al. (1977).

4.6.1 Expectation-Maximisation algorithm

The EM-algorithm iterates between taking the expectation with respect to the class membership

given the current fit of θ and π (E-step) and maximising the parameters θ and π (M-step). We
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have summarised our two implementations of the EM-algorithm in Algorithm 1. For the numerical

optimisation in the M-step of the algorithm, the Nelder-Mead optimisation routine as installed in

the Optim package of R.4.0.3 will be used (Nelder and Mead, 1965).

Algorithm 1 Summary of the Expectation Maximisation algorithm

1: Initialise pi,c, θ and π and set L← 100

2: Compute the log-likelihood Lnew using (16) or (21)

3: while L > 0.0001 do

4: Lold ← Lnew

5: E-step:

• Compute individual cluster probabilities pi,c using (18) or (23)

6: M-step:

• Compute πc by taking 1
N

∑N
i=1 pi,c for all c

• Optimise θ with respect to the complete log-likelihood (17) or (22) using numerical optimisation

7: Update current log likelihood Lnew using (16) or (21)

8: L← Lnew − Lold

9: end while

10: Return optimal values pi,c, θ and π

Notes: This set-up of the EM-algorithm can be used for both the finite mixture ordered logit as well as the finite

mixture generalised ordered logit model. The first mentioned equations in lines 2, 5, 6, and 7 of the algorithm belong

to the former model, the second belong to the latter.

4.6.2 Standard errors

To estimate the standard errors, one can use the property that the variance of maximum likeli-

hood estimation can be estimated by inverting the Hessian matrix of the log-likelihood (Cameron,

1988). In our finite mixture models, the numerical computation of the Hessian matrix is impeded

by the standard probability assumptions of non-negativity of the cluster probabilities π and the

property that
∑C

c=1 πc = 1. We therefore reparameterise the vector π:

γc = log(πc)− log(πC) for c = 1, ..., C − 1. (30)

We can obtain our original parameters by taking the inverse of our reparametrisation:

πc =
exp(γc)

1 +
∑C−1

l=1 exp(γl)
for c = 1, ..., C − 1, πC =

1

1 +
∑C−1

l=1 exp(γl)

Using this reparametrisation, we can numerically approximate the Hessian of the log-likelihood

by the Richardson method as installed in the NumDeriv package of R.4.0.3 (Gilbert et al., 2006).

We can obtain the standard errors by taking the square root of the diagonals of the inverted Hessian

matrix.
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4.7 Random forest

Though our research focuses on advanced regression techniques in the context of ordinal out-

comes, we wish to compare and contrast our methods to a machine learning method that is known

for its high performance in complex prediction problems. For that purpose, we construct a random

forest for our application.

A random forest as initially proposed by Ho (1995) establishes predictions based on the predic-

tions of multiple decision trees. Decision trees create predictions using a tree-based structure, with

the observations in branches and the predictions in the leaves (Quinlan, 1986). A random forest

repeatedly selects a random sample with replacement of the training set and fits a tree for each set.

After training, predictions can be made by taking the average of the predictions from all individual

regression trees. By their construction, random forests are highly flexible models, making them

particularly suitable for complex predictive tasks.

Random forests are known for their notable predictive performance and often outperform re-

gression techniques in predictive tasks (Prinzie and Van den Poel, 2008). On the other hand, one

should realise that by using a random forest, we lose a large share of interpretability. In clinical

applications like ours, interpretability can be essential to practical use.

4.8 Model evaluation

In this research, we wish to improve the performance of the predictive models for outcomes

of the Dutch screening programme for CRC. We will therefore evaluate, compare, and test our

proposed models based on multiple performance measures and graphics. We will train our models

with 70% of the available observations and compute the performance measures on the other 30%

in the test set.

4.8.1 Tests for regression coefficients

To gain insight in the behaviour of the disease development and its interaction with previously

measured FIT-values, we have constructed our models such that we can estimate the effect of the

explanatory variables per outcome category shift. To understand the pathway of precursors to

CRC, it is of clinical interest to know how Hb concentrations indicate a particular lesion. For

that reason, we will test whether the parameters among category shifts differ significantly. We

therefore wish to test the null hypothesis H0 : βj,k = βm,k where βj,k represents the parameter

belonging to explanatory variable xk for a category shift from j to j+1. As we compute parameter

estimates using a maximum likelihood approach, we know that the estimators are asymptotically
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normally distributed under certain standard assumptions (Wilks, 1962). Under normality, we can

test whether we find a significant difference between individual parameters using an asymptotic

z-test:
β̂j,k − β̂m,k√

V̂ar(β̂j,k − β̂m,k)
∼ N(0, 1), (31)

where β̂j,k equals the parameter estimate of category shift j to j = 1 for the k-th explanatory

variable. We can compute the variance in the denominator V̂ar(β̂j,k−β̂m,k) = Var(β̂j,k)+Var(β̂m,k)−

2 · Cov(β̂j,k, β̂m,k) from the estimated co-variance matrix of the estimated coefficients.

Next to testing the difference between parameters for each variable individually, we wish to

jointly test whether there exists a significant difference between all Hb parameters of shift j → j+1

and shift m → m + 1. We therefore test null hypothesis: H0 : βj = βm, where βj represents the

parameter vector of all Hb parameters belonging to the category shift from j to j + 1.

We will now describe a Wald-procedure to test this hypothesis. Let q be the number of param-

eters we wish to compare and let R be a q x 2q matrix:

R =


−1 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...

0 . . . −1 0 . . . 1

 =
[
−Iq Iq

]
, (32)

where Iq represents a q x q identity matrix. We then stack the parameters in a 2q x 1 parameter

vector θ′ = (β′j ,β
′
m) and let r be a q x 1 vector of zeros. Testing H0 : βj = βm is then equivalent

to testing H0 : Rθ = r. Under normality of the maximum likelihood estimates, we then have:

(Rθ̂ − r)′[RΣ̂R′]−1(Rθ̂ − r) ∼ χ2
2q, (33)

where θ̂ equals the estimated parameters and Σ̂ equals the estimated co-variance matrix belonging

to θ̂.

4.8.2 Discriminatory ability

Though our models are able to perform predictions over multiple categories, clinical research

so far has focused on a binary outcome; the presence of Advanced Neoplasia (AN). In our set-up,

clinicians consider the two most severe categories - Advanced Adenoma (AA) and CRC - as AN. To

assess whether our methods are able to improve the predictive performance of the existing models,

we will evaluate to what extent our ordinal models can predict AN.
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To evaluate the binary predictive performance, we will compute the Area Under the Receiver

Operating Characteristic (ROC) Curve (AUC) or also known as the concordance statistic. The

ROC-curve is a two-dimensional depiction of classifier performance that demonstrates the diagnostic

ability when the thresholds are varied (Fawcett, 2006). The AUC then measures the probability

that the classifier will rank a randomly chosen positive instance higher than a randomly chosen

negative instance (Fawcett, 2006). We will use a bootstrap method to compute a confidence interval

around the values for the AUC.

4.8.3 Ordinal classification performance

As the AUC is defined for binary classifiers only and multinomial generalisations are not ap-

plicable to ordinal outcome data, the metric fails in assessing to what extent our models are able

to describe the ordinal process of the disease development. To compare the ordinal performance of

our methods, we will use various measures of the Mean Absolute Error (MAE).

Cruz-Ramı́rez et al. (2014) define the MAE as the mean absolute deviation of a classifier in

terms of the ordinal scale:

MAEj =
1

nj

nj∑
i=1

ej(xi), (34)

where nj equals the number of observations in class j and ej(xi) equals the deviation of the

classification on the ordinal scale. It equals the absolute difference between the true outcome

yi and the predicted outcome ŷi. As the metric is defined for an ordinal classifier, we have to

translate the probabilistic output of our models to a classification. For that purpose, one can use

a classification scheme of choice. The classification scheme that we have used can be found in

Algorithm 2.

Using the probabilistic output of ordinal outcome models is common practice to multiple medical

scoring rules Feldmann and Steudel (2000). Note that our classification scheme has a tree based

structure. A classification scheme as such is also used by Wu et al. (2014) to construct simple

decision rules for classifying whether someone is at high risk of CRC. The reasoning behind the set-

up of our algorithm is that we first wish to verify whether an observation is in the most progressed

categories before predicting less severe lesions, as these have the highest priority in CRC screening

programmes (Mandelblatt et al., 1996).
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Algorithm 2 Classification Scheme

1: Initialise thresholds parameters tCRC , tAA and tNA

2: if P̂[yi = CRC|xi] > tCRC then ŷi ← CRC

3: else

4: if P̂[yi = CRC|xi] + P̂[yi = AA|xi] > tAA then ŷi ← AA

5: else

6: if P̂[yi = CRC|xi] + P̂[yi = AA|xi] + P̂[yi = NA|xi] > tNA then ŷi ← NA

7: else

8: ŷi ← NO COLO

9: end if

Notes: This scheme translates the probabilistic output of our ordinal models to a categorical classification. Note that

CRC refers to Colorectal Cancer, AA to Advanced Adenoma, NA to Non-Advanced adenomas and NO COLO to a

prediction with a negative FIT.

One can either initialise the threshold parameters of the algorithm based on rules of thumb or

optimise them with respect to an objective function of choice. Similar to Cruz-Ramı́rez et al.

(2014), we choose to optimise the threshold parameters with respect to the Average Mean Abso-

lute Error (AMAE) and Maximum Mean Absolute Error (MMAE):

AMAE =
1

J

J∑
j=1

MAEj , MMAE = max
j
{MAEj ; j = 1, ..., J}.

Note that we take the average and maximum over the outcome categories J . By construction,

the AMAE and MMAE give relatively more weight to observations in minority outcome categories,

as the outcome categories are of equal importance in the objective, irrespective the number of

observations per outcome category. This is an attractive property in our application, where the

outcome categories with (severe) lesions are of key interest, yet in the minority. We will report the

optimal values of the AMAE and MMAE of our models to compare the ordinal performance.

4.8.4 Brier scores

As our models output probabilistic predictions rather than strict classification, we wish to find

an adaptation of the mean squared error to evaluate the accuracy. For that purpose, we use a

proper scoring rule as defined by Brier et al. (1950). The Brier score measures the mean squared

difference between the predicted probability outcome assigned to the possible outcomes and the
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actual outcome:

Brier =
1

N

N∑
i=1

J∑
j=1

(
P̂[yi = j]− I[yi = j]

)2
,

where I[yi = j] again represents an indicator function that equals one if yi = j and zero otherwise.

Though the Brier score is able to evaluate the accuracy of probabilistic predictions, it does not

take the ordinal nature of our outcome variable into account. That is, P̂[yi = k] is penalised for all

j 6= yi irrespective the distance between outcome categories on the ordinal scale |k − j|.

To give more insight in the quality of the ordinal probabilistic predictions, we will also report

a Ranked Brier Score as proposed by Weigel et al. (2007). The Ranked Brier score measures how

well our probabilistic predictions match the observed outcomes:

RankedBrier =
C∑
k=1

Brier(k),

where Brier(k) is the Brier score for the event that the outcome lies in the first k categories. By

construction, the Ranked Brier score penalises high probability predictions further from the true

outcome category harder than those that are closer to the true outcome.

4.8.5 Akaike Information Criterion

In both our finite mixture models, we will have to evaluate to what extent the burden of

additional parameters outweighs the increase in log-likelihood. For that purpose, we compute the

Akaike Information Criterion (AIC) for our models:

AIC = 2 ∗G− 2 ∗ logL(θ̂|y,X), (35)

where G equals the total number of parameters to be estimated in the model and θ̂ is a G x 1

vector summarising all the estimated parameter values (Akaike, 1974).

4.8.6 Risk stratifying ability

In this research, we aim to improve the predictive models for colonoscopy outcomes with the

final goal of personalising CRC screening. To personalise screening, our models need to be able

to stratify observations, ideally segregating observations with a high risk from observations with a

low risk on advanced lesions. We aim to visualise the risk stratifying ability of our models.

Based on the probability output of our models, we assign an individual risk score to our obser-

vations. This risk score is a (weighted) sum of the probabilities of having a lesion. In this research,

we compute the risk score by adding the probabilities of the two most severe categories (AA and
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CRC). Practitioners could alter the weights as desired or optimise them in simulation models such

as the one proposed by Loeve et al. (1999). We then order the observations based on the risk score

and divide them in percentiles, with the first percentile having the lowest mean assigned risk score

and the 100-th percentile having the highest mean assigned risk score. For each percentile, we com-

pute the actual relative risk by dividing the number of detected advanced lesions by the population

average. If we plot the relative risks of the test data, we ideally see substantial differences between

the first and last percentiles.

Next to plotting the relative risk, we also create a scatter plot with the ordered risk percentiles,

with the assigned probability risk on the x-axis and the percentage of detected lesions within a

percentile on the y-axis. Evaluating the distance between the observations and the 45°-line provides

an indication of the goodness of fit of the models.

5 Results

In this research, we aim to improve the performance of the previously applied predictive models

by including knowledge on the stages of disease development in the Dutch screening programme for

colorectal cancer (CRC). In order to do so, we have included the stages of the disease development

in innovative ordinal models. In this section, we will interpret and test the estimated parameters,

report the performance of our models in terms of numeric performance statistics as well as visualise

how these models are able to perform risk stratification. We will compare our models to the binary

outcome model from Meester (2021). We have reconstructed this model and obtained similar

results. We have reported the exponential transformation of the coefficients of the baseline model

in Table 4 in the appendix.

5.1 Category specific effects

The first ordinal models that we have fitted are the ordered logit model and the continuation

ratio model. We have reported the exponential transformation of the two models’ coefficients in

Table 1. Note directly that the continuation ratio model allows parameters to vary per shift in

category, leading to a triple number of parameters to be estimated.

From Table 1, we learn that the estimated parameters of the ordered logit model closely resemble

the parameters of the first category shift of the continuation ratio model. The parameters decrease

in value for higher category shifts and lose significance in the last category shift. Note that the

asterisks indicate whether the parameters significantly differ from zero.
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Table 1: Model specifications of the ordered logit and continuation ratio model

Ordered Logit Continuation Ratio

Variable 1 → 2 2→3 3→ 4

Age 0.993 0.994 1.007 1.030

Male sex 1.243*** 1.233*** 1.040 0.902

First Hb concentration

0 Ref. Ref. Ref. Ref.

0.1–10 1.912*** 1.907*** 1.552*** 0.715*

10–20 3.353*** 3.287*** 1.919*** 0.748

20–30 4.355*** 4.220*** 2.411*** 0.978

30–40 4.870*** 4.806*** 1.935*** 0.449

40–47 6.641*** 6.172*** 4.563*** 0.681*

Second Hb concentration

0 Ref. Ref. Ref. Ref.

0.1–10 3.173*** 3.127*** 1.916*** 0.876

10–20 4.471*** 4.406*** 1.990*** 0.831

20–30 5.799*** 7.389*** 2.886*** 0.449**

30–40 5.750*** 5.518*** 2.514*** 0.607

40–47 5.985*** 5.743*** 2.604*** 0.527

Notes: *** p-value <0.001, ** p-value <0.01, *p-value <0.05

In addition to testing whether the individually parameters significantly differ from zero, we have

tested whether the parameters of the hemoglobin (Hb) concentrations among category shifts differ

from each other. That is, we have tested whether we have found a significant difference among the

effect of Hb-values on shifts 1 → 2, 2 → 3, and 3 → 4.

We have first tested the individual differences in parameters using the asymptotic z-test as

described in (31). This means that we test the null hypotheses H0 : βj,k = βm,k for j = 1,m = 2

and j = 2,m = 3 for the ten parameters belonging to the Hb-values. We found significant differences

for all of the estimated parameters under a 0.001 significance level. The precise values of the z-

statistics can be found in Table 5 in the appendix. We therefore reject H0 for all the tested instances

and conclude that the parameters among category shifts differ significantly.

Additionally, we have tested whether all parameters belonging to the Hb values jointly differ

among category shifts using a Wald-procedure as specified in (33). We therefore test two null

hypotheses. Let βj,Hb be the 10 x 1 vector of the parameters belonging to the Hb-values for a

category shift from j to j + 1 First, we test H0 : β1,Hb = β2,Hb. The value of the test-statistic

becomes 199.92, which is significant under a 0.001 significance level. We therefore reject H0 and
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have statistical evidence that β1,Hb 6= β2,Hb. Second, we test H0 : β2,Hb = β3,Hb. The value of

the test-statistic then becomes 187.69, which is also significant under a 0.001 significance level. We

therefore reject H0 and have statistical evidence that β2,Hb 6= β3,Hb.

The value of the parameters, their significance and the performed statistical tests show that

our explanatory variables mostly have a significant effect on the first category shift. As the second

category means that a participant is assigned a colonoscopy, but no advanced lesions are found, we

can conclude that the previous values of the Fecal Immunochemical Test (FIT) contain the strongest

explanatory power in predicting which participants will get a positive FIT later in life rather than

predicting the final outcome of the colonoscopy. The tests also indicate that the variables contain

little predictive power in differentiating between Advanced Adenomas (AA) and CRC.

5.2 Parameters of the finite mixture models

Subsequently, we have accounted for potential heterogeneity by allowing the parameters to vary

per cluster in the finite mixture ordered logit (FMOL) model. The exponential transformation of

the coefficients of the finite mixture ordered logit model can be found in Table 2.

As we now allow for clusters, the number of parameters to be estimated is multiplied by the

number of clusters, with respect to the ordered logit model. From the model specifications, we

see that the differences in parameters among clusters are subtle. This means that the data do not

contain highly different clusters.

We have generalised the FMOL model by allowing the parameters to vary per category in the

Finite Mixture Generalised Ordered Logit (FIMGOL) model. Note that this final generalisation

leads to a rapid increase in the number of parameters to be estimated. For practical purposes, we

therefore exclude the model specifications from this section, but include the model specification for

two, three, and four clusters in Tables 6, 7, and 8 respectively in the appendix.

As mentioned before, we have imposed the restriction that the parameters have to decrease

with higher category shifts. This for example means that the parameter corresponding to category

shift 1→ 2 is larger than the parameter corresponding to the category shift 2→ 3 by construction.

This is indeed the case for all clusters in all models. From the continuation ratio model as specified

in Table 1, we have already seen that this pattern holds for all significant variables. From the

results of this model, we can deduct that the burden of the restriction is relatively minor in this

application.
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In the FIMGOL models with two and three clusters, we again observe that the differences in

parameters among clusters are present yet subtle. The decrease in parameter values for higher

category shifts is however substantial, particularly for the parameters corresponding to the FIT-

values of category shift 3→ 4.

The FIMGOL model with four categories shows larger differences in parameter values. Partic-

ularly, the parameter values for cluster four take double the value of the parameters in cluster one

(see Table 8 in the appendix). Note that the cluster probability of clusters two and four are how-

ever less than one percent. This means that the parameters of clusters two and four have limited

influence on the model’s probabilistic predictions. We can therefore conclude that four clusters are

more than necessary in this application of the generalised finite mixture model. As we believe that

we do not need more than three clusters in this application, we will therefore focus on models up

until three clusters in this paper.

In addition to the finite mixture models with multiple clusters, we have fitted a model with

one cluster. As expected, we have obtained the ordered logit model for the FMOL model and the

generalised ordered logit (gologit) model for the FIMGOL model.

5.3 Goodness of fit

To evaluate the goodness of fit of our ordinal probabilistic predictions, we have split the popula-

tion in percentiles and ordered those according to the mean assigned risk score. Though any other

(weighted) sum of predicted probabilities can be chosen as a risk score, we have used the probability

on Advanced Neoplasia (AN) as a risk score. We subsequently plot the observed detection rate

of AN relative to the risk score assigned by our models. We can evaluate the goodness of fit by

inspecting the distance to the 45°- line. The goodness of fit graphs of our proposed models can be

found in Figure 3.

From Figure 3, we see that adding complexity to ordinal models increases the goodness of fit.

We see that the standard ordered logit model underestimates the risk, particularly for high-risk

percentiles. The mixture models outperform the ordered logit model in terms of fit. Note that our

new models particularly outperform the ordered logit models for high-risk percentiles. In cancer

screening, correct estimation of high risk individuals is of key importance.
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(a) Ordered logit (b) Continuation ratio (c) FMOL, two clusters

(d) FMOL, three clusters (e) FIMGOL, two clusters (f) FIMGOL, three clusters

Notes: Plots of the observed Advanced Neoplasia (AN) detection rate over the mean assigned risk score of

percentiles ordered by the estimated risk. Each blue dot represents one percentile. We have included goodness of fit

plots zoomed in on percentiles with a risk score below five percent in Figure 7 of the appendix.

Figure 3: Goodness of fit plots of the ordinal models

Though it is essential to correctly estimate the risk of high-risk individuals, we also desire proper

goodness of fit for the other observations. Our models also fit to these percentiles properly. As

this is hard to judge from Figure 3, we have included goodness of fit plots zoomed in on percentiles

with a risk score below five percent in Figure 7 of the appendix.

5.4 Numeric performance summary statistics

We have evaluated all models in terms of the area under the receiver operator curve (AUC),

the Average Mean Absolute Error (AMAE), the Maximum Mean Absolute Error (MMEA), the

Brier statistic, Ranked Brier statistic, and the Akaike Information Criterion (AIC). A summary of

the performance statistics can be found in Table 3, where we have printed the best values of each

performance statistic in bold.

5.4.1 Discriminatory ability

To compare our models to the binary logit model, we have evaluated whether the ordinal models

are also able to predict the occurrence of AN. Likewise Meester (2021), all lesions other than AA

and CRC are not considered as AN and will be discarded as a relevant outcome in the binary set-up.
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Table 3: Summary of the performance statistics of the evaluated models

Model AUC AMAE MMAE Brier Ranked Brier AIC

Binary Logit 0.778 - - 0.180 - 21224

Ordered Logit 0.779 1 1.415 0.078 0.043 57479

Continuation Ratio 0.783 0.953 1.384 0.079 0.043 57128

FMOL

2 clusters 0.778 0.946 1.428 0.079 0.043 57808

3 clusters 0.778 0.945 1.405 0.078 0.043 57914

4 clusters 0.768 0.945 1.404 0.078 0.043 57975

FIMGOL

2 clusters 0.758 0.964 1.471 0.079 0.043 58100

3 clusters 0.727 0.991 1.489 0.079 0.043 58699

4 clusters 0.678 1 1.481 0.079 0.043 69981

Random Forest 0.791 0.955 1.831 0.081 0.046 -

Notes: A report of the Area Under the ROC-curve (AUC), Average Mean Absolute Error (AMAE), Maximum Mean

Absolute Error (MMAE), Brier-score, Ranked Brier-score and the Akaike Information Criterion (AIC). The statistics

of the best performing ordinal model has been printed in bold, except for the Ranked Brier score, for which the

differences are negligible. The reported statistics are computed on a test-set of 30% of the available data. Note that

FMOL refers to the Finite Mixture Ordered Logit model and FIMGOL to the Finite Mixture Generalised Ordered

Logit model.

To evaluate the binary predictive performance, we sum the individual’s predicted probabilities that

AA or CRC is detected. We use this sum of probabilities in our computations of the AUC.

In terms of the AUC, we observe that our ordinal models reaffirm that age, gender, and FIT-

values are well able to predict colonoscopy outcomes. The values of the AUC of our models attain

similar results as the binary model from Meester (2021). As expected, the ordered logit model in

its binary form yields the same AUC as the binary logit model; the models are equivalent when the

ordered logit is reduced to a binary set-up. Neither the FMOL nor the FIMGOL approaches are

able to improve the binary predictive performance.

Where adding complexity to advanced regression models does not seem to improve the AUC

of the models, we do see improvement for the random forest model. The flexibility of the random

forest model and the power of a decision tree ensemble method allow for better predictions at the
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cost of interpretability.

5.4.2 Ordinal classification performance

We evaluate the ordinal classification performance of our models by an analysis of the Mean

Absolute Errors (MAE). As the outputs of all our models are probabilistic, we have used category

specific thresholds for the prediction of a particular category. We have computed the optimal

values of the thresholds with the AMEA and the MMAE as an objective function. In Table 3, we

only report the optimal values of AMEA and MMAE. The optimal parameter values, hence the

thresholds in our classification framework, can be found in tables 9 and 10 in the appendix.

We observe that the FMOL models outperform all other models in terms of AMAE. As the

AMAE values are below one, the predicted classes by the cluster models are - averaged over the

number of classes - correct or in the adjacent category. Note that for the ordered logit and the

FIMGOL model with four clusters, the optimal AMAE equals one. For these models, we observe

optimal classification thresholds such that the model always predicts class two. By construction of

the AMAE, the optimization routine pushes the optimal solution to one of the classes in the center

of the ordinal scale, when using AMAE as an objective.

The MMAE on the contrary is not influenced by a preference for classes in the center of the

ordinal scale. Based on the MMAE, the continuation ratio model performs best. Note that for all

models, the MAE is smaller than two for all categories. This means that under these models, the

average predicted class for participants with CRC is at least in the second class in the ordinal scale.

This implies that by these models, participants with CRC are on average assigned to an outcome

category in which a participant is assigned a colonoscopy.

Note that based on the AMAE and the MMAE, the random forest model seems to be outper-

formed by the regression models. The relatively large optimal MAEs are caused by the fact that the

random forest model assigns relatively more probability mass to the zero category (no colonoscopy).

Due to the flexibility of the random forest model, the predictions are heavily influenced by the class

imbalance in this application. Class reduction techniques could improve the ordinal performance

of the random forest model.

5.4.3 Brier scores

We have evaluated the Brier score and the Ranked Brier score to evaluate the probabilistic

predictions of our models. In this case, it should be noted that we cannot directly compare the

Brier scores of the binary outcome model to the ordinal models, as the number of categories - two
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for the former, four for the latter - differs among the models.

For both the Brier and the Ranked Brier score, we only observe marginal differences, due to a

large class imbalance in the application of this research. As advanced lesions are detected in less

than two percent of the participants only, the models will typically assign most probability mass to

the categories without lesions. Though the Brier scores provide little ground for model comparison

in this application, the metrics can be used in other applications of our models.

5.4.4 Akaike Information Criterion

Because the AIC is based on the log-likelihood function and the number of parameters in a

model, we can use this metric to evaluate the amount of clusters. In this application, we observe

that models with fewer clusters yield lower AIC values and are hence preferred over models with

more clusters. Because the random forest model is not based on the log-likelihood, we cannot

compute the AIC for this model.

5.5 Risk stratifying ability

The final goal of a predicting colonoscopy outcomes is to personalise screening for CRC. We

therefore want our models to be able to differentiate between high-risk and low-risk individuals. To

evaluate the risk stratifying ability of our models, we have plotted the relative risk of the percentiles

ordered on the assigned risk score from our models. Ideally, our models find the highest relative

risk in the top percentiles and the lowest in the bottom percentiles.

We observe that the ordered models are well able to stratify the risk among risk groups. Our

most basic ordinal model as well as the continuation ratio model find percentiles in which the risk

on colorectal cancer exceeds the population average more than 10 times. The relative risk plots of

the ordered logit model and the continuation ratio model can be found in Figure 4.
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(a) Ordered logit model (b) Continuation ratio model

Figure 4: Relative risk plots of percentiles ordered by the predicted risk score

Adding complexity marginally improves the risk stratifying ability of our models. We have

included the relative risk plots of the finite mixture ordered logit model in Figure 5. The relative

risk in the top 1% now exceeds the population average by 11 times. Also note that the first

percentiles for which the relative risk exceeds one occur among higher ordered percentiles than

for the standard ordered logit model. For completeness, we have include relative risk plots of the

binary outcome model and the generalised cluster model in Figure 8 and Figure 9 of the appendix

respectively.

(a) Two clusters (b) Three clusters

Figure 5: Relative risk plots of percentiles ordered by the predicted risk score for the finite mixture

ordered logit model
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Whereas adding complexity to the regression models does not alter the relative risk plot tremen-

dously, our random forest model does give a different result. Our random forest model is able to

isolate high-risk percentiles in unseen data with a risk that exceeds the population average by more

than 28 times. We have plotted the relative risks of the ordered risk percentiles of the random

forest model in Figure 6.

Figure 6: Relative risk plots of percentiles ordered by the predicted risk score for the random forest

model

6 Conclusion & Discussion

In this research, we have investigated whether we can improve the performance of the previously

applied predictive models by including knowledge on the stages of disease development in the Dutch

screening programme for colorectal cancer (CRC). We conclude that though regression models

are not able to improve the binary discriminatory ability, our application of the random forest

model does improve the predictive performance, at the cost of interpretability. Our study therefore

reaffirms that age, gender, and previously measured hemoglobin (Hb) concentrations as measured by

the Fecal Immunochemical Test (FIT) are highly predictive for future colonoscopy outcomes. Our

conclusion is therefore that risk stratification based on historical FITs can improve the effectiveness

of the Dutch screening programme.

Our proposed ordinal models are new to the econometric literature. The ordinal models show

that we can include the disease development in predictive models and that the stages of the disease

development can be modelled successfully. Though our models do not outperform the previously

applied models in terms of binary predictions, we have shown that our mixture approaches improve

the goodness of fit and ordinal classification with respect to the standard ordered logit model. Our

implementations of finite mixture models are ready to use for applications outside this context.

37



In addition to our conclusion that risk stratification based on historical FITs is possible, we

have also gained a deeper insight in the mechanisms behind the predictive ability of models based

on FIT-concentrations. Our implementation of the continuation ratio model shows that historical

FIT-values are predictive for the future outcome of the FIT, but that they are less able to predict

the progression of advanced lesions at the follow-up colonoscopy. This result is useful to clinicians

investigating the pathway of a polyp to CRC as well as to modellers who wish to incorporate this

pathway in simulation models. Improved simulation models help policy makers in optimising the

screening strategy with respect to the test frequency and Hb cut-off value of the FIT.

Next to our regression models, we have experimented with the application of machine learning

techniques. Our application of the random forest model outperforms the existing models in terms

of the Area Under the Receiver Operator Characteristic (ROC) Curve (AUC) and is able to detect

and isolate high-risk participants. By construction of the model, the increase in predictive power

comes at the cost of interpretability, which is essential in any medical context.

6.1 Limitations

The first limitation in this research is that we are not able to observe lesions among observa-

tions which do not obtain a positive FIT in the third round. For that reason, we can only take

the lesions observed during a colonoscopy after a positive FIT as a dependent variable. Though

methodologically interesting, performing colonoscopies on participants without a positive FIT is

clinically undesirable and costly in general, and therefore difficult to accomplish.

Another way to cope with this issue would be to include data on interval cancers; cancers

that are missed in the screening programme, but detected after a patient experiences symptoms.

Asymptomatic lesions would however still be missed in this set-up. A separate study to the previ-

ous FITs of participants with interval cancers could give more insights in the performance of the

screening programme and the FIT.

A second limitation in our research is the limited number of screening rounds. The Dutch

government has initiated the screening programme for CRC in 2014. This means that at the time

of this research, we have data on three screening rounds. We can therefore only use data on FITs

of the first two rounds as explanatory variables. With the number of rounds increasing, one could

approach our predictive task using longitudinal data methods. Our current models do not yet allow

for a longitudinal approach, but can be extended to include a time-varying component.

Finally, our models show that the improvement of a finite mixture approach on the binary
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discriminatory ability is limited. With only a limited amount of predictor variables, our models

have not revealed highly different clusters. Including more patient information - such as genetic

data or demographic information - could widen the differences between clusters, hence increase the

relevance of a finite mixture approach (Grobbee et al., 2017).

6.2 Implications for future research and practice

Our first and main suggestion for further research comprises a clinical study that could provide

conclusive evidence that risk stratification improves the CRC screening programme. Our modelling

study shows that historical FIT-concentrations can predict colonoscopy outcomes, but it is impossi-

ble to design a study that can conclusively show that personalising the screening procedure indeed

increases the CRC detection rate without clinical validation.

In a clinical study, one could split the participants in two groups. The first group is the

control group and follows the biennial screening programme as it is performed now. For the other

group, a risk stratification approach is applied; one could use our predictive models to assign a risk

score to participants, based on age, gender, and previous FITs. Researchers could then order the

participants based on the predicted risks and split the participants of the test group into a number

of subsets. For the subsets with relatively high risk, researchers should intensify the screening. The

screening could be intensified by increasing the test-frequency and/or by lowering the FIT cut-off

value for high-risk individuals. For the subsets with relatively low risk, researchers could do the

opposite and for example reduce the test frequency. Comparing the advanced lesions detection

rate, false-positive rate, and AUC of the test and control group could prove that risk stratification

improves the effectiveness of the screening programme.

In addition to clinical studies, our models could be the basis for further methodological research.

One could use and test our models in any other application with a multinomial dependent outcome

variable with relevant ordering. In our implementation of the finite mixture models, we have used an

iterative EM-algorithm to estimate the parameters of the model. Further research using for example

a Majorise-Minimisation (MM) algorithm could decrease the computation time of estimating the

parameters in our models (Hunter and Lange, 2004). A reduction of the computation time will

increase the practical value of our models, certainly in applications with more parameters and/or

categories than in our case.

Further research in applying more advanced machine learning techniques could further improve

the prediction of colonoscopy outcomes. Janitza et al. (2016) for example show promising perfor-
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mances of ordinal random forests. Other techniques such as ordinal neural networks as proposed by

Cheng et al. (2008) and ordinal Bayesian Additive Regression Trees (BART) as proposed by Kindo

(2016) potentially improve the performance of the previously applied models. Better predictive

models could subsequently increase the returns of risk stratification in CRC screening.

Our research shows that machine learning algorithms improve the accuracy of the predictive

models at the cost of interpretability. As interpretability is quintessential in medical applications,

research towards more interpretable machine learning techniques could be valuable additions to the

current existing models. Birbil et al. (2020) for example propose two algorithms for interpretation

and boosting of tree-based ensemble methods. Interpretable machine learning algorithms could

provide valuable prediction models to further increase the effectiveness of risk stratification.

To conclude, we emphasise again that this research provides additional ground for risk person-

alisation in screening programmes for CRC. We believe that - both in the Dutch context as well

as in other screening programmes - CRC detection rates can increase while decreasing the number

of unnecessary colonoscopies using risk personalisation. We hope to inspire researchers and policy

makers with this hopeful conclusion in the combat against cancer.
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7 Appendix

Table 4: Model specifications of the reconstructed binary logit model

Variable Odds Ratio p-value

Age 0.999 <0.001

Male sex 1.248 0.96

First Hb concentration

0 Ref.

0.1–10 2.443 <0.001

10–20 4.424 <0.001

20–30 6.239 <0.001

30–40 6.326 <0.001

40–47 11.464 <0.001

Second Hb concentration

0 Ref. <0.001

0.1–10 4.391 <0.001

10–20 6.105 <0.001

20–30 9.025 <0.001

30–40 8.501 <0.001

40–47 8.916 <0.001

Intercept -5.323 <0.001
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Table 5: Values of the z-statistics of the differences in parameters of the continuation ratio model

z-statistics

Variable Shift 1 Shift 2

First Hb concentration

0 Ref. Ref.

0.1–10 38.58*** 35.16***

10–20 44.52*** 19.16***

20–30 20.58*** 11.35***

30–40 23.69*** 8.07***

40–47 4.83*** 11.43***

Second Hb concentration

0 Ref. Ref.

0.1–10 61.42*** 26.99***

10–20 57.92*** 17.76***

20–30 29.36*** 19.87***

30–40 27.59*** 13.44***

40–47 18.42*** 9.47***

Notes: *** p-value <0.001, ** p-value <0.01, *p-value <0.05

Table 6: Model specification of the generalised finite mixture ordered logit model with two clusters

Cluster 1 Cluster 2

Variable 1 → 2 2 → 3 3 → 4 1 → 2 2 → 3 3 → 4

Intercept 3.418 3.913 4.300 3.478 4.040 4.506

Age 0.908 0.844 0.665 0.915 0.859 0.689

Male sex 1.233*** 1.040*** 0.902 1.030*** 1.007** 0.994

First Hb concentration

0 Ref. Ref. Ref. Ref. Ref. Ref.

0.1–10 1.813*** 1.780*** 1.398 1.807*** 1.787** 1.418

10–20 3.908*** 3.093*** 2.236 3.184*** 3.124** 2.188

20–30 4.400*** 4.182*** 3.533 4.442*** 4.323** 4.003

30–40 4.867*** 4.595*** 3.824 4.644*** 4.411** 4.206

40–47 6.817*** 6.607*** 5.134 6.951*** 6.663** 6.174

Second Hb concentration

0 Ref. Ref. Ref. Ref. Ref. Ref.

0.1–10 3.129*** 3.075*** 2.509 3.151*** 3.121** 2.684

10–20 4.337*** 4.257*** 3.219 4.352*** 4.175** 3.025

20–30 5.922*** 5.644*** 3.213 5.841*** 5.726** 3.531

30–40 5.859*** 5.592*** 3.850 5.833*** 5.608** 3.596

40–47 6.455*** 6.340*** 4.637 7.221*** 6.752** 4.408

Cluster probabilities 0.621 0.379

Notes: *** p-value <0.001, ** p-value <0.01, *p-value <0.05
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(a) Ordered logit (b) Continuation ratio (c) FMOL, two clusters

(d) FMOL, three clusters (e) FIMGOL, two clusters (f) FIMGOL, three clusters

Figure 7: Goodness of fit plots of the ordinal models for the percentiles with a risk score < 5%

Table 9: Optimal classification boundary values with Average Mean Absolute Error as an objective

Model tcrc taa tna AMAE MMAE

Ordered Logit 1.020 -1.522 -0.072 1 2

Continuation Ratio 0.002 0.067 0.117 1.142 1.470

Finite Mixture Cluster

2 clusters 0.044 -0.033 0.109 0.946 1.668

3 clusters 0.044 -0.035 0.114 0.945 1.668

4 clusters 0.044 -0.035 0.114 0.945 1.667

Generalised Cluster

2 clusters 0.046 -0.037 0.117 0.964 1.516

3 clusters 0.063 -0.054 0.015 0.991 1.411

4 clusters 1.067 -2.491 -0.230 1 2

Random Forest 0.009 0.029 0.131 1.078 2.008

Notes: The boundary values can be used to translate the probabilistic output of our models to a

categorical classification, using algorithm 2.
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Table 10: Optimal classification boundary values with Maximum Mean Absolute Error as an ob-

jective

Model tcrc taa tna AMAE MMAE

Ordered Logit 0.002 0.083 0.099 1.151 1.415

Continuation Ratio 0.002 0.083 0.103 1.153 1.384

Finite Mixture Cluster

2 clusters 0.002 0.086 0.097 1.156 1.428

3 clusters 0.002 0.088 0.098 1.159 1.405

4 clusters 0.002 0.083 0.096 1.159 1.404

Generalised Cluster

2 clusters 0.003 0.084 0.097 1.304 1.471

3 clusters 0.001 0.082 0.095 1.348 1.489

4 clusters 0.002 0.087 0.103 1.348 1.481

Random Forest 0.003 0.089 0.099 1.123 2.008

Notes: The boundary values can be used to translate the probabilistic output of our models to a

categorical classification, using algorithm 2.

Figure 8: Relative risk plot of the binary outcome model
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(a) Two clusters (b) Three clusters

Figure 9: Relative risk plots of the finite mixture generalised ordered logit model
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