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Abstract
This thesis introduces a new heuristic for the Rolling Stock Rescheduling Problem (RSRP) and

provides insight on the impact of stick-to-the-plan oriented rescheduling on passenger comfort and
operational costs. The RSRP considers the assignment of vehicle units to trips in case of a disruption
and stick-to-the-plan implies that it is strongly undesirable to deviate from the original rolling stock
schedule. Moreover, we consider and study the change in passenger flows after a disruption.

The developed heuristic combines the computational advantage of the Composition Model
of Nielsen (2011) under limited circumstances with the flexibility of a heuristic. The approach
consists of a start heuristic and two neighborhoods in a Variable Neighborhood Descent, namely
the Composition Model Neighborhood that optimizes the deployment of one vehicle type and the
Two-Opt Duty Neighborhood of Hoogervorst et al. (2021) which swaps duties between the vehicle
types.

In computational experiments on four disruptions on the network of Netherlands Railways
(NS), the developed heuristic gives a significant decrease in running time in comparison to the
exact Composition Model while the increase in the total objective value is reasonably small.
Moreover, we show that passenger comfort benefits from rescheduling with dynamic instead of
static passenger flows and that a trade-off exists between passenger comfort and stick-to-the-plan.
Finally, computational experiments show that focusing on stick-to-the-plan comes at the cost of
operational objectives.

Concluding, first, the decrease in computation time and the flexibility of the developed heuristic
could be attractive for practical applications and, second, passengers comfort and operational costs
can benefit greatly from taking into account dynamic passenger flows in rescheduling.

KeyWords: rolling stock rescheduling, disruption management, passenger railway operations,
dynamic passenger flows, Composition Model, heuristic, Variable Neighborhood Descent
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Introduction
Currently, rolling stock rescheduling in passenger railway operations still involves a great deal

of manual adjustments in case of a disruption. This means that in practice, employees manually
search for a new, feasible assignment of vehicle units to trips. In addition, the current approach of
rolling stock rescheduling is aimed at returning to the original plan as soon as possible, rather than
finding a solution that takes into account passenger comfort by minimizing standing hours. Given
that on average 16 disruptions occur every day on the Dutch passenger railway network1, one can
understand that the application of rolling stock rescheduling support can be of great value for the
seating probability and, therefore, customer satisfaction.

We conduct research into a rolling stock rescheduling algorithm that takes into account the
change of passenger flows after a disruption. In this thesis, a disruption is considered to be a
complete blockage of a track. In case of a disruption, the timetable is adjusted, as trips are canceled
due to the inability to drive on blocked tracks. Subsequently, the passenger demand forecast is
adapted to the new situation.

The rolling stock rescheduling model is aimed to assign rolling stock to the trips in the
(adapted) timetable using the adapted passenger forecast. This rescheduling model takes into
account operational objectives, passenger comfort, and the amount of deviations from the original
rolling stock plan. Operational objectives include reducing cancellations, shunting and (un)coupling,
additional conductors, type changes, carriage kilometers, and off-balances. Passenger comfort is
determined by the total expected amount of hours that passengers are standing while they are on
the train.

We looked into literature on disruption management, passenger flows, and rolling stock
management. For disruption management, Dollevoet et al. (2017) show that first rescheduling
the timetable, then rolling stock, and finally crew is feasible in practice. Therefore, it makes sense
to look at the rolling stock rescheduling problem separately. To study the impact of disruptions on
passenger flows, most studies employ graph-based models, such as Kroon et al. (2015).

Methods for rolling stock rescheduling can generally be divided into three groups: exact
flow-based methods (for example the Composition Model of Nielsen (2011)), exact path-based
methods (for example in Lusby et al. (2017)), and recently introduced heuristic methods
(Hoogervorst et al. (2021)). Among the exact methods, the Composition Model is computationally
most attractive. The recently introduced heuristic is computationally less attractive than the
Composition Model under limited circumstances. However, this heuristic has shown to be able
to give comparable computational results under circumstances where the feasible solution space is
larger due to allowing flexible turning. Flexible turning implies that we can change the way trips
succeed one another. The heuristic of Hoogervorst et al. (2021) also has the advantage of providing
intermediate results and can more easily incorporate real-life practicalities. This thesis explores the

1www.rijdendetreinen.nl/statistieken/2019
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possibilities of combining the computational attractiveness of the Composition Model under limited
circumstances with the advantages of a heuristic.

The main research question of this thesis is:

How can we model rolling stock rescheduling with dynamic passenger flows in case of a disruption
and how does it perform in terms of passenger comfort, computation time, operational costs, and
deviations from the original plan?

In order to answer the main question, we split the problem into four sub research questions:

1. How do the passenger flows change after a disruption?

2. How can we reschedule rolling stock to account for timetable changes and changing passenger
flows?

3. What is the influence of taking into account dynamic passenger flows in rolling stock
rescheduling on passenger comfort, operational costs, and deviations from the original
schedule?

4. How does the developed model perform in terms of passenger comfort, computation time,
operational costs, and deviations from the original plan in comparison to methods from
literature?

This research is performed by answering the sub research questions sequentially. We first look
into a method to take changing passenger flows into account. Then we look into current models for
rolling stock rescheduling and develop a new model. For question 3, we perform two experiments:
on one hand, we study the impact of current, stick-to-the-plan based rescheduling. On the other
hand, we reschedule rolling stock using static passenger flows and dynamic passenger flows. In both
experiments, we study the impact on the passenger comfort, operational objectives and deviation
from the original rolling stock schedule. To answer question 4, we will perform a comparison between
the developed method and the Composition Model.

This thesis consists of seven chapters, the bibliography, and appendices. The problem
description in Chapter 1 consists of three parts: first, we explain all terms and concepts that are
used in this thesis. Second, we elaborate on the objectives of rolling stock rescheduling. Third, we
provide a generic problem definition. In Chapter 2, we discuss literature on disruption management,
passenger flows, and rolling stock rescheduling and give a conclusion about which methods seem
most suitable for the problem at hand. In Chapter 3 we elaborate on the models that are used to
generate the input of our rescheduling models. In Chapter 4 we present the two methods that are
used for rolling stock rescheduling. In Chapter 5, we perform computational experiments on the
models and provide a discussion on the results. Then, in Chapter 6, we summarize these results in
a conclusion and answer our research questions. Finally, we give suggestions for future research in
Chapter 7.

2



1 | Problem description
In this chapter, we provide a description of the problem to be addressed. First, in Section

1.1, we discuss all terms and concepts that are relevant in this thesis. Secondly, we discuss the
rescheduling objectives in Section 1.2. Finally, we give a detailed problem definition in Section 1.3.

1.1 Terms and concepts
The terms and concepts are sorted by topic. Firstly, we discuss the disruptions that are

considered in this thesis in detail in Section 1.1.1. Secondly, the timetable and its related concepts
are discussed in Section 1.1.2. Thirdly, we look into rolling stock in Section 1.1.3. Fourthly, we
take a look at the railway infrastructure that we are considering in Section 1.1.4. Finally, in Section
1.1.5, we discuss passengers and passenger demand. Throughout this section, we introduce some
notation. The corresponding sets are given in Table 1.2 for later reference.

1.1.1 Disruptions
A disruption is considered a complete blockage of a track between two stations. This means

that no trips on this trajectory can proceed. The decision rules that define the new timetable after
such a blockage are given. Due to such a blockage, there is a change in the passenger demand at
surrounding routes or on trips occurring at that route after the disruption.

1.1.2 Timetable
The train network consists of train lines l ∈ L on which trains drive from a begin to an end

station. The timetable consists of a set of trips T on those lines. A trip t ∈ T is a journey from a
departure station at a departure time to an arrival station at a arrival time. The timetable for each
day is given.
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Figure 1.1: Circulation of three trains between Rotterdam (Rtd), Gouda (Gd) and Utrecht (Ut). The trips
with trip numbers are given in cyan, the transition with transition numbers are given in red
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Trips are connected through transitions, describing which trips are sequentially performed by
the same train. Each transition c ∈ C has a set of incoming trips T−c and outgoing trips T+

c . The set
of all transitions in the considered time window is C. An example of a line with trips and transitions
is given in Figure 1.1. Usually, the size of set T−c and T+

c is one, but in rare cases, multiple incoming
trips combine at a station and continue their journey together in one trip (or the other way around).
In this thesis, however, we limit ourselves to the case where each transition has a maximum of one
ingoing and one outgoing trip. In Figure 1.1 we see nine transitions where T−c and T+

c have size
one. For example, T−c1 = {t1} and T+

c1 = {t2}.
The transitions are given, but in case of flexible turning, it is possible to swap the outgoing trips

of two transitions. Flexible turning is not considered in the methods in this thesis. Nevertheless,
we briefly explain the concept because the term does appear in this thesis. An example of flexible
turning is given in Figure 1.2. We here see that T+

c2 changes from {t3} to {t7} and T+
c5 changes from

{t7} to {t3}. The new turning pattern could be beneficial if, for example, t7 and t8 have a higher
passenger demand than t3 and t4 and the composition of t1 and t2 has higher passenger capacity
than that of t5 and t6.
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Figure 1.2: Circulation of three trains between Rotterdam and Utrecht. On the left, we see the original
turning pattern at terminal station Utrecht. On the right, we see an example of an adjusted turning that is
possible with the use of flexible turning

The timetable consists of trips and transitions. This timetable is given and is adjusted to the
disrupted situation in case of a disruption. This means that no more trips on a route can take place
if a track between two stations on this route is blocked. Moreover, trips that precede or succeed the
trip on the blocked track may be canceled. As some transitions are no longer possible due to the
cancellation of trips, the transitions are also adjusted. For example, the trip that takes place just
before the canceled trip and strands at a station can be transitioned to a trip that departs later on
from this same station. How the trips and transitions are adjusted after a disruption is given and
is not part of this research.
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1.1.3 Rolling stock
Rolling stock is the collective name for vehicles that move on tracks. The rolling stock types

considered in this thesis are the Intercity (IC) trains in the Netherlands. Six types of train units
are considered in this thesis: namely ICM-3, ICM-4, VIRM-4, VIRM-6, DDZ-4, and DDZ-6. The
characters before the dash indicate the general train unit type, the number after the dash indicates
the number of train carriages on the unit. The set M consists of all train unit types. Each train
unit type has a certain seating capacity, length, and a number of carriages, which are given in Table
1.1.

Table 1.1: Considered InterCity train types, with type name, length and seating capacity

Train type Length (m) Seating capacity (seats) Number of carriages

ICM-3 80.6 228 3
ICM-4 107.1 299 4
VIRM-4 108.6 405 4
VIRM-6 162.1 597 6
DDZ-4 101.8 373 4
DDZ-6 154 607 6

All considered train types are self-propelled and have a driver seat at both ends of the train.
Trains units can be combined to form longer trains that have a higher passenger capacity. This
sequence of trains is named the train composition and all possible train compositions are in set P.
The set of train compositions that can be executed on trip t are denoted by Pt. In general, it is
possible to combine two train unit types of the same general type (ICM, VIRM, or DDZ) as long
as the composition does not exceed the maximum number of train carriages of trip t. The latter is
limited by the platform lengths of the stations on the line of trip t.

The order of trains within the composition is relevant. For example, if the train would consist of
a train unit of type a and b, we can have train composition ab and ba where in the former b and in
the latter a is at the front of the train. This order of train unit types is relevant because only certain
composition changes are allowed at stations. These possible composition changes at transition c are
denoted by the set Qc, which consists of all possible combinations of incoming compositions and
outgoing compositions. At turning stations, stations where trains arrive from the same direction in
which they depart, the order of carriages in a train composition reverses. This reversal is included
in the possible composition changes. In order to perform composition changes, (un)coupling may
be required. Coupling is the act of combining two trains into one, whereas uncoupling is splitting
one train into two trains. An example of why the order of the train units in the composition is
relevant is that at many stations it is only possible to couple a train unit to the front of the train
or to uncouple a train unit from the back of the train.

The goal of rolling stock (re)scheduling is to assign rolling stock compositions to all trips in set
T , which is called rolling stock assignment. This results in a duty for each available train unit. A
duty is a sequence of trips and the position of the unit on each trip for a train unit. The set of all
duties is set D.
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Figure 1.3: Network and subnetwork for change of passenger flows. Grey and black solid lines: network on
which we study the change of passenger flows. Black solid lines: routes on which we generate disruptions.
Dotted lines: NS network as a whole

1.1.4 Railway infrastructure
The model for dynamic passenger flows that is developed in this research is applied to a

subnetwork of Netherlands Railways (NS). NS is the biggest railway operator in the Netherlands
that operates on the tracks of the infrastructure manager ProRail. The network that we consider
is presented in Figure 1.3. The gray and black solid lines represent the network on which we study
the change of passenger flows. The black lines indicate the routes on which we generate disruptions.
This subnetwork is chosen for two reasons. First of all, it is the part of the network with the highest
passenger demand. Secondly, the network contains detour routes in case a disruption occurs. This
makes the subnetwork interesting for this study as it allows us to respond to passenger demand
changes on these detour routes. The dotted lines represent the network of NS as a whole. For
rolling stock rescheduling, we consider the whole network of NS on which InterCity trains operate.
This includes the dotted lines in Figure 1.3.

We make a distinction between depot stations and passenger stations. At depot stations, an
inventory is kept and the trains can change their composition. At passenger stations, passengers can
enter or leave the train but composition changes can not occur. The set S contains all stations in
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our network. In the original rolling stock schedule, each station has a given inventory at the begin
and end of the planning period. If a disruption occurs and rolling stock rescheduling is performed,
the actual end inventory could deviate from the planned end inventory. If this is the case, we speak
of an off-balance.

1.1.5 Passengers
In a train network, we encounter passenger demand. This passenger demand can be expressed

in two ways: first, we can consider trip demand, which is the expected amount of passengers on
each trip t. Note that each trip t is unique, so no two trips exist with the same departure and
arrival stations and/or times. Second, we encounter origin-destination demand. Origin-destination
demand is given as the expected amount of passengers that want to travel from station a ∈ S to
station b ∈ S for each combination of stations in time interval n ∈ N .

Table 1.2: Used sets in the problem

Sets Description

L train lines
T trips
C transitions
D duties
M train unit types
P all feasible train compositions
S stations
N time intervals of the origin destination demand
Pt feasible train compositions for trip t
T−c incoming trips in transition c
T+
c outgoing trips in transition c
Qc allowed composition changes at transition c

1.2 Rescheduling objectives
In this thesis, a model for rolling stock rescheduling is created. In this model, several objectives

are taken into account, namely:

• Computation time: Rescheduling must happen fast, as this allows the train operator to quickly
communicate and execute the decisions. Especially in complicated railway organizations, this
computation time is essential because of the collaboration between different railway actors
(see Section 2.1 on disruption management in railway operations).

• Cancellations: The cancellation of trains in the rolling stock rescheduling phase is undesirable,
as it increases the passengers’ travel time and affects crew rescheduling.

• Stick-to-the-plan: It is desirable that the adjusted schedule is similar to the original plan, as
both passengers, crew, and controllers are familiar with that plan and may prefer the rolling
stock to be executed as originally intended. This similarity is measured by keeping track of
the amount of trips that is performed by a different composition than planned.

7



• Operational objectives: From an operational point of view, it is beneficial to minimize the
following operational objectives in rolling stock rescheduling:

– New shunting movements: If the new schedule requires additional coupling or uncoupling
of vehicles at a transition, this means that the local planner needs to plan new shunting
movements which might be difficult or impossible to plan.

– Off-balances: We want to have as few off-balances as possible, as having ample reserve
vehicles at each station allows us to absorb disturbances and irregularities and because
of planned services (maintenance or washing).

– Additional required conductors: After rolling stock rescheduling, crew rescheduling is
performed. It is undesirable that a train requires additional conductors, as this makes
crew rescheduling more difficult.

– Different vehicle type: A different vehicle type might make crew rescheduling more
complicated, as not all train drivers are allowed to drive all types of vehicles.

– Carriage kilometers: Driving a train costs money and therefore a train operator wants
to minimize the number of kilometers that are driven by trains

• Passenger standing time: It is desirable that each passenger that enters a train is able to find
a seat. However, this is not always the case and passengers need to stand while on the train.
The total amount of time that passengers are standing on the train must be minimized. To
determine the passenger standing time, we must make use of the adjusted passenger demand
due to a disruption or irregularity. This objective is also referred to as seating shortage.

A trade-off exists between the objectives. For example, driving each trip with a composition
with high passenger capacity will of course have a significant positive impact on the passenger
standing time. This is, however, not desirable as it will greatly increase the operational costs. A
comparable example can be made up for stick-to-the-plan and passenger standing time in case the
passenger demand on a trip changes. It is, therefore, interesting to study the trade-off between the
objectives.

1.3 Problem definition
The goal of this research is to develop a model for rolling stock rescheduling after a disruption

while taking into account the dynamic passenger flows. A disruption is a complete blockage of a
track. The passenger flows are considered dynamic, as the model adapts the passenger demand
forecast to the new situation. In other words, if the timetable changes due to a track blockage, what
is the best way to reassign train units to trips?

The rolling stock rescheduling model minimizes the objectives in Section 1.2. The formal
definition of the rolling stock rescheduling problem (RSRP) is to assign a composition p ∈ P

to each trip t ∈ T and thus generate a set of duties D. It must hold that the composition on each

8



trip t ∈ T is in Pt and that the corresponding composition changes on each transition c ∈ C is in
Qc.

The inputs of the model are the duration and location of the disruption, the timetable changes
at disruption, the corresponding sets as in Table 1.2, and information on the original timetable,
network layout, passenger demand, rolling stock, stations, and original rolling stock schedule.

The output of the model is a new rolling stock schedule. This schedule contains both the
composition for each trip as well as the composition change at each transition. Also, we can access
the new passenger demand forecast and investigate the value of all objectives of Section 1.2.
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2 | Literature review
This chapter discusses literature on topics that are related to this thesis. General papers on

railway (re)scheduling are those of Caprara et al. (2007) and Cacchiani et al. (2014). Caprara et
al. (2007) elaborates on passenger railway optimization in general. Cacchiani et al. (2014) gives a
general review on railway systems and a review on literature and models on timetable, rolling stock,
and crew rescheduling.

In this thesis, we perform a literature review on disruption management (Section 2.1), passenger
flows (Section 2.2), and rolling stock rescheduling (Section 2.3), as these topics form the core of this
research.

2.1 Disruption management
Disruption management is defined as follows by Jespersen-Groth et al. (2009): "The joint

approach of the involved organizations to deal with the impact of disruptions in order to ensure
the best possible service for the passengers." They mention that the infrastructure manager has
the responsibility of using the railway network as efficiently as possible. The train operator,
however, mainly focuses on customer service. These conflicting interests may be counterproductive
in the decision-making process after a disruption. The decisions made by the operator and the
infrastructure manager must be mutually approved, so decision time is essential. The involved
organizations, in our case, are ProRail (infrastructure manager) and NS (train operator).

Moreover, Jespersen-Groth et al. (2009) state that the disruption management process
sequentially solves timetable, rolling stock, and crew adjustment. Dollevoet et al. (2017) applies
these three steps as an iterative framework. When it is not possible to find either a feasible rolling
stock or crew schedule in the second and third step, they re-adjust the timetable heuristically
such that they can reschedule successfully. They show that such a framework for real-time railway
rescheduling can find an overall feasible solution after a disruption. This research relies on the
assumption that the duration of the disruption is known at the beginning of the rescheduling
procedure.

In order to handle cases where the duration of the disruption is not yet known at the beginning,
Nielsen et al. (2012) developed a rolling horizon approach. At the time of the disruption, the
approach only considers rolling stock decisions within a certain amount of time (horizon) after
the disruption. When more information on the situation gradually becomes available or a certain
amount of time has passed, the decision horizon is shifted and rolling stock rescheduling is again
performed for the new time horizon. The rolling horizon approach is proven effective with the
Composition model by Nielsen et al. (2012), but can in principle be applied using any rolling stock
rescheduling method. Moreover, Nielsen et al. (2012) show a trade-off between solution quality
and computation time and minor effects on the shunting plans. The operational costs significantly
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increase in comparison to the situation where the disruption duration is known at the beginning,
but Nielsen et al. (2012) state that "the values themselves are quite appealing in practice".

2.2 Passenger flow
In this section, we discuss papers that are related to passenger flow. It is a logical consequence

that the passenger flow on routes that surround the blocked route change because (a part of the)
passengers still want(s) to reach their final destination. Therefore, it seems sensible to consider
passenger flows no longer as static but as dynamic input. We first discuss papers on passenger flows
in the railway context. Secondly, we look into papers on passenger flows in other industries.

Kroon et al. (2015) developed an iterative heuristic for dynamic passenger flows. Using a
feedback loop, they iteratively determine the passenger flows and the rescheduled rolling stock
schedule, as both affect each other. Passengers are divided into passenger groups, where a group
contains a number of passengers (np) that want to travel at a certain time from an origin station
to a destination station. Passengers are assumed to have a total travel time deadline, to take the
travel itinerary with the earliest arrival, to be fully informed of the timetable, and to not enter
a train when it is full (meaning that there exists an interaction between groups when trains near
capacity). For each passenger group, there must exist a flow with value np from their origin to
destination station in a graph where each node represents an arrival or departure of a trip and
where each arc connects an arrival with the corresponding departure. The new passenger flows,
which are influenced by the former rolling stock schedule, are then used to construct a new rolling
stock schedule, and so forth.

Cadarso et al. (2013) also considers the flow of passengers by defining passenger groups.
Passengers in group g with size ng can travel from their origin to destination through paths
Pg, where the probability of group g choosing path p is P (p|w). P (p|w) is determined using a
multinomial logit model and is based on the traveling, transfer, and waiting time. It is assumed
that passengers within a passenger group can choose different paths, passengers can always enter a
train, passengers have a certain deadline after which they leave the system, and that there exists
no dynamic interaction between passenger demand and rolling stock capacity. Using P (p|w), ng
and the origin and destination of group g, the number of passengers on each trip is determined.
Cadarso et al. (2013) show that a single iteration, in which the passengers’ path only depends
on the timetable, already predicts passengers’ behavior well. A second iteration, which takes the
rescheduled rolling stock assignment into account, barely changes the passenger flow.

The final paper on railway passenger flows that we consider, is that of Wagenaar et al. (2017b).
They use a different approach in which they incorporate the change in passenger flows in the
rolling stock rescheduling phase. This relies on the assumptions that passengers can not leave the
railway system, the passenger demand does not change, and passengers do not take a detour when
a disruption occurs. Their paper does take into account that after a canceled trip, the demand for
the next train will increase. These assumptions do not correspond to the situation we are looking
at and therefore this model is not suitable for this study.
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For metro passenger flow prediction, there exist high-level prediction tools for the number of
passengers, namely those of Wei & Chen (2012) and Liu et al. (2019). Wei & Chen (2012) use neural
networks and Liu et al. (2019) use deep learning to predict passenger flows in the short term. A
difference between metro and railway passenger flows is the big influence of other transport modes
in a metro network. Although this influence also exists in our network, this falls beyond the scope
of our research. Also, an initial, high-level prediction of passenger demand is given as an input for
our research, which makes the above methods superfluous.

In the aforementioned papers, the exact passenger demand is not known and passengers are
free to use the itinerary of their choice on the day of travel. However, other industries, such as the
airline industry, operate with a booking system and are thus able to control their passenger flows.
In Dumas & Soumis (2008), a model is introduced to account for dynamic passenger flows in the
airline industry during the booking period. This model is again based on a graph with origins and
destinations as nodes and travel itineraries as arcs that must supply demand. The model assumes
that when a flight is full, the passenger behavior (either not to book a flight or to book a certain
other flight) is known. Dumas et al. (2009) iteratively uses this model to re-optimize their fleet
assignment. This iterative model formed the basis for the model of Kroon et al. (2015).

2.3 Rolling stock rescheduling
For a long time, the Rolling Stock Rescheduling Problem (RSRP) was not often addressed

in literature, as opposed to the Rolling Stock Scheduling Problem (RSSP). In recent years more
attention has been paid to the RSRP and we discuss these papers in this section.

The majority of methods from literature can be divided into two categories: flow-based and
path-based methods. In general, a flow-based method determines the flow of rolling stock units
through consecutive trips, where the arcs represent the trips and the nodes represent an arrival,
departure, or pass-through at a certain time at a station. In a path-based method, it is determined
which paths are executed by rolling stock units, where a path is a feasible sequence of trips that
can be covered by a certain unit. We can logically observe that the amount of paths in such a
path-based model grows exponentially in the number of trips.

The first research focused on the RSRP is that of Nielsen (2011). He extends the flow-based
Composition model of Fioole et al. (2006), which is a model that gives the assignment of compositions
to trips by solving a MIP with commercial optimization software. He shows that this model can be
used not only for scheduling but also for rescheduling rolling stock and concludes that it is the best
model to solve the RSRP. Moreover, he uses the Duty Path Model to transform the composition
assignment to the assignment of duties to rolling stock as real-life operation requires a duty for each
rolling stock unit. The combination of the extended Composition model and the Duty Path Model
is capable of finding a good solution in a sufficient amount of time and is therefore often used as a
well-performing benchmark, for example in Haahr et al. (2016).

The Composition model is often extended in order to add more factors that can be of value
in practice, for example in Wagenaar et al. (2017a) and Wagenaar et al. (2017b). Wagenaar et al.
(2017a) show that maintenance constraints can be added to the Composition model. Wagenaar
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et al. (2017b) perform rolling stock rescheduling with dead-heading trips and adjusted passenger
demand. Although they mention that dead-heading trips reduce the number of canceled trips, we
will not add dead-heading trips to our model because this is uncommon and not preferred at NS.
What is also interesting about this paper is that the adjustment of passenger flows is incorporated
in the MIP of the Composition model. This extension does, however, rely on assumptions that do
not fit our problem setting (see Section 2.2).

Next, we discuss path-based methods in literature. Both Lusby et al. (2017) and Haahr et al.
(2014) deal with the large number of path variables in their strongly comparable MIP by using
a Branch-and-Price algorithm. The Branch-and-Price algorithm solves the subproblems using a
Shortest Path Problem in an acyclic time-space network that consists of trips (arcs) and events
(nodes), such as arrivals, departures, and pass-throughs.

The main advantage of such a path-based approach is that units can be tracked individually, so it
is easier to extend the model to handle constraints on individual units, for example for maintenance.
However, the two mentioned path-based methods rely on assumptions that are not realistic in
practice, such as that the composition within the train and the feasibility of the composition changes
are not taken into account. The methods of Lusby et al. (2017) and Haahr et al. (2014) can quickly
find a feasible solution, but require a longer computation time than the Composition model to reach
optimality.

In the literature, several papers apply and compare a flow- to a path-based method. Haahr
et al. (2016) compare the Composition model of Nielsen (2011) with an extension of Haahr et al.
(2014) in which they take the composition of the trains into account, which is solved using a column
generation approach. The Composition model is again more attractive computationally but has the
disadvantage that it is not possible to track individual units.

Hoogervorst et al. (2020) also performs this comparison on rolling stock rescheduling in case of
delays. They use an adapted version of the Composition model and a path-based model and again
show that the flow-based Composition model computationally performs better.

As mentioned earlier, Wagenaar et al. (2017a) showed that the flow-based Composition model
can also be extended to be able to handle maintenance constraints, although it is less evident than
in path-based models. Although handling maintenance constraints falls beyond the scope of this
research, this does make the path-based models of Lusby et al. (2017) and Haahr et al. (2014) less
attractive to use.

The aforementioned methods required the use of a commercial solver. Hoogervorst et al. (2021)
however, uses a different approach than previous papers. This new approach is neither flow- nor
path-based and does not require a commercial solver. They perform rescheduling with Variable
Neighborhood Search (VNS) using three neighborhoods. The first neighborhood, the Two-Opt
Duty Neighborhood, swaps (a part of) a duty between two train units. Secondly, the Adjusted
Path Neighborhood improves the assignment for one rolling stock type, using an augmenting path
approach. The third neighborhood, the Composition Change Neighborhood, swaps the composition
change between n transitions. The first two neighborhoods are used in the Local Search (LS)
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method by applying Variable Neighborhood Descent (VND). The final two neighborhoods are
used for shaking the rolling stock schedule. Hoogervorst et al. (2021) mention that the Adjusted
Path Neighborhood, as well as the Two-Opt Duty Neighborhood, only changes a few duties at a
time. Also, an additional fourth neighborhood is introduced in both the LS and in shaking. This
neighborhood allows for flexible turnings, meaning that the assignment of arrivals to departures at
a terminal station is changed.

The heuristic of Hoogervorst et al. (2021) is computationally less attractive than the
Composition model when flexible turning is not considered in both models. However, the heuristic
can outperform the exact method in some cases when flexible turning is included. Moreover,
the heuristic has the advantage that intermediate results are usable and has the advantage that
it provides more flexibility to extend the model with real-life practicalities, which makes it well
applicable in practice. Finally, they mention that the heuristic can be improved with the use of
additional neighborhoods.

2.4 Conclusion
In this research, we develop a method for rolling stock rescheduling while taking passenger flow

into account.
We focus on developing a rolling stock rescheduling model because an iterative approach in

which rolling stock rescheduling is seen as a separate problem had proven to give feasible solutions.
Moreover, we will not implement a rolling horizon framework, as this rolling horizon approach can
be applied using any rolling stock rescheduling model and unknown disruption duration falls beyond
the scope of this thesis.

To account for dynamic passenger flows in case of a disruption or irregularity, we will develop a
graph-based model, such as the model of Kroon et al. (2015). This approach is the best fit as it allows
us to include many possible decisions and constraints of passengers and translate origin-destination
demand to trip demand. Moreover, we apply our dynamic passenger flow model before rolling stock
rescheduling only, as Cadarso et al. (2013) shows that the rolling stock assignment barely affects
passenger flow.

This thesis explores the possibility of combining the heuristic of Hoogervorst et al. (2021) with
the Composition model, by applying the Composition model as a neighborhood in the heuristic.
This Composition model Neighborhood has the same main idea as the Adjusted Path Neighborhood,
namely to optimize the deployment of one vehicle type at a time. The advantage of this new
neighborhood is that, by applying the Composition model to one vehicle type at a time, it optimizes
the entire deployment of this vehicle type and not just finds one path change. By combining the
heuristic with the Composition model, we hope to maintain the advantages of the Composition
model, namely its computational attractiveness under limited circumstances, and the practical
advantages of the heuristic, namely its flexibility and intermediate results. Also, the field of applying
Local Search methods to the RSRP is relatively unexplored and thus the introduction of additional
neighborhoods can do much to improve the field’s knowledge on and the quality of methods for the
RSRP.
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3 | Input Generation
As stated in the problem definition, the goal of this research is to develop a model for rolling

stock rescheduling after a disruption while taking into account dynamic passenger flows. We can
think of this as if the disruption, the corresponding adjusted timetable, and the new passenger flow
are, along with the original rolling stock schedule, the input to our rolling stock algorithm. This
chapter discusses all input and generated input that is used for rolling stock rescheduling. The
information flow is presented in Figure 3.1.

Figure 3.1: Input and input generation overview. In white we see all given input. The numbered green boxes
represent input that is generated ourselves. In blue we see the core algorithm: rolling stock rescheduling

The white boxes in Figure 3.1 are given input. We provide a brief overview of what this input
entails:

• Original timetable: The original timetable contains the set of trips T , transitions C, and
corresponding parameters on the arrival and departure station and time.

• Measures at disruption: For the considered disruptions, it is given which trips t ∈ T do not
proceed and how the set of transitions C changes.

• Initial passenger flow per trip: This data set contains the expected number of passengers on
each trip, generated by a department of NS that is specialized in demand forecasting.

• Origin-destination demand: For each pair of considered stations, the estimated
origin-destination demand is given.

• Network lay-out: This is the network layout as given in Figure 1.3. Furthermore, it provides
us with information on which stations (un)coupling of vehicle units is possible.

• Rolling stock availability: This concerns the amount of rolling stock unit types that are
available in the network.
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• Allowed composition changes: In this thesis, it is assumed that it is allowed to either couple
a vehicle unit at the front or uncouple a vehicle unit at the back of an existing composition.

We now discuss disruption generation and timetable adjustment, green box (1) and (2) in Figure
3.1. The severity, location, duration, and time of the disruption must be determined. First of all,
as discussed in Section 1.1.1, we only consider a complete blockage of a track. We consider such a
blockage on one route at a time. Furthermore, we consider disruptions with a duration of 2 hours
because this is a realistic duration1 and this duration allows the system to develop a steady changed
passenger flow over the course of the disruption. What we mean by a steady changed passenger
flow is that the duration is long enough for the passengers to choose alternative routes and not to
wait for the first train after the disruption. This causes a change in the passenger flow on routes
that surround the blocked track and allows us to study the impact of this change in passenger flow
on rolling stock rescheduling. Moreover, the simulated disruption occur during rush hour, as this is
when most passengers are present in the network. In this report, we limit ourselves to this kind of
disruption to answer our research questions. However, the rolling stock rescheduling model can be
applied to any disrupted timetable.

We now discuss timetable adjustment, which is a straightforward procedure as the measures at
a disruption are given. Using these measures, we can adjust the trips t ∈ T and transitions c ∈ C
and use this in the subsequent steps of our Input Generation procedure.

The following sections discuss the other input generation steps. First, we discuss how the
adapted passenger demand per trip is generated in Section 3.1 using a graph-based model. Second,
we discuss how and why we create an initial rolling stock schedule using a Mixed Integer Program
(MIP) in Section 3.2.

3.1 Passenger demand after a disruption
This section discusses in detail how we determine the new passenger demand per trip after a

disruption. We determine this new demand by applying a graph-based model which was inspired
by Kroon et al. (2015). Inputs for this model are the new and old timetable, initial passenger flow
forecast per trip, origin-destination demand, and the network layout. The output is a new passenger
flow forecast per trip.

The general concept of the passenger flow model is as follows: first, we determine the amount of
passengers on each trip before the disruption. Then, we remove the trips from the model that are
canceled due to the disruptions and again determine the flow on each trip. This allows us to calculate
the percentage increase or decrease in passenger flow on each trip. The given initial passenger flow
forecast is now adjusted using this change in passenger flow. This initial forecast is an elaborate
forecast that takes into account more factors than taken into account in the passenger flow model of
this thesis. Therefore, applying the changes to the initial forecast results in a more accurate forecast
of the passenger demand than the passenger flows that result directly from the passenger flow model.

1www.rijdendetreinen.nl/statistieken
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Figure 3.2: Timetable graph for three trips between Rotterdam, Gouda and Utrecht. The train that departs
at 8:05am at Rotterdam continues its journey to Utrecht at 8:29am. We see the trip arcs in black, transfer
arcs in blue and train arcs in purple. Furthermore, each node is labeled with either departure or arrival and
the corresponding time

Timetable graph
We now elaborate on how we determine the passenger flow in the system both after and before
the disruption. This is done by determining the flow over the timetable graph Gtimetable = (V,A)

that represents possible sequences of trips (journeys) in the timetable. The nodes V = Varr ∪ Vdep
represent either the arrival (Varr) or departure (Vdep) of a trip. Each node v ∈ V has an arrival
or departure station sv, arrival or departure time tVv and a train number nt that remains the same
from the begin station to the terminal station of the line.

Furthermore, the arcs A = Atrip∪Atrain∪Atransfer connect the nodes in V by either representing
a trip (Atrip) or a possible connection between two trips (Atrain or Atransfer) by either staying in
the same train or by transferring to another train. In Figure 3.2 we see an example of a passenger
graph that consists of three trips between Rotterdam, Gouda, and Utrecht.

The arcs Atrip connect the departure node of a trip to the arrival node of that same trip. Atrip
is formally defined as the arcs

Atrip = {
(
(sv1 , t

V
v1),

(
sv2 , t

V
v2

))
∀ ( (v1, v2) ∈ (Vdep × Varr) | v1 and v2 belong to the same trip ) }

The length of the arc tAa ∀ a ∈ Atrip represents the duration of the trip. For example, if there
exists a trip that departs from Rotterdam at 9:05am and arrives in Gouda at 9:23am, we encounter
an arc from the departure node in Rotterdam at 9:05am to the arrival node in Gouda at 9:23am
with a length of 18 minutes.

The arcs Atrain connect the arrival of a trip to the departure of a trip that corresponds to the
same train. Atrain is formally defined as:

Atrain = {
(
(sv1 , t

V
v1),

(
sv2 , t

V
v2

))
∀ ( (v1, v2) ∈ (Varr × Vdep) | (nv1 = nv2 & sv1 = sv2)}
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Furthermore, the transitions Atransfer connect all possible transitions between arrival nodes and
departure nodes that are not on the same train. A transition is possible if the difference between
the arrival and departure time is larger than the transfer time ttf. Arc Atransfer is formally defined
as:

Atransfer = {
(
(sv1 , t

V
v1),

(
sv2 , t

V
v2

))
∀ ( (v1, v2) ∈ (Varr×Vdep) | (sv1 = sv2 & tVv1+t

tf ≤ tVv2 & nv1 6= nv2))}

The length of the arcs a ∈ (Atransfer ∪ Atrain) correspond to the duration of the transfer from
one trip to the next. Considering the previous example, we would add an arc from the arrival
node in Gouda at 9:23am to each departure node that we can transfer to. There exist arcs to
both the departure node of the same train (a ∈ Atrain) and to departure nodes of other train lines
(a ∈ Atransfer).

Passenger flow
The origin-destination passenger demand is added to the graph by adding passenger demand to the
graph under Assumption 1.

Assumption 1 Passengers arrive at their origin station at uniformly distributed times

The uniformly arriving passengers are aggregated into passenger groups g with a given origin
station og, destination station dg and arrival time at the origin station tGg . G is the set of all
passenger groups. The arrival times of the passenger groups correspond to the arrival of a train at
the origin station. For example, if at a station s a train departs every 10 minutes, all uniformly
arriving passengers at that origin station with the same destination station in the time interval of
10 minutes are aggregated in one passenger group which has a total size of ng. The total passenger
group size is determined by summing over the origin-destination demand of the time intervals that
fall within the disruption time interval. This total passenger group size is then added as demand in
the graph under Assumption 2.

Assumption 2 The passenger demand is constant over the considered time window

The demand on each trip corresponds to the flow on each trip arc after adding the
origin-destination passenger demand of each passenger group to the graph by determining the
shortest path for each passenger group through the graph. This is done by adding a source node vg
for each passenger group that is connected to the timetable graph Gtimetable by adding time arcs if
it is possible to board the departing train after the arrival of the passenger group. Meaning that we
add an arc ∀g ∈ G from vg to vtrip ∈ Vdep if svg = svtrip and tGg ≤ tVvtrip . Moreover, we also restrict
that tVvtrip − t

G
g ≤ 60 minutes for two reasons: first, each train departs on each line at least once an

hour so a passenger will never wait for a train for longer than an hour. Second, this ensures that
the graph does not become unnecessarily complex by not adding redundant arcs.

We also add a dummy node vdummy,s for each station s ∈ S that we consider in the passenger
flow graph. We connect each vtrip ∈ Varr to vdummy,s if s = svtrip . The dummy station nodes are
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the sink nodes that correspond to the destination of each passenger group. Finally, the shortest
path of each passenger group is determined. The size of this group is added to the flow of the trips
that are on the shortest path. This implies Assumption 3.

Assumption 3 Passengers can always travel by the trips that occur in the determined shortest path

In practice, Assumption 3 implies that we do not consider the capacity of rolling stock that is,
or will be, assigned to a trip.

Flow after disruption
We now discuss how we adapt the passenger graph to the situation after a disruption. This is done
by recalculating the passenger flow on the altered timetable graph Gtimetable by removing the arcs
and nodes from the original graph that correspond to canceled trips. We know in advance exactly
which arcs and nodes must be removed, because we rely on Assumption 4:

Assumption 4 The duration of the disruption is known in advance and is known by the passengers

In order to not redetermine the shortest paths for all passenger groups (including the passengers
that are not affected by the disruption), we only redetermine the travel journey for passenger groups
that traveled by canceled trips in their original journey. We can use this approach as the measures
at disruptions only cancel trips and do not create new trips. This implies that we only remove nodes
and arcs from the graph and do not create new nodes and arcs. It is trivial that by solely removing
arcs, the shortest path of an unaffected passenger group does not change.

Concerning the travel path of the affected passengers, we fix the trips in the travel journey of
passengers that depart before the start of the disruption. For example, starting at 8am we simulate
a disruption between Rotterdam and Gouda and consider a passenger group that enters the system
at 7:45am and wants to travel from Utrecht to Rotterdam. This passenger group, in the original
passenger graph, first travels from Utrecht to Gouda from 7:48am until 8:06am and then travels
from Gouda to Rotterdam at 8:08am until 8:25am. In the disrupted scenario, the second train is
disrupted and therefore, we redetermine the shortest path for this passenger group from Gouda to
Rotterdam at 8:06am.

After we redetermine the shortest path for each affected passenger group, we can recalculate
the passenger demand on the trips and hence determine the expected increase and decrease in
passenger demand on each trip. As mentioned earlier, we apply these increases or decreases on the
(high-level) passenger forecast per trip.

Passenger behavior
In essence, we determine the shortest path through the timetable graph for each passenger group by
applying Dijkstra’s algorithm both before and after disruption. We make the following assumptions
on passenger behavior to determine the routes that passengers are likely to take:
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• A passenger prefers to have as few transfers as possible on their journey. Therefore, it prefers
a journey with the same length of time with fewer transfers over a journey with more transfers.
This is taken into account by increasing the length of the time arcs Atransfer with a transfer
penalty.

• If a passenger group can choose from multiple equally long journeys (including the transfer
penalty), the passengers are distributed over the journeys uniformly.

• If a passenger group can choose a second journey which is α% longer, β% of the passengers
chooses the second shortest route. α is referred to as the alternative path tolerance and β is
referred to as the alternative path fraction.

• Passengers prefer to travel in an Intercity train over a Sprinter train. Therefore, we add a
Sprinter penalty to the arcs that correspond to trips driven by Sprinters.

• If the journey takes γ minutes longer after disruption, δ% of the passengers would leave the
system. We name γ our delay tolerance and name δ our delay leave fraction. We also state
that passengers that were already on their way, as explained in the previous example, do not
leave the system after a disruption.

3.2 Initial rolling stock schedule
The Rolling Stock Rescheduling Problem (RSRP) requires knowledge of the original rolling

stock problem, as stick-to-the plan is one of the objectives in our RSRP. Therefore, it is necessary
to determine an initial rolling stock schedule. This schedule is determined using the Composition
Model developed by Fioole et al. (2006). The notation is based on the adjusted Composition Model
of Nielsen (2011) as we use this adjusted Composition Model for rescheduling in Section 4.1.

There are two main reasons that we do not use a rolling stock schedule from reality. First of all,
the real-life schedule does not obey the assumptions that we restrict the rolling stock (re)schedule to
in this thesis, which means that this real-life schedule is not directly usable. For example, we assume
that we can only couple one train unit at the front or uncouple one train unit at the back, but in
reality, more composition changes might be allowed. Furthermore, the real-life schedule might not
be optimal. If we then reschedule rolling stock to optimality using this real-life schedule, we cannot
objectively assess the quality of our rescheduling model.

We first discuss the sets of the Composition Model, followed by the variables, parameters, and
the Mixed Integer Problem (MIP). We use the previously discussed set of trips T , set of transitions C,
set of vehicle unit typesM , and set of stations S. Furthermore, we introduce the set µ(t), containing
the allowed compositions on trip t ∈ T , which is, for example, constrained by the platform lengths.
Furthermore, we have a set of allowed composition changes Q and the set ρ(c) ∈ Q, which contains
the feasible composition changes for transition c ∈ C. This set applies the restriction that at stations
where it is allowed to change compositions, we can decide to couple a vehicle unit at the front and
decouple a vehicle from the back of a composition.

We now discuss the used parameters of the Composition Model. First of all, we have σt ∈ C
and πt ∈ C which denote, respectively, the successor and predecessor transitions of trip t ∈ T .
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Moreover, pq,t is the composition of the ingoing trip t and p′q,t is the composition of the outgoing trip
t of composition change q. Furthermore, we use the parameters αq,m and βq,m which, respectively
represent how many units of type m ∈M are uncoupled and coupled at composition change q ∈ Q.
Also, we denote as τ−c and τ+c as the time at which a vehicle must be available to perform respectively
coupling or uncoupling at transition c. Finally, kmt is the amount of kilometers of trip t, durt is the
duration of trip t, dt is the demand on trip t, lt is the maximum number of carriages on trip t, carrp
is the amount of carriages in composition p and capp is the total seating capacity of composition p.
Finally, im is the total number of vehicle units of type m that is available in the system.

Table 3.1: Decision variables of Composition Model

Variable Domain Description

Xt,p B equals 1 if trip t ∈ T is performed with composition p ∈ P and 0 otherwise
Zc,q B equals 1 if transition c ∈ C is performed with composition change q ∈ ρ(c) and 0 otherwise
Ic,m Z+ the number of units of type m ∈M in inventory at station s(c) after transition c
I0s,m Z+ the number of available units of type m ∈M at station s ∈ S at the beginning of the day
Iends,m Z+ the number of available units of type m ∈M at station s ∈ S at the end of the day
Cc,m Z+ the number of coupled vehicle units of type m ∈M at transition c
Uc,m Z+ the number of uncoupled vehicle units of type m ∈M at transition c
Idiffs,m Z+ the absolute difference between I0s,m and Iends,m at station s ∈ S for type m ∈M

The variables of the model are given in Table 3.1. The objective of the MIP is given in Equation
(3.1) with weights w1 until w5. The constraints are given in Equation (3.2) - (3.16).

min
∑
t∈T

∑
p∈η(t)

w1 · carrp ·kmt ·Xt,p+

∑
t∈T

∑
p∈η(t)

w2 ·max
{
dt − capp, 0

}
· durt ·Xt,p+

∑
s∈S

∑
m∈M

w3 · Idiffs,m+∑
c∈C

∑
m∈M

w4 · Cc,m +
∑
c∈C

∑
m∈M

w5 · Uc,m

(3.1)

Subject to

∑
p∈η(t)

Xt,p = 1 ∀t ∈ T (3.2)

Xt,p · carrp ≤ lt ∀t ∈ T, p ∈ P (3.3)

Xt,p =
∑

q∈ρ(σt):pq,t=p

Zσt,q ∀t ∈ T, p ∈ η(t) (3.4)
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Xt,p =
∑

q∈ρ(πt):p′q,t=p

Zπt,q ∀t ∈ T, p ∈ η(t) (3.5)

Cc,m =
∑
q∈ρ(c)

βq,m · Zc,q ∀c ∈ C,m ∈M (3.6)

Uc,m =
∑
q∈ρ(c)

αq,m · Zc,q ∀c ∈ C,m ∈M (3.7)

Ic,m = I0s(c),m −
∑

c′∈C:s(c′)=s(c),
τ+
c′≤τ

+
c

Cc′,m +
∑

c′∈C:s(c′)=s(c),
τ−
c′≤τ

+
c

Uc′,m ∀c ∈ C,m ∈M (3.8)

Iends,m = I0s,m −
∑

c∈C:s(c)=s

Cc,m +
∑

c∈C:s(c)=s

Uc,m ∀s ∈ S,m ∈M (3.9)

Idiffs,m ≥ Iends,m − I0s,m ∀s ∈ S,m ∈M (3.10)

Idiffs,m ≥ I0s,m − Iends,m ∀s ∈ S,m ∈M (3.11)∑
s∈S

I0s,m = im ∀m ∈M (3.12)

Xt,p ∈ {0, 1} ∀t ∈ T, p ∈ η(t) (3.13)

Cc,m, Uc,m, Ic,m ∈ R+ ∀c ∈ C,m ∈M (3.14)

I0s,m, I
end
s,m , I

diff
s,m ∈ R+ ∀s ∈ S,m ∈M (3.15)

Zc,q ∈ R+ ∀c ∈ C, q ∈ ρ(c) (3.16)

We now discuss the objective and constraints. The objective consists of six parts: first, we
encounter the minimization of the number of carriage kilometers. Secondly, we minimize the under
capacity of the number of seats in the train measured over time. Moreover, it is penalized if the final
inventory of the shunting yard does not equal the initial inventory, in order to make the schedule
feasible in the long run. Finally, we penalize the number of couplings and uncouplings.

We now look into the constraints of the Composition Model. Constraints (3.2) ensure that
a composition is assigned to each trip. Note that in the initial schedule each planned trip must
be executed. Hence, an empty composition is not part of the set µ(t)∀t ∈ T . Constraints (3.3)
ensure that a composition can not be longer than the maximum number of carriages on that trip.
Constraints (3.4) and (3.5) make sure that the compositions and composition changes match each
other. Equations (3.4) do this by stating that when a composition p is chosen for trip t, in the
successor transition σt a composition change must be chosen that has composition p as incoming
composition. Equations (3.5) do the same for the predecessor transition. Note that if the set of
incoming trips of a transition c is empty, we limit σ(c) such that the incoming composition is empty.
For transitions c with an empty set of outgoing trips, we ensure that the outgoing composition is
empty.

Constraints (3.6) ensure that the number of vehicle units of type m that is coupled at transition
c is in correspondence with the chosen composition change at the transition. Constraints (3.7) do
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the same for the number of uncoupled units.
Constraints (3.8) determine the number of units of typem ∈M in inventory at station s(c) after

transition c, by summing over the number of uncoupled and coupled vehicle units that occurred
earlier in time than transition c at station s(c). Equations (3.9) determine the final inventory, by
adding all the couplings and subtracting all the decouplings of the considered time window to the
initial inventory.

Equations (3.10) and (3.11) ensure that Idiffs,m is the absolute difference between the initial and
final inventory. Furthermore, (3.12) make sure that the total initial inventory of each type equals
the total number of available units of that type. Finally, (3.13) - (3.16) specify the domain of the
variables. All variables, except for Xt,p can be chosen continuous as they all stem from the discrete,
binary variable Xt,p.

In case we want to limit ourselves to only one vehicle type per line, so allowing only DDZ,
VIRM, or ICM vehicles on a line, we add the variables qtript and qlinel . The variable qtript depicts the
type of trip t ∈ T and qlinel the type of line l ∈ L. qtript and qlinel equal 1 if the type is DDZ, 2 if the
type is VIRM, and 3 if the type is ICM. Furthermore, we introduce the set Tl which contains all
trips of line l ∈ L and the parameter typep which denotes the type (DDZ, VIRM or ICM expressed
as an integer) of composition p ∈ P .

qtript =
∑
p∈P

Xt,p · typep ∀t ∈ T (3.17)

qtript = qlinel ∀t ∈ Tl, ∀l ∈ L (3.18)

qtript ∈ {1, 2, 3} ∀t ∈ T (3.19)

qlinel ∈ {1, 2, 3} ∀l ∈ L (3.20)
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4 | Rolling Stock Rescheduling
We apply two methods to perform rolling stock rescheduling. First of all, we use an adjusted

version of the Composition Model, which was already explained in Section 3.2. Secondly, we apply
a heuristic that consists of a start heuristic, followed by a Local Search method that explores two
neighborhoods. This chapter first discusses the adjustments to the Composition Model in Section
4.1. Secondly, we discuss the heuristic in Section 4.2.

4.1 Composition Model
This section explains how the model of Section 3.2 is adjusted to make the model suitable for

rescheduling. In essence, the model remains the same. However, the sets of trips T and transitions
C are updated by applying the given set of measures and the objective is updated by adding
stick-to-the-plan and additional operational objectives. The latter causes the introduction of new
parameters, variables, and constraints, which we discuss, in this order, in this section. Finally, we
state the new objective.

First, we introduce parameters that are related to the original rolling stock schedule: p0t denotes
the original composition of trip t ∈ T , oht denotes the original number of planned conductors for
trip t ∈ T , oCc (oUc) denotes the number of coupled (uncoupled) units at transition c ∈ C in the
original schedule, and i0s,m (iends,m) denote the initial (final) inventory of unit type m ∈M at station
s ∈ S. Moreover, nhp is the number of conductors required for composition p ∈ P , dept is the
departure time of trip t ∈ T , and tdisr is the starting time of the disruption. Also, we use the
parameter Mdiff

p1,p2 which equals 1 if composition p1 ∈ P and p2 ∈ P are of a different rolling stock
type and equals 0 otherwise.

Six new variables are introduced, which are given in Table 4.1. All variables from Table 3.1 are
still required for the rescheduling model, except for Idiffs,m.

Table 4.1: Decision variables of Composition Model for rolling stock rescheduling

Variable Domain Description

ht Z+ the number of additional conductors required for trip t ∈ T
mt B equals 1 if trip t ∈ T is executed by another vehicle unit type than in the original

schedule and zero otherwise
pdifft B equals 1 if trip t ∈ T is rescheduled to a different composition and zero otherwise
nCc Z+ the number of additional coupled vehicle units at transition c ∈ C
nUc Z+ the number of additional uncoupled vehicle units at transition c ∈ C
Ioffs,m Z+ the off-balance at station s ∈ S for type m ∈M

The new objective is given in Equation (4.1) with weights w5 until w12. Constraints (3.2) - (3.9)
and Constraints (3.13) - (3.16) are still required for the rescheduling model. Furthermore, we add
Constraints (4.2) - (4.13).
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min
∑
t∈T

∑
p∈η(t)

w5 · carrp · kmt ·Xt,p +
∑
t∈T

w6 ·Xt,0+

∑
t∈T

∑
p∈η(t)

w7 ·max
{
dt − capp, 0

}
· durt ·Xt,p +

∑
s∈S

∑
m∈M

w8 · Ioffs,m+

∑
t∈T

w9 · ht +
∑
t∈T

w10 ·mt +
∑
c∈C

w11 · nCc +
∑
c∈C

w12 · nUc +
∑
t∈T

w13 · pdifft

(4.1)

The objective in equation (4.1) penalizes all undesired actions, namely, respectively, carriage
kilometers, cancellations, passenger standing time, off-balances, additional conductors, change
of vehicle unit type, additional coupled vehicle units, additional uncoupled vehicle units, and
composition changes.

ht ≥
∑
p∈P

(nhp ·Xt,p)− oht ∀t ∈ T (4.2)

mt =
∑
p∈P

(
Mp0t ,p

·Xt,p

)
∀t ∈ T (4.3)

pdifft ≥
∑

p∈P | p 6=p0t

Xt,p ∀t ∈ T (4.4)

nCc ≥
∑
m∈M

Cc,m − oCc ∀c ∈ C (4.5)

nUc ≥
∑
m∈M

Uc,m − oUc ∀c ∈ C (4.6)

Ioffs,m ≥ Iends,m − iends,m ∀s ∈ S,m ∈M (4.7)

Ioffs,m ≥ iends,m − Iends,m ∀s ∈ S,m ∈M (4.8)

I0s,m = i0s,m ∀s ∈ S,m ∈M (4.9)

Xt,p0t
= 1 ∀t ∈ T | dept ≤ tdisr (4.10)

ht ∈ Z+ ∀t ∈ T (4.11)

mt ∈ B ∀t ∈ T (4.12)

nCc, nUc ∈ Z+ ∀c ∈ C (4.13)

Constraints (4.2) ensure the value of the additional number of conductors that are required,
by subtracting the original number of required conductors from the number of conductors in the
rescheduling solution. Be aware that (4.11) states that ht must be greater than zero, whereas the
elimination of a required conductor is not taken into account in the objective. Furthermore, the
values of mt are ensured by Constraints (4.3), by looking at whether the former and the new chosen
vehicle unit types are equal.

Constraints (4.4) ensure that pdifft equals one if a composition is chosen that does not equal the
original composition. Constraints (4.5) and (4.6) establish the number of additional (un)coupled
vehicle units. Again, note that nCc and nUc are greater than zero (see Constraints (4.13)) and thus
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only the additional number of (un)coupled vehicle units is stored.
Furthermore, Constraints (4.7) and (4.8) make sure that Ioffs,m is the absolute difference between

the scheduled final inventory and the rescheduled final inventory. Also, (4.9) secures the value
of the initial inventory level, which equals the planned initial inventory level. Constraints (4.10)
secure the chosen composition until the disruption has happened, which is the moment we can start
rescheduling. Finally, Equations (4.11) - (4.13) state the domain of the variables.

4.2 Heuristic
This section describes the heuristic for rolling stock rescheduling in detail. The heuristic consists

of three parts: a start heuristic, the Two-Opt Duty Neighborhood, and the Composition Model
Neighborhood. The two neighborhoods are applied as Local Search neighborhoods in a Variable
Neighborhood Descent (VND).

The start heuristic obtains a feasible rolling stock schedule after a disruption. This start heuristic
takes into account the objectives as defined in Section 1.2 as this provides a good starting point
for the rest of the heuristic. After the start heuristic is executed, the Two-Opt Duty and the
Composition Model Neighborhood are iteratively applied as VND. The main idea of the Two-Opt
Duty Neighborhood is to swap the remaining parts of two duties if the corresponding trains are at
the same station at the same time. The swap that results in the best objective value is applied. The
main idea of the Composition Model Neighborhood is to optimize the deployment of rolling stock for
one vehicle unit at a time. In this way, we make use of the computational benefits of the Composition
Model under limited circumstances while maintaining the flexibility of a heuristic. Moreover, the
two neighborhoods complement each other because the Composition Model Neighborhood takes
care of optimization within one vehicle unit type, while the Two-Opt Duty Neighborhood looks for
an optimal exchange of units between the different types.

The heuristic is formalized in Algorithm 1. As we see, we start the heuristic by determining
the set of duties D. We repeat that a duty is a list of trips and the positions on the trips that
are executed by one train unit during the planning horizon. We determine the initial set D by
first establishing the fundamental duties of the initial rolling stock schedule. A fundamental duty
is a sequence of trips performed by one unit from coupling to decoupling. Then, using the Duty
Flow Model from Nielsen (2011), we determine which vehicles perform which fundamental duties,
resulting in a duty for each vehicle unit. Multiple combinations of fundamental duties are possible,
meaning that from one initial schedule determined by the Composition Model, multiple different
sets of duties can be derived. This does not hold the other way around: for a given set of duties,
it is always fixed which trip is performed using which composition. Moreover, we can determine
the objective value associated with a given set of duties D by means of the function f(D). This
function takes into account the same objectives as the MIP in Section 4.1.

After determining the original set of duties, we transform this to a set of duties after disruption
by applying the start heuristic. Then we continue to the VND: in each iteration, we first try
to find an improvement of the objective value using the Two-Opt Duty Neighborhood as this
neighborhood is least computationally heavy. If the Two-Opt Duty Neighborhood can no longer
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find an improvement, we move on to the Composition Model Neighborhood. If the Compositions
Model Neighborhoods succeeds in finding an improvement, we go back to the Two-Opt Duty
Neighborhood. If the Composition Model Neighborhood also does not find an improvement, the
heuristic terminates.

Algorithm 1: Rolling stock rescheduling heuristic
Data: See Figure 3.1
Result: Rolling stock schedule after disruption

1 D ← transformScheduleToDuties();
2 D ← startHeuristic(disruption);
3 improvement← true;
4 while improvement do
5 improvement← false;
6 D′ ← findImprovement(D,Ntwo−opt);
7 if f(D′) < f(D) then
8 D ← D′;
9 improvement← true;

10 else
11 D′ ← findImprovement(D,Ncomp);
12 if f(D′) < f(D) then
13 D ← D′;
14 improvement← true;
15 end
16 end
17 end

We now discuss the other heuristic steps in detail. We discuss the start heuristic in Section
4.2.1, the Two-Opt Duty Neighborhood in Section 4.2.2 and finally discuss the Composition Model
Neighborhood in Section 4.2.3.

4.2.1 Start heuristic
The start heuristic works as follows: first, we cut off an original duty whenever the duty

encounters a trip that is canceled due to the disruption. The remaining trips of a cut off duty
are stored and are referred to as ’empty duty’. Recall that in Subsection 1.1.2 we explained that
due to the disruption new transitions are added to the set of transitions. In the second step of the
start heuristic, we connect the two duties that correspond to such a new transition. We do this
by merging an empty duty and a cut off duty if the last trip of the cut off duty is connected to
the first trip of the empty duty by such a new transition. These first two steps are visualized in
Figure 4.1. In this figure, we encounter a blockage between Rotterdam and Gouda that results in
the cancellation of trips (the black dotted lines). We see that t10, t11 and t12 occur in a duty after
a canceled trip and hence form an empty duty. Also, t14, t15 and t16 form an empty duty. This
empty duty, however, is connected by a new transition to the duty of trip t1, t2 and t3.

Thirdly, we try to find a vehicle unit from inventory to perform a remaining empty duty. For
the situation in Figure 4.1, this implies that we want to assign an available unit at Gouda to t10,
t11 and t12. In this thesis, we consider three ways to prioritize the assignment of available vehicle
units to empty duties, which we compare in Chapter 5. In the first method, we prioritize the empty
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Figure 4.1: Circulation of five trains between Rotterdam and Utrecht, where 5 trips (black, dotted) between
Rotterdam and Gouda are cancelled due to a disruption. In blue, we see an empty duty that is filled by a
new transition. In red we see an empty duty that can not be filled by a new transition.

duties chronologically, so we first try to find an available vehicle unit at the begin station of the
empty duty that starts earliest in time. The second method prioritizes the empty duties from the
longest empty duty to the shortest. Finally, the third method prioritizes the empty duties by the
number of currently canceled trips in the empty duties. A trip is currently canceled if there is no
vehicle unit assigned to the trip.

Note that in all of the above, we only append an empty duty to another duty if the general
type is the same. For example, if the cut off duty type is DDZ-4, we can add an empty duty that
is of type DDZ-4 or DDZ-6 as this ensures that when later on, other vehicle units are added to
the composition, the composition is likely to remain feasible. Moreover, for the same reason, we
make sure that the new number of vehicle units that is assigned to a trip cannot exceed the original
number of planned vehicle units. Finally, if it were to happen that the start heuristic causes an
infeasible composition, for example due to its length, we cut off the duty from the point where the
composition becomes infeasible.

The start heuristic is formalized in Algorithm 2. We first loop through all duties and check
if these duties contain canceled trips. We do this by looping through the set of trips, which are
ordered by time of occurrence. We start with index 0 in line 4. In case we find a canceled trip, we
add a new duty to the set of duties after disruption that consists of the trips from the start of the
duty (index 0) to the trip right before the cancellation (index n - 1). We then store the index of the
trip after the canceled trip and continue to loop through the trips. In case we, again, encounter a
canceled trip, line 11 until 15 add a duty that consists of the trips from the last cancellation until
the trip right before the new cancellation to the set of empty duties. This continues until all trips of
a duty are checked. In case we do not find (another) canceled trip, we must add the final sequence
of trips to the set of duties. We do this in line 18 until 23. In case we did not find a canceled trip
at all, we add the unaltered duty to the duties after disruption. After checking for canceled trips,
we sort the empty duties by one of the earlier mentioned methods. Then, we try to fill the empty
duties.

The first for loop of the algorithm, line 3 until 24, is of O(|D| · |T |) and the second part, line
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26 until 31, is of order O(|D|2). As the number of trips is larger than the number of duties, we can
conclude that the start heuristic is of order O(|D| · |T |).

Algorithm 2: Start heuristic
Data: See Figure 3.1: Tc = set of cancelled trips, D = set of duties, Cc = set of new

transitions
Result: Starting solution for rolling stock schedule after disruption

1 Dempty ← {};
2 Ddisruption ← {};
3 foreach d ∈ D do
4 addFromIndex ← 0 ;
5 foreach trip tn ∈ d do
6 if tn ∈ Tc then
7 if addFromIndex = 0 then
8 newDuty ← t0...tn−1;
9 Ddisruption ← Ddisruption∪ {newDuty};

10 addFromIndex ← n+ 1 ;
11 else
12 newDuty ← taddFromIndex...tn−1 ; // in case the duty contains multiple canceled trips
13 Dempty ← Dempty∪ {newDuty};
14 addFromIndex ← n+ 1 ;
15 end
16 end
17 end
18 if addFromIndex = 0 then
19 Ddisruption ← Ddisruption∪ {d};
20 else
21 newDuty ← taddFromIndex...tN ;
22 Dempty ← Dempty∪ {newDuty};
23 end
24 end
25 Dempty, sorted ← sort(Dempty);
26 foreach d ∈ Dempty, sorted do
27 Ddisruption ← connectByNewTransition(Cc, d,D

disruption);
28 if not connected by new transition then
29 Ddisruption ← findAvailableV ehicle(d,Ddisruption);
30 end
31 end

4.2.2 Two-Opt Duty Neighborhood
In the Two-Opt Duty Neighborhood, we try to find a swap of the remaining part of two duties

that decreases the objective value of the rolling stock schedule after disruption. This swap occurs
between different rolling stock types, meaning that this neighborhood improves the assignment of
rolling stock types to trips. An addition to the method of Hoogervorst et al. (2021) is that we also
add the empty duties that result from the start heuristic to this neighborhood.

An example of such a swap is shown in Figure 4.2. The red vehicle type was supposed to be
coupled at transition c1 and the blue vehicle type at transition c2 and was available to couple to
transition c1. The remaining duties of these two vehicle types are from this point on swapped.
This can be beneficial if the red type has a higher seating capacity and trips t5 - t8 have a higher
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Figure 4.2: Circulation of three trains between Rotterdam and Utrecht with one type in red and one type
in blue. On the left, we see the initial rolling stock schedule. On the right, we see one swap of the Two-Opt
Duty Neighborhood between the red and blue vehicle type. Superfluous labels of trips and transitions have
been omitted for clarity

passenger demand than trips t1 - t4.
A swap between d1 and d2 at transition c is allowed if the vehicle unit corresponding to either

d1 or d2 (or both) is coupled at transition c, if it is allowed to shunt at the corresponding station
and if both vehicle unit corresponding to duties d1 and d2 are present at the transition station. In
order to efficiently find all possible swaps, we add, for each transition c ∈ C, all pairs of duties that
can be swapped at transition c to the set S(c).

Algorithm 3: Two-Opt Duty Neighborhood
Data: Duty List (D)
Result: Best Two-Opt Duty swap

1 S ← getPossibleDutySwaps(D,Sprevious);
2 objectiveDecrease← 0;
3 bestSwap← {} ;
4 foreach c ∈ C do
5 foreach {d1, d2} ∈ S(c) do
6 D′ ← swap(d1, d2);
7 objectiveDecrease′ = getObjectiveDecrease(D,D′);
8 if objectiveDecrease’ > objectiveDecrease then
9 objectiveDecrease← objectiveDecrease′;

10 bestSwap← {d1, d2};
11 end
12 end
13 end

We now find the best possible swap by implementing Algorithm 3. This algorithm, among
others, performs getPossibleDutySwaps(D) in line 1 and getObjectiveDecrease(D, D’) in line 7.
GetPossibleDutySwaps(D) finds, for each transition, the set S(c) by looping through all duties.
This means that GetPossibleDutySwaps(D) is of order O(|D| · |C|) The sets S(c) are created
once from scratch and later, after each iteration, adjusted to the new situation for computational
efficiency. The function getObjectiveDecrease(D, D’) determines the objective decrease in a smart
manner, by only evaluating the new and old objective of the adjusted trips. This means that
getObjectiveDecrease(D, D’) is of order O(|T |). The overall Two-Opt Duty Neighborhood algorithm
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is of order O(|D|2 · |C| · |T |), because it requires for each transition for each combination of possible
duties an evaluation of the objective value. Moreover, GetPossibleDutySwaps(D) is of smaller order
than the for loop in lines 4 until 13 of Algorithm 3.

4.2.3 Composition Model Neighborhood
The main idea of the Composition Model Neighborhood is to optimize the deployment of one

vehicle unit type at a time. The Composition Model Neighborhood combines the Composition
Model for rolling stock rescheduling of Nielsen (2011) with the main idea of the Adjusted Path
Neighborhood in Hoogervorst et al. (2021). The main idea of the Adjusted Path Neighborhood is to
find, among all unit types, a change in the path of one vehicle unit of that type that decreases the
objective value most. Hoogervorst et al. (2021) mentions that this Adjusted Path Neighborhood,
as well as the Two-Opt Duty Neighborhood, only changes a few duties at a time. The Composition
Model Neighborhood, however, optimizes the entire deployment of one vehicle unit type at a time
instead of finding one path change. Moreover, as discussed in Section 2.3, it was shown that currently
the Composition Model is computationally most attractive under limited circumstances but has the
disadvantage of being less flexible. By applying the Composition Model as a neighborhood in our
heuristic, we can make use of the computational advantage but maintain the flexibility of a heuristic.

The MIP of the Composition Model Neighborhood is in essence the same as for the regular
Composition Model for Rolling Stock Rescheduling as seen in Section 4.1. Therefore, the MIP of
the Composition Model Neighborhood consists of the objective of Equation (4.1) with Constraints
(3.2) - (3.9), Constraints (3.13) - (3.16), and Constraints (4.2) - (4.13). However, we reduce the
sizes of the sets in the model.

Consider that we optimize the rolling stock schedule for type m′. This type can be combined
with type m′′, as our six rolling stock types can be combined in pairs of two. Now, we change
the set of trips T , transitions C types M , compositions P , allowed compositions µ(t) and allowed
composition changes ρ(c) by removing all elements of these sets that do not correspond to type
m′ and type m′′. We change the set T and C by only considering the trips that were deployed by
type m′ and m′′ and the corresponding transitions. Moreover, we can restrict µ(t) and ρ(c) as the
number of units of type m′′ on each trip is fixed.

As the allowed composition µ(t) of each trip is limited to the right amount of m′′ on that trip,
the variables Uc,m′′ and Cc,m′′ are also restricted. This means that Ic,m′′ and I∞s,m′′ are also restricted.
Concluding, no additional constraints are necessary in order to remain the rolling stock schedule of
m′′ the same. However, in order to speed up the model, the known values of Uc,m′′ , Cc,m′′ , Ic,m′′
and I∞s,m′′ are inserted into the program.

We now discuss the structure of the Composition Model Neighborhood. We could perform the
MIP of the Composition Model Neighborhood for each type in each iteration of the neighborhood
and apply only the best improvement. However, since the different general types operate completely
separately from each other, we can make better use of the optimized MIP’s. As mentioned earlier,
our six rolling stock types can be combined in pairs of two. In Section 1.1.3, we state that
we consider the following vehicle unit types: DDZ-4, DDZ-6, VIRM-4, VIRM-6, ICM-3, and
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ICM-4. The general types are DDZ, VIRM, and ICM. When we enter the Composition Model
Neighborhood, the assignment of general types to trips is fixed. In other words, it is fixed
which trips and transitions are executed by either DDZ, VIRM, or ICM. Therefore, we can, for
each general type, adjust the deployment of one of the sub types without changing anything
about the deployment of the other general types. For example, if we change the deployment of
DDZ-4, this only changes the compositions of trips that are assigned to the DDZ type and not
of the VIRM and ICM type. As solving the Composition Model requires significant computation
time, we implement the improvement of the deployment of one of the sub types of each general type.

Algorithm 4: Composition Model Neighborhood
Data: Duty List (D), current objective value
Result: New duty list D

1 foreach {m1,m2} ∈ {{DDZ-4,DDZ-6}, {VIRM-4,VIRM-6}, {ICM-3, ICM-4}} do
2 continue ← checkContinue(m1,m2);
3 if continue then
4 m′ ← m1;
5 m′′ ← m2;
6 objm1 ← performCompositionModel(m′,m′′);
7 m′ ← m2;
8 m′′ ← m1;
9 objm2 ← performCompositionModel(m′,m′′);

10 if objm1 ≤ objm2 and objm1 ≤ objcurrent then
11 D ← removeDutiesOfType(m1);
12 D ← D ∪ improved duties of type m1;
13 else if objm2 ≤ objm1 and objm2 ≤ objcurrent then
14 D ← removeDutiesOfType(m2);
15 D ← D ∪ improved duties of type m2;
16 end
17 end
18 end

The Algorithm for one iteration of the Composition Model Neighborhood thus looks as in
Algorithm 4. We explain the idea of this algorithm by walking through one iteration of the
Composition Model Neighborhood with an example: suppose we consider general types a and b,
with sub types a1, a2, b1 and b2. We start by considering general type a: first, in line 2, the function
checkContinue(m1,m2) checks whether the previous time the Two-Opt Duty or Composition Model
Neighborhood was performed an improvement was found to type a1 or type a2. If this was the case,
we first re-optimize type a1 while fixing a2 and store the obtained objective value as obja1 . Second,
we re-optimize type a2 while fixing a1 and obtain obja2 . If we have found an improved objective
value among obja1 and obja2 , we implement the change of deployment of the type a1 or a2 that
corresponds to the lowest objective value. Then we do the same for general type b: we re-optimize b1
while fixing b2 and re-optimize b2 while fixing b1 and implement the best improvement in objective
value (if an improvement was found). Note that the changes that have already been made to general
type a do not affect general type b. Now, we proceed to the next iteration of the VND in Algorithm
1.

If we would, in contrast to the example above, only apply the best improvement among general
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types a and b, we could encounter the following example: we find the best improvement in type
a1 and also find an improvement in type b2. We would apply the (best) improvement of type a1
and would not use the improvement in type b2 in this iteration. This would be a waste as the
two general types operate separately within one iteration of the Composition Model Neighborhood,
the Composition Model has a non-negligible computation time, and we did find an improvement in
general type b.

In one iteration of the Composition Model neighborhood we solve a MIP in CPlex multiple times.
It is interesting to study whether allowing an optimality gap could result in a further reduction of
the computation time of the rolling stock rescheduling heuristic. By tolerating such a gap, CPlex
terminates the branch-and-bound procedure when an integer solution is found that has a certain
relative gap with the objective of the best remaining node in the branch-and-bound tree. It is
important that this tolerance does not significantly reduce the final objective value of the heuristic.
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5 | Results & Discussion
In this chapter, we conduct computational experiments in order to answer our research questions

and provide insight into the performance of the models as described in Chapter 3 and Chapter 4.
We begin by defining the exact setting of our experiments in Section 5.1. Secondly, we show

how the passenger flows change when a disruption is simulated in Section 5.2. Thirdly, we describe
how the Composition Model that was used for our initial rolling stock schedule performs in Section
5.3.

Then we look into rolling stock rescheduling: First, we study the influence of taking into account
passenger- and operational objectives in rolling stock rescheduling by comparing the rescheduling
results of seven different parameter sets of the Composition Model in Section 5.4. Then, we look
into the difference in passenger-related performance when we perform rescheduling on the original
passenger flow prediction in Section 5.5

Finally, we study the potential of a heuristic method for rolling stock rescheduling. We look
into the influence of heuristic choices in Section 5.6. Also, we study the potential of the heuristic
by comparing the performance of this method to the Composition Model in Section 5.7.

5.1 Experimental setup
Two computers were used for the computational results. The initial rolling stock schedule of

Section 5.3 is computed on an Intel(R) Xeon(R) E5-1650CPU @3.60GHz with 9.2GB of available
computer RAM. The other experiments are, due to circumstances, performed on an Intel(R)
Core(TM) i7-4710MQ CPU @2.50GHz with 2.82GB available computer RAM.

We simulated four complete blockages, with locations as given by the black solid lines in Figure
1.3. These are the Intercity routes Den Haag - Gouda, Leiden - Haarlem, Leiden-Schiphol, Gouda
- Rotterdam, which can from now on be referred to as respectively disruption 1, 2, 3, and 4. We
simulate these disruptions from 8 am until 10am on a Tuesday.

5.2 Passenger flow
In this section, the changes in passenger flow after disruption are presented and discussed. The

results are visually presented in Figure 5.1.
The model requires parameters on passenger behavior. Based on conversations with employees

of NS, a transfer penalty of 20 minutes is chosen. Furthermore, we applied an alternative path
tolerance of 20% and an alternative path fraction of 20%. Moreover, we added a Sprinter penalty
of 20 minutes. The delay tolerance is 30 minutes and the delay leave fraction is 30%. Finally, we
chose a transfer time of 4 minutes.

The running time of the passenger flow model after a disruption is between 60 and 80 seconds.
This running time could be drastically decreased by storing the already obtained shortest paths
more efficiently but this is beyond the scope of this thesis.
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(a) Disruption 1: Den Haag Centraal – Gouda  

(b) Disruption 2: Leiden – Haarlem 

 

(c) Disruption 3: Leiden - Schiphol 

(d)  Disruption 4:  Rotterdam - Gouda 
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Figure 5.1: Passenger flow results. Left image: Average decrease or increase in passenger flow on that route
during the disruption. Right image: Average decrease of increase in passenger flow in the half hour after the
disruption. No significant change means that the increase or decrease is smaller than 5%
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Figure 5.1 shows the changes in passenger flows in case of a disruption. The color depicts the
change in passenger flow over a directed arc. The alert reader observes that station Apn is added to
the graph. This station is added as on routes around this station a lot of passenger flow increases or
decreases occur after a disruption, which makes it interesting to observe from a passenger point of
view. However, on the route Apn - Gd there is no InterCity train, which means that the passenger
flow increase on this route is not used in our rescheduling model.

A foreseeable observation is that on paths that can be used as alternatives to the disrupted
route the passenger flow increases during a disruption. For example, in Figure 5.1.a, we see that if
trips from Gd - Gvc are canceled, the passenger flow at routes Gd - Rtd - Gv and Ut - Apn - Ledn
increases. Also, we see that in the half hour following the disruption, the disrupted path encounters
an increase in passengers due to passengers that have waited until the disruption was over.

Another, less obvious, observation is that the passenger flow decreases at the routes adjacent
to the begin- and end station of the canceled route. This can be explained by the fact that trips on
the blocked route are used not only to reach stations directly adjacent to the blocked route, but also
to reach stations adjacent to the ends of the blocked routes. Alternative routes will now be used
for this purpose, which may reduce the passenger demand on routes adjacent to the canceled route.
In some cases, this effect expands to more routes. This is visible in Figure 5.1.b: We here observe
that a decrease occurs on the route Gd - Gvc. This can, among others, be explained by the fact
that passengers from Hlm, who normally travel to Gd via Gvc, travel via Ut after the disruption,
as reflected in the increase in passenger demand around Utrecht.

Another interesting phenomenon is that on a route the increase or decrease in demand is not
always the same in both directions. This is likely due to the timing of trips, causing a different
shortest route in one direction than in the other.

Finally, we look into changes in passenger demand that seem unpredictable at first glance.
This might be the case for the passenger demand increase from Ut to Asd for disruption 2. This
can be explained by the fact that passengers who started their journey during the disruption have
this journey in their itinerary, for example, passengers that travel from Gvc or Gv to Asd. Other
notable cases have in common that a decrease in the flow of one part of the passenger groups and
an increase of another part occur simultaneously. This occurs between Ledn and Hlm for disruption
3: an increase occurs because this route is a detour route for the disruption but a decrease occurs
as a part of the travelers with origin-destination Hlm and Shl (or vice versa) do no longer travel via
Ledn. This is also the case for disruption 4 between Rtd and Shl: we encounter an increase because
this is a detour route but also a decrease as passengers coming from Gd would normally travel via
Rtd to reach Shl and adjacent stations. This also explains the decrease in travel demand between
Rtd and Shl after the disruption.

5.3 Initial rolling stock schedule
This section elaborates on the Composition model for rolling stock scheduling as given in

Section 3.2. In Table 5.1, we see the chosen parameters and a summary of the performance of
the Composition Model for generating our initial rolling stock schedule. Moreover, we run the
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model under the assumption that only one vehicle type is allowed per line. The parameters for
carriage kilometers and seating shortage have the value used at NS. It was chosen to make the other
operational variables equally large. In small experiments, the chosen values showed a good balance
between the amount of seating shortage, carriage kilometers and operational objectives. Moreover,
we ran the model with the limit that only one vehicle type per line is allowed.

The optimization in CPlex is truncated after 5 hours, after which the model achieves an
optimality gap of 0.55%. We can conclude that the running time of approximately 5 hours is
high even when you do not run the model to optimality. However, reducing the running time of the
initial rolling stock schedule is beyond the scope of this thesis.

We see in Table 5.1 that, obviously, the number of couplings and uncouplings is the same.
Furthermore, we cannot yet draw any conclusions from these results but these numbers could be
relevant as a benchmark in later sections. Finally, note that the initial schedule does not contain
canceled trips because initially, the allowed set of compositions for each trip does not contain empty
compositions.

Table 5.1: Overview of parameters and results of the initial rolling stock schedule. On the left, we see
the value parameters, its weight parameter in Equation (3.1) and the value. On the right, we see the
corresponding running time, optimality gap, carriage kilometers, number of canceled trips, seating shortage
for the initial rolling stock schedule generated by the Composition Model with a limit of one vehicle unit
type per line

Parameter Weight in objective Value Measure Value
Carriage kilometers (km) w1 (unit km−1) 0.13 Carriage kilometers 1,231,542.0 km
Seating shortage (hour) w3 (unit hour−1) 60 Seating shortage 5,189.61 hours
Inventory difference w4 50 Inventory difference 100 units
Coupling w5 50 Total number of couplings 757
Uncoupling w6 50 Total number of uncouplings 757

Running time: 5 hours
Optimality gap: 0,55%

5.4 Rolling stock rescheduling parameters
The goal of this section is to study the impact of stick-to-the-plan controlled rescheduling,

which currently is the main objective in rolling stock rescheduling. This section provides a
use-case for considering passenger- and operational objectives in rolling stock rescheduling. We
study this by performing computational experiments on the Composition Model of Section 4.1 for
different parameter instances. We perform this study on the Composition Model as this solves the
rescheduling problem to optimality.

As you can see in Table 5.2, we differentiate the weight that is put on penalizing performing
a trip with a different composition than planned while keeping the other penalties constant. The
constant penalties were determined as follows: the balance between carriage kilometers and seating
shortage remains the same as in the initial schedule. Moreover, we penalize cancellations heavily,
as cancellations are very undesirable. Finally, the values of the operational parameters are carefully
determined by conducting small computational experiments, which will not be discussed further.
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Table 5.2: Overview of the parameters for rolling stock rescheduling. On the left, we see the fixed parameters
with description of the parameter and the weight in Equation (4.1). On the right, we see the stick-to-the-plan
parameter value that is varied among the seven parameter instances.

Fixed parameters Different composition: w13

Description Index Value Parameter Instance Value

Carriage kilometers (km) w5 (unit km−1) 0.13 1 0.01
Cancellation w6 10,000,000 2 50
Seating shortage (hour) w7 (unit hour−1) 60 3 100
Off-balance w8 1,000 4 300
Extra HC w9 100 5 600
Different Type w10 100 6 1,200
New Coupling w11 100 7 100,000

New Uncoupling w12 100

However, we note that the penalty on an off-balance is set higher than the other operational
objectives because an off-balance might cause moving empty vehicles, which is strongly undesirable.

Parameter instances 1 and 7 in Table 5.2 examine the two extremes of rolling stock rescheduling.
Parameter instance 1 does not consider stick-to-the-plan at all, as it does not penalize executing a
trip with a different composition as planned. Parameter instance 7 focuses on stick-to-the-plan
controlled rescheduling as it strongly penalizes deviating from the original composition, which
outweighs passenger comfort and operational objectives. Parameter instance 7 can be seen as the
current situation. However, the current determined rolling stock schedule in case of a disruption is
likely to be far from the optimal solution of parameter instance 7 because rolling stock rescheduling
is currently performed manually. Parameter instance 2 until 6 study the middle ground between
instances 1 and 7.

We perform rolling stock rescheduling on the four disruptions using the seven parameter
instances. Table 5.3 gives information on the running time of the models and the number of canceled
trips. The bar graphs in Figure 5.2 show the average value of the seating shortage, operational costs,
and the number of different compositions over the four disruptions. In Figure 5.3, the relation
between the three objectives is shown by plotting the average value over the disruptions for each
parameter instances against each other. Note that in order to determine the operational costs, we
use the weights of Table 5.2 but do not include canceled trips. Moreover, in the Appendix, the
obtained values for each disruption and each parameter instance are presented in Table A.1 and the
average value of all operational objectives are given in Figure A.1.

Table 5.3: Running time and number of trips for the six parameter instances

Parameter instance
Measure 1 2 3 4 5 6 7
Run time (average over disruptions) (s) 405 242 233 189 168 137 110
Canceled trips disruption 1, 2 and 4 0 0 0 0 0 0 0
Canceled trips disruption 3 3 3 3 3 3 3 3
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((a)) Total seating shortage ((b)) Operational costs ((c)) Composition changes

Figure 5.2: Bar graphs of the average number of standing hours, operational costs and composition changes
of the seven parameter instances over the four disruptions

((a)) Relative seating shortage vs
relative nr different compositions

((b)) Relative seating shortage vs
relative operational costs

Figure 5.3: Plots of the relative value in comparison to parameter instance 7 of the seating shortage, number
of different compositions and operational costs. The figure shows the average value over the four disruption
for each of the seven parameter instances as provided in Table 5.2

We now discuss the obtained results on the seven parameter instances and begin by discussing
the potential of considering passenger and operational objectives in rescheduling. As expected, we
see in Figure 5.2 that when we put more weight on stick-to-the-plan objectives, the number of
composition differences decreases and the seating shortage increases. We also observe this in the
convex line in Figure 5.3(a). This figure clearly shows that stick-to-the-plan rescheduling comes at
the expense of passenger comfort.

Moreover, we see an interesting relation between the penalty on stick-to-the-plan and operational
costs. We observe in Figure 5.2(b) and Figure 5.3(b) that for the two extremes, namely parameter
instances 1 and 7, the operational costs are significantly higher than for the other parameter
instances. We take a look at the separate operational objectives in Figure A.1 in the Appendix
to determine where these high operational costs come from. In this figure, we observe a decreasing
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trend in the number of type changes, additional conductors, and new (un)couplings and the decrease
in carriage kilometers if we put more emphasis on stick-to-the-plan. This causes high operational
costs for parameter instance 1. Moreover, we see an opposite trend for the number of off-balances,
which causes the relatively high operational costs for parameter instance 7.

It is interesting to briefly study whether the operational costs in relation to the seating shortage
would be (semi-)convex in case off-balances are not included in rescheduling. Figure A.2 in the
Appendix shows that this is indeed the case. We can, therefore, conclude that the interesting
relation between stick-to-the-plan and operational costs is due to off-balances.

We see that in terms of operational costs parameter instances 2 until 6 do not perform
significantly different. Therefore, it is up to the operator to determine which point in the trade-off
between standing hours and the number of different compositions is preferred. For example for
parameter instance 4, we see that putting less emphasis on stick-to-the-plan results in a decrease in
passenger standing hours of around 12% and a decrease in the operational costs of around 1.4%. We
can conclude that by including both passenger comfort, operational objectives, and stick-to-the-plan
in rescheduling, we can significantly reduce the seating shortage and the operational costs at a cost
of more deviations from the original plan.

We observe in Table 5.3 that the running time of the Composition Model increases as we decrease
the weight of the stick-to-the-plan objective. This makes sense because we are giving the MIP less
guidance by reducing the penalty of deviating from the existing schedule. The running times are
reasonable but could be reduced to make the model more suitable for practical purposes. A second
observation from Table 5.3 that the model is not able to find a solution without canceled trips for
disruption 3. This might be the case because of the restrictions we impose on the compositions and
composition changes.

Another observation that we briefly discuss is that we see in Table A.1 that the total number
of standing hours is much larger for disruption 2 than for the other disruptions. This is due to a
very high passenger demand on some trips. On these trips, the demand is higher than the maximal
capacity of any rolling stock composition. Moreover, for disruption 2 parameter instances 5 and
6 result in exactly the same schedule. It is likely the case that the feasible region in which no
cancellations occur for disruption 2 is very limited.

5.5 Influence dynamic passenger flow rolling stock rescheduling
In this section, we investigate how the dynamic passenger flows, as generated by our passenger

flow model, affect rolling stock rescheduling. This tells us whether we can avoid standing
hours by not optimizing under the assumption that passenger demand remains constant after
a disturbance. We do this by, first, rescheduling under static passenger demand and, second,
studying the performance under the adapted passenger demand. We compare this performance to
the performance of the same rescheduling model under dynamic passenger flows, as seen in Section
5.4. We do this by adding the results of the Composition Model under static passenger flow to
Figure 5.3(a) and Figure 5.3(b) which resulted in Figure 5.4. Moreover, in the Appendix, we added
the full results of the model with static passenger flows in Table B.1.
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((a)) Relative seating shortage vs relative nr
different compositions

((b)) Relative seating shortage vs relative operational costs

Figure 5.4: Comparison of the Composition Model when performed under static or dynamic passenger flow.
The figure shows the average value over the four disruption for each of the seven parameter instances as
provided in Table 5.2

First of all, we observe in Figure 5.4(a) that the line of optimizing under static passenger flow is
always above that of dynamic passenger flow. We can therefore state that rescheduling with dynamic
passenger flow is beneficial for passenger comfort. We see that the line of the static model is not
strictly convex. This may seem mathematically incorrect, but this is not the case as the standing
hours that are considered in the objective of the static model are not the same as the standing hours
that are used to make Figure 5.4(a). In this figure, we namely determine the standing hours of the
dynamic passenger flow of the schedule that is made with static passenger flows.

We observe in Figure 5.5(a) that rescheduling with static passenger flow leads to a lower number
of trips driven with a different composition than planned for parameter instance 1 until 5. This
makes sense since rescheduling is now performed with the same passenger demand as in the initial
schedule. This means that the planned composition is likely to fit well with the passenger demand
used in rescheduling. Therefore, fewer trips are performed with a different composition as planned.

It is difficult to draw conclusions about the operational costs in Figure 5.4(b) because the points
are fairly close to each other. However, the operational costs of the static model seem slightly lower.
Moreover, parameter instance 1 results in much lower operational costs for the static model than
the dynamic model. This probably also has to do with the fact that the original schedule is likely
to fit well with the passenger demand that is used in rescheduling with static passenger demand.

In some cases, the schedule that is generated with static or dynamic passenger flows is the
same. First of all, we observe this for parameter instance 7 for disruption 1 and 4 and for parameter
instance 6 for disruption 1. This can be explained by the high penalty on a different composition
than planned for these parameter instances which makes the two models similar. This also explains
that when we focus less on stick-to-the-plan the two lines are further apart. For disruption 2 and
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3, the solutions of parameter instance 7 slightly deviate. We expect that if we had chosen value
0.0 instead of 0.01 for w13 in parameter instance 7, both models would have resulted in the same
schedule. Second, we see that for disruptions 2 and parameter instances 5 and 6, the models result
in the same schedule. As we already explained in Section 5.4, this is likely due to the small feasible
region.

The differences in results of other disruptions and parameter instances show that the model
responds to the changes in passenger demand in case we consider dynamic passenger flows. In
practice, this would imply that, for example, a train on a route that has an increase in passenger
demand is lengthened. Concluding, we have shown that rescheduling with dynamic passenger
demand increases passenger comfort at a cost of deviations from the original schedule.

5.6 Influence heuristic choices
This section discusses the influence of heuristic choices. First of all, we look into the influence of

in what order the inventory is allocated to empty duties in Subsection 5.6.1. Second, in Subsection
5.6.2, we look at it is the case that the two neighborhoods complement each other, as explained in
Section 4.2. Third, we study whether allowing a MIP gap could improve the heuristic in Section
5.6.3

5.6.1 Start heuristic
Figure 5.5 and Table 5.4 provide results on the three different ways (chronologically, by length,

or by the number of cancellations) of filling up the empty duties with available vehicle units from
inventory. Moreover, we provide results on the heuristic if we would not fill up the empty duties
at all. The graph in Figure 5.5 shows the results after running through the VND of Algorithm 1
with both the Two-Opt Duty and the Composition Model Neighborhood. Another result is that all
methods are able to find the same number of cancellations as the Composition Model (see Table
5.3), except when we do not fill up the empty duties. In this case, we encounter 4 cancellations in
the final solution for 6 out of 7 parameter instances for disruption 3. Finally, we note that we do
not present the running times because the four methods result in similar running times.

First of all, we can conclude that filling the empty duties with any method has a great added
value over not filling the empty duties. We can conclude this from Figure 5.5 because the magenta
line lies far above the other lines, meaning that this method performs significantly worse than the

Table 5.4: Comparison of the initial number of canceled trips between filling empty duties chronologically,
by length of by number of canceled trips, or not at all.

Initial number of cancellations for each start heuristic
Disruption Chronological Length Nr cancellations Do not fill

1 100 110 88 331
2 13 14 14 330
3 89 69 69 271
4 18 4 0 218
Average 55 49.25 42.75 287.5
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((a)) Seating shortage vs nr different compositions ((b)) Seating shortage vs operational costs

Figure 5.5: Comparison of the four methods of filling the empty duties by plotting the nr of standing hours
against the number of different compositions and the nr of standing hours against. The figure shows the
average value over the four disruption for each of the seven parameter instances as provided in Table 5.2

others. Moreover, we see in Table 5.4 that the initial number of cancellations is much higher if we
do not fill the empty duties. A final argument that this method performs worse is that, in some
cases, the number of cancellations in the final solution is higher than in the exact solution (see Table
5.3).

Secondly, we explain why we choose to continue filling empty duties based on the number
of cancellations. We see in Figure 5.5(a) that this method provides the best results because the
line of this method lies below the lines of the other methods. In Figure 5.5(b), we see that the
operational costs seem similar for the three sorting methods. Finally, we see that the initial number
of cancellations is the lowest for filling up using the number of cancellations. It is also interesting to
note that for disruption 4, the start heuristic finds a starting solution without any canceled trips.

We end this section with a discussion on the start heuristic methods as a whole. We see in
Figure 5.5(a) that the methods have a shape that is similar to a convex line but is not fully convex.
This is caused by the fact that we apply a VND to find our final solution. A VND, without shaking,
is likely to get stuck in a local optimum. For each disruption and each parameter instance, this
can turn out just differently, causing the final solution in some cases to be close and sometimes a
little further from the global optimum. This causes a wiggly and non-convex line. Moreover, it
is interesting that the operational costs have similar characteristics as in the Composition Model.
We namely see that the points of parameter instances 1 and 7 generally lie outside the cluster of
points of the other parameter instances and show a worse relationship between standing hours and
operational costs. We discuss the operational costs of the heuristic in more depth in Section 5.7.

5.6.2 Combination of neighborhoods
This section shows that it is the case that the two neighborhoods together result in the best

performance because they complement each other.
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Table 5.5: Number of cancellations after start heuristic and after running the Two-Opt Duty Neighborhood
until no more improvement is found

Disruption Initial nr canceled trips Nr canceled trips after Ntwo−opt

1 88 86
2 14 2
3 69 45
4 0 0

((a)) Seating shortage vs nr different compositions ((b)) Seating shortage vs operational costs

Figure 5.6: Comparison of the heuristic with only the Composition Neighborhood (red) or both
neighborhoods (blue). The grey lines are a copy of the magenta, red and green line in Figure 5.5 to clarify
the relative differences. The figure shows the average value over the four disruption for each of the seven
parameter instances as provided in Table 5.2

First of all, Table 5.5 shows that executing the Two-Opt Duty Neighborhood until no more
improvement is found succeeds in reducing the number of canceled trips but still results in a highly
undesirable amount of cancellations for disruption 1 and 3. Table 5.5 only presents the number
of cancellations, because the high amount of cancellations makes it difficult to compare the other
objectives. Disruption 4 is a different case, as its initial schedule already has 0 cancellations.
However, the output of the program of disruption 4 shows that the Two-Opt Duty Neighborhood
terminates after a small number of iterations and does not cause a significant improvement in the
objective value. We can conclude that the Two-Opt Duty on itself does not perform well.

Second, we look into the performance of the Composition Model Neighborhood on itself.
A big difference compared to the Two-Opt Duty Neighborhood is that the Composition Model
Neighborhood is able to find the same number of cancellations for each disruption and for each
parameter instance as in Table 5.3. Therefore, we take a look at the value of the rescheduling
objectives. In Figure 5.6, we see that the combination of the start heuristic and Composition Model
Neighborhood performs worse than the model with the start heuristic and both neighborhoods. The
red line is also above the gray lines that correspond to filling up the empty duties chronologically
and by length (see Figure 5.5). We can therefore state that the Two-Opt Duty and Composition

44



Model Neighborhood complement each other because the combination of the two neighborhoods
leads to a significant improvement in performance in comparison to the performance of the separate
neighborhoods.

5.6.3 MIP gap tolerance
In this section, we study whether allowing an optimality gap in the MIP of the sub problem

in the heuristic could help reduce the computation time without negatively affecting the objective
value. We do this by running the heuristic without a MIP gap and with a MIP gap of 0.001, 0.01,
0.1, 0.25, and 0.5. Table 5.6 shows the change in run time and Figure 5.7 gives an overview of the
objective value of the difference MIP gaps. Furthermore, we add that the different MIP gaps cause
a very insignificant change in operational cost.

In Table 5.6, we see that allowing a MIP gap of 0.25 decreases the run time of the heuristic
most. Moreover, we see in Figure 5.7 that all lines are very close together. This means that a MIP
gap does not cause a significant change in the objective value. Concluding, allowing a MIP gap of
0.25 reduces the computation time without negatively affecting the objective value.

Table 5.6: Run times for several MIP gaps in the Composition Neighborhoods

Run times (s) for MIP gap
Parameter instance 0 0.001 0.01 0.1 0.25 0.5
1 59.8 51.7 55.9 53.4 53.0 63.0
2 58.4 54.6 57.6 54.9 54.5 66.1
3 54.9 50.3 51.6 52.8 48.8 59.8
4 56.2 53.6 56.1 53.6 49.4 54.2
5 62.0 60.2 58.5 59.3 53.1 54.6
6 64.2 61.0 58.6 59.7 52.0 53.6
7 92.3 91.6 83.5 89.5 78.1 76.6
Average 64.0 60.4 60.3 60.4 55.6 61.1
Reduction wrt no MIP gap -6% -6% -6% -13% -4%

Figure 5.7: Seating shortage versus the number of different compositions for the 6 different MIP gaps. The
figure shows the average value over the four disruption for each of the seven parameter instances as provided
in Table 5.2
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5.7 Heuristic performance
In this section, we compare the performance of the heuristic to the exact model. Section 5.6 has

shown that the following settings for the heuristic lead to the best results: the Composition Model
neighborhood has a MIP gap of 0.25 and the start heuristic fills the empty duties by the number
of canceled trips. We compare the two methods by, again, plotting the average seating shortage
against the number of different compositions and the operational costs for the seven parameter
instances of Table 5.2. This results in Figure 5.8. Moreover, we compare the running time of the
two approaches and present the optimality gap in Table 5.7. Finally, we provide all results of the
heuristic in Table C.1 in the Appendix.

We can make several interesting observations from Figure 5.8 and Table 5.7. First of all, we
observe in Figure 5.8(a) that the heuristic performs worse than the Composition Model in terms of
standing hours versus the number of different compositions because the red line has a significant
distance from the blue line. Moreover, we observe that the solutions for the different parameter
instances are much closer to each other in the heuristic. This shows that the heuristic has trouble
getting away from its starting solution and, again, supports the hypothesis that the heuristic gets
stuck in a local minimum.

Second, we take a look at Figure 5.8(b). This graph shows that for the simulated disruptions,
the operational costs for the heuristic are on average lower than in the Composition Model. We
take a look at the average of each operational objective in Table C.1 such that we can draw
general conclusions about the operational performance of the heuristic. We see that, on average,
all operational objectives except for the number of additional required conductors and carriage
kilometers improve. Moreover, we see that the heuristic never causes a type change. This can

((a)) Relative seating shortage vs relative nr
different compositions

((b)) Relative seating shortage vs relative operational costs
and the average over the parameter instances

Figure 5.8: Comparison of the Composition Model and the heuristic. The figure shows the average value
over the four disruption for each of the seven parameter instances as provided in Table 5.2
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Table 5.7: Running time of the Composition Model and heuristic, the decrease in running time and the
average optimality gap over the disruptions. The gap is the relative difference in the total objective value
with the weights as in Table 5.2 for each parameter instance

Parameter instance
1 2 3 4 5 6 7

Run time Composition Model 405 242 233 189 168 137 110
Run time Heuristic 53 55 49 49 53 52 78
Decrease in running time 87.0% 77.4% 79.0% 73.9% 68.4% 62.0% 28.9%
Average optimality gap 2.2% 2.1% 1.9% 2.0% 2.8% 3.3% 15.4%

be explained by the fact that the Two-Opt Duty neighborhood only performs one swap at a time
and that it is difficult to find a single swap between different types that remains feasible at later
couplings. Moreover, this proves that implementing an improvement of each general type in the
Composition Model Neighborhood does not impact the final solution because the general types are
never exchanged in the heuristic.

Third, we see a significant decrease in computation time for parameter instances 1 until 6. For
these instances, the heuristic finds a solution within a minute. Moreover, we see that in the heuristic,
the difference in running time between the parameter instances is much smaller. This might be due
to the fixed structure of the heuristic which causes most iterations to take place regardless of which
parameter instance is applied. We see that the running time of the heuristic for parameter instance
7 is higher than the other instances. This shows that the heuristic struggles in rescheduling with
stick-to-the-plan as the main objective. This might be caused by the fact that the heuristic only
makes a few changes at a time. Together with the fact that the Composition Model has the lowest
running time for parameter instance 7, this results in a relatively low decrease in running time.

Finally, we compare the overall performance by looking at the optimality gap in Table 5.7.
We observe an average gap of between 1.9% and 3.3% for parameter instances 1 until 6. This is a
reasonable gap if we consider the high reduction in computational time for these parameter instances.
Table 5.7 shows that the objective gap deviates per parameter instance and disruption. We see that
for parameter instance 3, the gap is lowest and that the gap grows as we move further away from
this instance. This could occur for (a combination of) two reasons: first, the start heuristic results
in a start solution that has the best fit with the parameter instances that are in the middle and
the VND struggles with moving away from this initial solution. Second, the neighborhoods have
a tendency to result in solutions belonging to the middle parameter instances. These might also
be the reasons for the high average optimality gap of parameter instance 7. However, it is likely
that this effect is amplified by the high penalty on deviations from the original plan, which causes a
small increase in the number of different compositions to result in a relatively large optimality gap.

We can conclude that the heuristic gives a significant reduction in running time at the cost of
the total objective value. This expresses itself in an increase in the number of standing hours and
more deviations from the original plan. The operational objectives, however, improve slightly for
the simulated disruptions.
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6 | Conclusion
In this conclusion, we first discuss the answers to the sub research questions as stated in the

Introduction. The answers to these questions summarize and conclude the report and answer our
main research question. Second, we discuss whether we achieved our goal as stated in Section 1.3,
which is to develop a model for rolling stock rescheduling after a disruption while taking into account
the dynamic passenger flows.

We answer the first research question, "How do the passenger flows change after a disruption?",
by modeling passenger flow on a directed graph. In this graph, the nodes represent either the
departure or the arrival of a train. The arcs connect these nodes and represent either the course of
a trip, a transfer from one train to another, or a train waiting at a station. This graph transfers
the given origin-destination demand to trip demand by finding the shortest path through the graph
under the assumptions on passenger behavior as provided in Section 3.1. From the results on the
dynamic passenger flow model in Section 5.2, we can draw four main conclusions: first, we see that
the passenger demand increases on detour routes. Second, we see that in the half hour after the
disruption, the passenger demand on the disrupted route increases. Third, we see that the passenger
flow decreases at the routes adjacent to the begin- and end station of the canceled route. Fourth,
the passenger flow change can differentiate between the two directions of the same route.

The second research question is as follows: "How can we reschedule rolling stock to account
for timetable changes and changing passenger flows?" We applied two methods for rolling stock
rescheduling in this thesis. First, we applied an exact method from literature, namely the extended
Composition Model as given in Nielsen (2011). Second, we developed a heuristic. Both models use
the passenger demand as obtained from the passenger flow model. Moreover, the models make use
of sets of trips and transitions that are adapted to the disruption.

The developed heuristic consists of a start heuristic and two neighborhoods: the Two-Opt Duty
Neighborhood and the Composition Neighborhood. The main idea of the start heuristic is to find
the best possible initial solution, by taking the following steps: first, the start heuristic cuts off
duties that contain canceled trips. Next, the remaining parts of these canceled duties are, when
possible, filled by available vehicle units. Section 5.6.1 shows that it is best to first fill the remaining
part of the duties that contain most canceled trips. Furthermore, the Two-Opt Duty Neighborhood
finds the best swap of the remaining parts of two duties if the corresponding trains are at the
same station at the same time. The Composition Neighborhood optimizes the assignment of one
vehicle unit type while keeping the assignment of the other types constant. The two neighborhoods
complement each other, because the Composition Neighborhood takes care of optimization within
one vehicle unit type, while the Two-Opt Duty Neighborhood looks for an optimal exchange of units
between the different types. This is shown in a computational experiment in Section 5.6.2. The
idea is that this heuristic makes use of the computational benefits of the Composition Model while
maintaining the flexibility of a heuristic.
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The Composition Model is used to answer the following research question: What is the influence
of taking into account dynamic passenger flows in rolling stock rescheduling on passenger comfort,
operational costs, and deviations from the original schedule?" We answer this question from two
angles. Firstly, we have shown in Section 5.4 that there exists a trade-off between passenger
comfort and stick-to-the-plan. Moreover, we showed that rescheduling with a large focus on either
stick-to-the-plan or passenger comfort results in high operational costs. Secondly, Section 5.5 shows
that rolling stock rescheduling with dynamic passenger flows instead of static passenger flows is
beneficial for passenger comfort and mainly comes at a cost of more deviations from the original
plan. Concluding, taking into account dynamic passenger flows along with stick-to-the-plan and
operational costs results in a decrease in standing hours and operational costs at a cost of an
increase in deviations from the original plan. Moreover, we have shown that the current practice
of stick-to-the-plan rescheduling leads to as well a high amount of standing hours as an increase in
operational costs.

The final sub research question is "How does the developed model perform in terms of passenger
comfort, computation time, operational costs, and deviations from the original plan in comparison
to methods from literature?" As seen in Section 5.7, the biggest improvement of the heuristics
compared to the Composition Model from literature is in the reduction of the computational time.
The computation time decreases by 62% to 87% for the parameter instances that do not solely focus
on stick-to-the-plan rescheduling. This reduction in running time is impressive, as the running time
of the heuristic from Hoogervorst et al. (2021) without flexible turning was not lower than the
Composition Model. The reduction in running time for these instances comes at the cost of the
total objective value with an optimality gap of between 1.9% and 3.3%. This increase in total
objective seems reasonable when we consider the high decrease in computation time. As we see in
Figure 5.8(a) the increase in total objective value expresses itself in an increase in the number of
standing hours and more deviations from the original plan. The operational objectives, however,
improve slightly for the simulated disruptions.

Finally, we conclude that we have reached the goal that was set in Section 1.3 because the
developed heuristic reschedules rolling stock while taking into account the objectives of Section
1.2 and the dynamic passenger flows. The main contribution of the developed heuristic is the
significant decrease in computation time in comparison to the method from literature. Moreover,
the advantages of the heuristic in comparison to the exact Composition Model of Nielsen (2011)
are the increased flexibility to incorporate real-life practicalities and the possibility of providing
intermediate results. The disadvantages are the decrease in passenger comfort and the increase in
deviations from the original schedule. Finally, we have shown in computational experiments on the
exact Composition Model that the current practice of stick-to-the-plan rescheduling leads to a high
amount of standing hours as well as an increase in operational costs.
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7 | Recommendations
This section provides suggestions for future research. Firstly, we look into general suggestions

that concern the problem setting and the computational experiments. Secondly, we look into possible
extensions of the passenger flow model. Thirdly, we provide suggestions on rolling stock rescheduling.
This final section provides ideas to relax the assumptions of both rescheduling models and provides
suggestions to improve the heuristic.

7.1 Problem setting and computational experiments
The computational experiments were limited to considering only one disruption at a time with a

known duration. It is interesting for future research to look into the impact of multiple disruptions
at the same time on the passenger flow and quality of rolling stock rescheduling. The applied models
are suitable for such problem settings, as they are able to reschedule rolling stock for any adapted
timetable. Moreover, to address disruptions with unknown duration, one could apply the rolling
stock rescheduling methods of this thesis in a rolling horizon framework. Such a framework was
introduced by Nielsen et al. (2012).

In addition, it would be valuable to conduct computational experiments on more than four
disruptions. We suggest generating disruptions on more routes, at more different times, and with
different durations. This provides more insight into the average performance of the two rolling
stock rescheduling methods. For example, it could determine whether the reduction in operational
costs in the heuristic is coincidental to the simulated disruptions or generally true for the developed
heuristic. Finally, a future study could apply the rolling stock rescheduling methods to all vehicle
types.

7.2 Passenger flow
The passenger flow model in this thesis relies on a list of assumptions on passenger behavior.

In order to include more factors on passenger behavior, one could apply a multinomial passenger
flow model that takes into account historical data on passenger behavior.

Moreover, Assumption 3 implies that the capacity of rolling stock is not considered in
determining the passenger flows. We could take this capacity into account by imposing a limit
on the flow on each trip and redetermine the shortest path for (a part of) the passengers that
wanted to travel on a trip that has reached its passengers’ capacity. In rescheduling, taking into
account the rolling stock capacity in determining the passenger flows requires iterating between the
rolling stock rescheduling and the passenger flow model

In addition, Assumption 4 states that the passengers know the duration of the disruption in
advance. In reality, this is often not the case. This could be taken into account in the model
by applying the following steps: first, we determine the passenger flow in the model before the
disruption. Second, we insert the disruption from the start time of the disruption to the end of the

50



planning horizon and determine the shortest path for each passenger group. Third, we insert the
end time of the disruption and recalculate the shortest path for each passenger group from their
location at the end time of the disruption to their final destination.

Finally, the passenger flow model can be extended by applying it to the whole network. In this
case, the origin-destination demand from and to all stations is taken into account, resulting in a
more accurate representation of the passenger flow.

7.3 Rolling stock rescheduling
First of all, we look into the assumptions of the rolling stock models. Both models were restricted

to only be able to couple one vehicle unit to the front of the train and decouple one vehicle unit
from the back. In reality, more composition changes are allowed, which could be taken into account
in future research. It is interesting to study the influence of allowing more composition changes on
the computation time of the rolling stock rescheduling methods. We expect that the influence of
the computation time of the Composition Model is greater than on the heuristic. This is expected
because the problem size of the MIP of the Composition Model grows, but the problem size of the
start heuristic and Two-Opt Neighborhood in the heuristic does not, as it depends on the number
of trips, duties, and transitions. The problem size of the Composition Neighborhood also increases,
but because it is performed iteratively with the Two-Opt Duty Neighborhood and solves a smaller
problem, we expect the influence of the added composition changes on the computational time of
the heuristic to be smaller. It would be interesting to study this hypothesis in future research
because this would also confirm the argument that the heuristic is more flexible. Another argument
for allowing more composition changes is that it would allow us to apply the model to the initial
real-life rolling stock schedule. This would ensure that the computational experiments are closer to
reality.

Furthermore, we provide suggestions to improve the heuristic. First of all, the computation time
could be further decreased by running the Composition Model Neighborhood on the three general
types in parallel on different cores of a computer. Furthermore, future studies could look into
ideas for escaping the local minimum. A well-known method to escape a local optimum is shaking.
Shaking implies that we would apply changes to the solution that in the short term decrease the
objective value but in the long term allow us to find a better objective value as we escape from
the local minimum. For example, the Two-Opt Duty Neighborhood could be applied for shaking.
Another suggestion to escape the local minimum is to look into new neighborhoods for both local
search and shaking. A suggestion for a neighborhood to be studied is Flexible Turning. It was
already shown by Nielsen (2011) that adding flexible turning can decrease the objective value of the
Composition Model but leads to significantly higher computation times. It is interesting to study
how flexible turning can contribute to lowering the objective of our heuristic and how it affects
computation time.
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A | Parameters composition model

Table A.1: Rolling stock rescheduling composition model parameters results

Disruption Parameter
instance

Run
time (s)

Total standing
hours

New
couplings

New
uncouplings Off-balances Extra

conductor
Different
type

Carriage
km

Canceled
trips

Different
comp

1 1 661 6664 40 56 6 66 28 1225636 0 553
1 2 245 6817 31 42 4 30 6 1221449 0 230
1 3 245 6824 31 45 4 55 6 1224884 0 263
1 4 248 6926 24 39 8 41 12 1221193 0 224
1 5 216 7098 24 37 10 15 12 1216776 0 180
1 6 147 7530 25 39 10 28 6 1218757 0 168
1 7 99 8266 21 34 18 24 6 1214577 0 161
2 1 269 9162 27 35 4 25 18 1225537 0 319
2 2 211 9299 19 25 4 11 0 1227674 0 114
2 3 198 9347 18 24 4 0 0 1226494 0 94
2 4 125 9357 17 23 4 8 0 1226230 0 90
2 5 112 9448 16 22 6 0 6 1224600 0 65
2 6 104 9448 16 22 6 0 6 1224600 0 70
2 7 123 9519 18 24 6 2 6 1224676 0 68
3 1 342 6280 42 51 4 72 35 1219385 3 952
3 2 200 6358 42 45 6 73 9 1220732 3 540
3 3 199 6351 42 50 4 97 6 1223224 3 492
3 4 174 6596 37 46 8 85 9 1220696 3 379
3 5 160 6769 35 40 8 78 9 1218240 3 357
3 6 166 6908 34 38 10 59 0 1217518 3 297
3 7 134 8558 28 36 18 44 6 1209572 3 301
4 1 353 6460 26 41 4 72 90 1230333 0 393
4 2 310 6537 20 31 6 29 56 1227916 0 222
4 3 291 6819 17 26 6 33 0 1228088 0 137
4 4 209 7001 18 26 6 26 7 1225332 0 100
4 5 185 7000 18 26 6 26 7 1225332 0 100
4 6 130 7426 11 20 8 0 6 1221190 0 57
4 7 83 7556 10 19 10 1 6 1220932 0 49
Average 7583 25.25 34.36 7.07 35.71 12.79 1222556 0.75 249.11
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((a)) Off-balances ((b)) Decrease in carriage kilometers ((c)) Different vehicle unit type

((d)) Additional Conductors ((e)) New couplings ((f)) New uncouplings

Figure A.1: Bar graphs of the average values over the four disruptions for the seven parameter instances of
the separate operational objectives: off-balances, decrease in carriage kilometers, number of different vehicle
types, additional conductors, new couplings, and new uncouplings

Figure A.2: Results of the Composition Model for rolling stock rescheduling if off-balances are not included
in the objective. The figure shows the average value over the four disruption for each of the seven parameter
instances as provided in Table 5.2
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B | Rolling stock rescheduling with dynamic vs static
passenger flow

Table B.1: Rolling stock rescheduling with static passenger flow results

Disruption Parameter
instance

Run
time (s)

Total standing
hours

New
couplings

New
uncouplings Off-balances Extra

conductor
Different
type

Carriage
km

Canceled
trips

Different
comp

1 1 343 6891 36 46 4 57 40 1223869 0 432
1 2 257 7051 30 41 4 37 6 1220802 0 266
1 3 236 7141 26 39 4 43 6 1221083 0 214
1 4 227 7141 26 39 4 43 6 1221081 0 212
1 5 176 7280 26 38 6 0 6 1216829 0 146
1 6 97 7530 25 39 10 28 6 1218757 0 168
1 7 62 8266 21 34 18 24 6 1214577 0 161
2 1 277 9261 22 27 4 23 20 1227024 0 125
2 2 197 9321 18 23 4 0 0 1226224 0 0
2 3 119 9357 18 23 4 7 2 1226548 0 90
2 4 86 9448 17 22 6 2 8 1224918 0 73
2 5 73 9448 17 22 6 0 8 1224918 0 73
2 6 62 9448 16 22 6 0 8 1224766 0 71
2 7 73 9538 17 22 6 0 6 1224676 0 68
3 1 291 6428 32 41 6 46 49 1214718 3 846
3 2 181 6488 35 37 6 52 36 1217444 3 526
3 3 180 6593 39 45 6 84 30 1219146 3 408
3 4 153 6676 36 42 10 61 9 1216708 3 380
3 5 137 6916 34 38 10 51 9 1214758 3 354
3 6 139 7089 33 37 12 64 9 1215738 3 343
3 7 91 8587 29 35 18 44 6 1209572 3 301
4 1 1072 7123 19 29 4 15 42 1226399 0 184
4 2 296 7175 17 28 4 35 19 1225134 0 150
4 3 219 7278 13 22 6 23 0 1225192 0 117
4 4 201 7460 13 22 6 16 7 1222436 0 76
4 5 168 7460 13 22 6 15 7 1222436 0 75
4 6 85 7556 10 19 8 1 6 1220854 0 70
4 7 40 7556 10 19 10 1 6 1220932 0 69
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C | Results of the heuristic for rolling stock rescheduling

Table C.1: Rolling stock rescheduling heuristic results

Disruption Parameter
instance

Run
time (s)

Total standing
hours

New
couplings

New
uncouplings Off-balances Extra

conductor
Different
type

Carriage
KM

Canceled
trips

Different
comp

1 1 60 7305 37 52 6 68 0 1233233 0 440
1 2 65 7330 30 44 6 58 0 1226967 0 342
1 3 66 7432 30 46 8 71 0 1230536 0 322
1 4 59 7626 29 42 10 66 0 1230142 0 303
1 5 59 7707 27 38 8 61 0 1228456 0 289
1 6 67 7707 27 38 8 61 0 1228456 0 289
1 7 146 7677 26 36 10 35 0 1221551 0 259
2 1 44 9436 20 26 0 24 0 1227546 0 94
2 2 39 9457 19 25 0 17 0 1227162 0 80
2 3 39 9475 18 24 4 11 0 1227900 0 55
2 4 39 9486 17 23 4 11 0 1227636 0 51
2 5 40 9486 17 23 4 11 0 1227636 0 51
2 6 44 9468 17 23 0 11 0 1227470 0 40
2 7 43 9558 18 23 0 11 0 1227470 0 38
3 1 67 6486 30 36 10 100 0 1219166 3 717
3 2 77 6455 31 36 8 66 0 1219172 3 651
3 3 56 6519 26 35 8 72 0 1217354 3 634
3 4 63 6607 23 33 8 60 0 1215200 3 579
3 5 75 6482 26 31 8 70 0 1219076 3 554
3 6 65 7027 22 25 12 49 0 1217166 3 516
3 7 87 8285 25 31 16 73 0 1215362 3 436
4 1 41 6882 18 30 2 23 0 1227492 0 116
4 2 37 6907 16 24 2 20 0 1228164 0 80
4 3 34 6907 16 24 2 20 0 1228164 0 80
4 4 36 6907 15 25 2 26 0 1228580 0 84
4 5 38 6907 15 25 2 26 0 1228580 0 84
4 6 33 7074 14 22 2 18 0 1226756 0 68
4 7 37 7367 12 20 2 10 0 1225268 0 60
Average 7713 22 31 5 41 0 1225274 0.75 261
Percentual change wrt composition model 1.7% -12.2% -10.6% -23.2% 14.9% -100.0% 0.2% 0.0% 4.8%
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