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Abstract

We predict the Growth-at-Risk (GaR) for 23 OECD countries by multiple dynamic

models that do not need explanatory variables. Taking the GARCH model as a starting

point, we investigate the incorporation of several adaptations. We find that information

pooling in the GARCH modelling yields more stable and reliable estimations for univariate

GARCH models. Autoregressive models show high explanatory power for monthly GDP

data, in contrast to the often used quarterly data, filtering out extreme GaR estimations

from the constant-mean GARCH models. We also find that regime-switching models do not

enhance our GaR estimations due to the short length of the available time series. We also

consider the probability that at least one country violates the joint GaR. Pooled GARCH

models with multiple autoregressive lags for the mean show for joint GaR the best results,

also mitigating the number of countries that violate the joint GaR.
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1 Introduction

Recently, policymakers have increased their focus on downside risk. The IMF [2017] intro-

duced Growth-at-Risk (GaR), which has rapidly become a popular measure for macroeconomic

downside risk. Similarly to Value-at-Risk, it is a quantile of economic growth, considered for the

GDP. In other words, the future GDP growth rate is lower than the (1−p)-GaR with probability

p. Policymakers can use GaR analysis in their macro-financial surveillance toolkit, to enhance

the methods for mitigating the risk to the financial system as a whole. In much research, this

measure is modelled with explanatory macroeconomic or financial variables, including the IMF

in the work of Prasad et al. [2019] and the OECD [Caldera Sánchez and Röhn, 2016]. Adrian

et al. [2019] also advocate the use of quantile regression. In contrast, the results presented

in Plagborg-Møller et al. [2020] indicate that financial variables have very limited predictive

power. The IMF uses in the research of Prasad et al. [2019] a National Financial Conditions

Index (NFCI) to perform a quantile regression. However, this index is only quarterly computed

and has not been updated since 2016.

We investigate in this thesis dynamic models that do not need explanatory variables to

model Growth-at-Risk. We model and estimate the distribution of the GDP growth and then

estimate the GaR therefrom. In particular, we compare different methods to derive certain

characteristics of GDP growth, to get more insight into GaR modelling in general. In literature,

the quarterly GDP growth rates are the most common frequency used in literature so far,

probably because many macroeconomic variables are quarterly available. In this sense, our

research extends this existing research.

Univariate GARCH models are common-used in the context of risk management and specif-

ically Value-at-Risk measures. However, they are relatively little used in the GaR literature.

GARCH models capture volatility clustering, where periods of high and low volatility tend to

alternate. This common feature of financial data also appears in monthly GaR data. There-

fore, they are a good choice to model the GDP of a single country. Our starting point for

estimating GaR is the GARCH(1,1) model of Bollerslev [1986]. In addition, we consider the

GJR-GARCH model of Glosten et al. [1993], as this model takes asymmetry into account in

conditional volatility dynamics, which can particularly be useful to distinguish downside and

upside risk.

When considering each country individually, the univariate GARCH models generally need

larger samples to obtain stable parameter estimates, when Quasi Maximum Likelihood (QML)
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estimation is used [Hwang and Valls Pereira, 2006]. Because GDP data is available only monthly,

its sample size is relatively small. Therefore, univariate GARCH models may fail to adequately

model the conditional heteroskedasticity in data. To overcome this problem, we assume that

all univariate GARCH models for GDP growth time series in different countries share the same

GARCH coefficients. Then we can use cross-sectional pooling of information to estimate the

GARCH models together. Although this assumption is relatively strong, it may contribute to

the stability of our models. We use the Composite Likelihood (CL) method of Pakel et al.

[2011] to estimate these models. Pakel et al. [2011] show their model is capable of estimating

conditional heteroskedasticity correctly, using previously infeasible sample sizes. We investigate

whether the assumption of this approach is adequate and whether this approach can enhance

our GaR estimations.

As economies become more dependent on each other in the globalized world of nowadays,

we model such cross-sectional dependence. For this purpose, we construct multivariate GARCH

models for the GDP growth rate, assuming that the GDP growth of countries have explanatory

power on each other, using the Scalar BEKK model of Engle et al. [2019], which captures

the dynamics in the covariances between the considered GDPs. For the estimation, we use

Composite Likelihood to obtain consistent parameter estimators, according to Pakel et al. [2020].

Chauvet and Hamilton [2006] and Smith and Summers [2009] show that GDP growth

has a strong regime-dependence structure. We investigate the power of incorporating regime

switching in the modelling of the GDP growth. With assuming that the GDP growth follows

different distributions over time, we apply the Markov Switching GARCH model of Haas et al.

[2004] for the GDP to investigate different states of the economies for all countries individually.

Besides marginal Growth-at-Risk, we also predict the joint Growth-at-Risk as in Brownlees

and Souza [2021]. The marginal GaR is defined such that for each country individually the

probability of a violation (a growth rate below the marginal GaR) is p. In contrast, the joint

GaR is defined such that the probability is p that the growth rate of at least one considered

country falls below its joint GaR prediction. We predict the joint GaR by the Bootstrap Joint

Prediction Region (BJPR) method of Wolf and Wunderli [2015].

We evaluate our GaR predictions for the coverage levels of 0.75, 0.95 and 0.99 and for

time horizons up to three months. Besides the average coverage level, we also perform the

following evaluation tests. First, we adopt the commonly used Dynamic Quantile Test of Engle

and Manganelli [2004] for our marginal GaR estimations and adapt the test also to apply it for

our joint GaR predictions. Second, we compare our estimation methods for marginal GaR by a
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comparative backtest in Nolde and Ziegel [2017] on the Tick Loss of Giacomini and Komunjer

[2005]. This loss function calculates the weighted average difference between the real growth

rate and the GaR, where higher weights are assigned if the GaR is violated. Third, we use

the Dynamic Binary Test of Dumitrescu et al. [2012], which is especially suitable for small

samples. We apply the DB test not only for marginal GaR, but we also evaluate the joint GaR,

analogously to the Dynamic Quantile tests.

We show in this thesis that GARCH models are very useful to outperform the historical

GaR. However, they suffer from instability of their GARCH parameters, which especially wors-

ens long-term forecasts. We show that the Composite Likelihood method, whereby the GARCH

parameters are assumed common, successfully solves this problem. A simple approach yields

here the best results, as the use of monthly updated clusters does not provide better results. In

addition, we contribute to the literature by investigating monthly GDP growth data. We show

this data is advantageous in terms of the estimation of the conditional mean, in comparison

to quarterly data. Therefore, more research on this topic would be useful. Furthermore, we

show that a regime-switching GARCH model for the purpose of Growth-at-Risk mostly does

not perform better in comparison to the univariate GARCH models and an unadapted multi-

variate normal approach yields overestimation of the coverage level. Finally, we contribute to

the joint Growth-at-Risk research. First, we propose the Hits Given Failure (HGF) measure to

evaluate to which extent countries are violating the joint GaR together. Second, we show that

Composite Likelihood also yields the best results for the joint GaR, which is also expressed by

the fact that mostly one or few countries violate the GaR at one time.

The remainder of this thesis is organized as follows. In Section 2, we review the main studies

about this topic, where we mention the main findings of previous researches. Section 3 describes

the GDP growth rate data that is used in this thesis. Section 4 contains the methodology we

use to estimate the Growth-at-Risk of multiple countries. In Section 5, we present the results

of our different estimation methods. Section 6 concludes.

2 Literature review

Since the principle of Growth-at-Risk was investigated by both the IMF [2017] and OECD

[Caldera Sánchez and Röhn, 2016], the measure has gained popularity and is incorporated into

the macro-financial surveillance toolkit of the IMF. Since then, the literature about Growth-

at-Risk is rapidly growing. Adrian et al. [2019] investigate the use of quantile regressions for
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the GDP growth rate of the USA. Brownlees and Souza [2021] investigate the use of univariate

GARCH models and backtest the results, concluding that GARCH models and quantile regres-

sion models have similar forecasting performance. In addition, they introduce joint Growth-at-

Risk, which measures downside risk for a set of countries.

Most existing research about GaR, including Brownlees and Souza [2021], Adrian et al.

[2019] and Plagborg-Møller et al. [2020], use quarterly data, probably because many macroe-

conomic variables are available on a quarterly basis. In contrast, we investigate monthly GDP

growth data in our thesis, which extends this existing research. Plagborg-Møller et al. [2020]

consider US data and a panel of twelve OECD countries. They conclude that financial variables

have very limited predictive power for the Growth-at-Risk, beyond the information contained

in real indicators. Therefore, we focus on estimating the Growth-at-Risk using volatility models

rather than using explanatory variables. This allows us to use monthly data as the purpose of

our research conveniently.

GARCH models occupy a prominent place in the literature on quantitative finance since

their introduction by Bollerslev [1986]. An important extension of the standard GARCH model

is made by Glosten et al. [1993], who introduced asymmetry in the error terms. However,

Hwang and Valls Pereira [2006] show that the Quasi Maximum Likelihood estimates of univari-

ate GARCH(1,1) models are significantly negatively biased in small samples. In addition, the

parameter estimates are often instable, when Quasi Maximum Likelihood is used. The Compos-

ite Likelihood method, first investigated by Engle et al. [2008], is a pooling method designed to

solve these problems. In this thesis, we also use the CL method for the estimation of univariate

GARCH models, because GDP growth rates are available at a low frequency. Pakel et al. [2011]

investigate CL further and use cross-sectional information, leading to the pooled GARCH es-

timation method that we use in this thesis. They show that CL is able to enhance univariate

GARCH model estimations for data sets of hundreds of observations. They state that although

the assumption that all series share common parameters is almost certainly violated, CL still

produces better results for short time series. CL was also utilized by Brownlees and Souza

[2021] to jointly estimate the quarterly Growth-at-Risk of multiple countries, only considering

univariate GARCH models. In our research, we focus on monthly GDP growth data and extend

the research by considering clusters for pooled GARCH models.

The literature also offers many multivariate GARCH models. Amongst them is the BEKK

model of Engle and Kroner [1995], which was adapted to the Scalar BEKK model of Engle

et al. [2019]. Pakel et al. [2020] applied Composite Likelihood to multivariate GARCH models,
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showing this yields consistent parameter estimators. In addition, this decreases the risk of

parameter instability and avoids parameter bias for small samples. We use multivariate GARCH

to forecast Growth-at-Risk, which is a novel approach to our knowledge.

Chauvet and Hamilton [2006] show evidence that GDP growth has a regime-dependence

structure, which was supported more recently by the findings of Chang et al. [2017]. Smith and

Summers [2009] find a general change in the volatility of GDP growth, which was not permanent.

Whereas they rely on an autoregressive model as a starting point for their regime-switching

model, we focus on GARCH models as the basis of our regime-switching framework. The Markov

Switching framework was first applied on econometric models by Hamilton [1989]. Gray [1996]

proposed a MS-GARCH model under the hypothesis that the conditional variance for all regimes

depends on the expectation of previous conditional variances, which was further modified by

Klaassen [2002]. As these models suffer from analytical intractability, Haas et al. [2004] uses

an approach where each conditional variance depends only on its own lag, which is attractive

for our data set of limited length. This model is advantageous because its structure allows for

deriving expressions of the covariance structure of the process. From these expressions, we also

can derive constraints that ensure covariance stationarity. Therefore, we use the approach of

Haas et al. [2004] in this thesis for our regime-switching framework.

One of the most popular Value-at-Risk backtests in the literature is the Dynamic Quantile

(DQ) test, which was introduced by Engle and Manganelli [2004], which is constructed by

utilizing the criterion that each period the probability of exceeding the VaR must be independent

of all the past information. However, Hurlin and Tokpavi [2008] state that the power of the

backtesting test is generally low for short time series, i.e. it does not reject the validity of a

model often enough. Therefore, we also use the Dynamic Binary backtest of Dumitrescu et al.

[2012] and evaluate whether our models show different performance for both backtests.

3 Data

3.1 Monthly GDP growth

We use monthly GDP growth rates for 23 OECD countries1, with a time window from March

1961 up to August 2020. Here, GDP growth rates are defined as the monthly percentage change

1We consider the following countries in our analysis: Australia (AUS), Austria (AUT), Belgium (BEL),

Canada (CAN), Switzerland (CHE), Germany (DEU), Denmark (DNK), Spain (ESP), Finland (FIN), France

(FRA), United Kingdom (GBR), Greece (GRC), Ireland (IRL), Italy (ITA), Japan (JPN), South Korea (KOR),

The Netherlands (NLD), Norway (NOR), Portugal (PRT), Sweden (SWE), Turkey (TUR), United States (USA)

and South Africa (ZAF).
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Figure 1: GDP growth of three countries over time.

(a) Ireland (b) The Netherlands (c) Norway

in seasonally adjusted GDP. This data is obtained from the FRED2.

Table 18 in the Appendix, Section B, shows the cross-correlations of the whole data set. All

countries have a positive correlation, which supports the fact that economies depend on each

other. However, the cross-correlations vary from 0.04 to 0.97. In addition, we observe that the

cross-correlations between France, Germany, Portugal and Italy are clearly the highest. This

finding suggests that the data exhibits a certain form of time series clustering.

Figure 1 shows the GDP growth over time of three countries in the data set. We observe

that the GDP data exhibits volatility clustering, which also varies over time. This observation

suggests that a model that captures both time-varying volatility and volatility clustering would

suit our data well. In addition, we observe for all countries both periods of low and high volatil-

ity. This would suggest a model that allows for regime-switching in predicting the volatility

of the GDP growth. However, those regimes turn out to be not omnipresent, except for the

coronavirus recession, which we observe in the GDP growth rates of all countries.

In our data set, this recession is represented by the last six months of our data set, namely

March 2020 to August 2020. Figure 6 in the Appendix shows the mean and variance of these

months, compared with the two years before. We observe that the mean growth rate is generally

close to zero, but moves in the coronavirus recession between -5% to +2%. The variance across

countries is even multiplied by more than 10 for all months. Therefore, it is likely that our

methods behave differently in this estimation period.

To investigate the dynamics of the GDP growth rates, we fit a univariate GARCH(1,1)

model for all GDP growth rates. Table 1 shows the results. We observe that αi + βi is close to

one for many countries3. Since we estimate the GARCH models with the restriction αi+βi < 1,

2FRED is the dataset of the Federal Reserve Bank of St. Louis, available at https://fred.stlouisfed.org/.
3For some countries, the parameters of αi and βi seem to add to one in Table 1, which is due to rounding to

three decimal places.
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the parameters of these time series would likely exceed one without this restriction. These

parameter estimations result in high variance estimations. Therefore, the univariate GARCH

models have the risk to suffer from instability and produce biased GaR estimations. The

fact that the squared returns do not match with the autocorrelation functions of the squared

returns also suggests the presence of estimation bias. Figure 7 in the Appendix shows that the

autocorrelations of almost all countries drop relatively quick to zero. The finding that univariate

GARCH models are biased is in line with the conclusions of Pakel et al. [2011]. This motivates

the choice of a model where cross-sectional information is used to decrease the risk of parameter

instability in GARCH models.

Table 1: Estimated GARCH parameters for all countries, based on the full data set, where the GARCH

model is denoted as σ2
i,t+1|t = ωi + αiε

2
i,t + βiσ

2
i,t and µi,t+1|t = µi.

Par. AUS AUT BEL CAN CHE DEU DNK

ωi 0.001 0.001 0.000 0.002 0.001 0.065 0.001

αi 0.847 0.952 0.846 0.964 0.907 0.325 0.905

βi 0.153 0.048 0.154 0.036 0.093 0.000 0.095

ESP FIN FRA GBR GRC IRL ITA JPN

0.093 0.001 0.180 0.096 0.003 0.001 0.084 0.001

0.051 0.926 0.064 0.224 1.000 0.871 0.051 0.480

0.698 0.074 0.731 0.063 0.000 0.129 0.693 0.520

KOR NLD NOR PRT SWE TUR USA ZAF

0.000 0.001 0.002 0.048 0.002 0.034 0.047 0.001

0.790 0.838 0.884 0.046 0.917 0.474 0.295 0.976

0.210 0.162 0.116 0.649 0.084 0.000 0.000 0.024

Although the assumption that all series share the same parameters is violated almost

certainly, Pakel et al. [2011] find that CL also can enhance the results for short time series in

this case. Therefore, we first assume that all time series share the same GARCH coefficients.

However, Table 1 however both shows countries for which the volatility is mainly determined

by the last error term and countries for which the volatility is mainly estimated by the past

volatility. Therefore, we also allow for multiple clusters of countries in which we perform

information pooling to allow for clustering countries with similar dynamics.

To get more insight into the dynamics of the GARCH models for a given data set, we

estimate univariate GARCH models for the individual countries, based on the data from the

start of the data set, until a given point in time. Figure 5 in the Appendix, Section B shows

some coefficients over time, for illustration. We observe for these countries that the GARCH

10



model for smaller data sets have strongly varying parameters, mostly for a length smaller than

15 years (which corresponds to approximately 180 observations).

3.2 Quarterly GDP growth

In addition, we also consider quarterly GDP data, which is mostly evaluated in the literature.

We use the data which was considered earlier by Brownlees and Souza [2021], namely 24 OECD

countries from 1973 to 2016. Most countries from these data set are also in the monthly data

that we consider4. We compare the basic features of the two data sets together in Table 2. The

quarterly GDP growth rates have a clear higher mean than the monthly rates, as the data for

quarterly growth rates is not inflation-corrected and has a lower frequency. In addition, the

variance is about twelve times higher. When we estimate an AR(1) and AR(3) model for both

data sets, 44 percent of the variance for the monthly data is already explained by an AR(1)

model, where an AR(1) model for the quarterly data only yields a R2 of 0.061. Therefore, we

investigate how these data features are reflected in our GaR estimations, as this suggests that

a model with an autoregressive mean performs clearly better for the monthly GDP data.

Table 2: Comparison of our main GDP data (of monthly frequency) and the data set where quarterly

GDP is considered. We fit for both models autoregressive models on the whole data set and report the

parameter averages over all countries.

AR(1) model AR(3) model

Data µ σ2 φ0 φ1 R2 φ0 φ1 φ2 φ3 R2

Monthly -0.006 0.155 -0.001 0.650 0.441 -0.003 -0.124 -0.179 0.810 0.510

Quarterly 0.796 1.804 0.692 0.129 0.061 0.541 0.102 0.134 0.081 0.116

4 Methodology

4.1 General framework

4.1.1 GDP growth model

Consider the GDP growth rate yi,t of a single country i at time t, for i = 1, ..., N countries. We

define the general framework, that allows for volatility clustering, as follows:

yi,t+1 = µi,t+1|t + zi,t+1

√
σ2i,t+1|t, where zi,t+1 ∼ fzi(0, 1) i.i.d., (1)

4The difference between the two data sets is that Brownlees and Souza [2021] use the countries of Mexico,

Iceland and Luxembourg, where we use Turkey and South Africa.
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where µi,t+1|t denotes the conditional mean, σ2i,t+1|t denotes the conditional variance and fzi(0, 1)

denotes a distribution with zero mean and unit variance. The (1 − p)-GaR is defined as the

lower one-sided prediction interval that contains future realizations of GDP growth of a given

country with a coverage level 1 − p. The corresponding conditional p-quantile is derived from

the general framework by

Qp(yi,t+1|t) = µi,t+1|t + F−1zi (p) ·
√
σ2i,t+1|t (2)

where F−1zi (p) denotes the inverse cumulative distribution function of fzi .

4.1.2 Estimation of conditional mean

From Equation (2), the conditional mean µi,t+1|t is the starting point of the volatility models.

We use different assumptions of the conditional mean to model the GDP growth rates. As a

benchmark, we consider the case where the GDP of each country has a constant mean, i.e.

µi,t+1|t = µi, ∀i = 1, ..., N. (3)

An alternative for the constant mean is a simple autoregressive model, allowing the mean to vary

over time. As such, we model the conditional mean at each time t for based on an autoregressive

model. That is, the conditional mean is estimated as follows:

µi,t+1|t = φi,0 +

L∑
l=1

φi,lyi,t−l+1, (4)

where L denotes the number of used lags. We consider an AR(1) model, which was also used

as the conditional mean for GDP growth rates by Brownlees and Souza [2021], and an AR(3)

model. In addition, we also investigate a multivariate estimation of the conditional mean. As

the GDPs of countries have a high dependency on each other, it is useful to investigate whether

this dependence can be captured using cross-sectional information in the construction of the

conditional mean. For this purpose, we use a VAR(1) model to estimate the conditional means

simultaneously:

µt+1|t = c+Ayt, (5)

where µt+1|t = (µ1,t+1|t, ..., µN,t+1|t)
′ and the matrix A is an N ×N matrix of parameters.
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4.2 Volatility models

4.2.1 Univariate GARCH models

Next, we explain the univariate volatility models we use, taking the conditional mean µi,t+1|t

as given. The GARCH(1,1) model of Bollerslev [1986] assumes the conditional variance as

σ2i,t+1|t = σ2i (1− αi − βi) + αiε
2
i,t + βiσ

2
i,t, (6)

where εi,t = yi,t−µi,t|t−1 and the following constraints are imposed: σ2i (1−αi−βi) > 0, αi > 0,

βi > 0 and αi + βi < 1, ∀i = 1, ..., N .

The GJR-GARCH(1,1) model of Glosten et al. [1993] takes asymmetry into account in

conditional volatility dynamics, which can in particular be useful to distinguish downside and

upside risk. This model estimates the conditional volatility by

σ2i,t+1|t = σ2i (1− αi − βi −
1

2
γi) + (αi + γi1[εi,t < 0])ε2i,t + βiσ

2
i,t+1|t, (7)

where εi,t = yi,t − µi,t|t−1 and 1[·] denotes the indicator function. The following constraints are

satisfied: σ2i (1− αi − βi − 1
2γi) > 0, αi > 0, βi > 0 and γi > 0, ∀i = 1, ..., N . We estimate our

univariate GARCH models by Quasi Maximum Likelihood (QML) using a Gaussian distribution.

4.2.2 Pooled GARCH

Following Pakel et al. [2011], we use cross-sectional pooling of information, assuming that all

univariate GARCH models share the same parameters α and β, and γ for the GJR-GARCH(1,1)

model. For generality, we denote these parameters as θ. However, we still assume that the

unconditional parameters σ2i are asset-dependent. This means that the conditional variances

for the GARCH(1,1) model in Equation (6), that satisfies the usual constraints, are given as

σ2i,t+1|t = σ2i (1− α− β) + αy2i,t + βσ2i,t|t−1. (8)

For the GJR-GARCH(1,1) model, we perform information pooling analogously. Our estimation

of Pooled GARCH is performed in two steps. First, the unconditional variances σ2i are initialized

by the sample variance. Second, the parameters θ are estimated by optimizing the composite

likelihood function. For f(yi,t|Ft−1) being the conditional density of yi,t, given all information

up to t− 1, Ft−1, the composite likelihood function is given by

CL(φ(N); y) =
1

T

[ 1

N

N∑
i=1

log f(yi,t|Ft−1;ψi)
]
, (9)
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where ψi = (θ′, σ2i ), T denotes the length of the estimation window and N denotes the total

number of time series. The parameters θ are estimated by the maximization of the composite

likelihood function. Assuming that yi,t conditionally follows a normal distribution, we maximize

the following likelihood function:

θ̂ = arg max
θ

T−1∑
t=1

1

N

N∑
i=1

(
− 1

2
log σ̂2i,t+1|t(θ)− 1

2

y2i,t+1

σ̂2i,t+1|t(θ)

)
, (10)

where all σ̂2i,t+1|t are estimated according to Equation (8).

In addition, we also make use of information pooling for clusters of countries. Some coun-

tries may differ in terms of volatility dynamics, making the estimations of the GARCH models

inadequate. Therefore, we investigate whether Clustered GARCH mitigates the estimation er-

ror while reducing the instability of the GARCH models. We cluster our N time series of GDP

growth rates by k-means clustering, dividing them into k clusters, where we iteratively assign

each GDP time series to the cluster with the nearest mean. This is calculated by a minimization

problem, where squared Euclidean distances are used to minimize the within-cluster variances.

For our purpose, we cluster the N = 23 time series frequently based on their past GDP obser-

vations. In this way, we aim to group the countries with similar behaviour over time and use

information pooling within these groups. We update the clusters every month.

4.2.3 Markov Switching GARCH

We apply a Markov Switching GARCH model for the GDP growth rates to allow for two regimes

in our analysis. Generally, MS-GARCH models the variance for country i as follows:

σ2i,t(ri,t) = ωi(ri,t) + αi(ri,t)ε
2
i,t−1 + βi(ri,t)σ

2
i,t−1. (11)

Here, ri,t is a country-specific variable which indicates the state r of the world at time t which

follows a Markov chain with country-specific finite state space Ri,t = 1, 2 and an country-specific

transition matrix Pi, equal to

Pi =

P (ri,t = 1|ri,t−1 = 1) P (ri,t = 1|ri,t−1 = 2)

P (ri,t = 2|ri,t−1 = 1) P (ri,t = 2|ri,t−1 = 2)

 =

 pi,11 1− pi,22

1− pi,11 pi,22

 . (12)

In our analysis, we use the analytically tractable approach of Haas et al. [2004], who propose

the following approach in which each specific conditional variance depends on its own lag:

σ2i,t(ri,t) = αi,0(ri,t) + αi(ri,t)ε
2
i,t−1 + γi(ri,t)σ

2
i,t−1(ri,t), (13)
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satisfying positive variance and the stationarity constraints of Haas and Paolella [2012]. In

the model of Haas et al. [2004], the mean µi,t is assumed to be equal across regimes. In our

implementation, we make use of the MSGARCH toolbox of Chuffart [2017] and estimate the

model with Maximum Likelihood, using the filter of Hamilton [1989].

4.2.4 Multivariate GARCH

Next, we investigate the dependence between the economies, assuming that the GDP growth

of different countries have explanatory power on each other. To incorporate this dependence

structure in the GDP modelling, we use multivariate GARCH, using the assumption that the

returns yt follow a normal distribution with time-varying mean and variance:

yt|Ft−1 ∼ N(µt,Ht). (14)

For the estimation of our multivariate GARCH model, we use the Scalar BEKK model of Engle

et al. [2019], which has the advantage that it is a computationally simple model. Scalar BEKK

estimates the conditional covariance matrix as

Ht = (1− α− β)Σ + αyt−1yt−1 + βHt−1, (15)

where α and β are dynamic parameters and Σ denotes the unconditional covariance matrix

E[yty
′
t]. First, Σ is estimated by a simple moment estimator Σ̂ = 1

T

∑T
i=1 yty

′
t. Next, α and

β are estimated, based on a likelihood function. As larger dimensions can accuse computa-

tional problems in conventional Maximum Likelihood, Pakel et al. [2020] developed a procedure

to estimate Scalar BEKK by Composite Likelihood, showing that maximizing the composite

likelihood yields consistent estimators of α and β for Scalar BEKK. For this purpose, they

approximate the objective function by the average of bivariate densities, that are constructed

from asset pairs. For details regarding about the estimation procedure, we refer to this paper.

For the estimation of Scalar BEKK, we rely on the MFE Toolbox of Kevin Sheppard5.

4.3 Growth-at-Risk estimation

4.3.1 Definition of marginal and joint Growth-at-Risk

Our analysis of Growth-at-Risk focuses on h-step ahead growth rates. For the estimation, we

use a bootstrapping algorithm for the GDP shocks, from which the quantiles are taken. We

5The code and documentation of the MFE Toolbox are available at https://www.kevinsheppard.com/code/

matlab/mfe-toolbox/.
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estimate the Growth-at-Risk for each period in time again. The first 174 observations are

chosen as starting in-sample period, because we showed in Section 3 that GARCH models have

an instable behaviour for a very short estimation window, but become in our dataset more stable

for approximately 180 observations. First, we consider the marginal GaR, which is defined as

follows. For a given country i, the h-step-ahead marginal Growth-at-Risk for country i at time

t utilizes

P
(
yi,t+h|t ≤ GaRM

i,t+h|t(p)
)

= p. (16)

In addition, we also calculate the joint Growth-at-Risk as in Brownlees and Souza [2021].

Here, the quantiles of the countries’ growth rates are estimated such that the probability is p

that the growth rate of at least one considered country falls below its own joint GaR prediction

for time t. Mathematically, this is denoted as

P
( N∑
i=1

1
[
yi,t+h|t ≤ GaRJ

i,t+h|t(p)
]
≥ 1
)

= p. (17)

4.3.2 General estimation of marginal Growth-at-Risk

For marginal GaR, we first describe the estimation of GaR for a univariate GARCH model,

which is from Equation (16) mathematically constructed as

GaRM
i,t+h|t(p) = Qp(yi,t+h | Ft), (18)

for Qp(·) being the quantile at a coverage level (1−p). Generally, the marginal GaR is estimated

as follows. First, we run this univariate model based on the data available at time t, based on

one of the definitions of the conditional mean µi,t+1|t as described in Subsubsection 4.1.2. From

these estimations, we obtain the conditional means µi,t, conditional variances σ2i,t for i = 1, ..., N

and t = 1, ..., T and the parameters of the conditional mean θµ, depending on the definition

of the conditional mean, and the parameters θσ of the conditional variance, depending on the

definition of σi,t+1|t. For notational convenience, we define T here as the current period in time

or the length of the in-sample period.

We obtain the standardized residuals by ẑi,t = (yi,t − µi,t)/σi,t. Next, we draw S times an

index from the values 1, ..., T − h, that are used for the purpose of bootstrapping, such that we

draw for each time series i a number of S = 5000 bootstrapped innovations zi,1, ..., zi,S . Next, we

calculate the bootstrapped path as ỹ
(s)
i,T+1|T = µi,T+1|T +σi,T+1|T z

(s)
i,t , for s = 1, ..., S. For j > 1,

we repeat this procedure and estimate again the conditional mean and variance iteratively per

day-ahead path as ỹ
(s)
i,T+j|T = µi,T+j|T + σ

(s)
i,T+j|T z

(s)
i,t at intermediate horizon j, until we reached
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horizon of interest h. Finally, we take the p-quantile from the simulated paths as the marginal

GaR. The whole procedure is summarized in Algorithm 2 in the Appendix.

4.3.3 Markov Switching GARCH estimation

To estimate the Growth-at-Risk for Markov Switching GARCH models, the general procedure

is adapted to a model with two states. The idea of the estimation is that we simulate S paths,

including simulating the state in each step and finally take the quantile of the simulated growth

rates for a given time horizon.

Similarly to the standard GARCH models, we first run the MS-GARCH model for country

i based on the in-sample data. In the use of the MS-GARCH model, we focus on the estimation

of the volatility. Therefore, we assume for both regimes equal mean, which we set equal to

the historical mean µi. From the estimated MS-GARCH model, we obtain the state-specific

parameters ωi,r, αi,r and βi,r, for the states r = 1, 2. We also derive the transition matrix

Pi and the conditional state-specific variances σ2i,t,r, from which we calculate the standardized

residuals zi,t,r. In addition, we also retrieve for each point in time t = 2, ..., T the predicted state

probabilities
[
q1,t, q2,t

]′
=
[
P (ri,t = 1), P (ri,t = 2)

]′
, where ri,t denotes the state of country i at

time t.

Next, we bootstrap for horizon j = 1 the standardized residuals z
(s)
i,t,r and calculate the

state-specific 1-step-ahead predicted variances σ2i,T+1|T,r = ωi,r +αi,r
(
yi,T −µi

)2
+βi,rσ

2
i,T,r, for

both states r = 1, 2. We update the state probabilities of time T + 1 as

[
q1,T+1, q2,T+1

]′
= Pi

[
q1,T , q2,T

]′
. (19)

From these probabilities, we draw for S simulation paths the state at time T + 1. According

to each drawn state r(s), we assign to each simulation the state-specific variance σ
2(s)
i,T+1|T =

σ2i,T+1|T,r(s) for state r(s) = 1, 2. From this variance, we also simulate S values for the next

GDP growth observation, based on the bootstrapped values of the standardized residuals as

ỹ
(s)
i,T+1|T = µi + σ

(s)
i,T+1|T z

(s)
i,t,r, (20)

where µi denotes the unconditional mean, σ
(s)
i,T+1|T is the forecasted variance for the drawn state

of simulation s and z
(s)
i,t,r is the bootstrapped standardized residual, from the drawn state r.

For j > 1, we repeat this procedure. Again, we update the state probabilities for time T +j

and draw for each simulation the state and standardized residuals. We calculate the conditional

means and variances to obtain the simulated paths for time T + j until we reach time T + h.
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Next, we calculate the marginal GaR as the quantile of the S simulated paths of the returns at

time T + h. The procedure is summarized in Algorithm 1.

Run the MS-GARCH model with data available at time T . Obtain:

- The means µi and variances σ2i,t, to calculate the standardized residuals zi,t,r;

- State-specific parameters ωi,r, αi,r and βi,r, and the state probabilities qr,t for states

r = 1, 2, time t = 2, ..., T ;

- Transition matrix Pi;

for j = 1, ..., h day-ahead paths do

Draw S times an index from [1, ..., T − h] and bootstrap the values z
(1)
i,t,r, ..., z

(S)
i,t,r for

r = 1, 2;

if j = 1 then

Calculate the state-specific 1-step-ahead predicted variances

σ2i,T+1|T,r = ωi,r + αi,r
(
yi,T − µi

)2
+ βi,rσ

2
i,T,r, for both states r = 1, 2;

Estimate the state probabilities at time T + 1 as given in Equation (19) and draw S

times a state r(s) for simulation s;

Assign per simulation s the state-specific variance σ
2(s)
i,T+1|T = σ2i,T+1|T,r(s) for state

r(s) = 1, 2;

Obtain ỹ
(s)
i,T+1|T = µi + σ

(s)
i,T+1|T z

(s)
i,t,r, for s = 1, ..., S (recall µi is constant across states);

else

For all s = 1, ..., S simulated paths:

Draw a new state r(s), from the state transition probabilities given the state simulated

at time T + j − 1 for this path, using the probabilities as in Pi, using the column

corresponding to the state at time T + j − 1;

Construct σ
2(s)
i,T+j|T = ωi,r(s) + αi,r(s)

(
ỹ
(s)
i,T+j−1|T − µi

)2
+ βi,r(s)σ

2(s)
i,T+j−1|T ,

Obtain ỹ
(s)
i,T+j|T = µi + σ

(s)
i,T+j|T z

(s)
i,t,r.

end if

end for

Construct GaRM
i,t+h|t(p) for country i as the p-quantile from the values of all S simulated

paths for time T + h: Qp(ỹ
(s)
i,T+h|T ).

Algorithm 1: Pseudocode for the h-step ahead MS-GARCH GaR for country i at time T
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4.3.4 Multivariate GARCH estimation

For multivariate GARCH, we rely for our GaR estimations on simulated returns from a mul-

tivariate normal distribution. We start by estimating the model, using the data of yi,t for

i = 1, ..., N , up to time T . Next, we simulate 1-day-ahead returns for all countries from the

model for S simulations. Based on these simulations, we estimate the 1-day-ahead conditional

covariance matrix Ht+1, using the simulated returns rt and the ’current’ value of Ht. We repeat

this iterative procedure until we reached the estimations of h-step ahead returns. Next, we take

the p-quantile to obtain the marginal Growth-at-Risk from our multivariate GARCH model.

We compare our multivariate GARCH model by univariate GARCH, for which we assume

normal distributed errors, to investigate how the incorporation of the correlations affects the

results. In this case, the GaR is calculated as follows. First, we estimate for country i a GARCH

model, based on the GDP growth rates up to time t − 1 and obtain the parameters µ̂i, ω̂i, α̂i

and β̂i, and the predicted volatility σ̂i,t+1. From this, we simulate for S simulations the next

value of yi,t+1 from N(µ̂i, σ̂i,t+1). For each simulation, we now predict the volatility for time

t+ 2 as σi,t+2 =
√
µi + α̂iy2i,t+1 + β̂iσ̂2i,t+1, and repeat this procedure. The GaR is obtained as

the p-quantile across the S path simulations for horizon h.

4.3.5 Joint Growth-at-Risk estimation

The joint GaR is determined by the Bootstrap Joint Prediction Region (BJPR) of Wolf and

Wunderli [2015], which is calculated as

GaRBJPR
i,t+h|t(p) = µi,t+h|t + d(1)p σi,t+h|t, (21)

Here d
(1)
p denotes the p-quantile of U

(1)
t , which is the smallest value of the standardized growth

rates Ẑ(yi,t) = (yi,t − ȳi,t)/σ(yi,t):

U
(1)
t = min

i=1,...,N
Ẑ(yi,t), ∀t = 1, ..., T. (22)

The joint Growth-at-Risk for h-step-ahead forecasts at time T is predicted as follows. First,

we calculate the bootstrapped marginal GaR predictions GaRM
i,t+h|t(p) as described previously.

Next, we standardize all bootstrapped paths for time T at horizon h and obtain the values

Ẑ(ỹsi,T+h|T ), for i = 1, ..., N . Here, the mean ȳi,t and standard deviation σ(yi,t) are calculated

from the S simulated paths. Next, we compute the p-quantile of the minimum values across

the countries for all these standardized bootstrapped paths, as

d(1)p = Qp

[
min

i=1,...,N
(Ẑ(ỹsi,T+h|T )

]
, for s = 1, ..., S. (23)
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Finally, we compute the Joint Growth-at-Risk as in Equation (21).

4.4 Historical Growth-at-Risk

To evaluate the performance of our methods, we compare them with a simple historical ap-

proach. The Marginal Historical Growth-at-Risk, denoted by GaRMH
i,T (p), is computed as the

historical univariate quantile per country i, calculated at each time, based on the past observa-

tions.

The historical benchmark for joint GaR at time T is constructed by using the BJPR in a

historical approach, following Brownlees and Souza [2021]. For all time t = 75, ..., T , the growth

rates are first standardized by their country-specific sample mean ȳi,t and standard deviation

σ(yi,t), based on the past observations until t − 1, as yZ,Histi,t = (yi,t − ȳi,t)/σ(yi,t). The first

74 observations are used as a burn-in period to avoid extreme values. Next, analogously to

Equation (22), the smallest value UHt of the standardized growth rates at time t is retrieved

from the values of yZ,Histi,t .

From these minimum values, we take the historical quantile at probability level p of all

calculated values of yZ,Histi,t for time 1, ..., T , as

dZ,Histp,T = Qp

[
min

i=1,...,N
(yZ,Histi,t )

]
. (24)

Finally, we calculate the historical joint (HJ) Growth-at-Risk for all countries at time T as

GaRHJ
i,T (p) = ȳi,T + σ(yi,T )dZ,Histp,T , for i = 1, ..., N, (25)

where we use the sample means and standard deviations at time T as input.

4.5 Evaluation

To evaluate our results, we first report the average empirical coverage of a method for the

considered probability level p. Second, we prefer GaR estimations that are relatively high while

also predicting the coverage correctly. For this purpose, we define the average Quantile Length

(QL), based on the work of Brownlees and Souza [2021]. The QL of respectively the marginal

and joint GaR estimations is calculated as follows:

QLM =
1

N

N∑
i=1

( 1

T

T∑
t=1

Q0.995(yi)−GaRM
i,t|t−h

)
, QLJ =

1

N

N∑
i=1

( 1

T

T∑
t=1

Q0.995(yi)−GaRJ
i,t|t−h

)
,

(26)

where Q0.995(yi) denotes the empirical quantile of the time series yi, estimated from the whole

data set. The quantile of 0.995 is chosen as the most estimations of our methods fall below this

value.
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Next, we define the Hits Given Failure (HGF) measure for the joint GaR. This is defined

as the number of countries for which the joint GaR is violated, given that the joint GaR is

violated for at least one country, meaning that the GaR jointly is violated. Mathematically,

this is denoted as

HGF = E(Vi | Vi ≥ 1), for Vi =
N∑
i=1

1
[
yi,t+h|t ≤ GaRJ

i,t+h|t(p)
]
. (27)

The HGF indicates whether the joint GaR is violated by the countries’ time series independently,

which is the case for a low HGF value.

In addition, we evaluate the performances of our methods by three types of tests. First,

we perform two Dynamic Quantile Tests to test whether our methods unconditionally have a

correct coverage and the GaR violations are independent over time, which we apply on both

marginal and joint GaR. In addition, we compute for the marginal GaR estimations the Tick

Loss for all methods and apply a comparative backtest to compare our estimation methods.

Thirdly, we evaluate both marginal and joint GaR by the Dynamic Binary Response Test of

Dumitrescu et al. [2012], which shows good results for small samples, to evaluate if this test

shows different results than the DQ-type tests. These measures are explained in the next

subsections. We evaluate our estimation methods for horizons h = 1, 2, 3 and coverage levels

1− p = 0.75, 0.95, 0.99.

4.5.1 Dynamic Quantile tests

The Dynamic Quantile (DQ) test was introduced by Engle and Manganelli [2004]. It is con-

structed by utilizing the criterion that each period the probability of exceeding the GaR must

be independent of all the past information. We perform the DQ test for both marginal and

joint GaR.

The DQ test for marginal GaR at a given probability level p is defined as follows. The hit

function Hi,t is equal to −p when the observation yi,t is below the GaR, and 1 − p otherwise.

Mathematically, this is denoted for the h-step ahead GaR as

Hi,t+h|t = 1[yi,t < GaRM
i,t+h|t(p)]− p, (28)

which should by construction have zero mean, if the GaR has a coverage level p.

For marginal GaR, we perform three DQ-type tests. First, we test whether the hits have

unconditional zero mean, which means testing whether the GaR has unconditionally the correct

coverage level p. Therefore, we regress the hit functions on only an intercept so that the number

of explanatory variables R = 0.
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Secondly, we test whether the hit functions are independent over time. This property

is important since it should not be possible for a good GaR estimation method to predict a

violation today if there was one yesterday. Therefore, we regress the hits on their R lags as

follows:

Hi,t = β0 +
R∑
r=1

βiHi,t−r + ut, (29)

for which optimal GaR forecasts generate by construction zero-mean hits.

Thirdly, we also test whether the hit sequences are independent of the lagged GDP growth

rates, which can be tested from the following regression:

Hi,t = β0 +
R∑
r=1

βryi,t−r + νt, (30)

In our analysis, we use R = 4 lags to perform our regressions. All independence tests use

in line with Engle and Manganelli [2004] the null hypothesis that β0 = ... = βR = 0, which is

tested by an augmented Wald test, which is for 1-step-ahead predictions defined as

β′X ′Xβ

p(1− p)
∼ χ2(R+ 1), (31)

where β is a vector of the beta coefficients in the regression. In addition, X denotes the

T × (R + 1) matrix of explanatory variables, where the first column consists of ones. Note

that T denotes there the number of time periods for which the regression is performed, which

varies across regressions. For h > 1, we use Newey-West HAC standard errors. In Section 5, we

report for the marginal GaR the number of countries for which the test is passed for our chosen

significance level.

For joint GaR, we report the mean uniform coverage and perform two Dynamic Quantile

tests. However, we perform here the tests on the Uniform Hit function (UH), which is defined

for time t as −p if the GaR for all countries is not violated, and 1− p if the GaR is violated for

at least one country. Mathematically, this is denoted as

UHt+h|t = 1

[ N∑
i=1

1[yBJPRi,t < GaRi,t+h|t(p)] ≥ 1
]
− p. (32)

The two DQ-type tests are performed similarly as for marginal GaR, with the difference that we

for joint GaR test whether the uniform hits have unconditional zero mean and are independent

over time.

In our analysis, we use an adaptation of the implementation of Brownlees and Souza [2021].
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4.5.2 Comparative Tick Loss backtest

Next, we compare the performance of marginal GaR forecasts of different estimation models by

the Tick Loss (TL) of Giacomini and Komunjer [2005]. This loss function has the advantage

that it considers relative evaluation, taking also the difference between the estimated GaR and

the observation into account. This feature is suitable for our research, as we consider monthly

GDP data, which means that the number of violations may be relatively small.

The Tick Loss is an appropriate loss function for this purpose, as the function is designed

to retrieve an optimal forecast for the object of interest, which is in this case equal to the

p-quantile of yi,t+1. The Tick Loss considers the negative hit function, multiplied by the actual

difference between the estimated GaR and the observation yi,t, averaging these values over time

and all countries, resulting in the following function:

TLi,t(p) =
1

N

N∑
i=1

( 1

T

T∑
t=1

(yi,t −GaRi,t|t−h)(p− 1[yi,t < GaRi,t|t−h])
)
. (33)

We report the average value of the Tick Loss for each method, which we multiply by 100 for

readability.

In addition, we perform a comparative test on the Tick Loss, to investigate whether the

models’ performances differ significantly. We use the comparative backtesting framework of

Nolde and Ziegel [2017], where the difference between the scoring functions of two estimation

methods is tested. In the scoring function, the estimated GaR and the observations yi,t at some

quantile p are compared. We use as our scoring function S(GaR, y) the Tick Loss.

Given the estimations of two methods GaRA
i,t and GaRB

i,t, we define

λ∗ = lim sup
T→∞

1

T

T∑
t=1

S(GaRA
i,t, yi,t)− S(GaRB

i,t, yi,t)

λ∗ = lim inf
T→∞

1

T

T∑
t=1

S(GaRA
i,t, yi,t)− S(GaRB

i,t, yi,t).

(34)

We use the Equal Forecasting Performance test of Gneiting and Ranjan [2011], with the following

test statistic:

QEFP =
∆T S̄

σ̂T /
√
T
∼ N(0, 1), (35)

where the numerator is defined as

∆T S̄ =
1

T

T∑
t=1

S(GaRA
i,t, yi,t)− S(GaRB

i,t, yi,t) (36)
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and σ̂T is a HAC estimator of the asymptotic variance [Andrews, 1991]. Considering a proba-

bility level ν, we reject the hypothesis that λ∗ ≤ 0, i.e. method A performs significantly worse

than method B, if 1 − Φ(QEFP ) ≤ ν, where Φ(.) denotes the CDF of the normal distribution.

Similarly, we reject the hypothesis that λ∗ ≥ 0, i.e. that method B performs significantly worse

than method A, if Φ(QEFP ) ≤ ν. If we cannot reject both tests, the methods do not differ

significantly from each other.

We perform the tests for all countries and report in the comparison between two methods

the percentage of countries for which both methods perform significantly better than the other

method.

4.5.3 Dynamic Binary test

In addition, we also test for correct conditional coverage by the Dynamic Binary (DB) test in

Dumitrescu et al. [2012]. As they show that the DB test exhibits good small sample properties,

this test is suitable for our research. The test uses the following Dynamic Binary Response

model, in which the conditional probability of violation at time t is given by

P (It(p) = 1 | Ft−1] = E[It(p) | Ft−1] = F (πt), (37)

where F (.) denotes the CDF of the conditional violation probability, where we use the Dynamic

Logit model, i.e. F (πt) = exp(πt)/(1 + exp(πt)) and It(p) is an violation indicator function.

For marginal GaR, It(p) is equal to 1[yi,t < GaRi,t+h|t] for probability level p. For joint GaR,

we define It(p) as the indicator function 1[yBJPRi,t < GaRi,t+h|t(p)] ≥ 1
]
, analogously to its

definition. We assume that the index πt satisfies the following autoregressive model:

πt = c+ βπt−1, (38)

which is optimized by the following likelihood function:

lnL(β, c; I(p), πt−1) =
T∑
i=1

[
It(p) lnF (πt(β, c, πt−1))+(1−It(p)) ln(1−F (πt(β, c, πt−1)))

]
, (39)

where we use the constrained maximum likelihood estimation method of Kauppi and Saikkonen

[2008]. For details regarding this procedure, we refer to this paper.

We test whether our estimation methods yield correct conditional coverage by testing

whether p = F (πt(β, c, πt−1)), which is equivalent to β = 0 and c = F−1(p). Following Du-

mitrescu et al. [2012], we perform a Likelihood Ratio test, as this test has good small sample
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properties in terms of power. This test takes the following form:

DBLR = −2
[

lnL(0, F−1(p); I(p), πt−1)− lnL(β̂, ĉ; I(p), πt−1)
]
∼ χ2(1), (40)

where β̂ and ĉ are the estimated parameters of the binary-choice model, without using the test

conditions. For marginal GaR, we perform the DB test for each country individually and report

the percentage of countries that pass the test at a 5% significance level. For joint GaR, we

report the p-value of the test.

5 Results

5.1 Univariate GARCH

5.1.1 Marginal GaR

We start the analysis of Growth-at-Risk by the univariate GARCH models. First, we estimate

the GaR for every country individually, using QML. Table 3 shows the results for the historical

GaR, GARCH and GJR-GARCH using a constant and autoregressive mean, with one and three

lags. For clarity, we present here the results for the coverage levels 75% and 99%, as the pattern

of the results for 95% is mainly similar to the results for 99%. The Quantile Length is evaluated

in Subsection 5.2 together with the results of Pooled GARCH.

For the 1-step-ahead predictions, we observe that all univariate GARCH models consis-

tently decrease the Tick Loss in comparison to the historical GaR. For the coverage level 75%,

the TL is decreased by 22 percent for the constant mean models and by 64 percent for the

autoregressive mean models. For the coverage levels of 95% and 99%, the TL reduction of the

constant mean models is 38 percent, although the autoregressive mean models are still the best

in terms of the TL. In addition, all methods have a more accurate empirical coverage than

the historical benchmark, also shown in a better performance for the unconditional DQ test.

For the multistep-ahead predictions, the GARCH models with constant mean show however a

decreasing mean coverage and an increasing TL. By contrast, the historical GaR approximately

yields the same results over the time horizons. The models with a time-varying mean keep

their empirical coverage relatively stable compared to the constant mean models. Although

their TL values increase relatively to the historical GaR, they still perform better. The power

of the AR(3)-GARCH becomes in particular clear for 3-step-ahead predictions. Here, it yields

the most accurate empirical coverage, the lowest TL value and the most countries for which the

DB test is passed, showing independence from the first lag. Therefore, the added lags show to
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stabilize the results of the GaR estimations. Overall, the AR-GARCH models yield the best

performance, where the AR(3)-GARCH model is the most reliable estimation method in the

long term.

Table 3: Marginal results for historical GaR (Hist.) and univariate GARCH models estimated with

QML, evaluated at the empirical coverage level (Cov.); the percentage of countries for which the Dynamic

Quantile test is passed, using respectively a constant (Unc.), 4 hit lags (Hits) and 4 lags of the GDP

growth rate; the average Tick Loss times 100 (TL) and the percentage of countries for which the Dynamic

Binary test (DB) is passed.

Coverage 75% 99%

h = 1 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

Hist. 79.63 34.78 0.00 0.00 6.7425 39.13 98.16 56.52 0.00 13.04 2.2490 65.22

GARCH 78.58 56.52 0.00 4.35 5.2379 65.22 99.00 86.96 52.17 78.26 1.4150 86.96

GJR 78.62 60.87 0.00 8.70 5.2344 65.22 99.01 86.96 56.52 78.26 1.4047 86.96

AR-GARCH 77.45 60.87 0.00 8.70 2.4353 73.91 98.98 78.26 73.91 78.26 1.1156 91.30

AR-GJR 77.45 69.57 0.00 8.70 2.4251 73.91 98.98 78.26 69.57 78.26 1.1147 91.30

AR(3)-G 76.87 86.96 0.00 34.78 2.5644 95.65 98.64 73.91 52.17 52.17 1.1717 78.26

h = 2 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

Hist. 79.59 73.91 0.00 21.74 6.7613 43.48 98.08 91.30 69.57 82.61 2.2796 65.22

GARCH 74.67 86.96 0.00 56.52 6.1342 78.26 98.88 95.65 100.00 91.30 3.7611 86.96

GJR 74.81 91.30 0.00 56.52 6.1626 73.91 98.92 95.65 100.00 91.30 3.9834 91.30

AR-GARCH 76.60 78.26 0.00 0.00 4.1519 73.91 99.27 95.65 95.65 86.96 1.6774 95.65

AR-GJR 76.68 78.26 0.00 0.00 4.1530 73.91 99.30 95.65 95.65 91.30 1.6748 95.65

AR(3)-G 76.50 95.65 8.70 26.09 4.1278 95.65 99.23 95.65 82.61 69.57 1.8868 100.00

h = 3 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

Hist. 79.52 73.91 0.00 0.00 6.7759 43.48 98.01 91.30 86.96 86.96 2.2995 60.87

GARCH 73.10 82.61 0.00 0.00 6.8647 47.83 99.02 82.61 60.87 86.96 68.0349 78.26

GJR 73.26 82.61 0.00 4.35 6.9119 52.17 99.03 82.61 60.87 86.96 74.5033 78.26

AR-GARCH 76.57 82.61 4.35 0.00 5.5214 73.91 99.47 91.30 30.43 100.00 2.0781 91.30

AR-GJR 76.68 82.61 4.35 0.00 5.5428 69.57 99.47 86.96 30.43 95.65 2.0741 86.96

AR(3)-G 75.69 86.96 4.35 0.00 5.4748 78.26 99.41 95.65 30.43 100.00 1.9812 95.65

We observe for the coverage levels of 95% and 99% that the TL of the constant mean

models exponentially rises for a larger time horizon. This feature is caused by applying the

models to Turkey, it leads to some extreme GaR estimations. This is further investigated in

Subsubsection 5.1.2. When we exclude Turkey, the TL values of the models with constant mean

are for 3-step-ahead predictions approximately equal to the TL of the Historical GaR, just as

shown for the coverage level 75%.
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Evaluating the independence of the hits, we observe for the 75% coverage level that all

univariate GARCH models pass the Dynamic Binary test for more countries. This suggests that

the violations are also less dependent over time when we consider one hit lag. On the other hand,

the DQ-Hits test, which is performed with four lags, is not passed for all countries. Therefore,

we conclude that the hits of the autoregressive models show more evidence of independence.

However, this finding is not robust for the usage of multiple lags. For the 99% coverage level,

this result is only found for the 3-step-ahead estimations.

Next, we compare the performance of the GARCH and GJR-GARCH models. The em-

pirical coverage stays approximately the same for all horizons and coverage levels, which also

applies to the models that use a time-varying mean. The tests and Tick Losses do also not

show clear differences. Thus, the usage of an asymmetric term does not significantly improve

the GaR estimations in the context of univariate GARCH models.

Finally, we observe from the results of the VAR-GARCH model in the Appendix, Section

C that VAR-GARCH fails to correctly estimate the GaR compared to the other estimation

methods, according to its too low empirical coverage level. Although this level slightly increases

for a longer time horizon, it is still between 7 and 10 percent too low for all coverage levels

at h = 3. This finding is supported by the small percentage of countries that pass both the

unconditional DQ test and the DB test. However, the clearest indication that this model

performs poorly is found in the Tick Loss, which is for almost all coverage levels and horizons

higher than the historical benchmark. Therefore, we conclude that using the cross-sectional

parameters to model the mean does not have added value for our GaR estimations.

5.1.2 Tick Loss Comparative Backtest

To investigate the Tick Loss in more detail, we perform the comparative backtest country-by-

country. Table 4 reports the results of these tests. As expected, we observe that the historical

Growth-at-Risk has a significantly higher Tick Loss than all methods for the majority of the

countries. However, historical GaR beats the models with a constant mean for a minority of

the countries. For the 3-step-ahead estimations of the 99% coverage level, historical GaR even

outperforms the models with constant mean for the majority of the countries. The historical

GaR even beats the models with an AR(1) mean for around 40 percent of the countries and is

only outperformed for 17 percent of the countries. This finding contrasts with Table 3, where

we found that the historical GaR has a higher TL on average. However, the AR(3) mean models

here still outperform the historical GaR for around 40 percent of the countries. We conclude
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that the univariate GARCH models outperform the historical GaR for shorter time windows,

and the AR(3)-GARCH again is the clear winner.

Table 4: Tick Loss Backtest table for Historical GaR (Hist.) and the univariate models, where G denotes

GARCH. The displayed result is the percentage of countries for which the method of the corresponding

column performs significantly better at a 5% level than the method in the corresponding row.

Coverage 75% 99%

h = 1 Hist. G GJR AR-G AR-GJR AR(3)-G Hist. G GJR AR-G AR-GJR AR(3)-G

Hist. 0.17 0.17 0.00 0.00 0.00 0.04 0.04 0.00 0.00 0.00

G 0.48 0.22 0.00 0.00 0.00 0.87 0.22 0.00 0.00 0.00

GJR 0.48 0.26 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00

AR-G 0.96 0.91 0.91 0.26 0.00 1.00 1.00 1.00 0.04 0.00

AR-GJR 0.96 0.91 0.91 0.22 0.00 1.00 1.00 1.00 0.04 0.00

AR(3)-G 0.74 0.74 0.70 0.48 0.48 0.91 0.83 0.83 0.52 0.52

h = 2 Hist. G GJR AR-G AR-GJR AR(3)-G Hist. G GJR AR-G AR-GJR AR(3)-G

Hist. 0.22 0.22 0.00 0.00 0.00 0.35 0.35 0.04 0.04 0.00

G 0.57 0.30 0.00 0.00 0.00 0.52 0.26 0.00 0.00 0.00

GJR 0.52 0.13 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00

AR-G 0.74 0.57 0.57 0.35 0.00 0.87 0.78 0.78 0.04 0.00

AR-GJR 0.74 0.61 0.61 0.22 0.00 0.78 0.83 0.87 0.13 0.00

AR(3)-G 0.52 0.52 0.52 0.48 0.48 0.91 0.91 0.91 0.78 0.74

h = 3 Hist. G GJR AR-G AR-GJR AR(3)-G Hist. G GJR AR-G AR-GJR AR(3)-G

Hist. 0.17 0.17 0.04 0.04 0.04 0.52 0.57 0.39 0.43 0.13

G 0.61 0.52 0.09 0.04 0.04 0.09 0.35 0.13 0.09 0.00

GJR 0.61 0.04 0.04 0.04 0.04 0.09 0.00 0.13 0.09 0.00

AR-G 0.13 0.17 0.17 0.26 0.00 0.17 0.61 0.57 0.22 0.00

AR-GJR 0.13 0.22 0.22 0.04 0.09 0.17 0.61 0.57 0.22 0.00

AR(3)-G 0.13 0.22 0.22 0.78 0.70 0.39 0.78 0.74 1.00 0.96

Only for Turkey, GARCH and GJR are beaten consistently by the historical approach at

all investigated horizons and coverage levels. To gain more insight into these results for Turkey,

we plot the GDP growth rate of Turkey together with the 95% GaR from a historical approach,

univariate GARCH with constant mean and Pooled GARCH. For comparison purpose, we show

this figure also for Sweden, where the univariate GARCH models consistently beat the historical

benchmark. Figure 2 shows the two figures.

We observe for both countries that the historical GaR has a smooth pattern, which results

for Sweden in a relatively high Tick Loss, as it does not adapt quickly to recent changes.

However, we observe for Turkey that the GaR estimated by univariate GARCH shows a very
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unstable pattern, resulting in strongly negative GaR estimations. Taking a closer look at the

results, we observe that the growth rate of Turkey in the first and middle part of the dataset has

a relatively long series of stable negative growth rates. This data feature leads to highly negative

standardized growth rates for the estimations from the GARCH model with a constant mean.

This strongly influences the results of the GaR estimations in the bootstrapping algorithm,

which yields very low GaR estimations that are not corrected by a time-varying mean. This

effect remains relatively long, as the sum of the parameters α and β is close to 1, and the weight

of the past volatility for Turkey is high. Therefore, we obtain high differences between the GaR

and the actual growth rate, which causes the high Tick Loss. The power of Pooled GARCH

is already shown in this figure, as it yields a smoothed line of the GaR estimations over time,

where the GaR still captures most of the downside risk events. On the other side, the estimated

GaR of Sweden is only slightly changed and approximately yields the same result.

Figure 2: Comparison of the GDP growth rates and the 3-step-ahead 95% GaR estimations with univari-

ate GARCH and Pooled GARCH (both with a constant mean) and the historical GaR. For readability,

the y-axes of the figures are truncated at the downside.

(a) Turkey (b) Sweden

Since the last six months of our data set are months of the coronavirus recession affects

the results, namely March 2020 to August 2020, we finally investigate if this period affects the

results. Whereas for most performance measures the general pattern does not change, the Tick

Loss is highly affected by the six months of the coronavirus recession. The reduction percentage

of the Tick Loss when we leave out the last six months of our data set is shown in Table 5.

We observe that the historical GaR relatively is the least affected by the coronavirus re-

cession at 1-step-ahead predictions. However, the coronavirus recession has the most impact

on the GARCH models that use an autoregressive mean. The reason is that the AR-GARCH
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Table 5: Tick Loss reduction in % for the exclusion of the last six months in the data set, for the

univariate GARCH models using QML.

Horizon h = 1 h = 2 h = 3

Coverage 75% 95% 99% 75% 95% 99% 75% 95% 99%

Hist. 23.6 42.5 68.6 23.6 42.4 68.0 23.6 42.3 67.6

GARCH 27.1 49.5 76.1 25.9 23.8 35.0 24.0 1.7 0.8

GJR 26.8 48.5 75.3 25.8 22.3 32.8 23.9 1.4 0.6

AR-GARCH 53.9 76.7 91.9 44.0 65.1 84.1 36.8 52.1 69.2

AR-GJR 53.7 76.6 91.9 43.9 65.0 84.1 36.9 52.1 69.2

AR(3)-G 90.6 94.0 97.8 79.8 86.9 94.8 37.0 55.0 74.9

models follow the trend of the GDP growth rate data the most closely since their means are

updated with high weight on the last observation. Generally, this reduces the Tick Loss, as the

Growth-at-Risk updates quickly for recent changes in the economy. In contrast, the Tick Loss

is in the coronavirus recession highly affected by these ’extreme’ events that never happened

before in the data. Especially the fact that the data contains very negative values, followed by

highly positive values, accuses a high difference between the GaR estimations and the actual

GDP growth rates. This effect is even stronger for an autoregressive mean using three lags.

The Tick Loss reduction is very small for the 3-step-ahead forecasts at the coverage levels of

95% and 99%. However, since the Tick Loss was also affected by the extreme GaR estimations

for Turkey at this time horizon, this result is only caused by that feature. Overall, we conclude

that the AR(3)-GARCH models even perform better when excluding the first months of the

coronavirus recession, which is in the context of this research a unique event that does not

follow the normal cyclical rules of the economy. Given that such an event is not likely to happen

often again, this emphasizes the power of the AR-GARCH models for the GaR estimation in

conventional world situations.

5.1.3 Joint GaR

Next, we evaluate the estimations of the joint Growth-at-Risk for the univariate GARCH mod-

els and show the results in Table 6. Our historical approach has for the coverage level 75%

consistently a too high coverage level. This feature also applies to the univariate GARCH

models, apart from the AR(3) model, which shows good coverage results for 1-step-ahead GaR

estimations. In addition, this model also passes the unconditional DQ test and DB test, show-
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Table 6: Joint GaR results for univariate GARCH models estimated with QML, evaluated at the mean

coverage level (Cov.) and the p-value of the Dynamic Quantile test, using respectively a constant (Unc.)

and 4 hit lags (Hits). In addition, the Quantile Length (QL) and the p-value of the DB test are reported.

Coverage 75% 99%

h = 1 Cov. Unc. Hits QL DB HGF Cov. Unc. Hits QL DB HGF

Hist. 84.23 0.00 0.00 1.01 0.00 3.15 97.96 0.02 0.00 1.49 0.10 5.73

GARCH 81.45 0.00 0.00 0.86 0.00 1.42 98.33 0.12 0.00 1.15 0.35 3.33

GJR 81.45 0.00 0.00 0.87 0.00 1.40 98.70 0.49 0.00 1.17 0.79 3.86

AR-GARCH 81.82 0.00 0.00 0.67 0.00 1.46 97.77 0.00 0.00 0.72 0.05 2.67

AR-GJR 82.00 0.00 0.00 0.67 0.00 1.47 97.96 0.02 0.01 0.73 0.10 2.82

AR(3)-G 76.07 0.57 0.07 0.64 0.62 1.73 97.40 0.00 0.00 0.67 0.01 2.57

h = 2 Cov. Unc. Hits QL DB HGF Cov. Unc. Hits QL DB HGF

Hist. 83.83 0.01 0.00 1.01 0.00 3.15 97.96 0.29 1.00 1.49 0.10 6.09

GARCH 87.73 0.00 0.00 2.07 0.00 1.88 98.88 0.86 1.00 4.34 0.95 5.17

GJR 88.10 0.00 0.00 2.29 0.00 1.88 98.88 0.86 1.00 4.89 0.95 5.17

AR-GARCH 91.45 0.00 0.00 0.94 0.00 1.98 99.26 0.67 0.30 1.40 0.82 10.50

AR-GJR 91.26 0.00 0.00 0.95 0.00 1.96 99.26 0.67 0.30 1.45 0.82 10.50

AR(3)-G 87.92 0.00 0.00 0.95 0.00 1.91 98.88 0.87 1.00 1.49 0.95 8.17

h = 3 Cov. Unc. Hits QL DB HGF Cov. Unc. Hits QL DB HGF

Hist. 83.61 0.01 0.00 1.01 0.00 3.14 97.95 0.29 0.00 1.49 0.10 6.09

GARCH 93.67 0.00 0.00 32.08 0.00 2.56 99.44 0.46 0.91 106.22 0.53 8.67

GJR 93.85 0.00 0.00 37.65 0.00 2.61 99.44 0.46 0.91 125.27 0.53 8.67

AR-GARCH 97.77 0.00 0.00 2.69 0.00 4.92 99.44 0.46 0.91 8.62 0.53 13.67

AR-GJR 97.39 0.00 0.00 3.31 0.00 4.36 99.44 0.46 0.91 10.18 0.53 13.33

AR(3)-G 95.72 0.00 0.00 6.86 0.00 3.30 99.44 0.46 0.91 19.87 0.53 14.33

ing that it yields correct conditional coverage. However, in the longer term, we observe that

the GARCH models return too high empirical coverage. This finding indicates that the joint

GaR takes too negative values for longer time horizons. Consequently, this also yields very high

Quantile Length values. We conclude that only our AR(3)-GARCH model performs relatively

well in the short term. For larger time horizons, all our univariate GARCH models tend to

overestimate the empirical coverage.

Since the estimations for Turkey yield very low GaR estimations, we also evaluate the joint

GaR while excluding Turkey to investigate if this accuses the bad results. The results are shown

in the Appendix, Table 21. Indeed, the Quantile Length is decreased strongly. For the 75%

coverage level, we obtain at h = 3 a QL that is still higher than the historical benchmark, but

also between the QL values of the AR(1) models and the AR(3) models. Although the QL
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values are also strongly decreased for the higher coverage levels, they are still clearly higher

compared to the AR-based models. However, all methods yield a higher QL value than the

historical benchmark, showing that even the autoregressive models lose prediction power over

time. In addition, the empirical coverage is still clearly too high for multistep-ahead predictions.

In Subsection 5.2, we investigate whether we can solve this by information pooling for the

estimation of the GARCH parameters.

Considering the HGF values in Table 6, the HGF of the dynamic models is for the 75%

coverage level lower than the historical GaR. For the constant mean GARCH models, this

applies to all considered time horizons. For h = 1, 2, the HGF is even below 2 for all dynamic

models. Thus, for the majority of the GaR violation cases, this is caused by only one GDP

growth rate that takes a value below its joint GaR. On the contrary, the historical GaR is

on average violated by three countries at that time. Thus, the dynamic models have a better

capability to avoid that multiple countries violate together the estimations, and therefore are

more robust to system-wide crashes. For the 95% and 99% coverage levels, the HGF values are

clearly higher. This was expected since those violations are likely to occur in extreme economic

times, where it is likely that multiple countries face a severe economic recession.

5.2 Pooled GARCH

5.2.1 Marginal GaR

Next, we use information pooling to investigate whether the assumption of equal parameters is

valid and whether this enhances our estimations. We assume that all countries share the same

GARCH parameters. Table 7 shows the results. First, we emphasize that Pooled GARCH has

a significantly shorter estimation time since it estimates one GARCH model for all countries

together. Apart from the estimation results, this is already a clear advantage.

The results from Table 7 show that information pooling successfully increases the stability

of our models. We observe that for 1-step-ahead estimations, the average coverage level is

slightly lower for the 75% coverage level and higher for the 99% coverage levels. Importantly,

the Tick Loss is sharply decreased in comparison to the historical GaR for 1-step-ahead forecasts.

This result is similar to the univariate GARCH models estimated without information pooling,

although the Tick Loss is for 75% coverage even reduced slightly more for the AR(1) models.

The reasoning behind this result was already shown in Figure 2: the historical GaR does not

follow the GDP over time closely. However, in contrast to the univariate GARCH models, the

mean coverage level does not decrease significantly for higher horizon steps. For multistep-
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ahead forecasts, the GARCH models with a constant yield a better average coverage level at

the coverage level 95%. By contrast, we observe for the 99% (and 95%) coverage level that

models with an autoregressive mean have a better coverage level. This is shown by the average

empirical coverage, but also by the unconditional DQ test and the DB test, for which the tests

are passed for more countries. On the other hand, the constant mean GARCH models show

more evidence for independent hit sequences for multistep forecasts. The TL values for the AR-

GARCH methods are for 3-step-ahead predictions also reduced in comparison to the univariate

GARCH models. Therefore, we conclude that information pooling also stabilizes our models

consistently at longer horizons, especially doing well for AR(3)-GARCH.

Table 7: Marginal results for univariate GARCH models estimated with Pooled GARCH.

Coverage 75% 99%

h = 1 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

Hist. 79.63 34.78 0.00 0.00 6.7425 39.13 98.16 56.52 0.00 13.04 2.2490 65.22

GARCH 77.66 73.91 0.00 0.00 5.2632 78.26 98.99 82.61 52.17 65.22 1.2953 86.96

GJR 77.67 73.91 0.00 0.00 5.2156 78.26 99.00 82.61 60.87 69.57 1.2855 86.96

AR-GARCH 76.65 69.57 0.00 4.35 2.3661 78.26 99.01 82.61 78.26 86.96 1.1059 86.96

AR-GJR 76.69 69.57 0.00 4.35 2.3656 73.91 98.98 78.26 78.26 78.26 1.1100 82.61

AR(3)-G 75.99 56.52 0.00 21.74 2.6383 65.22 98.52 73.91 43.48 47.83 1.2635 78.26

h = 2 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

Hist. 79.59 73.91 0.00 21.74 6.7613 43.48 98.08 91.30 69.57 82.61 2.2796 65.22

GARCH 75.58 95.65 0.00 56.52 5.9290 86.96 97.77 69.57 86.96 69.57 1.8268 60.87

GJR 75.55 95.65 0.00 56.52 5.9234 86.96 97.79 69.57 86.96 73.91 1.8076 65.22

AR-GARCH 63.54 0.00 0.00 0.00 4.1870 0.00 96.43 26.09 43.48 43.48 1.6750 17.39

AR-GJR 63.53 0.00 0.00 0.00 4.1906 0.00 96.43 26.09 43.48 47.83 1.6761 17.39

AR(3)-G 75.76 95.65 0.00 0.00 4.9895 82.61 98.68 86.96 95.65 52.17 2.1035 91.30

h = 3 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

Hist. 79.52 73.91 0.00 0.00 6.7759 43.48 98.01 91.30 86.96 86.96 2.2995 60.87

GARCH 76.33 95.65 0.00 13.04 6.2457 82.61 98.79 91.30 78.26 91.30 2.0105 91.30

GJR 76.33 95.65 0.00 13.04 6.2455 82.61 98.79 91.30 78.26 91.30 2.0106 91.30

AR-GARCH 69.40 60.87 0.00 0.00 5.3885 39.13 98.08 73.91 82.61 73.91 1.9281 65.22

AR-GJR 69.41 60.87 0.00 0.00 5.3946 39.13 98.07 73.91 82.61 73.91 1.9291 65.22

AR(3)-G 75.44 91.30 0.00 0.00 5.3195 73.91 97.88 65.22 86.96 60.87 1.9224 65.22
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5.2.2 Tick Loss Comparative Backtests

Table 8 shows the comparative backtest results for the Tick Loss, that are performed for every

single country. The pooled univariate GARCH model is outperformed for most countries in

terms of the Tick Loss, apart from the univariate GARCH models where information pooling is

not used. However, for the 99% coverage level, the pooled GARCH outperforms the non-pooled

equivalent for multistep-ahead GaR estimations. For the models that use AR-based means,

there is stronger evidence that information pooling is useful, in the longer term. Although for

h = 1 the comparison for AR(1)-GARCH does not show a clear winner, the pooled variant

outperforms for multistep-ahead estimations the non-pooled variant for almost all countries.

For AR(3)-GARCH, this effect is in particular seen for 3-step-ahead predictions.

Table 8: Tick Loss Backtest table for the Pooled GARCH models, without asymmetry terms, tested

against the univariate GARCH models (indicated by an added ’u’). The displayed result is the percentage

of countries for which the method of the corresponding column performs significantly better than the

method in the corresponding row.

Coverage 75% 99%

h = 1 G AR-G AR3-G uG uAR-G uAR3-G G AR-G AR3-G uG uAR-G uAR3-G

G 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.13 0.00 0.00

AR-G 0.96 0.00 0.91 0.13 0.00 1.00 0.00 0.96 0.13 0.00

AR3-G 0.74 0.48 0.74 0.48 0.13 0.83 0.52 0.83 0.52 0.00

uG 0.39 0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.00 0.00

uAR-G 0.96 0.09 0.00 0.91 0.00 1.00 0.04 0.00 1.00 0.00

uAR3-G 0.74 0.43 0.13 0.74 0.48 0.83 0.57 0.00 0.83 0.52

h = 2 G AR-G AR3-G uG uAR-G uAR3-G G AR-G AR3-G uG uAR-G uAR3-G

G 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.74 0.04 0.00

AR-G 0.87 0.83 0.87 1.00 0.00 0.91 0.87 0.96 0.96 0.00

AR3-G 0.78 0.00 0.65 0.04 0.00 0.96 0.00 1.00 0.61 0.00

uG 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

uAR-G 0.65 0.00 0.39 0.57 0.00 0.35 0.00 0.00 0.83 0.00

uAR3-G 0.52 0.17 0.48 0.52 0.48 0.74 0.17 0.43 0.91 0.74

h = 3 G AR-G AR3-G uG uAR-G uAR3-G G AR-G AR3-G uG uAR-G uAR3-G

G 0.00 0.00 0.22 0.04 0.04 0.00 0.00 0.61 0.43 0.17

AR-G 0.39 1.00 0.43 0.91 0.83 1.00 0.04 0.96 0.96 0.96

AR3-G 0.22 0.00 0.17 0.52 0.39 0.91 0.78 0.91 1.00 0.96

uG 0.43 0.00 0.00 0.09 0.04 0.00 0.00 0.00 0.13 0.00

uAR-G 0.04 0.00 0.09 0.17 0.00 0.17 0.00 0.00 0.57 0.00

uAR3-G 0.09 0.00 0.13 0.22 0.70 0.43 0.00 0.00 0.74 1.00

34



Comparing the information pooling methods, we observe that the constant mean models

are outperformed by the autoregressive mean models for the majority of the countries in almost

every case. In addition, Pooled GARCH with a constant mean never outperforms the models

with an AR-based mean. The AR(1) and AR(3) models show an ambiguous pattern: for the

coverage level 75%, the AR(3) model outperforms AR(1) for h = 1, 2, but for h = 3, AR(3) is

always outperformed. For the coverage level 99%, the AR(3) model only outperforms the AR(1)

model for h = 2, although the average Tick Loss of both models was approximately equal. The

AR(3) model is almost always outperformed by the AR(1) model, apart from one country, which

strongly affects the mean Tick Loss. In general, the AR(3) model is more appropriate for the

75% coverage level, where the AR(1) model shows better results for the GaR estimations in the

tail.

5.2.3 Marginal Quantile Lengths

In addition, we also evaluate the Quantile Lengths of the marginal GaR estimations of the

univariate GARCH models with and without estimation pooling. Table 9 shows the results6.

For 1-step-ahead predictions, all univariate and pooled GARCH methods yield as expected a

lower Quantile Length in comparison to the historical benchmark. Here, the models with an

autoregressive mean take a lower value than the GARCH models with a constant mean. The

pooled GARCH models reduce the QL for the constant mean models, but we do not observe a

significant difference for the autoregressive mean models. This is in line with the observations

of the Tick Loss, where the use of information pooling also only reduced the TL for the constant

mean models.

For multistep-ahead predictions, only the autoregressive models keep their QL value clearly

under the QL of the historical GaR. In contrast, the univariate GARCH models again show the

effects of the exploding negative estimations from Turkey. From the results of the 75% coverage

level, we observe that the GARCH models also without this feature yield a slightly higher QL

value in comparison to the historical benchmark. However, the pooled GARCH models also face

an increasing QL, although the autoregressive mean models still outperform the historical GaR.

These good but diminishing results are again in line with Table 7. Here was observed that the

average Tick Loss is below the value of the historical GaR, although the value increases for a

6For the results of AR(3)-GARCH, the quantile at 99.5% for the whole data set is exceeded for an average

amount at most two times per country, for h = 1, 2. In these cases, the length is set to zero. Therefore, the

lengths for the AR(3)-GARCH models are slightly positively biased.
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Table 9: Quantile Lengths for the univariate GARCH models and Pooled GARCH models.

h = 1 h = 2 h = 3

Univ. 75% 95% 99% 75% 95% 99% 75% 95% 99%

Hist. 0.66 0.88 1.10 0.66 0.88 1.10 0.66 0.88 1.10

GARCH 0.68 0.79 0.90 0.67 1.45 2.97 0.67 11.92 67.31

GJR 0.68 0.80 0.91 0.67 1.53 3.21 0.67 13.16 73.79

AR-GARCH 0.61 0.64 0.67 0.64 0.74 0.86 0.66 0.88 1.24

AR-GJR 0.61 0.64 0.67 0.64 0.74 0.86 0.66 0.88 1.24

AR(3)-G 0.62 0.63 0.64 0.64 0.68 0.73 0.66 0.84 1.09

Pooled 75% 95% 99% 75% 95% 99% 75% 95% 99%

GARCH 0.68 0.76 0.84 0.66 0.77 0.88 0.66 0.83 1.13

GJR 0.68 0.76 0.84 0.66 0.77 0.88 0.66 0.83 1.13

AR-GARCH 0.60 0.63 0.66 0.60 0.66 0.72 0.63 0.74 0.87

AR-GJR 0.60 0.63 0.66 0.60 0.67 0.72 0.63 0.74 0.87

AR(3)-G 0.62 0.62 0.63 0.64 0.72 0.78 0.65 0.75 0.85

larger time horizon. Thus, from the QL, we conclude that the power of the pooled AR-GARCH

models is high for the marginal GaR, but it is decreasing for larger horizons.

5.2.4 Joint GaR

We further perform joint GaR estimation by Pooled GARCH, of which Table 10 shows the

results. For the 75% coverage level, the AR-mean models yield the best mean coverage level for

1-step-ahead predictions. The unconditional DQ test is not rejected for AR(1)-mean models, but

the hit functions are still dependent, according to the DQ-Hits test. Only the AR(3)-GARCH

model passes both DQ tests and shows strong evidence of correct conditional coverage from

the DB test. For multistep-ahead predictions, we observe for the 75% coverage level that the

empirical coverage level decreases sharply for all models, apart from the AR(3)-GARCH model.

Consequently, all tests are rejected. However, the empirical levels return to a higher level for

3-step-ahead predictions. Although the tests do not show a correct conditional coverage, we still

yield a better result as for the univariate GARCH models, where the empirical coverage level

increased towards 90%. For the 95% and 99% coverage levels, we observe results similar to 75%.

The AR(3)-GARCH model again performs the best for h = 2, while AR(1)-GARCH and AR(1)-

GJR have the best performance for h = 3. Although the joint GaR is not specified correctly in

the long term, we conclude that Pooled GARCH mitigates the estimation error for joint GaR
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that resulted from the estimations of univariate GARCH. In particular, the AR(3)-GARCH

model again shows a relatively good and stable performance.

From the results of Table 10, we again observe a changing pattern between 1-step-ahead

predictions and further horizons. Whereas the GARCH models with a constant mean return

a too high empirical coverage for 1-step-ahead predictions, the autoregressive mean models

return more accurate coverage. However, for h = 2, the constant mean models mitigate the

decrease in empirical coverage, compared to the AR(1)-GARCH model. For h = 3, the constant

mean GARCH and AR(1)-GARCH both return to a higher empirical coverage, where for the

AR(1)-GARCH incorrect conditional coverage and the DQ-Hits test both cannot be rejected,

in contrast to the constant mean GARCH. Therefore, the autoregressive mean performs mostly

better than the constant mean, although the behaviour is ambiguous.

As expected, the historical GaR has a higher QL than all GARCH models for 1-step-ahead

estimations. The autoregressive mean-based models have the lowest QL, which mean that they

succeed to drop the GaR less to unnecessary low values, which is again a clear advantage.

However, the results for the AR models are slightly biased as the GaR estimations sometimes

exceed the 0.995 quantile. In the long-term, we observe that the autoregressive mean models

always keep the QL below the value of the historical GaR, although it is at the cost of a lower

empirical coverage. In contrast, the constant mean models exceed the QL of the historical GaR

for 3-step-ahead. The AR(3)-GARCH model has the lowest QL for the coverage level 99% at

horizon h = 3, which is not caused by a bias from an exceedance of the 99.5% quantile, again

showing the power of this model for joint GaR prediction.

For the HGF values, the HGF value is consistently lower for the GARCH models in compari-

son to the historical GaR. Although we also observed this for the univariate GARCH models, the

difference is that this result for 75% is consistent over time. In particular, the AR(3)-GARCH

shows here robustness against a crash of multiple countries. For 2-step-ahead predictions, we

even observe that its HGF is clearly lower in comparison to the other GARCH models, although

its empirical coverage is significantly higher. In addition, its number of average violations is

for the coverage level 99% relatively low, although slightly higher for 2-step-ahead estimations.

Still, from these results, the AR(3)-GARCH model turns out to be the method that avoids

multiple violations of the joint GaR.

To evaluate whether the performance is affected by the number of observations on which

we base our predictions, we also evaluate the joint GaR for pooled GARCH using the sub-

sample starting in October 2002. In Table 10, the empirical coverages of this subsample are
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Table 10: Joint GaR results for univariate GARCH models using information pooling, evaluated at the

mean coverage level (Cov.) and the p-value of the Dynamic Quantile test, using respectively a constant

(Unc.), hit lags (Hits) and the first principal component of the GDP growth data (GDP). In addition,

the p-value of the DB test is reported. The column ’2nd s.’ denotes the empirical coverage for the

subsample from the 500th observation, October 2002.

Coverage 75% 99%

h = 1 Cov. 2nd s. Unc. Hits QL DB HGF Cov. 2nd s. Unc. Hits QL DB HGF

Hist. 84.23 83.18 0.00 0.00 1.01 0.00 3.15 97.96 96.73 0.02 0.00 1.49 0.10 5.73

GARCH 82.56 85.51 0.00 0.00 0.84 0.00 1.51 98.70 98.13 0.49 0.00 1.01 0.79 4.00

GJR 82.56 85.51 0.00 0.00 0.84 0.00 1.50 98.70 98.13 0.49 0.00 1.01 0.79 3.86

AR-GARCH 78.11 83.64 0.10 0.00 0.67 0.19 1.47 99.07 98.60 0.87 0.00 0.75 0.98 5.20

AR-GJR 77.92 83.18 0.12 0.00 0.67 0.23 1.45 98.89 98.13 0.79 0.00 0.75 0.96 4.50

AR(3)-G 74.40 77.10 0.75 0.34 0.64 0.72 1.88 97.96 96.26 0.02 0.00 0.68 0.10 3.36

h = 2 Cov. 2nd s. Unc. Hits QL DB HGF Cov. 2nd s. Unc. Hits QL DB HGF

Hist. 83.83 83.10 0.01 0.00 1.01 0.00 3.15 97.96 96.71 0.29 1.00 1.49 0.10 6.09

GARCH 68.77 75.59 0.03 0.00 0.86 0.00 1.88 97.21 96.71 0.01 0.37 1.16 0.00 3.67

GJR 68.77 75.59 0.03 0.00 0.86 0.00 1.88 97.21 96.71 0.01 0.37 1.16 0.00 3.67

AR-GARCH 49.07 59.62 0.00 0.00 0.72 0.00 1.97 93.68 93.90 0.00 0.00 0.86 0.00 2.24

AR-GJR 48.88 59.15 0.00 0.00 0.72 0.00 1.97 93.49 93.90 0.00 0.00 0.87 0.00 2.20

AR(3)-G 76.95 82.16 0.40 0.18 0.80 0.45 1.63 98.33 97.18 0.39 0.00 0.97 0.35 5.78

h = 3 Cov. 2nd s. Unc. Hits QL DB HGF Cov. 2nd s. Unc. Hits QL DB HGF

Hist. 83.61 83.49 0.01 0.00 1.01 0.00 3.14 97.95 96.70 0.29 0.00 1.49 0.10 6.09

GARCH 83.24 84.91 0.00 0.00 1.14 0.00 1.98 99.07 98.11 0.92 1.00 2.13 0.98 7.20

GJR 83.43 84.91 0.00 0.00 1.21 0.00 1.98 99.07 98.11 0.92 1.00 2.31 0.98 7.20

AR-GARCH 70.02 77.36 0.07 0.13 0.94 0.02 1.89 98.70 98.11 0.66 0.96 1.50 0.78 8.14

AR-GJR 70.02 77.36 0.07 0.10 0.90 0.02 1.89 98.70 98.11 0.66 0.96 1.44 0.78 8.14

AR(3)-G 68.90 74.53 0.03 0.02 0.90 0.00 1.78 98.14 98.11 0.20 0.61 1.26 0.19 6.40

shown next to the empirical coverage of the entire out-of-sample period. We observe that all

estimation methods for h = 1 have a larger empirical coverage, which does not improve the

results. However, for multistep-ahead predictions, the estimations for the GARCH models with

conditional mean yield an empirical coverage close to 75%. In addition, the AR(1) models are

still not close to 75%, but their coverage is higher. For h = 3, all models with autoregressive

mean are relatively close to 75%. We conclude that our methods perform especially better for

multistep-ahead forecasts if we have more data to base on our predictions.
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5.2.5 Comparison with quarterly GDP data

To put the results of Pooled GARCH for marginal GaR, shown in Table 7, into a broader

perspective, we also perform the considered methods for quarterly data. We consider the data

used in the research of Brownlees and Souza [2021], who also perform a Pooled GARCH model

on GDP growth data. Table 11 shows the results. Where our models for the monthly GDP data

show for 1-step-ahead an empirical coverage level that is slightly too high for 75%, we observe

for the quarterly data that the empirical coverage level is underestimated. This feature of the

predictions is also consistent over time, which is also in contrast with the GaR predictions of the

AR(1)-GARCH model applied to our monthly data. In addition, the incorporation of a time-

varying mean does not improve the GaR predictions significantly. It is even the case that the

historical benchmark performs better in terms of the empirical coverage and the unconditional

DQ test, while the DQ test on the Hits and the Tick Loss also do not show a clear winner. The

GARCH models show better performance for the 95% coverage level, where the Tick Loss of the

historical GaR is mostly outperformed. In addition, the GARCH models pass the unconditional

DQ test and DB test in more cases. Although these results are slightly worse for the coverage

level 99%, we conclude that the GARCH models perform in particular well for higher coverage

levels at the quarterly data.

Table 11: Marginal GaR results of Pooled GARCH models for the quarterly GDP growth data.

Coverage 75% 95%

h = 1 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

Hist. 69.73 45.83 16.67 37.50 33.6747 62.50 94.48 70.83 41.67 62.50 13.9709 70.83

GARCH 66.95 50.00 29.17 41.67 32.5605 54.17 93.84 83.33 70.83 87.50 12.1625 70.83

AR-GARCH 67.20 45.83 25.00 45.83 32.3507 50.00 93.34 79.17 62.50 87.50 12.3736 75.00

AR(3)-G 61.17 37.50 20.83 33.33 34.2049 37.50 91.07 45.83 41.67 58.33 13.2759 54.17

h = 2 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

Hist. 69.66 70.83 16.67 45.83 33.7577 58.33 94.37 75.00 91.67 75.00 14.0799 79.17

GARCH 67.27 58.33 41.67 45.83 33.5022 58.33 93.29 79.17 91.67 91.67 13.3229 87.50

AR-GARCH 66.73 58.33 41.67 41.67 32.9670 62.50 93.19 75.00 79.17 87.50 13.1554 83.33

AR(3)-G 67.88 62.50 45.83 58.33 32.8522 62.50 93.54 79.17 87.50 87.50 12.9937 83.33

h = 3 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

Hist. 69.84 75.00 33.33 54.17 33.7491 62.50 94.39 75.00 87.50 87.50 14.1844 75.00

GARCH 66.70 54.17 37.50 58.33 33.8305 50.00 95.80 95.83 91.67 95.83 14.4075 91.67

AR-GARCH 66.47 54.17 29.17 54.17 33.7653 50.00 96.06 95.83 95.83 100.00 14.2186 100.00

AR(3)-G 66.63 62.50 50.00 58.33 33.6596 50.00 95.83 95.83 87.50 95.83 14.0041 100.00
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To gain more insight into why our GARCH models do not perform well for the 75% coverage

level for the quarterly GDP growth rates, we plot the results for the Netherlands of 2-step-ahead

predictions in Figure 3. In Figure 3a, we observe that the models are less able to follow the

general pattern of the GDP growth rate, given that all GaR estimations stay in general between

0 and 0.5, apart from the banking crisis of 2008. Therefore, the GDP growth rates are violated

relatively often, as the GDP growth rates are relatively volatile. Although this rigid pattern

partly remains for the coverage level 95%, here we observe that the relative performance is

slightly better. This is because the GARCH models cover the GDP growth rates well but still

adapt better for the GDP growth rate pattern in comparison to the historical approach.

Figure 3: GDP growth at quarterly and monthly frequency for the Netherlands, compared with the

2-step-ahead GaR estimations based on the historical approach and a GARCH model using respectively

a mean from a constant, an AR(1) model and an AR(3) model.

(a) Quarterly 2-step-ahead GaR (75%) (b) Monthly 2-step-ahead GaR (75%)

(c) Quarterly 2-step-ahead GaR (95%)

The quarterly and monthly GDP also clearly behave differently in terms of the explain-
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ability of the mean. Figure 3 shows that the growth rates are closely followed by the GARCH

models, in particular by the AR-GARCH models. This diminishes in particular the Tick Loss,

while also the variance is relatively low, preventing the GaR estimations from being too low.

This result follows from the data properties that we investigated in Section 3, where we obtained

that the monthly GDP data is clearly better explained by an autoregressive model. These prop-

erties also explain that the constant mean GARCH model yields predictions that are relatively

close to the estimations of the autoregressive mean: the mean of the quarterly growth rates is

higher, but the coefficients of AR-GARCH are lower. Therefore, we conclude that the monthly

GDP growth rates are better explained for the marginal GaR, mainly because the mean is better

fitted by an autoregressive model, which yields tighter boundaries for the GaR estimations.

5.2.6 Clustered GARCH

Next, we also use clusters of countries to perform Pooled GARCH, using k-means clustering,

where we use k = 8 clusters to split the countries. This number is chosen because it allows for

both some bigger clusters as some countries that are estimated independently. The results are

shown in Table 12. We observe that the incorporation of clusters slightly increases the empirical

coverage, but this result does not significantly improve our estimations. If anything, the results

suggest that the Clustered GARCH estimations are slightly better for longer estimation horizons

in comparison to Pooled GARCH, based on the average Tick Loss values. This suggests that

the exact parameter estimations per country are less important. We note that other choices

of the number of clusters k yield approximately the same results. In addition, clustering the

countries for which the sum of the parameters α+β are close to one, while estimating the other

countries individually, does also not yield better results.

To investigate the performances at the level of the countries specifically, we also perform

the Tick Loss backtests between the Pooled GARCH and Clustered GARCH. From Table 13,

we observe that for most countries, we do not observe a significant difference in Tick Losses for

predictions at horizon h = 1, 2. Here, Korea is the only country for which Clustered GARCH

consistently outperforms Pooled GARCH. This country is first clustered on its own until 1994,

and next clustered with other countries. Therefore, it seems that the single estimation in the

earlier period paid off in terms of a more accurate estimation in comparison to Pooled GARCH.

In addition, the Clustered GARCH slightly performs better for 3-step-ahead estimations for

a substantial part of the countries. However, this still provides no convincing evidence that

Clustered GARCH is more consistent than Pooled GARCH.
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Table 12: Marginal results for univariate GARCH models estimated with Clustered GARCH (Cl. G),

compared with univariate GARCH (u. G) and Pooled GARCH (P. G).

Coverage 75% 95%

h = 1 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

u. G 77.45 60.87 0.00 8.70 2.4353 73.91 96.17 47.83 8.70 52.17 1.4310 60.87

P. G 76.65 69.57 0.00 4.35 2.3661 78.26 95.77 34.78 8.70 56.52 1.4150 47.83

Cl. G 76.91 69.57 0.00 4.35 2.3899 69.57 95.80 39.13 13.04 34.78 1.4198 43.48

h = 2 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

u. G 76.60 78.26 0.00 0.00 4.1519 73.91 96.60 47.83 73.91 73.91 2.3710 47.83

P. G 63.54 0.00 0.00 0.00 4.1870 0.00 88.48 8.70 13.04 8.70 2.3171 8.70

Cl. G 63.30 4.35 0.00 0.00 4.2091 0.00 88.60 4.35 8.70 4.35 2.3144 4.35

h = 3 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

u. G 76.57 82.61 4.35 0.00 5.5214 73.91 97.43 34.78 65.22 52.17 3.2367 34.78

P. G 69.40 60.87 0.00 0.00 5.3885 39.13 92.05 60.87 73.91 30.43 2.9127 47.83

Cl. G 68.72 60.87 0.00 0.00 5.3955 34.78 91.77 56.52 65.22 34.78 2.8995 39.13

Table 13: Tick Loss backtests between Pooled GARCH and Clustered GARCH. The number that is

displayed is the percentage of countries for which this method outperforms the other method.

Coverage Better for 75% Better for 95% Better for 99%

Model P. G Cl. G P. G Cl. G P. G Cl. G

h = 1 0.09 0.04 0.09 0.04 0.09 0.04

h = 2 0.09 0.09 0.09 0.04 0.09 0.09

h = 3 0.09 0.22 0.13 0.30 0.30 0.30

5.3 Markov Switching GARCH

5.3.1 Marginal GaR

Next, we predict the GaR with Markov Switching GARCH. The results for marginal GaR are

shown in Table 14. At first sight, the most promising results for MS-GARCH are shown for the

95% and 99% coverage levels. Although the average coverage level for 1-step-ahead estimations

is still less close to the real coverage, the Tick Loss is slightly decreased for MS-GARCH. For

the 99% coverage level, the unconditional DQ test and Dynamic Binary test both are passed

for more countries. Thus, MS-GARCH yields at this coverage for more countries a correct

conditional coverage. For higher time horizons, MS-GARCH shows a clearly better estimated

empirical coverage level. This is also expressed in the tests for conditional coverage, becoming

more clear even for 3-step-ahead GaR forecasts. Comparing the results to Table 7, we however

42



Table 14: Marginal GaR estimation results for univariate MS-GARCH models (denoted as MS-G). For

comparison, the univariate GARCH model estimated with QML (uG) is added.

Horizon h = 1 h = 2 h = 3

Coverage uG MS-G uG MS-G uG MS-G

75%

Cov. 78.58 79.26 74.67 77.49 73.10 78.60

Unc. 56.52 52.17 86.96 82.61 82.61 82.61

Hits 0.00 0.00 0.00 0.00 0.00 0.00

GDP 4.35 4.35 56.52 52.17 0.00 0.00

QL 0.68 0.69 0.67 0.66 0.67 0.67

TL 5.2379 5.4737 6.1342 6.1873 6.8647 6.5185

DB 65.22 56.52 78.26 78.26 47.83 69.57

95%

Cov. 96.08 96.56 95.12 94.64 95.00 95.59

Unc. 56.52 39.13 78.26 91.30 78.26 91.30

Hits 0.00 0.00 47.83 34.78 60.87 69.57

GDP 34.78 43.48 82.61 73.91 69.57 43.48

QL 0.79 0.80 1.45 0.79 11.92 0.85

TL 2.3683 2.3354 6.1116 3.0728 58.6895 3.4371

DB 65.22 47.83 78.26 73.91 69.57 78.26

99%

Cov. 99.00 99.19 98.88 98.45 99.02 98.68

Unc. 86.96 95.65 95.65 82.61 82.61 95.65

Hits 52.17 39.13 100.00 82.61 60.87 82.61

GDP 78.26 69.57 91.30 73.91 86.96 82.61

QL 0.90 0.92 2.97 0.95 67.31 1.18

TL 1.4150 1.3793 3.7611 1.9111 68.0349 2.1273

DB 86.96 100.00 86.96 78.26 78.26 86.96

observe that the univariate MS-GARCH models never outperform the pooled GARCH models

in terms of the TL. We conclude that the incorporation of regimes has some added value for

the 95% and 99% coverage levels, but it is still outperformed by the pooled GARCH models.

The reason that MS-GARCH for the higher coverage levels beats univariate GARCH, is

that MS-GARCH returns consistent estimations. On the contrary, the average coverage of the

univariate GARCH models is decreasing with a larger horizon. In addition, we find for MS-

GARCH that the average coverage level is not decreasing with the time horizon. This is a

significant advantage in comparison to the autoregressive mean models. However, a big disad-

vantage is that this model has a very long computation time in comparison to the conventional

GARCH model. Therefore, the MS-GARCH model is also not very useful in terms of efficiency.

For the coverage level 75%, we observe that the incorporation of two regimes does not en-
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hance our estimations, consistently over all estimation horizons. Although the average coverage

level fluctuates less over the horizons in comparison to the GARCH model estimated with QML,

the coverage level is not significantly better for MS-GARCH. In addition, the Tick Loss is even

lower for the MS-GARCH model and the tests for conditional coverage are also passed for fewer

countries. Therefore, the incorporation of a regime-switching framework does not have added

value for the GaR estimation at the 75% coverage level.

In addition, we also evaluate the TL country-by-country. Table 15 shows the results. Here is

also shown that MS-GARCH only becomes competitive to the univariate GARCH models for the

higher coverage levels and multistep-ahead forecasts, mainly due to the unstable GaR predictions

of the univariate GARCH models. Therefore, we conclude that the MS-GARCH model does

not add enough value for the marginal GaR prediction. Although the GaR estimations have a

more stable pattern than the univariate GARCH predictions for some countries, we obtained

better results by the information pooling we considered in Subsection 5.2.

Table 15: Tick Loss backtests between univariate GARCH and Markov Switching GARCH. The number

that is displayed is the percentage of countries for which this method outperforms the other method.

Coverage Better for 75% Better for 95% Better for 99%

Model uG MS-G uG MS-G uG MS-G

h = 1 0.61 0.17 0.74 0.13 0.65 0.09

h = 2 0.48 0.22 0.35 0.39 0.09 0.48

h = 3 0.70 0.22 0.26 0.39 0.04 0.04

From the conditional probabilities for MS-GARCH based on the entire sample size, we

observe that most countries have probabilities that are mainly close to 0 or 1. Therefore, the

MS-GARCH model does not seem to estimate the GARCH parameters more accurately for

these countries, although the fact that the MS-GARCH model uses the constraints of Haas and

Paolella [2012] could stabilize the estimations. We take a closer look at the countries’ time

series that show a regime-switching pattern to investigate if the regime-switching framework

does indeed explain the results better.

Figure 4 shows the countries with the most informative probabilities. In general, we observe

that the countries differ in the persistence of the state probabilities. Figure 4d shows for both

regimes that they persist for longer periods, where the regimes correspond to high-volatility

and low-volatility states. In contrast, the other figures show a pattern where the second regime

only persists for a few observations. The results of the countries both distinguish recession and
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expansion regimes, and high-volatility and low-volatility regimes. Figure 4a mainly filters out

some strong negative rates. Figure 4b shows that the second regime occurs in the second part

of the data. Although it is not at first glance seen from the figure, this second state represents

a regime where the weight of the past volatility is higher in the modelling of the new volatility

estimation. This causes slightly larger and more stable volatility estimations. In Figure 4c, we

observe that the second state is mainly assigned to recession observations. Thus, we conclude

from these figures that MS-GARCH can show some insightful GDP growth rates’ features.

For most countries, the Markov Switching GARCH framework does not show more extensive

volatility dynamics, mainly because there seems to be too little variation in the data. Probably,

this is caused by the fact that the data set is still relatively short.

Figure 4: Predicted probabilities of MS-GARCH models, fitted on four countries’ GDP growth rates,

compared with the 2-step-ahead 95% GaR estimations with univariate GARCH and MS-GARCH.

(a) Switzerland (b) Denmark

(c) Ireland (d) South Korea
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5.3.2 Joint GaR

We evaluate the results of MS-GARCH for joint GaR in Table 16. In general, the pattern in

the results is similar to the marginal GaR. The empirical coverage is structurally overestimated

by MS-GARCH for 75%, which again emphasizes that MS-GARCH is more suitable for high

coverage levels. Consequently, the results for the tests at this coverage level are in general not

passed. However, in contrast to the marginal GaR, MS-GARCH also has a too high empirical

coverage level for 95%. These estimations are not decreasing over the horizons, like the standard

GARCH models, but rather increasing. However, this still does not yield promising results in

terms of the performed tests. The HGF is also lower for the univariate GARCH models in

comparison, which is also an advantage of univariate GARCH models.

Table 16: Joint GaR estimation results for univariate MS-GARCH models (denoted as MS-G). For

comparison, the univariate GARCH model estimated with QML (uG) is added.

Horizon h = 1 h = 2 h = 3

Coverage Q-G MS-G Q-G MS-G Q-G MS-G

75%

Cov. 81.45 87.94 87.73 80.30 93.67 85.29

Unc. 0.00 0.00 0.00 0.05 0.00 0.00

Hits 0.00 0.00 0.00 0.00 0.00 0.00

QL 0.86 9.78 2.07 16.39 32.08 1.3e+07

DB 0.00 0.00 0.00 0.01 0.00 0.00

HGF 1.42 1.63 1.88 2.14 2.56 2.33

95%

Cov. 96.10 97.77 98.14 97.96 99.26 98.51

Unc. 0.24 0.00 0.00 0.01 0.00 0.00

Hits 0.06 0.00 0.00 0.00 1.00 0.00

QL 0.99 14.00 3.25 27.76 66.70 2.8e+07

DB 0.46 0.00 0.00 0.00 0.00 0.00

HGF 2.10 2.58 4.50 5.18 8.00 5.63

99%

Cov. 98.33 99.07 98.88 99.07 99.44 99.26

Unc. 0.12 0.87 0.86 0.92 0.46 0.71

Hits 0.00 0.00 1.00 1.00 0.91 1.00

QL 1.15 23.09 4.34 49.00 106.22 5.6e+07

DB 0.35 0.98 0.95 0.98 0.53 0.82

HGF 3.33 4.60 5.17 8.40 8.67 8.50

In terms of the empirical coverage level, MS-GARCH shows better results for the coverage

level 99%. In addition, the tests for correct conditional coverage are passed for a majority of

the countries. This result is even stronger visible for the DB test, although it has theoretically
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higher power than the DQ test. The HGF is also slightly lower, although the differences are

relatively small. However, the QL explodes for all coverage levels, probably since there are

always estimations close to instability. Thus, the MS-GARCH model allows for even more

extreme estimations, making it an unreliable method for joint GaR estimation.

5.4 Multivariate GARCH

Next, we discuss the results of Multivariate GARCH. As we use the assumption of a multivariate

normal distribution, we compare the results of our multivariate GARCH models with univariate

GARCH models that assume a normal distribution of the errors. Table 17 shows the results.

From the results for the coverage level 75%, we observe that the autoregressive models yield a

clearly higher empirical coverage, which leads to a consistent overestimation of the empirical

coverage. However, considering the constant mean models, we observe that the multivariate

GARCH model mitigates the increasing empirical coverage. In addition, the AR-Multivariate

GARCH model is the only model that does not show a strongly increasing empirical coverage.

However, we still conclude that all models do not return reliable GaR estimations.

Table 17: Results of the marginal GaR predictions estimated by Multivariate GARCH, based on a

constant mean (MG) and an autoregressive mean (AR-MG). The models are compared with univariate

GARCH models for which we assume normal distributed errors, using a constant mean (G-N) and an

autoregressive mean (AR-G-N).

Coverage 75% 99%

h = 1 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

G-N 63.88 8.70 0.00 0.00 5.4380 13.04 99.40 95.65 65.22 95.65 1.3451 100.00

AR-G-N 90.12 0.00 0.00 0.00 3.6105 0.00 99.35 100.00 91.30 100.00 1.2547 100.00

MG 70.36 34.78 0.00 4.35 6.1094 34.78 97.12 26.09 0.00 30.43 1.8052 30.43

AR-MG 94.07 0.00 0.00 0.00 3.7766 0.00 99.65 100.00 82.61 100.00 1.2862 100.00

h = 2 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

G-N 93.07 0.00 0.00 0.00 7.1467 0.00 99.66 91.30 56.52 100.00 2.0434 91.30

AR-G-N 98.09 0.00 0.00 0.00 7.4516 0.00 99.73 78.26 60.87 100.00 1.9866 78.26

MG 80.89 65.22 0.00 43.48 6.6293 21.74 99.33 100.00 73.91 91.30 2.0644 100.00

AR-MG 91.98 0.00 0.00 0.00 5.7690 0.00 99.68 82.61 65.22 100.00 1.8562 82.61

h = 3 Cov. Unc. Hits GDP TL DB Cov. Unc. Hits GDP TL DB

G-N 96.09 0.00 0.00 0.00 9.3889 0.00 99.68 73.91 0.00 100.00 2.8787 73.91

AR-G-N 99.43 0.00 0.00 0.00 14.8551 0.00 99.82 56.52 0.00 100.00 3.4431 56.52

MG 89.38 13.04 0.00 0.00 8.0854 4.35 99.68 82.61 13.04 100.00 2.6328 82.61

AR-MG 94.82 0.00 0.00 0.00 7.6797 0.00 99.75 65.22 0.00 100.00 2.5755 65.22
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The results for the coverage level 99% are at first sight more promising, as most specification

tests are passed. In most cases, this leads to a correct conditional coverage for both the last lag

(shown from the DB test) as the last four lags (shown from the DQ-Hits test). The TL values of

the autoregressive models are even below the univariate GARCH models from Subsection 5.1.

However, this result is obtained from the autoregressive mean and not from the multivariate

GARCH framework. Also, the estimation error from the fact that all these methods overestimate

the empirical coverage is naturally mitigated for the coverage level 99%.

Concluding, the GaR predictions from multivariate GARCH are not well specified, which

has two reasons. From the estimations of the univariate GARCH models with the assumption

of the normal distribution, we deduce that this assumption is not valid. Second, recalling the

VAR-GARCH results, it is also likely that our model suffers from the fact that it has too many

parameters. In addition, the estimation time of multivariate GARCH is also significantly larger

than for univariate GARCH models. Given these results for the marginal GaR, we decide to

leave the joint GaR of multivariate GARCH out of our analysis.

6 Conclusion

In this thesis, we investigated several dynamic models to model the Growth-at-Risk of OECD

countries. We both evaluated marginal and joint GaR and applied several models to get insight

into the behaviour of the GDP growth rates. We included the allowance of a time-varying mean,

an asymmetry term, creating clusters of countries, two volatility regimes and a multivariate

framework. Starting with the univariate GARCH models, we concluded that they all outperform

a simple historical approach for 1-step-ahead forecasts. In addition, GARCH models are also

able to estimate a correct empirical coverage for multistep-ahead GaR forecasts. Constant mean

GARCH models also produce reliable 1-step-ahead GaR estimations that follow the pattern of

the growth rates quite well and are not too low. In addition, the volatility models increase the

independence of the GaR violations.

However, we find in line with Pakel et al. [2011] that univariate GARCH models have for the

considered data a high instability risk, which makes estimating GARCH models a challenging,

dangerous task. This data feature leads to unnecessary low GaR estimations for multistep-ahead

predictions, especially for models that use a constant mean. This issue appears due to the low

data frequency and will therefore also exist in the future. However, this issue is solved by a

simple information pooling approach, yielding consistent stabilization of the estimations. This
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approach also saves a lot of estimation time. We investigated the use of information pooling

further by the clustering of countries. For our considered methods, we found no evidence that

the use of multiple clusters outperforms the approach of assigning the same GARCH parameters

to all countries. Still, an interesting research direction would be to search for other methods

that use information pooling for the estimation of volatility models.

Considering an autoregressive mean, we conclude that this yields significantly better results

for our GaR estimations. This finding applies both for the univariate and pooled GARCH

methods. Although one lag already contains much information, including the second and third

lag mostly enhances the marginal GaR estimations, especially for longer horizons. In addition,

the GaR estimations are also not unnecessary low, in comparison to the univariate GARCH

models. This finding is shown especially for longer time horizons. Thus, although the volatility

is a logical choice to focus on in the GaR estimation, the estimation of the mean growth rate

may therefore be just as important. Further research could use some explanatory variables

to estimate the conditional mean more precisely, but a simple autoregressive model could still

appear to be a competitive benchmark.

In our investigation of joint GaR, it turned out that the main challenge is still to obtain

consistent estimations for multistep-ahead predictions. Where univariate GARCH models tend

to overestimate the empirical coverage, pooled GARCH suffers from underestimation. Gen-

erally, the best estimation results are obtained by pooled GARCH models that use multiple

autoregressive lags for the mean estimation. In particular, this effect increases when we can

rely on much historical data, which is a feature to keep an eye on in the future. In addition, we

show by the HGF measure that the GaR estimations are also more independently violated by

pooled GARCH models. This extends the joint GaR research of Brownlees and Souza [2021].

We also investigated the incorporation of regime-switching models. Although the Markov

Switching GARCH model showed for a few countries some useful insights, the allowance of

regimes overall did not add much value to the GaR estimations, which contradicts the conclusion

of Chauvet and Hamilton [2006]. The improvements for marginal GaR at high coverage levels

were still smaller than the improvements from pooled GARCH. This result is caused by the fact

that the data contains too little variation to clearly show a regime switch, probably because the

data set still consists of relatively few observations. For further research, it might be useful to

focus on testing whether the data contains a structural break, which can be allowed for both

the mean and volatility.

Our methods to incorporate cross-sectional information in the GaR prediction did not
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work well. To investigate the joint distribution of GDP growth rates more in detail, we could

combine the GARCH models with copulas and analyze pairs of countries. In addition, one could

focus on a restricted version of the covariance matrix and analyze whether that specifies the

cross-sectional interactions better to avoid over-specification of parameters.

Although we used monthly data, which is data at a higher frequency than in most research,

the data set is still relatively small. Given that this will stay a challenge in the Growth-at-Risk

research, this could be solved by using high-frequency explanatory variables, like the GARCH-

MIDAS approach of Engle et al. [2013]. However, we observed in the comparison between the

monthly and quarterly growth rates that the monthly growth rates are better estimated by an

autoregressive model, which makes them more attractive to use. Therefore, using monthly GDP

growth rates more often in literature seems to have some appealing advantages.
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A. Caldera Sánchez and O. Röhn. How do policies influence GDP tail risks? Technical Report

1339, Organisation for Economic Co-operation and Development, Paris, 2016.

Y. Chang, Y. Choi, and J. Y. Park. A new approach to model regime switching. Journal of

Econometrics, 196(1):127–143, 2017.

M. Chauvet and J. D. Hamilton. Dating business cycle turning points. Contributions to Eco-

nomic Analysis, 276:1–54, 2006.

T. Chuffart. An implementation of Markov Regime Switching GARCH models in MATLAB.

Available at SSRN 2892688, 2017.

E. I. Dumitrescu, C. Hurlin, and V. Pham. Backtesting Value-at-Risk: from Dynamic Quantile

to Dynamic Binary tests. Finance, 33(1):79–112, 2012.

R. F. Engle and K. F. Kroner. Multivariate simultaneous generalized ARCH. Econometric

Theory, 11(1):122–150, 1995.

R. F. Engle and S. Manganelli. CAViaR: Conditional autoregressive Value-at-Risk by regression

quantiles. Journal of Business & Economic Statistics, 22(4):367–381, 2004.

R. F. Engle, N. Shephard, and K. Sheppard. Fitting vast dimensional time-varying covariance

models. Working Papers 2008OMI10, 2008.

R. F. Engle, E. Ghysels, and B. Sohn. Stock market volatility and macroeconomic fundamentals.

Review of Economics and Statistics, 95(3):776–797, 2013.

51



R. F. Engle, O. Ledoit, and M. Wolf. Large dynamic covariance matrices. Journal of Business

& Economic Statistics, 37(2):363–375, 2019.

R. Giacomini and I. Komunjer. Evaluation and combination of conditional quantile forecasts.

Journal of Business & Economic Statistics, 23(4):416–431, 2005.

L. R. Glosten, R. Jagannathan, and D. E. Runkle. On the relation between the expected

value and the volatility of the nominal excess return on stocks. Journal of Finance, 48(5):

1779–1801, 1993.

T. Gneiting and R. Ranjan. Comparing density forecasts using threshold-and quantile-weighted

scoring rules. Journal of Business & Economic Statistics, 29(3):411–422, 2011.

S. F. Gray. Modeling the conditional distribution of interest rates as a regime-switching process.

Journal of Financial Economics, 42(1):27–62, 1996.

M. Haas and M. S. Paolella. Mixture and Regime-Switching GARCH Models, chapter 3, pages

71–102. John Wiley & Sons, Ltd, 2012. ISBN 9781118272039.

M. Haas, S. Mittnik, and M. S. Paolella. A new approach to Markov-switching GARCH models.

Journal of Financial Econometrics, 2(4):493–530, 2004.

J. D. Hamilton. A new approach to the economic analysis of nonstationary time series and the

business cycle. Econometrica, 57(2):357–384, 1989.
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A Pseudocode for GaR estimation

Run the GARCH model based on the data available at time T using a certain definition of

µi,t+1|t and obtain:

- Conditional means µi,t, conditional variances σ2i,t and standardized residuals

ẑi,t = (yi,t − µi,t)/σi,t, for i = 1, ..., N and t = 1, ..., T ;

- The 1-step-ahead forecasted variances σ2i,T+1|T ;

- The parameters θµ of the conditional mean, depending on the definition of µi,t+1|t;

- The parameters θσ of the conditional variance, depending on the definition of σi,t+1|t;

for j = 1, ..., h day-ahead paths do

Draw S times an index from the values 1, ..., T and bootstrap from the standardized

residuals the values z
(1)
i,T , ..., z

(S)
i,T ;

if j = 1 then

Construct µi,T+1|T , with yi,T as input;

ỹ
(s)
i,T+1|T = µi,T+1|T + σi,T+1|T z

(s)
i,t , for s = 1, ..., S;

else

Estimate µi,T+j|T with the mean equation, using ỹi,T+j−1|T and θµ as input;

Estimate σ
2(s)
i,T+j|T with the variance equation, using ỹi,T+j−1|T and θσ as input;

ỹ
(s)
i,T+j|T = µi,T+j|T + σ

(s)
i,T+j|T z

(s)
i,t , for s = 1, ..., S;

end if

end for

Construct GaRM
i,t+h|t(p) for country i as Qp(ỹ

(s)
i,T+j|T ).

Algorithm 2: General pseudocode for the h-step ahead GaR for country i at time T
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B Additional data tables and figures

Figure 5: Beta coefficients in the GARCH models for five countries of the data sets, based on the data

up to the corresponding month in the figure.

(a) Spain (b) Finland

(c) Great Britain (d) Ireland

(e) Italy
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Figure 6: Mean and variance of the growth rate at each time across all considered countries, where the

recession period corresponds with the shaded area. The variance is plotted at a logarithmic scale.

Figure 7: Autocorrelation functions of all 23 countries for the squared GDP growth rates, based on the

whole dataset.
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C Results VAR-GARCH

Table 19: Results for the marginal GaR estimations using VAR-GARCH.

h = 1 h = 2 h = 3

Coverage 75% 95% 99% 75% 95% 99% 75% 95% 99%

Cov. 67.24 78.88 85.04 64.50 80.10 87.61 68.76 85.53 92.96

Unc. 17.39 0.00 0.00 21.74 13.04 8.70 52.17 21.74 21.74

Hits 0.00 0.00 0.00 0.00 0.00 26.09 0.00 13.04 30.43

GDP 0.00 0.00 0.00 17.39 13.04 17.39 0.00 39.13 39.13

TL 5.2935 3.6621 2.8835 7.8678 4.3536 2.8479 9.9201 5.3705 3.1287

DB 21.74 0.00 0.00 13.04 4.35 4.35 17.39 8.70 17.39

Table 20: Results for the joint GaR estimations using VAR-GARCH. The results of the Quantile Length

are biased, because the 0.995 quantile is frequently exceeded by the joint GaR estimation.

h = 1 h = 2 h = 3

Coverage 75% 95% 99% 75% 95% 99% 75% 95% 99%

Cov. 5.57 12.43 18.37 8.55 19.89 38.66 21.60 53.82 77.47

Unc. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Hits 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

QL 0.68 0.71 0.74 0.82 0.93 1.06 1.07 1.37 1.76

DB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HGF 3.93 3.17 2.72 3.44 2.43 2.00 2.38 1.88 1.66
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D Additional results for joint GaR

Table 21: Joint GaR estimations from univariate GARCH models for quarterly GDP growth rates,

excluding the GDP time series for Turkey. (99% is shown at the next page.)

Coverage 75% 95%

h = 1 Cov. Unc. Hits QL DB HGF Cov. Unc. Hits QL DB HGF

Hist. 87.01 0.00 0.00 1.01 0.00 3.53 95.73 0.44 0.00 1.27 0.70 4.35

GARCH 80.71 0.00 0.00 0.82 0.01 1.44 94.62 0.69 0.19 0.91 0.87 1.76

GJR 80.89 0.00 0.00 0.83 0.00 1.43 94.62 0.69 0.12 0.92 0.87 1.72

AR-GARCH 82.56 0.00 0.00 0.67 0.00 1.41 95.18 0.85 0.43 0.70 0.94 1.81

AR-GJR 83.30 0.00 0.00 0.67 0.00 1.47 95.18 0.85 0.43 0.70 0.94 1.77

AR(3)-G 76.99 0.28 0.05 0.65 0.40 1.69 94.81 0.84 0.49 0.67 0.93 1.89

h = 2 Cov. Unc. Hits QL DB HGF Cov. Unc. Hits QL DB HGF

Hist. 86.62 0.00 0.00 1.01 0.00 3.50 95.72 0.69 0.00 1.27 0.71 4.61

GARCH 86.99 0.00 0.00 1.16 0.00 1.77 97.96 0.00 0.00 1.66 0.00 4.18

GJR 86.99 0.00 0.00 1.27 0.00 1.76 97.96 0.00 0.00 1.89 0.00 4.00

AR-GARCH 92.01 0.00 0.00 0.94 0.00 2.00 98.70 0.00 1.00 1.17 0.00 6.14

AR-GJR 92.19 0.00 0.00 0.96 0.00 2.02 98.51 0.00 0.00 1.20 0.00 5.50

AR(3)-G 88.66 0.00 0.00 0.95 0.00 1.92 98.70 0.00 0.00 1.23 0.00 7.00

h = 3 Cov. Unc. Hits QL DB HGF Cov. Unc. Hits QL DB HGF

Hist. 86.41 0.00 0.00 1.01 0.00 3.48 95.72 0.69 0.00 1.27 0.71 4.87

GARCH 93.48 0.00 0.00 3.15 0.00 2.54 99.26 0.00 1.00 7.25 0.00 7.50

GJR 94.04 0.00 0.00 5.33 0.00 2.69 99.26 0.00 1.00 13.34 0.00 7.50

AR-GARCH 98.14 0.00 0.00 2.67 0.00 5.50 99.44 0.00 0.00 5.19 0.00 13.67

AR-GJR 97.95 0.00 0.00 3.29 0.00 5.09 99.44 0.00 0.00 6.63 0.00 13.67

AR(3)-G 95.90 0.00 0.00 6.66 0.00 3.36 99.26 0.00 0.00 12.00 0.00 11.75
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Coverage 99%

h = 1 Cov. Unc. Hits QL DB HGF

Hist. 98.14 0.05 0.00 1.44 0.20 6.30

GARCH 97.59 0.00 0.00 1.00 0.02 2.54

GJR 97.77 0.00 0.00 1.01 0.05 2.58

AR-GARCH 98.14 0.05 0.01 0.73 0.20 2.90

AR-GJR 98.14 0.05 0.01 0.73 0.20 2.90

AR(3)-G 97.77 0.00 0.00 0.68 0.05 2.75

h = 2 Cov. Unc. Hits QL DB HGF

Hist. 97.96 0.35 0.00 1.44 0.10 6.09

GARCH 98.88 0.86 1.00 2.28 0.95 4.83

GJR 98.88 0.86 1.00 2.63 0.95 4.83

AR-GARCH 99.44 0.46 1.00 1.41 0.53 13.00

AR-GJR 99.44 0.46 1.00 1.45 0.53 13.00

AR(3)-G 98.88 0.87 1.00 1.50 0.95 7.83

h = 3 Cov. Unc. Hits QL DB HGF

Hist. 97.95 0.34 0.00 1.44 0.10 6.09

GARCH 99.44 0.46 0.91 15.83 0.53 8.00

GJR 99.44 0.46 0.91 29.66 0.53 8.00

AR-GARCH 99.44 0.46 0.91 8.44 0.53 13.00

AR-GJR 99.44 0.46 0.91 10.01 0.53 12.67

AR(3)-G 99.44 0.46 0.91 18.23 0.53 13.67
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