
ERASMUS UNIVERSITY ROTTERDAM
ERASMUS SCHOOL OF ECONOMICS

MSC QUANTITATIVE FINANCE
THESIS

Pension Scheme Transitions and Value-based ALM

Name student:
Esther van de Velde (481023)

University supervisor:
dr. R. Lange

Second assessor:
dr. H. Reuvers

Company supervisors:
R. te Spenke

J. Linders

Abstract

In this paper, we examine the new value-based asset liability management method for
pension funds. In The Netherlands, there will be a transition to a new pension scheme. The
government prescribed to use value-based asset liability management to examine the effects
of the transition, despite it being a relatively new method in a pension fund setting. Value-
based asset liability management in combination with generational accounting allows us to
gain understanding of value transfers between older and younger participants of the fund
when transitioning to a new pension scheme for different economic scenarios. We set up
a value-based asset liability management study and also re-calibrate the KNW model for
economic scenario generation. The parameters of the KNW model have manually been
changed by the Dutch Central Bank to obtain economic scenarios with lower long-term
interest rates without re-calibrating the model. Instead we insert a similar restriction into
calibration procedure, such that manual changes are not necessary anymore.

We show that the interest rate restriction on the KNW model leads to significantly dif-
ferent parameter estimates than the current calibration used by pension funds for asset
liability studies. Additionally, by introducing the value-based asset liability management
model, we are able to show that pension schemes that are less risky, do not necessarily lead
to a fair redistribution of pension benefits. On average the new Dutch pension scheme leads
to higher benefits than the current one, but there are greater potential losses.
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1 Introduction

Over the past years, there has been a lot of change in Dutch society with great impact on the
current pension system. First of all, the life expectancy is increasing, causing the pension benefit
payment horizon to increase. With the current system, this leads to low funding for pension
funds. As a consequence, pension benefits could potentially be cut in order to compensate for
the lack of assets for funding. Secondly, it is unusual to be employed at the same company for
a long period of time. In The Netherlands, the pension system is based on a solidarity principle
between the young and old generations: the participants of a pension fund form one collective
and together they accrue joint capital which later is used to pay their pension. This indirectly
means that participants that die early pay for participants that live longer. Flexible employment
puts pressure on this principle, as participants do not stay within one sector with one pension
fund during their working life. Lastly, during the financial crisis it became apparent that the
current pension scheme is more sensitive to financial shocks and negative interest rates than
initially thought. As an example, because of the low interest rates, pension funds need to have
more assets to pay off future liabilities, since this means the expected return is low or even
negative. It turned out that pension funds did not have the financial buffers to absorb these
shocks. These challenges are examples of reasons why the current pension system is deficient.
Therefore, the Future Pensions Act (’Wet Toekomst Pensioenen’) enters into force in 2023. This
will change the current pension system drastically. One of the major changes is going from
a defined benefit (DB) pension scheme (secured benefit payment at retirement) to a defined
contribution (DC) pension scheme (fixed premium to be invested by the pension fund).

To make an adequate trade-off between policies and schemes such as DB and DC, pension
funds make use of asset liability management (ALM). It helps Boards of Trustees decide on the
optimal funding, risk-sharing and investment strategies as well as indexation policies. Using
ALM, pension funds analyse how different economic scenarios influence different features of
the pension funds when looking at a specific strategy. The attractiveness of a strategy is often
decided by the distribution of contributions, indexation and funding ratio (FR). Statistics such
as the expected value and the value in best or worst case scenario are used to give summaries
of these distributions (classical ALM). Despite that, an often seen critique is that classical ALM
only teaches a well known truth that the more risk is taken, the higher expected return.

For this reason, Kortleve & Ponds (2006) introduced a value-based ALM method, which
instead of summary statistics shows redistribution of assets over generations for a policy ad-
justment (generational accounting). Value-based ALM is frequently used by insurers, but rarely
by pension funds. Nevertheless, with the introduction of the Future Pensions Act, this method-
ology must be used by pension funds too (de Groot & van Hoogdalem (2021) and Wijckmans
(2020)). Value-based ALM is able to visualize hidden value transfers between generations when
moving to a new pension scheme. This gives insight in the fairness and value of a pension
contract per generation. A change in a pension plan always has a smaller or bigger effect on
different generations as redistribution is inevitable (Lekniute, 2011). Therefore, it is important
that the policymakers and Boards of Trustees are aware of the consequences following a change
in pension scheme for each generation, such that those effects can be mitigated.

In order to conduct any ALM study, one needs to generate economic scenarios for the key
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determinants of pension risk, namely inflation, the stock return, and nominal interest rates. The
Commission Parameters (Langejan, Gelauff, Nijman, Sleijpen, & Steenbeek (2014) and Dijssel-
bloem et al. (2019)) prescribe the KNW model by Koijen, Nijman, & Werker (2010) to simulate
these scenarios for ALM studies. Surprisingly, in former research about value-based ALM
(such as Lekniute (2011)), the underlying scenarios are not obtained from the prescribed KNW
model, making the results of those researches less useful. To set up a realistic ALM study one
needs to use the calibration as recommended by the Commission Parameters. Despite the good
fit of the model on the data, The Dutch Central Bank (De Nederlandse Bank, DNB) recently
made manual changes to the parameters of the model (DNB, 2021a). They set the long-term
average interest rate equal to -0.01% instead of 2.41%, and thus going against the advice of the
Commission Parameters in 2019. DNB states that they received signals from pension funds that
the interest rates obtained from simulation from the 2019 calibration were not low enough. The
changes made to the parameters were not based on the data or restrictions within the model,
but were made manually after the calibration.

Especially the latter is problematic, as every parameter in the KNW model depends on the
calibration of the other parameters. Therefore, in this study we re-estimate the KNW model
and impose the -0.01% long-term interest rate as a restriction in the model to allow the other
parameters to change to fit the restriction. We use the relatively new Kalman filter method
introduced by Pelsser (2019) to calibrate the model. He showed that his results are statistically
indistinguishable from the results obtained from the old method of simulated annealing by
Draper (2014), but for completeness and to verify the robustness of this method, we check
whether our model is able to obtain the same results as by the Commission Parameters in 2019.
Then we re-estimate the model for more recent data (until 2020) with and without the interest
rate restriction to inspect whether the restriction can be justified.

All in all, this paper mainly serves as a guideline on how to set up a value-based ALM
model using scenarios obtained by the KNW model. We want to show what the added value is
of this method in the setting of Future Pensions Act, while also carefully deciding on the best
calibration of the KNW model for the economic scenarios. This leads to the research question
of this thesis: To what extent does value-based ALM lead to different conclusions in terms of
pension policies compared to classical ALM, based on scenarios obtained from the KNW model
and more specifically, how does DB compare to DC?

For the calibration of the KNW to obtain economic scenarios on inflation, stock return and
bond return, we use data of the Harmonized Index of Consumer Prices (HICP) for the euro area
(European Central Bank), the yield curve of the euro area (Deutsche Bundesbank and DNB) and
MSCI index (Morgan Stanley Capital International). Moreover, we need information about the
Dutch population to set up the ALM model for which we use data from the CPB and Koninklijk
Actuarieel Genootschap (2021).

The KNW results indicate that adding the new restriction to the KNW model leads to sig-
nificantly different parameters than without the restriction. The in-sample fit of the restricted
model shows that the low long-term interest rate restriction is not supported by the data. Espe-
cially the effect that this restriction has on the other parameters is a huge disadvantage as the
parameters are far from the recommendation of the Commission Parameters in 2019. Instead
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the KNW model fitted on more recent data seems to be a good solution. This model leads to
(slightly) lower long-term interest rates and has a good in-sample fit.

The value-based ALM results indicate that when going from DB to DC, especially the older
participants (ages 50-60) need to be compensated. If they are not compensated, the older gener-
ation loses pension benefit they would have received in a DB scheme. This seems unfair, as they
are close to retirement and do not have time to take precautionary measures anymore (such as
setting aside savings to add to their pension benefit). In case of compensation, on average DC
is more profitable than DB to the participants. On the other hand, the classical ALM results
indicate that this kind of pension scheme is more risky than DB. There are greater potential
losses. Together the two different methods give a good indication of the fairness and value for
the participants (value-based ALM) and the risk for the pension fund (classical ALM). Usually
when the classical ALM results give a positive outlook on the risk, the value-based ALM indi-
cates a loss of value for most generations. From our research, we can conclude that value-based
ALM helps to give a complete overview of the consequences of a pension scheme transition. It
helps pension funds to find a good balance between risk and fairness.

The remainder of this paper is structured as follows. The relevant background information
is described in Section 2. We describe the KNW model in Section 4. The set-up of the synthetic
pension fund and the description of the (value-based) ALM analysis is discussed in Section
5. The results are shown in Section 6. Finally, the conclusion and discussion can bw found in
Section 7.

2 Background Information

2.1 Dutch Pension System

The Dutch pension system is made up by three pillars (Opbouw pensioenstelsel). The first being
public pension (Algemene Ouderdomswet, AOW). This is pension provided by the govern-
ment for everyone over the age of 66 and 4 months as of 2021. The level of this pension is
related to the minimum wage. Workers that earn middle to high wage need additional pension
provision to maintain their standard of living. This is the role of the second pillar. About 90%
of the Dutch population partakes in this form of pension. Next, there is the third pillar, which
consists of voluntarily pension provisions, such as life insurance. In this paper we focus on the
second pillar.

2.2 Pension Schemes

During their career, employees (and their employers) set aside a percentage of their wage (pre-
mium/contribution) that goes to their pension benefit. As if right now, the participants of
the pension fund accrue joint capital together that will be used for everyone’s individual pen-
sion benefit. However, some participants die early, which means that they will never profit
from the premium they paid. On the contrary, there are participants that live longer than ex-
pected, which means that their benefit payment horizon increases and that they will receive
more money than they saved by themselves. This is called the solidarity principle, as these two
incidents balance each other out. Because of this and the fact that pension funds have many
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participants, solvency risks can be reduced and the participants are able to secure life-long
pension benefit after retirement.

So fundamentally, pension is an agreement between generations and between the pension
fund and its participants to share risk. In any scheme, the participant pays a premium per year
and gets a benefit for the remainder of their life. Nonetheless, how the percentage of premium
paid is defined, how the risk is shared between generations and how the benefit is paid out,
can be different depending on the pension scheme considered.

There are two major categories of pension schemes to consider. In The Netherlands, the
majority of pension funds offer a defined benefit (DB) plan. In this system pension, one has
secured pension rights which are accrued during the working period and will be acquired at
the start of the pension data (Bodie, Marcus, & Merton, 1988). Additional pension rights are
built up every year, around 1.875% of the retirement payment in The Netherlands. Which im-
plies that after 40 years, their pension will be 75% of the average salaries. The premium they
have to pay to the pension fund, is set in such a way that with the expected return on total
invested premium is expected to be able to pay out the benefits. In The Netherlands, most em-
ployees accrue benefits based on an average pay scheme. In this scheme, every wage increases
influence the pension accrual. Another option would be a final pay scheme, but this scheme
is rare nowadays. In that case, the final salary increase especially affects the right. Because
of the drawbacks that come with DB contracts, mentioned at the beginning of Section 1, the
Future Pensions Act enforces pension funds to introduce defined contribution (DC) contracts,
the second category of pension schemes.

For this plan, the participant does not have a secure benefit at retirement and accrual factor,
instead their premium is fixed and the return on the invested premium decides their pension
benefit. Now, the level of the pension depends on how many years pension premium is paid
and what the return on the pension funds investments are. This means that the pension benefit
coincides with market movements. In bad economic times, the benefit decreases, while is good
economic times the benefit increases. The accrual of 1.875% in pension benefit still services as
an ambition.

When moving from the current pension system to the Future Pensions Act, pension funds
roughly make a transition from DB to DC. The discussion of this transition and the effect on
the benefit of the current workforce is a significant one.
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3 Data

In order to estimate the KNW model, one needs to have data on price levels, yields and stock
index. The Commission Parameters (Dijsselbloem et al., 2019) gives an overview on what data
to use to estimate the KNW model in a Dutch setting. In this thesis, we make a few adjustments,
because of the availability of the data. In our case the data is monthly, implying that ∆t = 1/12,
as the KNW parameters have yearly implications.

1. Inflation: We use the Harmonized Index of Consumer Prices (HICP) for the euro area.
The data from 2000 on can be obtained from the European Central Bank (2021).

2. Yields: Draper (2014) recommends to use the three-month, one-year, two-year, three-year,
five-year, and ten-year yield. Thus maturities τ = 0.25, 1, 2, 3, 5, 10. The three-month yield
can be obtained from the Deutsche Bundesbank (2021a). For the other maturities, from
2004 on, we use zero-coupon rates obtained from DNB (2021d). Before 2004, we use zero-
coupon rates from the Deutsche Bundesbank (2021b).

3. Stock return: The MSCI index is used (Morgan Stanley Capital International, 2021). Re-
turns are in euros and hedged for US dollar exposure.

Figure 1: The blue line shows the logarithmic transformation of the HICP index over time. The orange line shows
the logarithmic transformation of the MSCI index over time. The base value of the indices is set to 0 on January
2000.

In Figure 1 the (natural logarithm of the) HICP and MSCI indices are displayed. For estima-
tion purposes, the HICP and MISCI indices have to start at a base value one at t = 0, which is
why the logarithmic transformation of the series start at value zero in January 2000. As can be
seen from Figure 1, the HICP is steadily increasing. There are a few drops (implying negative
inflation) in the crisis years (2008-2010). This becomes more clear from Figure 2. On the other
hand, the MSCI is more volatile and has steep declines more frequently, as can also be seen in
Figure 2. We estimate using the log transformation of the MSCI and HICP index. For the ALM
model, we have to create a simulation model that can directly obtain the inflation and stock
return from these indices.
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Figure 2: The blue line shows the inflation over time. The orange line shows the the monthly return of the MSCI
index over time.

Figure 3 shows the nominal term structure of interest rates for maturities 0.25, 1, 2, 3, 5,
and 10 years. From the figure it can be seen that from the crisis on, especially for the short
maturities the interest rates are low or negative. Setting the long-term interest rates equal to
−0.01% (as the DNB did) seems reasonable when looking at the data from 2018 on, because the
interest rates are around zero from then on.

Figure 3: Nominal yield curve. The x-axis indicates the time, the y-axis shows the level of yield and the z-axis
shows the time to maturity of the different yields.

To make an adequate ALM model one needs data on the demographics of the Dutch pop-
ulation. In order to correctly model the mortality in the workforce and the retired population
of the synthetic pension fund, the mortality rates of the Koninklijk Actuarieel Genootschap
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(2021) are used. In Figure 4, the observed and predicted life expectancy is shown, as esti-
mated by Volksgezondheidenzorg (2021). By using the mortality rates of Koninklijk Actuarieel
Genootschap (2021), this prognosis on the expected life expectancy is included. As an example,
someone aged x in 10 years, has a higher life expectancy than someone aged x right now. More-
over, the data is gender specific. This is important as the female and male population differ in
survival rates and thus for females the expected benefit payment horizon is longer.

Figure 4: Observed life expectancy and the prognosis (dotted) from 2020 until 2060. Pink (blue) indicates the female
(male) life expectancy and prognosis. In purple the weighted (there is not an equal number of females and males
for each age) average of the total population is shown.

Furthermore, we start with an initial population in line with the current Dutch population
(as of 2021). Data on the age distribution of the population is obtained from the CPB (Bevolk-
ingspiramide). Figure 5 shows the percentage of females and males in each age cohort. To
simulate future participants of the pension fund a prognosis of the future population of The
Netherlands is used.

Figure 5: Age distribution in percentages. In pink (blue) the percentage of females (males) of a specific age is shown.
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4 KNW model

In a pension setting, the major drivers of risk are demographic and financial developments.
The pension results of the participants depend on return of their pension savings and to what
extent the real value of their pension results is eroded by inflation. Moreover, decreasing mor-
tality rates could lead to deficits, as there might be insufficient assets to pay out benefits over
increasingly long horizons. Consequently, the uncertainty in mortality, stock return, inflation
and interest rates cause the benefit payments and the purchasing power of these benefits to be
uncertain as well. Therefore, in order to model pension accrual and payout and thus conduct
an ALM study in a pension setting, one needs a model that can model these uncertainties. In
this study however, we choose not to focus on modelling the demographics and instead use
the mortality tables published by the Koninklijk Actuarieel Genootschap (2021). The focus of
this paper is on the stochastic financial developments.

Because of its interpretability and ability to model the financial market adequately, de-
spite being simplistic, the Commission Parameters (Langejan et al., 2014) recommends pen-
sion funds to generate these scenario sets based on the KNW capital market model. The KNW
model was originally constructed by Koijen et al. (2010). It is a relatively simple model of the
three major drivers of pension risk: interest rates, stock returns and inflation. Originally, Koijen
et al. (2010) calibrated the KNW model on U.S. data. However, Draper (2014) re-estimated the
model using data for The Netherlands. The model is revised on quarterly basis and the corre-
sponding economic scenarios can be found on the site of DNB.1. They use simulated annealing
(Goffe et al., 1994) to estimate the parameters. Nevertheless, recently Pelsser (2019) introduced
a more straightforward method to estimate the KNW model using a Kalman filter. In terms of
parameters, the results of Pelsser (2019) do not differ significantly from what is found by Dijs-
selbloem et al. (2019). Thus, this method is used in this paper. Besides, there have been many
more extensions of the KNW model, such as Muns (2015) (how to impose restrictions in a
continuous-time affine term structure model) and Bouwman & Lord (2016) (perfect calibration
to the yield curve). Nevertheless, the objective of this paper is to create an usable and realis-
tic model for ALM studies, hence we restrict ourselves to models advised by the Commission
Parameters (Langejan et al. (2014) and Dijsselbloem et al. (2019)).

However, recently DNB went against the advice of the Commission Parameters and reset a
few parameters of the model after calibration. The reason behind this was to obtain scenarios
with lower long-term interest rates. Pension funds stated that the interest rates obtained from
the current calibration of the KNW model (Dijsselbloem et al., 2019) are too high compared
to what would be expected from more recent data (DNB, 2021a). Nevertheless, the manual
change of a few parameters without re-calibration seems rather dubious, since all parameters
are connected to each other within the estimation procedure. When changing one parameter,
the rest needs to change as well. For this reason, we re-calibrate the KNW model but do impose
a restriction on the long-term interest rate. In order to conduct a plausible study of the KNW
model, we first re-estimate the model using the same data as used by the Commission Param-
eters (Dijsselbloem et al., 2019), to see if our model is able to replicate these findings and thus

1https://www.dnb.nl/voor-de-sector/open-boek-toezicht-sectoren/pensioenfondsen/haalbaarheidstoets/uitvoering-
en-normen/scenarioset-haalbaarheidstoets-pensioenfondsen/
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is correct and robust. Next, we look at a model with and without imposing a restriction on the
long-term interest rate and examine how this affects the KNW parameters and thus scenarios.

In this section, an extensive description of the underlying assumptions, restrictions and
estimation procedure of the KNW model is given.

4.1 Methodology

4.1.1 Assumptions

The KNW model takes the stock returns, interest rates, and inflation to be dependent on ob-
served factors and two latent factors (Koijen et al., 2010). The uncertainty and the yearly dy-
namics of the instantaneous nominal interest rate Rt and the instantaneous expected inflation
πt are modelled using two unobserved state variables, collected in the vectorXt ∈ R2.

Rt = R0 +R
′
1Xt. (1)

With R0 ∈ R andR1 ∈ R2. The stock return is assumed to be affine in the state variables.

πt = δ0π + δ′1πXt. (2)

With δ0π ∈ R and δ1π ∈ R2. The inflation is assumed to be affine in the state variables. The
coefficients δ1r and δ1π give insight in the correlation between the interest rate and inflation.
The state variables follow a mean-reverting process around zero.

dXt = −KXtdt + Σ′XdWP
t . (3)

WP
t ∈ R4 is a vector of independent Brownian motions which model four sources of uncer-

tainty of the financial market, namely uncertainty about the real interest rate, uncertainty about
the instantaneous expected inflation, uncertainty about unexpected inflation and uncertainty
about the stock return. Σ′X is [I2×202×2]. The matrix of coefficientsK ∈ R2×2 is used to control
the dynamics ofXt. The price index Πt depends on the expected inflation πt.

dΠt

Πt
= πtdt + σ′ΠdWP

t . (4)

Where σΠ ∈ R4 and Π0 = 1. We do not observe πt but do observe the price index Πt. The
stock index develops as:

dSt

St
= (Rt + ηS)dt + σ′SdWP

t . (5)

With σs ∈ R4 and S0 = 1. Here, ηS is the stock-market risk premium. ηS is assumed to be fixed
over time. Again, we do not observe Rt and ηS, but observe the stock index St. Finally, we have
a nominal discount factor φN

t . φN
t can be used to determine the value of all assets.

dφN
t

φN
t

= −Rtdt−Λ′tdW
P
t . (6)
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Here we assume that the price of risk is time varying inX .

Λt = Λ0 + Λ1Xt. (7)

Here, Λ0 and Λt. ∈ R4 and Λ1 ∈ R4×2. This stochastic discount factor gives the trade-off
between consumption today and tomorrow (marginal utility ratio as in Draper (2014)). We
make the assumption of no risk premium for unexpected inflation (third row of Λ0 and Λ1

equal to zero), as one cannot identify unexpected inflation risk based on nominal data.

Λ0 =


Λ0(1,1)

Λ0(2,1)

0
Λ0(4,1)

 . (8) Λ1 =


Λ1(1,1)

Λ1(1,2)

Λ1(2,1)
Λ1(2,2)

0 0
Λ1(4,1)

Λ1(4,2)

 . (9)

Without further restrictions Λ0(4,1) , Λ1(4,1)
and Λ1(4,2)

cannot be identified.

4.1.2 Nominal Term Structure

The above equations are relatively straightforward as they are assumptions by Koijen et al.
(2010). However, it becomes more complicated as the KNW model considers the nominal term
structure. For this it should be taken into account that the expected value of a price of a nom-
inal zero coupon bond P should not change over time. This is implied by to the following
fundamental pricing equation:

E d(φN PN) = 0. (10)

Draper (2014) shows that Equation 10 can be approximated by:

E(dφN PN + φNdPN + dφNdPN) = 0. (11)

Now, using Itô Doeblin theorem and the assumption that bond prices dependent on the state
of the economy and a time trend, PN = PN(X, t), we get the following equation:

dPN = P N′
X dX + PN

t dt +
1
2

dX ′P N
XX ′dX + dX ′P N

Xtdt +
1
2

dtPN
tt dt,

= P N′
X (−KXtdt + Σ′XdWP

t ) + PN
t dt +

1
2
(dWP

t )ΣXP
N
XX ′Σ

′
XdWP

t .
(12)

The lower equation is obtained from filling in Equation 3 into the first equation. dt2, dtdWP

disappear, and (dWP)2 tends to dt, we obtain

0 = P N′
X (−KXt) + PN

t +
1
2

tr(ΣXP
N
XX ′Σ

′
X)− PN Rt − PN′

X Σ′XΛt. (13)

This partial differential equation has a solution of the form:

PN(Xt, t, t + τ) = e(A(τ)+B′(τ)Xt). (14)

10



For zero coupon bonds there is a single pay-off at time T. This means τ = T− t. Now substitute
the derivatives.

1
PNP

N
X = B,

1
PN PN

t = − 1
PN PN

t = −A−B′Xt,

1
PNP

N
XX ′ = BB′,

(15)

into Equation 13,

0 = B′(−KXt) + (−A−B′Xt) +
1
2

tr(ΣXBB
′Σ′X)− R0 −R′1Xt −B′Σ′X(Λ0 + Λ1Xt),

= −A− R0 −B′Σ′XΛ0 +
1
2

tr(ΣXB
NB′Σ′X)︸ ︷︷ ︸

= 0

+ (−R′1 −B′(K + Σ′XΛ1)−B)︸ ︷︷ ︸
= 0

Xt

(16)

We have that tr(ΣXBB
′Σ′X) = tr(B′Σ′XΣXB) = B′Σ′XΣXB because tr(AB) = tr(BA). In

combination with the fact that the constant term and ’coefficient’ term in front of Xt should
both be equal to zero in Equation 16, this finally leads to:

A(τ) = −R0 − (Λ′0ΣX)B(τ) +
1
2
B′(τ)Σ′XΣXB(τ), (17)

B(τ) = −R1 − (K ′ + Λ′1ΣX)B(τ). (18)

These differential equations can be solved to the following:

A(τ) =
∫ τ

0
A(s) ds, (19)

B(τ) = (K ′ + Λ′1ΣX)−1(e−(K
′+Λ′1ΣX )τ − I2×2)R1, (20)

using the fact that a bond with payout 1 and maturity τ = 0 has price PN(Xt, t, t) = 1 implying
A(0) = 0,B(0) = 02×1.

4.1.3 Restrictions

First of all, Koijen et al. (2010) creates a few restrictions to meet the fundamental valuation
equation of the equity index:

E d(φNS) = 0. (21)

The expected discounted stock price should not change over time. Using the Itô Doeblin theo-
rem, we get:

dφNS
φNS

=
dφN

φN +
dS
S

+
dφN

φN
dS
S

,

= (ηS −Λ′tσ
′
S)dt− (Λ′t − σ′S)dWP

t .
(22)
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Going from the first to the second part of the equation because dt2, dtdWP disappear, and
(dWP)

2 tends to dt. Now by taking the expectations, this leads to:

ηS = Λ′tσS. (23)

Leading to σ′SΛ0 = ηS and σ′SΛ1 = 0. These two restrictions are not used during the estimation
process, but to identify Λ0(4,1) , Λ1(4,1)

and Λ1(4,2)
.

In the methodological refinement, Muns (2015) adds a few restrictions to ensure that WP

and X are identified. First of all, K should be a lower triangular matrix. This makes sure
that the components of X and thus the first 2 components of WP do not switch. Additionally
σΠ(3) = 0 this makes sure that the last two components of WP do not rotate. WP models the
four sources of uncertainty of the financial market, if we allow for rotation, we are not sure
which of the four Brownian motions indicates which source of uncertainty.

Moreover, the Commission Parameters (Dijsselbloem et al., 2019) decided on new restric-
tions on the KNW model. They want the Ultimate Forward Rate (UFR) and unconditional
expected returns of inflation and stocks are equal to specific values. Therefore, Pelsser (2019)
imposed the following restrictions on the model. The UFR is defined as the rate of a zero
coupon bond with a maturity of τ → ∞. It is assumed that zero coupon rates gradually grow
to the level of the UFR. Pension funds often use this rate to discount long term liabilities. Math-
ematically the UFR is defined as,

ln(1 + UFR) = lim
τ→+∞

A(τ)

τ
= δ0r −Λ′0B∞ −

1
2
B′∞B∞, (24)

leading to the following restriction:

δ0r = ln(1 + UFR) + Λ̃
′
0B∞ +

1
2
B′∞B∞. (25)

HereB∞ = (K + Λ̃1)−1δ1r, with Λ̃1 being equal to the first two rows of Λ1. In the equation Λ̃0

is equal to the first two elements of Λ0. The unexpected geometric return of St over a period of
1 year is given by

ln(1 + rg
S) = lim

t→+∞
E(ln

St+1

St
) = δ0r + ηS −

1
2
σ′SσS. (26)

After rewriting this leads to the following equation:

ηS = ln(1 + rg
S)− δ0r +

1
2
σ′SσS. (27)

The unconditional geometric expected return of Πt over a period of 1 year is given by

ln(1 + rg
Π) = lim

t→+∞
E(ln

Πt+1

Πt
) = δ0π −

1
2
σ′ΠσΠ, (28)

which leads to
δ0π = ln(1 + rg

Π) +
1
2
σ′ΠσΠ. (29)
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The UFR, unexpected geometric return and unconditional geometric expected inflation are de-
cided by the Commission Parameters on monthly basis, and in the latest scenario set they are
set equal to 1.8 %, 5.6% and 1.9% respectively. This finally implies that we have to estimate δ1r

(two parameters), δ1π (two parameters), K (lower triangular, so three parameters), Λ0 (with
the restrictions, two parameters), Λ1 (with the restrictions, four parameters), σΠ (with restric-
tion, three parameters), σS (four parameters). Which are 20 parameters in total.

However, at the start of 2021, DNB decided to fix the long-term average interest rate at
−0.01% after the calibration. In order to take into account this constraint during the estimation
process, one can set δ0r equal to −0.01% during the estimation process. This way Equation 25
can be omitted.

4.2 Estimation

4.2.1 Kalman Filter

Draper (2014) uses simulated annealing to estimate the KNW model and thus the scenario
published by DNB are estimated this way. However, a more straightforward method is to
use the Kalman filter procedure of Pelsser (2019). For more eleboration on how to derive the
Kalman filter, we refer to Harvey (1990). To express the KNW model in state-space form, we
add together Equations 3, 4 and 5 in matrix form, to get the following:

d

 Xt

lnΠt

lnSt

 =


 02×1

δ0π − 1
2σ
′
ΠσΠ

R0 + ηS − 1
2σ
′
SσS

+

−K 02×2

δ′1π 01×2

R′1 01×2


 Xt

lnΠt

lnSt


dt +

Σ′X
σ′Π
σ′S

dWP
t . (30)

We define the augmented state-vector X̃t = [Xt, lnΠt, lnSt], and we find that the dynamics of
X̃t are of the form dX̃t = (a+AX̃t)dt +CdWt. From these dynamics, for a time-step ∆t,
Pelsser (2019) derives an expression for the multivariate Gaussian transition density.

f (X̃t|X̃t−∆t) ∼ N (eA∆tX̃t−∆t +
∫ ∆t

0
eAuadu,

∫ ∆t

0
eAuCC ′eA

′udu). (31)

From the transition density, we obtain the following representation of the development of the
state vector X̃ .

X̃t = ω + ΩX̃t−∆t + εt, var[εt] = Q, (32)

with ω =
∫ ∆t

0 eAuadu, Ω = eA∆t and Q =
∫ ∆t

0 eAuCC ′eA
′udu. Information about the state

vector X̃t can be obtained by using the yields yt(τi) for different maturities τi and the price
index Πt and stock index St. In the KNW model these are an affine function of X̃t. This is
shown in the measurement equation.

ỹt = d

 yt

lnΠt

lnSt

 = a+BX̃t + ηt, var[ηt] =H . (33)

Here, the vector ỹt consists of m zero-rates with maturities τ1, . . . , τm together with lnΠt and
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lnSt. The vector a ∈ R(m+2)×1 andB ∈ R(m+2)×4 are as follows:

a =



A(τ1)/τ1
...

A(τm)/τm

0
0


. B =



B(τ1)
′/τ1 0 0

...
...

...
B(τm)′/τm 0 0

01×2 1 0
01×2 0 1


. (34)

We know A(τ) and B(τ) from Equation 19 and 20. However, Pelsser (2019) estimates these

variables from the mean and variance of the process
[
Xt it

]′
, where it =

∫ t
0 Rsds. More details

on this can be found in Pelsser (2019). The measurement errors are captured by ηt. We make the
assumption that ηt is assumed to follow an i.i.d. multivariate Gaussian distribution, N (0,H).
H ∈ R(m+2)×(m+2) is given by,

H =

[
diag(h2

m) 0m×2

02×m 02×2

]
. (35)

This structures implies that lnΠt and lnSt are observed without measurement error. Moreover,
ηt is independent from X̃t and εt. As we do not know X̃t−∆t, the best information about X̃t−∆t

is the estimated state X̂t−∆t. The covariance matrix of the estimation error is X̂t−∆t − X̃t−∆t

is denoted by Pt−∆t. Together Equation 32 and 33 lead to the following joint distribution of ỹt

and X̃t.

f

[[
X̃t

ỹt

]
|X̂t−∆t

]
∼ N

[[
ω + ΩX̂t−∆t

a+B(ω + ΩX̂t−∆t)

]
,

[
Pt|t−∆t Pt|t−∆tB

′

BPt|t−∆t Vt

]]
, (36)

with,

Pt|t−∆t = ΩPt−∆tΩ
′ +Q, (37)

Vt = BPt|t−∆tB
′ +H . (38)

As ỹt is observed at time t, we can compute the conditional distribution of X̃t given ỹt and
X̂t−∆t.

f (X̃t|ỹt, X̂t−∆t) ∼ N (ω + ΩX̂t−∆t +Ktut,Pt), (39)

where,

ut = ỹt − (a+B(ω + ΩX̂t−∆t), (40)

Kt = Pt|t−∆tB
′V −1

t , (41)

Pt = Pt|t−∆t −Pt|t−∆tB
′V −1BPt|t−∆t = (I −KtB)Pt|t−∆t. (42)

Finally, to complete the Kalman filter specification, the best estimate of X̃t is the conditional
expectation.

X̂t = E[X̃t|ỹt, X̂t−∆t] = ω + ΩX̂t−∆t +Ktut. (43)
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4.2.2 Maximum Likelihood Estimation

Until now, we have assumed that ω, Ω,Q,a,B,H (augmented in δ1r, δ1π , K, Λ0, Λ1, σΠ,
σS) are known. However, in fact we need to estimate these parameters. This can be done by
maximising the likelihood of the observed data. The distribution of (ỹt|X̂t−∆t) is given by,

f (ỹt|X̂t−∆t) ∼ N (a+B(ω + ΩX̂t−∆t),Vt). (44)

As it is a multivariate Gaussian distribution, the log-likelihood at t is given by,

`t = −
1
2

ln|Vt| −
1
2
u′tV

−1
t ut. (45)

We can now run the Kalman filter. To initialize the Kalman filter, we use the stationary ini-
tialization as given in Pelsser (2019). As we can observe ln Πt and ln St, which are both non-
stationary, we set X̂0 = [E(X∞), lnΠ0, lnS0]. t = 0 is observations for December 1999. The
initial estimation error has variance,

P0 =

[
var(X∞) 0(2×2)

0(2×2) 0(2×2)

]
.

The 0-matrices imply that we know ln Π0 and ln S0 exactly. The Kalman filter is run over the re-
maining observations t = 1, 2, ... from January 2000 until December 2020. E(X∞) and var(X∞)

are the unconditional expectation and variance ofXt respectively, which we do not know. For-
tunately, this initialization is equal to replicating ln Πt and ln St in the state-vector with their
first differences. Then, we can use the unconditional mean and variance of the differences
state-vector. The total log-likelihood is calculated as ` = ∑T

t=1 `t.

4.3 Simulation

For simulation, we need an exact discretization of the model. This is possible by writing the
whole model as a multivariate Ornstein Uhlenbeck process, as in Equation 46.

dYt = (Θ0 + Θ1Yt)dt + ΣYdWP
t . (46)

With Y ′ = [X lnΠ lnS lnPN,0 lnPN,τ]. PN,τ is coupon rate for a nominal bond
with maturity τ. After using the Itô Doeblin theorem on dlnΠ, dlnS and dlnPN,τ, we get Equa-
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tion 47. Elaboration on this can be found in Draper (2014).

d


X

lnΠ
lnS

lnPN,0

lnPN,τ

 =




0

δ0π − 1
2σ
′
ΠσΠ

R0 + ηS − 1
2σ
′
SσS

R0

R0 +BN(τ)′Σ′XΛ0 − 1
2B

N ′Σ′XΣXBN

+


−K 0
δ′1π 0
R′1 0
R′1 0

R′1 +B
N(τ)′Σ′XΛ1 0




X

lnΠ
lnS

lnPN,0

lnPN.τ



 dt

+


Σ′X
σ′Π
σ′S
0

BN(τ)′Σ′X

 dWP
t .

(47)

Together with nominal stochastic discount factor φN
t .

φN
t

φN
t

= −Rtdt−Λ′tdW
P
t . (48)

Now, using the eigenvalue decomposition. Θ1 = UDU−1, the exact discretization is the fol-
lowing,

Yt+h = µ+ ΓYt + εt+1, εt+1 ∼ N (0, Σ), (49)

where Γ, µ and Σ are defined as:

Γ = Θ = U eDU−1, (50)

µ = UFU−1Θ0, (51)

Σ = UV U ′, (52)

with F , V are equal to,

Fii = hα(Dii),

Vij = [U−1ΣY Σ′Y (U−1)′]ijα([Dii +Djj]),
(53)

α(x) =
ex − 1

x
, α(0) = 1. (54)

These relations are taken from Koijen et al. (2010) and Bergstrom (1984).
However, in case of value-based ALM, we need to have risk neutral scenarios. Therefore,

we use the risk neutral formulation as described by Draper (2014). In this case, the expected
discounted value of the price of an asset does change over time, making it possible to price
derivatives. For more details about the derivation of this system of equations, we refer to the
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paper of Draper (2014).

d


X

lnΠ
lnS

lnPN,0

lnPN,τ

 =




−Σ′XΛ0

δ0π − 1
2σ
′
ΠσΠ

R0 + ηS − 1
2σ
′
SσS

R0

R0 − 1
2B

N ′Σ′XΣXBN

+


−(K + Σ′XΛ1) 0

δ′1π 0
R′1 0
R′1 0
R′1 0




X

lnΠ
lnS

lnPN,0

lnPN,τ



 dt

+


Σ′X
σ′Π
σ′S
0

BN(τ)′Σ′X

 dWQ
t .

(55)

dφ̃N
t

φ̃N
t

= −Rtdt. (56)

Equation 55 and the stochastic discount factor in Equation 56, make it possible to simulate risk
neutral scenarios necessary for value-based ALM. This makes it easy to valuate net pension
benefits (a derivative product), because the discount factor for all assets is equal to Rt.

4.4 Fit of the Model

After we determine the KNW parameters, we examine the fit of the model to decide whether
it is suitable to use for the ALM model. The fit is examined across three different areas: in-
sample fit, simulation and compared to what was found by the Commission Parameters, DNB
and Draper (2014).

First, we estimate the model using data from January 1999 until December 2018, such that
we compare our estimates to the ones by the Commission Parameters in 2019. We compute the
asymptotic standard errors such that we can obtain a z-score. After the log-likelihood `, as in
Equation 45, has converged to an optimum, we compute standard errors in the following way.
We create the information matrix I ` which consists of second-order partial derivatives of ` with
respect to the model parameters. The inverse I−1

` is the covariance matrix of the maximum-
likelihood parameter estimates (Pelsser, 2019). The standard errors are then calculated as the
square-roots of the diagonal elements of I−1

` ii where i = 1, . . . , 20 as we have to estimate 20
parameters. The general fit of the model can be examined by means of the log-likelihood `.

After confirming the robustness and correctness of the model, we re-estimate the model
for data until 2020 with and without the new long-term interest rate restriction. To decide
which model would be best to use for scenario generation in the ALM study, we again discuss
the overall fit based on log-likelihood `, the parameter implications and the corresponding
standard errors. We can compare whether the difference in terms of log-likelihood between the
restricted and non-restricted model is significant by means of a likelihood ratio test (Heij, de
Boer, Franses, Kloek, & van Dijk, 2004). The likelihood ratio (LR) is equal to,

LR = 2(`1 − `2). (57)
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Here, `1 is the log-likelihood of the less restricted model and `2 the log-likelihood of the more
restricted model (restrictions always make a model fit less well, thus `2 will always be lower
than `1). LR is chi-squared distributed with as degrees of freedom the difference between the
number of parameters of the more and less restricted model.

Moreover, we assess the in-sample fit of the newly calibrated KNW models. The estimation
of the KNW model using the Kalman filter is based on the assumption that we observe the stock
and customer price index without error. Therefore, we can best assess the goodness of fit by
looking at the yield curve. For this reason, we asses whether the features of our model match
features described in existing literature. Fama (1984), Koijen et al. (2010) and Dai & Singleton
(2002) describe some stylized facts of the term structure. A summary of these facts is as follows:

1. The average yield curve over time is increasing and concave.

2. The long end of the yield curve is less volatile than the short end of the curve.

3. The yields have high auto-correlations, implying persistent yield dynamics.

4. There is more persistence for yields with long maturities than short maturities.

5. Across different yields, there are high cross-correlations.

6. The linear projection of Rn−1
t+1 on 1

n−1 (Rn
t − rt) often have significant negative slope coeffi-

cients β1.

7. β1 becomes more negative with maturity.

The first two can be easily assessed by looking at a plot of the average yields and their cor-
responding volatility both for the estimated model and the data. Additionally, 3, 4 and 5 can
be examined by looking at the (auto-)correlation matrix. Finally, 6 and 7 are from the paper
of Dai & Singleton (2002) and are more complicated. Large yield spreads between a longer-
term and short-term bonds forecasts declining yield on the long term bond over the maturity
of the short-term bond. This empirical fact was first discussed in Campbell & Shiller (1991) and
tested by Dai & Singleton (2002). In order to test whether our model replicates these empirical
findings, we use the following Campbell-Shiller regression:

yt+m(τn−m)− yt(τn) = β0 + β1
m(yt(τn)− yt(τm))

n−m
+ εt+m, (58)

where n > m and yt(τi) is the yield of a bond with maturity (τi) at time t. In Campbell & Shiller
(1991) and Dai & Singleton (2002) it is shown that the coefficients are significantly negative,
especially as n gets larger.

Finally, we also examine the models performance in terms of simulation paths. This is to
give us an idea of how the stock and customer price path behave. From the data, we know that
the stock index should be more volatile than the customer price index. We can assess this by
simply looking at a plot of the simulated indices over time.

The careful examination of the models through the above mentioned methods should lead
to a conclusion which scenarios to use for the ALM model.
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5 Asset Liability Management

ALM is used by pension funds to evaluate current and alternative pension plans (Michielsen,
2015). These pension plans often consists of a pension policy, indexation policy, funding policy
and investment policy. Figure 6 gives an overview of the different steps that need to be taken
in an ALM study.

First, pension funds normally have participant files for which they can run their ALM
model. However, in our case a synthetic pension fund has to be designed, because we do not
have participant files. This is why demographic information is needed: Without making too
many assumptions, a logical structure of the workforce is defined, specifically in terms of age
and wage distribution. Additionally, the fund needs a fixed pension fund policy to be exam-
ined in the ALM model. These policies often are about the indexation, accrual and investment
strategies. Each pension policy is examined for different economic scenarios. This is the last
input for the ALM model. These scenarios are generated by an economic model, which is in
our case the KNW model as described in Section 4. The scenarios should include major drivers
of pension risk, namely asset return, interest rates and inflation.

After these three inputs are decided, the simulation is ran for an specified number of years.
Finally, depending on the objective of the ALM study, the model gives different outputs. An es-
pecially important subject is the solvency of the pension fund. This is an indication of whether
a pension fund is able to meet its long-term obligations. This solvency is measured as the FR,
the ratio between the assets and liabilities. Underfunding occurs when the FR less than one. In
this paper, for classical ALM the distribution of the FR is examined over the different scenarios.

Figure 6: Overview of an ALM study, taken from Michielsen (2015).

Although classical ALM is a convenient tool to understand different possible future out-
comes, Kortleve & Ponds (2006) have the critique that within this analysis high FRs are often
explained by high risks. This leads to the first problem: Due to risk premiums, high expected
returns do not necessarily mean that equities are more attractive. The second problem is that
classical ALM misses an important insight. Classical ALM mostly focuses on risks for the pen-
sion fund and for the participants on an aggregate level, but not for the participants on an
individual level.
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To address the first issue, we employ value-based ALM. This means that risk neutral valu-
ation is used to determine the value of a pension plan and that the scenarios obtained from the
economic model are discounted back to present with a risk adjusted discount rate. Kortleve
& Ponds (2006) names a few possibilities, namely deflators, risk neutral valuation or pricing
kernels. Because of the compatibility with the KNW model, risk neutral valuation is used here,
as in Section 4.3. To account for the second issue generational accounting is used (Ponds et
al., 2003). This is a tool to explore intergenerational distributional effects of a policy. It gives
an indication of generational value transfers of going from one policy to another. Using this
approach one can show the benefits and contributions in the pension fund on age cohort level.
This makes it possible to determine and compare the effects of a policy on the different gener-
ations in the fund.

5.1 Pension Fund Characteristics

Using our ALM model, we compare certain pension contracts. In order to do so, a synthetic
pension fund is built. For this, certain assumptions are necessary. These assumptions account
for every pension contract to be examined. In this section these assumptions will be described.

Table 1: Assumptions used for both classical ALM and value-based ALM.

Demographics
Survival rates Dutch population
Population distribution Dutch population
Starters age 25
Working years 40
Maximum age 100
Wage
Wage plan Average pay plan
Development in pension basis Inflation
Accrual rate, ε 1.875%
Assets
Initial funding position 100%
Lower boundary FR, FR 110%
Upper boundary FR, FR 125%
Risk profile
Investment policy 50% bonds, 50% stocks

Table 1 gives an overview of the most important assumptions. In the next sections, we explain
what each entry means for our ALM model and how it is used.

5.1.1 Demographics

First of all, to make our synthetic pension fund as realistic as possible, the pension fund’s
workforce and retirement demographics are consistent with the Dutch population. For this
reason data from the CBS is used, see Section 3. The initial age distribution within the synthetic
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pension is equal to the age distribution of the Dutch population in 2021. After the initialization,
we use survival rates to update the population each year. As important factors, such as life
expectancy, are gender specific, the data is gender specific. This leads to Equation 59.

Mx
t = pm,x

t,t−1Mx
t

Fx
t = p f ,x

t,t−1Fx
t

(59)

The number of male and female participants in age cohort x at time t are denoted as Mx
t and

Fx
t respectively. pm,x

t,t−1, p f ,x
t,t−1 indicates probabilities male m, respectively female f , age x− 1 in

period t− 1 will survive another year to age x in year t. Note that every year, new employees
enter the workforce according to the prognosis of the future population of The Netherlands
(Bevolkingspiramide). Thus, we model an open fund. As shown in Table 1, the minimum age of
the workforce is 25 and the maximum age of a participant is 100. This implies that new par-
ticipants enter the pension fund at age 25 and leave at age 100. This is a standard assumption
usually made by the CPB, but an ALM should allow the minimum and maximum age to be
changed. The retirement age is set to 65, but can be changed as well.

Some pension policies depend on the life expectancy, so here we show how to get from
survival rates to life expectancy. We use the cohort life expectancy as defined in de Boer et al.
(2020) (Koninklijk Actuarieel Genootschap), as they estimate the corresponding survival rates.
The following formula expresses the remaining life expectancy of a person of year t under the
assumption that this person was born on 1 January of year t− x,

et
x =

1
2
+

∞

∑
k=0

k

∏
s=0

(px+s,t+s). (60)

Here, we assume that a person who dies is on average alive for half of that year.

5.1.2 Wage

Secondly, for each member of our pension fund, the wages are updated every year. How a
member accrues pension depends on this wage and the corresponding wage plan. In Nether-
lands, one can choose between an average pay plan and a final pay plan. The latter, however, is
very rare and means that the wage in the final working year is leading in the pension accrual.
For this reason, we focus on average pay plan in this study. Average pay plan implies that the
pension payment depends on the average salary during the working years. As for the wage
itself, we assume the wage level of generation x at time t, Wx

t , evolves according to Equation
61 (Lekniute, 2011).

Wx
t = Wx−1

t−1 wx−1
t−1

wx−1
t−1 = (1 + πt−1)w̃x−1

t−1

(61)

w̃x−1
t−1 is the promotion rate from period t− 1 to t for someone aged x− 1 in period t− 1. This

promotion rate should be decreasing with age, as it is more difficult to make promotion as the
one ages. We consider πt−1, which is equal to the inflation at t − 1. πt−1 is stochastic and
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determined by the economic model (see Section 4.1.1). Here we do not distinguish between
female and male. At t = 0 the starters wage is equal to 1 and it increasing with inflation and the
promotion rate over time as someone gets older. Normally, we would consider a social security
offset (’franchise’ in Dutch). In The Dutch pension system, one always receives public pension
(the first pillar). Because of this regulation, in the second pension pillar, the pension accrual is
adjusted. One only accrues pension benefits on their salary minus the social security offset. The
social security offset also increases in line with inflation. However, as the salaries are fictional,
it does not make sense to subtract a constant and thus we leave the social security offset out.
This is possible, because the social security offset is the same level for all the participants.

Finally, we have the accrual rate ε, which is set equal to 1.875%. This implies that if someone
is working 40 years, they can expect a pension benefit of 75% of their average salary. In case
of a DB scheme, this benefit is secure. In case of a DC scheme, this is an ambition. More or
less pension benefit is paid out depending on the returns of investment. A description of these
schemes can be found in Section 5.2.

5.1.3 Assets

Michielsen (2015) names a few possibilities on how to initialize the assets of the pension fund.
One of these options is to initialize the initial assets with zero. However, this is not realistic
as in this thesis we want to show the effects of a change in policy on already existing pension
funds. This is why it is decided to start with an initial funding ratio, FR0, of 100%. The FRt at
time t can be calculated using the following formula.

FRt =
At

Lt
(62)

At and Lt are the assets and liabilities at time t respectively. This means that the pension fund
has as much value in investment and premium payments as liabilities, such as benefit pay-
ments. Most of the pension funds in The Netherlands have an FR of around 100% (DNB,
2021c). From this initial funding position, we define the initial assets that the fund hold. This
is done by multiplying the FR by the initial liabilities. These initial liabilities are calculated as
the present value of the total accrued benefit claims. Here, we assume the initial wage level as
described in Section 5.1.2 and that there was total indexation until now. The latter assumption
is unavoidable but a bit unrealistic as DNB only allows for total indexation above a FR of 125%.
This then means that the initial accrued benefits for each cohort are equal to the initial average
pay of the workforce times the accrual rate ε times the number of years of service. Under the
lower boundary is FR = 110%, indexation is not allowed. This boundary is set by DNB and
makes sure that pension funds only index their liabilities when they have sufficient funds to do
so. Between FR and FR partial indexation can take place. An overview of the indexation rules
can be found on the site of the DNB.

After the initial assets are determined, we can now calculate the assets over time for each
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scenario s. For this the Equation 63.

At+1,s = At,srt +
64

∑
x=25

(Cx
t,s(Mx

t + Fx
t )−

99

∑
x=65

Bx
t,s(Mx

t + Fx
t ))r

1
2
t (63)

rt is the yearly return on investment. Cx
t,s are the contributions paid in year t by the current

work force in age cohort x in scenario s. Bx
t,s are the benefits paid in year t to the pensioners in

age cohort x in scenario s. Cx
t,s and Bx

t,s depend on the pension contract, described in Section 5.2.
The assets are adjusted each year for these cash flows and then invested in stocks and bonds.
The assets At,s in year t are invested each year with return rt. Because the model runs on yearly
basis, and contribution and benefits are paid on monthly basis, return can only be made on

average for half a year leading to the factor r
1
2
t .

5.2 Contracts

Here, we describe the pension contracts that are evaluated in this study.

5.2.1 Defined Benefit

In a defined benefit scheme, the benefit payment is secured (Zelinsky, 2004). However, this
does mean that the premium paid can vary over time depending on new insights about the
interest rates and mortality rates such that the pension fund can achieve the level of benefit
payment financially. Therefore, every year the actuaries of a pension fund solve the following
formula.

ct

64

∑
x=25

Wx
t (Mx

t + Fx
t ) = ε

64

∑
x=25

Dx
c,t. (64)

With ε being the accrual factor as in Table 1. This then leads to:

ct =
ε ∑64

x=25 Dx
c,t

∑64
x=25 Wx

t (Mx
t + Fx

t )
, (65)

where,

Dx
c,t = Mx

t

99−x

∑
i=65−x

Wx
t px,m

i,t (R(i)
t )−i + Fx

t

99−x

∑
i=65−x

Wx
t px, f

i,t (R(i)
t )−i. (66)

Dx
p is used to calculate the future benefits to be paid-out discounted back to today. It calculates

the total accrual of all the pension funds members and discounts it back to today. Obviously, the
discount factor is gender specific, because it takes into account the mortality rates (why there
are two separate sums in Equation 66), but the premium paid has to be same for both sexes.
Moreover, in reality labor unions prevent large changes in premium level per year. Therefore,
we set |ct − ct−1| ≤ 0.01. This leads to the formula of contribution paid per year,

Cx,DB
t = ctWx

t (67)

Additionally, we consider two kind of DB policies, one with unconditional indexation and an-
other with conditional indexation. In case of the first, the pension benefits are always increased
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by the inflation, ind = 1 + πt. This kind of policy is very rare. In reality, DNB set certain rules
when it comes down to indexation. In this case, the benefits do not always grow with inflation,
but it depends on the funding position of the pension fund.

indt =


1 if FRt < FR,

1 + ( FRt−FR
FR−FR

)πt if FR ≤ FRt ≤ FR,

1 + πt if FR < FRt.

(68)

As stated in Table 1, we assume the rate of accrual to be equal to ε = 1.875%. For a DB
policy this means that the pension benefit is accrued as,

Bx,DB
t = Bx,DB

t−1 indt + Wx
t ε. (69)

When a participant is age 25, B25
t = 0. Bt is not be paid out until the participant turns 65.

5.2.2 Defined Contribution

As the name indicates for a DC scheme, the contributions paid every year are fixed. Never-
theless, the benefit payments are no longer secured. For the defined contribution plan, the
premium is a fixed level c. This level is chosen in such that the present value at t = 0 of the
premiums paid is equal to the value of the accrued benefits in the same year. Hence Equation
8 is only calculated once at t = 0. (as in Lekniute (2011)). This means that the premium paid
every year is equal to,

Cx,DC
t = cWx

t . (70)

There is return on these premium payments, which determines the final yearly benefit payment
after retirement. For each participant their total accrued benefit capital (BC) from which their
yearly pension benefit is paid, is kept track of,

BCx,DC
t = BCx,DC

t−1 rt + Cx,DC
t−1 r

1
2
t (71)

Here rt is the return on investment of the pension fund, a combination of the return on bonds
and stocks. As the contributions are paid over the year, on average return can only be made for

half a year, leading to the factor r
1
2
t .

BCx,DC
t = Bx,DC

t

et
x

∑
j=max(0,65−x)

1
(1 + rt,j)j (72)

r is the discount interest rate at time t with maturity j. By solving this equation, the pension
benefits Bx

t at time t for cohort x is found. Note that this allows us to keep investing even when
someone is already retired: From the total capital, we calculate a yearly benefit. At retirement
age, each year this benefit is paid, but what is left of the total capital can still be invested.

Finally, we look at two kinds of DC. One compensates the participants for going from DB to
DC. This has to do with the fact that especially the older generation potentially does not profit
from a DC policy, as they make only a few years of return over their invested contribution,
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while the younger generation does profit. Therefore, we compensate each generation as if they
had a DC pension plan all their working time. We also consider DC without this compensation.

5.3 Output

5.3.1 Classical ALM

Classical ALM is mainly focused on the solvency of a pension fund over time. The FR is the
most important indicator for this. The formula of the FR is shown in Equation 62, and can
be calculated in both nominal and real terms. The distribution of the FR over the scenarios
is of interest: What happens in the worst case and what is the corresponding risk? The 2.5%,
50% and 97.5% quantiles of the distribution of FR at certain points in time during the over
the scenarios is used for this. Additionally, we look at the replacement ratio (RPR). This is the
pension benefit divided by the average salary. As the accrual is set to 1.875% one should expect
to have around 75% of their average salary as pension benefit after 40 years.

5.3.2 Generational Accounting and Value-based ALM

During the time loop, we store the received benefits and paid contributions for the different
cohort in a matrix. In this way, at the end of the time horizon, we have a overview of the cash-
flows per cohort over their lifetime. As stated before, we model an open fund. The youngest
participant at t = 0 is 25 years old and as we model their lifetime, we need a time-loop of
75 years. In this way, the generational account of the youngest participating cohort can be
completed. For scenario s the generational matrix is as follows:

C25
0,s C26

1,s C27
2,s . . . C64

40,s B65
41,s . . . B98

73,s B99
74,s

C26
0,s C27

1,s C28
2,s . . . C65

40,s B66
41,s . . . B99

73,s 0
...

...
...

...
... 0 0

C64
0,s B65

1,s B66
2,s . . . 0 0 . . . 0 0

B65
0,s B66

1,s B67
2,s . . . 0 0 . . . 0 0

...
...

...
...

... 0 0
B98

0,s B99
1,s 0 . . . 0 0 . . . 0 0

B99
0,s 0 0 . . . 0 0 . . . 0 0


As an illustration, the first row shows the generation that is 25 at t = 0, until they are 64 they
pay contributions Cx

t,s with x = 25, . . . , 64 and t = 0, . . . , 40. When they turn 65, they get
benefits Bx

t,s with x = 65, . . . , 100 and t = 41, . . . , 74. After creating the generational matrix, it is
easy to calculate the generational account of each generation at time t (Ponds et al., 2003). The
generational account of a person in age cohort x, is the expected value of all future cash flows
under Q-measure. For a person aged 65 or older:

Vx
t = EQ

t (GAx
t ) = EQ

t (
99

∑
i=x

(px
(t+(i−x),t)Bi

t+(i−x)

t+(i−x)

∏
j=t

(R f
j )
−1)), x ≥ 65 (73)
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For a person aged younger than 65:

Vx
t = EQ

t (GAx
t ) = EQ

t (
64

∑
i=x

(px
(t+(i−x),t)C

i
t+(i−x)

t+(i−x)

∏
j=t

(R f
j )
−1) (74)

+
99

∑
i=65

(px
(t+65−x)+(i−65),tB

i
(t+65−x)+(i−65)

(t+65−x)−(i−65)

∏
j=t

(R f
j )
−1), x ≤ 65 (75)

Note that the expectation under Q is the same as the average of the generational accounts if the
risk neutral scenarios are used.

As we are interested in the effects of a change in pension contract, we are interested in,

∆Vx = Vx
t −V

′x
t (76)

Here V
′x
t is the generational account under a different pension contract.

6 Results

In this section, we first go through the results of the calibration of KNW model to decide on
what scenarios to use for the ALM model. The second part of this section discusses the results
of this ALM model.

6.1 KNW model

The KNW model results will be discussed in terms of calibration, in-sample fit and simulation
to reach a decision on what is the most suitable calibration of the KNW model for economic
scenario generation.

6.1.1 Calibration

First, we check whether our model is able to replicate the former calibrations. It is already
shown that these old calibrations give the most optimal results (Langejan et al. (2014) and
Dijsselbloem et al. (2019)). Therefore, we can check the correctness of our model by means
of comparison. Table 2 shows the parameter estimates of different calibrations of the KNW
model and the corresponding standard errors. The first column present the original results of
the calibration by Draper (2014) on quarterly data from 1972 until 2013. We show these results
for completeness and because there has not been a thorough comparison since the transition to
the newly calibrated model in 2019. Moreover, the data we use in this thesis, is closer to what
was available to Draper (2014) than to what was used by the Commission Parameters. The
second column presents the result of the calibration by the Commission Parameters in 2019,
based on quarterly data from 1999 until 2018. As we use (roughly) the same data, our estimates
should be very close to what is seen in this column. The last three columns show our parameter
estimation results, standard error and z-score respectively. The model is based on data from
January 1999 until December 2018. In this section, we discuss the most relevant aspects of these
results.
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Table 2: (i) The estimates found by Draper (2014) using simulated annealing. For estimation quarterly data from
1972 until 2013 is used. (ii) The new advice of the Commission Parameters in 2019 (Dijsselbloem et al., 2019). For
estimation data from 1999 until 2018 is used. (iii) The estimates obtained by our estimation procedure based on
Pelsser (2019). For estimation data from 1999 until 2018 is used. The final row shows the overall fit of the model on
historical data from 1999 until 2018 by means of the log-likelihood `. * indicates significance at 5% level.

(i) 1972-2013 (ii) 1999-2018 (iii) 1999-2018

Parameter Estimates Estimates Estimates Std. Error z-Score

Expected inflation πt = δ0π + δ′1πXt

δ0π 2.00% 1.88% 1.89%
δ1π(1) -0.63% -0.21% -0.23% (0.0049) -0.0482
δ1π(2) 0.14% 0.00% 0.01% (0.0048) 0.0208
Nominal interest rate Rt = R0 +R′1Xt

R0 2.40% 2.12% 2.17%
R1(1) -1.48% -0.77% -0.59% (0.0017) 1.0588
R1(2) 0.53% -0.08% -0.07 % (0.0052) 0.0192
Process real interest rate and expected inflation dXt = −KXtdt + ΣXdWP

t

κ11 7.63% 6.56% 7.43% (0.1761) 0.0494
κ22 35.25% 30.32% 30.78% (0.2415) 0.0190
κ12 -19.00% 23.66% 19.87 % (0.1210) -0.3132
Realized inflation process dΠt

Πt
= πtdt + σ′ΠdWP

t

σπ(1) 0.02% -0.10% -0.11% (0.0010) 0.1000
σπ(2) -0.01% 0.06% 0.08% (0.0007) 0.2857
σπ(3) 0.61% 0.55% 0.55 % (0.0005)) 0.2000
Realized return process dSt

St
= (Rt + ηS)dt + σ′SdWP

t

ηs 4.52% 4.33% 4.21%
σS(1) -0.53% -5.28% -5.41% (0.0090) -0.1444
σS(2) -0.76% -1.14% 2.29% (0.0311) 1.1029
σS(3) -2.11% 0.05% -0.26% (0.0093) -0.3333
σS(4) 16.59% 13.07% 13.07% (0.0037) 0.0000
Prices of risk Λt = Λ0 + Λ1Xt

Λ0(1) 0.176 0.673 0.189 (0.1972) -2.4544*
Λ0(2) 0.017 0.118 0.010 (0.2981) -0.3623
Λ1(1,1) 0.149 0.091 0.090 (0.0932) -0.0107
Λ1(1,2) -0.381 0.208 0.272 (0.0631) -0.5705
Λ1(2,1) 0.089 -0.209 -0.245 (0.2873) -0.5047
Λ1(2,2) -0.083 -0.228 -0.194 (0.0988) 0.0506

` 8976.50 10835.79 10897.62

We start at the top of the table. The δ0π = 1.89% represents the long-term average expected
inflation. Given Figure 2 this is not a surprising result. The average inflation in this figure is
around 1.7%. This makes sense in terms of monetary policy, as the European Central Bank
(ECB) enforces the inflation rate to be close but below 2.00%. The results of our Kalman filter
estimation, do not deviate significantly from what was found by the Commission Parameters
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in 2019. δ0π is essentially the rate at which the pension benefits lose their value. The average
returns of the pension fund should be higher than this value, otherwise the pension fund can-
not index the benefits of their participants. Indexation is when the pension fund increases the
accrued benefit with the inflation. The higher value of δ1π(1) than δ1π(2) (in absolute terms) im-
plies that real interest rate risk (the interpretation of the first entry ofXt) has a stronger impact
on the expected inflation than the expected inflation risk (the interpretation of the second entry
ofXt). The negative impact of δ1π(1) can be explained by the Fisher equation, which states that
inflation ≈ nominal interest rate− real interest rate.

The expectation of the nominal long-term money market rate (R0) is around 2.17%. Again,
not that different from what was found by the Commission Parameters in 2019. R0 is set by a
restriction which depends on K, Λ1 and δ1r (Equation 25). Hence, because these parameters
deviate a bit from the calibration of the Commission Parameters, it is not surprising that R0 is
slightly different. Compared to what was found in 2014 based on longer term data, we do see
that the long-term interest rate R0 is indeed lower for the more recent data set, which was the
reason for the switch in calibration data (Dijsselbloem et al., 2019). Nevertheless, this decrease
is not substantially. For pension funds, the level of this parameter is very important, as long-
term interest is used to discount their liabilities. A high value of R0 means that they need to
hold less assets now to pay future (long-term) liabilities.

σπ1 is almost the same as the results found by the Commission Parameters. We know for a
fact that the data used to fit the customer price index is exactly equal to the data used for the
Commission Parameters’ calibration and therefore we should expect very similar results.

ηS is equal to the risk premium on equities. Our estimation shows it is equal to 4.21%. The
result is close to what we have seen in the Commission Parameter estimation and even to the
result of Draper (2014). This is a very useful result. As Koijen et al. (2010) assumed that the risk
premium was stable over time, it is good to see that even based on data with different horizons,
this is indeed approximately true. FromσS(4) = 13.07%, we can see that most of the volatility in
the realized return process is caused by uncertainty of the stock return. The result is equal to the
result found by the Commission Parameters on two decimal places. A more outstanding result
is the fact that effect of uncertainty in the instantaneous expected inflation from our estimation
has a positive effect of 2.29% on the stock index level compared to−1.14%. Because of the large
standard error, this result is not significant, but still one of the larger deviations in our results.
Slight differences in initialization or data could explain this.

Next, as all the parameters in K of our estimation are positive, this means that Xt is a sta-
tionary time-series. This is a satisfactory result, because it is more realistic to model economic
variables over a long time horizon using stationary underlying variables. In the first estima-
tion by Draper (2014), K shows that Xt is actually not stationary (the negative value of κ12).
Whether Xt is stationary or not does not matter for the scenarios, but again it makes more
sense to have a stationary model when looking at a long time-series of economic variables.

Finally, we have Λ0 and Λ1. Λ0(1) is the first parameter that significantly differs from the
estimates by the Commission Parameters in 2019. The unconditional price of risk with respect
to the real interest rates is thus lower for our model. A noticeable fact to mention is that during
the estimation process, both these parameters were highly dependent on the initialization. The
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model often finds local optima instead of the global optimum. This is a common problem for
models with many parameters. When Λ0 and Λ1 change in signs implies that the interpretation
of the entries ofXt rotates. Muns (2015) introduced some extra restrictions to prevent rotation,
but the question remains whether these were enough. The model now seems to be weakly
identified. This is verified by Pelsser (2019). He uses two different initialization, diffuse prior
and stationary (as in this thesis), and both lead to very different Λ0 and Λ1. Luckily, because of
rotation, both these initialization lead to a model with the same implications.

All in all, our results are not statistically different from what was found in 2019 by the
Commission Parameters (except for Λ0(1)). Therefore, we can trust the accuracy and robustness
of our model. We even see a slightly higher log-likelihood ` for our calibration. However, it
should be taken into account that our data deviates a bit from what was recommended by the
Commission Parameters.

We can now use the model for further analysis on more recent data with the newly intro-
duced restriction of DNB. As can be seen in the second column of from Table 3, the restriction
is equal to setting R0 to -0.01%. For pension funds this implies that the long-term interest rates
will be close to zero and negative, with as consequence that they have to discount their liabil-
ities with low to negative rates. This leads to pension funds needing more assets now to pay
off these future liabilities. As we have seen negative interest rates over the past few years, this
seems plausible. However, the question remains whether this result can be obtained from the
data (with or without a restriction).

Table 3 again shows the result of the calibration of the Commission Parameters in 2019 in
the left column, such that we can clearly compare what DNB changed in 2021 in the second
column. The only differences are R0, ηS and Λ0. The focus should not be on Λ0, as this vector
of parameters is changed almost every new scenario set uploaded by DNB. The reason behind
this is that DNB changes the initializationX0 such that the first simulated term structure is very
close to the current observed term structure. For this Λ0 needs to change as well. On the other
hand, ηS has to change because R0 changes, because of Equation 27. The risk premium is now
higher. This is an obvious result, because lower interest rates mean that the difference between
stock returns and risk-free bond returns are now larger and thus the risk premium increases.

We now consider our calibration on more recent data to see whether we can justify R0 =

−0.01%. Without the restriction, based on data until 2020, we do see a lower R0 = 2.04%. This
is expected from the fact that when we increase the data span to 2020, the time span of low
interest rates increases and puts more weight on the estimates. However, this R0 is nowhere
near -0.01%. The other parameters are very close to the results based on the 2019 data.

We now include the restriction into our estimation procedure and get the most right pa-
rameter estimates. Naturally R0 is now equal to −0.01%. Besides, we see the risk premium
increase again. However, we immediately observe that all the other parameters are now very
distorted. The switch of sign for some parameters might have been caused by a rotation inXt.
The differences are very substantial such that we cannot tell for sure.
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Table 3: The left column represents the estimates found by the CPB using simulated annealing. The right columns
represent the estimates for the updated model using the Kalman filter procedure of Pelsser (2019).

(i) 1999-2018 (ii) 1999-2018 (iii) 1999-2020 (iv) 1999-2020

Parameter Estimates Estimates Estimates Std. Error Estimates Std. Error

Expected inflation πt = δ0π + δ′1πXt.
δ0π 1.88% 1.88% 1.89% 1.89%
δ1π(1) -0.21% -0.21% -0.23% (0.0031) 0.34% (0.0019)
δ1π(2) 0.00% 0.00% 0.01% (0.0042) 0.15% (0.0028)
Nominal interest rate Rt = R0 +R′1Xt

R0 2.12% -0.01% 2.04% -0.01%
R1(1) -0.77% -0.77% -0.63 % (0.0015) 0.15% (0.0007)
R1(2) -0.08%% -0.08% -0.07 % (0.0022) -1.10% (0.0014)
Process real interest rate and expected inflation dXt = −KXtdt + ΣXdWP

t

κ11 6.56% 6.56% 7.34 % (0.1291) 10.36% (0.0918)
κ22 30.32% 30.32% 35.17% (0.2501) 45.09% (0.1876)
κ12 23.66% 23.66% 15.91 % (0.1501) 10.81% (0.1209)
Realized inflation process dΠt

Πt
= πtdt + σ′ΠdWP

t

σπ(1) -0.10% -0.10% -0.08% (0.0010) 0.08% (0.0009)
σπ(2) 0.06% 0.06% 0.14% (0.0007) -0.16% (0.0007)
σπ(3) 0.55% 0.55% 0.55 % (0.0005)) 0.57% (0.0007)
Realized return process dSt

St
= (Rt + ηS)dt + σ′SdWP

t

ηs 4.33% 6.46% 4.65% 6.78%
σS(1) -5.28% -5.28% -3.67% (0.0076) 3.70% (0.0064)
σS(2) -1.14% -1.14% 2.29% (0.0252) -5.86% (0.0187)
σS(3) 0.05% 0.05% -0.03% (0.0068) -2.44% (0.0032)
σS(4) 13.07% 13.07% 13.95% (0.0013) 14.64% (0.0008)
Prices of risk Λt = Λ0 + Λ1Xt

Λ0(1) 0.428 0.673 0.159 (0.1832) -0.168 (0.1671)
Λ0(2) -0.052 0.118 0.129 (0.1711) 0.448 (0.1601)
Λ1(1,1) 0.091 0.091 0.089 (0.0623) 0.062 (0.0455)
Λ1(1,2) 0.208 0.208 0.186 (0.0589) 0.146 (0.0451)
Λ1(2,1) -0.209 -0.209 -0.243 (0.2612) -0.312 (0.1890)
Λ1(2,2) -0.228 -0.228 -0.274 (0.0762) -0.048 (0.0456)

` 11869.63 10981.76 11878.07 11860.35

When we look at the log-likelihood `, we observe that our newly re-estimated model with-
out restriction fit the best on the data from 1999 until 2020 with a log-likelihood ` = 11878.07.
This is not surprising as we used this data to calibrate the model, while the Commission Pa-
rameters version of the model was estimated on data until 2018. The model calibrated by the
Commission Parameters is a very close second though, ` = 11869.63. We see that setting R0

to -0.01% after calibration leads to a surprisingly low likelihood of ` = 10981.76. When set-
ting R0 = −0.01% as a restriction in the model, we see a higher log-likelihood at 11860.35,
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but the other parameters are unrecognizable. Adding restrictions to a model will always lead
to a lower likelihood, therefore we should not reject the restricted model based on likelihood
alone. So we perform a likelihood ratio test to see whether the difference between the restricted
model and non-restricted model in terms of likelihood is significant. This test indicates that the
non-restricted model fits significantly better (p-value of 0.0000).

DNB mentiones that setting the long term average interest rate in this way is only a tempo-
rary solution. Table 3 proves that it might not be wise to set the parameters after the calibration
as it does not give a good fit to the underlying data. Setting the parameter during estimation
does seem like a solution, since the model does not lose that much likelihood, but there are
major changes in parameters to account for this restriction. Although the fit is good, this might
be a problem to pension providers, because the model does not correspond with any of the rec-
ommendations of the Commission Parameters. Actually, the question is really about whether
we believe that in the long-run interest rates will stay low or will increase again. The latter was
the original objective of the European Central Bank. The fact that within the simulation the
long-term interest rates are often not negative or low enough (as you would expect from the
most recent data), can actually be a reasonable result, since these low interest rates are actually
only supposed to be temporary and in the long run could increase again. Nevertheless, the
signals from the Dutch pension funds did indicate that they think these low interest rates are
long lasting.

6.1.2 In-sample Fit

Looking more closely at the in-sample fit in combination with some stylized facts might give
us more insight in which model would be the most suitable. Therefore, we look more closely
to the in-sample fit of our models. When estimating the KNW model using a Kalman filter it is
assumed that we estimate the stock index and price index without error. Hence, the fit of the
model can best be examined by looking at some of the stylized facts of interest rates.

First of all, the average yield curve is increasing and concave. From Table 4, we do see
this is indeed the case for the data (panel C). The bond with lower maturities have a lower
average yield. This also accounts for both the unrestricted and restricted model (panel A and B
respectively). However, it can clearly be seen that even when imposing the negative long-term
interest rate restriction, the yields are not negative. This might have been caused by the fact the
model is only weakly identified and the restriction of R0 = −0.01% is absorbed by the other
parameters to still give a good fit to the data.

Secondly, the short end of the yield curve should be more volatile than the long end. For the
data, this seems somewhat the case as the volatility of the 10-year bond is the lowest. Never-
theless, all the bond volatilities are relatively close together. This is the same for the calibrated
model without restriction. With restriction, it actually seems that the long end of the curve is
more volatile. This might have to do that the restriction in place mostly influences the estimated
yields, leading to abnormal behaviour that is not consistent with the data.

Furthermore, for the data as well as the models, we observe persistence in yield dynam-
ics. For both the models and data, we see higher auto-correlations on the yields with higher
maturities, but the non-restricted model again suits better to the data.
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In addition, Table 5 shows that there are high cross-correlations as expected from the styl-
ized facts. We show that the stock return is negatively but not strongly correlated with the
bonds. Especially not the long-term bonds.

Next we look at the last two stylized facts as in Section 4.4. Here we run the Campbell-
Shiller regression to whether our models are able to replicate the empirical observation of Dai
& Singleton (2002). For this we simulate 10.000 yield paths for the necessary maturities. Fig-
ure 7 shows that the models captures the negative coefficients that decrease with maturity.
This means that spreads between long en short term bonds forecast a decline in yield on the
long term bond over the life of the short-term bond. For the model without restriction we
show a 95% confidence interval. This shows that the regression coefficients are significantly
different from 1. One would expect the coefficients to be 1 from the Expectations Hypothesis.
These bounds show that the coefficients are not significantly positive either. We also plotted the
Campbell-Shiller coefficients of the data, we observe that both the unrestricted as unrestricted
model is reasonably close to what is expected from the data.

Table 4: Mean, standard deviation and auto correlation of stock return and bond yield for bonds with maturity
3-month, 1-year, 2-year, 3-year,5-year and 10-year. Panel A shows these statistics as implied by the non-restricted
model. Panel B shows the results for the restricted model. Panel C gives these restrictions as implied by the data.

A. KNW (iii) Mean St. Dev. ρ̂0.25 ρ̂0.5 ρ̂1

Stock 0.0027 0.0411 0.1290 -0.0418 0.0129
3m bond 0.0154 0.0178 0.9909 0.9125 0.8112
1y bond 0.0167 0.0178 0.9912 0.9225 0.8362
2y bond 0.0182 0.0178 0.9914 0.9319 0.8598
3y bond 0.0197 0.0178 0.9915 0.9382 0.8760
5y bond 0.0225 0.0180 0.9916 0.9028 0.8956
10y bond 0.0283 0.0179 0.9920 0.9547 0.9167
B. KNW (iv) Mean St. Dev. ρ̂0.25 ρ̂0.5 ρ̂1

Stock 0.0027 0.0411 0.1290 -0.0418 0.0129
3m bond 0.0063 0.0174 0.9942 0.9343 0.8443
1y bond 0.0074 0.0175 0.9950 0.9461 0.8741
2y bond 0.0088 0.0178 0.9955 0.9533 0.8936
3y bond 0.01037 0.0180 0.9956 0.9565 0.9030
5y bond 0.0130 0.0182 0.9957 0.9595 0.9121
10y bond 0.0192 0.0178 0.9960 0.9646 0.9243
C. Data Mean St. Dev. ρ̂0.25 ρ̂0.5 ρ̂1

Stock 0.0027 0.0412 0.1290 -0.0418 0.0129
3m bond 0.0159 0.0178 0.9943 0.9327 0.8301
1y bond 0.0171 0.0178 0.9926 0.9297 0.8416
2y bond 0.0182 0.0178 0.9914 0.9319 0.8598
3y bond 0.0196 0.0180 0.9912 0.9358 0.8747
5y bond 0.0226 0.0180 0.9916 0.9459 0.8956
10y bond 0.0282 0.0176 0.9929 0.9265 0.9208
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Table 5: Auto correlation between stock and bond return. Panel A shows the correlations between the estimated
stock returns and 3-month, 1-year, 2-year, 3-year,5-year and 10-year nominal bonds as implied by the updated KNW
model of this thesis without restriction. Panel B reports the correlations as implied by the updated KNW model
with restriction. Panel C reports the correlations based on the data.

A. KNW
(iii)

Stock 3m bond 1y bond 2y bond 3y bond 5y bond 10y bond

Stock 1 -0.19 -0.19 -0.19 -0.18 -0.17 -0.16
3m bond 1 1 0.99 0.97 0.94 0.89
1y bond 1 1 0.99 0.97 0.92
2y bond 1 1 0.98 0.95
3y bond 1 0.99 0.97
5y bond 1 0.99
10y bond 1
B. KNW
restr

Stock 3m bond 1y bond 2y bond 3y bond 5y bond 10y bond

Stock 1 -0.17 -0.16 -0.15 -0.14 -0.14 -0.13
3m bond 1 0.99 0.97 0.96 0.93 0.89
1y bond 1 0.99 0.98 0.96 0.94
2y bond 1 1 0.99 0.97
3y bond 1 1 0.99
5y bond 1 0.99
10y bond 1
B. Data
(iv)

Stock 3m bond 1y bond 2y bond 3y bond 5y bond 10y bond

Stock 1 -0.23 -0.20 -0.19 -0.18 -0.17 -0.16
3m bond 1 0.99 0.97 0.97 0.95 0.91
1y bond 1 1 0.99 0.97 0.93
2y bond 1 1 0.98 0.95
3y bond 1 0.99 0.97
5y bond 1 0.99
10y bond 1

Figure 7: Campbell-Shiller coefficients of the updated model without restriction (blue), updated model with restric-
tion (orange) and data (green).
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6.1.3 Simulation

Because we need to decide which model to use for the ALM study, the simulation is important
as well. We do not want the differences in parameter to significantly affect our ALM simulation
results. Therefore, we take a closer look at the resulting simulation paths from the models. We
simulate the 10.000 economic scenarios.

(a) Price index simulation path. (b) Stock index simulation path.

Figure 8: Simulation paths using the parameters of the model updated in this thesis without restriction. The simu-
lation time is 75 years. The red dotted line is the sequence of all maximum values of the price index over time. The
blue line is the average over time. Note that in reality one path is not a straight line but fluctuates over time.

(a) Price Index simulation path. (b) Stock index simulation path.

Figure 9: Simulation paths using the parameters estimated of the model with restriction. The simulation time is 75
years. The red dotted line is the sequence of all maximum values of the price index over time. The blue line is the
average over time. Note that in reality one path is not a straight line but fluctuates over time.

In Figure 8 we display the average simulation paths of the model without restrictions.
When comparing the price index with the stock index, we observe a few differences. First
of all, the price index is less volatile than the stock index, as expected from the data. The red
and orange dotted line that indicate the maximum and minimum of the stock index over time
for the 10.000 scenarios, deviate less from the average, than is the case for the stock index. Al-
though on average the price index is increasing, per scenario it can either increase or decrease
per year. If we now turn to Figure 9, the restricted model, we observe an almost identical figure
for the price index. The stock index, however, has a higher maximum. This might have to do
with a combination of the high risk premium and the more extreme value of σS(4). Both models
seem to be very close to each other in terms of scenarios, the model with restriction does seem
to lead to more extreme scenario paths though.

The restricted model has a few drawbacks. First of all, the parameters are not even close
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to the recommendation of the Commission Parameters. Additionally, the significantly poorer
fit to the data. On the other hand, restrictions always lead to a somewhat poorer fit. It makes
more sense to make a decision on what we predict to happen to the term structure in the future.
This is why we looked more closely to the stylized facts of interest rates. Surprisingly, yields
obtained from the restricted model were only a little bit lower. This makes us doubt whether
the estimation procedure only found a local optimum or that the other parameters were able
to absorb the restriction. Apparently a single parameter restriction may not have a huge effect
on the final simulated interest rates, because the other parameters can still change to fit the
data. This is why we have decided to use the non-restricted model for the ALM study. As
discussed before, the low interest rates that we currently observe, should at some point increase
again. Hence, an interest rate greater than -0.01% is not necessarily a bad result. As the risk
neutral scenarios are especially important for the value-based ALM part, we take a look at the
risk neutral scenarios in Figure 10. The price index remained relatively the same, but what is
especially interesting is the fact that the stock index is now on average only slightly increasing.
This makes sense, since we removed the risk premium of the index.

(a) Price index simulation path. (b) Stock index simulation path.

Figure 10: Risk neutral simulation paths using DNB estimated parameters. The simulation time is 75 years. The red
dotted line is the sequence of all maximum values of the price index over time. The blue line is the average over
time. Note that in reality one path is not a straight line but fluctuates over time.

6.2 Asset Liability Management

Now that we have decided to use a newly calibrated KNW model without restriction but esti-
mated on more recent data for economic scenario generation, we can turn to our ALM analysis.

6.2.1 Classical ALM analysis

We first turn to the results of our classical ALM analysis. We only show the results for 25
and 75 years in the future, because this gives a good overview of what short-term and long-
term effects. The results in terms on the FR and RPR are displayed in terms of 5%, 50% and
95% quantiles. These give an indication of the worst case, median and best case scenario.
Additionally, we give an indication of the reliability of these results by means of the variance.
We also show the probability of having insufficient assets implying an FR lower than 100%,
and of having less pension result than promised implying an RPR lower than 75%.

In Table 6, the results of unconditional DB are displayed in terms of FR and RPR. By defini-
tion, unconditional DB has great indexation results. This is made visible by the RPR being close
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to 0.75. Given this policy, one can expect a pension benefit as has been agreed on (75% of the
average pay). However, whether this kind of generous indexation is really sustainable is still
the question. Table 6, indicates low funding ratios in the worst case scenario. This is caused by
the fact that even in bad economic scenarios full indexation still has to be granted. The proba-
bility of the FR to be lower than 1 is relatively high. Another interesting result is the fact that
a longer horizon leads to more extreme results. Obviously, the further into one simulation, the
more extreme the simulation path can get. Besides, the FR on average always increases because
of small surpluses, because the expected return (based on the yield curve) is on average lower
than the real return on assets, as we can see from the results of the KNW model in Section
6.1 and the fact that participants sometimes die without benefiting from their pension accrual.
The FR equal to 169.72% is actually not very high considering this. This proves that on the
long term unconditional indexation might not be sustainable. This is not only because of the
fact that unconditional indexation is expensive, but also because the increasing benefit horizon
caused by the increase life expectancy over the years. This is indeed one of the problems con-
sidered by the Dutch government which has led to a revision of the current pension scheme
(see Section 1). For the horizon of 75, we even see that the indexation is no longer full for the
quantile of 5%. This is because in extremely bad scenarios benefits have to be cut. In reality,
situations such as that are unlikely, because the pension fund would take more measures when
the FR approaches zero. Nevertheless, this shows how unsustainable unconditional indexation
can be.

Table 6: Classical ALM results for unconditional DB.

Horizon FR0.05 FR0.5 FR0.95 Variance FR p(FR < 1)

25 0.5642 1.4118 3.5811 0.1302 0.2949
75 0.4593 1.6972 6.1730 0.9045 0.3132

Horizon RPR0.05 RPR0.5 RPR0.95 Variance RPR p(RPR < 0.75)

25 0.7547 0.7664 0.7777 0.0000 0.0040
75 0.7391 0.7544 0.7687 0.0000 0.3209

When we move to conditional indexation DB, we immediately observe an improvement in
terms of FR for the worst case scenarios. The upper quantiles remain in line with what we saw
previously, but the results of the worst case scenarios (for both the 25 and 75 horizon) improve
a lot. It increases from 56.42% to 67.35% for a time horizon of 25, and from 45.93% to 61.17% for
a time horizon of 75 years. The probability of a low FR has decreased. On the other hand, the
RPR does decrease for the worst case scenarios especially. Now the RPR and the FR both absorb
economic shocks. This is in line with expectation, because conditional indexation implies that
the pension fund can save assets at the expense of the pension benefit in bad economic times,
such that the FR does not have to decrease substantially.
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Table 7: Classical ALM results for conditional DB.

Horizon FR0.05 FR0.5 FR0.95 Variance FR p(FR < 1)

25 0.6735 1.4598 3.8035 0.2578 0.1951
75 0.6117 1.7660 6.1730 0.8494 0.2499

Horizon RPR0.05 RPR0.5 RPR0.95 Variance RPR p(RPR < 0.75)

25 0.6084 0.7611 0.7754 0.0003 0.3281
75 0.5094 0.7364 0.7669 0.0008 0.4780

We now turn to the DC contracts. The results of both DC without compensation and with
compensation are displayed in Table 8. What stands out about this table is the fact that there is
no FR component anymore. This has to do with the fact that the FR does not give additional
insights in these type of contracts. The pension benefit is no longer secured, and the pension
fund no longer is obliged to pay out 75% of the average pay. In case of bad economic scenarios
the participant’s benefit is simply cut. Because of this, the FR is always equal to 1. This is why
we only look at RPR.

Table 8: DC

DC without compensation

Horizon RPR0.05 RPR0.5 RPR0.95 Variance RPR p(RPR < 0.75)

25 0.3265 0.5930 0.8234 0.0015 0.7609
75 0.4195 0.7929 0.9561 0.0055 0.5010

DC with compensation

Horizon RPR0.05 RPR0.5 RPR0.95 Variance RPR p(RPR < 0.75)

25 0.5197 0.8062 0.9575 0.0054 0.2724
75 0.4195 0.9288 1.1534 0.0055 0.5012

For both contracts the RPR is a lot more spread. Among other things, this is shown by the
high variance compared to DB. In the best case scenario, the RPR can even be a little bit above
100%, implying that one gets more benefit than the average pay. In reality, the pension fund
will do a fiscal check, such that when too much pension benefit is accrued, the pension benefit
flows party flows back to the pension fund. This, however, is difficult to model, because there
is no clearly defined manner of how and when to do this as of right now.

In contrast, the RPR in the worst scenario can even drop to only 54.62% of the average pay.
If we compare the two DC variants, we see that for DC without compensation the RPR rate is
lower on average. This makes sense, as the participants are not compensated for the change
from DB to DC. This could have to do with the fact that the older generation cannot generate
high enough investment return in the short run to compensate themselves for the loss on DB
accrual. This would explain why in a larger horizon the RPR are almost the same as DB with
compensation.

It is difficult to formulate a conclusion based on this analysis without knowing what goals
the pension fund persuades. If the pension fund is willing to take more risk, with the probabil-
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ity of being able to give the participants a higher benefit, DC is certainly an option. From these
figures conditional DB is still a good option, since the RPR are more stable and the funding
ratio is promising. Unconditional DB allows for higher accrual, but is unsustainable in the long
run. In fact, we partly see the disadvantage Kortleve & Ponds (2006) mentions as a reason to
introduce value-based ALM, namely that higher FRs go together with higher volatility in FR
over the scenarios.

6.2.2 Value-based ALM analysis

In this section, we discuss the ALM results. This result is summarized by showing the genera-
tional gain or loss when going from the old contract to a new contract. We take conditional DB
as a base contract, because it is the closest to the current Dutch pension scheme.

Figure 11: The age of the cohort is on the x-axis, the gain or loss per cohort is displayed on the y-axis.

From Figure 11 we observe that going from conditional DB to unconditional DB, there is
gain in value for every participant in the pension fund. This is not surprising, because condi-
tional DB means that the pension benefit does not always increase with the inflation. This is
always the case for unconditional DB. This means that unconditional DB will always lead to
higher pension benefits. What we do see is that the difference is not great. That probably has to
do with the fact that the FR will mostly grow over the years, because of small surpluses every
year, and indexation depends on this FR. This implies that in the long-run, indexation is always
possible. Hence, our assumption of indexation until t = 0 has small to no effects on our results.

Next, we observe the value transfer of going form conditional DB to a DC pension without
being compensated. We observe that this is especially profitable for participants around 30
years old. What is surprising is that the minimum lies at around 30 years old, and then for
younger generation participants going to DC is slightly less profitable. This probably has to do
with the fact that younger generations have a higher the chance that any missed indexation in
the past is caught up. This leads to higher benefits for a DB policy for this generation. After age
65, there is no difference in value between conditional DB and DC without compensation. This
is because at t = 0 the generation of age 65 already has accrued pension benefit and therefore
they will not be affected by a new accrual scheme.
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If we do compensate the generations for the switch from DB to DC, we get the green line
in Figure 11. We observe that is it now profitable for all generations to have a DC pension
policy. This is somewhat expected, because the expected return on stocks is higher than the
accrual of a DB policy. This means that especially young generations have a lot to win from
these kind of policies, because the contributions they put in each year have a long period to
make high return. This is why it is less profitable for the older generations. Again, we do
notice that the minimum lies around 35 years old, which we give the same reasoning as before.
Understandable is the fact that DC without compensation and DC with compensation give
the same value for the 25 year old cohort: they do not need to be compensated because they
just started working. Another remarkable fact is the fact that the difference between DC with
compensation and conditional DB for the 65 year old generation is positive. This is because
we compensate this generation for the transition as they potentially miss the benefits from the
ability to continue investing after retirement.

All in all, from these results, DC schemes seem to be more profitable for the pension fund’s
participants than DB. Especially compensated DC shows promising results in terms of the
value-based ALM. What is important to note though, is the fact that the compensation might
be too high in order to be paid by the pension fund alone. In reality, total compensation might
be unattainable due to insufficient funding.

We have now looked into both classical ALM and value-based ALM. They both have their
own insights about how different pension schemes influence the pension fund and it’s par-
ticipants. The classical ALM mostly gives insights about potential risk for the pension fund,
while value-based ALM mostly gives insights about what value goes to which generation due
to a pension scheme transition. Because of the fact that the FR is useless for DC schemes (as
there are no liabilities anymore), it is understandable that a new method of pension scheme
assessment had to be introduced. The added value of value-based ALM over classical ALM is
the fact that is visualizes the pension funds participants: even though from classical ALM DB
seems to be less risky, there are huge losses in benefits for it’s participants. Moreover, we can
now see which generation is especially affected by the transition. The transition to DC in The
Netherlands means the disappearance of the solidarity principle, implying that all the gener-
ations now save for themselves and risk is not spread over these generations anymore. Being
able to visualize these generations apart from each other is therefore very convenient.

The conclusion from the comparison between DC and DB would be that DC has high po-
tential benefits but there are higher risks of big losses tied to it. The average value of a DB
scheme is a lot lower than DC schemes for all participants if all participants are compensated.
Nevertheless, it is questionable if compensation is affordable for the pension funds. DB does
seem a good and stable pension scheme with lower risk. However, the change to DC is in-
evitable, because of the negative effects of the increasing life expectancy and low interest rates
as mentioned in Section 1 and seen in these results.

39



7 Conclusion & Discussion

In this thesis, we answered the following question: To what extent does value-based ALM
lead to different conclusions in terms of pension policies compared to classical ALM, based
on scenarios obtained from the KNW model and more specifically, how does DB compare to
DC? We set up a value-based ALM model to show the added value of this model compared
to classical ALM. Additionally, we carefully examined the KNW model to choose a suitable
calibration to generate economic scenarios. More specifically, we discussed a new restriction
introduced by DNB to see if it made sense to incorporate it in our ALM study.

First, we re-estimated the KNW model. Here we have shown that the estimation method
by Pelsser (2019) is a correct and robust estimation method for the KNW model by comparing
it to what has been found in the past. More importantly, we show that adding the newly intro-
duced restriction of low long-term interest rates into the model leads to significantly different
parameters. Since the model is weakly identified, the new restriction is absorbed by the other
parameters to fit better to the data. Therefore, the restriction did not have a huge effect on the
simulation. Nevertheless, the Commission Parameters recommends very different parameters.
This in combination with the fact that the newly restricted model did not fit the current term
structure well, showed that it was not suitable for an ALM study. A newly re-estimated model
on more recent data, but without an interest rate restriction, turned out to be a good solution.
It led to a model with lower interest rates and higher risk premium (as DNB requires) but still
fitted the data very well. As the parameters are still reasonably similar to the calibration of the
Commission Parameters in 2019, this model was suitable for the ALM study.

The first limitation of our KNW model is the fact that the data used differs a bit from what
was originally used by the Commission Parameters. Besides, we have used monthly data,
while the Commission Parameters uses quarterly data. This could have led to small differ-
ences in the estimation results and worse in-sample fit of the model estimated by the Com-
mission Parameters and DNB. It would be interesting to conduct a similar study but with the
recommended data.

Furthermore, DNB wants lower long-term interest rates. In this thesis, we estimated two
new models that potentially fix this problem: a restriction and more recent data. Although
the latter model only decreased the interest rate a little. This effect is probably due to the low
interest rates after the financial crisis that now make up a large part of our data set. Hence,
another solution would be to use an even smaller time-span for estimation. From the start of
2020 the long-term interest rates are actually negative, estimating from an even shorter period
would give this period more weight in the estimation process, potentially leading to lower
interest rates. The Commission Parameters would need to use monthly data in this case though,
as there would otherwise be insufficient data to get reliable results.

In the second part of this thesis, we conducted an ALM study based around the Future
Pensions Act. The Future Pensions Act implies a transition from DB to DC. Now that the plan
has been designed, it is the question how it will be put into practise. Obviously, this new DC
scheme should improve the (long-term) solvency of the fund without leading to unfair distri-
bution over the generations. Using value-based ALM in combination with classical ALM, we
have shown that there is not one plan that has all the advantages and none of the disadvan-
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tages. Nonetheless, in this study we have presented the extra dimension that value-based ALM
adds to ALM studies, namely the visualisation the pension fund’s participants in terms of inter-
generational transfers. Currently the intergenerational effects are only qualitatively evaluated
(if at all) (Lekniute, 2011).

Value-based models will help with the decision by the following implications that we have
shown in this thesis. First of all, when going from DB to DC, especially the participants need to
be compensated. We have seen that especially the participants from 50 to 65 miss out on ben-
efits when there is no compensation. Even so, from the classical analysis we saw that the DC
can be more risky, because there is no security in pension benefit. The probability of having a
low pension benefit is higher. On the other hand, in best case scenario the participants pension
benefit will be higher. Therefore, we can conclude that value-based ALM does add an extra di-
mension to the classical analysis. It leads to more insight in generational fairness as it considers
its participants on individual level. We have seen that high funding ratios do not necessarily
mean a fair generational balance: DB gives high funding ratios, but the participants, especially
the younger generations, lose value. This could start discussions about "fairness" in a pension
setting. All in all, the real added value of value-based ALM is when combining it with classical
ALM. This way, a complete picture can be painted of what the risks are for the pension fund
and the different generations.

Conversely, as of right now, the value-based ALM tool has a few limitations. Currently, the
tool assumes that there are no intragenerational differences, e.g. everyone in one age cohort is
exactly the same (except for gender). As stated in Section 1, these intragenerational differences
have caused the revision of the current pension system: most people are not employed in the
same industry over their life-time, this for example leads to differences in accrual.

Moreover, in this study, the initialization is close to an average Dutch pension fund. For
instance, it could be interesting to look at how these results differ for ‘green’ (‘grey’) pension
funds, which mostly have young (old) participants, or rich versus old pension funds.

Besides, we saw how the view on the low interest rates differs. The interest rates have a
huge influence on the results on an ALM study. Pension funds use interest rates to discount
their liabilities, lower interest would lead to worse solvency. It would be interesting to look
into how interest rate models affect an ALM model.

Finally, after the introduction of the Future Pensions Act, there is probably going to be a
new pension system after some time. Here we looked at what would happen for the next 75
years if the new pension scheme was stable over those years. In reality, the new scheme is
probably not going to last for that long. There are some studies that look at ‘closed’ pension
funds (Lekniute, 2011), that for example cease to exist after 25 years. This gives more insight in
what it would look like if the new scheme only held for the next 25 years.

However, the value-based ALM model is a flexible model that is able to incorporate dif-
ferent time horizons and initializations. Therefore, future research on these small drawbacks
should be no problem. This study has shown how value-based ALM can lead to different con-
clusions about a pension scheme, which shows the importance of combining it with classical
ALM in future analysis. It makes it possible to not only discuss financial risk of the pension
fund but also intergenerational fairness.
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