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Abstract

This paper investigates whether factor investing can be extended to emerging market local currency

(EM-LC) bonds. Existing literature has proved the existence of factors in the developed market fixed

income universe, and more recently, in emerging market hard currency (EM-HC) bonds. We focus

on the factors defined in developed market bonds rather than EM-HC bonds, which generally contain

countries with higher credit risks rather than the rate risk. We first show that factor investing works

in a simple method that has been applied in previous literature, resulting in significant alpha in Carry,

Change-in-carry, and Momentum factor based portfolios. However, this method does not deal with the

diverting behaviour of beta, volatility, and default risk among countries, which are peculiar characteristics

of the EM-LC universe. Thereby the portfolio shows significant beta and high concentration risk. We

systematically approach the potential risks by proposing advanced factor portfolio construction methods

of adjusted factors, optimisation, and grouping with enhanced beta and covariance estimators and K-

means clustering. Our results indicate that beta and concentration risk have been reduced using our

proposed methods. Furthermore, we find promising performance with strongly significant alpha.

The content of this thesis is the sole responsibility of the author and does not reflect the view of the supervisor,

second assessor, Erasmus School of Economics or Erasmus University
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1 Introduction

Factor investing is one of the most popular quantitative investment strategies due to its intuitive

characteristic of categorising and assigning scores on assets based on a certain style such as size,

value, and momentum from Fama & French (2012). Moreover, promising results of factor-based

portfolios proven in the existing literature make it more attractive. Factors are investigated

for decades in a variety of asset classes. The existence of factors in multiple asset classes

lead to active factor investing in both developed and emerging equity markets. More recently,

research on style investing with various factors extends to developed market government bonds,

corporate bonds and emerging market hard currency (EM-HC) bonds. On the other hand,

factor investing in emerging market local currency (EM-LC) bonds has not been investigated

yet. EM-LC bonds have a smaller universe than EM-HC bonds, which is issued by a broad

range of countries due to the accessibility as dollar-denominated debts, because countries need

to meet some criteria such as currency stability and market size to issue EM-LC bonds. There

might be a potential for factor investing in EM-LC bonds since they could provide a diversified

portfolio from developed market securities and EM-HC bonds, with a lower credit risk than EM-

HC bonds. EM-HC bonds are more related to the credit risk component, contrasting to EM-LC

bonds, which has a similar rate risk component to the bonds from developed sovereigns (Brooks

et al., 2020). However, the characteristics between EM-LC bonds and developed market bonds

differ because countries have diverting behaviours in the EM-LC universe. For instance, the

universe includes both stable and volatile countries, such as Malaysia and Turkey, respectively.

In contrast, countries in developed markets behave similarly. This makes previous research on

factor investing in developed market bonds insufficient. Therefore this paper investigates factor

investing in EM-LC bonds by adjusting the standard factors studied in developed market bonds.

The approach to factor investing in EM-LC bonds should differ from the existing one in

developed markets due to the following two aspects of EM-LC bonds. First, the pure bond risk

and the co-movement, ‘beta’ with the market, contains notable differences over time between

countries. The beta shows how each asset is volatile compared to the overall market. A higher

beta means that the asset has more volatile co-movement. This can result in a portfolio which

is highly exposed to beta rather than the factor itself. Second, some EM-LC bonds include

non-negligible default risk, while others behave more like developed markets. It can cause

the volatility of returns to vary a lot across countries, which can be risky since one highly

volatile country can blow up the portfolio driven by its sensitivity to default risk during crisis

periods. The classic factors focus on not potential default risk but interest rates. Methodological

challenges caused by the combination of these differences have not been thoroughly explored in

the existing literature. Hence, this paper investigates whether factor investing also works in

EM-LC bonds and whether advanced versions of the portfolio can be constructed to take into

account beta and risk differences between the countries.

The main contributions of this paper lie in systematically managing the two main attributes

of EM-LC bonds. The most common way to define a factor is to rank the assets on their

factor measures, and then going long and short the top and bottom-ranked assets using linear

declining weights (Asness et al., 2013). We propose three advanced factor portfolio construction

structures to control the above potential risks. First, we introduce advanced versions of signal
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measures by adjusting the standard factor measures. It includes dividing the factor measure

by the beta and removing the beta exposure by orthogonalising the factor measure on the

beta. Second, we propose optimising the portfolio using linear programming and quadratic

programming. We construct an objective function which maximises the factor exposure subject

to the zero beta exposure in linear programming. In addition, we try to reduce the impact

of volatile countries by adding a weight restriction according to each country’s volatility level

to linear programming and considering the risk trade-off using quadratic programming. Third,

we suggest systematically grouping the universe that can cluster countries into two comparable

groups. Figuring out whether each market behaves like the developed market or is relatively in

line with the emerging market might allow us to control different movements in each market. To

achieve this, we consider dividing countries into equal-size and dynamic-size groups. We propose

to use K-means clustering for dynamic-size grouping. It has the flexibility to choose the group

size in real-time. Furthermore, we investigate various beta and covariance estimators to be

plugged in the aforementioned methods. More precise input parameters ensure our systematic

methods to be less error maximising caused by noisy input measures.

This research is focused on a country level with the EM-LC bond indices of each country.

We consider 17 countries selected based on a recent weighting scheme for the J.P. Morgan

Government Bond Index-Emerging Markets Global (GBI-EM Global) index, where they select

countries on tradability with a maximum weight of 10% in one country. The countries that

we consider include South Korea, China, Turkey, and Brazil. We use monthly data of local

excess bond returns per unit of duration as a target series. The starting and end dates vary

per country. The target series runs from June 1994 till February 2021. To construct factors, we

use additional data such as yield-to-maturity and 3-month LIBOR rates on a country level and

transform it to be a unit of duration.

Factors introduced in diverse other asset classes are studied in this paper. Fama & French

(2012) prove the existence of factors such as size, value and momentum in the global equity

markets. Recently, there have been efforts to find factors in a broader range of assets. Asness et

al. (2013) show the existence of value and momentum factors across a diverse set of securities.

Furthermore, the “COMBO” factor strategy, an equal combination factor of value and momen-

tum, tends to outperform value and momentum strategies across tested asset types. However,

the result regarding fixed income is not convincing compared to other asset classes. Investi-

gated by Frazzini & Pedersen (2014), the betting-against-beta (BAB) factor provides consistent

results across equity, bond and futures markets with significant positive risk-adjusted returns.

Koijen et al. (2018) develop the concept of the carry to a variety of asset classes and show the

presence of a carry factor. More recently, several papers study style investing in fixed income.

Brooks et al. (2018) document the efficacy of style investing using value, momentum, carry and

defensive factors for developed market government and corporate bonds. Brooks et al. (2020)

study the same factors as in Brooks et al. (2018) with beta-neutral long-short portfolios and

finds evidence of systematic investing in emerging market hard currency bonds. Kang et al.

(2019) jointly analyses macro and style factors in the emerging dollar debt market and shows

that value and FX momentum factors can explain country expected returns.

Our results show the following key findings. First, we demonstrate that factor investing
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works for EM-LC bonds, a new finding that could also be interesting for investors who have

embraced factor investing in other asset classes. The out-of-sample tests of Carry, Change-

in-carry, and Momentum factor-based portfolios show significant alpha in the EM-LC bond

universe under the basic factor portfolio structure introduced in the existing literature. Second,

the existing basic factor portfolio construction does not address the potential risks of EM-LC

bonds, resulting in significant beta and high concentration risk. Third, we find that the beta

estimate using different windows for correlation and volatility terms and subsequently shrinking

it (Frazzini & Pedersen, 2014) and the covariance matrix under the market factor structure help

to capture these risks better, with less estimation error. Fourth, our proposed advanced factor

portfolios using the best beta and covariance matrix estimates are able to reduce the level of

beta and concentration risk with enhanced performance. A combination of controlling beta and

risk either via linear programming with weight restrictions or quadratic programming with risk

trade-off and dynamic size grouping with K-means clustering is most effective in addressing the

key problems of the factors whilst maintaining a good factor performance. Furthermore, we find

that these advanced methods quickly respond to the increased riskiness of Turkish bonds by

reducing the exposure to these bonds during the Turkish currency and debt crisis.

The remaining structure of our paper is as follows. In Section 2, we describe the data used

in the analysis. In Section 3, we introduce initial factor construction and more advanced factor

construction, followed by defining signal measures that are going to be tested in our paper. In

Section 4, the results are presented and discussed. In Section 5, we discuss additional results of

the multi-factor model and the sub-sample period during the Turkish currency and debt crisis.

Finally, Section 6 concludes.

2 Data

This paper aims to analyse factor investing in the EM-LC universe. Hence, we use EM-LC bond

indices at the overall country level as target series. To construct factors, we have additional

data of yield, duration and the risk-free rate. For the country-level analysis, 17 countries are

considered using its index of overall government bonds. It consists of J.P. Morgan (JPM) total

return indices in local currency. Further data to calculate factors and compute local hedged

excess returns are used, such as JPM index yield-to-maturity and modified duration, three-

month LIBOR, two and ten-year yields. Obtained from Bloomberg, the data cover the period

1994/06/30 to 2021/02/26, where the start and end dates may vary per country depending on

the availability of government bonds. Table 1 presents the starting date for each of the series.
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Table 1: Used data sets and the corresponding starting date

Countries JPM total return JPM YLD JPM DUR 3M LIBOR 2Y YLD 10Y YLD

Brazil 2001-12-31 2002-01-01 2002-01-01 1994-07-04 2000-04-03 2009-09-21
Mexico 2001-12-31 2002-01-01 2002-01-01 1997-01-15 2001-04-26 2001-08-22
Colombia 2002-12-31 2003-01-01 2003-01-01 1991-01-01 2001-03-01 2009-12-11
Indonesia 2003-01-01 2003-01-01 2003-01-01 1997-04-10 2003-01-01 2003-07-22
Malaysia 2001-12-31 2002-01-01 2002-01-01 1991-01-01 2005-06-21 2005-06-21
Thailand 2001-12-31 2001-12-31 2001-12-31 2002-05-30 2000-08-07 2000-08-07
South Korea 2000-12-29 2001-12-11 2001-12-11 2000-08-07 2000-08-07 2000-12-19
Turkey 2004-03-31 2004-04-01 2004-04-01 2002-08-01 2006-06-06 2010-01-27
South Africa 1994-06-30 2001-12-31 2001-12-31 1999-02-01 1999-12-06 1997-01-01
Poland 2000-12-29 2001-01-01 2001-01-01 1996-08-12 1999-03-04 1999-05-21
Hungary 2000-12-29 2001-01-01 2001-12-31 1997-05-05 1997-10-09 1999-01-20
India 2001-12-31 2001-12-31 2001-12-31 1998-12-01 2001-01-01 1998-11-25
China 2004-01-01 2004-01-01 2004-01-01 2000-01-04 2010-12-16 2011-02-11
Russia 2005-01-31 2005-02-01 2005-02-01 2005-04-18 2010-03-23 2010-03-23
Chile 2010-08-31 2010-09-01 2010-09-01 2000-07-21 2013-11-12 2014-06-02
Peru 2006-10-02 2006-10-02 2006-10-02 2000-07-25 2007-10-02 2007-10-02
Philippines 2010-09-30 2010-10-01 2010-10-01 1998-12-11 - -

Notes: The end dates of JPM total return, JPM YLD, and JPM DUR for Chile are 2019-07-30. The end date
for the rest of the series is 2021-02-26.

Several errors are found in the index data, which are not in line with the maturity bucket

data. It is expected that bonds are not issued at some point of time in some countries. This

could cause data fields to be filled with previous values while the data is not available. To find

potential errors in data, we plot both raw price data and return data to find huge outliers or

repetitive values. The found errors are replaced with NA or filled with the previous value. When

repetitive values or outliers are found, we replaced ten and two-year yield data with the 7-10

and 1-3 years maturity bucket data. A more detailed description of adjusted data points can be

found in Appendix A.

We use monthly local excess bond returns per unit of duration of each country’s EM-LC

bond index for factor construction and measures. Therefore the time t denotes each month

in the following sections. Using monthly data might be costly since we are not making use of

all the available information. However, there are considerable differences in trading times per

country. Using the daily data may harm the co-movement of the long-short portfolio. Besides,

daily updating the portfolio weights may not be feasible, for example, due to transaction costs.

Local excess bond returns are calculated by subtracting 3-month LIBOR rates from the bond

returns. It is a proxy for currency-hedged returns (Ilmanen, 1995). Subsequently, it is divided

by duration. This way, we can look at factor investing related to the bond returns without being

affected by currency returns, thus excluding exchange rate risk and by the duration of bonds

issued. We take the average of the monthly local excess bond returns per unit of duration to

produce a global market return series.

The plot of monthly local excess bond returns per unit of the duration of few countries is

shown in Figure 1a. It shows that some markets are highly volatile. For example, in 2008,

Turkey and Brazil fluctuate a lot while Malaysia is relatively stable. Furthermore, Table 2

presents descriptive statistics when the data from all countries are available. The last three

rows are developed markets for comparison with the EM-LC universe. We observe that the

volatility and beta deviate a lot across countries, where some countries are more than three
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times more volatile than developed markets while other countries have a similar volatility level

to developed markets. The correlations with its equity market returns, currency returns and

the US bond returns also show large variations across countries. The rolling volatility shown in

Figure 2 suggests that the volatility of bond returns fluctuate a lot over time. We observe huge

deviations across countries during the crises, while they are similar to each other in the rest of

the period. Hence we expect that factors might generally work but can suffer in crisis periods.

To better understand the performance of the bonds in each country and the overall market, the

cumulative performance of excess bond return per unit of duration is given in Figure 1b. It

is observed that EM-LC bonds have performed quite well over the sample period. We expect

that the factor performance might be driven by the overall market when positive beta presents.

Therefore, controlling for the beta effect is essential to obtain the return solely from the factor.

(a) Excess return per unit of duration (b) Cumulative return per unit of duration

Figure 1: JPM bond return data

Figure 2: One-year rolling volatility of bond returns over time
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Table 2: Descriptive Statistics

vol (%) beta EQT corr FX corr US bond corr

Turkey 3.70 3.63 0.50 0.71 0.13
Russia 1.89 1.10 0.43 0.62 -0.03
Brazil 1.75 1.75 0.48 0.51 0.27
Indonesia 1.36 1.42 0.60 0.58 0.33
Hungary 1.31 1.07 0.31 0.59 0.17
South Africa 1.09 1.14 0.31 0.62 0.39
Mexico 1.03 0.96 0.25 0.52 0.52
Peru 1.03 1.09 0.47 0.52 0.31
Colombia 1.01 1.05 0.39 0.49 0.33
Philippines 0.97 0.91 0.56 0.43 0.28
Chile 0.80 0.57 0.05 0.09 0.28
India 0.73 0.28 0.09 0.22 0.15
Poland 0.72 0.71 0.17 0.32 0.39
Thailand 0.54 0.47 0.11 0.30 0.44
South Korea 0.50 0.30 -0.22 -0.01 0.62
China 0.49 0.19 -0.11 -0.13 0.20
Malaysia 0.47 0.37 0.27 0.46 0.48

US 0.60 - -0.39 - 1.00
EMU 0.59 - -0.28 - 0.76
Japan 0.22 - -0.36 - 0.50

Notes: The excess bond returns per unit of duration are used. The sample period runs from 2010-11-30 to 2019-
07-31, where data from all countries are available. The annualised volatility of the excess bond returns, bond
beta with respect to the market is reported. The market is the average of the 17 countries. The correlation of
the excess bond returns to their own equity and currency markets’ returns is presented for equity correlation and
currency return correlation. The last column is the correlation of each country’s excess bond returns with the US
bond return.

3 Methodology

We introduce methodologies to answer the research questions of whether factor investing works

on EM-LC bonds and if advanced factor construction can manage the potential risks in the EM-

LC universe. In Section 3.1, we explain standard factor construction introduced in the existing

literature. Afterwards, we propose our advanced factor construction method, which is more

suitable for characteristics of EM-LC bonds proposed in Section 2. In Section 3.2, we introduce

adjusted factor measures. In Section 3.3, optimisation methods for portfolio construction are

described. In Section 3.4, we propose methods regarding grouping countries into emerging

market (EM) and developed market (DM)-like countries. Subsequently, we introduce factor

measures introduced in the previous literature in Section 3.5. We suggest various input measures

such as beta and covariance estimators for the advanced factor construction in Section 3.6 and

Section 3.7. Section 3.8 introduces evaluation methods for the resulting input measures. Section

3.9 documents performance evaluation metrics to compare each factor portfolio construction

methods which are used in this paper. Lastly, we introduce statistical tests to investigate the

significance of differences in each input estimator and factor portfolio construction strategy in

Section 3.10 and 3.11, respectively.
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3.1 Koijen weighting scheme

To test if the factor investing works on EM-LC bonds, we initially use a long-short factor

construction following the popular rank-based weighting scheme by Koijen et al. (2018), which

is used as a carry trade specification motivated by Asness et al. (2013). This approach ranks

each of the factor measures to compute the portfolio weight for factor strategies such as

wsignalc,t = zt

(
rank(Sc,t)−

Nt + 1

2

)
, (1)

where Sc,t is a country c’s signal measure, Nt is the number of countries and zt is a scalar which

forces the sum of the long and short positions to be 1 and -1. Countries with higher factor

scores have larger and positive weights, while countries with lower factor scores have lower and

negative weights. Subsequently, the portfolio return of each signal is calculated by

Rsignalt+1 =
∑
c

wsignalc,t RJPMc,t+1 , (2)

where RJPMc,t is EM-LC excess return per unit of duration calculated by deducting 3-month

LIBOR rates, rc,t, from EM-LC bond index return and subsequently dividing by its duration,

Dc,t.

Even though the weighting scheme in Equation (1) is intuitive and straightforward, it does

not capture two main characteristics of EM-LC bonds that are distinct from developed market

(DM) bonds: (i) Large differences in market volatility across the countries; and (ii) Some EM

countries are relatively safe (DM-like) while others may be more prone to default risk (EM-

like), since it only ranks the factor measures without adjusting for these risks. It may manifest

itself in how bond returns are related to currency and equity returns. For example, the bond

market’s behaviour compared to the equity market might be different in crises. Bonds of DM-

like universe are likely to perform well in crisis periods when equities do poorly. However, bonds

of EM-like universe, which is a more risky bond, may perform poorly. This diverting behaviour

could negatively affect the performance of long-short portfolios. More generally, the long-short

portfolios’ returns may be driven by differences between DM-like and EM-like bonds rather

than factor characteristics like carry, change-in-carry, value, momentum and BAB. Therefore,

we propose several methods to improve upon the simple long-short portfolios in Equation (1) in

the following sections.

3.2 Residualisation and Division

The naive scheme in Equation (1) might lead to portfolios with bond betas that deviate quite a

lot from zero, meaning the performance might be more driven by the market, which is the overall

EM-LC bonds, than factor exposures. Also, countries with very high volatility can dominate the

results. One way to reduce the effect of bond beta is adjusting the factor measure definition. It

could be done by ‘residualising’ the factor exposures. The concept of residualisation is proposed

by Blitz et al. (2011), where momentum factors constructed from reisidual returns are used. In
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our analysis, we regress the signal on the betas and use the residuals such as

St = a+ bβ̂t + εt (3)

where β̂t contains βc,t for every country c obtained from ex-ante beta estimation, which is a

predicted beta before realisation, with respect to the market where we consider several ex-ante

beta measures in Section 3.6, and St contains signals for each country at time t. Each component

of the residual, St − b̂β̂t, which corresponds to each country, replaces Sc,t in Equation (1).

Alternatively, we could look at signal measures divided by beta as a simple way to adjust the

level of signal measures caused by the bond beta, which is given as

Sc,t

β̂c,t
. (4)

Subsequently, we adjust the weights by replacing Sc,t with scaled signal measures in Equation

(1).

3.3 Optimisation

Another way of reducing the impact of countries with high beta or volatility and default risk is

to solve the optimisation problem of maximising the factor exposures while controlling for the

risks using proper measures to capture the characteristics. Linear or Quadratic programming

can consider the constraints directly. Also, the advantage of solving the optimisation problem

compared to the methods in Section 3.2 is its flexibility to add more constraints customised to

the problem.

3.3.1 Linear programming

Linear programming maximises the factor exposures subject to constraints aimed at limiting

the impact of the cited problems - for example, (i) requiring a bond beta to be zero; or (ii)

restricting the maximum weights specific to each country according to its volatility. In the

portfolio optimisation problem, it is conventional to maximise the expected return, where we

use the factor exposure for its estimator as in Kang et al. (2019).

Here, we directly get the weights for each country from the optimisation function, thus not

using the weighting scheme in Equation (1). The minimum number of assets at each point of

time is set to six so that the optimisation problem can be feasible. The linear programming

equation is given as

max
wsignal
t

wsignal
t

>
St

s.t. wsignal
t

>
βt = 0

−
∑

wsignalc,t <0

wsignalc,t =
∑

wsignalc,t >0

wsignalc,t = 1,

|wsignalc,t | ≤ zt
(

1−Nt

2

)
(5)
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where wsignal
t is signal weight vector in which each element consists of the weight for each

country. The bond beta βt is decided in Section 3.6 where we consider several ex-ante beta

measure. The third restriction imposes individual weights to be less or equal to the maximum

weighting scheme in Equation (1). The advantage of this maximum weighting scheme is its

flexibility to the number of assets at each point of time, which varies according to the data

availability.

In order to directly restrict the effect of volatile countries, we introduce another linear pro-

gramming problem with limited weights based on the volatility of each country. We divide the

maximum Koijen weight restriction by each country’s volatility relative to the median of the

cross-sectional volatility for the past 12 months, such as

max
wsignal
t

wsignal
t

>
St

s.t. wsignal
t

>
βt = 0

−
∑

wsignalc,t <0

wsignalc,t =
∑

wsignalc,t >0

wsignalc,t = 1,

|wsignalc,t | ≤ zt
(

1−Nt

2

)(
σM,t−11:t
σc,t−11:t

)
(6)

where σc,t−11:t is the standard deviation of country c with 12-month estimation window, and

σM,t−11:t is the cross-sectional median of the standard deviation of each country at time t. This

allows higher maximum weight to less volatile countries while imposing tighter maximum weight

restrictions on the volatile countries.

3.3.2 Quadratic programming

Quadratic programming maximises the factor exposures, directly considering the trade-off be-

tween the factor exposure and risk, subject to requiring a bond beta to be zero. This is done

by deducting the variance of the long-short portfolio multiplied by the risk-aversion parameter.

In order to apply the identical risk-aversion parameter to different factor measures, we compute

the z-score such as

Zc,t =
Sc,t − µt

σt
, (7)

where Sc,t is the factor score of country c at time t, µt is a cross-sectional average, and σt is a

cross-sectional standard deviation of each country’s factor score at time t. With the vector of

resulting z-scores, we optimise the following quadratic programming given as
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max
wsignal
t

wsignal
t

>
Zt − λwsignal

t

>
Qtw

signal
t

s.t. wsignal
t

>
βt = 0

−
∑

wsignalc,t <0

wsignalc,t =
∑

wsignalc,t >0

wsignalc,t = 1,

|wsignalc,t | ≤ zt
(

1−Nt

2

)
(8)

where Zt is a vector of Zc,t containing every country c, λ is a risk aversion parameter and Qt is

a covariance matrix of the bond returns at time t. We consider various covariance estimators in

Section 3.7. The risk aversion parameter is first chosen upon the scale differences between the

z-score and the bond returns. Subsequently, it is decided by comparing the effect of λ on the

volatility of resulting portfolio return compared to the global minimum variance portfolio and

the linear programming solution from Equation (5).

3.4 Systematic choices regarding the Universe

We propose to create homogeneous groups of EM-LC countries, i.e. EM-like and DM-like, to

reduce the impact of differences across markets on the portfolio. We look here at beta to the

market as a metric for clustering countries. Several ex-ante beta measures are investigated in

Section 3.6. In this section, equal-size grouping and dynamic-size grouping are introduced.

3.4.1 Equal-size grouping

We use simple grouping depending on the predicted beta estimation, known as ex-ante beta, at

each point in time. Countries are divided into two groups where the size of each group is half

of the universe based on the level of the ex-ante beta. Due to its simplicity, it might reduce

possible estimation errors and facilitate interpretation. The factor signals set in the EM-LC

universe are assigned into EM and DM-like behaving universes such as

EM = {Sc,t|βc,t ≥ βM,t}, DM = {Sc,t|βc,t < βM,t}, (9)

where βc,t is estimated beta of country c, and βM,t is the cross-sectional median of the beta at

time t. Subsequently, the factor signals of EM and DM-like countries are separately plugged into

the Koijen weighting scheme in Equation (1). We combine the resulting two portfolio returns

by taking the average of them.

3.4.2 Dynamic-size grouping

Equal-size grouping does not take into account the possible size differences for each group. To

allow flexibility of each group size, we use K-means clustering, which is one of the popular

clustering algorithms. It partitions the sample into K groups such that countries within a
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cluster have minimised dissimilarity. It is based on squared Euclidean distance,

d(xi, xi′) =

p∑
j=1

(xij − xi′j)2 = ||xi − xi′ ||2, (10)

as the dissimilarity measure. The algorithm is given as

Algorithm 1 K-means Clustering

1 Select K random points as the initialisation of the centroids
2 Repeat
3 Calculate the squared Euclidean distance for all points
4 Form K clusters by assigning each point to the closest centroids
5 Reassign groups
6 Until centroids converges

To establish the real-time membership, we use a rolling estimation of the model at each point

in time. The resulting groups are labelled to EM or DM-like, based on the mean of the bond

beta in each cluster. Cluster with higher average beta is classified into EM-like group and the

lower cluster into DM-like group. Subsequently, the Koijen weighting scheme in Equation (1) is

applied to each group.

We combine the resulting groups according to the following equation,

Rt+1 = wEM,tR
signal
EM,t+1 + wDM,tR

signal
EM,t+1, (11)

where wEM,t and wDM,t are the weights which considers the size of EM and DM cluster re-

spectively at time t. Two methods are considered for the weights wEM,t and wDM,t. One is

considering the size of the group, and the other considers the risk of each group. First, two port-

folios are combined using the weight, which is the proportion of each group’s size with respect

to the entire universe, such as

wsizeEM,t =
NEM,t

NEM,t +NDM,t
, wsizeDM,t =

NDM,t

NEM,t +NDM,t
, (12)

where NEM,t and NDM,t denote the number of assets included in EM and DM cluster, respec-

tively.

Furthermore, we investigate if assigning the weights to combine two portfolios from grouping

countries using the inverse of the risk can be helpful for further reducing the potential risk.

Size-proportional weight might be harmful since the volatility of the EM-like group’s portfolio

performance can be dominant compared to the DM-like group. Adjustments on the weights are

considered by using the inverse of the risk. We use the volatility of each universe calculated

from the return series containing the past 12 months multiplied by the current weight at each
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point of time, such as

Rrisk
t−11:t =


wsignal
t

>
Rsignalt−11

wsignal
t

>
Rsignalt−10

...

wsignal
t

>
Rsignalt

 , (13)

thereby measuring the risk of the returns based on the current universe. Using the volatility of

the resulting return series in individual groups, the inverse risk weight is calculated by

wriskEM,t =

1
σEM,t−11:t

1
σEM,t−11:t

+ 1
σDM,t−11:t

, wriskEM,t =

1
σDM,t−11:t

1
σEM,t−11:t

+ 1
σDM,t−11:t

, (14)

where σEM,t−11:t and σDM,t−11:t are the standard deviation of each EM and DM-like universe

with estimation window of 12 months, at time t. The standard deviation of each universe is

calculated from the return series containing the past 12 months multiplied by the current weight

at each point of time. Subsequently, we use these weights in Equation (11). This imposes a

group with higher volatility to have lower weight than the other.

There are some well-known drawbacks of K-means clustering to be considered: (i) the num-

ber of clusters should be determined in advance; (ii) convergence to a local optimum; (iii)

sensitive to the scale of the features. The number of clusters K can be chosen using statisti-

cal measures, elbow plot of each K with respect to within-cluster dissimilarity values, or more

sophisticated information as suggested by Pham et al. (2005). However, the universe in our re-

search is relatively small, having limited degrees of freedom in choosing the number of clusters.

Hence, we specify the number of clusters is K = 2, each standing for EM and DM-like groups.

To prevent convergence to a local optimum, we implement the algorithm with 1000 random

initialisations of the centroids, meaning repeating 1000 times of the algorithm, and choose the

best output in terms of Euclidean distance to the centroids. This way, we expect to reach the

global optimum better. Lastly, we standardise the sample features before running the algorithm

to reduce the effect of scaling.

3.5 Factors

In this section, we introduce carry, change-in-carry, value, momentum, and betting-against-beta

measures on a country level. These measures are from the existing literature tested on other

markets. To make bonds comparable, we adjust every signal measure with duration by dividing

by duration or using the duration adjusted returns. We define various signal measures which is

plugged in the portfolio construction methods introduced in Section 3.1 to Section 3.4.

3.5.1 Carry

Carry is defined as the expected return when the price remains the same. There is no neigh-

bouring maturity on the country level, making it impossible to compute carry with the exact

formula. However, Koijen et al. (2018) suggest that bond carry can be approximated by the

slope of the term structure plus the roll-down, where the slope component is the bond’s yield
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spread to the risk-free rate. As shown in Koijen et al. (2018), the correlation between carry and

the yield spread is very high, which is about 94%. Thus, the yield spread can be a proxy for

carry in fixed income. Instead of the risk-free rate, which can be replaced by 3-month LIBOR

rates when t-bill rates are unavailable, we use a 2-year bond yield. LIBOR rate is an inter-bank

offered rate that also addresses the stress on the market, possibly causing noises to capture the

slope component. Thus, we define carry for each country as

Carryc,t = (Y 10
c,t − Y 2

c,t)/Dc,t, (15)

where Y 10
c,t and Y 2

c,t are 10-year and 2-year bond yields for country c at time t, respectively.

3.5.2 Change-in-Carry

Using the carry measured in Equation (15), we estimate the change in carry with the moving

average of carry for one year1. This approach considers the country with low relative carry

compared to its history as less attractive than the country with high relative carry compared

to its history. The moving average of carry of country c at time t is the average of carry from

Equation (15) for the previous 12 months. Then the change in carry for country c at time t is

Change-in-Carryc,t = Carryc,t − CarryMA
c,t−1, (16)

where the duration is already adjusted in the carry measure.

3.5.3 Value

Value, the tendency that the underpriced stocks compared to their fundamentals outperform

expensive ones, is a popular factor studied in many literatures. It is measured by the book-to-

market ratio in the stock market. As there is no book-to-market ratio for EM-LC bonds, we

use two value measures: (1) 5-year change in yields of 10-year maturity bonds and (2) term

spread to the risk-free rate, both introduced by Asness et al. (2013). For the risk-free rate, we

use the 3-month LIBOR rate. The purpose of Asness et al. (2013) is to test the value factor

across different asset classes. Hence they use the former value measure, which is similar to the

negative of the past 5-year return, shown to be replaceable of the book-to-market ratio (Fama

& French, 1996). The value spread measure is given as an alternative, and it provides better

results in the literature. The value measures for country c at time t are

V alueMR
c,t =

(
Y 10
c,t − Y 10

c,t−60

Y 10MA
c,t

)
/Dc,t (17)

V aluespreadc,t = (Y 10
c,t − rc,t)/Dc,t. (18)

For the 5-year change in yields, we scale the absolute change in yield it by 5-year moving average

of yields at time t to remove the effect caused by differences in yield levels between countries.

1From “Harvesting Risk Premia in Interest Rate Market” by UBS Quantitative Investment Solutions, 2020
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3.5.4 Momentum

Momentum captures the persistence of the asset’s performance that the currently outperforming

asset keeps on winning. It is one of the widely used factors, with the advantages of intuitiveness

and convenient computation across various asset classes. Most of the previous studies compute

momentum as a 12-month return by equally weighting each month’s return observations (Je-

gadeesh & Titman, 1993). However, this method can be primarily affected by the disappearing

month rather than the new data. To prevent this, we use the change in total return to the mov-

ing average of past periods. It is essentially imposing linearly declining weight to the change

in total return. Furthermore, it can also be of interest for fixed income to use changes in the

bond index yield in addition to the total return. The excess bond return per unit of duration is

approximated by carry and yield change such as

RJPMc,t ≈ Carryc,t − (Y JPM
c,t − Y JPM

c,t−1 ), (19)

where Y JPM
c,t is a yield of JPM bond indices. The carry part of the return can cause the

momentum measure based on total returns correlated with the carry measure. We expect that

the momentum measure using yield can prevent this problem. Thus, we construct momentum

measures based on both bond returns and yield changes. The momentum measures for country

c at time t are

Momentumyield
c,t = −

(
Yc,t − YMA

c,t−1
)
/Dc,t (20)

Momentumreturn
c,t =

Pc,t − PMA
c,t−1

PMA
c,t−1

, (21)

where Yc,t and Pc,t are the yield and the cumulative excess return per unit of duration of JPM

government bond for country c at time t, respectively. YMA
c,t and PMA

c,t are the moving average

of the yield and cumulative excess return per unit of duration at time t for past T months. We

analyse look-back window of T = 12 months.

3.5.5 Betting-Against-Beta

Betting-against-beta (BAB) implies that low beta assets outperform high beta assets on a risk-

adjusted basis. It has been proven to exist in diverse types of assets by Frazzini & Pedersen

(2014). We use the beta estimation by Frazzini & Pedersen (2014). It estimates correlation and

volatility separately using different estimation windows and subsequently shrinks the estimate

toward the shrinkage target. For simplicity, we use the same monthly data to predict correlation

and volatility instead of 3-day cumulative overlapping data for correlation estimation in Frazzini

& Pedersen (2014).

Betas are computed from rolling estimations of EM-LC excess returns on market excess

returns such as

β̂TSc,t = ρ̂t−59:t
σ̂ct−11:t
σ̂mktt−11:t

, (22)

where β̂TSc,t is the rolling beta estimation of country c at time t, with the estimated volatilities
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for the country’s bond return and the market σ̂ct−11:t and σ̂mktt−11:t using 1-year rolling estimation

window, and their correlation ρ̂t−59:t using 5-year rolling estimation window.

Subsequently, we shrink betas toward the cross-sectional mean (βXS) to avoid outlier effect,

suggested by Frazzini & Pedersen (2014), which is motivated by Vasicek (1973). The resulting

beta measure is

β̂c,t = wiβ̂
TS
c,t + (1− wi)β̂XS . (23)

We use the simplified version as introduced in Frazzini & Pedersen (2014) by setting the weight,

and cross-sectional mean as constants, such as βXS = 1, and the weight is decided among

w = 0.4, 0.6, 0.8.

3.5.6 Beta-neutral portfolio

For the BAB factor, we compute long-short weight using the Koijen weighting scheme and

subsequently make it beta neutral (Frazzini & Pedersen, 2014). It produces a portfolio going

long low-beta countries and short high-beta countries, where the long and short side is divided

by its beta. Specifically,

RBABt+1 =
1

βLt

∑
wBABc,t >0

|wBABc,t |RJPMc,t+1 −
1

βHt

∑
wBABc,t <0

|wBABc,t |RJPMc,t+1 , (24)

where βLt and βHt are the betas of low-beta portfolio and high-beta portfolio, calculated by

summing ex-ante beta at each country multiplied by the weights. The weight wBABc,t is calculated

from the Koijen weighting scheme.

3.6 Ex-ante betas

We consider several methods to estimate inputs for the advanced factor construction. The

inputs to be predicted are beta to the benchmark for individual countries. A good prediction

of ex-ante betas, which are predicted beta before being observed, close to ex-post betas, which

are realised betas, helps to achieve our objective to build a beta-neutral portfolio by removing

the unnecessary exposure to the market. We need a real-time beta estimation for the advanced

portfolios introduced in Section 3.2, Section 3.3, and Section 3.4. Hence we consider several

methods to estimate betas using rolling estimation each month with the look-back window of

one, three, and five years.

First, the OLS estimations in Equation (25) using each look-back window are considered

using

β̂OLS,Tc,t = ρ̂t−T+1:t

σ̂ct−T+1:t

σ̂mktt−T+1:t

, (25)

where β̂OLS,Tc,t is the rolling beta estimation of country c at time t with the size of the window

T = 1, 3, 5 years. The estimated volatility for the country’s bond return and the market are

denoted as σ̂ct−T+1:t and σ̂mktt−T+1:t, and their correlation is ρ̂t−T+1:t. It is obtained by regressing

the bond returns onto the market, such as

RJPM
c,t−T+1:t = α+ βc,t−T+1:tR

mkt
t−T+1:t + ε, T = 11, 35, 59, (26)
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where Rmkt
t−T+1:t and RJPM

c,t−T+1:t are vectors including market excess returns and EM-LC excess

returns, both per unit of duration, at t − T + 1, ..., t. Taking the mean of estimations using

the three look-back windows is also considered to give more weights to the recent observations,

which is given as

β̂AV Gc,t =
1

3

∑
T∈{11,35,59}

β̂OLS,Tc,t . (27)

Second, we apply the beta estimation by Frazzini & Pedersen (2014) introduced in Equation

(22), which estimates correlation and volatility separately using a one-year and five-year horizon

for volatility and correlation, respectively. The corresponding beta estimator is given as

β̂FPc,t = ρ̂t−59:t
σ̂ct−11:t
σ̂mktt−11:t

, (28)

where β̂FPc,t is the rolling beta estimation of country c at time t, with the estimated volatility

for the country’s bond return and the market σ̂ct−11:t and σ̂mktt−11:t using 1-year rolling estimation

window, and their correlation ρ̂t−59:t using 5-year rolling estimation window.

Subsequently, we shrink the estimated beta using each method, β̂TSc,t in Equation (29), as

suggested in Frazzini & Pedersen (2014) such as,

β̂c,t = wβ̂TSc,t + (1− w)β̂XS , (29)

where the shrinkage parameters in consideration are w = 1, 0.8, 0.6, 0.4. The cross-sectional

mean β̂XS = 1 is used as a shrinkage target. The reasoning behind shrinking betas towards the

shrinkage target is to reduce estimation error. Proper shrinkage target achieves it by introducing

a bias into the estimates.

3.7 Ex-ante covariance

We analyse various covariance estimators to be used as an input for the quadratic programming.

Using an incorrect covariance estimator in quadratic programming can be error-maximising due

to the noise in the risk trade-off term in Equation (8). Kan & Zhou (2007) find that estimation

errors in the sample covariance matrix can cause a high loss in expected out-of-sample per-

formance of the portfolio. Furthermore, when we use equal weight on each observation in the

moving window, the ghost effect of disappearing observation can dominate covariance estimates.

This effect intensifies when the estimation window is shorter. Therefore we investigate introduc-

ing structure onto the covariance estimators using observed and unobserved factors with different

estimation windows of three and five years. An equicorrelated version of individual covariance

estimators is analysed to reduce potential estimation errors for each estimation window.

First, we consider the sample covariance matrix with each look-back window. Based on the

sample covariance matrix, factor structure imposed covariance matrices are constructed using

observed and unobserved factors. Imposing a factor structure enables to reduce the estimation

error by setting the correlation of the unexplained component as zero. We use market factor as

an observed factor. To obtain a market factor covariance, we regress the excess return onto the
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market factor as follows,

Rt = a+Bft + εt, (30)

and use estimated B and εt to impose structure on the covariance matrix such as

Σmkt = BΣfB
′ + Σε, (31)

where Σε is a diagonal residual covariance matrix with σ2ε,i = var[εi,t].

Next, we combine the market factor and unoberved factors extracted by principal compo-

nents. Principal components might help detecting additional characteristics besides the market

factor. To combine the observed market factor and unobserved factors, we first estimate ob-

served factor model with Equation (30). Using estimated B, principal component analysis by

eigenvalue decomposition is applied on the residual covariance matrix, which is

Σ−BΣfB
′. (32)

To avoid possible estimation errors, we restrict the number of the principal components to two.

Subsequently, we construct the market with two principal components covariance as follows,

Σmkt,2PC = ΛDΛ′ + Σε, (33)

where D is a diagonal matrix of the two largest eigenvalues di, and Λ is a matrix of corresponding

eigenvectors λi from the resulting residual covariance matrix given in Equation (32). Specifically,

Λ = [λ1 λ2] and D = diag(d1, d2). Diagonal residual covariance matrix is denoted as Σε, which

extracts diagonal elements of Σ−BΣfB
′ − ΛDΛ′.

Factor structured covariance matrix only with unobserved factors from eigenvalue decompo-

sition is considered. We use three principal components by estimating BΣfB
′ in Equation (30)

from the eigenvalue decomposition of the sample covariance matrix of returns. The resulting

covariance matrix is as follows,

Σ3PC = ΛDΛ′ + Σε, (34)

where D is a diagonal matrix of the three largest eigenvalues di, and Λ denotes a matrix of

corresponding eigenvectors λi of the sample covariance matrix. A residual covariance matrix Σε

is the diagonal matrix of Σ− ΛDΛ′.

We consider assigning higher weights to more recent observations using exponentially weighted

moving covariance. This reduces the ghost effect by putting a lower weight on disappearing ob-

servation and adapts to the newer information quickly compared to using the same weight for

the entire observations. We set the span of the observation to each window size, three and five

years. It corresponds to the decay parameter α = 0.05, 0.03 for three and five years of moving

window, respectively. To compute exponentially weighted moving covariance, we first calculate
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weight using the decay parameter such as

w =


(1− α)t−1

(1− α)t−2

...

1

 , (35)

where t = 36, 60 for three and five years of moving window. Next, we calculate exponentially

weighted moving average as follows,

µEWM =
ιnw

′ · r
ι′tw

=
(1− α)t−1r1 + (1− α)t−2r2 + . . .+ rt

(1− α)t−1 + (1− α)t−2 + . . .+ (1− α) + 1
, (36)

where r is a n by t matrix where each row consists of a vector of n assets at each point of time,

which is r1, r2, . . . , rt. Subsequently, the exponentially weighted moving covariance is given as

ΣEWM = bias× ιnw
′ · (r − µEWM ι

′
t)(r − µEWM ι

′
t)
′

ι′tw
, (37)

where bias is a term which corrects for estimation bias given as

bias =
(ι′w) · (ι′tw)

(ι′tw) · (ι′tw)− ι′t(w ·w)
. (38)

In the above equations, · is a dot product and ιt and ιn are vectors of ones with length of t and

n, respectively.

Finally, we analyse equicorrelated covariance matrices by imposing equal correlation on the

introduced covariance estimators. The correlation part is set to the average of pairwise correla-

tions resulting from individual covariance estimators. By averaging the correlation component,

we expect to reduce the estimation error caused in the correlation terms. First, we compute the

equicorrelation from each of the introduced covariance estimators such as

ρ =
2

n(n− 1)

∑
i>j

qij√
qiiqjj

, (39)

where qij is the i,j th element of each covariance estimator Σ. Subsequently, the correlation

matrix is computed by

R = (1− ρ)I + ρJ, (40)

where I and J denote identity matrix and matrix of ones, respectively. The equicorrelated

covariance matrix is calculated by multiplying the diagonal element of the original covariance

matrix as follows,

ΣEQ = DRD, (41)

where D is a diagonal matrix of the original covariance estimators.
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3.8 Input estimator evaluation

We introduce evaluation metrics to compare various input estimators proposed in Section 3.6

and 3.7. We select the best ex-ante beta estimator based on BAB strategy. BAB has a beta-

neutral long-short portfolio by construction, as can be seen in Equation (24). Therefore, it is

logical to test which ex-ante beta measure can effectively remove the ex-post beta of the BAB

strategy. We use the full sample beta and the rolling beta statistics of BAB strategies with

different ex-ante beta estimators. To choose the best covariance estimator, we construct the

global minimum variance (GMV) portfolio using the weight given as

wgmv =
Σι′

ιΣι′
, (42)

where ι is a vector of ones, and Σ is each covariance estimator. This way, we can compare the

resulting portfolio, which is only based on the covariance estimator. Subsequently, we select the

covariance estimator with the lowest standard deviations of portfolio return.

3.9 Performance evaluation

There are several evaluation metrics to be considered to examine the performance of different

factor construction strategies. The main question is if the analysed methods can mitigate the

expected problems in the EM-LC universe. First, we measure how different methods deal with

the beta exposures. Together with the level of maximum and minimum beta, the significance

of the beta is tested, using the ex-post beta over time. The market beta part of the cumulative

return calculated using the ex-post beta is examined as a proxy for the return affected by the

beta exposure. The mean squared error (MSE) and mean absolute error (MAE) from zero using

three-year rolling OLS beta are used for each factor strategy to see if the beta is close to zero over

time. MSE gives a higher penalty on outliers by squaring the loss, while MAE is convenient for

having an overview of the level of deviations. Second, we investigate how successfully individual

methods control the concentration risk. To evaluate if a few volatile markets dominate, we use

each country’s risk and return contributions on the portfolio return. It enables us to compare

how few countries drive the portfolio risk and return. Afterwards, the resulting performance

is compared using the Sharpe ratio and Appraisal ratio. The Appraisal ratio is calculated by

alpha divided by unsystematic risk, where alpha is from regressing the portfolio return onto the

market, and unsystematic risk is the standard deviation of the residual from the regression. It

measures the performance excluding the beta exposure by using the alpha instead of the average

portfolio return as the Sharpe ratio.

3.10 Predictive ability testing

We analyse the predictability of ex-ante beta estimators introduced in Section 3.6. To compare

the significance of the differences in predictability in the results for BAB strategy, predictive

ability testing proposed by Giacomini & White (2006) is used in this paper2. It does not require

normality assumption and non-nested models, unlike well-known predictive ability testings by

2The MATLAB code of predictive ability testing from http://www.runmycode.org/companion/view/88 is
used.
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Diebold & Mariano (1995) and West (1996). It is proper testing in our analysis since some

suggested ex-ante beta estimators are non-nested, while others such as OLS estimates using

different rolling windows are nested models. Furthermore, Giacomini & White (2006) focuses

on rolling window forecasts, which is in line with our analysis.

3.11 Robust test statistics

The resulting performances of each strategy are compared in terms of the standard deviation

and Sharpe ratio. To investigate if the gains or losses of advanced factor portfolios from the

initial portfolio in Section 3.1 are statistically significant, we use robust test statistics with the

studentised bootstrap procedure introduced in Ledoit & Wolf (2018). It compares the Sharpe

ratio, variance, mean, skewness, and kurtosis without making normality or time-independent

assumptions 3.

4 Results

In Section 4.1, we present the result of ex-ante beta estimation. Based on this, an ex-ante

beta estimator for further analysis is decided. In Section 4.2, we compare the result of various

ex-ante covariance estimators and choose the best performing one for quadratic programming.

In Section 4.3, the result of the simple Koijen weighting scheme from Equation (1) is discussed.

Afterwards, we show the results of enhanced factor portfolio strategies introduced in Section

3. Section 4.4 focuses on the market beta characteristics, Section 4.5 discuses how well each

strategy deal with concentration risk, and Section 4.6 shows the overall performance of each

strategy.

4.1 Estimating ex-ante betas

To evaluate beta estimations, it is logical to test it on the BAB factor, as it is supposed to

be beta neutral by construction. Table 3 presents beta results of five different ex-ante beta

estimation methods from Section 3.6 for four choices of shrinkage weights, 1, 0.8, 0.6, and

0.4. The table reports the full sample beta, its t-statistics, and mean squared error, mean and

standard deviations of 3-year rolling ex-post betas for each weight and method combination.

Each weight and method combination is tested on the BAB factor strategy with the simple

rank-based weighting scheme given in Equation (1), subsequently constructing a beta-neutral

portfolio using Equation (24). The table reports the full sample beta, its t-statistics, and mean

squared error, mean and standard deviations of 3-year rolling ex-post betas. We observe that

the smaller the estimation window is, the higher the shrinkage parameter is preferred. It is due

to the higher estimation error when the sample size is small. For instance, w = 0.6 is optimal

for the OLS 1Y beta estimate, while w = 0.8 gives the best ex-post beta results for the OLS 3Y

and 5Y beta estimates.

Overall, the best estimator is FP 1Y5Y with the shrinkage parameter w = 0.8, which differs

from the ex-ante beta used in Frazzini & Pedersen (2014) where the shrinkage parameter of

3The MATLAB code for comparing the Sharpe ratio and variance is accessible in
https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html.
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w = 0.6 is used with the 3-day overlapping daily data instead of the monthly data used in

our paper. It outperforms other estimators in terms of the full sample ex-ante beta, 3-year

rolling ex-ante beta MSE with the target of 0 and the mean, followed by OLS AVG. It is tested

using the predictive ability testing introduced in Section 3.10 whether the best estimator gives

significantly better results than the other estimators. The result shows that the forecasts of

FP 1Y5Y with w = 0.8 outperforms all the other estimators. The test statistics are reported

in Table 33 in Appendix C. Therefore we use FP 1Y5Y with the shrinkage parameter w = 0.8

as our BAB measure in Section 3.5.5 and ex-ante beta estimate in further analysis. Pre-filled

beta using the first existing value is used before 2007 to avoid losing the sample period due to

a five-year correlation estimation period.

Table 3: Beta statistics

w = 1 w = 0.8
Beta measure β t-stat MSE Mean StDev β t-stat MSE Mean StDev

OLS 1Y 1.34 2.42 3.06∗ 1.48 0.94 0.92 5.15 0.63∗ 0.58 0.55
OLS 3Y -1.22 2.98 1.57∗ -0.21 1.24 0.13 0.92 0.16∗ -0.07 0.40
OLS 5Y 0.58 3.43 0.31∗ 0.31 0.47 -0.14 1.25 0.15∗ -0.22 0.32
OLS AVG 0.86 4.60 0.46∗ 0.46 0.50 -0.04 0.33 0.09∗ -0.16 0.26
FP 1Y5Y 0.81 4.70 0.47∗ 0.60 0.33 -0.02 0.22 0.03 -0.06 0.17

w = 0.6 w = 0.4
Beta measure β t-stat MSE Mean StDev β t-stat MSE Mean StDev

OLS 1Y -0.12 1.24 0.07∗ -0.13 0.24 -0.57 6.80 0.33∗ -0.52 0.24
OLS 3Y -0.43 4.16 0.30∗ -0.48 0.25 -0.79 8.73 0.67∗ -0.79 0.24
OLS 5Y -0.51 5.59 0.39∗ -0.55 0.30 -0.79 9.59 0.76∗ -0.82 0.30
OLS AVG -0.45 5.10 0.32∗ -0.51 0.23 -0.75 9.60 0.70∗ -0.80 0.24
FP 1Y5Y -0.42 5.20 0.21∗ -0.43 0.15 -0.71 9.97 0.55∗ -0.72 0.17

Notes: The summary statistics of the BAB factor strategy using different ex-ante betas with the simple rank-
based weighting scheme using different beta estimation methods are reported. The first two columns in each
shrinkage parameter w report the ex-post beta of the whole sample period and its t−statistics. The rest of the
metrics are calculated from the 3-year rolling OLS beta over time. MSE is the mean squared error compared to
0. For each shrinkage parameter and each metric, the closest value to 0 is in bold. The closest value to 0 across
all the shrinkage parameters is in blue colour. The sample period is 2007-01 to 2021-02. * indicate that MSE is
significantly different from the MSE of FP 1Y5Y with w = 0.8.

4.2 Estimating ex-ante covariance

We evaluate covariance estimators introduced in 3.7 using the global minimum variance portfolio.

For the global minimum variance portfolio return of each covariance estimator and estimation

window combination, Table 4 shows full sample standard deviations and mean squared error

of 3-year rolling standard deviations compared to 0. We observe that the sample covariance

matrix results in higher standard deviations than the other estimators. Increasing the size

of the estimation window does not seem to improve the results. Notably, the equicorrelated

covariance estimator improves the sample and exponentially weighted moving (EWM) covariance

estimators, giving lower standard deviations. This can be due to higher estimation errors in

correlation terms than in volatility since imposing factor structure removes some estimation

errors in correlation terms by ignoring the off-diagonal element of the residual covariance matrix.

It is also in line with the analysis of Frazzini & Pedersen (2014), suggesting that the correlation

term in beta needs a longer estimation window than the volatility term. Overall, the best

covariance estimator is the market factor structured covariance matrix with the 3-year estimation
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window, scoring the lowest standard deviation and MAE to zero. Therefore we use it as an ex-

ante covariance estimator for quadratic programming in further analysis.

Table 4: Covariance statistics

3Y window 5Y window
Estimator StDev (%) MAE (%) StDev (%) MAE (%)

Sample 0.66∗∗ 0.58∗ 0.57 0.51
Market Factor 0.47 0.43 0.51 0.45
Market+2PC Factor 0.49 0.44 0.58 0.49
3PC Factor 0.49 0.45 0.59 0.51
EWM 0.70 0.59 0.61 0.53

3Y window with equicorrelation 5Y window with equicorrelation
Estimator StDev (%) MAE (%) StDev (%) MAE (%)

Sample 0.49 0.44 0.51 0.45
Market Factor 0.50 0.44 0.52 0.46
Market+2PC Factor 0.50 0.45 0.51 0.46
3PC Factor 0.49 0.44 0.51 0.45
EWM 0.49 0.44 0.51 0.45

Notes: The summary statistics of the global minimum variance portfolio constructed from different covariance
estimators are reported. The first part of the table shows the results using 3-year and 5-year look-back windows,
and the second part reports 3-year and 5-year estimation window result under equicorrelation structure. The
mean absolute error (MAE) is calculated from the 3-year rolling ex-post standard deviations over time compared
to 0. The smallest value across all the covariance estimators is in blue colour. The sample period is 2007-02 to
2021-02. * and ** indicate that the strategy’s standard deviation is significantly different from the market factor
covariance estimator at 10% and 5% levels, respectively.

4.3 Koijen weighting scheme

In this section, we first answer the research question of whether factor investing works on the

EM-LC bond universe, which has not been investigated in the existing literature. To answer this

question, we use the basic Koijen weighting scheme introduced in Equation (1) and present the

performance. Afterwards, potential expected risk drivers are analysed. Based on the correlation

of each factor and its performance, we exclude a few factors in the main analysis.

Figure 3 and Table 5 summarize the performance of each factor strategy. As shown in

Figure 3, most of the factors give quite stable cumulative returns over the sample period. On

the other hand, Value-MR is highly sensitive when the market is volatile, especially during the

2008 financial crisis and the 2018-2021 Turkish currency and debt crisis. Table 5 reports α and

β obtained from a full-sample regression of the individual factor strategies onto the market.

Carry, Change-in-carry, and both of the Momentum factors are able to generate significant

alpha to the market at a 5% level. Sharpe ratios vary from 0.18 for BAB to 0.62 for the Carry

factor. In line with the analysis in the developed market bond universe (Koijen et al., 2018), the

Carry factor generates a favourable Sharpe ratio. Value-spread gives a lower Sharpe ratio and

insignificant alpha, which is opposed to the result in (Asness et al., 2013). This might be due to

the characteristic of the emerging market, which can have sensitive 3-month LIBOR rates when

markets are unstable. Value-MR and BAB show poor performance with insignificant alpha, in

line with the results for developed markets (Asness et al., 2013; Frazzini & Pedersen, 2014). On

the other hand, both of the momentum factors have relatively better performance than in the

developed market bond universe, where an insignificant alpha has been observed in Asness et al.

(2013), showing significant alpha and higher Sharpe ratio for both in the EM-LC bond universe.
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Therefore factor investing works in general in terms of the portfolio performance in the EM-LC

bond universe.

Figure 3: Cumulative return of factors using Koijen weighting scheme

Table 5: Portfolio performance of Koijen weighting scheme

Factor strategy α (%) β SR AR Mean (%) StDev (%)

Carry 0.62 -0.02 0.62 0.63 0.61 0.98
(2.50) (0.29)

Change-in-Carry 0.76 -0.23 0.61 0.69 0.68 1.12
(2.74) (2.56)

Value-MR 0.09 0.51 0.22 0.07 0.28 1.26
(0.28) (5.03)

Value-spread 0.39 0.25 0.43 0.36 0.48 1.10
(1.42) (2.88)

MOM-YLD 0.82 -0.68 0.37 0.57 0.57 1.55
(2.27) (5.80)

MOM-RET 0.95 -0.73 0.48 0.73 0.69 1.45
(2.91) (6.88)

BAB 0.27 -0.19 0.18 0.25 0.20 1.11
(0.98) (2.11)

Notes: The t-statistics are shown below the alpha and beta coefficients. The alpha, Sharpe Ratio (SR), Appraisal
Ratio (AR), Mean and Standard deviations (StDev) are annualised values. The sample period runs from 2006-09
for Value-MR and 2005-02 for others, and to 2021-02.

Figure 4 reports the correlation of the returns of each factor strategy. Intuitively, factor

strategies that are based on a similar series show high correlations. Carry and Value-spread

only differ on whether they use 2-year yield or 3-month LIBOR rates according to Equation (15)

and Equation (17). However, we observe that their correlation with other factors shows quite

different aspects. Carry is positively correlated with Momentum and BAB, while Value-spread

is negatively correlated with them. Therefore it might be beneficial to include Value-spread

in the multi-factor model for a diversified portfolio. On the other hand, Momentum-return

and Momentum-yield are also highly correlated but show a similar pattern of correlations with

the other factors. The only difference is whether it includes the carry part, as explained in

Equation (19). As expected, Momentum-return is more correlated with the Carry compared to

the Momentum-yield. However, Momentum-return has a lower correlation with Value-MR and

Change-in-carry.

Besides the portfolio performance, we encounter two main features from the result of the
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Figure 4: Correlation of factors using Koijen weighting scheme

simple rank-based weighting scheme of Equation (1) that can be potential risk drivers. The first

problem is significant ex-post betas from most of the factor strategies as shown in Table 5, which

can cause high risk when the market becomes volatile. Especially, BAB has highly significant

betas while it is supposed to be beta-neutral by construction. Moreover, Table 6 shows that ex-

ante and ex-post beta at a certain time can be even higher than the realised beta over the whole

sample period. Figure 5 also suggests that the rolling ex-post beta can have highly positive

and negative values. The performance of each factor strategy can be separated into the market

beta part, which is calculated by Rmktt

∑
c βc,tw

signal
c,t , and the rest of it, which is the pure return

coming from the factor strategy itself. Ex-ante return composition of Table 6 shows a proxy

of the composition of cumulative return for each strategy, which is split into the market beta

part and pure factor performance. We observe that the performance of some strategies is highly

driven by the market beta, which can be risky when the market crashes. Therefore, adjusting

for the beta using the methods introduced in Section 3 to make the portfolio have insignificant

betas is expected to be the key to the problem.

Table 6: Beta statistics of the basic Koijen weighting scheme

Ex-ante Ex-ante return composition Ex-post rolling
Factor strategy MSE MAE min max market (%) factor (%) MSE MAE min max

Carry 0.16 0.30 -1.40 0.81 -21.7 121.7 0.20 0.30 -1.51 0.35
Change-in-carry 0.28 0.38 -1.70 1.84 36.0 64.0 0.22 0.35 -1.37 0.42
Value-MR 0.46 0.50 -1.06 1.95 64.4 35.6 0.98 0.78 -0.56 2.18
Value-spread 0.23 0.36 -1.44 1.07 -31.7 131.7 0.37 0.53 -1.58 0.77
MOM-YLD 0.57 0.63 -1.66 1.77 129.7 -29.7 0.63 0.67 -1.35 0.63
MOM-RET 0.53 0.60 -1.59 1.78 90.2 9.8 0.74 0.74 -1.52 0.61
BAB 0.00 0.00 0.00 0.00 0.0 100.0 0.06 0.21 -0.90 0.41

Notes: The summary statistics of ex-ante betas over time for each factor strategy with the basic Koijen rank-based
weighting scheme is reported. The ex-ante beta is a one and five-year rolling window FP beta with a shrinkage
parameter of 0.8, multiplied by the portfolio weights at each point of time. The ex-post beta is 3-year rolling
OLS beta using the factor return series. The return composition is a proxy of how the total cumulative return is
separated into the market and factor part. The market part is the cumulative return of the market multiplied by
the ex-ante beta. The sample period runs from 2006-09 for Value-MR and 2005-02 for others, and to 2021-02.

Second, a few markets drive the portfolio performance due to its high volatility during
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Figure 5: 3-year rolling OLS ex-post beta

crises, such as the Turkish currency and debt crisis in 2018-2021. Table 7 shows the statistics

of risk and return contribution for individual factor strategies. The risk contribution is the

percentage of marginal risk contribution, which sums to the total standard deviation. The

return contribution is computed by the absolute return of each country over the absolute sum of

return over countries. Each measure is computed at each point in time. We observe the average

maximum risk contribution above 40% across all the factor strategies. Especially, Momentum

strategies have an average maximum risk contribution above 80%, which means that, on average,

one market drives more than 80% of the volatility at each point of time. The return contribution

shows what percentage of the return at each point of time is explained by each market. The

mean of the maximum return contribution of each factor strategy is around 40% except for BAB,

meaning that a large proportion of the return is explained by only one market. These results

suggest that the dominant market drives the performance. Also, we observe in Figure 2 that

the volatility is time-varying, where a previously volatile country is no longer volatile. Hence

predicting volatility in real-time and considering it for portfolio construction is essential.

Table 7: Concentration risk of the basic Koijen weighting scheme

Risk contribution Return contribution
Factor strategy Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Carry -3.30 53.88 16.85 0.20 41.39 11.3
Change-in-carry -3.44 61.03 20.29 0.17 43.27 12.45
Value-MR -3.29 43.73 14.61 0.04 42.24 11.93
Value-spread -5.82 44.67 14.17 0.17 39.26 10.36
MOM-YLD -2.01 81.06 20.30 0.07 41.48 10.54
MOM-RET -1.89 82.83 20.59 0.09 40.13 10.3
BAB -1.05 47.32 11.85 0.05 29.93 8.07

Notes: Risk and return contribution show the average of minimum, maximum, and standard deviation of the
risk and return contribution at each point of time. The higher the maximum contribution is, the more dominant
one market contribution is on average. Higher standard deviation means that there are large deviations across
countries regarding contribution on risk and return, which can be a proxy for how much it is concentrated to one
market. The sample period runs from 2006-09 for Value-MR and 2005-02 for others, and to 2021-02.

These two features are closely related to the expected aspects of EM-LC bonds in Section

1. Even though factor investing might generally work, it is exposed to significant beta and

risks driven by few dominating markets. In the following section, we analyse if advanced factor
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strategies proposed in Section 3 can minimise the aforementioned potential risk drivers. Con-

sidering the correlation between factors and their performance, we focus on Change-in-carry,

Value-spread, and Momentum-return factors in further analysis.

4.4 Beta result of portfolio construction strategies

In this section, we analyse if the proposed advanced factor portfolio construction methods in

Section 3 help to reduce the beta exposure of each factor strategy, which is one of the potential

risks in the EM-LC bond universe. We use the ex-ante beta measure of FP 1Y5Y with the

shrinkage parameter w = 0.8 chosen in Section 4.1. We consider three structures of portfolio

construction, which are Koijen, Optimisation and Group. For Koijen, we consider the Basic

Koijen weighting scheme, which ranks on the original factor measure, Division which ranks on

each measure divided by the beta, and Residualisation, which ranks on each measure orthogonal

to the market beta. We use the Basic Koijen weighting scheme as a benchmark. Under optimi-

sation structure, LP is maximising the factor exposure subject to having zero betas, LP-limit is

LP with country-specific maximum weight restrictions inversely related to its volatility, and QP

is maximising the factor exposure with a risk trade-off subject to zero beta exposure. Group

structure has Equal size grouping by real-time beta ranking and K-means grouping, which allows

group size to be non-identical. To combine two groups from K-means, we consider combining

based on the size and risk of each group.

Table 8 shows the statistics of the market beta exposure. We use several measures such as ex-

ante, ex-post rolling and ex-post whole sample betas to investigate if betas exposures have been

removed. Ex-ante beta shows how effectively each method removes beta exposure using indirect

beta neutralisation methods such as grouping, residualisation and division. Ex-post rolling beta

captures the time-varying characteristics of the realised beta, which can be underestimated in

the ex-post full sample beta. Ex-post full sample beta gives a comprehensive insight during the

entire period. For ex-ante and ex-post rolling beta, MSE and MAE to the target of zero are

reported. The proportion of market beta contribution on each factor’s cumulative return is also

reported as an ex-ante measure.

A naive way to adjust the factor measure with dividing by the beta fails to reduce the beta

exposure compared to the basic Koijen weighting scheme. It shows similar beta exposures to

the Basic Koijen portfolio in general. Simply dividing the factor score by the beta is not able

to adjust the ranking effectively. In Panel B, we find the lowest ex-post full sample beta from

Division method. However, it is underestimated as the MSE and MAE of the ex-post rolling

beta are quite high, showing a similar level to the Basic Koijen method.

In Panel A and B, the Grouping K-means-risk effectively minimises MSE of both ex-ante and

ex-post rolling beta. It achieves to remove the ex-post rolling beta by estimating ex-ante beta

close to it. Also, in Panel A to C, we observe that K-means groupings more effectively reduce

the beta exposure than the Equal-size grouping. Simply clustering countries into equal-sized two

groups cannot capture few countries that highly deviate from the other countries. Table 9 shows

the overview of the group’s composition using Equal size and K-means clustering, respectively.

As seen in the last column of each table, equal size grouping assigns half of the countries into the

emerging market group, while K-means clustering assigns only three countries into the emerging
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Table 8: Market beta exposure

Panel A: Change-in-carry

Ex-ante Ex-post rolling Ex-post full sample
Structure Methods MSE MAE beta return MSE MAE beta t−stat

Basic 0.28 0.38 0.36 0.22 0.35 -0.23 -2.56
Koijen Div 0.29 0.40 0.55 0.13 0.31 -0.26 -3.26

Resid 0.05 0.15 -0.02 0.11 0.24 -0.01 -0.14

LP 0.00 0.00 0.00 0.13 0.28 -0.16 -1.93
Optimisation LP-limit 0.00 0.00 0.00 0.06 0.21 -0.12 -1.91

QP 0.00 0.00 0.00 0.08 0.22 -0.13 -1.98

Equal 0.17 0.26 0.25 0.15 0.30 -0.20 -2.50
Group K-means-size 0.04 0.14 -0.05 0.04 0.15 -0.06 -0.93

K-means-risk 0.03 0.13 -0.06 0.02 0.10 -0.02 -0.39

Panel B: Value-spread

Ex-ante Ex-post rolling Ex-post full sample
Structure Methods MSE MAE beta return MSE MAE beta t−stat

Basic 0.23 0.36 -0.32 0.37 0.53 0.25 2.88
Koijen Div 0.28 0.40 -0.79 0.36 0.46 0.00 -0.01

Resid 0.04 0.15 0.07 0.16 0.31 0.13 1.64

LP 0.00 0.00 0.00 0.12 0.28 0.20 2.57
Optimisation LP-limit 0.00 0.00 0.00 0.04 0.15 0.07 1.05

QP 0.00 0.00 0.00 0.11 0.28 0.22 3.27

Equal 0.12 0.23 -0.31 0.28 0.40 0.13 1.65
Group K-means-size 0.04 0.16 -0.03 0.09 0.24 0.25 3.87

K-means-risk 0.04 0.15 0.00 0.06 0.21 0.21 3.36

Panel C: MOM-RET

Ex-ante Ex-post rolling Ex-post full sample
Structure Methods MSE MAE beta return MSE MAE beta t−stat

Basic 0.53 0.60 0.90 0.74 0.74 -0.73 -6.88
Koijen Div 0.33 0.44 -0.16 0.69 0.70 -0.70 -8.41

Resid 0.35 0.44 -0.04 0.07 0.22 -0.17 -2.02

LP 0.00 0.00 0.00 0.25 0.40 -0.40 -4.63
Optimisation LP-limit 0.00 0.00 0.00 0.12 0.29 -0.25 -3.70

QP 0.00 0.00 0.00 0.22 0.39 -0.33 -4.76

Equal 0.22 0.37 0.68 0.38 0.50 -0.52 -6.25
Group K-means-size 0.08 0.23 0.58 0.27 0.40 -0.45 -5.14

K-means-risk 0.08 0.22 0.48 0.24 0.40 -0.40 -4.83

Panel D: Average

Ex-ante Ex-post rolling Ex-post full sample
Structure Methods MSE MAE beta return MSE MAE beta t−stat

Basic 0.37 0.46 0.44 0.53 0.56 -0.15 -1.27
Koijen Div 0.36 0.46 0.00 0.53 0.57 -0.27 -3.20

Resid 0.10 0.20 -0.01 0.15 0.29 -0.03 -0.31

LP 0.00 0.00 0.00 0.18 0.33 -0.07 -0.76
Optimisation LP-limit 0.00 0.00 0.00 0.08 0.21 -0.09 -1.30

QP 0.00 0.00 0.00 0.13 0.28 -0.06 -0.78

Equal 0.18 0.30 0.35 0.29 0.40 -0.12 -1.41
Group K-means-size 0.05 0.18 0.20 0.13 0.27 -0.06 -0.45

K-means-risk 0.05 0.17 0.18 0.12 0.25 -0.07 -0.67

Notes: The summary statistics of beta exposure for each factor strategy under Koijen, Optimisation and Group
structure is reported. The ex-ante beta is a one and five-year rolling window FP beta with a shrinkage parameter
of 0.8, multiplied by the portfolio weights at each point of time. The ex-post beta is 3-year rolling OLS beta
using the factor return series. The beta return is a proxy of how the total cumulative return is separated into
the market. The beta return is computed using the cumulative return of the market multiplied by the ex-ante
beta divided by the cumulative return of the full sample period. Panel D is the average value using six factors
excluding BAB. The results of the other individual factors are reported in Appendix B. The sample period runs
from 2006-09 for Value-MR and 2005-02 for others, and to 2021-02.
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market group for more than half of the sample period. Furthermore, Table 10 shows that the

developed market group is around two times larger than the emerging market group. On the

other hand, combining two groups by K-means clustering using the risk does not improve upon

using the size. K-means clustering tends to classify outliers with large betas in the emerging

market group, so the size of the emerging market group can be minimal at some point. Therefore

the underperformance of K-means-risk can be due to the small size group’s blowing up the result,

which can be highly volatile, as the risk is an ex-ante measure based on the previous group result.

Table 9: Grouping strategy: Overview of EM and DM-like countries

Equal K-means
Chg-in-carry Value-spread MOM-RET AVG Chg-in-carry Value-spread MOM-RET AVG

South Korea 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
China 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
India 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Malaysia 0.89 0.92 0.94 0.93 0.99 0.98 0.98 0.99
Chile 0.75 0.95 0.97 0.92 1.00 1.00 1.00 1.00
Thailand 0.79 0.79 0.92 0.85 0.92 0.92 1.00 0.96
Poland 0.59 0.57 0.59 0.59 0.80 0.75 0.91 0.84
Russia 0.59 0.61 0.44 0.56 0.74 0.76 0.87 0.79
Philippines - - 0.55 0.52 - - 0.89 0.90
Hungary 0.29 0.32 0.24 0.25 0.49 0.44 0.68 0.56
Mexico 0.18 0.24 0.28 0.21 0.62 0.59 0.79 0.68
South Africa 0.24 0.19 0.24 0.15 0.61 0.55 0.69 0.62
Colombia 0.28 0.18 0.06 0.07 0.63 0.40 0.64 0.55
Peru 0.03 0.10 0.02 0.30 0.62 0.50 0.68 0.59
Indonesia 0.01 0.01 0.03 0.01 0.16 0.12 0.41 0.26
Brazil 0.02 0.00 0.00 0.00 0.29 0.26 0.49 0.36
Turkey 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: The proportion of DM-like membership per country using the grouping with the equal size and K-means
is reported. One means that the country has been classified into the DM-like group during the full sample period.
AVG is the average value using all seven factors. The results of the other individual factors are reported in
Appendix B. The sample period runs from 2006-09 for Value-MR and 2005-02 for others, and to 2021-02.

Table 10: Grouping strategy: Overview of the size of EM and DM-like group

Equal K-means
EM DM EM DM

Change-in-carry 0.53 0.47 0.35 0.65
Value-spread 0.52 0.48 0.37 0.63
MOM-RET 0.52 0.48 0.24 0.76

Notes: The overall proportion of each group’s size using Equal and K-means grouping is reported. The results of
the other individual factors are reported in Appendix B. The sample period runs from 2006-006-09 for Value-MR
and 2005-02 for others, and to 2021-02.

Beta exposures of each grouping universe, reported in Table 11 and Table 12 show that EM-

like universe has much higher beta exposure than DM-like universe. Interestingly, we see that

the DM-like universe from the K-means grouping has a similar level of beta exposure to the

overall K-means grouping method. High beta exposure in the EM-like group is compensated

by the size of the group, where around 30% is EM and 70% is DM-like markets on average,

given in Table 10. It suggests that beta exposure can be reduced by creating separate long-short

portfolios when there are considerable differences in beta across the countries.

Optimisation methods have zero ex-ante betas by construction, and ex-post betas are reduced
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Table 11: Grouping - Equal size: Beta exposure of EM and DM-like groups

Panel A: EM-like

Ex-ante Ex-post rolling Ex-post full sample
Pf strategy MSE MAE beta return MSE MAE beta t−stat

Change-in-carry 0.68 0.49 0.38 0.68 0.56 -0.42 -2.92
Value-spread 0.54 0.49 -0.81 1.05 0.76 0.13 0.88
MOM-RET 0.79 0.69 0.55 1.25 0.96 -0.99 -6.67

Panel B: DM-like

Ex-ante Ex-post rolling Ex-post full sample
Pf strategy MSE MAE beta return MSE MAE beta t−stat

Change-in-carry 0.03 0.14 -0.83 0.07 0.19 0.02 0.23
Value-spread 0.04 0.16 -0.04 0.11 0.25 0.13 2.25
MOM-RET 0.03 0.14 4.58 0.08 0.25 -0.06 -0.91

Notes: The summary statistics of beta exposure for each factor strategy under Group-Equal structure is reported.
The ex-ante beta is a one and five-year rolling window FP beta with a shrinkage parameter of 0.8, multiplied
by the portfolio weights at each point of time. The ex-post beta is 3-year rolling OLS beta using the factor
return series. The beta return is a proxy of how the total cumulative return is separated into the market. The
beta return is computed using the cumulative return of the market multiplied by the ex-ante beta divided by the
cumulative return of the full sample period. The results of the other individual factors are reported in Appendix
B. The sample period runs from 2005-02 to 2021-02.

Table 12: Grouping - K-means: Beta exposure of EM and DM-like groups

Panel A: EM-like

Ex-ante Ex-post rolling Ex-post full sample
Pf strategy MSE MAE beta return MSE MAE beta t−stat

Change-in-carry 0.15 0.28 0.03 0.29 0.46 0.21 1.35
Value-spread 0.17 0.30 -0.14 0.40 0.52 0.31 2.10
MOM-RET 0.18 0.27 0.38 0.41 0.58 -0.51 -3.57

Panel B: DM-like

Ex-ante Ex-post rolling Ex-post full sample
Pf strategy MSE MAE beta return MSE MAE beta t−stat

Change-in-carry 0.04 0.15 -0.24 0.04 0.17 -0.07 -1.16
Value-spread 0.07 0.22 0.04 0.08 0.22 0.16 2.83
MOM-RET 0.08 0.24 0.75 0.23 0.41 -0.24 -2.90

Notes: The summary statistics of beta exposure for each factor strategy under Group-K-means structure is
reported. The ex-ante beta is a one and five-year rolling window FP beta with a shrinkage parameter of 0.8,
multiplied by the portfolio weights at each point of time. The ex-post beta is 3-year rolling OLS beta using the
factor return series. The beta return is a proxy of how the total cumulative return is separated into the market.
The beta return is computed using the cumulative return of the market multiplied by the ex-ante beta divided
by the cumulative return of the full sample period. The results of the other individual factors are reported in
Appendix B. The sample period runs from 2005-02 to 2021-02.

compared to the Koijen strategy. However, ex-post betas exposures are still present, with non-

zero values. It can be explained by the fast-moving beta, resulting in a mismatch between ex-ante

and ex-post beta. As can be seen in Table 13, beta is highly volatile in some markets, making

it hard to be precisely predicted. Furthermore, Linear and Quadratic programming can use the

maximum Koijen weight for more than one country, leading to more concentrated portfolios.

This could accentuate the prediction errors. On the other hand, LP-limit has different maximum

weights for each country based on their volatility. It enables the prediction errors to decrease.

Residualisation gives comparable beta exposures to optimisation and grouping methods. We

observe from Table 14 that the average t-statistics has the opposite relation to the level of beta

exposure. When the beta is significant in factor measures, residualising can better remove the
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Table 13: Beta stat

mean StDev min max

Brazil 1.66 0.35 0.35 2.48
Mexico 0.89 0.20 0.57 1.51
Colombia 1.19 0.35 0.46 2.10
Indonesia 1.59 0.65 0.49 2.95
Malaysia 0.36 0.15 -0.03 0.76
Thailand 0.49 0.11 0.19 1.00
South Korea 0.28 0.17 -0.07 0.74
Turkey 3.51 1.60 1.99 8.32
South Africa 0.99 0.29 0.17 1.53
Poland 0.70 0.24 0.10 1.03
Hungary 1.17 0.46 0.37 2.56
India 0.28 0.14 -0.12 0.77
China 0.13 0.10 -0.20 0.33
Russia 0.91 0.47 -0.31 2.16
Chile 0.54 0.13 0.33 0.78
Peru 1.03 0.29 0.53 1.60
Philippines 0.88 0.20 0.47 1.27

Notes: Statistics of 3-year rolling OLS beta obtained from regressing each country’s bond excess return per unit
of duration onto the market is reported. The sample period runs from 2005-02 to 2021-02.

beta exposure. However, the effect of removing the beta exposure by making the factor exposure

orthogonal to the beta is partly off-set because we subsequently still impose a rank-based Koijen

weighting scheme.

Table 14: Residualisation: cross-sectional regression statistics

Change-in-carry Value-spread MOM-RET

t−stat 1.41 1.34 2.58
R2 0.17 0.15 0.29

Notes: The mean of the absolute beta t-statistics and R-squared obtained from the cross-sectional regression in
each month are reported. The sample period runs from 2005-02 to 2021-02.

Overall, we observe that beta exposure has been effectively reduced in most factor strategies

except for the Momentum factors. For Linear programming, it might be due to the high turnover

in the positioning of Momentum, which can be harmful when the beta is fluctuating a lot.

Moreover, it tends to go short on Turkey, which has a beta of approximately 6.5 from 2019

to 2020. It drives the beta exposure, especially in the Grouping strategy, where only indirect

adjustment on beta exposure has been made.

4.5 Concentration risk

In Section 4.3, we discuss concentration risk caused by a few volatile markets using the basic

Koijen weighting scheme. In this section, we investigate if advanced methods introduced in Sec-

tion 3 contributes to lower concentration risk. Table 15 reports the concentration risk statistics,

which captures the characteristics of the risk and return contribution of countries at each point

of time. Under Koijen structure that ranks the signal measure, Basic uses the original factor

measure, Div divides the factor measure by the beta, and Resid is orthogonalising the signal

measure onto the market. For the Optimisation structure, LP maximises the factor exposure
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subject to zero ex-ante betas, LP-limit has additional constraints of country-specific maximum

weight according to its volatility, and QP maximises the factor exposure with a risk trade-off

subject to zero ex-ante betas. For Group structure, Equal is clustering the universe into the two

same-size groups. K-means-size and K-means-risk use K-means clustering to group countries

and combines two resulting groups proportional to each group size and using the inverse of the

risk of the two groups’ return, respectively.

In Panel C, it is observed that LP-limit, QP, K-means-size, and K-means-risk tend to

perform better at achieving lower maximum risk and return contribution. The methods under

the Koijen structure show higher maximum risk contribution in Panel A to C. It is expected since

those methods only adjust for the factor measure while still imposing the rank-based weighting

scheme. Equal grouping also does not perform well, which can be due to imposing equal size on

the two groups. It can accentuate assigning countries into the wrong group, preventing volatile

assets from off-setting the risk by long-short portfolios within the group.

LP-limit generally outperforms the other methods in terms of the risk contribution across

Panel A to D. It tightens up the maximum weight for high volatility countries while permitting

higher maximum weight for low volatility countries. Therefore it effectively adjusts for the

marginal risk contribution during the optimisation process. QP uses the risk trade-off, which is

more flexible than the direct restriction on the risky countries such as LP-limit. Thereby it less

effectively reduces the risk contribution.

Interestingly, K-means-risk is able to score the lowest maximum and standard deviation of

the return contribution. However, we do not observe much differences from K-means-risk, which

has only 0.44% higher maximum return contribution. Precisely clustering the universe makes it

possible to reduce the maximum return contribution. On the other hand, considering the risk

level of each group does not improve upon the concentration risk of considering the group size.
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Table 15: Concentration risk statistics

Panel A: Change-in-carry

Risk contribution Return contribution
Structure Methods Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Basic -5.76 56.76 18.62 0.38 38.27 12.08
Koijen Div -4.60 51.54 16.89 0.39 37.00 11.84

Resid -5.76 56.76 18.62 0.37 36.24 11.42

LP -3.32 47.84 16.05 0.00 39.03 13.23
Optimisation LP-limit -3.37 42.00 14.35 0.03 34.54 11.95

QP -3.64 44.83 14.92 0.46 35.45 11.67

Equal -4.65 56.11 18.14 0.24 36.91 11.77
Group K-means-size -4.91 47.38 15.95 0.35 34.25 11.10

K-means-risk -4.99 47.87 15.84 0.35 33.83 11.03

Panel B: Value-spread

Risk contribution Return contribution
Structure Methods Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Basic -6.44 51.96 15.64 0.22 33.37 9.84
Koijen Div -4.26 44.44 13.27 0.23 32.02 9.61

Resid -6.44 51.96 15.64 0.22 31.99 9.47

LP -3.98 41.56 12.96 0.00 34.65 10.96
Optimisation LP-limit -4.29 41.85 12.95 0.00 31.52 10.25

QP -4.08 38.49 11.98 0.15 31.94 9.91

Equal -5.61 52.75 15.42 0.13 32.57 9.59
Group K-means-size -5.99 47.67 14.22 0.15 30.60 9.18

K-means-risk -7.19 47.49 14.31 0.16 29.93 9.10

Panel C: MOM-RET

Risk contribution Return contribution
Structure Methods Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Basic -5.70 50.52 14.38 0.05 31.49 8.70
Koijen Div -6.34 50.54 14.42 0.05 30.61 8.52

Resid -5.70 50.52 14.38 0.05 29.72 8.18

LP -3.38 41.91 12.12 0.00 31.47 9.35
Optimisation LP-limit -3.41 33.02 10.46 0.00 28.91 8.77

QP -2.71 35.95 10.63 0.12 30.94 9.11

Equal -4.80 52.20 14.57 0.04 31.08 8.55
Group Kmeans-size -5.28 42.02 12.47 0.02 28.38 8.05

K-means-risk -6.03 45.35 13.17 0.02 28.77 8.11

Panel D: Average

Risk contribution Return contribution
Structure Methods Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Basic -5.95 54.22 16.74 0.23 35.06 10.50
Koijen Div -5.19 48.64 15.07 0.24 33.39 10.14

Resid -5.95 54.22 16.74 0.23 33.37 10.02

LP -3.95 46.19 14.47 0.00 35.77 11.49
Optimisation LP-limit -3.90 39.74 13.05 0.02 32.50 10.68

QP -3.50 40.28 12.79 0.26 33.43 10.51

Equal -5.23 54.68 16.61 0.14 34.02 10.25
Group K-means-size -5.21 45.13 14.28 0.18 31.74 9.74

K-means-risk -5.73 46.16 14.44 0.18 31.30 9.66

Notes: The concentration risk statistics for each factor strategy under Koijen, Optimisation and Group structure
is reported. The risk contribution is computed by the 3-year rolling estimation of the marginal risk contribution
divided by the marginal contribution and subsequently dividing it by the total standard deviation. Afterwards,
the minimum, maximum, and standard deviation across the countries are calculated at each time, and the average
of them is reported. The return contribution is measured by the absolute return of each country divided by the
sum of the absolute returns at each point in time. Subsequently, the minimum, maximum, and standard deviation
across the countries are calculated at each time, and the average of them is reported. Panel D is the average
value using six factors excluding BAB. The results of the other individual factors are reported in Appendix B.
The sample period runs from 2006-09 for Value-MR and 2005-02 for others, and to 2021-02.
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4.6 Performance

In Section 4.4 and Section 4.5, we note that the advanced portfolio structures of Koijen, Op-

timisation, and Group manage to deal with the potential risk drivers of beta exposure and

concentration risk, discussed in Section 4.3. Ideally, the advanced structure might achieve to

outperform or maintain the portfolio performance of the Basic Koijen weighting scheme. In this

section, we study if the advanced portfolio structures still attain good performances.

Table 16: Portfolio performance

Panel A: Change-in-carry

Structure Methods α (%) t-stat β SR AR Mean (%) StDev (%) Skewness Kurtosis

Basic 0.76 2.74 −0.23∗∗∗ 0.61 0.69 0.68 1.12 0.28 2.90
Koijen Div 0.62 2.51 −0.26∗∗∗ 0.52 0.63 0.52 1.00∗∗ 0.46 3.83

Resid 0.60 2.31 -0.01 0.58 0.58 0.59 1.02 0.95 3.65

LP 0.60 2.32 −0.16∗ 0.52 0.59 0.54 1.04 0.86 3.36
Optimisation LP-limit 0.52 2.59 −0.12∗ 0.59 0.65 0.48 0.81∗∗ 0.63 4.73

QP 0.62 3.03 −0.13∗∗ 0.70 0.76 0.57 0.81∗∗∗ 0.65 3.78

Equal 0.46 1.83 −0.20∗∗∗ 0.38 0.46 0.39 1.01∗∗∗ 0.33 3.26
Group K-means-size 0.57 2.75 -0.06 0.66 0.69 0.54 0.82∗∗ 1.06 4.99

K-means-risk 0.57 3.01 -0.02 0.75 0.76 0.56 0.75∗∗∗ 0.79 3.66

Panel B: Value-spread

Structure Methods α (%) t-stat β SR AR Mean (%) StDev (%) Skewness Kurtosis

Basic 0.39 1.42 0.25∗∗∗ 0.43 0.36 0.48 1.10 -0.67 5.20
Koijen Div 0.34 1.32 0.00 0.33 0.33 0.34 1.02 -0.24 4.46

Resid 0.39 1.56 0.13 0.44 0.39 0.44 1.00∗∗ -0.95 6.73

LP 0.38 1.60 0.20∗∗∗ 0.47 0.40 0.46 0.96∗ -0.99 6.18
Optimisation LP-limit 0.41 2.05 0.07 0.55 0.52 0.43 0.79∗∗ -0.94 6.04

QP 0.55 2.67 0.22∗∗∗ 0.75 0.67 0.62 0.83∗ -1.88 16.45

Equal 0.41 1.70 0.13∗ 0.48 0.43 0.46 0.97∗∗ -0.2 4.02
Group K-means-size 0.38 1.88 0.25∗∗∗ 0.57 0.48 0.47 0.83∗∗ -0.66 5.09

K-means-risk 0.45 2.32 0.21∗∗∗ 0.66 0.59 0.53 0.79∗∗∗ -0.65 5.28

Panel C: MOM-RET

Structure Methods α (%) t-stat β SR AR Mean (%) StDev (%) Skewness Kurtosis

Basic 0.95 2.91 −0.73∗∗∗ 0.48 0.73 0.69 1.45 0.89 11.99
Koijen Div 0.46 1.81 −0.70∗∗∗ 0.18 0.46 0.21 1.19 0.03 5.41

Resid 0.76 2.93 −0.17∗∗ 0.67 0.74 0.70 1.04 0.55 1.88

LP 0.76 2.85 −0.40∗∗∗ 0.55 0.72 0.61 1.11 0.88 4.47
Optimisation LP-limit 0.48 2.34 −0.25∗∗∗ 0.47 0.59 0.39 0.85∗ -0.11 4.79

QP 0.52 2.44 −0.33∗∗∗ 0.45 0.62 0.40 0.89∗∗∗ 1.57 6.89

Equal 0.65 2.52 −0.52∗∗∗ 0.41 0.64 0.46 1.11 -0.65 5.33
Group K-means-size 0.65 2.43 −0.45∗∗∗ 0.43 0.61 0.49 1.12∗∗ 1.13 17.6

K-means-risk 0.75 2.97 −0.40∗∗∗ 0.57 0.75 0.61 1.06∗∗∗ 2.10 17.19

Notes: The portfolio performance for each factor strategy under Koijen, Optimisation and Group structure are
reported. The alpha, Sharpe Ratio (SR), Appraisal Ratio (AR), Mean and Standard deviations (StDev) are
annualised values. ∗, ∗∗, and ∗∗∗ indicate that the beta is significant at 10%, 5%, and 1% level, respectively. For
standard deviation, ∗, ∗∗, and ∗∗∗ denote the 10%, 5%, and 1% significance for the difference against the standard
deviation of Koijen Basic method. The results of the other individual factors are reported in Appendix B. The
sample period runs from 2005-02 to 2021-02.

Table 16 shows the portfolio performances under Koijen, Optimisation, and Group struc-

ture. Most of the methods are able to generate significant alpha. We observe a strongly sig-

nificant alpha in QP across every factor strategy, also in K-means-risk for Change-in-carry and

Momentum-return. The Sharpe ratio is also improved or maintained at a similar level to the

Basic Koijen weighting scheme in most factors, except for Group-Equal and Division. After

excluding the market effect, summarised as Appraisal Ratio (AR), the advanced methods still
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show comparable results to the Basic Koijen method.

We note that the performance of the Value-spread factor is enhanced in terms of alpha and

the Sharpe ratio in every method except for Division, compared to the Basic Koijen weighting

scheme. This might be due to the reduced noise in 3-month LIBOR rates, which is used for

calculating the factor in Equation (17). Using advanced methods, which try to neutralise the

beta and/or risk, Value-spread can better emphasise the pure factor impact. From Figure 6b, it

can be seen that the Basic Koijen weighting scheme shows a considerable drop during the crisis

period in 2008, while risk-adjusted methods such as LP-limit suffers less.

The standard deviation is consistently reduced across individual methods. Methods that

do not directly consider the volatility, such as Division, Residualisation, and LP, can still show

improvement in terms of the standard deviation. Grouping methods with K-means clustering,

LP-limit, and QP, which adjust for the risk by clustering countries based on the level of beta or

by considering the level of volatility, significantly reduce the standard deviation of the portfolio

across all the factors.

(a) Change-in-carry (b) Value-spread

(c) Momentum-return

Figure 6: Cumulative return of factors for individual methods
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5 Additional Results

In this section, we discuss additional results of advanced factor construction strategies. Section

5.1 extends the individual factor analysis to multi-factor analysis and documents the performance

of the multi-factor model in different factor construction strategies. In Section 5.2, we investigate

how each method achieves reducing potential risks during the crisis period. We use the sub-

sample period of 2017-2021 when the Turkish currency and debt crisis happened, including one

year of the pre-crisis period.

5.1 Multi-factor

We combine the three factors discussed in previous sections: Change-in-carry, Value-spread, and

Momentum-return, to construct the multi-factor model. The multi-factor return is calculated

from the multi-factor score, which is the average z-score of the three factors, as introduced in

Equation (7). The performance of the multi-factor model using different portfolio construction

methods are reported in Table 17. Overall, we find significant alpha in every method with

some different features in individual methods. As can be seen in Figure 7, factors have a quite

low correlation to each other, leading to better performance in multi-factor than a single-factor

model.

Notably, we observe that K-means-risk, designed to minimise beta and reduce country-

specific risk, has the highest Sharpe ratio of 0.80. In Figure 8, we observe that each factor for

K-means-risk has a low correlation to each other. It results in a diversified multi-factor strategy,

leading to a promising performance in terms of the Sharpe ratio and alpha. However, factor

exposure per standard deviation of Grouping methods is lower than the other methods under the

optimisation structure. Grouping strategy has relatively lower factor exposure since it divides

the universe into two groups, resulting in a lower chance of maximising the factor exposure when

countries with similar levels of factor exposure are in the same group.

We observe in Table 18 that Division, LP, and Equal size grouping cannot sufficiently reduce

the beta exposure with the multi-factor model, which is in line with the discussion in previous

sections. On the other hand, K-means-risk performs the best at minimising beta exposure.

Most methods dealing with concentration risk and beta issues, such as LP-limit, QP, K-means-

size and K-means-risk, have relatively lower ex-post rolling beta. Furthermore, we observe that

these methods are able to reduce the risk and return contribution more effectively, as can be

seen in Table 19.

5.2 Turkish currency and debt crisis

In this section, we investigate the sub-sample period during the Turkish currency and debt crisis.

The sample period runs from 2017-01-31 to 2021-02-26. We observed in Section 2 that the bond

return volatility in Turkey fluctuates a lot during this period. This case study analyses more

in-depth how each advanced factor portfolio construction strategy reacts to one volatile country.

The performance of the multi-factor portfolio during the Turkish crisis is given in Table 20.

LP-limit, QP, K-means-size, and K-means-risk perform well in terms of the Sharpe ratio since

they effectively reduce the standard deviation. We note that the level of standard deviation is
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Table 17: Multi-factor Portfolio performance

Structure Methods α (%) β SR Factor/StDev AR Mean (%) StDev (%) Skew Kurt

Koijen Basic 1.12 -0.46 0.73 110.23 0.90 0.95 1.31 0.65 7.65
(3.57) (-4.48)

Division 1.00 -0.45 0.73 118.45 0.92 0.84 1.15∗∗∗ 0.23 6.01
(3.65) (-5.02)

Resid 0.84 -0.26 0.76 129.54 0.88 0.74 0.98∗ 0.74 2.88
(3.50) (-3.39)

Optimisation LP 0.91 -0.32 0.79 135.47 0.94 0.79 1.01 0.96 3.45
(3.72) (-4.05)

LP-limit 0.60 -0.24 0.64 146.47 0.78 0.51 0.80∗∗ -0.17 4.84
(3.08) (-3.84)

QP 0.66 -0.20 0.77 144.05 0.88 0.59 0.77∗∗∗ 0.98 3.81
(3.50) (-3.29)

Group Equal 0.91 -0.34 0.75 119.85 0.90 0.79 1.06 -0.22 3.21
(3.56) (-4.09)

K-means-size 0.79 -0.21 0.73 125.09 0.83 0.71 0.97∗∗∗ 0.68 6.65
(3.27) (-2.67)

K-means-risk 0.81 -0.18 0.80 128.17 0.88 0.75 0.94∗∗∗ 1.02 6.38
(3.49) (-2.31)

Notes: The portfolio performance for multi-factor strategy by taking average of Change-in-carry, Value-spread,
and Momentum-return z-scored factors under Koijen, Optimisation and Group structure are reported. The alpha,
Sharpe Ratio (SR), Appraisal Ratio (AR), Mean and Standard deviations (StDev) are annualised values. ∗, ∗∗,
and ∗∗∗ indicate the 10%, 5%, and 1% significance for the difference against the Koijen Basic method in the
Sharpe ratio and standard devation, based on the robust test statistics of Ledoit & Wolf (2018). The p-value of
the test is reported in Appendix D. Factor/StDev shows the factor exposure per annualised standard deviation.
Factor exposure is calculated by multiplying z-score to the weight, subsequently taking the mean. The sample
period runs from 2005-02 to 2021-02.

Table 18: Multi-factor Market beta exposure

Ex-ante Ex-post rolling Ex-post full sample
Structure Methods MSE MAE beta return MSE MAE beta t−stat

Basic 0.76 0.64 0.04 0.43 0.56 -0.46 -4.48
Koijen Division 0.61 0.58 0.07 0.43 0.58 -0.45 -5.02

Resid 0.03 0.14 0.00 0.15 0.31 -0.26 -3.39

LP 0.00 0.00 0.00 0.16 0.33 -0.32 -4.05
Optimisation LP-limit 0.00 0.00 0.00 0.11 0.29 -0.24 -3.84

QP 0.00 0.00 0.00 0.11 0.27 -0.20 -3.29

Equal 0.53 0.58 0.03 0.23 0.37 -0.34 -4.09
Group K-means-size 0.12 0.28 0.05 0.12 0.27 -0.21 -2.67

K-means-risk 0.12 0.27 0.05 0.10 0.26 -0.18 -2.31

Notes: The summary statistics of beta exposure for multi-factor strategy under Koijen, Optimisation and Group
structure is reported. The ex-ante beta is FP 1Y5Y, which uses a one and five-year rolling window for volatility
and correlation respectively, with a shrinkage parameter of 0.8, multiplied by the portfolio weights at each point
of time. The ex-post beta is 3-year rolling OLS beta using the factor return series. The beta return is a proxy of
how the total cumulative return is separated into the market. The beta return is computed using the cumulative
return of the market multiplied by the ex-ante beta divided by the cumulative return of the full sample period.
The sample period runs from 2005-02 to 2021-02.

highly related to the weight given to Turkey. When there is no control for the concentration

risk, such as in methods under Koijen structure, LP and equal grouping, it cannot detect a spike

in volatility. Thereby, the results are still driven by one volatile market.

Regarding the beta exposure, LP has significant beta despite imposing the constraint of a

beta equal to zero. As discussed in Section 4.4, LP fails to remove the beta exposure due to the

fast-moving beta. Estimated ex-ante beta is already outdated, resulting in error-maximisation
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Table 19: Multi-factor Concentration risk statistics

Risk contribution Return contribution
Structure Methods Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Basic -5.70 52.92 14.87 0.06 31.64 8.70
Koijen Division -5.06 47.71 13.46 0.06 29.37 8.07

Resid -6.31 46.33 13.29 0.06 29.39 8.16

LP -5.43 43.34 12.86 0.00 31.55 9.39
Optimisation LP-limit -4.44 35.69 11.26 0.00 27.75 8.61

QP -4.62 38.32 11.39 0.15 30.11 8.85

Equal -6.56 56.39 15.60 0.03 30.83 8.48
Group K-means-size -6.82 43.78 12.94 0.01 27.82 7.90

K-means-risk -8.19 47.25 13.76 0.01 27.94 7.91

Notes: The concentration risk statistics for multi-factor strategy under Koijen, Optimisation and Group structure
is reported. The risk contribution is computed by the 3-year rolling estimation of the marginal risk contribution
divided by the marginal contribution and subsequently dividing it by the total standard deviation. Afterwards,
the minimum, maximum, and standard deviation across the countries are calculated at each time, and the average
of them is reported. The return contribution is measured by the absolute return of each country divided by the
sum of the absolute returns at each point in time. Subsequently, the minimum, maximum, and standard deviation
across the countries are calculated at each time, and the average of them is reported. The sample period runs
from 2005-02 to 2021-02.

Figure 7: Cumulative return of multi-factor model for individual methods

with high ex-post beta. This beta exposure has been decreased when combined with the volatility

restriction on maximum weights in LP-limit, with insignificant beta. Also, in QP, we observe

that this error maximisation has been reduced because of its covariance trade-off term.

Figure 9 shows the weight of Turkey over the sub-sample period. The Basic Koijen weight

only considers the factor score without dealing with the high volatility in Turkey. We can see

from Figure 11 that the market beta of Turkey spikes to higher than 6.0 at the end of 2018. A

naive way to adjust the factor by dividing by the beta also does not effectively reduce the weight

of Turkey. Residualisation orthogonalises the factor score to the market beta, reducing the

weight on Turkey. However, the Koijen weighting structure is still imposed after residualisation,

reducing the effectiveness of this method.

Under the optimisation structure, we note that all three methods reduce the weight of

Turkey. LP manages to achieve this by its zero beta exposure constraint. As can be seen

in Figure 11a, increased market beta causes Turkey to have a lower weight. LP-limit has its

additional restriction on the maximum weight on individual countries depending on their level of
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(a) Koijen Basic (b) Koijen Division (c) Koijen Residualisa-
tion

(d) Opt LP (e) Opt LP-limit (f) Opt QP

(g) Group Equal (h) Group Kmeans-size (i) Group Kmeans-risk

Figure 8: Correlation of multi-factor strategy

volatility. Figure 11b shows the plot of volatility restriction, which is the cross-sectional median

volatility divided by the volatility of Turkey over time, where we observe a rapid decrease in

the weight restriction on Turkey. The volatility is estimated using a 12-month window. Hence

it achieves to react quickly. Even though QP also reduces the weight of Turkey, but it is less

effective due to its 3-year estimation window of covariance term and the off-diagonal elements,

which make it less effective to reduce the weight on Turkey.

On the other hand, Table 20 shows that the Appraisal Ratio (AR) of LP-limit is much lower

than LP and QP. We observe that the cumulative return earned from Turkey is much lower in

LP-limit compared to other methods, as can be seen in Table 21. Even before the crisis period,

LP-limit sets a lower weight on Turkey since it is a relatively more volatile country than other

markets. In Figure 10a, we observe a huge spike in the cumulative return in 2018 for most of

the methods except for LP-limit, K-means-size and K-means-risk. As can be seen from the

cumulative return of Turkey in Figure 10b, these returns are earned from the Turkey positions,

whereas LP-limit could not benefit from it due to the restricted weight on Turkey. Therefore we

note that LP-limit performs the best in reducing the exposure to the risky country but could

miss out on the return coming from the volatile country.

Notably, we observe huge differences in the effectiveness of reducing Turkey weight between

equal and K-means groupings. Equal grouping does not have the flexibility to choose the group

size over time. On the other hand, K-means grouping can vary the group size depending on the

current situation. This results in meaningful differences in the two grouping methods. Figure 11c
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shows the number of groups assigned to the EM-like universe, where we find that Equal grouping

still maintains its size when the Turkish crisis starts, causing Turkey to drive results in the EM-

like universe. On the other hand, K-means clustering separates Turkey into the EM-like group

from other countries when the crisis presents. It designates weights on Turkey as zero, blocking

one very volatile market from affecting the portfolio.

Table 20: Multi-factor Portfolio performance during Turkish crisis

Structure Methods α (%) β SR AR Mean (%) StDev (%) Skew Kurt

Koijen Basic 1.31 -0.49 0.88 1.08 1.10 1.25 -0.07 0.87
(2.12) (-1.85)

Division 0.99 -0.41 0.76 0.94 0.82 1.08 -0.39 1.46
(1.85) (-1.77)

Resid 0.79 -0.41 0.67 0.89 0.62 0.92 0.20 2.62
(1.76) (-2.11)

Optimisation LP 0.97 -0.48 0.83 1.10 0.77 0.93 0.49 2.38
(2.17) (-2.46)

LP-limit 0.44 0.04 0.93 0.89 0.46 0.50 -1.23 3.78
(1.76) (0.36)

QP 0.93 -0.24 1.11 1.26 0.83 0.75 0.35 2.18
(2.49) (-1.49)

Group Equal 1.20 -0.55 0.85 1.10 0.98 1.15 -0.06 0.96
(2.16) (-2.29)

K-means-size 0.77 0.27 1.45 1.32 0.88 0.61 -0.60 3.14
(2.60) (2.12)

K-means-risk 0.75 0.26 1.39 1.27 0.86 0.62 -0.47 2.99
(2.49) (2.01)

Notes: The contribution of Turkey on portfolio performance for multi-factor using Change-in-carry, Value-spread,
and Momentum-return is reported. The alpha, Sharpe Ratio (SR), Appraisal Ratio (AR), Mean and Standard
deviations (StDev) are annualised values. Factor/StDev shows the factor exposure per annualised standard
deviation. Factor exposure is calculated by multiplying z-score to the weight, subsequently taking the mean. The
sample period runs from 2017-01 to 2021-02.

Table 21: Contribution of Turkey on performance

Structure Methods Weight CumReturn Return contribution

Koijen Basic 0.22 0.32 0.57
Division 0.17 0.22 0.53
Resid 0.16 0.16 0.52

Optimisation LP 0.16 0.27 0.70
LP-limit 0.06 0.09 0.39
QP 0.13 0.23 0.56

Group Equal 0.20 0.30 0.60
Kmeans-size 0.07 0.18 0.42
Kmeans-risk 0.06 0.17 0.40

Notes: The contribution of Turkey on portfolio performance for multi-factor using Change-in-carry, Value-spread,
and Momentum-return is reported. Turkey weight shows the average absolute weight assigned to Turkey during the
sample period. CumReturn reports the annualised simple cumulative return of Turkey, and Return contribution
shows the proportion of simple cumulative return of Turkey out of the simple cumulative portfolio return over
the sample period. The sample period runs from 2017-01 to 2021-02.
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Figure 9: Turkey weight of multi-factor model for individual methods

(a) Cumulative Return (b) Cumulative Return of Turkey

Figure 10: Cumulative return of each portfolio

(a) Market beta of Turkey (b) Weight restriction on Turkey

(c) Number of groups assigned to EM-like

Figure 11: Input of advanced strategies during Turkish crisis
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6 Conclusion

This paper investigates factor investing in emerging market local currency bonds on a country

level. We consider the application of factors such as Carry, Change-in-carry, Value, Momentum

and Betting-against-beta in the context of the EM-LC bond universe. These factors are first

analysed using the basic Koijen weighting scheme, which is widely used in academics. After-

wards, we extend our analysis using the Koijen weighting scheme with adjusted factor scores,

optimising the factor exposure subject to several constraints and grouping the universe into

emerging and developed markets like countries.

The EM-LC bond universe has diverting movements in beta, volatility and default risk across

both the country and time dimensions. The basic factor construction method studied in the

developed market fixed income universe cannot capture these features. Therefore we propose

several advanced methods to mitigate the potential risk drivers in EM-LC bonds. First, we

consider adjusting the factor measure to reduce the beta effect in it. This is done by Division and

Residualisation, which ranks each measure divided by the beta and measure orthogonal to the

market beta, respectively. Second, we use optimisation tools to maximise factor exposure subject

to the zero betas. We introduce Linear Programming, Linear Programming with restricted

maximum weight according to the country’s volatility, and Quadratic Programing by directly

considering the risk trade-off in the objective function. Lastly, we suggest systematic choices

regarding the universe by grouping countries. We consider equal-size grouping and dynamic-size

grouping, by combining two groups according to either the group size or the risk.

Our research shows evidence of systematic factors in the EM-LC universe. We find signif-

icant alpha in Carry, Change-in-carry, Momentum-yield and Momentum-return factors using

the basic Koijen weighting scheme. Furthermore, the extended analysis using chosen factors

that perform well and have low correlation with each other gives promising results. We note

that Change-in-carry and Momentum-return factors show significant alpha using the majority

of the advanced methods. Value-spread factor, which shows insignificant alpha using the Basic

Koijen weighting scheme, generates significant performance with LP-limit, QP, and K-means-

risk. Reduced potential risk enables most advanced methods to attain a higher Sharpe ratio

and more strongly significant alpha than the basic Koijen weighting scheme. The performance

of the multi-factor model further shows evidence of factors in the EM-LC bond universe, with

the Sharpe ratio of 0.8.

The main finding is that the advanced methods can improve upon the existing factor con-

struction method by dealing with the potential risk drivers such as beta exposure and concen-

tration risk. The beta exposure is effectively minimised by residualising the factor score, solving

portfolio optimisation problems and grouping countries. Concentration risk measured by the

risk and return contribution is reduced using optimisation and grouping. These structures have

the advantage of flexibility, which allows additional conditions to be satisfied. LP-limit and

K-means-size most effectively reduce the aforementioned risk drivers simultaneously. LP-limit

achieves this by directly neutralising beta exposure and tightening the maximum weight for

volatile countries. On the other hand, K-means-size solves these issues relatively indirectly,

making each country more comparable by dividing the universe into EM and DM-like countries.

Dynamically determining the group size using K-means clustering enables effectively selecting
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countries with diverting behaviours in real-time.

For further research, one can extend the analysis by investing in the curve using several

maturity buckets for each country as introduced in Martens et al. (2019). Also, there might be

a practical issue with trading EM-LC bonds due to different regulations by each country. Thus,

swap data, which enables avoiding physical trading of EM-LC bonds and is rather flexible from

tax regulations, can be investigated.
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Appendix A

Data processing

The data obtained from Bloomberg has some data errors. Most data errors are found in the

starting dates of each series. For example, when the JPM country-level index does not exist,

the data is given as 0 instead of NA. Also, for some countries, the starting value duplicates in

the previous dates. Similar issues are found in the middle of the data, having duplicating values

over the period. Most cases are due to public holidays, where we do not make a correction, but

one of them is because the underlying bond does not exist anymore. We removed those data

points and set them to NA. Another type of finding is data errors in the middle of the series.

Some data points violate the pattern. For example, the JPM YLD of Chile has a huge drop for

only three days. We compared it to the maturity bucket data to check if it is reasonable. We

copied from the previous values as they cannot be explained by the maturity bucket data, where

the index was calculated.

In two and ten-year yield data, we find similar issues as in JPM index data. We detected

whether the data duplicates for more than one month or goes to zero in the middle of the series

for a short period. These errors are replaced by the 1-3 and 7-10 years maturity bucket yield data

when the maturity data also does not show duplicative values or outliers. If the maturity bucket

data also shows duplicative values for more than one month or outliers, we set the corresponding

observation of two and ten-year yield data to NA.

Table 22: Error Correction in Data

Data Countries Date(s) Raw data Corrected Remarks

JPM return index Brazil 31/12/2002 - 30/04/2003 110.104 NA Underlying bond does not exist
Indonesia 02/12/2002 - 30/12/2002 100 NA Index does not exist
China 01/12/2003 - 30/12/2003 100 NA Index does not exist
Chile 31/07/2019 - 30/03/2021 155.146 NA Index does not exist

JPM YLD Brazil 31/12/2002 - 30/04/2003 30.944 NA Index does not exist
Mexico 31/12/2001 0 NA Index does not exist
Indonesia 02/12/2002 - 31/12/2002 0 NA Index does not exist
Malaysia 31/12/2001 0 NA Index does not exist
South Korea 13/11/2001 - 10/12/2001 5.849 NA Index does not exist
Hungary 29/12/2000 0 NA Index does not exist
China 01/12/2003 - 31/12/2003 0 NA Index does not exist
Russia 03/01/2005 - 31/01/2005 0 NA Index does not exist

Chile 05/07/2018 2.35 3.535 4 Data Error
06/07/2018 2.371 3.535 Data Error
09/07/2018 2.334 3.535 Data Error
31/07/2019 - 30/03/2021 0 NA Index does not exist

JPM DUR Brazil 31/12/2002 - 30/04/2003 0.879 NA Index does not exist
Mexico 31/12/2001 0 NA Index does not exist
Indonesia 02/12/2002 - 31/12/2002 0 NA Index does not exist
Malaysia 31/12/2001 0 NA Index does not exist
South Korea 13/11/2001 - 10/12/2001 3.382 NA Index does not exist
China 01/12/2003 - 31/12/2003 0 NA Index does not exist
Russia 03/01/2005 - 31/01/2005 0 NA Index does not exist
Chile 31/07/2019 - 30/03/2021 0 NA Index does not exist

3M LIBOR China 01/08/2000 0 2.345 Data Error

4It is copied from the most recent previous date, which is 04/07/2018.
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Table 23: Bloomberg ticker

Countries JPM bond total return JPM YLD JPM DUR 3M LIBOR MSCI Equity

Brazil JGENBBUL Index JGENBBYM Index JGENBBMD Index BZDIOVRA Index
Mexico JPMTMX Index JPETMXYM Index JPETMXMD Index MXIB91DT Index
Colombia JGENBCUL Index JGENBCYM Index JGENBCMD Index DTF RATE Index
Indonesia JGIDULOC Index JGIDYTOM Index JGIDMDUR Index JIIN3M Index
Malaysia JGMYULOC Index JGMYYTOM Index JGMYMDUR Index KLIB3M Index
Thailand JGTHULOC Index JGTHYTOM Index JGTHMDUR Index BOFX3M Index
South Korea JPMTKR Index JPMYKR Index JPMDKR Index KRBO3M Index
Turkey JGENTBLO Index JGENTBYM Index JGENTBMD Index TRLIB3M Index
South Africa JPMTSAF Index JPETSAYM Index JPETSAMD Index JIBA3M Index
Poland JGENPDUL Index JGENPDYM Index JGENPDMD Index WIBO3M Index
Hungary JPMTHU Index JPMYHU Index JPETHUMD Index BUBOR03M Index
India JGINULOC Index JPETINYM Index JPETINMDT Index IN003M Index
China JGCHULOC Index JGCHYTOM Index JGCHMDUR Index SHIF3M Index
Russia JGRUULOC Index JGRUYTOM Index JGRUMDUR Index MOSKP3 Index
Chile JGCGPLOC Index JGCLYTM Index JGCLDUR Index CHNI3M Curncy
Peru JGENPEUL Index JGENPEYM Index JGENPEMD Index PSNI3M Curncy
Philippines JGPHLOC Index JGENPHYM Index JGENPHMD Index PPNI3M Curncy
Index JGENVLLG Index JGENGHYG Index JGENVHMG Index
Not diversified JGENGHUG Index
Diversified JGENVHUG Index

US JPMTUS Index JPMDUS Index US0003M Index MSDLUS Index
Germany JPMTWG Index DM0003M Index JPMDWG Index
Japan JPMTJPN Index JPMDJPN Index JY0003M Index MSDLJN Index
EUR EUR003M Index MSDLEMU Index
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Appendix B

Additional factor results

Table 24: Grouping - Equal size strategy: overview of DM and EM-like countries

Carry Change-in-carry Value-MR Value-spread MOM-YLD MOM-RET BAB AVG

South Korea 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
China 1.00 1.00 1.00 1.00 1.00 1.00 1.00
India 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00
Malaysia 0.90 0.89 0.96 0.92 0.94 0.94 0.94 0.93
Chile 0.92 0.75 0.95 0.97 0.97 0.97 0.92
Thailand 0.75 0.79 0.90 0.79 0.92 0.92 0.92 0.85
Poland 0.59 0.59 0.70 0.57 0.59 0.59 0.53 0.59
Philippines 0.55 0.55 0.59 0.56
Russia 0.58 0.59 0.57 0.61 0.43 0.44 0.41 0.52
Mexico 0.21 0.18 0.29 0.24 0.28 0.28 0.28 0.25
South Africa 0.18 0.24 0.11 0.19 0.24 0.24 0.24 0.21
Colombia 0.22 0.28 0.19 0.18 0.06 0.06 0.06 0.15
Peru 0.10 0.03 0.18 0.10 0.02 0.02 0.02 0.07
Hungary 0.28 0.29 0.42 0.32 0.25 0.24 0.30 0.30
Indonesia 0.01 0.01 0.00 0.01 0.03 0.03 0.03 0.01
Brazil 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
Turkey 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: The proportion of DM-like membership per country using the grouping with the equal size is reported.
One means that the country has been classified into the DM-like group during the full sample period. The last
column is the average value using all seven factors. The sample period runs from 2006-006-09-29 for Value-MR
and 2005-02-28 for others, and to 2021-02-26.

Table 25: Grouping - K-means: overview of EM and DM-like countries

Carry Change-in-carry Value-MR Value-spread MOM-YLD MOM-RET BAB AVG

South Korea 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
India 0.99 1.00 0.99 0.99 1.00 1.00 1.00 1.00
China 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Chile 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Malaysia 0.97 0.99 1.00 0.98 0.98 0.98 0.98 0.99
Thailand 0.91 0.92 0.94 0.92 1.00 1.00 1.00 0.96
Philippines 0.89 0.89 0.90 0.90
Poland 0.75 0.80 0.84 0.75 0.91 0.91 0.92 0.84
Russia 0.76 0.74 0.67 0.76 0.87 0.87 0.88 0.79
Mexico 0.55 0.62 0.66 0.59 0.79 0.79 0.80 0.68
South Africa 0.54 0.61 0.58 0.55 0.69 0.69 0.69 0.62
Peru 0.50 0.62 0.47 0.50 0.68 0.68 0.70 0.59
Hungary 0.44 0.49 0.49 0.44 0.68 0.68 0.69 0.56
Colombia 0.43 0.63 0.49 0.40 0.64 0.64 0.65 0.55
Brazil 0.25 0.29 0.23 0.26 0.49 0.49 0.50 0.36
Indonesia 0.12 0.16 0.18 0.12 0.41 0.41 0.42 0.26
Turkey 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: The proportion of DM-like membership per country using the grouping with K-means clustering is re-
ported. One means that the country has been classified into the DM-like group during the full sample period.
The last column is the average value using all seven factors. The sample period runs from 2006-006-09-29 for
Value-MR and 2005-02-28 for others, and to 2021-02-26.
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Table 26: Grouping strategy: Overview of the size of EM and DM group

Equal K-means
EM DM EM DM

Carry 0.52 0.48 0.37 0.63
Change-in-carry 0.53 0.47 0.35 0.65
Value-MR 0.53 0.47 0.37 0.63
Value-spread 0.52 0.48 0.37 0.63
MOM-YLD 0.52 0.48 0.24 0.76
MOM-RET 0.52 0.48 0.24 0.76
BAB 0.52 0.48 0.23 0.77

Notes: The overall proportion of each group’s size using Equal and K-means grouping is reported. The sample
period runs from 2006-006-09-29 for Value-MR and 2005-02-28 for others, and to 2021-02-26.

Table 27: Grouping - Equal size: Beta exposure of EM and DM-like groups

Panel A: EM-like

Ex-ante Ex-post rolling Ex-post full sample
Pf strategy MSE MAE beta return MSE MAE beta t−stat

Carry 0.53 0.51 -0.33 0.98 0.75 -0.12 -0.88
Change-in-carry 0.68 0.49 0.38 0.68 0.56 -0.42 -2.92
Value-MR 0.77 0.56 0.50 1.71 0.89 0.92 6.04
Value-spread 0.54 0.49 -0.81 1.05 0.76 0.13 0.88
MOM-YLD 0.93 0.74 0.83 0.96 0.84 -0.82 -5.03
MOM-RET 0.79 0.69 0.55 1.25 0.96 -0.99 -6.67
BAB 0.00 0.00 0.00 0.08 0.25 -0.06 -0.69

Panel B: DM-like

Ex-ante Ex-post rolling Ex-post full sample
Pf strategy MSE MAE beta return MSE MAE beta t−stat

Carry 0.03 0.14 -0.07 0.09 0.26 0.09 1.46
Change-in-carry 0.03 0.14 -0.83 0.07 0.19 0.02 0.23
Value-MR 0.04 0.17 0.45 0.11 0.31 -0.23 -3.12
Value-spread 0.04 0.16 -0.04 0.11 0.25 0.13 2.25
MOM-YLD 0.03 0.14 -1.00 0.06 0.22 -0.08 -1.21
MOM-RET 0.03 0.14 4.58 0.08 0.25 -0.06 -0.91
BAB 0.00 0.00 0.00 0.12 0.25 -0.13 -0.88

Notes: The summary statistics of beta exposure for each factor strategy under Group-Equal structure is reported.
The ex-ante beta is a one and five-year rolling window FP beta with a shrinkage parameter of 0.8, multiplied
by the portfolio weights at each point of time. The ex-post beta is 3-year rolling OLS beta using the factor
return series. The beta return is a proxy of how the total cumulative return is separated into the market. The
beta return is computed using the cumulative return of the market multiplied by the ex-ante beta divided by the
cumulative return of the full sample period. The sample period runs from 2005-02-28 to 2021-02-26.
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Table 28: Grouping - K-means: Beta exposure of EM and DM-like groups

Panel A: EM-like

Ex-ante Ex-post rolling Ex-post whole sample
Pf strategy MSE MAE beta return MSE MAE beta t−stat

Carry 0.17 0.30 0.01 0.36 0.51 0.27 1.73
Change-in-carry 0.15 0.28 0.03 0.29 0.46 0.21 1.35
Value-MR 0.15 0.28 -0.23 0.32 0.47 0.49 3.25
Value-spread 0.17 0.30 -0.14 0.40 0.52 0.31 2.10
MOM-YLD 0.15 0.24 0.29 0.37 0.54 -0.49 -3.62
MOM-RET 0.18 0.27 0.38 0.41 0.58 -0.51 -3.57
BAB 0.00 0.00 0.00 0.07 0.23 -0.17 -2.85

Panel B: DM-like

Ex-ante Ex-post rolling Ex-post whole sample
Pf strategy MSE MAE beta return MSE MAE beta t−stat

Carry 0.06 0.19 0.02 0.10 0.30 -0.03 -0.45
Change-in-carry 0.04 0.15 -0.24 0.04 0.17 -0.07 -1.16
Value-MR 0.04 0.16 0.19 0.10 0.27 -0.06 -0.75
Value-spread 0.07 0.22 0.04 0.08 0.22 0.16 2.83
MOM-YLD 0.08 0.23 1.11 0.20 0.39 -0.28 -3.29
MOM-RET 0.08 0.24 0.75 0.23 0.41 -0.24 -2.90
BAB 0.00 0.00 0.00 0.05 0.19 0.02 0.19

Notes: The summary statistics of beta exposure for each factor strategy under Group-Kmeans structure is re-
ported. The ex-ante beta is a one and five-year rolling window FP beta with a shrinkage parameter of 0.8,
multiplied by the portfolio weights at each point of time. The ex-post beta is 3-year rolling OLS beta using the
factor return series. The beta return is a proxy of how the total cumulative return is separated into the market.
The beta return is computed using the cumulative return of the market multiplied by the ex-ante beta divided
by the cumulative return of the full sample period. The sample period runs from 2005-02-28 to 2021-02-26.

Table 29: Residualisation: cross-sectional regression statistics

Carry Change-in-carry Value-MR Value-spread MOM-YLD MOM-RET

t−stat 1.07 1.41 1.36 1.34 3.36 2.58
R2 0.12 0.17 0.23 0.15 0.36 0.29

Notes: The mean of the absolute beta t-statistics and R-squared obtained from the cross-sectional regression in
each month are reported. The sample period runs from 2006-006-09-29 for Value-MR and 2005-02-28 for others,
and to 2021-02-26.

Table 30: Market beta exposure

Panel A: Carry

Ex-ante Ex-post rolling Ex-post full sample

Structure Methods MSE MAE beta return MSE MAE beta t−stat

Basic 0.16 0.30 -0.22 0.20 0.30 -0.02 -0.29

Koijen Div 0.55 0.61 -2.07 0.52 0.62 -0.44 -5.57

Resid 0.03 0.12 0.03 0.11 0.24 0.07 0.95

LP 0.00 0.00 0.00 0.06 0.19 0.03 0.37

Optimisation LP-limit 0.00 0.00 0.00 0.01 0.07 -0.07 -1.29

QP 0.00 0.00 0.00 0.05 0.16 0.03 0.51

Equal 0.12 0.25 -0.21 0.19 0.27 -0.01 -0.15

Group K-means-size 0.04 0.16 0.01 0.03 0.14 0.07 1.14

K-means-risk 0.04 0.16 0.04 0.02 0.10 0.03 0.46

Panel B: Change-in-carry

Ex-ante Ex-post rolling Ex-post full sample

Structure Methods MSE MAE beta return MSE MAE beta t−stat

Basic 0.28 0.38 0.36 0.22 0.35 -0.23 -2.56

Koijen Div 0.29 0.40 0.55 0.13 0.31 -0.26 -3.26

Resid 0.05 0.15 -0.02 0.11 0.24 -0.01 -0.14

LP 0.00 0.00 0.00 0.13 0.28 -0.16 -1.93

Optimisation LP-limit 0.00 0.00 0.00 0.06 0.21 -0.12 -1.91

QP 0.00 0.00 0.00 0.08 0.22 -0.13 -1.98

Equal 0.18 0.27 0.37 0.16 0.31 -0.20 -2.49

Group K-means-size 0.04 0.14 -0.06 0.04 0.18 -0.08 -1.26

K-means-risk 0.03 0.14 -0.04 0.02 0.10 -0.02 -0.39

Panel C: Value-MR

49



Ex-ante Ex-post rolling Ex-post full sample

Structure Methods MSE MAE beta return MSE MAE beta t−stat

Basic 0.46 0.50 0.64 0.98 0.78 0.51 5.03

Koijen Div 0.38 0.47 1.86 0.81 0.66 0.47 5.15

Resid 0.06 0.18 0.16 0.12 0.29 0.26 3.27

LP 0.00 0.00 0.00 0.23 0.37 0.38 4.49

Optimisation LP-limit 0.00 0.00 0.00 0.10 0.24 0.15 2.33

QP 0.00 0.00 0.00 0.10 0.26 0.25 4.09

Equal 0.20 0.29 0.51 0.47 0.48 0.34 3.73

Group K-means-size 0.04 0.15 3.73 0.05 0.17 0.04 0.56

K-means-risk 0.03 0.13 0.24 0.11 0.29 0.20 2.82

Panel D: Value-spread

Ex-ante Ex-post rolling Ex-post full sample

Structure Methods MSE MAE beta return MSE MAE beta t−stat

Basic 0.23 0.36 -0.32 0.37 0.53 0.25 2.88

Koijen Div 0.28 0.40 -0.79 0.36 0.46 0.00 -0.01

Resid 0.04 0.15 0.07 0.16 0.31 0.13 1.64

LP 0.00 0.00 0.00 0.12 0.28 0.20 2.57

Optimisation LP-limit 0.00 0.00 0.00 0.04 0.15 0.07 1.05

QP 0.00 0.00 0.00 0.11 0.28 0.22 3.27

Equal 0.13 0.24 -0.24 0.30 0.42 0.15 1.90

Group K-means-size 0.04 0.16 -0.03 0.07 0.22 0.23 3.72

K-means-risk 0.04 0.15 0.02 0.06 0.21 0.21 3.36

Panel E: MOM-YLD

Ex-ante Ex-post rolling Ex-post full sample

Structure Methods MSE MAE beta return MSE MAE beta t−stat

Basic 0.57 0.63 1.30 0.63 0.67 -0.68 -5.80

Koijen Div 0.33 0.46 0.62 0.68 0.69 -0.72 -7.11

Resid 0.07 0.20 -0.25 0.30 0.43 -0.45 -5.54

LP 0.00 0.00 0.00 0.28 0.42 -0.48 -5.43

Optimisation LP-limit 0.00 0.00 0.00 0.14 0.30 -0.31 -4.28

QP 0.00 0.00 0.00 0.22 0.39 -0.37 -5.83

Equal 0.27 0.41 2.05 0.31 0.45 -0.48 -5.24

Group K-means-size 0.07 0.22 0.67 0.16 0.32 -0.33 -4.32

K-means-risk 0.07 0.22 0.52 0.26 0.41 -0.44 -5.42

Panel F: MOM-RET

Ex-ante Ex-post rolling Ex-post full sample

Structure Methods MSE MAE beta return MSE MAE beta t−stat

Basic 0.53 0.60 0.90 0.74 0.74 -0.73 -6.88

Koijen Div 0.33 0.44 -0.16 0.69 0.70 -0.70 -8.41

Resid 0.35 0.44 -0.04 0.07 0.22 -0.17 -2.02

LP 0.00 0.00 0.00 0.25 0.40 -0.40 -4.63

Optimisation LP-limit 0.00 0.00 0.00 0.12 0.29 -0.25 -3.70

QP 0.00 0.00 0.00 0.22 0.39 -0.33 -4.76

Equal 0.23 0.38 1.04 0.39 0.51 -0.55 -6.67

Group K-means-size 0.08 0.23 0.64 0.15 0.29 -0.31 -4.21

K-means-risk 0.08 0.22 0.47 0.24 0.40 -0.40 -4.83

Panel G: Average

Ex-ante Ex-post rolling Ex-post full sample

Structure Methods MSE MAE beta return MSE MAE beta t−stat

Basic 0.37 0.46 0.44 0.53 0.56 -0.15 -1.27

Koijen Div 0.36 0.46 0.00 0.53 0.57 -0.27 -3.20

Resid 0.10 0.20 -0.01 0.15 0.29 -0.03 -0.31

LP 0.00 0.00 0.00 0.18 0.33 -0.07 -0.76

Optimisation LP-limit 0.00 0.00 0.00 0.08 0.21 -0.09 -1.30

QP 0.00 0.00 0.00 0.13 0.28 -0.06 -0.78

Equal 0.19 0.31 0.59 0.30 0.41 -0.13 -1.49

Group K-means-size 0.05 0.18 0.83 0.08 0.22 -0.06 -0.73

K-means-risk 0.05 0.17 0.21 0.12 0.25 -0.07 -0.67

Panel H: BAB

Ex-ante Ex-post rolling Ex-post full sample

Structure Methods MSE MAE beta return MSE MAE beta t−stat

Koijen Basic 0.00 0.00 0.00 0.06 0.21 -0.19 -2.11

Equal 0.00 0.00 0.00 0.03 0.13 -0.09 -1.18

Group K-means-size 0.00 0.00 0.00 0.02 0.12 0.05 0.53

K-means-risk 0.00 0.00 0.00 0.07 0.20 -0.25 -3.03

Notes: The summary statistics of beta exposure for each factor strategy under Koijen, Optimisation and Group

structure is reported. The ex-ante beta is a one and five-year rolling window FP beta with a shrinkage parameter

of 0.8, multiplied by the portfolio weights at each point of time. The ex-post beta is 3-year rolling OLS beta

using the factor return series. The beta return is a proxy of how the total cumulative return is separated into the

market. The beta return is computed using the cumulative return of the market multiplied by the ex-ante beta

divided by the cumulative return of the full sample period. Panel D is the average value using six factors excluding

BAB. The sample period runs from 2006-09-29 for Value-MR and 2005-02-28 for others, and to 2021-02-26.

50



Table 31: Concentration risk statistics

Panel A: Carry

Risk contribution Return contribution

Structure Methods Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Basic -4.24 52.56 15.87 0.25 34.76 10.40

Koijen Div -4.32 47.02 14.37 0.24 33.15 10.10

Resid -4.24 52.56 15.87 0.25 33.92 10.25

LP -3.77 46.10 14.34 0.00 36.66 11.65

Optimisation LP-limit -4.16 40.99 13.22 0.00 32.22 10.63

QP -3.40 38.31 12.37 0.18 34.69 10.96

Equal -4.33 51.94 15.64 0.15 33.52 10.07

Group K-means-size -5.40 47.41 14.79 0.14 32.33 9.83

K-means-risk -5.18 48.38 14.97 0.15 31.54 9.72

Panel B: Change-in-carry

Risk contribution Return contribution

Structure Methods Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Basic -5.76 56.76 18.62 0.38 38.27 12.08

Koijen Div -4.60 51.54 16.89 0.39 37.00 11.84

Resid -5.76 56.76 18.62 0.37 36.24 11.42

LP -3.32 47.84 16.05 0.00 39.03 13.23

Optimisation LP-limit -3.37 42.00 14.35 0.03 34.54 11.95

QP -3.64 44.83 14.92 0.46 35.45 11.67

Equal -4.65 56.11 18.14 0.24 36.91 11.77

Group K-means-size -4.91 47.38 15.95 0.35 34.25 11.10

K-means-risk -4.90 49.87 16.34 0.34 34.66 11.24

Panel C: Value-MR

Risk contribution Return contribution

Structure Methods Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Basic -7.65 63.52 21.36 0.46 40.10 13.06

Koijen Div -5.45 52.71 18.17 0.47 36.77 12.28

Resid -7.65 63.52 21.36 0.45 37.98 12.43

LP -3.95 55.20 18.34 0.00 40.50 14.22

Optimisation LP-limit -3.86 45.72 16.41 0.08 39.41 13.84

QP -3.57 43.11 15.03 0.50 35.78 12.11

Equal -7.08 62.83 21.12 0.23 38.83 12.97

Group K-means-size -4.59 44.66 15.73 0.39 35.99 12.15

K-means-risk -4.77 45.95 15.92 0.32 36.63 12.42

Panel D: Value-spread

Risk contribution Return contribution

Structure Methods Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Basic -6.44 51.96 15.64 0.22 33.37 9.84

Koijen Div -4.26 44.44 13.27 0.23 32.02 9.61

Resid -6.44 51.96 15.64 0.22 31.99 9.47

LP -3.98 41.56 12.96 0.00 34.65 10.96

Optimisation LP-limit -4.29 41.85 12.95 0.00 31.52 10.25

QP -4.08 38.49 11.98 0.15 31.94 9.91

Equal -5.61 52.75 15.42 0.13 32.57 9.59

Group K-means-size -5.99 47.67 14.22 0.15 30.60 9.18

K-means-risk -6.85 49.02 14.67 0.16 30.89 9.34

Panel E: MOM-YLD

Risk contribution Return contribution

Structure Methods Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Basic -5.91 49.99 14.53 0.05 32.38 8.89

Koijen Div -6.18 45.61 13.31 0.06 30.76 8.50

Resid -5.91 49.99 14.53 0.04 30.39 8.37

LP -5.33 44.52 13.01 0.00 32.34 9.51

Optimisation LP-limit -4.29 34.85 10.91 0.00 28.42 8.65

QP -3.59 40.96 11.82 0.15 31.76 9.29

Equal -4.90 52.24 14.78 0.03 31.24 8.56

Group K-means-size -5.09 41.67 12.50 0.01 28.86 8.13

K-means-risk -5.34 46.12 13.24 0.01 29.10 8.17

Panel F: MOM-RET

Risk contribution Return contribution

Basic -5.70 50.52 14.38 0.05 31.49 8.70

Koijen Div -6.34 50.54 14.42 0.05 30.61 8.52

Resid -5.70 50.52 14.38 0.05 29.72 8.18

LP -3.38 41.91 12.12 0.00 31.47 9.35

Optimisation LP-limit -3.41 33.02 10.46 0.00 28.91 8.77

QP -2.71 35.95 10.63 0.12 30.94 9.11

Equal -4.80 52.20 14.57 0.04 31.08 8.55

Group K-means-size -5.28 42.02 12.47 0.02 28.38 8.05

K-means-risk -5.74 45.33 13.15 0.02 29.12 8.18

Panel G: Average

Risk contribution Return contribution

Structure Methods Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Basic -5.95 54.22 16.74 0.23 35.06 10.50

Koijen Div -5.19 48.64 15.07 0.24 33.39 10.14

Resid -5.95 54.22 16.74 0.23 33.37 10.02

LP -3.95 46.19 14.47 0.00 35.77 11.49
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Optimisation LP-limit -3.90 39.74 13.05 0.02 32.50 10.68

QP -3.50 40.28 12.79 0.26 33.43 10.51

Equal -4.90 37.18 11.61 0.02 25.07 7.21

Group K-means-size -5.21 45.13 14.28 0.18 31.74 9.74

K-means-risk -5.46 47.45 14.72 0.16 31.99 9.85

Panel H: BAB

Risk contribution Return contribution

Structure Methods Min (%) Max (%) StDev (%) Min (%) Max (%) StDev (%)

Koijen Basic -2.03 32.50 9.28 0.03 26.17 7.36

Equal -5.23 54.68 16.61 0.14 34.02 10.25

Group K-means-size -4.15 32.43 9.90 0.00 24.12 6.98

K-means-risk -5.05 37.37 10.96 0.00 25.40 7.30

Notes: The concentration risk statistics for each factor strategy under Koijen, Optimisation and Group structure

is reported. The risk contribution is computed by the 3-year rolling estimation of the marginal risk contribution

divided by the marginal contribution and subsequently dividing it by the total standard deviation. Afterwards,

the minimum, maximum, and standard deviation across the countries are calculated at each time, and the average

of them is reported. The return contribution is measured by the absolute return of each country divided by the

sum of the absolute returns at each point in time. Subsequently, the minimum, maximum, and standard deviation

across the countries are calculated at each time, and the average of them is reported. Panel D is the average

value using six factors excluding BAB. The sample period runs from 2006-09-29 for Value-MR and 2005-02-28 for

others, and to 2021-02-26.

Table 32: Portfolio performance

Panel A: Carry

Structure Methods α (%) t-stat β t-stat SR AR Mean (%) StDev (%) Skewness Kurtosis

Basic 0.62 2.50 -0.02 -0.29 0.62 0.63 0.61 0.98 0.44 2.22

Koijen Div 0.37 1.52 -0.44 -5.57 0.20 0.38 0.21 1.04 0.38 2.66

Resid 0.55 2.37 0.07 0.95 0.62 0.60 0.57 0.92 0.40 2.56

LP 0.68 2.91 0.03 0.37 0.74 0.73 0.69 0.93 0.56 1.97

Optimisation LP-limit 0.59 3.40 -0.07 -1.29 0.82 0.86 0.57 0.70 0.84 2.96

QP 0.65 3.16 0.03 0.51 0.81 0.8 0.67 0.82 0.59 2.42

Equal 0.57 2.51 -0.02 -0.22 0.63 0.63 0.56 0.9 0.34 2.23

Group K-means-size 0.51 2.57 0.07 1.14 0.68 0.65 0.54 0.79 -0.31 3.77

K-means-risk 0.62 2.97 0.03 0.46 0.76 0.75 0.63 0.82 -0.32 4.08

Panel B: Change-in-carry

Structure Methods α (%) t-stat β t-stat SR AR Mean (%) StDev (%) Skewness Kurtosis

Basic 0.76 2.74 -0.23 -2.56 0.61 0.69 0.68 1.12 0.28 2.90

Koijen Div 0.62 2.51 -0.26 -3.26 0.52 0.63 0.52 1.00 0.46 3.83

Resid 0.60 2.31 -0.01 -0.14 0.58 0.58 0.59 1.02 0.95 3.65

LP 0.60 2.32 -0.16 -1.93 0.52 0.59 0.54 1.04 0.86 3.36

Optimisation LP-limit 0.52 2.59 -0.12 -1.91 0.59 0.65 0.48 0.81 0.63 4.73

QP 0.62 3.03 -0.13 -1.98 0.7 0.76 0.57 0.81 0.65 3.78

Equal 0.46 1.83 -0.2 -2.5 0.38 0.46 0.39 1.01 0.33 3.26

Group K-means-size 0.48 2.46 -0.08 -1.26 0.58 0.62 0.45 0.78 0.94 5.94

K-means-risk 0.57 3.01 -0.02 -0.39 0.75 0.76 0.56 0.75 0.79 3.66

Panel C: Value-MR

Structure Methods α (%) t-stat β t-stat SR AR Mean (%) StDev (%) Skewness Kurtosis

Basic 0.09 0.28 0.51 5.03 0.22 0.07 0.28 1.26 0.28 4.65

Koijen Div -0.03 -0.11 0.47 5.15 0.13 -0.03 0.15 1.14 0.06 4.80

Resid -0.29 -1.19 0.26 3.27 -0.20 -0.32 -0.19 0.95 0.13 5.34

LP -0.47 -1.78 0.38 4.49 -0.31 -0.47 -0.32 1.04 1.00 8.58

Optimisation LP-limit -0.33 -1.65 0.15 2.33 -0.36 -0.44 -0.27 0.76 0.17 2.83

QP -0.24 -1.28 0.25 4.09 -0.2 -0.34 -0.15 0.75 0.9 4.67

Equal 0.13 0.45 0.34 3.73 0.23 0.12 0.26 1.1 0.07 4.3

Group K-means-size -0.01 -0.07 0.04 0.56 0.00 -0.02 0.00 0.78 0.99 3.38

K-means-risk -0.23 -1.05 0.20 2.82 -0.18 -0.28 -0.15 0.85 1.26 7.06

Panel D: Value-spread

Structure Methods α (%) t-stat β t-stat SR AR Mean (%) StDev (%) Skewness Kurtosis

Basic 0.39 1.42 0.25 2.88 0.43 0.36 0.48 1.10 -0.67 5.20

Koijen Div 0.34 1.32 0.00 -0.01 0.33 0.33 0.34 1.02 -0.24 4.46

Resid 0.39 1.56 0.13 1.64 0.44 0.39 0.44 1.00 -0.95 6.73

LP 0.38 1.60 0.20 2.57 0.47 0.40 0.46 0.96 -0.99 6.18

Optimisation LP-limit 0.41 2.05 0.07 1.05 0.55 0.52 0.43 0.79 -0.94 6.04

QP 0.55 2.67 0.22 3.27 0.75 0.67 0.62 0.83 -1.88 16.45

Equal 0.41 1.7 0.13 1.65 0.48 0.43 0.46 0.97 -0.2 4.02

Group K-means-size 0.30 1.58 0.23 3.72 0.49 0.40 0.38 0.77 -0.80 4.81

K-means-risk 0.45 2.32 0.21 3.36 0.66 0.59 0.53 0.79 -0.65 5.28

Panel E: MOM-YLD

Structure Methods α (%) t-stat β t-stat SR AR Mean (%) StDev (%) Skewness Kurtosis

Basic 0.82 2.27 -0.68 -5.80 0.37 0.57 0.57 1.55 0.85 9.32

Koijen Div 0.71 2.27 -0.72 -7.11 0.32 0.57 0.45 1.38 0.85 9.96

Resid 0.62 2.52 -0.45 -5.54 0.44 0.64 0.46 1.06 0.52 3.26
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LP 0.72 2.66 -0.48 -5.43 0.48 0.67 0.55 1.15 0.81 4.49

Optimisation LP-limit 0.32 1.45 -0.31 -4.28 0.23 0.37 0.21 0.92 -0.56 5.56

QP 0.56 2.84 -0.37 -5.83 0.5 0.72 0.43 0.85 1.04 4.65

Equal 0.53 1.89 -0.45 -4.85 0.31 0.48 0.37 1.19 -0.4 3.51

Group K-means-size 0.50 2.17 -0.33 -4.32 0.40 0.55 0.39 0.96 0.50 4.57

K-means-risk 0.67 2.69 -0.44 -5.42 0.48 0.68 0.51 1.06 1.87 13.46

Panel F: MOM-RET

Structure Methods α (%) t-stat β t-stat SR AR Mean (%) StDev (%) Skewness Kurtosis

Basic 0.95 2.91 -0.73 -6.88 0.48 0.73 0.69 1.45 0.89 11.99

Koijen Div 0.46 1.81 -0.70 -8.41 0.18 0.46 0.21 1.19 0.03 5.41

Resid 0.76 2.93 -0.17 -2.02 0.67 0.74 0.70 1.04 0.55 1.88

LP 0.76 2.85 -0.40 -4.63 0.55 0.72 0.61 1.11 0.88 4.47

Optimisation LP-limit 0.48 2.34 -0.25 -3.70 0.47 0.59 0.39 0.85 -0.11 4.79

QP 0.52 2.44 -0.33 -4.76 0.45 0.62 0.40 0.89 1.57 6.89

Equal 0.65 2.52 -0.52 -6.25 0.41 0.64 0.46 1.11 -0.65 5.33

Group K-means-size 0.55 2.45 -0.31 -4.21 0.47 0.62 0.44 0.94 0.35 6.32

K-means-risk 0.75 2.97 -0.40 -4.83 0.57 0.75 0.61 1.06 2.10 17.19

Panel G: BAB

Structure Methods α (%) t-stat β t-stat SR AR Mean (%) StDev (%) Skewness Kurtosis

Koijen Basic 0.27 0.98 -0.19 -2.11 0.18 0.25 0.20 1.11 1.82 10.83

Equal 0.13 0.55 -0.1 -1.27 0.1 0.14 0.09 0.93 0.00 4.33

Group K-means-size -0.06 -0.23 0.05 0.53 -0.04 -0.06 -0.05 1.10 1.96 13.88

K-means-risk 0.12 0.49 -0.25 -3.03 0.03 0.12 0.03 1.03 1.08 12.15

Notes: The portfolio performance for each factor strategy under Koijen, Optimisation and Group structure are

reported. The alpha, Sharpe Ratio (SR), Appraisal Ratio (AR), Mean and Standard deviations (StDev) are

annualised values. The sample period runs from 2006-09-29 for Value-MR and 2005-02-28 for others, and to

2021-02-26.
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Appendix C

Predictive ability testing results for ex-ante beta estimators

Table 33: Test statistics of predictive ability testing for ex-ante beta estimators

w = 1 w = 0.8
Beta measure t-stat cond t-stat uncond t-stat cond t-stat uncond

OLS 1Y 57.71(-) 55.14(-) 35.09(-) 26.63(-)
OLS 3Y 25.74(-) 25.98(-) 32.04(-) 17.54(-)
OLS 5Y 52.70(-) 39.80(-) 36.76(-) 33.44(-)
OLS AVG 31.76(-) 24.99(-) 39.17(-) 36.22(-)
FP 1Y5Y 66.35(-) 51.19(-) - -

w = 0.6 w = 0.4
Beta measure t-stat cond t-stat uncond t-stat cond t-stat uncond

OLS 1Y 28.04(-) 27.13(-) 92.90(-) 79.89(-)
OLS 3Y 101.06(-) 82.11(-) 119.37(-) 101.34(-)
OLS 5Y 85.28(-) 62.19(-) 116.11(-) 84.78(-)
OLS AVG 95.58(-) 76.54(-) 121.39(-) 98.42(-)
FP 1Y5Y 88.20(-) 88.02(-) 123.08(-) 109.35(-)

Notes: The predictive ability testing statistics of the BAB factor strategy using different ex-ante betas with the
simple rank-based weighting scheme using different beta estimation methods are reported. Both conditional and
unconditional test statistics are given. The sample period is 2007-01-31 to 2021-02-26. A positive test statistc
indicates that the estimator outperforms FP 1Y5Y with w = 0.8, and vice versa for a negative sign. A critical
value for conditional test is 5.99, and 3.84 for unconditional test. The p-values are zero in every case.
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Appendix D

Test statistics of robust variance and Sharpe ratio test

Table 34: Robust variance test result

Structure Methods Carry Change-in-carry Value-MR Value-spread MOM-YLD MOM-RET

Koijen Div 0.07 0.02 0.04 0.26 0.00 0.19
Resid 0.30 0.12 0.03 0.02 0.02 0.33

Optimisation LP 0.36 0.27 0.10 0.08 0.03 0.25
LP-limit 0.03 0.02 0.01 0.03 0.01 0.05
QP 0.05 0.00 0.00 0.10 0.01 0.01

Group Equal 0.02 0.00 0.00 0.01 0.32 0.35
K-means-size 0.32 0.03 0.13 0.02 0.00 0.02
K-means-risk 0.16 0.00 0.09 0.01 0.00 0.00

Notes: The p-value of robust variance test for individual factors is reported. The sample period runs from
2006-09-29 for Value-MR and 2005-02-28 for others, and to 2021-02-26.

Table 35: Robust test result of additional results - multi-factor

Sharpe Ratio variance
Structure Methods full sample full sample Turkish crisis

Koijen Div 0.98 0.01 0.24
Resid 0.38 0.35 0.26

Optimisation LP 0.14 0.17 0.17
LP-limitW 0.64 0.02 0.01
QP 0.56 0.08 0.17

Group Equal 0.89 0.34 0.00
K-means-size 0.51 0.00 0.34
K-means-risk 0.32 0.00 0.10

Notes: The p-value of robust variance and Sharpe ratio test of multi-factor model during full sample and Turkish
currency and debt crisis is reported. The sample period runs from 2005-02-28 for multi-factor model and 2017-
01-31 for Turkish currency and debt crisis, to 2021-02-26.
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