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Abstract

Since their introduction, cryptocurrencies have become popular investment products
and have recently attracted the interest of large firms. However, cryptocurrencies
are known to be very volatile and large losses can be incurred. With the recent
launch of Bitcoin futures in December 2017 it is possible to hedge against adverse
price movements. This paper evaluates the daily hedge effectiveness in terms of
Variance, Semivariance, Value-at-Risk and Expected Shortfall of the Bitcoin fu-
tures for the Bitcoin as well as the Ethereum, Ripple, Cardano and Litecoin using
several well-known bivariate copulas. Moreover, this paper proposes to combine the
density forecasts of different copulas to construct more robust hedges. Whereas the
individual copula methods are generally unable to outperform the OLS hedge and
DCC-GARCH hedge, the combined density forecast hedging methods are able to
compete with and outperform these benchmark hedges for alternative cryptocur-
rencies.
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1 INTRODUCTION

1 Introduction

The Bitcoin, developed by Satoshi Nakamoto back in 2009, was the first cryptocurrency

to be created. According to the Oxford Dictionaries Online, a cryptocurrency is defined

as “a digital currency in which encryption techniques are used to regulate the generation

of units of currency and verify the transfer of funds, operating independently of a central

bank”. This contrasts regular currencies such as the US dollar and the euro which can

be printed by central banks at any time. One of the main advantages of cryptocurrencies

over regular currencies are the low transactions costs as no intermediary institutions are

involved.

Despite the original intentions of cryptocurrencies, the major driver of their increas-

ingly growing popularity has been their performance as alternative investments. Accord-

ing to Šurda (2014), the Bitcoin was worth $0.01 when it was first used, and has peaked

at a value of about $60,000 at the start of 2021. To put this in perspective, this equals

an average annual return of about 250%. And the future of the Bitcoin and other cryp-

tocurrencies is looking bright, with large firms like Tesla planning to accept the Bitcoin

as a valid method of payment in the future if the Bitcoin gets more energy efficient.

However, one of the drawbacks of cryptocurrencies is their unstable price nature due to

the lack of regulation and relatively small volumes, which causes even small buys and sells

to influence the price. Many papers have confirmed that the prices of cryptocurrencies

are very volatile. Therefore holding cryptocurrencies involves a lot of risk and might

lead to large losses. To reduce this risk, cryptocurrency owners can hedge their positions

by taking positions in other assets such as Bitcoin futures. This might be particularly

interesting for those firms who wish to accept cryptocurrencies as method of payment,

but do not want to be exposed to the exchange risk. For that reason it is important to

correctly calculate the optimal hedge ratio, which depends on the amount of comovement

between the assets.

This paper focuses on estimating those hedge ratios that minimize the Expected Short-

fall of holding the Bitcoin, Ethereum, Ripple, Cardano and Litecoin using Bitcoin futures.

To accurately capture the dependence structure of the cryptocurrencies and the Bitcoin fu-

ture, this paper investigates the hedging potential of different copula methods. Moreover,

this study examines whether a combination of density forecasts from different copulas can

improve the hedging performance. In addition, this paper explores whether changes in

the dependence structure are present in the data.

At the time of writing, the only cryptocurrency with its own futures derivatives and

sufficient amount of data is the Bitcoin. Bitcoin futures were introduced on 18 December

2017 by the CME as a way to hedge against price movements of the Bitcoin. However,

as the interconnectedness between different cryptocurrencies is relatively large, Bitcoin

futures might also be useful for hedging alternative cryptocurrencies. Therefore, the data
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1 INTRODUCTION

considered in this paper consists of daily price data on five of the largest cryptocurrencies:

Bitcoin, Ethereum, Ripple, Cardano, Litecoin, as well as price data on Bitcoin futures.

The data set ranges from 18 December 2017 to 30 April 2021 and includes 879 observa-

tions.

A great amount of papers has investigated similar hedging problems for other ap-

plications over the years. For example, Lien et al. (2002) use futures to hedge several

currencies, commodities and stock indices. However, many of these papers simply assume

a multivariate Normal or Student-t distribution for modelling the dependence across the

assets, even though they lack the ability to cope with some important data characteris-

tics. The Normal distribution is unable to capture tail dependence and both the Normal

distribution and the Student-t distribution assume symmetry in the data. For that rea-

son, copulas have gained a lot of popularity in the recent years. For instance, Awudu

et al. (2016), Chen et al. (2016) and Sukcharoen & Leatham (2017) adopt copulas for

constructing optimal hedge strategies for ethanol processors, grain processors and oil

refineries respectively. Nonetheless, no research has been conducted to investigate the

application of copulas to construct hedge strategies for cryptocurrencies. Moreover, the

literature on hedging cryptocurrencies using Bitcoin futures is rather limited and just

consists of Corbet et al. (2018), who attempt to hedge the Bitcoin using the simple OLS

hedge, and Sebastião & Godinho (2020), who use the DCC-GARCH model for hedging

several cryptocurrencies. Therefore, this leaves a gap in the literature for more advanced

copula models.

In addition, the majority of the literature on hedging problems considers minimum-

Variance as objective. Yet, it is argued that the Variance is not an appropriate risk

measure as it not only takes the downside risk into account, but the upside risk as well.

Therefore, several papers have proposed the use of alternative risk measures such as Value-

at-Risk (VaR), Expected Shortfall (ES) and Lower Partial Moments (LPM). For instance,

Sukcharoen & Leatham (2017) construct and compare minimum-LPM, minimum-VaR and

minimum-ES hedges. Moreover, the Expected Shortfall in particular has received more

attention over the past few years as it exhibits some nice properties. For that reason, this

paper focuses on estimating those hedge ratios that minimize the Expected Shortfall.

Finally, since the work of Bates & Granger (1969), it is well-known in financial liter-

ature that combinations of forecasts generally perform better than individual forecasts.

For example, Diebold et al. (2021) construct mixtures of density forecasts for the inflation

based on the out-of-sample likelihood, and show that these combined density forecasts

outperform the individual density forecasts. Nonetheless, to the best of the author’s

knowledge this idea has not yet been applied to copulas. Therefore, this paper proposes

to combine copula density forecasts in order to calculate more robust hedge strategies.

Moreover, this paper considers several different methods for determining the combina-

tion weights suggested by Diebold et al. (2021), which are an equal weighting scheme, a
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simplex weighting scheme and a best 3 average weighting scheme, where the latter two

methods assign weights based on past out-of-sample fit.

This paper finds that Bitcoin futures are effective hedging tools for the Bitcoin and

are able to reduce the risk by over 40%. This is in line with the findings of Sebastião &

Godinho (2020). However, in contrast to Sebastião & Godinho (2020), this paper also finds

that Bitcoin futures are effective for reducing the tail risk of alternative cryptocurrencies

such as Ethereum, Ripple, Cardano and Litecoin by 10% to 40%.

Moreover, the hedging results show that although individual copula hedges are gen-

erally unable to outperform the benchmark OLS and DCC-GARCH hedges for the Bit-

coin and alternative cryptocurrencies, combining the density forecasts from the different

copulas results in hedge strategies that do outperform these benchmarks for alternative

cryptocurrencies. This illustrates the robustness of combined density forecasts, which

in return benefits the effectiveness of the hedge. Moreover, the results show combining

density forecasts with weights based on past out-of-sample performance can be beneficial

for hedging purposes. In addition, these methods are able to incorporate different copula

densities in different periods and therefore are well able to detect changes in the depen-

dence structure. However, these hedges do generally come with slightly higher transaction

costs as they require more rebalancing.

The remainder of the thesis is structured as follows. Section 2 gives an overview on

the literature on copulas, optimal hedge strategies and cryptocurrencies. In Section 3 and

Section 4 the data and the methods used in this paper are described. Section 5 shows the

results of the different models. Finally, Section 6 provides a discussion and conclusion.

2 Literature

Modelling the dependence structure for a set of variables has been a topic of interest in

many papers through history. An intuitive way of modelling the dependence structure is

by assuming some multivariate distribution such as the multivariate Normal distribution

or multivariate Student-t distribution. These distributions assume dependence between

the different variables through the regular Pearson correlation (1895) and an additional

second parameter for the Student-t distribution. However, Embrechts et al. (1999) argue

that using correlation as measure of dependence might give an inaccurate view on the ac-

tual dependence structure whenever the true distribution is non-normal. For example, the

multivariate Normal distribution does not exhibit tail dependence which is often present

in the data, and both the multivariate Normal and multivariate Student-t distribution as-

sume symmetry in the data. Therefore, they advocate the use of alternative dependence

measures, such as the Kendall’s τ or Spearman’s ρ, which measure rank correlation in

combination with copulas to model the dependence between different variables.

The idea of copulas was introduced by Sklar (1959) as a way to model dependence in
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the data for higher dimensions. A copula is defined as a multivariate distribution function

with uniform marginals that links the different variables. According to Sklar’s theorem,

each joint distribution function can be decomposed into some marginal distribution func-

tions and a copula. In contrast to the multivariate Normal and multivariate Student-t

distributions, some copulas can incorporate features such as tail dependence and asym-

metry. This flexibility makes copulas an interesting and useful tool for modelling different

series.

Over time, different copula methods have been proposed. Some of the most popular

copulas according to Dorey & Joubert (2005) are the Gaussian copula, the Student-t

copula, and the Archimedean Gumbel and Clayton copulas. The Gaussian copula and

the Student-t copula are derived from their distributional counterparts and therefore suffer

from the same drawbacks. The Archimedean copulas on the other hand, can allow for

both tail dependence and asymmetry. Additionally, in contrast to the elliptical copulas

they enjoy the benefit of having an explicit formula. Estimation of these copulas has

been widely researched by Scaillet & Fermanian (2002), Chen et al. (2006), Genest et al.

(1995) and others, and goodness-of-fit tests have been proposed by Chen & Fan (2005)

and Genest et al. (2006). Joe (1997) and Nelsen (2007) give a good overview on the

different copulas in the literature.

One particular area of research that has some special interest for copulas is the field

of financial risk management as discussed by Embrechts et al. (2002) and Junker & May

(2005). A popular topic in financial risk management is constructing hedge strategies.

The reason is that in order to construct an efficient hedge strategy it is important to

know how the assets co-behave and react to different news. Many papers have evaluated

hedging strategies by applying different specifications of the GARCH model introduced

by Bollerslev (1986) and Engle (1982). These models take into account volatility cluster-

ing which is a well-known feature for financial returns. For example, Lien et al. (2002)

and Chang et al. (2011) use the constant conditional correlation GARCH from Bollerslev

(1990) and dynamic conditional correlation GARCH model from Engle (2002) and Tse

& Tsui (2002) to model the dependence structure and to construct hedge strategies with

futures. However, these models generally assume a multivariate Normal or Student-t dis-

tribution for the errors. As discussed above, these distributions might not be appropriate

for modelling dependencies in financial return data.

To overcome this problem, Patton (2006) proposes dynamic copula GARCH models,

which relax this distributional assumption and allow for greater flexibility. Similar to the

dynamic conditional correlation GARCH model, dynamic copula GARCH models can

incorporate changing dependence structures of the assets. That is, the parameters are

allowed to evolve over time according to some evolution equation. Hsu et al. (2008),

Van den Goorbergh et al. (2005), Lai et al. (2009) and others use these methods to con-

struct hedge strategies. They find that dynamic hedging strategies using copula GARCH
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are generally more effective than those based on regular GARCH models and can greatly

reduce risk.

Next to choosing the right method for finding the dependence relation between several

assets, it is important to use the right criteria for calculating the hedging ratios. As hedges

are constructed in order to reduce the amount of risk for the holder, the objective is usually

to minimize with respect to a certain risk measure. In the literature on constructing hedge

strategies, the Variance is widely used as objective. This includes some of the above-

mentioned papers, as well as for example Haigh & Holt (2002) and Ji & Fan (2011), who

construct hedge strategies for oil refineries. However, it is often argued that the Variance

is not a good risk measure as it not only takes the downside risk into account, but the

upside risk as well.

For that reason, risk measures that solely focus on the downside risk might be more

suited for the task. For example, Chen et al. (2016) and Awudu et al. (2016) construct

hedge strategies by minimizing the Value-at-Risk (VaR). Power & Vedenov (2010) min-

imize Lower Partial Moments (LPM) introduced by Fishburn (1977) and compare the

results to those of a minimum-Variance (MV) hedge. They find that the MV approach

leads to overhedging compared to the minimum LPM hedge. Sukcharoen & Leatham

(2017) construct optimal hedge strategies for several risk minimizing objectives indepen-

dently, including LPM, VaR and Expected Shortfall (ES). They find consistent hedging

results across the different hedging objectives.

A relatively new field of research in finance is the use of cryptocurrencies. Cryp-

tocurrencies bear the advantage over regular currencies of little regulatory rules and low

transaction costs. The popularity of cryptocurrencies however is mainly driven by their

exceptional performance as investments. Moreover, Bouri et al. (2017) and Wang et al.

(2019) argue that cryptocurrencies are a safe haven during financial turmoils. Due to the

success of the Bitcoin and other cryptocurrencies such as Ethereum, the cryptocurrency

market has been growing rapidly over the past few years and more and more large com-

panies are getting involved. For instance, Tesla bought $1.5 billion worth of bitcoin at

the start of 2021 and is planning to accept Bitcoin as matter of payment if it achieves to

become more energy efficient, see Kovach (2021). However, the prices of cryptocurrencies

are generally very volatile, and holding them might lead to large losses, as found by Ardia

et al. (2019) and Conrad et al. (2018). Additionally, other features of data on cryptocur-

rencies are revealed by Osterrieder & Lorenz (2017), Phillip et al. (2018), Alvarez-Ramirez

et al. (2018) who find that returns of cryptocurrencies are non-normally distributed, have

asymmetric correlations and volatility clustering, and exhibit heavy-tail behaviour.

Therefore, hedging cryptocurrencies might become an interesting and important topic

in finance. The hedging capabilities of the Bitcoin and other cryptocurrencies on com-

modities such as oil have been shown in Dyhrberg (2016) and Okorie & Lin (2020) who

apply regular GARCH specifications. Nonetheless, little research has yet been done re-
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garding the hedging of Bitcoin and other cryptocurrencies using Bitcoin futures, which

were recently introduced in December 2017 by the CME. Corbet et al. (2018) use Bitcoin

futures to hedge price movements of the Bitcoin using OLS, but find that this actually

increases the portfolio’s volatility. Furthermore, Sebastião & Godinho (2020) calculate

the optimal hedge ratios of Bitcoin futures for both Bitcoin and other cryptocurrencies

using regular GARCH specifications. They show that these futures can be effective tools

for hedging price risk for the Bitcoin as well as for other cryptocurrencies. However, they

also find that the tail risk of the alternative cryptocurrencies increases when using Bitcoin

futures. All in all, this poses a gap in the literature as at the moment of writing there exist

no papers that consider copula methods for this particular problem. For that reason, it is

interesting to investigate whether copula methods can improve the hedging performance

of Bitcoin futures for different cryptocurrencies.

Finally, ever since the work of Bates & Granger (1969) it is well known in financial lit-

erature that combining different forecasts might lead to better and more robust forecasts.

That is, whereas individual forecasts can be very sensitive to certain behaviour and may

make some larger errors, a combination of different forecasts is likely to average out these

errors. Often even the simple average forecast proves to be hard to outperform. However,

whereas most forecasting papers are interested in point forecasts, the goal of this paper

is to reduce risk which depends on the lower tail of the distribution and therefore density

forecasts should be considered

Diebold et al. (2021) propose several regularized combinations of density forecasts

based on density score functions such as the log-score function by Good (1992) and Win-

kler & Murphy (1968). They compare the combined density forecasts with the individual

density forecasts and find that combined density forecasts outperform even the best indi-

vidual density forecast. Therefore, it might be interesting to explore whether combining

the density forecasts from different copula models can also improve the hedging perfor-

mance.

All in all, the contribution of this paper to the literature is twofold. First of all,

this paper is the first to consider copulas for hedging cryptocurrencies with Bitcoin fu-

tures. Secondly, this paper combines density forecasts resulting from different copulas

and investigates whether this can improve hedging performance.

3 Data

The data considered in this paper consists of daily price data on both cryptocurrencies

and CME Bitcoin futures (BTF) and is obtained from YahooFinance. All prices are in

US dollar. The cryptocurrencies are traded 24/7, and the spot prices are taken as the

closing prices at 20:00 EDT. Bitcoin futures were introduced by the CME on 18 December

2017 and are traded from Sunday to Friday 18:00 to 17:00 EDT with an one-hour break
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each day between 17:00 EDT to 18:00 EDT. This poses a time difference between the

spot and futures closing prices of 3 hours. Similar to Sebastião & Godinho (2020) and

Zhang & Choudhry (2015), the futures price series is constructed from monthly future

contracts which are rolled over at maturity at the start of each month. Five of the largest

cryptocurrencies in terms of market capitalization as of 30 April 2021 that already existed

on 18 December 2017 are chosen. From large to small, this includes the Bitcoin (BTC),

Ethereum (ETH), Ripple (XRP), Cardano (ADA), and Litecoin (LTC).

The price movements over time are shown in Figure 1, where the log-prices are dis-

played. Obviously, the Bitcoin has by far the highest value as its price has skyrocketed

since its introduction back in 2009. Furthermore, in this figure already some comovement

can be spotted. For example, in general the prices of the cryptocurrencies have been

declining in 2018. Hale et al. (2018) and others argue that this crash might have been the

result of the introduction of the Bitcoin futures, as it allowed investors to bet against the

Bitcoin more easily. However, this reasoning is still under debate as for example Hattori

& Ishida (2021) reject this hypothesis. After 2018, most cryptocurrencies have been in-

creasing in value again. Moreover, the outbreak of the corona virus at the start of 2020

seems to have boosted the popularity of the different cryptocurrencies even more. This is

likely due to people being no longer able to spend their money elsewhere, and hence are

more willing to get involved with investing in cryptocurrencies. Nonetheless, the Ripple

and the Litecoin still have not yet reached their peak value from the start of 2018.

Figure 1: Log-prices of the Bitcoin, Ethereum, Ripple, Cardano and Litecoin for the period December
2017 - April 2021

As the Bitcoin futures are not traded during weekends, these observations are omitted

from the data. Missing observations during trading days are filled using the next day open-
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ing prices if available, and are linearly interpolated otherwise, similar to Sebastião & God-

inho (2020). The log-returns are calculated for each asset i ∈ {BTC,ETH,XRP,ADA,
LTC,BTF} at each observation t = 1, ..., T as ri,t = log(Pi,t) − log(Pi,t−1), where Pi,t

denotes the price.

The final data set contains T = 879 observations on the log-returns. The log-returns

of the cryptocurrencies and the Bitcoin futures over time are displayed in Figure 2. As

expected, the figure shows that the returns of Bitcoin and Bitcoin futures are very much

related over time with returns often moving in the same direction. In addition there seems

to be some volatility clustering present in the data, which was also found by Phillip et al.

(2018). In particular, at the start of 2018 just after the introduction of the Bitcoin

Figure 2: Log-returns of the Bitcoin, Ethereum, Ripple, Cardano, Litecoin and Bitcoin futures for the
period December 2017 - April 2021
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futures and at the end of 2020 with the corona pandemic, the log-returns seem to be more

volatile than during most other periods. Furthermore there are a few large spikes visible

which indicate huge profits and losses of sometimes over 20%. One observation at the

start of 2020 especially stands out with a log-return of about -0.45. The timing of this

observation suggests that it occurred during the start of the corona pandemic when there

was an extreme amount of uncertainty about the future state of the economy.

As for the other cryptocurrencies, the returns generally seem to be in the same di-

rection as well. Moreover, the periods with higher volatility coincide with those of the

Bitcoin, with relatively high volatility at the start of 2018 and at the end of 2020. The

Ripple in particular has some huge profits and losses at the end of 2020, with a positive

log-return of about 0.6 followed by a negative log-return of almost -0.6 a few days later.

Furthermore, similar to the Bitcoin, all alternative cryptocurrencies show a large negative

spike at the start of the corona pandemic, which indicate the large losses at this date. It

can also be seen from the graph that the other cryptocurrencies are generally somewhat

more volatile than the Bitcoin with larger positive and negative returns.

Some summary statistics on the log-returns are shown in Table 1. The average log-

returns are relatively low, since daily returns are considered. However, looking at the

maximum and minimum log-returns, there are quite a few extreme returns with log-

returns as high as 0.627 for the Ripple and as low as -0.551 for the Ethereum and the

Ripple. The volatility of the returns is further indicated by the relatively high standard

deviations which are between 0.04 to 0.08. As suggested by Figure 2, the volatility of

the alternative cryptocurrencies is indeed somewhat larger than that of the Bitcoin. This

makes sense, as the Bitcoin was the first cryptocurrency to be introduced and therefore

has had the most time to stabilize.

Table 1: Summary statistics of the log-returns of the Bitcoin, Ethereum, Ripple, Cardano, Litecoin
and Bitcoin futures for the period December 2017 - April 2021

Asset BTC ETH XRP ADA LTC BTF

Mean 0.001 0.001 0.001 0.001 0.000 0.001
Maximum 0.203 0.354 0.627 0.322 0.291 0.222
Minimum -0.465 -0.551 -0.551 -0.504 -0.449 -0.268
Std. Dev. 0.047 0.061 0.076 0.073 0.060 0.047
Skewness -1.194 -0.789 0.846 0.134 -0.268 -0.330
Kurtosis 15.645 12.923 16.984 7.629 8.763 7.782
JB Stat. 6065 3698 7267 787 1227 853

Furthermore, similar to Osterrieder & Lorenz (2017), non-normality of the log-returns

is clearly shown by the Jarque-Bera test statistic, as JB = T
6
[Ŝ2 + 1

4
(K̂ − 3)2] ∼ χ2

2 has

a critical value of about 6 at 5% significance level. This is mainly due to all log-returns

exhibiting excess kurtosis indicating fat tails. In particular the log-returns of the Bitcoin

and Ripple have fat tails with kurtosis of 15.645 and 16.984 respectively, which is in line

with the findings of Alvarez-Ramirez et al. (2018). Skewness poses less of a problem in
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the data, as only the Bitcoin, Ethereum and Ripple are moderately skewed. Histograms

of the log-returns are shown in Appendix 8.1.

The correlations and rank correlations between the daily log-returns are displayed

in Table 2. Obviously, the (rank) correlation between the Bitcoin and its derivative,

the Bitcoin futures, is the highest. The table confirms that the price movements of the

different cryptocurrencies are very much related as they are relatively high and positive.

For example, the Bitcoin has correlations with the other cryptocurrencies between 0.531

and 0.794 and similarly the Kendall’s τ is between 0.487 and 0.611. This is line with the

conclusions from Figure 1 and is presumably because the Bitcoin is a dominant factor in

the cryptocurrency market and therefore impacts the other cryptocurrencies significantly.

As for the Bitcoin futures, the observations are similar, but with slightly lower (rank)

correlations. This means that the futures are somewhat less related to price changes of

different cryptocurrencies. This makes sense as with futures there is the opportunity for

the prices to correct before maturity. However, even then the comovement with the other

cryptocurrencies is relatively high with correlations between 0.424 and 0.660 and Kendall’s

τ between 0.386 and 0.470. This suggests that the Bitcoin futures are likely to also be

useful for hedging against adverse price movements of alternative cryptocurrencies.

Table 2: Correlations (upper-right) and Kendall’s τ (lower-left) of the log-returns of the Bitcoin,
Ethereum, Ripple, Cardano, Litecoin and Bitcoin futures over the period December 2017 - April 2021

Asset BTC ETH XRP ADA LTC BTF

BTC 1.000 0.793 0.531 0.689 0.794 0.840
ETH 0.611 1.000 0.603 0.761 0.814 0.636
XRP 0.487 0.578 1.000 0.648 0.585 0.424
ADA 0.518 0.595 0.564 1.000 0.710 0.554
LTC 0.591 0.630 0.536 0.558 1.000 0.660
BTF 0.647 0.470 0.386 0.395 0.464 1.000

4 Methodology

This section discusses the methods for modelling the dependence of the assets and con-

structing the hedge strategies. For the purpose of incorporating possible time dependen-

cies a rolling window of W = 200 observations is used, which is standard in literature.

This section kicks off by specifying the GARCH model which is used to model serial

dependence in the data in Section 4.1. Then different copula methods are discussed in

Section 4.2. The optimization of the hedge ratios is explained in Section 4.3, and the

combination methods are in Section 4.4. Finally, performance measures and benchmark

models are discussed in Section 4.5.
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4.1 GARCH Model 4 METHODOLOGY

4.1 GARCH Model

Before modelling the dependence among the different assets, the log-returns of the in-

dividual series need to be cleaned of time dependencies. A popular way of fitting time

series (log-)return data in the literature is by using the Generalized AutoRegressive Con-

ditional Heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986). This

model is able to capture volatility clustering, which is a well-known feature in financial

data. Volatility clustering refers to the observation that extreme returns in one period are

followed relatively often by extreme returns in subsequent periods and vice versa. This

behaviour is present for the log-returns of the different cryptocurrencies as discussed in

Section 3 and was also found by Phillip et al. (2018). The regular GARCH model assumes

that this effect is symmetric meaning that high positive returns have just as much of an

impact on the volatility as high negative returns. The GJR-GARCH(1,1) by Glosten et

al. (1993) on the other hand is able to incorporate this so-called leverage effect. However,

a quick estimate of this model on the entire data set shows that this effect is not present

in this data set.

Therefore, in this paper a simple GARCH(1,1) model is adopted to fit the log-returns

of the assets. This model is given by

ri,t = µi + σi,tzi,t

zi,t ∼ tνi(zi,t)

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1.

(1)

Here ri,t is the log-return of asset i ∈ {BTC,ETH,XRP,ADA,LTC,BTF} at time t =

1, ..,W , and µi and σi,t are the corresponding mean and conditional volatility respectively.

Furthermore, zi,t are the errors and εi,t = σi,tzi,t are the residuals. ωi, αi and βi are the

parameters to be estimated in the volatility equation, where the latter two determine the

persistence of the volatility.

Since the log-returns seem to exhibit heavy-tails, as was found by Alvarez-Ramirez et

al. (2018) and the excess kurtosis in Section 3, the GARCH(1,1) model is implemented

with zi,t following the standard Student-t distribution denoted by tνi(x) with shape pa-

rameter νi, which has the ability to cope with heavy-tails in the data. This distribution

includes the Normal distribution as a special case when νi →∞.

The model is estimated with Maximum Likelihood using the ‘rugarch’ package by

Ghalanos (2014) in the statistical software R . From here the fitted errors can be easily

obtained as ẑi,t =
ri,t−µ̂i
σ̂i,t

. These fitted errors are used to calculate the dependence among

different assets, which will be discussed in the next section.
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4.2 Copulas

Essential for constructing efficient hedge strategies is correctly modelling the dependence

structure of the different assets. The dependence structure is a characteristic of the joint

density of the assets, and a flexible way to model the joint density is by adopting copulas.

According to Sklar (1959), any joint distribution function can be decomposed into some

marginal distribution functions and a copula. That is,

F (z1, ..., zn) = C[F1(z1), ..., Fn(zn)] (2)

where F (z1, ..., zn) denotes the CDF of the joint distribution function, C(u1, ..., un) denotes

the copula and Fi(zi) denotes the CDF of the marginal distribution function of asset i.

The copula C(u1, ..., un) is effectively a joint distribution function with uniform marginals

as ui = Fi(zi) ∼ U(0, 1).

As the density of the multivariate distribution can be written as

f(z1, ..., zn) =
∂n

∂z1 · · · ∂zn
F (z1, ..., zn)

=
∂n

∂z1 · · · ∂zn
C[F1(z1), ..., Fn(zn)]

= c[F1(z1), ..., Fn(zn)]f1(z1) • · · · • fn(zn)

(3)

where

c(u1, ..., un) =
∂n

∂u1 · · · ∂un
C(u1, ..., un) (4)

the log-likelihood can be written as

` =
T∑
t=1

log{c[F1(z1,t), ..., Fn(zn,t)]}+
T∑
t=1

log[f1(z1,t)] + ...+
T∑
t=1

log[fn(zn,t)] (5)

Therefore, it is common in practice to use two-stage estimation as described by Joe

(1997). This means that first the marginal distributions are estimated, for example with

Student-t distributed marginals as in Section 4.1, after which the pseudo-sample ui,t can

be easily constructed and the copula can be estimated using maximum likelihood on the

pseudo-sample.1

One characteristic that might be particularly important for hedging is lower tail de-

pendence, which measures how much assets co-behave in case of large negative returns.

The exact definition of tail dependence for copulas and an overview of the tail dependence

of the different copulas considered in this paper are discussed Appendix 8.2. As the main

goal in this paper is to hedge an individual cryptocurrency with Bitcoin futures and hence

1When Maximum Likelihood is unable to converge, the copula is fitted using the method of moments
with Kendall’s τ .
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n = 2, the remainder of this section will elaborate on some well-known bivariate copulas

to model the dependence. All copulas are implemented in the statistical software R using

the ‘copula’ package by Hofert et al. (2020).

4.2.1 Elliptical Copulas

The first and most well-known class of copulas is the class of elliptical copulas. This class

contains the Gaussian copula and the Student-t copula and is popular due to its simple

structure. As the names suggest, these copulas are derived from the Normal (Gaussian)

and Student-t distribution respectively. The Gaussian copula and the Student-t copula

are defined as

CGauss(u1, u2; ρ) = Φ[Φ−1(u1),Φ
−1(u2); ρ] (6)

CStudent−t(u1, u2; ρ, ν) = tν [t
−1
ν (u1), t

−1
ν (un); ρ] (7)

where Φ(x) denotes the CDF of a (multivariate) standard Normal distribution (with corre-

lation ρ), and tν(x) denotes the CDF of the (multivariate) standard Student-t distribution

with ν degrees of freedom (and scale parameter ρ). However, similar to its distributional

counterparts, the Gaussian copula is unable to cope with tail dependence and in addition

both elliptical copulas assume symmetry in the data.

4.2.2 Archimedean Copulas

Another popular class of copulas is the class of Archimedean copulas. This class is espe-

cially popular for modelling bivariate dependencies as they can allow for asymmetry as

well as tail dependence, while only being specified by one dependence parameter. The

general structure of the bivariate Archimedean copula is

Cψ(u1, u2; θ) = ψ[ψ−1(u1; θ) + ψ−1(u2; θ); θ]. (8)

Here ψ(x; θ) is the Archimedean generator function of the copula, which has to be a

decreasing, continuous, and convex function with domain ψ : [0,∞) → [0, 1]. Moreover,

it needs to satisfy the conditions ψ(0; θ) = 1 and limx→∞ψ(x; θ) = 0. θ is called the

dependence parameter of the generator.

Two popular choices for the generator function that are considered in this paper

are the Gumbel generator with ψ(x; θ) = exp(−x 1
θ ) and the Clayton generator with

ψ(x; θ) = (1 + θx)−
1
θ . The Gumbel copula on the one hand only possesses upper tail

dependence, whereas the Clayton copula on the other hand only possesses lower tail

dependence.

Other relatively well-known Archimedean copulas include the Frank copula with gener-

ator function ψ(x; θ) = −1
θ
log{1 + exp(−x)[exp(−θ)− 1]}, the Joe copula with generator

ψ(x; θ) = 1 − [1 − exp(−x)]
1
θ , and the Ali-Mikhail-Haq (AMH) copula with generator
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ψ(x; θ) = 1−θ
exp(x)−θ . The Frank and the AMH copula exhibit no upper and lower tail

dependence, whereas the Joe copula only exhibits upper tail dependence.

4.2.3 Rotated Copulas

Alternatively, there also exist rotated forms of Archimedean copulas known as survival

copulas. Popular examples here again include the rotated Clayton copula and rotated

Gumbel copula. As opposed to their counterparts, the rotated Clayton copula only ex-

hibits upper tail dependence, whereas the rotated Gumbel copula only exhibits lower tail

dependence. The general structure of rotated copulas is given by

Crotated−ψ(u1, u2; θ) = u1 + u2 − 1 + Cψ(1− u1, 1− u2; θ). (9)

This means that the rotated Archimedean copulas are not Archimedean copulas them-

selves, as they do not necessarily satisfy the regularity conditions of Archimedean copulas.

4.3 Optimal Hedge Ratio Estimation

4.3.1 Monte Carlo Simulation

Together, the estimations of the GARCH(1,1) model and the copula give the estimated

joint distribution of the errors. However, as this distribution is hard if not impossible to

calculate analytically, the idea is to use Monte Carlo simulation. This means that a joint

sample of returns is simulated from the copula. In this paper, M = 10, 000 replications are

used each simulation. The construction of the simulated sample of returns is as follows:

1. Simulate jointly the pseudo observations uc,i and uc,BTFi from copula c for asset i.

2. Convert the simulated pseudo observations to simulated errors by using zc,i = t−1ν̂i (ui)

which is the inverse CDF of the fitted skewed Student-t distribution.

3. Calculate the simulated residuals εc,i = σ̂i,W+1zc,i where σ̂i,W+1 is the forecasted

volatility which results from the volatility equation of the fitted GARCH(1,1) model.

That is, σ̂2
i,W+1 = ω̂i + α̂iε̂

2
i,W + β̂iσ̂

2
i,W , where W denotes the last observation of the

window.

4. Obtain the simulated log-returns from the mean equation of the fitted GARCH(1,1)

model as rc,i = µ̂i + σ̂i,W+1zc,i.

5. Convert the simulated log-returns to returns, Rc,i = exp(rc,i)− 1.

After simulating the asset returns Rc,i from the different copulas, the simulated port-

folio returns can be calculated as

Rc,pi = Rc,i + hc,iRc,BTFi (10)
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where hc,i denotes the hedge ratio which is to be estimated. The Rc,BTFi has an additional

subscript i since the simulated Bitcoin futures returns differ from asset to asset. For

example, the simulated Bitcoin futures returns of the Gaussian copula when fitted together

with the Bitcoin are different from the simulated Bitcoin futures returns of the Gaussian

copula when fitted together with Ethereum. The hc,i can be interpreted as the amount

of dollars to invest in the Bitcoin futures for holding one dollar of asset i. That is, the

portfolio goes long one dollar in asset i, for example the Bitcoin or Ethereum, and short

−hc,i dollar in Bitcoin futures. For optimization purposes, hc,i is restricted between 0 and

-1.5.

4.3.2 Risk Minimizing Objective

As the eventual goal of hedging is to reduce the risk, many papers consider the Variance

as the risk minimizing objective. However, Sukcharoen & Leatham (2017) and others

argue that Variance may not be a suitable risk measure since it also takes upside risk

into account. Therefore in this paper the Expected Shortfall (ES) is considered as the

objective. The ES is defined as the expected loss above the Value-at-Risk (VaR), where

the VaR is a quantile indicating the maximum amount to be lost at a given probability

level α. The ES is chosen over the VaR itself as it exhibits some nice properties and

therefore has become more popular in the financial literature in recent years. The VaR

and ES of the returns are defined as

V aRα = sup{R : F (R) ≤ α} (11)

ESα =
1

α

∫ α

0

V aRudu (12)

where R denotes some return or profit with corresponding distribution F (R). This paper

uses a probability level of α = 0.05.

4.3.3 Optimization

Finally, the optimal hedge ratios should be chosen such that the amount of downside

risk is minimal. However, as the distribution of future returns is unknown, the simulated

copula returns are used to evaluate the amount of risk. Therefore, using the ES the

optimal hedge ratio is calculated by

h∗c,i = argmin
hc,i

ÊSα (13)
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where ÊSα is estimated from the simulated portfolio returns as

ÊSα =
1

Mα

dMαe∑
j=1

Rc,pi,(j) (14)

where Rc,pi,(1) ≤ Rc,pi,(2) ≤ ... ≤ Rc,pi,(M) denotes the order statistics of the simulated

portfolio returns from Equation (10) which are dependent on the hedge ratio hc,i, and

M = 10, 000 is the number of simulations.

4.4 Copula Density Forecast Combination

Ever since the work of Bates & Granger (1969) it is well-known in financial literature that

combinations of forecasts are generally more accurate than individual forecasts as they

are more robust. Even a simple average forecast is often able to outperform individual

forecasts. However, the goal in this paper is to reduce risk, which does not just depend on

a point forecast but rather on the entire distribution. For example, the VaR is a quantile

of a given density. Therefore, this paper aims on constructing a weighted average density

forecast. Note that the simulated samples of returns from the different copulas as in

Section 4.3 are essentially density forecasts. How much an individual copula contributes to

the joint density forecast depends on its given weight. For that purpose, again simulation

is used to determine from which copula to simulate an observation for the combined

density forecast. That is, denote the weights corresponding to each copula model by ωc,

then

Rm
comb =

R1 if wm ≤ ω1

Rk if
∑k−1

c=1 ωc < wm ≤
∑k

c=1 ωc, for k = 2, ..., J
(15)

where Rk denotes a vector of jointly simulated returns from copula c, and wm ∼ U(0, 1) is

a simulated uniform variable that determines from which copula to simulate. When the

number of simulated samples is sufficiently large, this simulated sample should converge

to the joint mixture density. From here, the optimal hedge ratios can be calculated in

similar fashion as before.

The question then remains how to choose the weights ωc. As stated above, simple

average point forecasts often already tend to outperform individual forecasts. Therefore,

the first and most obvious choice for the weights is the equally weighted or average density

forecast with ωc = 1
J

for all c.

However, this choice may be too simplistic as some density forecasts might be signif-

icantly better than others. How good density forecasts are can be assessed using score

functions. A popular choice for score functions in this context is the log-score func-

tion by Good (1992) and Winkler & Murphy (1968). This score function is given by

L(x) = −log[f(x)], where f(x) is the predicted density and x is the realization. Smaller
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L(x) are preferred over larger L(x). This means that the joint density as given by Equation

(3) is evaluated, thereby taking the fitted Student-t distribution and the fitted copula to-

gether. These log-scores can then be used for calculating the optimal weights which turns

out to be the regularized estimator with log-objective of Geweke & Amisano (2011)

ω∗ = argmin
ω

D∑
t=1

−log[
J∑
c=1

ωcfc,t(z1,t, z2,t)]

wc ≥ 0,
J∑
c=1

ωc = 1

(16)

where D is the amount of past predictions that is used for determining the optimal

weights. In this paper D = 100 is used. This means that the construction of the com-

bined joint density forecast is based on the out-of-sample fit of the different copulas over

approximately the last four months. Furthermore, Diebold et al. (2021) show that the

restrictions regarding ωc also act as some sort of LASSO regularization, which was intro-

duced by Tibshirani (1996), and shrinks the weights towards zero. Due to its constraints,

this combination will be referred to as the simplex weighted combination.

Lastly, Diebold et al. (2021) show that best subset averaging can also perform quite

well. Subset averaging is a special case of partially egalitarian penalization by Diebold &

Shin (2019) with ridge. The partially egalitarian penalization with ridge problem is given

by

ω∗ = argmin
ω

D∑
t=1

−log[
k∑
c=1

ωcfc,t(z1,t, z2,t)] + λ
k∑
c=1

[ωc −
1

δ(ω)
]2

wc ≥ 0,
k∑
c=1

ωc = 1.

(17)

δ(ω) is the number of nonzero elements of ω, and the ridge penalty ensures that the

remaining weights are shrunk towards their average weight. Best subset averaging happens

if λ → ∞ as the penalty of deviating from the average dominates the objective. In this

paper best 3 averaging is considered, which is the case when δ(ω) = 3. The choice for

δ(ω) = 3 is somewhat arbitrary as no good estimation methods exist for determining the

optimal δ(ω). However, as the total number of copula density forecasts equals twelve,

δ(ω) = 3 ensures that only the best density forecasts are considered, without losing the

benefit of averaging.

4.5 Performance Evaluation

4.5.1 Performance Measures

The main goal of this paper is to develop hedge strategies that reduce the risk in cryp-

tocurrency portfolios. For that reason, the focus is on good hedging performance rather

17



4.5 Performance Evaluation 4 METHODOLOGY

than high profitability. To evaluate the hedging performance again risk measures are

considered. That is, the hedges are evaluated by calculating several risk measures for

the realized out-of-sample returns of the hedged portfolios. The set of risk measures

considered in this paper consists of the Variance, Semivariance, and the VaR and ES at

probability levels α ∈ {0.1, 0.05, 0.025, 0.01}. It is common in the literature to compare

the results of the hedged portfolio with those of the unhedged portfolio. This comparison

is summarized by the Hedging Effectiveness (HE) which is given by

HE = 1− Risk(Rhedged)

Risk(Runhedged)
(18)

where Risk denotes one of the above-mentioned risk measures. Furthermore, Rhedged

are the realized returns of the hedged portfolio, and Runhedged are the realized returns

of the unhedged portfolio, or in other words the realized returns of the cryptocurrency.

Obviously the hedge strategy should reduce the amount of risk as much as possible and

therefore higher hedge effectiveness is preferred. The significance between the hedging

performances of different models is assessed using the Wilcoxon Ranked Sum test on the

different hedge effectivenesses.

However, although reducing the risk is the main goal of the hedge, there are some

important limitations. Most notably, since dynamic hedge strategies are considered, there

are costs involved with the buying and selling of Bitcoin futures given by the bid-ask spread

and other fees. For that reason, the turnover which measures the amount of changes in

positions, or in other words the volatility of the hedge ratio, is also considered. The

turnover is defined as

TO =
1

T −W − 1

T∑
t=W+1

|ht − h∗t−1| (19)

where T = 879 is the total number of observations, and W = 200 is the moving window.

ht denotes the estimated hedge ratio at time t and h∗t−1 is the estimated hedge ratio at

time t−1 corrected by the realized returns at time t. That is, h∗t−1 = ht−1
1+RBTF,t
1+Ri,t

. Models

that produce lower turnover are preferred over models with higher turnover.

In this paper the average trading fee is assumed to be 0.1% which is relatively low.

More information on trading fees of Bitcoin futures is available on the respective websites

of BitMEX and Okex. In addition, the bid-ask spread obtained from YahooFinance is

approximately 0.05%. This leads to a total transactions cost of about 0.15%. This means

that when an investor wishes to buy or sell $100 of Bitcoin futures, he has to pay an

additional $0.15. These low transaction costs are one of the advantages of Bitcoin futures

mentioned by among others Corbet et al. (2018).
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4.5.2 Benchmark Models

Finally, the models are compared to three more simplistic hedge strategies. The first of

these hedge strategies is the naive hedge which takes the opposite position in the hedging

asset. This means a constant hedge ratio of hnaive,i = −1.

The second strategy is the OLS hedge. This method simply estimates the hedge ratio

by performing OLS of the hedgeable asset on the hedging asset,

Ri,t = ai + hOLS,iRBTF,t + εi,t (20)

Subsequently, hOLS,i turns out to be the hedge ratio that minimizes the in-sample uncon-

ditional Variance.

The third benchmark model is the Dynamic Conditional Correlation GARCH (DCC-

GARCH) model proposed by Engle (2002), which is also used by Sebastião & Godinho

(2020) for hedging several different cryptocurrencies using Bitcoin futures. The DCC-

GARCH model is a multivariate extension of the univariate GARCH model where the

conditional correlation between assets is allowed to vary over time similar to the volatility.

It is different from the copula methods considered in this paper since the way it constructs

the dependence structure between assets is still restricted.

The model is given by

rt = µt + εt

εt ∼ Φ(0, DtΣtDt)

D2
t = diag{ωi}+ diag{αi} ◦ εt−1ε

′

t−1 + diag{βi} ◦D2
t−1

Σt = diag{Qt}−1Qt diag{Qt}−1

Qt = S ◦ (ιι
′ − A−B) + A ◦ εt−1ε

′

t−1 +B ◦Qt−1

(21)

where rt denotes the log-returns at time t with corresponding means µt and residuals

εt respectively. Following Sebastião & Godinho (2020) these errors follow a multivariate

Normal distribution with conditional covariance matrix DtΣtDt. Here, Dt denotes the

diagonal matrix of conditional standard deviations which follow from univariate GARCH

processes, and Σt denotes the conditional correlation matrix. The conditional correlation

matrix is constructed from the covariance matrix Qt which also follows a GARCH process.

In particular, S is the unconditional correlation matrix, ι denotes a vector of ones, and

A and B are the parameter matrices that determine the persistence of Qt. The model

is implemented in the statistical software R using the ‘rmgarch’ package from Ghalanos

(2019). Both OLS and DCC-GARCH are estimated using the same moving window of

W = 200.
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5 Results

5.1 GARCH(1,1) Volatility Forecasts

This section analyzes how the GARCH(1,1) model behaves over time, as the errors re-

sulting from the GARCH(1,1) model are used to get rid of serial correlation. The average

estimates of the GARCH(1,1) for all different cryptocurrencies and the Bitcoin futures

are shown in Appendix 8.3.

The volatility equation is particularly interesting as it determines the amount of un-

certainty about the next period returns. This might affect the optimal hedging strategy

quite significantly, as more uncertainty about the future returns generally means higher

risk, and reducing this risk is exactly the goal of this paper. In addition, it gives an indi-

cation of the how economic circumstances affect the different cryptocurrencies. For that

reason the forecasted next period volatilities of the different assets over time are displayed

in Figure 3.

Figure 3: GARCH(1,1) next day volatility forecasts of the Bitcoin, Ethereum, Ripple, Cardano,
Litecoin and Bitcoin futures with a moving window of W = 200 observations for the period September

2018 - April 2021

As expected, the Bitcoin and the Bitcoin futures show very similar behaviour in terms

of forecasted volatility. The volatility starts off relatively low, but then rapidly increases

at the end of the first quarter of 2020. Around that time the corona virus arrived in

Western countries and there was a lot of uncertainty about the future state of the economy.

However, the Bitcoin reacts much stronger then the Bitcoin futures, peaking at a volatility

of about 0.35 compared to a volatility of about 0.18. Such observations will likely affect
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the optimal hedge ratios significantly, as in terms of risk it is probably beneficial to take

a relatively larger position in the Bitcoin futures to control for the higher uncertainty in

the Bitcoin. The volatility then drops quickly to about the same level as before. The

forecasted volatility then gradually increases during the last months of 2020 and the first

months of 2021. A possible explanation might be the hype around the Bitcoin at that time

due to investments and announcements of Tesla and their CEO Elon Musk. In general

these findings support the behaviour of the log-returns found in Section 3.

As for the volatility of the alternative cryptocurrencies, the general patterns are mostly

the same as those of the Bitcoin. This is in line with the expectations since it was

already found that the different cryptocurrencies are interconnected and show very similar

behaviour. However, the forecasted volatilities of these cryptocurrencies are significantly

larger than those of the Bitcoin and Bitcoin futures. Considering the peak at the start

of the corona pandemic however, Cardano and Litecoin only reach a peak volatility of

approximately 0.19 and 0.20 respectively. The Ethereum and the Ripple on the other

hand are more volatile with peaks of 0.31 and 0.40. In addition, the Ripple shows extreme

volatility towards the end of the data set. What is more, the GARCH(1,1) model produces

a forecasted volatility of about 0.5 for the Ripple at some point after a large positive return.

All in all, these findings are again in line with the findings in Section 3.

5.2 Copula Fit

As discussed in Section 4.2, this paper adopts different copulas in order to see which

copulas capture the joint dependence structure of the cryptocurrencies and the Bitcoin

futures best and provide a good hedge. In particular, this paper includes two elliptical

copulas, five Archimedean copulas and five rotated Archimedean copulas. The general

fit of these copulas indicated by their average log-likelihoods is displayed in Table 3. For

illustrative purposes, simulated pseudo-samples of these copulas are plotted in Appendix

8.2.

For the Bitcoin, the Student-t copula gives the best average fit with an average log-

likelihood of 145. In contrast to the other copulas that all include only one parameter, the

Student-t copula includes two parameters that determine the dependence structure. This

gives the Student-t copula an advantage in terms of flexibility which is probably one of

the reasons for its good fit. The Gumbel and rotated Gumbel copulas also model the joint

dependence structure relatively well with log-likelihoods of about 128 and 135 respectively.

The next best fit is given by the Gaussian copula with an average log-likelihood of 125.

Looking at the tail characteristics of these four copulas, the Student-t copula possesses

both upper and lower tail dependence, the Gaussian copula possesses neither lower nor

upper tail dependence, and the Gumbel and rotated Gumbel copula posses only upper and

lower tail dependence respectively. This suggests that tail dependence is not an important
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feature for the general fit of the copula which makes sense as these characteristics are only

relevant for a few observations. Lastly, the AMH copula and rotated AMH copula give

the worst fits of all copulas with log-likelihoods of 81 and 78 respectively, showing that

the general dependence structure of these copulas is not accurate.

Table 3: Average log-likelihoods of the different copulas for the Bitcoin, Ethereum, Ripple, Cardano,
Litecoin with Bitcoin futures for the period December 2017 - April 2021 with a moving window of

W = 200 observations

Crypto BTC ETH XRP ADA LTC

Gauss 125.497 65.259 46.091 46.906 61.660
Student-t 145.364 71.326 51.283 50.965 66.315
Clayton 113.291 63.848 50.172 47.626 58.248
Gumbel 127.753 58.280 38.550 40.801 55.329
Frank 120.352 62.645 45.327 42.787 54.901
Joe 101.084 40.032 23.941 27.258 39.187
AMH 81.278 58.921 48.785 46.897 54.890
R-Clayton 101.689 42.881 26.728 24.795 41.949
R-Gumbel 135.218 71.773 54.253 52.344 66.087
R-Frank2 120.352 62.645 45.327 42.787 54.901
R-Joe 113.054 62.746 49.639 46.580 57.132
R-AMH 78.176 44.418 31.759 32.213 42.647

As for the alternative cryptocurrencies, the copula fits are significantly lower. This

makes sense as these cryptocurrencies are not as strongly related to the Bitcoin futures as

the Bitcoin itself, and hence there is less structure in their joint dependence. The average

log-likelihoods are the highest for the Ethereum and the Litecoin, followed by the Ripple

and the Cardano. In general, the same copulas that provide a good fit for the Bitcoin,

also provide a good fit for the alternative cryptocurrencies. For example, the rotated

Gumbel copula and the Student-t copula fit the data best and second best respectively

for all cryptocurrencies. An exception here is the AMH copula, which provides a bad fit

for the Bitcoin, but a relatively good fit for the alternative cryptocurrencies.

Important determinants for the structure of the copulas are their dependence param-

eters. These dependence parameters are related to Kendall’s τ , or the rank correlation,

by

τ = 1 + 4

∫ 1

0

ψ−1(x; θ)

(ψ−1)′(x; θ)
dx

for Archimedean copulas, and similar relations exist for other copulas. Hence, the Kendall’s

τ can be used to summarize the dependence structure of these copulas. The Kendall’s

τ is preferred over the regular Pearson correlation as it is more robust in correctly de-

scribing the dependence structure. That is, rank correlation does not depend on the

2Due to its symmetric structure, the Frank copula and rotated Frank copula are actually the same.
However, because of time restrictions the rotated Frank copula is still left in the analysis. Moreover,
it can actually be used to check the sensitivity of the hedging performance by the simulated sample by
comparing the hedge results of the Frank copula and rotated Frank copula.
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marginal distributions as Pearson correlation does. In addition, it is better able to deal

with heavy-tails in the data.

For that reason, Figure 4 shows the estimated Kendall’s τ for the various cryptocur-

rencies linked with the Bitcoin futures over time. As expected, the rank correlation is

higher and more stable for the Bitcoin than for the alternative cryptocurrencies, ranging

between 0.6 and 0.7, and might even be slightly increasing over time. This probably

benefits the hedging performance as more stable estimates indicate that the dependence

structure next period is more likely to be similar to the dependence structure this period,

and thus the joint density forecasts provided by the copulas are probably more accurate.

Figure 4: Estimated Kendall’s τ of the Bitcoin, Ethereum, Ripple, Cardano and Litecoin with the
Bitcoin futures for the period September 2018 - April 2021 with a rolling window of W = 200

observations

The Kendall’s τ of the alternative cryptocurrencies on the other hand show some

more time-varying behaviour. The Ethereum, which is most related to the Bitcoin and

the Bitcoin futures as indicated by its correlation and Kendall’s τ estimates in Section

3, have the highest and most stable estimates of the alternative cryptocurrencies. Its

Kendall’s τ ranges between 0.45 and 0.55. Furthermore, the Kendall’s τ of the Ripple,

Cardano and Litecoin show a clear pattern where first the dependence decreases at the

end of 2019, then increases during the first months of 2020, and then decreases again at

the end of that year. Looking back at the GARCH(1,1) volatility forecasts in Section

5.1, the last decline at the end of 2020 might be explained by the fact that the volatility

of these cryptocurrencies during this period increased significantly. This hints that this

more volatile behaviour is probably not picked up as well by the Bitcoin futures and might

negatively impact the hedging capabilities of the Bitcoin futures for these cryptocurrencies
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during this period.

5.3 Hedging Results

In this section, the various hedge strategies with minimum ES objective are evaluated.

Since the amount of different hedge strategies is quite large, only the performances of the

unhedged portfolio, the best benchmark hedge strategy, the three best individual copula

hedge strategies and the three density forecast combination hedge strategies are discussed

for each cryptocurrency. The best performing models are chosen based on their average

ranking across the different risk measures. The performance of the remaining methods as

well as the results of the Wilcoxon Signed Rank test are shown in Appendix 8.4.

5.3.1 Hedging Results Bitcoin

First, the performances of the direct hedging strategies of the Bitcoin futures for the

Bitcoin are discussed. Table 4 shows some statistics as well as measures of riskiness with

corresponding hedge effectiveness for the different portfolios. In general the table confirms

that hedging Bitcoin using Bitcoin futures is effective for reducing risk, which is in line

with the findings of Sebastião & Godinho (2020). The hedging effectiveness for all methods

and all risk measures is positive and this also holds for the remaining methods which are

shown in Appendix 8.4. Moreover, the hedging effectiveness generally ranges between

40% and 50% for these models, indicating that the risk reduction is quite significant. The

relative decrease of the Variance is even higher with hedging effectiveness just below 70%.

This is particularly interesting since this paper did not target minimum-Variance hedging,

but instead minimizes the ES at a 5% level. However, it is well-known in literature that

aiming to minimize a certain objective, in this case the ES, might actually benefit other

objectives more, in this case the Variance. Additionally, it might be less difficult to reduce

the Variance than the ES, as the ES relies on extreme observations which are generally

harder to predict.

Another obvious result of hedging is that the mean return of the hedged portfolios

are lower than those of the unhedged portfolio. That is, the average daily return of

the unhedged portfolio equals about 0.006, whereas the average returns of the hedged

portfolios are significantly lower around 0.001. In addition the minimum return also

increases. This makes sense as the hedged portfolios take a position in the Bitcoin futures

in the opposite direction, meaning that when the price of the Bitcoin increases, the price of

the Bitcoin futures likely also increases, hence the value of the hedged portfolio increases

less than the value of the Bitcoin itself. Interestingly however, there are also hedge

strategies where the maximum return increases, such as the hedge strategies resulting

from the Gaussian copula and the equally weighted combination method.

The OLS benchmark model provides the best hedging performance of all benchmark
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models based on its average rank of 2.0, thereby outperforming the Naive hedge and the

DCC-GARCH hedge. This is in line with the findings of Sebastião & Godinho (2020)

who find that the DCC-GARCH model is not able to improve upon the OLS benchmark

in most cases. Moreover, the OLS model provides the best risk reduction of all models

for more extreme observations, reducing the ES by approximately 40% on all levels.

Table 4: Risk measures for evaluating the out-of-sample hedging performance for the Bitcoin portfolio
using different hedge strategies. The hedging effectiveness is displayed between brackets. The results

are based on the period September 2018 - April 2021. For convenience only the best models are shown
in this table. In addition the average model ranks for the 10 risk measures is calculated. The best

models are indicated in bold.

Method Unhedged OLS Gauss R-Gumbel R-Joe C-Equal C-Simplex C-Best 3

Mean 0.006 0.001 0.002 0.002 0.003 0.001 0.001 0.001
Max 0.225 0.214 0.289 0.142 0.144 0.241 0.224 0.132
Min -0.372 -0.196 -0.185 -0.195 -0.224 -0.178 -0.181 -0.158
Variance 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(-) (68.246) (60.023) (63.124) (58.298) (63.921) (65.521) (69.047)
Semivariance 0.043 0.025 0.026 0.027 0.028 0.026 0.026 0.025

(-) (42.220) (39.219) (36.839) (35.900) (39.167) (39.861) (40.802)
VaR 0.1 -0.039 -0.022 -0.023 -0.024 -0.024 -0.022 -0.020 -0.022

(-) (43.065) (42.179) (39.142) (39.631) (44.485) (48.781) (44.485)
VaR 0.05 -0.057 -0.034 -0.036 -0.036 -0.037 -0.034 -0.034 -0.034

(-) (39.768) (35.962) (35.796) (34.340) (39.124) (40.069) (39.850)
VaR 0.025 -0.078 -0.055 -0.053 -0.054 -0.057 -0.058 -0.055 -0.056

(-) (29.922) (31.592) (31.013) (27.007) (25.683) (28.832) (28.526)
VaR 0.01 -0.130 -0.068 -0.077 -0.077 -0.074 -0.080 -0.076 -0.080

(-) (47.852) (40.512) (41.012) (43.057) (38.834) (41.490) (38.621)
ES 0.1 -0.073 -0.044 -0.046 -0.047 -0.048 -0.047 -0.045 -0.045

(-) (39.573) (36.289) (35.053) (34.633) (35.849) (37.534) (37.712)
ES 0.05 -0.101 -0.061 -0.065 -0.066 -0.066 -0.067 -0.065 -0.064

(-) (39.049) (35.547) (34.731) (34.437) (33.480) (35.498) (36.455)
ES 0.025 -0.136 -0.078 -0.084 -0.086 -0.085 -0.086 -0.084 -0.083

(-) (42.954) (38.397) (37.028) (37.322) (36.372) (38.059) (38.714)
ES 0.01 -0.185 -0.109 -0.122 -0.123 -0.121 -0.121 -0.121 -0.115

(-) (40.954) (34.107) (33.553) (34.747) (34.581) (34.587) (37.719)

Rank - 2.0 5.0 6.9 7.1 7.1 3.5 3.5

Furthermore, the hedging results suggest that the Gaussian copula, rotated Gumbel

copula and the rotated Joe copula are the copulas most suited for hedging the Bitcoin.

However, looking back at the average copula fits in Section 5.2, the Student-t copula

actually fitted this particular data best. This goes to show that a good fit does not

necessarily lead to high hedge effectiveness as certain characteristics of the distribution

that relate to downside risk, such as tail dependence, are most important for hedging.

Hence a copula that fits the data well but is not able to accurately capture those particular

data characteristics might still give bad hedging results.

The rotated Gumbel and rotated Joe copula both incorporate lower tail dependence.

This hints that this characteristic might indeed be an important characteristic for hedging.

However, the Gaussian copula performs best of all copulas based on its average rank of 5.0

and does not incorporate any tail dependence. Comparing the individual copula hedges
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to the benchmark OLS hedge, the OLS hedge outperforms these methods for all risk

measures except the VaR at 2.5% level. This shows that although individual copulas

have some potential for hedging Bitcoin in terms of hedge effectiveness, they are generally

unable to do better than the simple OLS hedge. Moreover, this suggests that the OLS

hedge might actually provide quite a competitive and hard-to-beat benchmark.

Turning to the density forecast combination hedge strategies, recall that these are con-

structed by combining the various density forecasts resulting from the individual copulas

according to different weighing schemes. This also includes the aforementioned Gaussian

copula, rotated Gumbel copula and rotated Joe copula. The idea is that these combined

density forecasts are more robust and take some good characteristics from each individual

density forecast, while averaging out the bad characteristics.

First, the equally weighted combination hedge strategy has the worst overall hedging

performance of the combination methods with an average ranking of 7.1. This is similar

to the best performing individual copula methods displayed in the table. Therefore this

immediately shows the great benefit of combining density forecasts for hedging purposes.

However, in general the OLS hedge still seems to provide a better hedge than the equally

weighted combination method

It might be that the equally weighted combination method assigns too much weight

to bad density forecasts which in return can hurt the combined density forecast and with

that its hedging ability. For that reason it could be beneficial to consider some alternative

weighting schemes which are based on out-of-sample fit as discussed in Section 4.4. The

simplex weighting combination strategy has an overall performance that is indeed closer

to that of the OLS benchmark based on its average rank of 3.5. Moreover, it completely

dominates the equally weighted combination method hinting that this weighting scheme

leads to a more accurate density forecast. This is in line with the findings of Diebold

et al. (2021), and again confirms the benefits of combining different density forecasts.

However, this method still gives relatively low hedge effectiveness compared to the OLS

hedge. Especially its ability to hedge against large losses is lackluster with for example a

hedge effectiveness of 34.6% for the ES at 1% level versus 41% for the OLS hedge.

Another weighting scheme is the best 3 average combination. This method achieves

the same average rank as the simplex weighting scheme at 3.5. Overall, its performance is

fairly similar to that of the simplex weights combination strategy, and similar conclusions

hold. It shows that these methods can compete with the OLS hedge benchmark, which

has been shown to be hard to outperform, but might not improve upon the OLS hedge,

especially not for reducing extreme losses.

As argued in Section 4.5, next to looking at the hedging abilities of different hedge

strategies, it is also important to consider how feasible the hedge strategies are. That is,

a certain hedge strategy might give an excellent performance, but when the costs of this

strategy are large, the hedge might still not be worth pursuing. Therefore some summary
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statistics on the hedge ratio as well as the turnover are displayed in Table 5. Recall that

the turnover is the average magnitude of rebalancing, which typically involves costs.

First of all, the mean hedge ratios of the different hedge strategies differ quite a lot.

The mean hedge ratios of the OLS hedge and the combination methods are about -0.8,

whereas the mean hedge ratios of the individual copula hedges are between -0.5 and -0.7.

This suggests that the individual copula models likely underestimate the amount of risk

in the Bitcoin or underestimate the amount of tail dependence between the Bitcoin and

Bitcoin futures, which leads to lower hedge ratios and thus worse hedge performance. Fur-

thermore, the ranges of the different hedge ratios differ quite a lot between the methods.

The OLS hedge ratio is very stable between -0.729 and -0.954, whereas the other methods

have a far greater variation in hedge ratios. This is likely the result of the GARCH(1,1)

specification, since the volatility forecasts shown in Section 5.1 can differ significantly over

time. Moreover, these strategies even attain hedge ratios of approximately zero which in-

dicates that it is expected that holding additional units in Bitcoin futures would increase

the risk. This may have happened in times where the volatility of the Bitcoin is relatively

low compared to the volatility of the Bitcoin futures and therefore there is little potential

for hedging.

Table 5: Summary statistics of the hedge ratios of different hedge strategies for the Bitcoin. The
results are based on the period September 2018 - April 2021. For convenience only the best models are

displayed in this table.

Method OLS Gauss R-Gumbel R-Joe C-Equal C-Simplex C-Best 3

Mean -0.827 -0.685 -0.626 -0.500 -0.794 -0.809 -0.826
Max -0.729 0.000 0.000 0.000 0.000 0.000 0.000
Min -0.954 -1.500 -1.425 -1.153 -1.439 -1.500 -1.500
Turnover 0.015 0.095 0.090 0.078 0.086 0.074 0.070

Focusing on the turnover, the OLS method clearly has the lowest turnover of 0.015.

This means that on average the absolute difference between the adjusted previous hedge

ratio and the new hedge ratio is 0.015. Again, the combination methods do seem somewhat

more robust than the individual methods with all three combination methods having

lower or almost as low turnover as the best individual copula methods. The second best

method in terms of turnover is the best 3 average combination method with a turnover

of 0.070 which is over four times as high as that of OLS. Assuming transaction costs of

0.15% as argued in Section 5.5, this boils down to average yearly transaction costs of

$1, 000, 000∗0.015∗0.0015∗250 = $5, 625 and $1, 000, 000∗0.070∗0.0015∗250 = $26, 250

respectively, for holding $1, 000, 000 in Bitcoin futures.

Taking the results together, the combination hedge strategies do perform relatively

well compared to the individual copula hedge strategies and in addition are less costly.

However, they can not outperform the OLS benchmark hedge strategy and tend to have

higher turnover. Therefore they should not be considered by investors for hedging Bitcoin
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with Bitcoin futures.

To analyze these combination methods in more detail, the weights assigned to the dif-

ferent copula density forecasts over time for the Bitcoin are plotted in Figure 5. Note that

only the simplex weights and the best 3 average weights are considered, as by definition

the equally weighted combination does not change. As for the remaining two methods, in

general their weights are rather consistent for extended periods of time. This makes sense

as the density in one period is likely to be very similar to that of the previous period.

In addition, the weights are obtained from the optimal combined density fit over the last

100 observations, hence the weights in the previous period are based on 99 out of 100 of

the same observations.

(a) Simplex (b) Best 3 average

Figure 5: Weights assigned to the copula density forecasts for the Bitcoin by the simplex method and
the best 3 average method for the period September 2018 - April 2021

For the simplex weights, the first three quarters of 2019 are dominated by the Student-

t copula density forecasts as a significant amount of the weight, often even above 70%,

is assigned to this copula. This indicates that this joint density fits the data well during

this period, which is in line with the log-likelihoods displayed in Section 5.2. Then at the

end of 2019 and the start of 2020 there is a change point, where the rotated Gumbel and

Clayton copula start to dominate. This partially coincides with the start of the corona

pandemic which makes sense as this came with a lot of uncertainty about the future state

of the economy, and both copulas are able to incorporate lower tail dependence.

After the huge negative returns in March 2020, the cryptocurrency market calms

down again and the Student-t copula starts to dominate again. This goes on till the end

of 2020 when again uncertainty hits the market, as indicated by the forecasted volatilities

in Section 5.1, and a new changing point appears. This might be partially the result

of the hype from announcements and large investments of Tesla. In addition, this was

around the time that the Bitcoin finally reached its peak value of about $20,000 which

had happened only once, namely just before the launch of the Bitcoin futures back in

December 2017. The Gaussian copula starts dominating from this point. All in all, the
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weights hint that the Student-t copula fits the data particularly well when the market is

relatively stable. On the other hand, during times of higher uncertainty other copulas

such as the rotated Gumbel and Clayton copula as well as the Gaussian copula become

more important.

As for the best 3 average combination method, the Student-t copula is again incorpo-

rated for the majority of the time and is followed by the Gaussian copula during the last

period. Moreover, the rotated Gumbel copula is also incorporated in the combined density

forecast relatively often. In general these weights seem to be somewhat more consistent

and robust than those of the simplex weighting scheme, which can be beneficial in some

cases.

5.3.2 Hedging Results Ethereum

The second hedge considered in this paper is the cross-hedge of Bitcoin futures on Ethereum.

In general, the hedging results are somewhat worse than those of the Bitcoin, which makes

sense as the Bitcoin futures are specifically designed for hedging the Bitcoin. Nonethe-

less, the results of the hedges are quite significant. The hedging effectivenesses for most

methods range between 20% to 30%. A notable exception here is the VaR on 10% level,

where the hedging effectiveness is considerably lower at about 5% to 15%, indicating that

the different hedge strategies are unable to reduce this particular type of risk very well.

All together, these hedging results are different from the results found by Sebastião &

Godinho (2020), as they conclude that hedging with Bitcoin futures increases the tail risk

for alternative cryptocurrencies such as Ethereum, whereas this paper finds that Bitcoin

futures can reduce the ES at 1% level by up to 34%.

Furthermore, this paper finds that the DCC-GARCH model provides the best bench-

mark for the Ethereum. This is different from the hedge results of the Bitcoin where

OLS was found to give the best benchmark hedge. A possible explanation is that the

DCC-GARCH model is more flexible and is better able to incorporate changes in the de-

pendence structure as it models the conditional correlation. For the Bitcoin the Kendall’s

τ is relatively stable as can be seen in Section 5.2, indicating that the dependence struc-

ture does probably not change a lot, which benefits the OLS hedge. However, for the

Ethereum the Kendall’s τ is less stable over time hinting at changes in the dependence

structure, and hence modelling the conditional correlation might be beneficial.

The average rank of the DCC-GARCH hedge is 3.4 which is lower than those of the

best individual copula hedge strategies. In particular its ability to hedge against more

extreme events is superior. For example, it attains an hedging effectiveness of about

31% for the ES on 1% level, whereas the best three individual copula methods reach

an hedging effectiveness of just 19%, 24% and 20% respectively. The best individual

copula hedges are obtained from the Gaussian copula, the Joe copula and the rotated Joe

copula. These copulas are almost the same as the ones for the Bitcoin with the exception
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Table 6: Risk measures for evaluating the out-of-sample hedging performance for the Ethereum
portfolio using different hedge strategies. The hedging effectiveness is displayed between brackets. The
results are based on the period September 2018 - April 2021. For convenience only the best models are

shown in this table. In addition the average model ranks for the 10 risk measures is calculated. The
best models are indicated in bold.

Method Unhedged DCC Gauss Joe R-Joe C-Equal C-Simplex C-Best 3

Mean 0.007 0.002 0.002 0.004 0.003 0.004 0.003 0.003
Max 0.424 0.406 0.394 0.414 0.400 0.409 0.409 0.400
Min -0.423 -0.231 -0.301 -0.325 -0.313 -0.244 -0.300 -0.246
Variance 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002

(-) (35.385) (32.980) (32.384) (32.717) (35.184) (32.104) (33.972)
Semivariance 0.053 0.039 0.042 0.041 0.042 0.039 0.041 0.040

(-) (27.407) (21.398) (22.657) (21.653) (27.016) (22.546) (25.103)
VaR 0.1 -0.049 -0.041 -0.046 -0.047 -0.044 -0.044 -0.043 -0.043

(-) (14.829) (5.578) (3.965) (9.895) (9.474) (10.618) (12.320)
VaR 0.05 -0.077 -0.066 -0.066 -0.062 -0.065 -0.062 -0.065 -0.063

(-) (13.419) (13.416) (18.904) (15.539) (18.760) (15.069) (17.172)
VaR 0.025 -0.106 -0.079 -0.078 -0.078 -0.078 -0.077 -0.077 -0.077

(-) (25.517) (25.916) (26.102) (26.309) (27.271) (27.003) (27.300)
VaR 0.01 -0.167 -0.094 -0.116 -0.091 -0.127 -0.098 -0.099 -0.100

(-) (43.782) (30.700) (45.795) (24.416) (41.700) (40.675) (40.411)
ES 0.1 -0.093 -0.071 -0.077 -0.073 -0.075 -0.070 -0.074 -0.072

(-) (23.052) (17.551) (21.235) (19.265) (24.489) (20.261) (22.373)
ES 0.05 -0.123 -0.092 -0.099 -0.093 -0.096 -0.089 -0.095 -0.092

(-) (25.396) (19.672) (24.256) (21.561) (27.910) (22.482) (24.857)
ES 0.025 -0.160 -0.111 -0.124 -0.115 -0.122 -0.108 -0.119 -0.114

(-) (30.623) (22.872) (28.278) (23.923) (32.769) (25.857) (28.669)
ES 0.01 -0.224 -0.154 -0.182 -0.170 -0.179 -0.147 -0.176 -0.163

(-) (31.200) (18.794) (23.988) (20.038) (34.490) (21.402) (27.109)

Rank - 3.4 9.7 5.3 7.6 2.2 5.7 3.3

of the Joe copula which replaces the rotated Gumbel copula. In contrast to the rotated

Gumbel copula and the rotated Joe copula, the Joe copula only incorporates upper tail

dependence. This suggests that lower tail dependence is a less important feature of the

joint density for hedging the Ethereum. In addition, these results again emphasize that

good fit is not equal to good hedging performance as the rotated Gumbel copula and

Student-t copula, which fitted this data best on average, do not give the highest hedging

effectivenesses.

As for the combination methods, the simplex weighted hedge gives only mediocre

hedging results and rank at 5.7 on average. The best 3 average weighted hedge does better

ranking at 3.3 on average, which is even lower than the DCC-GARCH hedge. However,

this is only due to the DCC-GARCH performing relatively bad for the VaR at 5% and

2.5% level respectively. What is more, similar to the individual copula hedge strategies,

both the simplex weighted hedge and the best 3 average weighted hedge are dominated

by the DCC-GARCH benchmark hedge for all other risk measures. This suggests that

these weighted density forecasts do not correctly capture the tail structure. Nonetheless,

these hedges perform similar if not better than the best individual copula hedge which

does show the increased robustness of these methods compared to the individual copula
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methods.

Interestingly, the more naive equally weighted combination method provides a better

hedge and is even able to outcompete the DCC-GARCH hedge. That is, this hedge strat-

egy attains the lowest average rank of 2.2 and achieves the highest hedge effectiveness for

reducing the more extreme negative returns. A partial explanation as to why the equally

weighted density forecast combination gives a better hedge than more advanced weighted

density forecasts might be that those weights are based on the fit rather than hedging

performance. In addition, the Ethereum and Bitcoin futures might be simply harder to

model correctly, and for that reason the more naive equally weighted combination can

give better hedging results than more advanced weighted combinations.

Turning to statistics on the hedge ratios in Table 7, the hedge ratios of the combination

methods are considerably lower than those of the DCC-GARCH model. For example, the

mean hedge ratio of the equally weighted combination is 0.563 and that of the DCC-

GARCH is 0.808. This might provide a benefit for the equally weighted combination as

this method requires a smaller short position in Bitcoin futures to hedge a long position

in Ethereum. What is more, looking at the average returns in Table 6, the portfolio of

the equally weighted combination hedge achieves an average daily return of 0.004 which

is higher than the average portfolio return of the DCC-GARCH hedge which is just 0.002.

Hence the equally weighted combination method seems to hedge the risk associated with

the Ethereum more efficiently.

Table 7: Summary statistics of the hedge ratios of different hedge strategies for the Ethereum. The
results are based on the period September 2018 - April 2021. For convenience only the best models are

displayed in this table.

Method DCC Gauss Joe R-Joe C-Equal C-Simplex C-Best 3

Mean -0.808 -0.749 -0.560 -0.619 -0.563 -0.620 -0.614
Max -0.204 0.000 -0.012 0.000 0.000 0.000 0.000
Min -1.500 -1.500 -1.500 -1.500 -0.993 -1.098 -1.127
Turnover 0.072 0.116 0.112 0.106 0.092 0.089 0.099

However, this strategy also comes with higher transaction costs as indicated by the

turnover. The equally weighted combination method comes with an average turnover of

0.092 and the DCC-GARCH with an average turnover of 0.072. This means that for each

$1,000,000 in Bitcoin futures, the DCC-GARCH hedge costs approximately $27,000 per

year and the equally weighted density forecast combination hedge costs $34,500 per year,

which slightly favors the DCC-GARCH hedge.

Taken together, the equally weighted combination hedge provides a better hedge than

the DCC-GARCH hedge in terms of reducing the most extreme losses, but comes with

slightly higher transaction costs. Therefore the equally weighted combination hedge might

have the edge over the DCC-GARCH hedge as it also achieves higher average return and

a smaller short position in Bitcoin futures is required.
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To get an idea about the relatively lackluster hedge performance of the alternative

combination methods, the combining weights are displayed in Figure 7. Where on the one

hand the density combination weights for the Bitcoin seemed quite stable over time, those

for the Ethereum look more fluctuating. Similar to the Bitcoin however, the Student-t

copula dominates the first two quarters of 2019 and the start of 2020. However, its

dominance is less prominent. During these times, the Student-t copula is mainly mixed

with the rotated Joe copula, which adds lower tail dependence to the density. At the

end of 2019 and then end of 2020 on the other hand, many other copulas are being

incorporated such as the rotated Gumbel and the Gaussian copula. This indicates that

there are some clear change points in the dependence structure of the Ethereum and

Bitcoin futures which coincides with periods where the Kendall’s τ is lower. This means

that at times where there is less dependence in the data, these copulas fit the data better

and become more important for the combined density forecast, whereas in more stable

times the Student-t copula often provides a good fit. Interestingly, the Joe copula, which

gives the best hedge of the individual copulas methods, is not really incorporated in the

combined density forecast at any point in time.

(a) Simplex (b) Best 3 average

Figure 7: Weights assigned to the copula density forecasts for the Ethereum by the simplex method
and the best 3 average method for the period September 2018 - April 2021

All in all, the relatively unstable nature of the mixed density forecast together with

the omission of densities that provide good hedges such as the Joe copula, results in

combined density forecasts that are not able to accurately capture those characteristics

that are important for hedging.

5.3.3 Hedging Results Ripple

The second cross-hedge in this paper regards the Ripple and the hedging results are

shown in Table 8. The effectiveness of this hedge is lower than that of Ethereum and even

negative in some cases. In particular, the ES on 1% level is -4% for the rotated Joe copula
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and -3% for the best 3 average combination, implying that the taking a short position

in Bitcoin futures only amplifies the most extreme losses. In addition, the minimum

returns of all hedged portfolio are all lower than the -0.423 of the unhedged portfolio.

The remaining hedge effectivenesses generally range between 0% and 15%. A possible

explanation as to why these hedges perform relatively bad is that there is less dependence

between the Ripple and the Bitcoin futures, as indicated by Kendall’s τ in Section 5.2.

Table 8: Risk measures for evaluating the out-of-sample hedging performance for the Ripple portfolio
using different hedge strategies. The hedging effectiveness is displayed between brackets. The results

are based on the period September 2018 - April 2021. For convenience only the best models are shown
in this table. In addition the average model ranks for the 10 risk measures is calculated. The best

models are indicated in bold.

Method Unhedged OLS Joe R-Clayton R-Joe C-Equal C-Simplex C-Best 3

Mean 0.006 0.001 0.003 0.003 0.001 0.003 0.002 0.001
Max 0.872 0.883 0.882 0.881 0.884 0.879 0.884 0.885
Min -0.423 -0.425 -0.424 -0.425 -0.427 -0.425 -0.425 -0.425
Variance 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005

(-) (9.608) (7.316) (7.309) (9.651) (9.633) (9.419) (9.614)
Semivariance 0.058 0.051 0.053 0.053 0.054 0.051 0.052 0.054

(-) (12.402) (7.833) (8.681) (7.531) (12.160) (10.842) (7.225)
VaR 0.1 -0.054 -0.050 -0.054 -0.054 -0.048 -0.049 -0.050 -0.049

(-) (8.512) (1.441) (1.441) (11.748) (9.541) (7.615) (10.686)
VaR 0.05 -0.089 -0.075 -0.079 -0.080 -0.081 -0.076 -0.074 -0.076

(-) (15.337) (11.248) (9.894) (9.230) (14.845) (17.416) (14.112)
VaR 0.025 -0.118 -0.111 -0.112 -0.112 -0.116 -0.111 -0.116 -0.119

(-) (5.409) (4.928) (4.914) (1.129) (5.179) (0.929) -(1.502)
VaR 0.01 -0.161 -0.147 -0.147 -0.152 -0.155 -0.150 -0.149 -0.149

(-) (8.877) (9.101) (5.746) (3.935) (7.172) (7.869) (7.864)
ES 0.1 -0.106 -0.097 -0.100 -0.100 -0.102 -0.095 -0.098 -0.101

(-) (8.219) (5.331) (4.946) (3.550) (9.700) (7.020) (3.877)
ES 0.05 -0.144 -0.133 -0.136 -0.136 -0.142 -0.130 -0.137 -0.144

(-) (7.624) (5.485) (5.203) (1.007) (9.863) (4.669) (0.131)
ES 0.025 -0.181 -0.169 -0.174 -0.174 -0.182 -0.169 -0.174 -0.184

(-) (6.409) (3.664) (3.675) -(0.280) (6.635) (3.765) -(1.458)
ES 0.01 -0.262 -0.244 -0.257 -0.255 -0.273 -0.245 -0.253 -0.270

(-) (6.633) (1.689) (2.505) -(4.211) (6.335) (3.438) -(3.396)

Rank - 2.7 6.6 7.9 8.5 3.1 5.5 8.6

The OLS hedge is the best benchmark model based on its average rank, thereby

outperforming the DCC-GARCH hedge although by a small margin. It has an average

rank of 2.7 and therefore outperforms the best individual copula hedges which are the

Joe copula, rotated Clayton copula and rotated Joe copula. These copulas are similar to

those for Ethereum and only the rotated Joe copula possesses lower tail dependence. This

suggests that lower tail dependence is hardly present in the data, which provides another

explanation as to why the different hedges do not perform well.

The hedge strategies for the Ripple do underline again the potential of the combined

density forecast hedge strategies, as both the equally weighted method and the simplex

weighted method lead to an improvement in hedge effectiveness based on average rank

compared to the best individual copula hedges. In particular the naive and more robust
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equally weighted method displays a relatively strong hedging performance with an average

ranking of 3.1 and relatively high hedge effectiveness for reducing large losses. What is

more, this method is well able to compete with the OLS benchmark hedge in terms of

the different risk measure. The hedging results of the best 3 average method on the other

hand are rather disappointing with low and sometimes negative hedge effectiveness and

therefore ranks at only 8.6 on average.

The average hedge ratios shown in Table 9 are around -0.3 to -0.6, which is considerably

lower than those of the Bitcoin and Ethereum hedge strategies, which is presumably due

to the low dependence. Comparing the turnovers of the OLS hedge and the equally

weighted combination hedge, the latter does have a much higher turnover of 0.091 versus

0.025. This means that this hedge comes with slightly higher transaction costs. On the

other hand, this hedge also comes with a lower mean hedge ratio and therefore the holder

of the Ripple portfolio generally needs a smaller short position in Bitcoin futures when

adopting this strategy, which in return also leads to higher average daily returns.

Table 9: Summary statistics of the hedge ratios of different hedge strategies for the Ripple. The
results are based on the period September 2018 - April 2021. For convenience only the best models are

displayed in this table.

Method OLS Joe R-Clayton R-Joe C-Equal C-Simplex C-Best 3

Mean -0.618 -0.337 -0.390 -0.566 -0.485 -0.578 -0.582
Max -0.389 0.000 0.000 0.000 0.000 0.000 0.000
Min -0.862 -1.500 -1.500 -1.500 -0.808 -1.500 -1.500
Turnover 0.025 0.100 0.106 0.110 0.091 0.116 0.120

All in all, it remains the question whether hedging the Ripple using Bitcoin futures is

worth pursuing at all as the hedge effectiveness is rather limited. However, if one decides

to perform this hedge, the equally weighted combination hedge strategy might be worth

taking into consideration as it is well able to compete with the OLS benchmark hedge

both in terms of reducing extreme losses and less extreme losses, and in addition requires

a smaller short position on average resulting in higher average daily returns. However,

this hedge also comes with significantly higher transaction costs.

Finally, the weights of the combination strategies are shown in Figure 9, where again

some clear changing points for the density can be observed. In 2019 several different

copulas make up the combined density forecasts including the Student-t copula, rotated

Gumbel copula, AMH copula, and Clayton copula. At the start of the corona pandemic on

the other hand, the rotated Gumbel copula clearly starts to dominate as the huge losses at

the start of this period probably require lower tail dependence which the rotated Gumbel

copula is able to incorporate. Finally, at the end of 2020 when the Ripple becomes very

volatile as shown in Section 5.1, other copulas start do dominate the joint density again.

The lack of consistency during the first and the last period where the construction of the

joint density differs frequently might be one of the reasons for the worse hedging results
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of these more advanced weighting schemes.

(a) Simplex (b) Best 3 average

Figure 9: Weights assigned to the copula density forecasts for the Ripple by the simplex method and
the best 3 average method for the period September 2018 - April 2021

5.3.4 Hedging Results Cardano

The third cross-hedge considered in this paper involves the Cardano and Bitcoin futures.

The general risk reduction is somewhat stronger than for Ripple, even though Kendall’s

τ is usually found to be lower. The hedge effectiveness mostly ranges between 10% and

30%.

The DCC-GARCH hedge is again the best benchmark model. Nonetheless, it has an

average rank of 7.1, which is higher than the hedges resulting from the Clayton copula

and rotated Joe copula which rank at 6.7 and 6.0 on average respectively. However, it still

seems to outperform those individual copula methods for hedging against extreme losses

as for example it achieves a hedge effectiveness of 26% compared to 17% to 19% for the

ES on 1% level. As for the individual copulas methods, both the Clayton and rotated Joe

copula posses lower tail dependence, which therefore suggests that lower tail dependence

is present in the data and is important for hedging.

Overall, the density forecast combination hedge strategies perform best. The equally

weighted density forecast hedge strategy ranks 5.1 on average which is lower than the

best individual copula hedge, and the simplex weighted and best 3 average weighted

methods perform even better with average ranks of 2.2 and 1.7 respectively. Moreover,

their respective hedge effectivenesses actually are significantly higher than those of the

DCC-GARCH benchmark hedge and the individual copula hedges with improvements

between 5% and 15% for several risk measures. In contrast to the hedge results for the

Ethereum and Ripple, this also shows that weighting schemes based on the overall fit can

benefit the hedging performance compared to a more naive equal weighting scheme.
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Table 10: Risk measures for evaluating the out-of-sample hedging performance for the Cardano
portfolio using different hedge strategies. The hedging effectiveness is displayed between brackets. The
results are based on the period September 2018 - April 2021. For convenience only the best models are

shown in this table. In addition the average model ranks for the 10 risk measures is calculated. The
best models are indicated in bold.

Method Unhedged DCC Clayton AMH R-Joe C-Equal C-Simplex C-Best 3

Mean 0.008 0.003 0.003 0.003 0.003 0.005 0.004 0.004
Max 0.322 0.352 0.364 0.361 0.362 0.356 0.361 0.362
Min -0.396 -0.219 -0.303 -0.308 -0.307 -0.247 -0.235 -0.251
Variance 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004

(-) (21.031) (21.658) (20.800) (21.563) (21.310) (23.819) (23.830)
Semivariance 0.061 0.049 0.051 0.051 0.051 0.050 0.048 0.049

(-) (18.799) (15.591) (15.351) (15.712) (17.213) (20.195) (19.831)
VaR 0.1 -0.063 -0.058 -0.061 -0.064 -0.062 -0.061 -0.058 -0.057

(-) (7.529) (3.802) -(1.173) (1.249) (2.999) (7.608) (9.231)
VaR 0.05 -0.089 -0.082 -0.080 -0.079 -0.079 -0.079 -0.079 -0.078

(-) (8.359) (10.501) (11.171) (11.717) (11.131) (11.681) (12.645)
VaR 0.025 -0.117 -0.104 -0.098 -0.098 -0.101 -0.100 -0.092 -0.093

(-) (11.165) (16.368) (16.459) (13.662) (14.665) (20.933) (20.848)
VaR 0.01 -0.155 -0.130 -0.123 -0.127 -0.117 -0.128 -0.125 -0.121

(-) (15.832) (20.693) (17.965) (23.998) (17.079) (19.310) (21.481)
ES 0.1 -0.105 -0.090 -0.093 -0.092 -0.092 -0.089 -0.086 -0.086

(-) (13.847) (11.603) (12.046) (12.577) (15.320) (18.132) (17.806)
ES 0.05 -0.135 -0.112 -0.115 -0.114 -0.113 -0.110 -0.105 -0.104

(-) (16.990) (15.198) (15.467) (16.353) (18.762) (22.536) (22.830)
ES 0.025 -0.170 -0.134 -0.139 -0.140 -0.137 -0.132 -0.124 -0.123

(-) (21.130) (17.995) (17.755) (19.089) (22.441) (27.185) (27.372)
ES 0.01 -0.224 -0.165 -0.186 -0.183 -0.181 -0.160 -0.153 -0.155

(-) (26.199) (16.947) (18.441) (19.259) (28.548) (31.853) (30.914)

Rank - 7.1 6.7 8.4 6.0 5.1 2.2 1.7

Table 11 shows that the turnover of DCC-GARCH is lower than those of the com-

bination hedge strategies, whereas its mean hedge ratio is higher. However, given the

significant improvements in terms of hedge effectiveness, the combined density forecast

hedge strategies, and in particular the simplex weighted and best 3 average combined

density forecast hedge strategies, are recommended for those investors who wish to hedge

their position in Cardano with Bitcoin futures.

Table 11: Summary statistics of the hedge ratios of different hedge strategies for the Cardano. The
results are based on the period September 2018 - April 2021. For convenience only the best models are

displayed in this table.

Method DCC Clayton AMH R-Joe C-Equal C-Simplex C-Best 3

Mean -0.767 -0.653 -0.588 -0.638 -0.568 -0.636 -0.638
Max -0.078 0.000 0.000 0.000 0.000 0.000 0.000
Min -1.500 -1.500 -1.500 -1.500 -1.056 -1.500 -1.500
Turnover 0.082 0.106 0.125 0.110 0.107 0.105 0.093

The weights of the simplex combination and the best 3 average combination are dis-

played in Figure 11. The usual regime switch can be seen at the start of 2020. The

weights are in general relatively stable before the third quarter of 2020 after which the
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weights start to vary. This again coincides with the period with higher volatility and

lower dependence.

(a) Simplex (b) Best 3 average

Figure 11: Weights assigned to the copula density forecasts for the Cardano by the simplex method
and the best 3 average method for the period September 2018 - April 2021

5.3.5 Hedging Results Litecoin

The last cross-hedge in this paper regards the Litecoin. This hedge actually proves to be

relatively effective as shown in Table 12, with hedge effectiveness ranging between 20%

and 40% for the best performing methods, with the exception of the lower levels VaR. This

was to be expected as its dependence with the Bitcoin futures as indicated by Kendall’s

τ is relatively high compared to other alternative cryptocurrencies.

The DCC-GARCH hedge is again the best benchmark and attains an average rank of

5.1. This is better than the best individual copula hedge strategies. The best individual

copulas include the Clayton, rotated Gumbel and rotated Joe copula with respective

average ranks of 6.1, 7.7 and 7.1. All three copulas exhibit lower tail dependence. The

DCC-GARCH hedge provides the best hedge for reducing the largest losses with hedge

effectiveness of 31% and 39% for the ES at 2.5% and 1% level. However, the DCC-

GARCH hedge achieves a negative portfolio return on average which means that this

hedged portfolio costs the holder.

Interestingly, the simplex weighted combination method has a relatively lackluster

performance given its average rank of 7.6. This is mainly due to it being unable to reduce

the more extreme losses as it achieves a hedge effectiveness of only 17% and 25% for the

VaR and ES on 1% level respectively. The other combination hedge strategies perform

relatively well based on their average ranks. That is, the equally weighted method and

the best 3 average weighted method achieve lower average ranks than the DCC-GARCH

benchmark. Besides, they do not yield negative daily returns as the DCC-GARCH hedge

does, but at the cost of being less capable for reducing the most extreme losses. This

probably is the result of the relatively high mean hedge ratio of the DCC-GARCH hedge
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Table 12: Risk measures for evaluating the out-of-sample hedging performance for the Litecoin
portfolio using different hedge strategies. The hedging effectiveness is displayed between brackets. The
results are based on the period September 2018 - April 2021. For convenience only the best models are

shown in this table. In addition the average model ranks for the 10 risk measures is calculated. The
best models are indicated in bold.

Method Unhedged DCC Clayton R-Gumbel R-Joe C-Equal C-Simplex C-Best 3

Mean 0.005 -0.001 0.000 -0.001 0.000 0.002 0.000 0.001
Max 0.267 0.352 0.220 0.233 0.240 0.269 0.248 0.270
Min -0.362 -0.154 -0.234 -0.231 -0.263 -0.193 -0.229 -0.210
Variance 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002

(-) (37.247) (35.534) (36.522) (35.033) (35.414) (36.838) (36.735)
Semivariance 0.056 0.042 0.044 0.043 0.044 0.042 0.044 0.043

(-) (24.438) (21.433) (22.676) (20.881) (25.028) (21.584) (23.618)
VaR 0.1 -0.055 -0.053 -0.051 -0.050 -0.051 -0.048 -0.050 -0.051

(-) (2.452) (7.219) (7.765) (7.476) (11.272) (7.917) (7.484)
VaR 0.05 -0.082 -0.076 -0.075 -0.076 -0.077 -0.075 -0.076 -0.077

(-) (7.306) (8.410) (7.734) (6.329) (8.897) (7.409) (6.813)
VaR 0.025 -0.122 -0.095 -0.087 -0.101 -0.088 -0.091 -0.088 -0.086

(-) (22.438) (28.858) (17.014) (28.037) (25.240) (27.796) (29.020)
VaR 0.01 -0.157 -0.113 -0.127 -0.126 -0.120 -0.119 -0.129 -0.114

(-) (28.054) (19.014) (19.557) (23.504) (24.077) (17.482) (27.229)
ES 0.1 -0.101 -0.082 -0.083 -0.084 -0.084 -0.079 -0.083 -0.080

(-) (18.533) (17.878) (16.497) (17.132) (21.758) (17.834) (20.321)
ES 0.05 -0.135 -0.101 -0.103 -0.106 -0.104 -0.100 -0.105 -0.100

(-) (25.242) (23.169) (21.356) (22.598) (25.614) (21.988) (25.689)
ES 0.025 -0.167 -0.116 -0.125 -0.126 -0.125 -0.119 -0.128 -0.119

(-) (30.756) (25.318) (24.880) (25.116) (28.968) (23.248) (29.058)
ES 0.01 -0.221 -0.135 -0.155 -0.153 -0.162 -0.145 -0.166 -0.153

(-) (38.911) (29.729) (30.816) (26.654) (34.257) (24.760) (30.767)

Rank - 5.1 6.1 7.7 7.1 3.2 7.6 3.8

of -0.833. In addition, the DCC-GARCH hedge has lower turnover. For example, in terms

of average yearly transaction costs, the DCC-GARCH hedge strategy costs approximately

$27,375 per $1,000,000 in Bitcoin futures, whereas the equally weighed density forecast

hedge costs approximately $36,375. All in all, the DCC-GARCH hedge and the combined

density forecast hedges both have their benefits and drawbacks.

Table 13: Summary statistics of the hedge ratios of different hedge strategies for the Litecoin. The
results are based on the period September 2018 - April 2021. For convenience only the best models are

displayed in this table.

Method DCC Clayton R-Gumbel R-Joe C-Equal C-Simplex C-Best 3

Mean -0.833 -0.628 -0.710 -0.619 -0.556 -0.672 -0.620
Max 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min -1.500 -1.500 -1.500 -1.500 -0.983 -1.500 -1.500
Turnover 0.073 0.108 0.121 0.098 0.097 0.120 0.111

Figure 13 shows that quite a few different density forecasts are incorporated at the start

of the sample in the simplex weighted density forecast, after which the AMH copula starts

to dominate. At the start of 2020, the rotated Gumbel receives most of the weight and

is then mixed with the Student-t copula, thereby again suggesting lower tail dependence

during this period. Finally in 2021, the Gaussian copula together with the AMH copula
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makes up most of the mixture density. Compared to the simplex weights the best 3 average

weights seems to incorporate the rotated Gumbel and Student-t copula more frequently.

Therefore, this method exhibits more lower tail dependence during these periods, which

has shown to be an important feature for hedging the Ripple and might explain why this

method performs better.

(a) Simplex (b) Best 3 average

Figure 13: Weights assigned to the copula density forecasts for the Litecoin by the simplex method
and the best 3 average method for the period September 2018 - April 2021

6 Conclusion

In this paper the daily hedging capabilities of the Bitcoin futures are investigated. More-

over, as different cryptocurrencies are shown to be very related, both its hedging potential

as a direct hedge on the Bitcoin as well as its hedging potential as a cross-hedge on al-

ternative cryptocurrencies is evaluated. These cryptocurrencies include the Ethereum,

Ripple, Cardano and Litecoin. Daily price data is considered from the introduction of the

Bitcoin futures in December 2017 to April 2021.

Moreover, this paper is the first to investigate the hedge effectiveness of the Bitcoin

futures on different cryptocurrencies using copulas. Previous papers on this topic, such

as Sebastião & Godinho (2020), adopted more simplistic hedge strategies like the one-to-

one hedge, the OLS hedge and the DCC-GARCH hedge. However, copulas might give

a more accurate representation of the underlying dependence structure of the particu-

lar cryptocurrency and the Bitcoin future as their flexibility can allow for certain data

characteristics such as tail dependence, which might positively impact the hedging per-

formance. Therefore, different bivariate copulas, such as the Gaussian copula, Student-t

copula and several Archimedean copulas and their rotated forms, have been used to model

this dependence. Additionally, this paper innovates on the copula hedges by combining

the simulated copula density forecasts to create more robust forecasted densities and

with that more robust hedges. For that purpose several different weighting schemes have
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been considered based on past out-of-sample fit of the combined density forecasts. These

weighting schemes include the equal weights, optimal simplex weights and best 3 average

weights as described by Diebold et al. (2021).

Similar to Sebastião & Godinho (2020), the hedging results confirm that Bitcoin fu-

tures are effective tools for reducing the risk of Bitcoin portfolios. Different from Sebastião

& Godinho (2020) however, this paper finds evidence that the Bitcoin futures are also

able to reduce the tail risk for portfolios of alternative cryptocurrencies.

Interestingly, this paper finds that the OLS hedge provides the best benchmark for the

Bitcoin, whereas the DCC-GARCH hedge often provides the best benchmark for alter-

native cryptocurrencies. This is probably due to the dependence structure of the Bitcoin

and Bitcoin futures being relatively stable while that of the alternative cryptocurrencies

is changing over time. The individual copulas generally have a hard time beating these

two benchmark models. However, combining the density forecasts of the different copulas

does lead to promising results. Although for the Bitcoin these hedge strategies are not

able to outperform the OLS hedge and in addition have higher transaction costs, they do

outperform the individual copula hedges. Moreover, for the alternative cryptocurrencies

these combined density forecasts hedge strategies do often prove to be more effective than

the OLS and DCC-GARCH benchmarks, and additionally require lower hedge ratios on

average which means hat the holder of these cryptocurrencies generally needs to take a

smaller short position to reduce its portfolio risk. However, these strategies do require

slightly higher rebalancing costs. Moreover, the results show that weights based on out-

of-sample fit can provide a good way to construct the joint density forecast and allows

for incorporating important data characteristics for hedging such as tail dependence. In

addition, these combined density forecasts are able to incorporate some regime switching

as during different economic times different copula densities are integrated. For example,

the Student-t copula gives a good overall fit for the joint density during stable economic

periods and therefore is often incorporated in the combined density forecasts during these

periods. However, when there is more uncertainty other copulas, such as the rotated

Gumbel copula, which exhibit lower tail dependence are often incorporated.

However, the results found in this paper depend on optimization with respect to a

certain risk measure of a sample of returns that is simulated from a copula, where for

computational purposes the number of simulated observations is set to 10,000. Therefore

it might be the case that by chance a sample of returns is simulated that does not give

an accurate representation of the tail behaviour which can influence the estimation of the

hedge ratio. When this happens at a time of large negative returns, this might impact

the hedge effectiveness significantly.

In addition, as the Bitcoin futures are a relatively new hedging instrument, the amount

of data is relatively small. In particular, the out-of-sample period in this paper consists

of approximately 30 months, and therefore the hedging results found here might not be
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representative for different periods of time. This issue might be further amplified by the

fact that this period consists for a large part of a time where the corona virus greatly

impacts the economy, which might bias the results. Furthermore, there is a time gap of

three hours between the timing of the spot prices and the timing of the futures prices. This

might result in some inconsistencies especially since these cryptocurrencies are known to

be very volatile and their prices can go up and down significantly in the matter of only

hours, which as a consequence can negatively impact the hedging results.

Concludingly, this paper contributes to the literature by investigating whether Bit-

coin futures are viable hedge instruments for different cryptocurrencies and constructing

minimum tail risk hedge ratios using (combinations of) copulas. Similar to Sebastião &

Godinho (2020), this paper finds that Bitcoin futures are able to reduce risk for portfolios

of cryptocurrencies. Moreover, the combined copula density forecasts proposed in this

paper are generally more effective for hedging alternative cryptocurrencies than the OLS

hedge and the DCC-GARCH hedge adopted by Sebastião & Godinho (2020). Therefore

these techniques might be interesting for firms and investors who wish to hedge against

exchange risk in their cryptocurrency portfolio.

For future research, it would be interesting to see whether copula density forecast

combination methods can also be effective for hedging other assets such as oil or regular

currencies. Further research could also focus on finding whether alternative weighting

schemes such as some of the alternatives described by Diebold et al. (2021) can improve

hedging performance even more.
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Ardia, D., Bluteau, K., & Rüede, M. (2019). Regime changes in bitcoin garch volatility

dynamics. Finance Research Letters , 29 , 266–271.

Awudu, I., Wilson, W., & Dahl, B. (2016). Hedging strategy for ethanol processing with

copula distributions. Energy Economics , 57 , 59–65.

Bates, J. M., & Granger, C. W. (1969). The combination of forecasts. Journal of the

Operational Research Society , 20 (4), 451–468.

BitMEX. (2021). Retrieved from https://www.bitmex.com/app/fees#Other-Fees

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal

of econometrics , 31 (3), 307–327.

Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a

multivariate generalized arch model. The review of economics and statistics , 498–505.

Bouri, E., Molnár, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and

safe haven properties of bitcoin: Is it really more than a diversifier? Finance Research

Letters , 20 , 192–198.

Chang, C.-L., McAleer, M., & Tansuchat, R. (2011). Crude oil hedging strategies using

dynamic multivariate garch. Energy Economics , 33 (5), 912–923.

Chen, & Fan, Y. (2005). Pseudo-likelihood ratio tests for semiparametric multivariate

copula model selection. Canadian Journal of Statistics , 33 (3), 389–414.

Chen, Fan, Y., & Tsyrennikov, V. (2006). Efficient estimation of semiparametric mul-

tivariate copula models. Journal of the American Statistical Association, 101 (475),

1228–1240.

Chen, Wilson, W., Larsen, R., & Dahl, B. (2016). Risk management for grain proces-

sors and “copulas”. Canadian Journal of Agricultural Economics/Revue canadienne

d’agroeconomie, 64 (2), 365–382.

42



7 BIBLIOGRAPHY

Clayton, D. G. (1978). A model for association in bivariate life tables and its application

in epidemiological studies of familial tendency in chronic disease incidence. Biometrika,

65 (1), 141–151.

Conrad, C., Custovic, A., & Ghysels, E. (2018). Long-and short-term cryptocurrency

volatility components: A garch-midas analysis. Journal of Risk and Financial Manage-

ment , 11 (2), 23.

Corbet, S., Lucey, B., Peat, M., & Vigne, S. (2018). Bitcoin futures—what use are they?

Economics Letters , 172 , 23–27.

Diebold, F. X., & Shin, M. (2019). Machine learning for regularized survey forecast

combination: Partially-egalitarian lasso and its derivatives. International Journal of

Forecasting , 35 (4), 1679–1691.

Diebold, F. X., Shin, M., & Zhang, B. (2021). On the aggregation of probability as-

sessments: Regularized mixtures of predictive densities for eurozone inflation and real

interest rates.

Dorey, M., & Joubert, P. (2005). Modelling copulas: an overview. The Staple Inn

Actuarial Society , 1–27.

Dyhrberg, A. H. (2016). Hedging capabilities of bitcoin. is it the virtual gold? Finance

Research Letters , 16 , 139–144.

Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk

management: properties and pitfalls. Risk management: value at risk and beyond , 1 ,

176–223.

Embrechts, P., Mcneil, E., & Straumann, D. (1999). Correlation: pitfalls and alternatives.

In Risk magazine.

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the

variance of united kingdom inflation. Econometrica: Journal of the econometric society ,

987–1007.

Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate gen-

eralized autoregressive conditional heteroskedasticity models. Journal of Business &

Economic Statistics , 20 (3), 339–350.

Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns.

The American Economic Review , 67 (2), 116–126.

43



7 BIBLIOGRAPHY

Genest, C., Ghoudi, K., & Rivest, L.-P. (1995). A semiparametric estimation procedure

of dependence parameters in multivariate families of distributions. Biometrika, 82 (3),

543–552.

Genest, C., Quessy, J.-F., & Rémillard, B. (2006). Goodness-of-fit procedures for cop-

ula models based on the probability integral transformation. Scandinavian Journal of

Statistics , 33 (2), 337–366.

Geweke, J., & Amisano, G. (2011). Optimal prediction pools. Journal of Econometrics ,

164 (1), 130–141.

Ghalanos, A. (2014). rugarch: Univariate garch models. [Computer software manual]. (R

package version 1.4-0.)

Ghalanos, A. (2019). rmgarch: Multivariate garch models. [Computer software manual].

(R package version 1.3-6.)

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the

expected value and the volatility of the nominal excess return on stocks. The journal

of finance, 48 (5), 1779–1801.

Good, I. J. (1992). Rational decisions. In Breakthroughs in statistics (pp. 365–377).

Springer.

Haigh, M. S., & Holt, M. T. (2002). Crack spread hedging: Accounting for time-varying

volatility spillovers in the energy futures markets. Journal of Applied Econometrics ,

17 (3), 269–289.

Hale, G., Krishnamurthy, A., Kudlyak, M., Shultz, P., et al. (2018). How futures trading

changed bitcoin prices. FRBSF Economic Letter , 12 , 1–5.

Hattori, T., & Ishida, R. (2021). Did the introduction of bitcoin futures crash the bitcoin

market at the end of 2017? The North American Journal of Economics and Finance,

56 , 101322.

Hofert, M., Kojadinovic, I., Maechler, M., & Yan, J. (2020). copula: Mul-

tivariate dependence with copulas [Computer software manual]. Retrieved from

https://CRAN.R-project.org/package=copula (R package version 1.0-1)

Hsu, C.-C., Tseng, C.-P., & Wang, Y.-H. (2008). Dynamic hedging with futures: A

copula-based garch model. Journal of Futures Markets: Futures, Options, and Other

Derivative Products , 28 (11), 1095–1116.

Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and

serial independence of regression residuals. Economics letters , 6 (3), 255–259.

44



7 BIBLIOGRAPHY

Ji, Q., & Fan, Y. (2011). A dynamic hedging approach for refineries in multiproduct oil

markets. Energy , 36 (2), 881–887.

Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC Press.

Junker, M., & May, A. (2005). Measurement of aggregate risk with copulas. The Econo-

metrics Journal , 8 (3), 428–454.

Kendall, M. G. (1948). Rank correlation methods.

Kovach, S. (2021). Tesla buys 1.5 billion dollars in bit-

coin, plans to accept it as payment. Retrieved from

https://www.cnbc.com/2021/02/08/tesla-buys-1point5-billion-in-bitcoin.html

Lai, Y., Chen, C. W., & Gerlach, R. (2009). Optimal dynamic hedging via copula-

threshold-garch models. Mathematics and Computers in Simulation, 79 (8), 2609–2624.

Lien, D., Tse, Y. K., & Tsui, A. K. (2002). Evaluating the hedging performance of the

constant-correlation garch model. Applied Financial Economics , 12 (11), 791–798.

Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.

Okex. (2021). Retrieved from https://www.okex.com/en/fees.html

Okorie, D. I., & Lin, B. (2020). Crude oil price and cryptocurrencies: Evidence of

volatility connectedness and hedging strategy. Energy Economics , 87 , 104703.

Osterrieder, J., & Lorenz, J. (2017). A statistical risk assessment of bitcoin and its

extreme tail behavior. Annals of Financial Economics , 12 (01), 1750003.

Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International

economic review , 47 (2), 527–556.

Pearson, K. (1895). Notes on regression and inheritance in the case of two parents

proceedings of the royal society of london, 58, 240-242. ed.

Phillip, A., Chan, J. S., & Peiris, S. (2018). A new look at cryptocurrencies. Economics

Letters , 163 , 6–9.

Power, G. J., & Vedenov, D. (2010). Dealing with downside risk in a multi-commodity

setting: A case for a “texas hedge”? Journal of Futures Markets: Futures, Options,

and Other Derivative Products , 30 (3), 290–304.

R Core Team. (2020). R: A language and environment for statistical computing [Computer

software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/

45



7 BIBLIOGRAPHY

Scaillet, O., & Fermanian, J.-D. (2002). Nonparametric estimation of copulas for time

series. FAME Research paper(57).

Sebastião, H., & Godinho, P. (2020). Bitcoin futures: An effective tool for hedging

cryptocurrencies. Finance Research Letters , 33 , 101230.

Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publ. inst.

statist. univ. Paris , 8 , 229–231.

Spearman, C. (1904). Proof and measurement of association between two things. Amer-

ican Journal of Psychology .

Sukcharoen, K., & Leatham, D. J. (2017). Hedging downside risk of oil refineries: A vine

copula approach. Energy Economics , 66 , 493–507.
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8 Appendix

8.1 Data Characteristics

Figure 15: Histogram and summary statistics of the Bitcoin log-returns

Figure 16: Histogram and summary statistics of the Ethereum log-returns

Figure 17: Histogram and summary statistics of the Ripple log-returns
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Figure 18: Histogram and summary statistics of the Cardano log-returns

Figure 19: Histogram and summary statistics of the Litecoin log-returns

Figure 20: Histogram and summary statistics of the Bitcoin futures log-returns

8.2 Copula Tail Dependence and Dependence Structure

One of the characteristics some copulas are able to capture in the data is tail dependence.

Opposed to regular dependence measures such as correlation, tail dependence solely fo-

cuses on the amount of dependence when extreme events occur. In the case of asset returns

this means that upper tail dependence measures the amount of comovement between the

assets whenever large positive returns occur and similarly lower tail dependence measures
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the amount of comovement between asset returns whenever large negative returns occur.

The tail dependence can be calculated for different copulas as

λL = limq→0
C(q, q)

q
(22)

λU = 2− limq→0
1− C(1− q, 1− q)

q
(23)

where λL denotes the lower tail dependence and λU denotes the upper tail dependence.

The tail dependence of several well-known copula is shown in the table below. In addition,

the figures below show simulated samples of pseudo observations for the different copulas

with a Kendall’s τ of 0.6.

Table 14: Tail dependence imposed by the different copulas considered in this paper. λL denotes the
lower tail dependence and λU denotes the upper tail dependence.

Copula λL λU

Gaussian 0 0

Student-t 2 tν+1(
√
ν + 1

√
1−ρ√
1+ρ

) 2 tν+1(
√
ν + 1

√
1−ρ√
1+ρ

)

Clayton 2−
1
θ 0

Gumbel 0 2 - 2
1
θ

Frank 0 0

Joe 0 2 - 2
1
θ

AMH 0 0

R-Clayton 0 2−
1
θ

R-Gumbel 2 - 2
1
θ 0

R-Frank 0 0

R-Joe 2 - 2
1
θ 0

R-AMH 0 0

Figure 21: Simulated pseudo-sample from the Gaussian copula with τ = 0.6
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Figure 22: Simulated pseudo-sample from the Student-t copula with τ = 0.6

Figure 23: Simulated pseudo-sample from the Clayton copula with τ = 0.6

Figure 24: Simulated pseudo-sample from the Gumbel copula with τ = 0.6
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Figure 25: Simulated pseudo-sample from the Frank copula with τ = 0.6

Figure 26: Simulated pseudo-sample from the Joe copula with τ = 0.6

Figure 27: Simulated pseudo-sample from the AMH copula with τ = 0.6
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Figure 28: Simulated pseudo-sample from the rotated Clayton copula with τ = 0.6

Figure 29: Simulated pseudo-sample from the rotated Gumbel copula with τ = 0.6

Figure 30: Simulated pseudo-sample from the rotated Frank copula with τ = 0.6
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Figure 31: Simulated pseudo-sample from the rotated Joe copula with τ = 0.6

Figure 32: Simulated pseudo-sample from the rotated AMH copula with τ = 0.6

8.3 GARCH(1,1) estimates

Table 15: Average parameter estimates for the GARCH(1,1) model with Student-t errors calculated
with a rolling window of W = 200 daily observations for the period December 2017 - April 2021

Asset BTC ETH XRP ADA LTC BTF

µ 0.001 0.000 -0.002 -0.001 -0.001 0.001
ω 0.000 0.001 0.001 0.001 0.001 0.000
α 0.156 0.173 0.346 0.082 0.115 0.083
β 0.825 0.774 0.563 0.824 0.831 0.903
ν 2.917 2.824 2.694 3.893 3.475 3.056

8.4 Hedging Results
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