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Abstract

In this research, we investigate the effect of using different di-
mension reduction techniques to efficiently cluster high-dimensional
data. The idea behind using dimension reduction is to lift the
curse of dimensionality, which is a term to describe that full di-
mensional clustering algorithms get less accurate when the amount
of dimensions increases. Two approaches can be separated when
using dimension reduction for clustering: The "tandem" approach,
where we first apply dimension reduction and then cluster, or the
simultaneous approach, where dimension reduction and clustering
are applied at the same moment. Several tandem and simultane-
ous methods are practiced in a simulation study and we find that
one simultaneous method using PCA, Reduced K-means, should
be favoured when there are masking variables present, which are
variables that do not contain taxonomic information.
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1 Introduction

With the increased popularity of social media, streaming platforms and E-commerce, the
collection and exploitation of data is gaining huge interest in business and science. One
type of data that is often acquired is rating data. Rating data can be used to measure the
customer satisfaction of certain products or services. Possible applications are the amount
of stars for a movie you have seen on Netflix or rating your ordered package at a webshop
with a number from 1 to 10 of how satisfied you are. Given that an amount of people have
left a rating for a list of items, it would be interesting to segment this people into groups
with similar ratings. Having identified the different groups of customers, you could treat
them according to their preference, like give them more personalised advertisements.

The task of grouping observations based on their properties such that the identified
groups are more homogeneous than the other groups, can also be called cluster analysis.
This grouping is most effective when the amount of variables (amount of objects to be
rated) for each observation is small, but tends to be less accurate when the amount of
variables get large (Hinneburg and Keim, 1999). This problem is also called curse of
dimensionality, which is a term introduced by Bellman (1961), and can be explained by
the fact that the volume grows exponentially when adding dimensions. The volume in this
case means all the possible amount of samples that can be generated in a certain amount
of dimensions. As the volume increases, the possible amount of values to be generated
increases. Adding a dimension will therefore increase the distances between points, even
if they belong to the same cluster. The increase of distance between observations who
actually belong to the same cluster may lead to the situation that these points are not
being allocated to the same cluster, which is an undesirable situation.

The curse of dimensionality can also be explained by other factors. When the amount
of variables is large, it is likely that some variables can be disregarded as these variables do
not contain relevant information for clustering. These are so called "masking variables"
(Vichi and Kiers, 2001). However, these variables are taken into account by the clustering
algorithm and therefore lead to low clustering accuracy.

One solution to efficiently cluster high-dimensional data, is to reduce the amount of
dimensions, while retaining as much information as possible, and then combine it with
clustering. If the dimensions are reduced successfully, the distance between observations
from the same cluster are similar, while observations from different clusters have different
characteristics.

Dimension reduction can be done in 2 ways. First of all, we could select only a subset
of features which carry the most information. However, the information carried by the
disregarded features is evidently lost. Another way to decrease the amount of dimensions
is feature projection. Feature projection reduces the amount of dimensions using linear
combinations of the data. Different dimension reduction techniques are applied in differ-
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ent ways and thereafter the cluster allocations are compared. These cluster allocations
are evaluated both on accuracy and cluster "quality", which measures the separation be-
tween the clusters and the cohesiveness within the clusters. Our goal of this research
is to analyse the added value of different dimension reduction techniques for clustering
high-dimensional rating data and which application of dimension reduction performs the
best. Our main research question therefore is:

How do the different combined dimension reduction and clustering methods and the
full dimensional clustering method compare with respect to clustering accuracy and qual-
ity when applied to high-dimensional rating data?

The first dimension reduction technique we consider is principal component analysis
(PCA, Hotelling (1933)). PCA finds linear combinations of the variables, called loadings,
that are orthogonal to each other. Multiplying these loadings with the data leads to
the principal components, which are the projections of the data and are obtained by
maximizing the variance of these components.

Next, we consider correspondence analysis (CA, Benzécri (1973)). This technique is
developed to analyse contingency tables, which are cross tables that shows the frequency
distribution of two categorical variables. Applying CA results in coordinates of rows and
columns of the contingency table which can be displayed in a biplot and therefore explain
the relationship between the two variables. Next to contingency tables, CA can also be
used to analyse other matrices, given that the row and column totals are positive.

Greenacre (1984) concluded that applying CA to rating data does not satisfy the
"scale invariance" condition. This condition means that if the scales of the rating data
are reversed, analysis of such data should lead to the same outcome. To solve this problem,
he proposed to double the columns of the matrix in such a way that the added columns
are reflections of the original dataset.

An extension of correspondence analysis is multiple correspondence analysis (MCA,
Greenacre (1984)). Where correspondence analysis is focused on the relationship between
two categorical variables, MCA can be used to analyse the relationship of more than two
categorical variables. The trick used is to transform the categorical matrix to an indicator
matrix where the samples are the rows and all the categories of the variables are in the
columns. Applying CA to this matrix results in low-dimensional coordinates of both the
rows (observations) and columns (categories).

Our goal of applying PCA, CA and MCA is to obtain a low-dimensional projection of
the rows that accurately represent the data. Given these projections, the observations can
be clustered using a clustering algorithm. In our research, we use the K-means algorithm
using Euclidean distance (MacQueen et al., 1967) for clustering the data. Applying di-
mension reduction and clustering in sequential order, is called a tandem technique (Arabie
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and Hubert, 1994).
Tandem techniques are relatively fast as dimension reduction and clustering only have

to be done once and independently, but it also has the downside that dimension reduction
and clustering both have their own objectives: the goal of dimension reduction is to
accurately represent high dimensional data in low-dimensional space, while the goal of
clustering is to split these observations into separate groups based on their values. The
consequence may be that the observations in the reduced space are obtained from a
subset of variables of the full dimensional dataset and that variables that are essential for
clustering are left out. More generally, taxonomic information on the observations may
be lost in the dimension reduction step.

This problem of the tandem approach has been addressed by Van de Velden et al.
(2016) and Vichi and Kiers (2001). Because of this downside, they both propose a si-
multaneous approach, which incorporates both steps of the tandem approach into one
function. In other words, this approach combines the cluster allocation with the data
projection of dimension reduction technique in one function. This way, the dimension
reduction step is dependent on the allocation of the clustering, and therefore, Van de
Velden et al. (2016) and Vichi and Kiers (2001) argue that the variables that differentiate
the observations are more likely to be taken into account for clustering.

Vichi and Kiers (2001) illustrate that their simultaneous method allocates the observa-
tions correctly to the clusters in an example where only a part of the continuous variables
are important in allocating the clusters. However, in the simulation study of Van de
Velden et al. (2016) concerning categorical data, the tandem technique and simultaneous
technique both performed similar.

To find out how simultaneous methods compare to tandem approaches, we consider
various simultaneous techniques which use PCA, CA and MCA as dimension reduction
techniques, which are applied to rating data. These are Reduced K-means (De Soete and
Carroll, 1994) and Factorial K-means (Vichi and Kiers, 2001), which both use PCA, MCA
K-means (Hwang et al., 2006) and a simultaneous approach which uses correspondence
analysis and clustering, similar bot not equal to Cluster Correspondence Analysis (CCA)
in Van de Velden et al. (2016).

All the clustering allocations are evaluated based on accuracy, with a correction for
the probability of coincidence that the allocation is correct. Furthermore, the quality
of the clusters will be assessed by how cohesive the observations are within each cluster
and how well the clusters are separated. All the combined clustering approaches are
compared to full dimensional clustering, meaning that we apply the clustering algorithm
(e.g. K-means) to all the variables of the data.

The data used for this study is simulated. The datasets vary in the amount of variables,
the rating-scale, the amount of variance and whether there are masking variables present
or not.
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The results of the simulation study show that the tandem approach and full dimen-
sional clustering may lead to high accuracy when there are no masking variables present,
but tend to be less effective when there are masking variables present. In such a case,
Reduced K-means tend to outperform all the other methods. Tandem MCA and MCA
K-means generally outperform the other methods when there are no masking variables.

Factorial K-means and our version of CCA did lead to low clustering accuracy and
therefore we do not recommend these methods for rating data, where we note that the
low score for Factorial K-means could also be due to the low amount of "complement
residuals" (Timmerman et al., 2010). Finally, we could not find that increasing the amount
of dimensions leads to a decrease of the clustering accuracy when using full dimensional
clustering. However, the curse of dimensionality can be explained by the presence of
masking variables, in which case RKM is recommended.

The thesis is structured as follows: in Section 2, the present literature will be intro-
duced. In Section 3, an overview of the used methods is given. Next, the data used
for this research are discussed in Section 4. In Section 5, the results of the simulation
study are presented. Subsequently, we apply Reduced K-means to a student survey and
interpret the results. In Section 6, we conclude the thesis with our findings, limitations
and recommendations for future research.

2 Literature

Using dimension reduction to efficiently cluster high-dimensional data has been studied
extensively. Yeung and Ruzzo (2001) compared a tandem approach using PCA to full
dimensional clustering and stated that PCA does not necessarily improve the clustering.
Ben-Hur and Guyon (2003) note that this may be due to the standardisation of the vari-
ables beacause they find that standardisation may lead to a decrease in clustering quality.
Moreover, Ben-Hur and Guyon (2003) note that increasing the principal components in
the dimension reduction step does not necessarily lead to better clustering allocations.

Ciampi et al. (2005) used correspondence analysis in order to cluster both rows and
columns. Moreover, they proposed an algorithm that can be interpreted as a formalisation
of the "elbow rule": An algorithm that estimates the amount of dimensions that should
be retained using dimension reduction.

Greenacre (1984) proposed to double the data column wise when applying correspon-
dence analysis to rating data. This is necessary because rating data is bipolar, meaning
that are two poles, in this case the highest and the lowest rating. Analysis of the rating
data matrix where the poles are reversed, should lead to the same results, such that the
data is scale invariant.

The content of the columns to be added should be the reverse of the original matrix,
so when the original matrix contains the positive association of a sample with respect to
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a product, the appended matrix should contain the negative association for that sample.
This datapoints are thus reflections and both have the same distance to the mean of the
rating.

Arimond and Elfessi (2001) have applied MCA and clustering sequentially in analysing
categorical survey data. Multiple correspondence analysis can be defined as an extension
of correspondence analysis. In CA, the underlying structure of 2 variables are analysed,
whereas in MCA, this can be done for more than 2 variables.

Vichi and Kiers (2001) and Desarbo et al. (1991) note that tandem techniques have
the downfall that taxonomic information may be lost in the dimension reduction step and
therefore favor a simultaneous approach. This approach incorporates both steps of the
tandem approach into one function, so both dimension reduction and clustering are joined
into one objective and are optimised simultaneously. Vichi and Kiers (2001) mark that
their simultaneous method is better able to take advantage of the taxonomic information
and therefore obtain better clusters.

For simultaneous clustering and dimension reduction of numerical data, De Soete and
Carroll (1994) proposed reduced K-means and Vichi and Kiers (2001) proposed factorial
K-means. Both methods simultaneously use principal component analysis with K-means
clustering. The reduced K-means algorithm has the objective to minimize the squared
distance between the data point and the centers of the clusters in the projected space,
which are spanned by a loading matrix. The loading matrix linearly changes a high
dimensional dataset to the reduced space or vice versa. The factorial K-means algorithm
minimizes the sum of the squared distances between the centers of the clusters and the
observations, both in the projected space.

For an appraisal of these techniques, we refer to the research by Timmerman et al.
(2010). They show that it depends on the structure of the error which method leads
to more accurate cluster allocations. In their research, they make a separation between
"subspace" residuals and "complement" residuals. The subspace residuals are the er-
rors in the reduced space, the complement residuals are the errors in the complement of
this subspace. The presence of one of these errors determines which method should be
preferred.

For the clustering and dimension reduction of categorical data, several methods have
been proposed. Markos et al. (2018) refer to 3 joint methods, namely multiple corre-
spondence analysis K-means (MCA K-means, Hwang et al. (2006)), iterative factorial
clustering of binary variables (I-FCB, Iodice D’Enza and Palumbo (2013)) and cluster
correspondence analysis (CCA, Van de Velden et al. (2016)), which are all included in
their R package.

MCA K-means simultaneously applies MCA for dimension reduction with K-means
for clustering. To optimise MCA K-means, the coordinates are obtained using MCA and
are clustered using K-means and the other way around until convergence is reached.
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Van de Velden et al. (2016) proposed a new method that is called cluster correspon-
dence analysis. This method simultaneously applies K-means and correspondence analysis
to categorical data. The correspondence analysis is applied to a multiplication of two ma-
trices, which is ZTZK . Z is the same for MCA K-means and ZK is a binary matrix
that assigns observations to clusters. However, we intend to use correspondence analysis
differently than in CCA, namely that we double the matrix column wise. Moreover, the
rating data will be interpreted as continuous and not as categorical when applying corre-
spondence analysis. In other words, Z is a doubled rating data matrix in our application
of CCA.

Furthermore, Van de Velden et al. (2016) evaluated the simultaneous methods, a
tandem approach and the full dimensional clustering using a simulation study, where
they used 2 different measures. First, as it’s a simulation study, the accuracy of the
allocation of the clusters can be checked. To measure this accuracy, they propose the
Adjusted Rand Index by Hubert and Arabie (1985), which results in a score from -1 to 1,
where the higher the score, the better the allocation.

It is likely that the "true" cluster allocation is not known. In such cases, the cluster
allocation is evaluated differently. Therefore, they propose the average silhouette width
Rousseeuw (1987). The silhouette width of a point is the the average distance of the
points within the cluster, minus the average distance to the points of the nearest cluster,
divided by the biggest of the two. A high score for the average silhouette width indicates
how well the clusters are split among each other, while the observations are close to each
other.

The results of the simulation study of Van de Velden et al. (2016) shows that when the
amount of variables increase and when there are noise variables present, the full dimen-
sional clustering technique tends to perform worse than the other clustering approaches.
Among the simultaneous approaches and the tandem approach, none of them tend to
perform significantly worse or better.

Next to combined clustering and dimension reduction, there are other methods to
efficiently cluster high-dimensional data. Domeniconi et al. (2004) found that dimension
reduction techniques are not effective in separating clusters that exist in different sub-
spaces, or to put it in another way, are dependent of different variables. They therefore
propose to select the relevant features locally for each cluster. This way, the variables
that are relevant for a group of observations are more likely to be taken into account.

3 Methodology

In this section, the introduced methods will be further discussed. First, the dimension
reduction techniques used for tandem analysis will be explained. Next, a description of
K-means and full dimensional clustering will be given. Finally, a further elaboration of
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the simultaneous techniques and our evaluation methods will be presented.

3.1 Principal component analysis

Principal component analysis is a data reduction method introduced by Pearson (1901)
and Hotelling (1933). This method is further developed numerous times, such as in Jolliffe
and Cadima (2016). Moreover, Gower and Hand (1996) describe PCA in relationship with
CA and MCA when creating a biplot. PCA finds linear combinations of the variables that
are orthogonal to each other. These linear combinations are obtained by maximizing the
variance of the vectors multiplied with data, which are called principal components.

These principal components can also be described more geometrically. Consider the
data matrix P with I observations and J variables, such that the observations are rep-
resented in J dimensional space. P is therefore a multivariate dataset, and the rows and
columns cannot easily be exchanged for this analysis. The distance between two row
points is given in Euclidean distance, which is given in Equation 1, where pi,j is the value
for P at row i for variable j.

d(i, k) =

√√√√ J∑
j=1

(pi,j − pk,j)2 (1)

Then, PCA finds a D dimensional subspace that orthogonal projects the I datapoints
such that the Euclidean distance between the projections and the datapoints are mini-
mized, where 1 ≤ D ≤ J . The projections of the datapoints are the principal components.

The principal components can also be found by solving the following eigenequation.
First, consider our data matrix to be P with I rows and J columns. Then we alter P to a
column centred matrix P ∗, which means that the average of the column is subtracted for
each value in P . Therefore, P ∗T1I = 0J , where 1I a column vector of ones of dimension
I and 0J a column vector of zeros of dimension J . Geometrically, this centring could also
be interpreted as setting the centroid at the origin.

We can obtain the eigenvalues and eigenvectors of P ∗ by computing the spectral de-
composition of P ∗TP ∗, which is shown in Equation 2. More information on the spectral
decomposition can be found in Appendix A.

P ∗TP ∗V = V Λ (2)

In Equation 2, V contains the eigenvectors in the columns (V = [v1, v2, ..., vJ ]) and Λ

is the diagonal matrix of the eigenvalues of P . Given that V contains the orthonormal
eigenvectors, V TV = I. Also, the values in Λ are sorted in decreasing order, such that the
largest squared singular value is λ21, the squared singular in the first row, and the smallest
value is λ2J , the squared singular value in the last row. The eigenvectors multiplied with
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the data (vjP ) are the so called principal components and the corresponding eigenvalue
(λ2j) indicate the amount of variance explained by each component.

These vectors can also be obtained by the singular value decomposition as in Equation
3, where U and V are unitary matrices and Σ the matrix containing the singular values.
More information on the singular value decomposition is given in Appendix B.

P ∗ = UΣV T (3)

Given Equation 3, we can formulate Equation 4, which shows the relationship with the
spectral decomposition by Equation 2:

P ∗TP ∗ = V ΣUTUΣV T = V ΣΣV T = V ΛV T (4)

where we use that U is a unitary matrix. Moreover, given that Σ is a diagonal matrix
containing the singular values of P ∗, ΣΣ contains the squared singular values on the diag-
onal. Given that Λ = ΣΣ, the squared singular values of P ∗ are equal to the eigenvalues
of P ∗TP ∗.

Given that Σ is a diagonal matrix, we can rewrite P ∗ as
∑J

k=1 λkukv
′
k. We know that

the vectors uk and vk are all standardised and the elements in Σ are decreasing, the first
elements of the sum explain the most amount of the variance of P ∗. Our goal is to find
linear combinations that maximize the variance of the data, and therefore we can use the
columns of V as these are the eigenvectors of P ∗TP ∗. The first D columns of V can be
used to project the samples. Also, the eigenvectors are orthogonal to the other vectors,
meaning that multiplying column vectors of V , such as vl and vd, are equal to 1 for l = d

and are equal to 0 for l 6= d . The projections can be denoted as Q = PVD = UDΣD,
where Q denote the datapoints in D dimensions, where D < J . This means that the I
observations are denoted in the columns in D dimensional space. The amount of variance
explained by this projections is dependent of the proportion of the first D squared singular
values, which can be denoted as

λ21 + λ22 + ...+ λ2D
λ21 + λ22 + ...+ λ2D + ...+ λ2J

(5)

where λl is equal to the diagonal element of row l of Σ, which holds for all l. If this
fraction is small, the projection of the data is not a good representation of the original
dataset.

The error term can be estimated by calculating the difference between the data and
the spanned projections, which can be estimated as follows:

P − PVDV T
D = P (I − VDV T

D ) (6)
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When the scales of the variables are very different, the data should be standardised.
This can be done by dividing each column by it’s standard deviation, such that P TP is a
correlation matrix, instead of a covariance matrix.

3.2 Correspondence analysis

The next method we propose is correspondence analysis (CA, Benzécri (1973)). This
technique is developed to analyse contingency tables, such that the relations between two
categorical variables can be further explained. CA can be used to obtain the coordinates
of both rows and columns in the reduced space, and can thereafter be displayed in a
biplot. Next to the analysis of contingency tables, CA can also be used to analyse other
matrices, but it is required that the sum of all rows and columns are positive (Gower and
Hand, 1996).

The distance between two row points in CA is given in χ2 distance, which is given in
Equation 7. In this equation, ri is the row total of P for row i and cj as the column total
of P for column j. Next, the value at row i and column j for P is given by pi,j.

d(i, k) =
J∑

j=1

1

cj
(
pi,j
ri
− pk,j

rk
)2 (7)

In CA, the distance between columns can be calculated similarly as for the rows in Equa-
tion 7. From the χ2 distance of 2 rows can be obtained that scores with low row totals
have high influence in comparison to the same scores with higher row totals.

In this research, we apply CA to rating data. In the first step of correspondence
analysis, we transform the rating data matrix P with dimensions I and J and the total
sum of n to N = (1/n)P . The sum of all elements in N is now equal to 1. Next, we define
r and c as the vectors where the elements are equal to the sum of each row and column
of N respectively. Also, we define Dr and Dc as diagonal matrices with r and c on the
diagonal.

Next, we use the row and column totals to standardize and center the matrix, such
that each element can be written as follows: (ni,j − ricj)/

√
ricj = (ni,j − ei,j)/

√
ei,j. Note

that ei,j can be interpreted as the expected value of ni,j given the row and column totals.
Moreover, the singular value decomposition of the transformed matrix will be used, which
is defined in Equation 8.

D−1/2r (N − rcT )D−1/2c = P̃ = UΣV T (8)

In Equation 8, the singular values of diagonal matrix Σ are represented in descending
order. Also, matrices U and V are unitary matrices, meaning that UTU = V TV = I.
Furthermore, we want to approximate P̃ using two matrices that represent the reduced
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row and column values, which will be denoted as X and Y . Using Equation 8 and Van de
Velden et al. (2016), X and Y are obtained by the following minimization function

min
X,Y
||P̃ −D1/2

r XY TD1/2
c ||2 (9)

subject to Y TDcY = I. This formulation leads to the same principal coordinates as in
Greenacre (1984), but in that particular research a minimization form is not used. Given
the SVD in Equation 8, X = D

−1/2
r UΣ and Y = D

−1/2
c V . The results for X and Y are

the principal row coordinates and standard column coordinates respectively. If we would
impose that XTDrX = I instead of Y TDcY = I, the results for X and Y would be the
standard row coordinates and principal column coordinates respectively. The coordinates
in the reduced space are the first D columns of both X and Y . The representation where
X are standard (principle) coordinates and Y are principle (standard) coordinates is called
an asymmetric mapping.

A plot where the principal row coordinates and the principal column coordinates are
shown are called a symmetric mapping. Since the research is limited to clustering the
observations using dimension reduction, only the first D columns of the principal row
coordinates will be used. The reason for choosing principal coordinates is the fact that
the scaling of the singular values are an indication of the influence of a dimension. Singular
values are not included in the display of standard coordinates and therefore they do not
include that information.

The diagonal elements of Σ are the singular values. The accuracy of the low-dimensional
representation of the data using CA can be analysed similarly as for PCA, namely by
Equation 5, using the squared singular values.

As PCA and CA both can be obtained using the singular value decomposition, the
differences of the projections of the rows can be explained further. First, consider that in
PCA, P ∗ is column centred, and that for CA, the matrix to be decomposed is obtained
by dividing by n and then by standardizing and centering for both rows and columns
(Equation 8). Due to the fact that ni,j is measured in χ2 distance (Equation 7), scores
who are high with respect to the column and row average are very influential in CA.
A correction for columns and rows with low column and row totals is not automatically
included for PCA. Even so, in most applications the columns of the PCA are standardized,
as a high variance in a certain column is very influential.

3.3 Multiple correspondence analysis

Multiple correspondence analysis is another dimension reduction method, which can be
applied to categorical data. Recall that CA can be used to analyse the frequency distri-
bution of two variables. In this case, MCA can be interpreted as CA where the amount
of variables is 3 or larger. The trick behind MCA is to denote the categorical matrix as
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an indicator matrix and then analyse this matrix using CA. It can thus be considered
as CA to an indicator matrix. However, Gower and Hand (1996) refer to it as PCA to
categorical data.

3.3.1 Transformation to binary matrix

Consider matrix P with I observations and J variables, and let pi,j be the value for row
i and column j of P . For variable j, there are ej possible values, or in a rating data
matrix, the scale of variable j is ej. The indicator matrix Z now has I observations
and E =

∑J
j=1 ej columns, such that each possible value for each variable has an own

column. If zi,1j = 1, then observation i corresponds to value 1 of variable j. The other
values will be 0 for observation i at variable j. Multiple correspondence analysis can be
interpreted as correspondence analysis of the indicator matrix. Therefore, we can again
obtain coordinates for the rows and columns and analyse their similarity, for example in
a biplot.

The alteration of the indicator matrix is further illustrated by an example. Let Table
1 be a survey where 5 people rate 3 products. Each product is rated from 1 to 5 from
each respondent, where a score of 1 indicates that the respondent is very unsatisfied, and
a score of 5 is equal to the highest score of satisfaction of the product. Each columns
corresponds to a possible rating from a product, where the possible amount of ratings for
a single column is ej = 5, such that the total amount of columns can be calculated as
E =

∑J
j=1 ej =

∑3
j=1 5 = 15. Next, we let a score of 1 correspond to the first column

of a product, a score of 2 for the second, et cetera. Finally, we can obtain the indicator
matrix Z, which is given by Table 2.

Table 1: example of numerical data

Respondent Product 1 Product 2 Product 3

a 5 3 2
b 3 2 3
c 3 1 3
d 4 2 4
e 4 3 4
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Table 2: Indicator matrix of categorical data

Respondent Product 1 Product 2 Product 3

a 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0
b 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0
c 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
d 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0
e 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0

3.3.2 MCA explained as extension of CA

MCA can be explained simply by interpreting it as CA to the indicator matrix Z (Greenacre,
1984). First, we set the sum of all element equal to 1, such that G = Z/n, where n is the
sum of all elements of Z. Next, the singular value decomposition of the standardized and
centered matrix is computed, which van be denoted as

D−1/2r (G− rcT )D−1/2c = UΣV T

where r and c are the row and column totals of G respectively and where Dr and Dc are
diagonal matrices with r and c on the diagonal. Then, the coordinates of the rows in the
projected space can be computed as

Q = D−1/2r UΣ

where the coordinates of the rows in the D dimensional space can be interpreted as the
first D columns in Q.

3.3.3 Derivation of MCA using PCA

MCA can also be explained as PCA applied to categorical data. Consider Dc to be a
diagonal matrix with the column frequencies of the indicator matrix Z at the diagonal.
Then, MCA can be interpreted as PCA to X = D

−1/2
r ZD

−1/2
c , which can be interpreted

as the standardised indicator matrix. Gower and Hand (1996) use J−1/2 instead of D−1/2r ,
but as the row totals in Dr are equal to the amount of variables J , the results are the
same.

The distance between samples can be calculated using Euclidean distance, given X =

D
−1/2
r ZD

−1/2
c , is estimated as

d(i, j) = D−1r (zi − zj)D−1c (zi − zj)T

where zi is sample i of Z in row form.
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According to Gower and Hand (1996), the projections of the sample coordinates in D
dimensional space can also be obtained as the columns of

QD = XVD = D−1/2r ZD−1/2c VD = UDΣ (10)

where U , Σ and V are obtained by the singular value decomposition of X.
There is one issue when applying PCA to X in order to obtain the row coordinates,

namely that X should be centred. For the centring, Gower and Hand (1996) prove that
the first term of the singular value decomposition (λ1u1vt1) is equal to NX, where N is
used for column centring such that 1T (I−N)X = 0. Therefore, PCA can be done without
centring X, but keep in mind that the first term of the SVD should then be left out.

Another common method to evaluate MCA is by analysing the uncentred sum-of-
squares matrix XTX. This can be done by using the spectral decomposition, which
results in

XTX = D−1r D−1/2c ZTZD−1/2c = V ΛV T

This method for evaluating ZTZ, which is also called the Burt matrix, is computational
more easy if the amount of columns in Z is considerable smaller than the amount of rows
in Z. However, in our research we need to obtain the projections of the row coordinates
and these can not be obtained by this method.

The accuracy of the representation of the samples in Equation 10 is given by

λ22 + ...+ λ2D
λ22 + ...+ λ2D + ...+ λ2E

(11)

where λ1 is left out because of the centering problem. However, this measure tends to be
very pessimistic with respect to the representation (Greenacre, 1984). An alternative is
proposed by Kroonenberg and Greenacre (2004), where all λ are adjusted using

λ∗ = (
J

J − 1
)2(λ− 1

J
)2

The accuracy of the representation is now given more realistically using λ∗ and Equation
11.

3.4 Correspondence analysis applied to rating data

Rating data can be seen as scaled data and is used often in surveys. The possible amount
of values may differ and easy examples are 3 or 5-point scale data. Common example of
answers of 3-point scale data are agree, neutral and disagree, and for 5-point scale data,
agree, slightly agree, neutral, slightly disagree and disagree. These answers have a
certain ordering and 2 extremes, in this case agree and disagree. In our research, the
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possible values of T -point rating data are integers ranging from 1 to T . Greenacre (1984)
refer to them as poles and therefore call this data bipolar.

For the analysis of bipolar data, one theoretical condition should hold, and that is that
the agreement of one statement which approves an entity, called A, should be equal to the
disagreement of one statement that disapproves A. Emotionally this "scale invariance"
may be questionable, but from a mathematical point of view, this should always be the
case.

The coordinates acquired by applying CA to rating data is likely not to satisfy that
condition. Consider a survey of 3 respondents and 4 questions and 5-point scale data,
where a score of 5 corresponds to the highest score and 1 to the lowest score. One
respondent gives one variable a 5 and the other three variables a 1. In the next matrix,
the scales are reversed, meaning that a score of 1 corresponds to a high score and a score
of 5 to a low score. For the same respondent, he now gives 3 variables a score of 5 and
one variable a score of 1. The results of the analysis of both matrices should be the same
as the content of matrices is still the same. However, due to the low row total for the
respondent in the first matrix in comparison with the second matrix, the results are not
equal when applying CA. Therefore, the condition of scale invariance will not hold. Note
that we assume for both matrices that the column averages are equal.

To make sure this condition will hold, Greenacre (1984) proposed to double the matrix
column-wise. The first J columns are the same as the original matrix, the second J

columns are the reflected form of the data. As an example, in surveys, if one respondent
gives a high rating to a certain value, it will give a low value to the variable in the second
part of the doubled matrix. This low value is mirrored in the average of the scaled values,
such that the distance between the low value and low pole is equal to the high value and
the high pole.

This can also be explained more mathematically. Consider the rating matrix with
I rows and J columns. Then, yi,j is the rating by observation i for variable j, where
we consider the ratings to have positive associations with respect to the variable. The
maximum rating for yi,j is given by T for all i, j. Next, we double the columns of the
matrix, where the appended columns contain the negative associations, such that the
matrix has I rows and 2J columns. The first J columns are denoted as j+, because these
denote the positive associations of the ratings with respect to the variable and contains
the value yi,j. Next, the final J columns are denoted as j− and measures the negative
associations of a sample with respect to the variable, which are given by T + 1− yi,j.

Greenacre (1984) note that this doubling leads to a symmetry between the two poles
of a scaled variable. Moreover, the scale invariance will hold, as both the positive and
negative associations for all variables are included, and exchanging the poles would be
equal to exchanging the columns.

After this doubling, we can apply regular correspondence analysis to this matrix.
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However, there are some implications. First of all, the row total is the same for all
observations, namely J · (T + 1). As there is no difference in row totals, this is not any
more an essential part of the analysis that makes CA different from PCA.

3.5 K-means clustering

To cluster our data, we use K-means (MacQueen et al., 1967). This method is the most
popular partitive clustering algorithm (Jain, 2010) and due to the fact that it’s concep-
tually easy and the computation time is limited, it’s suited for our research problem.

For initialisation, determineK as the amount of clusters and assign for each cluster one
point that becomes a centroid. In the next step, every observation is assigned to the cluster
of which the centroid is the most near, measured in Euclidean distance. Subsequently,
the centroid of each cluster is computed, which is the average point of the allocated
observations. In the next iterations, the assigning of the data points and computing of
the centroids are repeated until convergence is reached. Convergence is reached if no
points are allocated differently in subsequent iterations.

3.5.1 Full dimensional clustering

One application of clustering rating data is full dimensional clustering, where K-means
clustering will be used. The distance between the centroids and the other data points in
K-means is measured in Euclidean distance and the data of all dimensions will be used.

3.6 Simultaneous PCA and K-means

In this subsection, we propose two simultaneous methods, namely the reduced K-means
algorithm (RKM, De Soete and Carroll (1994)) and the factorial K-means algorithm
(FKM, Vichi and Kiers (2001)). Both methods use principal component analysis with
K-means clustering in a coinciding approach.

To define both methods accurately, we introduce the matrices involved. First, consider
P as the columnwise standardized and centred score matrix, which means that the mean
and standard deviation of each column are equal to 0 and 1 respectively. Next, we define
L as the loadings matrix with J rows and D columns, where J is the amount of variables
and D is the amount of dimensions of the projected subspace. Next, we define ZK as the
indicator matrix that assigns every observation to one of the K clusters, and we denote
G as the matrix containing the centroids of the clusters in the reduced space.

3.6.1 Reduced K-means

Given this matrices, both objective functions can be defined. The reduced K-means
algorithm is solved in order to minimize the squared distance between the data points
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and the centroids in the reduced space, which are spanned by the loading matrix. The
function which needs to be minimized in order to obtain the projections and the clusters
is defined in Equation 12.

FReduced(ZK , G, L) = ‖P − ZKGL
T‖2 (12)

3.6.2 Factorial K-means

Furthermore, the factorial K-means algorithm is formulated in such a way that the
within variance of the separate clusters in the projected space is minimized. This means
that implementing this algorithm leads to clusters where the differences between the es-
timated centroids and the data points, both in the reduced space, are relatively small.
These clusters are obtained by minimizing Equation 13.

FFactorial(ZK , G, L) = ‖PL− ZKG‖2 = ‖PLLT − ZKGL
T‖2 (13)

3.6.3 Difference Factorial and Reduced K-means

RKM and FKM look very similar, but Timmerman et al. (2010) note that the difference
in clustering accuracy can be pretty big. They show that the differences can best be
explained by their error terms.

The objective function of Factorial K-means in Equation 12 can be rewritten such
as in Equation 14. Timmerman et al. (2010) note that the the optimal value for G =
(ZT

KZK)−1ZT
KPL such that P can be explained by HK , L, P and E. Note that HK is

equal to ZK(ZT
KZK)−1ZT

K .

EReduced = P − ZKGL
T = P − ZK(ZT

KZK)−1ZT
KPLL

T = P −HKPLL
T (14)

The error term for Factorial K-means is constructed in Equation 15, where we use the
same optimal value for F and notation for HK as for Reduced K-means.

EFactorial = PLLT − ZKGL
T = PLLT − ZK(ZT

KZK)−1ZT
KPLL

T = PLLT −HKPLL
T

(15)
Next, Timmerman et al. (2010) note that P can be expressed by 3 terms using above

equations, namely a structural part (ZKGL
T ), the "subspace residuals" (ELT ), and the

"complement residuals" (E⊥L⊥T ). This partition is also given in Equation 16. Note that
E⊥L⊥T is equal to P − PLLT and that ETE⊥ = 0.

P = ZKGL
T + ELT + E⊥L⊥T (16)

Timmerman et al. (2010) speculate using algebraic analysis and verify by means of a
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simulation study that the quality of the clustering for Factorial K-means increases when
the percentage of complement residuals inreases, and that the quality for the Reduced
K-means clustering increases when the percentage of subspace residuals increases.

3.7 Simultaneous clustering and correspondence analysis to Rat-

ing data

In this section, we simultaneously apply K-means and correspondence analysis to rating
data (CCA). This simultaneous approach has already been proposed for categorical data
by Van de Velden et al. (2016). However, in this case the data is interpreted as continuous
data. Moreover, the matrix needs to be doubled as discussed in Subsection 3.4, which did
not happen in Van de Velden et al. (2016).

Consider the doubled matrix N . Next, we introduce the indicator matrix ZK , which
assigns I observations to one of the K clusters. Finally, we can introduce matrix P =
1

n
ZT

KN , where n is chosen such that the sum of all elements of P sum to 1. P is now the
matrix where the rows contains the sums of all the observations within a cluster. To be
precise, the element pk,j is the sum of all elements for cluster k for variable j divided by

n, such that, pk,j =
1

n

∑I
i=1 zi,k ·ni,j (p, z and n are elements of P,Z and N respectively).

P remains scale invariant and therefore, we can still apply CA to P . This can be
proven by

pk,J+j =
1

n

I∑
i=1

zi,k · ni,J+j =
1

n

I∑
i=1

zi,k · (T + 1− ni,j)

such that pk,J+j + pk,j =
1

n

∑I
m=1 zm,k · (T + 1) , which is equal for all j given that

they belong to the same cluster. Therefore, pk,j is a reflection of pk,J+j, which results in
a doubled matrix. Interesting is that we can now find n using

J∑
j=1

K∑
k=1

pk,j + pk,J+j =
1

n

J∑
j=1

K∑
k=1

I∑
i=1

zi,k · (T + 1) =
J · I · (T + 1)

n
= 1

Next, consider P̃ = D
−1/2
r (P − rcT )D

−1/2
c , such that the matrix is standardized and

centred. Moreover, we denote r as a vector of row totals corresponding to P12J and c a
column vector corresponding to P T1K . Next, Dr and Dc are the corresponding diagonal
matrices.

Note that we can rewrite P − rcT using that n = I · J · (T + 1) and M = II −
1

I
1I1

T
I ,

where I is the indicator matrix and I is the amount of dimensions:
P - r cT = P − P12J1T

KP =
1

n
ZT

KN −
1

n2
ZT

KN12J1T
KZ

T
KN

=
1

n
ZT

KN−J ·(T +1)
1

(I · J · (T + 1))2)
ZT

K1I1
T
I N =

1

n
(ZT

KIIN−
1

I
ZT

K1I1
T
I N) =

1

n
ZT

KMN
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The formula to be minimized to obtain the cluster allocation using CA therefore
becomes:

min
G,B,ZK

||P̃ −D1/2
r GBTD1/2

c ||2 = min
G,B,ZK

||D−1/2r (
1

n
ZT

KMN)D−1/2c −D1/2
r GBTD1/2

c ||2 (17)

subject to BTDcB = I, where the projections of the rows and columns are the columns
of G and B respectively.

This minimization problem can be solved by composing the SVD of P̃ :

P̃ = UΣV ′ (18)

Given that BTDcB = I, P̃ is approximated by the first D columns of G = D
−1/2
r UΣ,

the principle coordinates of the rows, and B = D
−1/2
c V , the standard coordinates of the

columns.
Next, we also have to minimize with respect to ZK , which is captured in P̃ . Van de

Velden et al. (2016) note that minimizing Equation 17 is equal to

max ||D1/2
r G||2 = max trace(GTDrG) = max trace(Λ2) (19)

subject to BTDcB = I.
Therefore, in order to obtain the cluster allocation, we can rewrite Equation 17, using

Equation 18 and 19 and the fact that G = D
−1/2
r UΣ = D

−1/2
r P̃ V , such that

max
ZK

||D1/2
r D−1/2r P̃ V ||2 = max

ZK

||D−1/2r (
1

n
ZT

KMN)D−1/2c V ||2 (20)

which can be rewritten as

φ = || 1
n
D−1/2r ZT

KMND−1/2c V ||2 = trace(V ′D−1/2c NTMZKD
−1
r ZT

KMND−1/2c V )

Moreover, we will show that DK = (ZT
KZK) = I ·Dr by using

r = P12J =
1

n
ZT

KN12J

r =
J · (T + 1)

I · J · (T + 1)
ZT

K1I

Dr =
1

I
diag(ZT

K1I) =
1

I
ZT

KZK =
1

I
DK

18



such that

max
ZK

φ = max
ZK

trace(V ′D−1/2c NTMZKD
−1
r ZT

KMND−1/2c V )

= max
ZK

trace(V ′D−1/2c NTMZKD
−1
K ZT

KMND−1/2c V )

Next, we introduce Y = MND
−1/2
c V . Moreover, the K-means objective can be de-

noted as (Van de Velden et al., 2016):

min
ZK ,G
||Y − ZKG||2

where Y is the data matrix, ZK the cluster allocation matrix and G the matrix containing
the initial centroids.

Using this formulation, we can find the optimal value for G by using

G = (ZT
KZK)−1ZT

KY

Next, we will show that minimizing the K-means objective is equal to maximizing
objective 20 using

min
ZK ,G
||Y − ZKG||2 = traceY TY + traceGTDKG− 2traceGTZT

KY

= traceY TY + traceY TZKD
−1
K DKD

−1
K ZT

KY − 2traceY TZK(DK)−1ZT
KY

= traceY TY − traceY TZKD
−1
K ZT

KY

= traceY TY − trace(V ′D−1/2c NTMZKD
−1
K ZT

KMND−1/2c V )

where the first term (Y TY ) is independent of ZK and G. Consequently, we have shown
that the two objectives are equal and that we can use K-means for clustering allocation.

The procedure of optimisation is started by assigning every observation to a random
cluster. Next, we iteratively update B,G in one step and ZK in the other step until the
observations are not assigned to other clusters in sequential iterations or the maximum
amount of iterations is reached.

3.8 MCA K-means

One example of coinciding multiple correspondence analysis and K-means is MCA K-
means (Hwang et al., 2006). This method simultaneously reduces the dimensions of the
data using MCA while allocating the clusters to observations in the reduced space using
K-means.

First, we obtain indicator matrix Z by transforming rating matrix P , just as we have
done before for MCA. Then, let Zj be the indicator matrix corresponding to variable j,
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with dimensions I, qj. Let F be a I,D matrix containing the values for the I observations
in the reduced space of dimensions D. Next, we define Wj as the weight matrix of qj rows
and D columns, linearly transforming the columns of variable j to the reduced space.
Next, we denote ZK as the matrix that assigns I observations to K clusters and G the
centroids of K clusters in D dimensions, so in the reduced space.

Moreover, 2 values have to be decided by the researcher, namely α1 and α2. The
default choice for our research will be α1 = α2 = 0.5. Given these values and matrices,
we can define MCA K-means by minimizing the following:

f = α1Σ
J
j=1trace((F − ZjWj)

T (F − ZjWj)) + α2trace((F − ZKG)T (F − ZKG)) (21)

with respect to F , Wj, ZK and G. Moreover, the sum of α1 and α2 must be 1 and F TF =
I. The optimal matrices of Equation 21 can be obtained by an iterative procedure. For
a detailed explanation of this optimisation, we refer to Hwang et al. (2006).

3.9 Evaluation measures

All cluster allocations will be evaluated based on two criteria. The first criteria is that
we want the accuracy of the cluster allocations to be high. This is done by comparing
the allocation with the real clustering. Next, the quality of the clusters will be assessed,
regardless of the accuracy. Therefore, the clusters should be well separated from each
other, while the clusters itself should be cohesive.

3.9.1 Adjusted Rand Index

First, we measure the accuracy of the allocation. As the "true" cluster allocation is known
in our simulation study, we can assess the effectiveness of the different cluster allocations.
Therefore, we will use the Adjusted Rand Index (ARI, Hubert and Arabie (1985)). The
Rand Index is an index that measures the accuracy of the cluster, which is done by
comparing the pairs of observations which belong to the same cluster in the estimation
versus the true allocation. However, the Rand Index does not take into account chance,
and therefore we use the Adjusted Rand Index.

The ARI is used to compare the true allocation with the estimated allocation and
returns a value between -1 and 1, which indicates the precision of the estimated clustering.
The higher the score, the more accurate the assignment of the observations. Also, a score
of 0 indicates that the assignment of the clusters is equal to random assignment.

3.9.2 Average Overall Silhouette Width

Next, we also compare the algorithms using the Average Overall Silhouette Width (AOSW
Rousseeuw (1987)). A high value for the AOSW corresponds to a cluster allocation where
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the observations within a cluster are close to each other (cohesive), while the distance to
other clusters is relatively large (separation).

Consider observation i, which belongs to cluster A. Then, the average dissimilarity of
observation i with respect to the other observations within cluster A is denoted as a(i).
All dissimilarity can estimated using Euclidean distance. Next, consider d(i, C), which is
the average dissimilarity of i to all observations within cluster C. The cluster with the
smallest average dissimilarity, excluding cluster A, is denoted as b(i) = minC 6=A d(i, C).

Finally, we can get silhouette width of i by

s(i) =
b(i)− a(i)

max(a(i), b(i))

The AOSW is obtained by taking the average of the silhouette width for all points.

4 Data

In this research, the proposed methods will be applied to simulated data and on an existing
dataset.

4.1 Simulation Study

Our goal of the simulation study is to further investigate the differences between the
different approaches of clustering high-dimensional data using dimension reduction, in
order to gain more insights which methods should be preferred when dealing with this
problem.

For the simulated dataset, we mimic a survey with 500 respondents. The amount of
variables varies among 16, 32 and 64. The possible answers vary among 3-point scale
data, 5-point scale data and 9-point scale data. The predetermined amount of clusters is
4, where each cluster is equally sized. Moreover, the amount of variance varies among the
simulations.

Next, we use 2 separate cases of distributions. In the first case, all variables are
important in determining the correct cluster allocations. In the second case, only one
part of the variables contain the taxonomic information, while the other variables have
the same distribution for every cluster. These second part of variables do not carry any
relevant information for clustering the observations. Vichi and Kiers (2001) refer to these
variables as "masking variables", as improper analysis of these data may lead to the
masking or obscuring of the taxonomic information of the relevant variables.

All the data will be simulated 50 times. An overview of the different settings is given
in Table 3. The total amount of different settings will be 3x3x2x2 = 36.
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Table 3: Settings of simulation study

Simulation settings

Amount of variables 16, 32, 64
rating scale 3, 5, 9
Amount of variance High, Low
Presence of masking variables No, Yes
Amount of clusters 4
Amount of observations 500
Amount of simulations 50

The ratings for the variables are simulated using a normal distribution. Given the
outcome of the normal distribution, we round to the nearest integer to retain the structure
of the rating data. The preference for the variables is the same for the respondents in the
same cluster.

In the first case, all variables are important. The variables are split into 4 variable
groups, which are all equal sized. The variables from the same variable group all have the
same distribution. Each observation comes from 1 of the 4 clusters, and the observations
from a cluster all like 1 of the 4 variable groups, dislike 1 of the 4 variable groups, and
are neutral on 2 of the 4 variable groups. Eventually, all products are liked and disliked
once by a cluster. An exact representation of this scheme is given in Table 4.

Table 4: Allocation table, which shows how the cluster corresponds to the variable groups, of
case 1.

Clusters Positive Negative Neutral

1 1 2 3, 4
2 2 3 1, 4
3 3 4 1, 2
4 4 1 2, 3

Values are the variable groups, the columns indicate the distribution corresponding to the preference,
and the rows denote the cluster to which the observation belongs

In the second case, not all variables are important for clustering. The variables are split
into 3 different variable groups, where the third group containing the masking variables is

the biggest. The combined size of variable group 1 and 2 is equal to 6+
amount variables

4
,

such that the percentage of masking variables is decreasing when the amount of variables
increase. Each observation comes from 1 of the 4 clusters. The observations differ in
distribution for variable group 1 and 2, which means that the variables from this group
carry the taxonomic information. All the observations have similar distribution for cat-
egory group 3, which are the masking variables and do not contain relevant information
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in allocating the clusters. How each cluster is related to the variable groups, is given in
Table 5.

Table 5: Allocation table, which shows how the cluster corresponds to the variable groups, of
case 2.

Clusters Positive Negative Masking variables

1 1 2 3
2 2 1 3
3 1,2 - 3
4 - 1,2 3

Values are the variable groups, the columns indicate the distribution corresponding to the preference,
and the rows denote the cluster to which the observation belongs

Next, the data matrix P can be simulated. Let pi,j be the value for P at row i for
variable j, then the data can be generated as

pi,j ∼ round(N(µ, σ))

where µ is a high, normal or low value dependent on how cluster c is related to the variable
group of j. The values of µ are also dependent of the rating scale. σ is dependent on if
the presence of variance is high or low and on the scale of the data. Moreover, σ is higher
for masking variables. An overview of the values for µ and σ is given in C. Given that T
is the scale for the ratings, the simulated value is equal to min(T,max(1, pi,j)), such that
the data falls within the range of [1, T ].

The differences in accuracy and cluster quality will be interesting, and we have some
expectations. First of all, we expect that the higher the amount of variables and the
higher the variance, full dimensional clustering has a relative low cluster accuracy. This
is due to the fact that the dimension reduction techniques try to capture the underlying
structure of the data, and therefore are more likely to filter out the noise. Moreover, we
expect that MCA is going to perform relatively well when the rating scale is low, because
then the data is relatively more similar to categorical data then when the rating scale is
high.

Subsequently, we expect the simultaneous methods to allocate more accurate with
respect to the other methods when not all variables are important for clustering, as
these methods jointly cluster and reduce dimensions. This has also been illustrated for
numerical data by Vichi and Kiers (2001).
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4.2 Survey data Malaysian Public University

Next, we illustrate the purpose of joint clustering and dimension reduction by applying
our most effective method to survey data. This survey data is taken from 280 students
at Malaysian Public University. The goal of the survey was to measure the satisfaction of
the students of 14 different facilities, where the respondents could rate each facility from
1 (strongly dissatisfied) to 10 (strongly satisfied). The data can be found through this
link.

The goal of this second part is to gain more insights in the application of combined
dimension reduction and clustering, and how to interpret the results.

5 Results

In this section, we will discuss the goal and the results of the simulation study. Also,
the usage of combined dimension reduction and clustering will be illustrated using an
example. First of all, the goal of the simulation study is to compare the different clustering
approaches and how they react to the different simulated datasets. Subsequently, it’s
interesting to verify if the results are in line with our conjectures and previous research.

The 8 methods that are applied are the following. First, K-means without dimension
reduction is implemented, which is also called full dimensional clustering. Moreover, we
apply 3 tandem approaches, which use different dimension reduction techniques, namely
PCA, CA and MCA, and K-means for clustering. Next, we will implement 4 simulta-
neous techniques, namely Reduced K-means, Factorial K-means, MCA K-means and a
simultaneous method that uses CA and K-means (CCA).

The methods will be evaluated based on clustering allocation accuracy and cluster
quality. Moreover, the methods will be assessed on different datasets. The data is dif-
ferentiated on the amount of variables, rating scale, amount of variance and the pres-
ence of masking variables. For all the methods a total amount of 25 random starts
for initialisation will be used, such that we can make fair comparisons. The amount of
dimensions we retain for every dimension reduction technique is 3. Moreover, we im-
pose that the amount of clusters for each method is 4. The code used can be found at
https://github.com/Sbennema/thesis and in Appendix E.

5.1 Results simulation study

The results for the clustering accuracy is given in Table 6 and Table 7. From both
tables can be obtained that the Factorial K-means does not allocate the cluster better
than random assignment, as most scores for the ARI are close to zero. According to
Timmerman et al. (2010), FKM is likely to perform worse if the amount of masking
variables is low. In that case, there is a relative high amount of "subspace" variance
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in comparison to variance of the complement residuals. However, we could not find an
increase in accuracy of FKM when masking variables where present. Using the obtained
matrices of Reduced K-means in Equation 16, we found that the average percentage of
complement variance is indeed very low, below 10 %.

Moreover, CCA allocates worse with respect to the other methods. As the method had
some interesting algebraic properties, we do not recommend to use this method due to
the low clustering accuracy. However, we see that the method performs relatively better
in the case with masking variables.

Furthermore, we can conclude that when there are no masking variables, tandem
analysis using MCA and MCA K-means tend to perform slightly better than the other
methods, especially when the rating scale is low. This is probably because these methods
analyse the data as categorical data instead of continuous data, and the lower the rating
scale, the less dependencies in the data MCA and MCA K-means miss in their analysis
compared to the other methods. Next, MCA K-means has relative low clustering accuracy
in the case with masking variables, which was not expected due to the fact that it was a
simultaneous method.

From Table 7 can be obtained that when the masking variables are present, Reduced K-
means tends to perform better than the other methods. This is line with the statements
of Vichi and Kiers (2001) that simultaneous methods are better able to cluster on the
variables that carry the taxonomic variables when there are masking variables present.
One interesting observation is also that CCA and Reduced K-means both minimize the
error of the full dimensional data points and centroids, while Factorial K-means and
MCA K-means minimize based on the error of the projections of the observations and the
centroids. This may be related to the fact that Reduced K-means and CCA perform well
on Case 2 with respect to Case 1.

3 methods, namely tandem analysis using CA and PCA and full dimensional clustering
all perform equally in all cases. These methods are generally outperformed by the methods
using MCA when there are no masking variables, and outperformed by Reduced K-means
when there are masking variables present. Hence, we do not recommend to use this
clustering methods.

Overall, the Reduced K-means method has the highest clustering accuracy. This
method has the highest accuracy when masking variables are present, and has an average
accuracy when there are no masking variables.

Next to clustering accuracy, the clustering quality was also assessed by the average
overall silhouette width. THe AOSW was estimated using the clustering allocation of the
algorithms and the values of the observations from the full dimensional dataset. Due to
the high overlap of the clusters, the scores for the average overall silhouette width were all
very close to zero and therefore no interesting comparisons could me made. The results
of the AOSW for all cases and all methods can be found in Appendix D.
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Table 6: Adjusted Rand Index in the first case without masking variables

Low variance
Variables=16 Variables=32 Variables=64

Methods T=3 T=5 T=9 T=3 T=5 T=9 T=3 T=5 T=9
FDC 0.19 0.32 0.42 0.45 0.65 0.75 0.79 0.92 0.96
Tandem PCA 0.20 0.35 0.43 0.46 0.64 0.74 0.79 0.91 0.95
Tandem CA 0.20 0.35 0.43 0.45 0.64 0.74 0.78 0.91 0.95
Tandem MCA 0.22 0.35 0.40 0.60 0.79 0.77 0.88 0.97 0.97
RKM 0.18 0.32 0.43 0.46 0.66 0.76 0.77 0.91 0.95
FKM 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
CCA 0.12 0.17 0.19 0.20 0.24 0.27 0.28 0.40 0.52
MCA K-means 0.20 0.36 0.37 0.59 0.74 0.76 0.85 0.95 0.95

High variance
Variables=16 Variables=32 Variables=64

Methods T=3 T=5 T=9 T=3 T=5 T=9 T=3 T=5 T=9
FDC 0.05 0.09 0.14 0.12 0.22 0.37 0.39 0.61 0.73
Tandem PCA 0.06 0.10 0.16 0.12 0.25 0.38 0.36 0.59 0.71
Tandem CA 0.06 0.10 0.15 0.12 0.25 0.38 0.36 0.59 0.71
Tandem MCA 0.07 0.14 0.10 0.18 0.33 0.34 0.58 0.78 0.78
RKM 0.05 0.09 0.13 0.11 0.23 0.36 0.31 0.58 0.69
FKM 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
CCA 0.03 0.06 0.09 0.09 0.14 0.18 0.17 0.23 0.26
MCA K-means 0.07 0.11 0.09 0.21 0.38 0.36 0.55 0.71 0.73
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Table 7: Adjusted Rand Index in the first case wit masking variables

Low variance
Variables=16 Variables=32 Variables=64

Methods T=3 T=5 T=9 T=3 T=5 T=9 T=3 T=5 T=9
FDC 0.31 0.61 0.74 0.37 0.70 0.83 0.57 0.81 0.90
Tandem PCA 0.32 0.57 0.73 0.38 0.73 0.82 0.59 0.84 0.92
Tandem CA 0.32 0.58 0.73 0.38 0.73 0.82 0.59 0.84 0.92
Tandem MCA 0.27 0.56 0.61 0.43 0.62 0.62 0.61 0.76 0.79
RKM 0.45 0.69 0.79 0.52 0.75 0.85 0.65 0.85 0.93
FKM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CCA 0.20 0.31 0.53 0.25 0.53 0.74 0.34 0.70 0.84
MCA K-means 0.26 0.37 0.42 0.30 0.44 0.43 0.39 0.62 0.62

High variance
Variables=16 Variables=32 Variables=64

Methods T=3 T=5 T=9 T=3 T=5 T=9 T=3 T=5 T=9
FDC 0.14 0.24 0.34 0.13 0.30 0.45 0.21 0.44 0.60
Tandem PCA 0.16 0.24 0.33 0.17 0.29 0.46 0.24 0.42 0.63
Tandem CA 0.16 0.24 0.33 0.17 0.29 0.46 0.24 0.43 0.63
Tandem MCA 0.16 0.23 0.21 0.18 0.27 0.22 0.23 0.33 0.30
RKM 0.22 0.41 0.53 0.23 0.47 0.60 0.30 0.60 0.72
FKM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CCA 0.03 0.11 0.20 0.09 0.18 0.28 0.14 0.24 0.39
MCA K-means 0.16 0.22 0.22 0.17 0.23 0.22 0.22 0.29 0.28

5.2 Results students survey

In this subsection an illustration is given of how a combined clustering and dimension
reduction can be applied and interpreted. Our data is the student satisfaction survey
considering 280 students rating 14 facilities from 1 tot 10. Given the results from the
simulation study, Reduced K-means is the most suitable method.

Before executing RKM, the amount of dimensions to which the data is reduced and
the amount of clusters is needed. The right amount of dimensions are chosen based on
the percentage of variance explained using PCA, which can also be found at Equation 5.
From Figure 1 can be observed that the first dimension is very influential, and after that
the influence of dimensions is decreasing rapidly. Therefore, we have chosen to retain 2
dimensions using dimension reduction.
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Figure 1

Next, the amount of clusters are based on the error term of the criterion, which is
given in Figure 2. Given this figure, we have decided to obtain 5 clusters, as we see a
slight decrease when that amount of clusters is used. However, 3 clusters could also have
been chosen.

Figure 2

Given the amount of dimensions and the amount of clusters, the Reduced K-means is
applied to the survey data with 100 random starts. The cluster allocation of this method
is given in Figure 3, where respondents with the same figure belong to the same cluster.
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To further interpret this result, we are interested in how the variables influence each
dimension, which is given in Table 8. Note that this table is equal to L in Equation 12.
The first dimension can be interpreted as the amount of pessimism of the respondents
towards all the facilities, as all scores for the variables for that dimension are negative and
in somewhat the same range. This means that a high score for this dimension generally
leads to a low overall score for the respondent to the survey. The respondents belonging
to the cluster indicated by the diamonds in Figure 3 can now be interpreted as the
pessimistic group, while the respondents which are indicated by an "X" can be interpreted
as optimistic respondents. As the percentage of explained variance is really big for this
dimension, the influence of the scores for this dimension is huge.

The second dimension can be interpreted differently, as Bursary, Health Centre,
Sports Centre and Islamic centre are all correlated negatively to the second dimension,
and all the other variables are positively correlated to this dimension. This implicates
that a high score from a respondent in this dimension generally corresponds to a negative
feeling towards the above named variables and vice versa. However, note that percentage
of explained variance is low for this dimension, and therefore the influence of the scores
for this dimension is little.

Figure 3
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Table 8: Contribution of variables to first and second dimension

Variable Dimension 1 Dimension 2

Bursary -0.24871 -0.27507
Health Centre -0.19425 -0.52685
Library -0.24828 -0.35914
Sport Centre -0.27519 -0.2639
Islamic Centre -0.23707 -0.3245
Auto teller Machine -0.27263 0.015982
Residential Collage -0.25107 0.13287
Transportation Centre -0.28089 0.120923
Wireless Internet -0.26279 0.254405
Parking Lot -0.25988 0.382486
Toilet -0.29332 0.157442
Cafeteria -0.29531 0.167657
Cleanliness -0.2953 0.210734
Welfare -0.30582 0.044508

6 Conclusion

In this research, the goal was to answer the following research question:

How do the different dimension reduction methods and full dimensional method com-
pare with respect to clustering accuracy and quality when applied to high-dimensional
rating data?

To answer this question, we used 8 different methods, namely K-means on the full
dataset, 3 tandem methods using PCA, CA and MCA and 4 simultaneous methods.
These simultaneous methods are Reduced K-means, Factorial K-means, MCA K-means
and our own version of cluster correspondence analysis. This version of CCA also was the
first application in which correspondence analysis to continuous data and K-means was
executed simultaneously.

All these methods have been applied to different simulated datasets. The simulations
varied in the amount of masking variables present, the amount of variance, the amount
of variables and the scale of the rating data.

The results of the study showed that MCA and MCA K-means generally both obtained
higher clustering accuracy than the other methods when there are no masking variables
present, especially when the rating-scale is low.

When there are masking variables, Reduced K-means tends to perform better. This is
in line with the conjecture that simultaneous methods tend to perform better when only
a subset of variables are relevant for the clustering. This was due to the fact that the

30



dimension reduction is dependent on the clustering. Therefore, the variables that carry
the information for the clustering allocation are more likely to be taken into account in
the dimension reduction step, which leads to a higher clustering accuracy.

However, as our version of cluster correspondence analysis was an interesting experi-
ment, the values for the ARI were significantly lower than the other methods, especially
when there were no masking variables present. Moreover, Factorial K-means did not allo-
cate the clusters well, which is probably due to the high amount of "subspace" residuals.

Tandem PCA, Tandem CA and full dimensional clustering all performed equally well
in all cases, but most of the occasions, one of the other methods achieved higher clustering
accuracy.

Finally, we found that increasing the amount of dimensions does not necessarily lead
to lower clustering accuracy of the full dimensional clustering algorithm. Nevertheless,
when the variables added are masking variables, Reduced K-means should be preferred
over tandem approaches and full dimensional clustering.

The quality of the clusters were hard to access, as there was a high overlap in the
simulated data and therefore, all values for the average overall silhouette width were close
to zero.

To illustrate the usage of dimension reduction combined with clustering, we have
applied Reduced K-means to a survey concerning student satisfaction of facilities. In that
section, we have shown how to choose the right amount of dimensions, the right amount
of clusters, and how to interpret the cluster allocations in the reduced space.

When comparing correspondence analysis to principal component analysis in this re-
search, we can not confidently say that one method should be preferred over the other.
In the Tandem approach, the accuracy is even, while CCA has lower overall clustering
accuracy then RKM but higher than FKM. However, we can say that for this simulated
data, simultaneous methods that minimize the error in the projected space should be
avoided.

The most suitable method to cluster high-dimensional rating data using dimension
reduction in the situation that there is no information on the amount of masking variables
present is, according to this research, Reduced K-means. This method performs similar
to most methods when there are no masking variables, and tends to outperform the other
methods when these masking variables are present.

When there are no masking variables, other methods such as tandem approaches may
lead to equal results. In the situation that rating scale is low and there are no masking
variables, MCA should be favored as a dimension reduction technique when clustering.

For further research concerning the topic of clustering high-dimensional data using
dimension reduction, we recommend to take a further look at the relationship between
the increasing amount of masking variables and the accuracy of the clustering algorithms.
We found an interesting shift in the accuracy of all methods by changing this parameter,
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which was less present when we changed the amount of variance, rating scale or amount
of variables.

Note that in our research we remained the amount of clusters constant at 4 and that
the size of each cluster was equal. This is not necessarily the case in most clustering
problems, such that this could be an interesting factor to dive further into for further
research. Moreover, we assumed the data was normally distributed, but rating-scale data
could also follow a multinomial distribution.

Subsequently, we did use a low amount of random starts in order to to limit the
running time. Increasing the amount of random starts will decrease the probability that
the result is a local optimum, and therefore will lead to better results.

Furthermore, our research is limited to the influence of dimension reduction on cluster-
ing using sequential and contemporaneous approaches, but there are far more techniques
that can be used to accurately cluster high-dimensional data, but that was beyond the
scope of our research. Nevertheless, these methods may be more hard to interpret.

Finally, only K-means was used as a clustering method in combination with dimen-
sion reduction. Other clustering methods, such as Gaussian Clustering and K-mediods
clustering, could also lead to interesting results.
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A Spectral theorem

The spectral theorem, also called the eigendecompsition, is a tool used in linear algebra
that splits a matrix into eigenvalues and eigenvectors. The spectral decomposition can be
decomposed for any squared, symmetric A and can be denoted as in Equation 22.

AV = V Λ (22)

where V is the matrix containing the eigenvectors in the columns and Λ the diagonal
matrix containing the eigenvalues of A. Every eigenvalue λj at row j of the matrix
corresponds to the eigenvector at columns j of V , vj. This eigenvalues are also called
the characteristic polynomial and can be obtained by solving det(A − λI) = 0. The
eigenvectors are orthogonal, such that vTi vj = 0 if i 6= j, but for the same vectors hold
that vTi vi = 1. (scales are arbitrary, and therefore we impose standardisation).

Given corresponding eigenvalues and eigenmatrices, we can compose Avi = λivi for all
i given that 1 ≤ i ≤ J . Moreover, given that the vectors are orthogonal, we can also find
that V TV = I, we can rewrite Equation 22 as

A = V ΛV T (23)

Moreover, given that all eigenvalues are bigger than zero, than A is positive definite.
Moreover, if the eigenvalues are equal to zero or positive, A is semi-positive definite.
Further information on the spectral decomposition can be found in Gower and Hand
(1996).

B Singular Value Decomposition method

The singular value decomposition method (SVD) is a factorisation technique used in
matrix algebra. The projections of PCA, CA and MCA can all be derived using the
SVD. The singular value decomposition has first been used by Eckart and Young (1936),
although they named it the lower rank estimation. Greenacre (1984) proposed the method
in relationship with CA, and therefore we will follow the theory in their book.

SVD denotes one real matrix as the product of three matrices, where each of the
matrices has their own properties. This decomposition is given in Equation 24,

A = UΣV T (24)

where Σ is a diagonal matrix of positive values and has K rows and columns. Next, U
and V are matrices that contain unit vectors in the columns, such that UTU = V TV =
I. Moreover, the columns in U and V are orthogonal, such that for columns [u1, ..., uK ]
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of U and [v1, ..., vK ] of V , uTk uk′ = 0 and vTk vk′ = 0 for k 6= k′. Furthermore, given that
rank(A) = K and A has n rows and p columns, U has n rows and V has p rows. The
vectors uk and vk are called left singular and right singular vectors and the value αk, the
diagonal element on row k of Σ, is called the corresponding singular value. The singular
value αk indicates the magnitude of the corresponding matrix ukvTk . Moreover, we can
rewrite Equation 24 as A =

∑K
k=1 αkukv

T
k , such that is becomes the sum of all the outer

products times the corresponding singular value. The matrix will be decomposed in such
a way that the diagonals of Σ as descending, such that α1 is the largest and αK is the
smallest. If all αk 6= αk′ for k 6= k′, this decomposition is unique.

Given the descending order of the singular values in Σ and the fact that these values
correspond to the magnitude of outer product of singular vectors, we could only use a
subset of vectors and singular values for approximation. Consider K∗ < K, and only
select the first K∗ singular values of Σ and first K∗ singular vectors of U and V . These
new matrices will be denoted as Σ∗, U∗andV ∗. Therefore, we can approximate matrix A
by using the linear combinations with the most impact, which can be denoted as follows:

Ã = U∗Σ∗V ∗T

The error term can be denoted as the complete decomposition minus the approximation,
which is therefore:

A− Ã = UΣV T − U∗Σ∗V ∗T (25)

Given that A =
∑K

k=1 αkukv
T
k , Equation 25 can be solved as A− Ã =

∑K
k=K∗+1 αkukv

T
k .

Therefore, the approximation is accurate if
∑K

k=K∗+1 αk is relatively small.

C Simulation settings

Table 9: Averages for normal distribution in simulation study

T=3 T=5 T=9

low average 1,5 2 3
medium average 2 3 5
high average 2,5 4 7
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Table 10: Standard deviation for normal distribution in simulation study

case 1
T=3 T=5 T=9
low std high std low std high std low std high std

negative/postive distribution 1 1,5 1.67 2.5 3 4.5
Neutral distribution 2 3 3.33 5 6 9

case 2
T=3 T=5 T=9
low std high std low std high std low std high std

negative/postive distribution 0.75 1 1.25 1.67 2.25 3
Masking variable 1.5 2 2.5 3.33 4.5 6

D Results AOSW

Table 11: Average silhouette width in the first case without masking variables

Low variance
Variables=16 Variables=32 Variables=64

Methods T=3 T=5 T=9 T=3 T=5 T=9 T=3 T=5 T=9
FDC 0.06 0.06 0.07 0.04 0.05 0.06 0.04 0.05 0.07
Tandem PCA 0.05 0.06 0.07 0.04 0.05 0.06 0.04 0.05 0.07
Tandem CA 0.05 0.06 0.07 0.04 0.05 0.06 0.04 0.05 0.07
Tandem MCA 0.03 0.03 0.03 0.03 0.04 0.05 0.04 0.05 0.06
RKM 0.06 0.06 0.07 0.04 0.05 0.06 0.04 0.05 0.06
FKM 0.03 0.03 0.03 0.01 0.01 0.01 0.00 0.00 0.00
CCA 0.04 0.03 0.03 0.01 0.02 0.02 0.01 0.02 0.03
MCA K-means 0.03 0.02 0.03 0.01 0.03 0.00 0.03 0.01 0.04

High variance
Variables=16 Variables=32 Variables=64

Methods T=3 T=5 T=9 T=3 T=5 T=9 T=3 T=5 T=9
FDC 0.05 0.06 0.06 0.03 0.03 0.04 0.02 0.03 0.03
Tandem PCA 0.05 0.05 0.05 0.03 0.03 0.03 0.02 0.03 0.03
Tandem CA 0.05 0.05 0.05 0.03 0.03 0.03 0.02 0.03 0.03
Tandem MCA 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.02
RKM 0.05 0.05 0.06 0.03 0.03 0.04 0.02 0.03 0.03
FKM 0.03 0.03 0.03 0.01 0.01 0.01 0.00 0.00 0.00
CCA 0.04 0.04 0.04 0.02 0.02 0.02 0.01 0.01 0.01
MCA K-means 0.01 0.05 0.01 0.03 0.01 0.05 0.02 0.06 0.02
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Table 12: Average silhouette width in the second case with masking variables

Low variance
Variables=16 Variables=32 Variables=64

Methods T=3 T=5 T=9 T=3 T=5 T=9 T=3 T=5 T=9
FDC 0.06 0.06 0.07 0.03 0.03 0.04 0.02 0.02 0.02
FDC 0.06 0.06 0.07 0.03 0.03 0.04 0.02 0.02 0.02
Tandem PCA 0.06 0.07 0.08 0.03 0.04 0.05 0.02 0.03 0.03
Tandem CA 0.06 0.07 0.08 0.03 0.04 0.05 0.02 0.03 0.03
Tandem MCA 0.04 0.06 0.07 0.03 0.04 0.04 0.02 0.02 0.03
RKM 0.06 0.07 0.08 0.03 0.04 0.05 0.02 0.03 0.03
FKM 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00
CCA 0.04 0.04 0.06 0.02 0.03 0.04 0.01 0.02 0.03
MCA K-means 0.04 0.03 0.04 0.03 0.05 0.02 0.02 0.02 0.03

High variance
Variables=16 Variables=32 Variables=64

Methods T=3 T=5 T=9 T=3 T=5 T=9 T=3 T=5 T=9
FDC 0.06 0.06 0.06 0.03 0.03 0.03 0.02 0.02 0.02
Tandem PCA 0.05 0.06 0.06 0.03 0.03 0.03 0.02 0.02 0.02
Tandem CA 0.05 0.06 0.06 0.03 0.03 0.03 0.02 0.02 0.02
Tandem MCA 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01
RKM 0.06 0.06 0.06 0.03 0.03 0.03 0.02 0.02 0.02
FKM 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00
CCA 0.05 0.05 0.05 0.02 0.02 0.02 0.01 0.01 0.01
MCA K-means 0.01 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.01
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E Code
### Data s imulat ion case 1

l i b r a r y ( matr ixStats )
l i b r a r y ( csv )

dist_emo = func t i on (emo , am_cat , am_rat , std_dev ){
# Function that r e tu rns value given the emotion , the r a t i ng sca l e , and whether the std_dev i s high / low

i f ( am_rat==3){
mult_rat= 0 .5

}
e l s e i f ( am_rat==5){

mult_rat=1
} e l s e {

mult_rat=2
}
i f ( std_dev=="low "){

std_dev = am_rat/3
}
e l s e {

std_dev = am_rat/2
}
# given the emotion , the data i s s imulated from the normal d i s t r i b u t i o n
i f (emo=="neg "){

a= rnorm (am_cat , (1+mult_rat ) , std_dev )
}
i f (emo=="neu "){

a= rnorm (am_cat∗2 , (1+am_rat )/2 , 2∗ std_dev )
}
i f (emo=="pos "){

a= rnorm (am_cat , am_rat−mult_rat , std_dev )
}
# Data i s rounded such we get r a t i ng data
a = round ( a )
a [ a<1] =1
a [ a>am_rat ] = am_rat
return ( a )

}

sim_mat = func t i on (am_var , am_rat , std_dev ){
# Funtion that s imu la t e s 500 obsevrat ions , where the obse rva t i on s belong to one o f the c l u s t e r s
# Amount o f va r i ab l e s , r a t i ng s c a l e and high or low standard dev i a t i on i s dependent on the input
n_obs=500
mat = data . frame ( )
f o r ( i in c ( 1 : 4 ) ) {

f o r ( j in c ( 1 : ( n_obs /4) ) ){
ob_i = cl_i ( i , am_var , am_rat , std_dev )
# pr in t ( ob_i )
mat = rbind (mat , ob_i )

}}
return (mat)

}

c l_i = func t i on ( clus_i , am_var , am_rat , std_dev ){
# Given the c l u s t e r o f an observat ion , the v a r i a b l e s are s imulated
am_cat = am_var/4
row_v= c ( dist_emo (" pos " , am_cat , am_rat , std_dev ) , dist_emo (" neg " , am_cat , am_rat , std_dev ) , dist_emo (" neu " , am_cat , am_rat , std_dev ) )
va l = er (row_v , c lus_i ∗am_cat−am_cat)
va l = cbind ( t ( c ( va l ) ) , c lus_i )
re turn ( va l )

}

er <− f unc t i on (x , n = 1) {
## makes sure the s imu la t i on s are d i f f e r e n t f o r the d i f f e r e n t f unc t i on s
i f (n == 0) x e l s e c ( t a i l (x , −n ) , head (x , n ) )

}

w r i t e_ f i l e = func t i on (am_sim , am_var , am_rat , std_dev ){
### given the s e t t i n g s , the f i l e s are generated to t h i s path
path = paste ("C:\\ Users \\ s i e t s \\Documents\\E&OR\\ Thes is \\ Proposal \\ Simulatie_case_1 " ,am_var , am_rat , std_dev , sep="_")
d i r . c r e a t e ( path )
f o r ( i in c ( 1 : am_sim) )
{

sample = sim_mat(am_var , am_rat , std_dev )
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f i l e = paste ( i , " sim . csv " , sep="_")
pa_f i l e= paste ( path , f i l e , sep="\\")
wr i t e . csv ( sample , f i l e = pa_f i le , row . names = FALSE)

}
return ( p r in t (" done ") )

}

## wr i te 50 s imu lat ion f i l e s
Sim_case_1 = func t i on (am_sim){

### simula te s a l l da ta s e t s with the d i f f e r e n t s e t t i ng s , am_sim times
f o r ( i in c (3 , 5 , 9 ) ) {

f o r ( j in c (16 , 32 , 64)){
f o r ( std in c (" low " , "high ")){

s e t . seed ("1234")
sample = wr i t e_ f i l e (am_sim , am_var=j , am_rat=i , std_dev=std )

}
}

}
return ( p r in t (" case_1 "))}

### Data s imulat ion case 2

l i b r a r y ( matr ixStats )
l i b r a r y ( csv )

dist_emo = func t i on (emo , am_cat , am_rat , std_dev ){
# Function that r e tu rns value given the emotion , the r a t i ng sca l e , and whether the std_dev i s high / low
i f ( am_rat==3){

mult_rat= 0 .5
}
e l s e i f ( am_rat==5){

mult_rat=1
} e l s e {

mult_rat=2
}

i f ( std_dev=="low "){
#USed to bed std_dev = am_rat/4
std_dev = am_rat/4

}
e l s e {

std_dev = am_rat/3
}
# given the emotion , the data i s s imulated from the normal d i s t r i b u t i o n
i f (emo=="neg "){

a= rnorm (am_cat , (1+mult_rat ) , std_dev )
}
i f (emo=="neu "){

a= rnorm (am_cat , (1+am_rat )/2 , std_dev ∗ ( 2 ) )
}
i f (emo=="pos "){

a= rnorm (am_cat , am_rat−mult_rat , std_dev )
}
# Data i s rounded such we get r a t i ng data
a = round ( a )
a [ a<1] =1
a [ a>am_rat ] = am_rat
return ( a )

}

sim_mat = func t i on (am_var , am_rat , std_dev ){
# Funtion that s imu la t e s 500 obsevrat ions , where the obse rva t i on s belong to one o f the c l u s t e r s
# Amount o f va r i ab l e s , r a t i ng s c a l e and high or low standard dev i a t i on i s dependent on the input
n_obs=500
mat = data . frame ( )
f o r ( i in c ( 1 : 4 ) ) {

f o r ( j in c ( 1 : ( n_obs /4) ) ){
ob_i = cl_i ( i , am_var , am_rat , std_dev )
mat = rbind (mat , ob_i )

}}
return (mat)

}

c l_i = func t i on ( clus_i , am_var , am_rat , std_dev ){
# Given the c l u s t e r o f an observat ion , the v a r i a b l e s are s imulated
am_relev = (6+am_var/8)/2
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am_neutral = am_var−2∗am_relev
i f ( c lus_i==1){
row_v= c ( dist_emo (" pos " , am_relev , am_rat , std_dev ) , dist_emo (" neg " , am_relev , am_rat , std_dev ) , dist_emo (" neu " , am_neutral , am_rat , std_dev ) )
}
i f ( c lus_i==2){

row_v= c ( dist_emo (" neg " , am_relev , am_rat , std_dev ) , dist_emo (" pos " , am_relev , am_rat , std_dev ) , dist_emo (" neu " , am_neutral , am_rat , std_dev ) )
}
i f ( c lus_i==3){

row_v= c ( dist_emo (" pos " , am_relev , am_rat , std_dev ) , dist_emo (" pos " , am_relev , am_rat , std_dev ) , dist_emo (" neu " , am_neutral , am_rat , std_dev ) )
}
i f ( c lus_i==4){

row_v= c ( dist_emo (" neg " , am_relev , am_rat , std_dev ) , dist_emo (" neg " , am_relev , am_rat , std_dev ) , dist_emo (" neu " , am_neutral , am_rat , std_dev ) )
}

va l = cbind ( t ( c (row_v ) ) , c lus_i )
re turn ( va l )

}

er <− f unc t i on (x , n = 1) {
## makes sure the s imu la t i on s are d i f f e r e n t f o r the d i f f e r e n t func t i on s
i f (n == 0) x e l s e c ( t a i l (x , −n ) , head (x , n ) )

}

w r i t e_ f i l e = func t i on (am_sim , am_var , am_rat , std_dev ){
### given the s e t t i n g s , the f i l e s are generated to t h i s path
path = paste ("C:\\ Users \\ s i e t s \\Documents\\E&OR\\ Thes is \\ Proposal \\ Simulatie_case_2 " ,am_var , am_rat , std_dev , sep="_")
d i r . c r e a t e ( path )
f o r ( i in c ( 1 : am_sim) )
{

sample = sim_mat(am_var , am_rat , std_dev )
# pr in t (dim( sample ) )
# colMeans ( sample )
# co lSds ( data . matrix ( sample ) )
f i l e = paste ( i , " sim . csv " , sep="_")
pa_f i l e= paste ( path , f i l e , sep="\\")
wr i t e . csv ( sample , f i l e = pa_f i le , row . names = FALSE)

}
return ( p r in t (" done ") )

}

Sim_case_2 = func t i on (am_sim){
### simula te s a l l da ta s e t s with the d i f f e r e n t s e t t i ng s , am_sim times
f o r ( i in c (3 , 5 , 9 ) ) {

f o r ( j in c (16 , 32 , 64)){
f o r ( std in c (" low " , "high ")){

s e t . seed ("1234")
sample = wr i t e_ f i l e (am_sim , am_var=j , am_rat=i , std_dev=std )

}
}

}
return ( p r in t (" case_2_done ") )

}

Tan_Res = func t i on (am_sim){
## Tandem c l u s t e r i n g
l i b r a r y (" f a c t o ex t r a ")
l i b r a r y (" gp l o t s ")
l i b r a r y ("FactoMineR")
l i b r a r y (" g g f o r t i f y ")
l i b r a r y (" pdfClus te r ")
l i b r a r y (" c l u s t e r ")
l i b r a r y ( ncpen )

dim_DR = 3
ARI_PCA = funct i on (am_sim , path , dim_DR){

# Returns average ARI and ASW using tandem PCA in 50 s imu la t i on s
ARIcol = data . frame ( )
SILco l = data . frame ( )
f o r ( i in c ( 1 : am_sim)){

num = i
name = paste (num," sim . csv " , sep="_")
pa_na = paste ( path , name , sep="\\")
matrix = read . csv (pa_na)
dt <− as . t ab l e ( as . matrix ( matrix [ , 1 : ( dim( matrix ) [ 2 ] −1 ) ] ) )
r e s . pca <− prcomp ( dt , s c a l e = FALSE)
df = re s . pca$x [ , 1 :dim_DR]
k2 <− kmeans ( df , c en t e r s = 4 , n s t a r t = 25)
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ARI = adj . rand . index ( c ( k2$c l u s t e r ) , c ( matrix [ , dim( matrix ) [ 2 ] ] ) )
s i l = s i l h o u e t t e ( c ( k2$ c l u s t e r ) , d i s t ( dt ) )
meansi l = mean( s i l [ , 3 ] )
ARIcol = rbind ( ARIcol , ARI)
SILco l = rbind ( SILcol , means i l )

}
ARICIL = cbind ( ARIcol , SILco l )
re turn (ARICIL)

}

ARI_CA = funct i on (am_sim , path , dim_DR){
# Returns average ARI and ASW fo r Tandem CA in 50 s imu la t i on s
ARIcol = data . frame ( )
SILco l = data . frame ( )
f o r ( i in c ( 1 : am_sim)){

num = i
name = paste (num," sim . csv " , sep="_")
pa_na = paste ( path , name , sep="\\")
matrix = read . csv (pa_na)
dt <− as . t ab l e ( as . matrix ( matrix [ , 1 : ( dim( matrix ) [ 2 ] −1 ) ] ) )
doubled = cbind ( dt , max( dt)+1−dt )
r e s . ca <− CA( doubled , ncp=dim_DR, graph = FALSE)
df = re s . ca$row$coord
k2 <− kmeans ( df , c en t e r s = 4 , n s t a r t = 25)
ARI = adj . rand . index ( c ( k2$c l u s t e r ) , c ( matrix [ , dim( matrix ) [ 2 ] ] ) )
s i l = s i l h o u e t t e ( c ( k2$ c l u s t e r ) , d i s t ( dt ) )
meansi l = mean( s i l [ , 3 ] )
ARIcol = rbind ( ARIcol , ARI)
SILco l = rbind ( SILcol , means i l )

}
ARICIL = cbind ( ARIcol , SILco l )
re turn (ARICIL)

}

ARI_MCA = funct i on (am_sim , path , dim_DR){
# Returns average ARI and ASW fo r Tandem MCA in 50 s imu la t i on s
ARIcol = data . frame ( )
SILco l = data . frame ( )
f o r ( i in c ( 1 : am_sim)){

num = i
name = paste (num," sim . csv " , sep="_")
pa_na = paste ( path , name , sep="\\")
matrix = read . csv (pa_na)
dt <− as . t ab l e ( as . matrix ( matrix [ , 1 : ( dim( matrix ) [ 2 ] −1 ) ] ) )
# dt = data . frame ( f a c t o r ( dt [ , 1 ] ) , f a c t o r ( dt [ , 2 ] ) , f a c t o r ( dt [ , 3 ] ) , f a c t o r ( dt [ , 4 ] ) )
mat = c ( 1 : ( dim( matrix ) [ 1 ] ) )
f o r ( i in c ( 1 : ( dim( matrix ) [ 2 ] −1) ) ){

column = data . frame ( f a c t o r ( dt [ , i ] ) )
mat = cbind (mat , column )

}
r e s .mca <− MCA(mat [ , 2 : dim( matrix ) [ 2 ] ] , ncp=dim_DR, graph = FALSE)
df = re s . mca$ind$coord
k2 <− kmeans ( df , c en t e r s = 4 , n s t a r t = 25)
ARI = adj . rand . index ( c ( k2$c l u s t e r ) , c ( matrix [ , dim( matrix ) [ 2 ] ] ) )
s i l = s i l h o u e t t e ( c ( k2$ c l u s t e r ) , d i s t ( dt ) )
meansi l = mean( s i l [ , 3 ] )
ARIcol = rbind ( ARIcol , ARI)
SILco l = rbind ( SILcol , means i l )

}
ARICIL = cbind ( ARIcol , SILco l )
re turn (ARICIL)

}

ARI_FDC = funct i on (am_sim , path , dim_DR){
# Returns average ARI and ASW fo r f u l l d imens ional c l u s t e r i n g in 50 s imu la t i on s
ARIcol = data . frame ( )
SILco l = data . frame ( )
f o r ( i in c ( 1 : am_sim)){

num = i
name = paste (num," sim . csv " , sep="_")
pa_na = paste ( path , name , sep="\\")
matrix = read . csv (pa_na)
dt <− as . matrix ( matrix [ , 1 : ( dim( matrix ) [ 2 ] −1 ) ] )
k2 <− kmeans ( dt , c en t e r s = 4 , n s t a r t = 25)
s i l = s i l h o u e t t e ( c ( k2$ c l u s t e r ) , d i s t ( dt ) )
meansi l = mean( s i l [ , 3 ] )
ARI = adj . rand . index ( c ( k2$c l u s t e r ) , c ( matrix [ , dim( matrix ) [ 2 ] ] ) )
ARIcol = rbind ( ARIcol , ARI)
SILco l = rbind ( SILcol , means i l )
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}
ARICIL = cbind ( ARIcol , SILco l )
re turn (ARICIL)

}

tandem =func t i on (am_sim , path , dim_DR){
#Run a l l tandem func t i on s and f u l l d imens ional c l u s t e r i n g and obtain average f o r a l l f unc t i on s
ARIcol_PCA = ARI_PCA(am_sim , path , dim_DR)
ARIcol_CA = ARI_CA(am_sim , path , dim_DR)
ARIcol_MCA = ARI_MCA(am_sim , path , dim_DR)
ARIcol_FDC = ARI_FDC(am_sim , path , dim_DR)
return ( c ( colMeans (ARIcol_PCA) , colMeans (ARIcol_CA) , colMeans (ARIcol_MCA) , colMeans (ARIcol_FDC) ) )

}
## Execute a l l tandem methods and f u l l d imens ional c l u s t e r i n g on a l l the s imulated data
Tandem_res = matrix ( nrow =0 , nco l =12)
colnames (Tandem_res)=c (" case " , "am_var" , "am_rat" , "Std_dev " , "PCA_ARI" , "PCA_SIL" , "CA_ARI" , "CA_SIL" , "MCA_ARI" , "MCA_SIL" , "FDC_ARI" , "FDC_SIL")
f o r ( c in c (1 , 2 ) ) {

f o r ( i in c (16 , 32 , 64)){
f o r ( j in c (3 , 5 , 9 ) ) {

f o r ( std in c (" low " , "high ")){
s e t . seed ("1234")
path = paste ("C:\\ Users \\ s i e t s \\Documents\\E&OR\\ Thes is \\ Proposal \\ Simulat ie_case " , c , i , j , std , sep="_")
i f ( std=="low "){

std_dev=1
} e l s e {

std_dev=2
}
r e s = cbind ( c , i , j , std_dev , t ( as . numeric ( tandem(am_sim , path , dim_DR) ) ) )
Tandem_res = rbind (Tandem_res , r e s )
}

}
}

}
name =paste ("Tandem_Res")
wr i t e . csv (Tandem_res , f i l e = name , row . names = FALSE)
return (Tandem_res )

}

l i b r a r y (" fastDummies ")
l i b r a r y (" ph i l ent ropy ")
l i b r a r y ( s t a t s )
l i b r a r y (" f a c t o ex t r a ")
l i b r a r y (" gp l o t s ")
l i b r a r y ("FactoMineR")
l i b r a r y (" g g f o r t i f y ")
l i b r a r y (" pdfClus te r ")
l i b r a r y (" c l u s t r d ")
l i b r a r y (" t i c t o c ")
l i b r a r y (" c l u s t e r ")
l i b r a r y ( doPa ra l l e l )
l i b r a r y ( p lyr )

ARI_RKM = funct i on (am_sim , path , dim_DR){
# Returns average ARI and ASW fo r RKM in 50 s imu la t i on s
ARIcol = data . frame ( )
SILco l = data . frame ( )
f o r ( i in c ( 1 : am_sim)){

num = i
name = paste (num," sim . csv " , sep="_")
pa_na = paste ( path , name , sep="\\")
matrix = read . csv (pa_na)
dt <− as . t ab l e ( as . matrix ( matrix [ , 1 : ( dim( matrix ) [ 2 ] −1 ) ] ) )
outRKM = cluspca ( dt , 4 , dim_DR, method = "RKM" , n s ta r t = 25)
s i l = s i l h o u e t t e ( c ( outRKM$cluster ) , d i s t ( dt ) )
means i l = mean( c ( s i l [ , 3 ] ) )
ARI = adj . rand . index ( c ( outRKM$cluster ) , c ( matrix [ , dim( matrix ) [ 2 ] ] ) )
ARIcol = rbind ( ARIcol , ARI)
SILco l = rbind ( SILcol , means i l )

}
ARICIL = cbind ( ARIcol , SILco l )
re turn (ARICIL)

}

ARI_FKM = funct i on (am_sim , path , dim_DR){
# Returns average ARI and ASW fo r FKM in 50 s imu la t i on s
ARIcol = data . frame ( )
SILco l = data . frame ( )
f o r ( i in c ( 1 : am_sim)){
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num = i
name = paste (num," sim . csv " , sep="_")
pa_na = paste ( path , name , sep="\\")
matrix = read . csv (pa_na)
dt <− as . t ab l e ( as . matrix ( matrix [ , 1 : ( dim( matrix ) [ 2 ] −1 ) ] ) )
outFKM = cluspca ( dt , 4 , dim_DR, method = "FKM" , r o t a t i on = "varimax " , n s t a r t = 25)
s i l = s i l h o u e t t e ( c ( outFKM$cluster ) , d i s t ( dt ) )
meansi l = mean( c ( s i l [ , 3 ] ) )
ARI = adj . rand . index ( c ( outFKM$cluster ) , c ( matrix [ , dim( matrix ) [ 2 ] ] ) )
ARIcol = rbind ( ARIcol , ARI)
SILco l = rbind ( SILcol , means i l )

}
ARICIL = cbind ( ARIcol , SILco l )
re turn (ARICIL)

}

ARI_MCA_kM = funct i on (am_sim , path , dim_DR){
# Returns average ARI and ASW fo r MCA_KM in 50 s imu la t i on s
ARIcol = data . frame ( )
SILco l = data . frame ( )

f o r ( i in c ( 1 : am_sim)){
num = i
name = paste (num," sim . csv " , sep="_")
pa_na = paste ( path , name , sep="\\")
matrix = read . csv (pa_na)
dt <− as . t ab l e ( as . matrix ( matrix [ , 1 : ( dim( matrix ) [ 2 ] −1 ) ] ) )
mat = c ( 1 : ( dim( matrix ) [ 1 ] ) )
# Makes an i nd i c a t o r matrix o f the numerical matrix
f o r ( i in c ( 1 : ( dim( matrix ) [ 2 ] −1) ) ){

column = data . frame ( f a c t o r ( dt [ , i ] ) )
mat = cbind (mat , column )

}
out_MCA_kM = clusmca (mat [ , 2 : dim( matrix ) [ 2 ] ] , 4 , dim_DR, method = "MCAk" , n s ta r t = 25 , seed = 1234)
s i l = s i l h o u e t t e ( c ( out_MCA_kM$cluster ) , d i s t ( dt ) )
meansi l = mean( c ( s i l [ , 3 ] ) )
ARI = adj . rand . index ( c (out_MCA_kM$cluster ) , c ( matrix [ , dim( matrix ) [ 2 ] ] ) )
ARIcol = rbind ( ARIcol , ARI)
SILco l = rbind ( SILcol , means i l )

}
ARICIL = cbind ( ARIcol , SILco l )
re turn (ARICIL)

}

ARI_CCA = funct i on (am_sim , path , dim_DR){
# Returns average ARI and ASW fo r MCA_KM in 50 s imu la t i on s
ARIcol = data . frame ( )
SILco l = data . frame ( )
f o r ( i in c ( 1 : am_sim)){

num = i
name = paste (num," sim . csv " , sep="_")
pa_na = paste ( path , name , sep="\\")
matrix = read . csv (pa_na)
dt <− as . t ab l e ( as . matrix ( matrix [ , 1 : ( dim( matrix ) [ 2 ] −1 ) ] ) )
doubled = cbind ( dt , max( dt)+1−dt )
CCAZK = CCA( doubled , dim_DR,25 )
s i l = s i l h o u e t t e ( c (CCAZK$alloc%∗%c ( 1 : 4 ) ) , d i s t ( dt ) )
meansi l = mean( c ( s i l [ , 3 ] ) )
ARI = adj . rand . index ( c (CCAZK$alloc%∗%c ( 1 : 4 ) ) , c ( matrix [ , dim( matrix ) [ 2 ] ] ) )
ARIcol = rbind ( ARIcol , ARI)
SILco l = rbind ( SILcol , means i l )

}
ARICIL = cbind ( ARIcol , SILco l )
re turn (ARICIL)

}

CCA = funct i on ( doubled , dim_DR, ran_starts ){
# Code f o r own ve r s i on o f CCA
minloss= In f
# Ran s t a r t s i nd i c a t e the amount random i n i t i a l i s a t i o n s
f o r ( i in c ( 1 : ran_starts ) ){

r e t = ran_start ( doubled , dim_DR)
i f ( r e t $ l o s s < minloss ){

min loss = r e t $ l o s s
optimAlloc = r e t $ a l l o c
coord = ret$coord

}
}
return ( l i s t (" a l l o c "=optimAlloc , " coord"=coord ) )

}
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ran_start = func t i on ( doubled , dim_DR){
# In t h i s funct ion , we try to obta in the best p o s s i b l e s o l u t i o n given the random s t a r t
random= f l o o r ( r un i f (500 ,min=1, max=5))
ZK = as . matrix (dummy_cols ( random , remove_selected_columns = TRUE))
ZKprev = as . matrix ( matrix (1 : 2000 , nrow = 500 , nco l = 4))
am_var = dim( doubled ) [ 2 ] / 2
i t e r=0
# In t h i s whi le loop , we i t e r a t e between K−means and CA un t i l convergence i s reached
whi le ( ( ! i d e n t i c a l (ZK, ZKprev ) ) && i t e r <300 ){

ZKprev = ZK
i t e r= i t e r+1
### obtain G and Z us ing CA
N = as . matrix ( doubled )
ZKN = t (ZK) %∗% N
P = ZKN
re s . ca <− CA(P, ncp=dim_DR, graph = FALSE)
i f (am_var==16){

colnames (N) = c ( 1 : 3 2 )
}
e l s e i f (am_var==32){

colnames (N) = c ( 1 : 6 4 )
} e l s e {

colnames (N) = c (1 : 128 )
}
G = re s . ca$row$coord
M = diag (500) − 1/500
Dc = sqr t ( s o l v e ( diag ( colSums (N) ) ) )
B = re s . ca$co l$coord
### Y = M N B
Y = M %∗% N %∗% B
# execute Km−means us ing Y and G
Km = kmeans (Y, c en t e r s=G, algor i thm="Lloyd " , i t e r .max=20)
ZK = Km$cluster
ZK = as . matrix (dummy_cols (ZK, remove_selected_columns = TRUE))
l o s s = Km$tot . w i th in s s
i f ( dim(ZK)[2 ] <4)
{ l o s s=In f }
my_list= l i s t (" a l l o c " = ZK, " l o s s " = lo s s , " coord"=Y)

}
return ( my_list )

}

Simul = func t i on (am_sim , path , dim_DR){
#Run a l l s imultaneous func t i on and obta in average f o r a l l f unc t i on s
ARIcol_RKM = ARI_RKM(am_sim , path , dim_DR)
ARIcol_FKM = ARI_FKM(am_sim , path , dim_DR)
ARIcol_CCA=ARI_CCA(am_sim , path , dim_DR)
ARIcol_MCA_kM = ARI_MCA_kM(am_sim , path , dim_DR)
return ( c ( colMeans (ARIcol_RKM) , colMeans (ARIcol_FKM) , colMeans (ARIcol_CCA) , colMeans (ARIcol_MCA_kM) ) )

}

Simul_Res = func t i on (am_sim){
## Execute a l l s imultaneous methods on a l l the s imulated data
Simul_Res = matrix ( nrow =0 , nco l =12)
dim_DR=3
colnames ( Simul_Res)=c (" case " , "am_var" , "am_rat" , "Std_dev " , "RKM_ARI" , "RKM_SIL" , "FKM_ARI" , "FKM_SIL" , "CCA_ARI" , "CCA_SIL" , "MCAKM_ARI" , "MCAKM_SIL")
f o r ( c in c (1 , 2) ){
f o r ( i in c (16 , 32 , 64)){

f o r ( j in c (3 , 5 , 9 ) ) {
f o r ( std in c (" low " , "high ")){

s e t . seed ("1234")
path = paste ("C:\\ Users \\ s i e t s \\Documents\\E&OR\\ Thes is \\ Proposal \\ Simulat ie_case " , c , i , j , std , sep="_")
dim_DR=3
i f ( std=="low "){

std_dev=1
} e l s e {

std_dev=2
}
r e s = cbind ( c , i , j , std_dev , t ( as . numeric ( Simul (am_sim , path , dim_DR) ) ) )
Simul_Res = rbind ( Simul_Res , r e s )
### Give an update o f a l l the r e s u l t s
p r in t ( Simul_Res )

}
}
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}
}
return ( Simul_Res )

}

##### Main
###Run sim case 1
Sim_case_1 (50)
###Run sim case 2
Sim_case_2 (50)

###Tandem Analys i s
Tan_Res (50)

###Simultaneous Analys i s
Simul_Res (50)

##### Check RKM vs FKM
l i b r a r y (" fastDummies ")
l i b r a r y (" ph i l ent ropy ")
l i b r a r y ( s t a t s )
l i b r a r y (" f a c t o ex t r a ")
l i b r a r y (" gp l o t s ")
l i b r a r y ("FactoMineR")
l i b r a r y (" g g f o r t i f y ")
l i b r a r y (" pdfClus te r ")
l i b r a r y (" c l u s t r d ")
l i b r a r y (" c l u s t e r ")

Tandem_res = matrix ( nrow =0 , nco l =2)
# Run FKM and RKm on a l l the s imulated data
f o r ( c in c (1 , 2 ) ) {

f o r ( i in c (16 ,32 ,64) ){
f o r ( j in c (3 , 5 , 9 ) ) {

f o r ( std in c (" low " , "high ")){
am_sim=50
path = paste ("C:\\ Users \\ s i e t s \\Documents\\E&OR\\ Thes is \\ Proposal \\ Simulat ie_case " , c , i , j , std , sep="_")
dim_DR=1
re s = RKM_FKM(am_sim , path , dim_DR)}
Tandem_res = rbind (Tandem_res , r e s )

}
}
}
Tandem_res

RKM_FKM = funct i on (am_sim , path , dim_DR){
##Function used to obta in the complement r e s i d u a l s and the subspace r e s i d u a l s
RKMcol = data . frame ( )
FKMcol = data . frame ( )
f o r ( i in c ( 1 : am_sim)){

num = i
name = paste (num," sim . csv " , sep="_")
pa_na = paste ( path , name , sep="\\")
matrix = read . csv (pa_na)
dt <− as . t ab l e ( as . matrix ( matrix [ , 1 : ( dim( matrix ) [ 2 ] −1 ) ] ) )
outRKM = cluspca ( dt , 4 , dim_DR, method = "RKM" , n s ta r t = 25)
ARIRKM = adj . rand . index ( c ( outRKM$cluster ) , c ( matrix [ , dim( matrix ) [ 2 ] ] ) )

outFKM = cluspca ( dt , 4 , dim_DR, method = "FKM" , r o t a t i on = "varimax " , n s t a r t = 25)
ARIFKM = adj . rand . index ( c ( outFKM$cluster ) , c ( matrix [ , dim( matrix ) [ 2 ] ] ) )

#### re s i d XAA−UFA fo l l ow ing FKM
#compl r e s = X − XAA
compl_res = dt − outRKM$obscoord %∗% t ( outRKM$attcoord )
#subsp_resid = XAA’ − UFA’
subsp_resid = outRKM$obscoord %∗% t ( outRKM$attcoord ) − to . i n d i c a t o r s ( outRKM$cluster , exc lude . base = FALSE)%∗% outRKM$centroid %∗%t ( outRKM$attcoord )
obscoors = t ( outFKM$attcoord ) %∗% outFKM$attcoord
varcomp = var ( c ( compl_res ) )
varsubsp = var ( c ( subsp_resid ) )
RKMcol = rbind (RKMcol , varcomp )
FKMcol = rbind (FKMcol , varsubsp )

}
ARICIL = l i s t (" compl_res"=mean(RKMcol ) , " subsp_res"=mean(FKMcol ) )
re turn (ARICIL)}
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s e t . seed ("1234")
### Reads student s a t i s f a c t i o n f i l e
data = read . csv ("C:\\ Users \\ s i e t s \\Documents\\E&OR\\ Thes is \\Rcode\\StudentSF . csv ")
matrix = data [ , 9 : 2 2 ]

r e s . pca <− PCA( matrix , s c a l e = TRUE)
r e s . pca$e ig [ , 2 ]

var= re s . pca$sdev^2/sum( r e s . pca$sdev ^2)
### Plots amount o f var iance exp la ined by each dimension
p lo t ( c ( 1 : 1 4 ) , r e s . pca$e ig [ , 2 ] , type = " l " , xlab = "Added value o f dimensions " , ylab = "Percentage o f var iance exp la ined " , main="Percentage o f var iance exp la ined by each dimension ")

c r i t = data . frame ( )
f o r ( i in c ( 2 : 8 ) ) {

outRKM = cluspca ( matrix , i , 2 , method = "RKM" , n s ta r t = 100)
c r i t = rbind ( c r i t , outRKM$criterion )

}
### Plots amount o f e r r o r with d i f f e r e n t amount o f c l u s t e r s
p l o t ( x=c ( 2 : 8 ) , y=t ( c r i t ) , type=" l " , xlab = "Amount o f c l u s t e r s " , ylab = "Error from l o s s func t i on " , main="Amount o f l o s s f o r RKM using d i f f e r e n t c l u s t e r s ")

outRKM = cluspca ( matrix , 5 , 2 , method = "RKM" , n s ta r t = 100)
### Plots the c l u s t e r a l l o c a t i o n us ing RKM
plo t ( outRKM$obscoord , pch = outRKM$cluster , xlab = " Scores f o r dimension 1" , ylab = " Scores f o r dimension 2" ,
main = " Cluste r a l l o c a t i o n f o r the respondents ")

path = "C:\\ Users \\ s i e t s \\Documents\\E&OR\\ Thes is \\ Resu l t s \\ contrib_dim . csv "
wr i t e . csv ( outRKM$attcoord , f i l e= path )
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