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Abstract

Data science has come to play a large role in the credit risk modelling of banks. This study aims
to introduce a new application of signal processing feature generation from transaction data and
use this to predict whether companies will default. The analysis is performed on private data
from a major Dutch bank and on public data from the PKDD’99 Discovery Challenge. The
performance of basic generated features is compared to signal processing methods like Fourier
Transform and Wavelet Transform in various forms. Several mother wavelets are investigated
for the Wavelet Transform, where the Daubechies 2 wavelet has the best results. On top of
that, transformations of the data, being PCA, ICA and normalization, are also used to generate
signal processing features from. Feature selection is then performed using recursive feature elim-
ination and cross validation, where Shapley values are used as feature importance. Prediction is
done with two machine learning classification algorithms, being LightGBM and Random Forest.
Finally, for comparing the models, 5x2-cv with AUC followed by a t-test and McNemar’s test
are used. The results indicate that the signal processing methods significantly improve over the
basic features on both data sets with both algorithms. Performance gains between 2% and 11%
are found, depending on the data set and algorithm, which are all significant. The out of time
performance of the private data is also tested, showing an expected slight performance drop,
which is similar among features sets and algorithms. This study not only introduces another
successful application of signal processing features but will also have a certain influence on how
the financial industry performs their risk modelling. On top of this, it presents a practical
implementation of this research in the form of an open-source package.

1



Contents

Abstract 1

1 Introduction 4
1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Results preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature 6
2.1 Predicting default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Class imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Feature generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Performance metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.3 Out of time validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Data 11
3.1 Sources and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Private data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Public data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Handling the imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Methodology 13
4.1 Feature generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Time windows: implementation . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.1 Transformations: implementation . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4.1 Feature selection: implementation . . . . . . . . . . . . . . . . . . . . . . 17

4.5 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5.1 Classification algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5.2 Grid search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.6 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6.1 Performance metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2



4.6.2 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6.3 Out of time holdout set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.7 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Results 22
5.1 Research results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Feature generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Mother wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.5 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Open-source package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Conclusion 28

A 34
A.1 Methodology: grid search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.2 Results: final features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3



Chapter 1

Introduction

Large banks perform many types of credit risk modelling in order to assess, for example, a
company’s probability of defaulting on a loan the bank might provide. To successfully model
this defaulting, many types of models are used, which are trained on large amounts of data.
Recently, transaction data has been of interest, which consists of detailed information on each
transaction from each client of a bank. From this data features can be generated that extract
information in specific ways to create new variables with predictive power. However, generating
a large number of features quickly results in impractical data sizes. On top of that, not all
features have predictive power and for this reason feature selection is used to reduce the number
of features, capturing only the most informative ones. These features are then used by machine
learning algorithms to predict whether a company will likely default on a loan or not. This
process assists in deciding whether the bank should provide this loan.

Every year approximately 350 billion in loans is provided by banks to Dutch companies1.
The above explained approach is the benchmark way of working within one of the major Dutch
banks. However, their feature generation stays within the more basic domain as they only
generate simple summary statistics from transaction data over a recent period before the loan
application. These summary statistics are: minimum, maximum, average, standard deviation,
kurtosis, skewness and sum. With these models impacting such large sums of money, even a
slight improvement in the model results in large gains.

The main focus of this thesis is a relatively unexplored technique in the field of financial data
science: features generated with signal processing methods. It has had successful applications
in healthcare regarding heart monitoring, in Lee et al. (1999), and recording of brain activity, in
Prochazka et al. (2008). Furthermore, it was shown useful for electrical power systems, in Kang
et al. (2010), automated vehicles, in Bilik et al. (2019), and speech recognition, in Stein (2002).
The financial domain, however, has remained relatively untouched. Due to the high frequency
of transaction data, signal processing has the potential to be very effective for information
extraction. On top of that, looking at defaulting from a psychological point of view, indicates
that being a steady payer decreases the chances of defaulting, (Liberati & Camillo, 2018). Signal
processing also plays a role in this, as it assesses the steadiness of a signal and its persistence.
The aim of this research is to apply these techniques to transaction data and compare it to the
benchmark way of working within a major Dutch bank. The analysis is performed on private
transaction data from this bank, as well as on a public data set with Czech transaction data
from 1999.

1https://www.statista.com/statistics/1133418/bank-loans-in-the-netherlands-by-sector/
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1.1 Research questions

To structure the research, the following research questions are established:

- What features can be generated from transaction data with signal processing methods
that are informative to predict whether companies default?

- How to reduce the number of features in order to keep the data size manageable?

- How do these features perform compared to the benchmark way of working inside a major
Dutch bank?

- How do these features compare regarding scale-ability for practical implementation?

From these research questions the approach to the problem becomes clear. First, various
types of signal processing features, like Fourier Transform and Wavelet Transform, will be gen-
erated from the transaction data. On top of this, these features will also be generated from
PCA, ICA and normalized versions of the data sets. Then, feature selection is performed, using
Shapley values as feature importance, to capture the most informative features. Finally, the
performance of the selected set of features is compared to the performance of the benchmark
features. This is done with LightGBM and Random Forest. 5x2-cv followed by a t-test and Mc-
Nemar’s test are used as statistical tests to indicate whether the performances are significantly
different. Furthermore, to investigate whether this feature generation method is practical for
the banks, the feature generation and model training times are collected.

1.1.1 Results preview

Following this above described approach, the analysis concludes that for both data sets the
inclusion of signal processing features significantly improves the performance of the models. For
the private data set the performance improves from 0.69 AUC to 0.80 AUC with LightGBM
and from 0.71 AUC to 0.73 AUC with Random Forest. For the public data set the performance
improves from 0.91 AUC to 0.98 AUC with LightGBM and from 0.89 AUC to 0.94 AUC with
Random Forest. The features from PCA, ICA and normalized versions of the data sets did not
significantly improve the performance for either data set or algorithm, but did lower the standard
deviation of the cross-validated performance. The feature generation times approximately double
and the model training times increase with approximately 50%, but this is acceptable for such
a sizeable improvement in performance. This research concludes that signal processing features
are certainly valuable for credit risk modelling.

1.2 Structure of the paper

The paper is organized as follows. Section 2 introduces the literature available on these topics,
capturing the current state of research. Section 3 describes the data, its properties and the
necessary preprocessing. Section 4 elaborates on the methods used for the feature generation,
feature selection, machine learning and model comparison. Section 5 presents the results, con-
sisting of an empirical study assessing the performance of these features and comparing the
models. Finally, Section 6 gives a conclusion.

5



Chapter 2

Literature

In this section, the existing literature is reviewed. Relevant outcomes and trends are presented
while indicating which areas are still left untouched. Furthermore, the choices for this research
are explained, where for relatively arbitrary choices the standard method of the bank is preferred.
The topics that are discussed are predicting default, feature generation, feature selection and
model comparison. The section concludes with a summary.

2.1 Predicting default

Attempting to predict whether a company will default on a loan has a long history of research.
Garćıa et al. (2015) summarize this and determines some notable characteristics. The most
relevant are the imbalance in the data sets, with sometimes only 1% of defaults, and the asym-
metric costs of false negative and false positive errors. Besides these, they also mention that
data sets can be noisy, with atypical observations clouding the underlying relationships. Garćıa
et al. (2015) also indicate that 68.8% of research in this field performs their analysis on only one
database, and 13.5% on two databases, like this research.

2.1.1 Class imbalance

This previously mentioned large imbalance in the data, is called the Low Default Portfolio prob-
lem, (Khemakhem & Boujelbene, 2018). Some data sets only have 1% defaulting loans, which
makes it arbitrary to fit a model that has 99% accuracy, only predicting non-default.

An intuitive attempt to solve this problem would be to over-sample the minority class with
replacement. However, it has been shown that it does not necessarily improve minority class
recognition, (Japkowicz, 2000; Ling & Li, 1998).

Similarly, under-sampling the majority class could also be a possible approach. Here, the
original population of the minority class is kept and a set of observations is randomly selected
from the majority class. In one experiment it is noted that the best performance is obtained
when the classes are of equal size (Ling & Li, 1998).

Finally, a more involved method is called the Synthetic Minority Oversampling Technique
(SMOTE) introduced by Chawla et al. (2002). The method generates extra synthetic training
data by performing certain operations on the real data. In this case they take a random selec-
tion of k nearest neighbors from an observation in the minority class and calculate the distance
between the feature space of this observation and the feature space of the random selection of
nearest neighbors. Then, this distance is multiplied by a random number between 0 and 1,
added to the selected observation and a new minority class member is created.
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For practical reasons explained in Section 3.3, the preferred choice for handling the imbalance
problem in this research is undersampling the majority class.

2.1.2 Classification

When it comes to predicting whether one will default or not based on explanatory variables,
there are generally two main approaches. The first is statistical methods like multivariate dis-
criminant analysis, (Altman, 1968), or (logistic) regression analysis, (Ohlson, 1980; Hillegeist et
al., 2004), which are both often used as standard.

However, Kruppa et al. (2013), Trustorff et al. (2011) and Barboza et al. (2017) all show
that nowadays these traditional statistical methods are not as efficient or accurate for credit
risk classification as the second approach: machine learning techniques. These techniques are
algorithms like Support vector machines, (Cortes & Vapnik, 1995), Random Forest, (Breiman,
2001), decision-tree boosting, (Schapire, 2003), or artificial neural networks, (Gurney, 2018).
Some researchers go even further, suggesting that ensemble methods of multiple machine learn-
ing algorithms outperform every stand-alone classifier (Nanni & Lumini, 2009).

This mentioned reduction in efficiency is partially due to the number of explanatory variables
being very large and machine learning techniques being more efficient in handling this. For
this research, many thousands of features will be generated, so machine learning methods are
preferred. In an extensive study on the default predicting performance of these algorithms,
Barboza et al. (2017) found that the Random Forest performed best, agreeing with Kruppa et
al. (2013). For this reason, Random Forest is chosen as the classifier for this research, together
with LightGBM because it is the standard within the bank. LightGBM, introduced by Ke et
al. (2017), is a state-of-the-art classification boosting algorithms which excels at the previously
mentioned imbalance problems. Both of these algorithms are further explained in Section 4.5

2.2 Feature generation

Machine Learning methods almost always perform better when extracted information from the
original data is also used for training the model, (Nargesian et al., 2017). For example, explicitly
feeding an algorithm what the lowest yearly balance is for each account, will likely prove infor-
mative for predicting whether one will default. This idea can be broadened to, for example, the
maximum, the standard deviation or skewness of their transactions. In this way the algorithm
receives a more qualitative description of the raw input data, which generally boosts the model
performance.

Most feature generation in the field of classification for risk modelling generally stays within
the more basic domain. An example is Khandani et al. (2010), who aggregate the data over
different time window lengths, using mainly sum and average, or Härdle et al. (2009) who
calculate some basic indicators for profitability, liquidity, etc. This indicates that there is room
for complementary research in this domain.

2.2.1 Signal processing

Signal processing is used successfully for feature generation in several other fields like medicine
and electrical engineering, as discussed in Chapter 1. However, in the financial domain it is
scarcely used. One example is stock forecasting by feature generation from image processing
of charts, by Du et al. (2020). They apply a Wavelet Transform with the Daubechies wavelet
(db4, Daubechies & Sweldens (1998)) as their mother wavelet to extract frequency information
from stock charts. Mother wavelets are further discussed in Section 4.2. However, it is clear that
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the classification for risk modelling area has not used signal processing for feature generation yet.

Another interesting angle is preprocessing the data before applying signal processing meth-
ods. This has been done by Zhang et al. (2015), who use Principle Component Analysis (PCA)
on the data before using a Fourier Transform to perform facial recognition. Furthermore, trans-
forming the data with PCA and Independent Component Analysis (ICA) is also done before
a Wavelet Transform in the field of medicine, (Martis et al., 2013; Giri et al., 2013). This ap-
proach will also be performed in this research and a more detailed explanation and methods for
implementation for both PCA and ICA are given in Section 4.3.

2.3 Feature selection

Feature selection is the process of reducing the input data for an algorithm by removing un-
informative features, (Liu & Yu, 2005). Methods like regularized logit use Lasso and Ridge
regularization, also known as shrinkage methods, to reduce or shrink the coefficients in a logistic
regression, (Tibshirani, 1996). Other researchers suggest looking at the feature values, with for
example large Wavelet Transform coefficients being a proxy for a persistent signal, (Nayak &
Panigrahi, 2011). Another way of doing this is recursive feature elimination, as suggested by
Guyon et al. (2002). This method calculates the informativeness, or importance, of each feature
with the use of a machine learning algorithm. After this, a certain number of uninformative
features is removed and the process is repeated.

One way of computing these feature importances is by using an algorithm like Random Forest
that has built in feature importance, (Altmann et al., 2010). These methods use for example
the mean decrease in accuracy or Gini coefficient, (Dorfman, 1979), of each feature or simply
count how often it is used to split the decision trees. Another type of feature importance comes
from game theory and is called the Shapley value, introduced by Shapley (1951). A player’s
contribution is calculated with

φi(v) =
1

p

∑
S⊂P\{i}

(
p− 1

|S|

)−1
(v(S ∪ {i})− v(S)), (2.1)

which can be interpreted as

φi(v) =
1

number of players

∑
coalitions excluding i

marginal contribution of i to coalition

number of coalitions excluding i of this size
,

(2.2)
where, in Equation 2.1, p is the total number of players, P is the set of all players, S is each
possible coalition formed without player i and v() is a characteristic function describing the worth
of the cooperation by coalition S. By iterating over every coalition S and summing the marginal
contribution of player i to that coalition, that player’s total contribution, or importance, is found.
This entire method can be cross-validated and is instructively implemented by Dell’Agnola et
al. (2020). On top of this, this method is also the standard method for the bank. The choice of
feature selection method is relatively arbitrary, and thus the chosen method is recursive feature
elimination by using Shapley values. A detailed description of the implementation is given in
Section 4.4.
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2.4 Model comparison

2.4.1 Performance metric

To compare different models, first a performance metric is chosen. Garćıa et al. (2015) shows
that 85% of research in the field of predicting default uses, under more, accuracy as their
performance metric, while 40% uses type-I/type-II error and 15% uses AUC. Though Section
2.1 already mentions the asymmetric penalties, the actual cost of misclassifying a defaulter or
non-defaulter is only used by 5%. This is likely because the exact losses or profits are generally
not available. This is also the case for this research as neither the public nor private data set
contain this information. Because of these asymmetric penalties, Garćıa et al. (2015) suggests
that accuracy does not seem to be an appropriate metric, as it assumes equal misclassification
costs. For this reason, they propose AUC to be the more appropriate performance measure. On
top of that, AUC is also the preferred metric by the bank, hence it is for choice. The concept
behind AUC is further explained in Section 4.6.1.

2.4.2 Performance comparison

Then, to compare the performance of a number of features sets, an algorithm is trained on
these sets to produce an equal number of models. Then, the performances of these models are
compared by using a test set. Specifically for comparing sets of features, model comparison is
generally done using ten-fold cross-validation, (De Chazel & Reilly, 2000; Kahya et al., 2006;
Ayata et al., 2016). However, statistical hypothesis testing is not used by these researchers.
Dietterich (1998) gives several suggestions regarding statistical tests for comparing classification
algorithms, from which McNemar’s test and 5 times 2-fold cross validation (5x2-cv) are used for
this research. Both of these are more elaborately explained in Section 4.6.2.

McNemar’s test is suggested as the statistical hypothesis testing method when computation
time is an issue, which it might be as discussed in Section 3.3. 5x2-cv followed by an indepen-
dent t-test has a similar low false positive rate and is implemented when data size is moderate
by Cieslak & Chawla (2008) and Bouckaert (2003). This test provides higher power at the
cost of 10 times more computation time. Finally, Nadeau & Bengio (2003) does have criticism
on these tests suggested by Dietterich (1998), as they say they lack taking into account the
variability problems due to overlap of training sets for the cross-validation process. However,
they conclude that correcting for this does not considerably influence the results from these tests.

2.4.3 Out of time validation

Finally, specifically for time series data, Stein (2002) proposes a new approach to model valida-
tion. By selecting an early time window, training the algorithm on this and then validating on
the next time window, the predictive intention is used throughout the validation process. This
method is repeated on all following time windows, till the last one. This final time window is
then used as an Out Of Time (OOT) holdout sample. However, due to the nature of the used
data, discussed more extensively in Section 4.6.3, this approach is not feasible. As explained in
that section, a regular OOT holdout sample will be kept from the private data.

2.5 Summary

This research intends to investigate whether signal processing features improve the predictive
performance of machine learning algorithms. In this way a valuable contribution is made to the
domain of feature generation in finance. For feature selection, recursive feature elimination using
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Shapley values will be used, while using cross-validation throughout the process. Furthermore, it
compares the renowned Random Forest with the state-of-the-art LightGBM algorithm, assessing
whether either algorithm profits more from these features than the other. Finally, both 5x2-cv
and McNemar’s test will be used to statistically assess relative performances of the features sets
with the AUC metric.
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Chapter 3

Data

In this section, the data sources and its properties are discussed. Furthermore, the necessary
preprocessing before applying signal processing methods is explained. Finally, the practical
implementation regarding the handling of the imbalance is discussed.

3.1 Sources and properties

The main type of data for this research is transaction data, which is a log of client accounts with
all of their transactions from a certain time period. Besides this, it generally also contains their
balances on each date of the time period. An example of the transaction and balance data of an
account from the public data set is given in Figures 3.1 and 3.2, respectively. For this research,
plain transaction data is not enough. The data should contain a label that is to be predicted
based on this transaction data. In the case of this research the preferred label will be the status
of a loan or a credit rating.

Figure 3.1: Example of transaction data from
one account from the public data set.

Figure 3.2: Example of balance data from
one account from the public data set.

3.1.1 Private data

The first data set is provided by a major Dutch bank and contains real transaction data from
companies from their Belgian division, spanning from July 2016 till April 2019. In total it
consists of 73,672,986 transactions from 47,416 accounts. These accounts received a total of
196,582 loans, out of which 3,636 (1.8%) defaulted. The label to be predicted is the status of
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the account’s loans, with 1 being default and 0 being non-default. This data is private and can
not be found publicly, as this thesis is part of an internship.

3.1.2 Public data

The second data set comes from the data science website Kaggle. It hosts various competitions
regarding data processing and modelling and contains publicly available data sets. The used
data1 was publicized in 1999 during a Principles of Data Mining and Knowledge Discovery
conference in the Czech Republic. It contains real anonymized Czech bank transactions and
loan info from 1993 till 1998. The label to be predicted is the account’s credit rating at 31-12-
1998, ranging from A to D, with the lowest rating (D) being default. To make the label binary,
the credit ratings A through C were replaced by 0 (loan status = non-default), and D by 1 (loan
status = default). It consists of 191,556 transactions from 682 accounts, out of which 45 (6.6%)
defaulted.

3.2 Preprocessing

As is more extensively explained in Section 4.2, signal processing methods require a constant
sampling frequency. The transaction timestamps from the private data set are detailed to the
minute, but the public data only has days. Therefore, a daily sampling frequency is chosen.
This means that each daily timestamp should have a value to be processed. As the data sets
contain only values at timestamps when a transaction is made, all other timestamps have to be
filled in. Transactions are filled with 0, because at empty timestamps there are no transactions.
Balances are forward filled, meaning that the balance value is repeated until a new value occurs,
because no transaction means no change in the balance. Though there is no way of recognizing
missing transactions, this processing of the data implies that there are no missing values. In
the data it also happens that multiple transactions occur on the same day. In this case they are
combined, as signal processing requires there to be only one value at each sampling timestamp.
To combine these observations, transactions are summed and the final value of the balance is
taken.

3.3 Handling the imbalance

As discussed in Section 2.1 and seen in the data properties discussed above, there is a large
imbalance. There are several approaches to this, however, one stands out from the rest regard-
ing practical implementation. Because this research intends to generate thousands of features,
train a vast number of machine learning algorithms and perform extensive cross-validation, the
computational expensiveness will be high. On top of this, the private data is contained on a
high security cloud environment, which is relatively slow and occasionally unreliable. By using
majority undersampling, which means taking all defaults and an equal number of randomly
sampled non-defaults, as suggested by Ling & Li (1998), this speeds up the feature generation
considerably and removes the imbalance problem. To account for this choice, it is reiterated
that the goal of this research is to identify the behaviour of the defaulters, as opposed to the
behaviour of the non-defaulters. By taking all defaults, their patterns are fully represented in
the analysis.

1https://www.kaggle.com/pranati25/predict-loan-defaulters
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Chapter 4

Methodology

In this section, the methods used in this research are explained. First, the approach regarding
feature generation, along with signal processing and the transformations, is presented. Then,
feature selection and the different classification algorithms are discussed. Finally, the methods
for comparing the different models and the benchmarking are given. Each section has a dedicated
subsection discussing the practical implementation.

4.1 Feature generation

As explained in Section 2.2, feature generation is the process of taking the raw input data and
extracting specific information from it, called features. In this research, there is a divide between
basic features and signal processing features. The basic features, called ’Basic’ in Results, consist
of simple summary statistics, representing the benchmark way of working within the bank. In
this case these are: minimum, maximum, average, standard deviation, kurtosis, skewness and
sum. The signal processing features are generated with more involved methods, which are
discussed in Section 4.2.

4.1.1 Time windows: implementation

Feature generation can be performed on all data or on selected time windows of preference.
Taking into account that the data concerns companies, quarterly and yearly time windows are
used. For quarterly, this means that a selected period, here one year, is split into quarters and
for each quarter the features are generated. The same features are also generated over one year.
The minimum duration of one year is chosen as it resembles real banks, who refuse to give loans
to clients from whom they have too little data. Also, data beyond this year is discarded in order
not to be biased regarding the customer relation.

The trailing twelve months before the loan application are used, disregarding which specific
months these are. This results in different quarter lengths, depending on when the loan applica-
tion is issued. Due to the need for machine learning algorithms to be able to compare features,
the first 88 days of each quarter are used. This assures that there are no missing values in the
features.

4.2 Signal processing

With signal processing, the goal is to extract a signal from the data. A signal is described as
a recurring wave-like pattern, with properties like frequency, amplitude and phase, (Willsky &
Young, 1997). For these methods to work, the data should be sampled at a constant interval,
which is the sampling frequency. A problem for every signal processing method is that the
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sampling frequency overpowers every other signal in the data. For this reason, the sampling
frequency is filtered out, in accordance with Nyquist’s criterion, as introduced by Nyquist (1932).

4.2.1 Fourier Transform

The discrete Fourier Transform is a technique which decomposes the data into a combination of
sines with different frequencies, amplitudes and phases. The size value at a certain frequency is
the amplitude of the signal, and the phase indicates where it starts. It is given by

Xk =
N−1∑
n=0

xn · e
i2π
N

kn, (4.1)

which can be rewritten as

Xk =
N−1∑
n=0

xn ·
[
cos

(
2π

N
kn

)
− i · sin

(
2π

N
kn

)]
, (4.2)

where Equation 4.2 follows from Equation 4.1 by Euler’s formula: eix = cos(x) + i · sin(x). Here
N is the length of the data and k goes from 0 to N − 1. As is visually explained in Figure 4.1,
it transforms the data from the time domain into the frequency domain. In the figure it is seen
that a signal, in red, is decomposed into a series of sines, in purple. These sines each have a
certain frequency, seen as the location of the spikes on the x-axis in the blue graph. The height
of the spike represents the amplitude of the signal. Figures 4.2 and 4.3 show an example for the
public data set, where a year of transaction data returns a large value, or amplitude, for the
frequency 12 and resonance at multiples of this frequency. This indicates that the data exhibits
steady large changes 12 times per year. An interpretation could be, for example, monthly salary
payments.

Figure 4.1: A visual representation of the Fourier Transform. Reprinted from NTi-Audio.com1,
by NTi-Audio, 2017

1https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft
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Figure 4.2: Averaged Fourier Transform representation of
one year of transactions from the public data.

Figure 4.3: Averaged Fourier Transform representation of
one year of balances from the public data.

Fourier Transform: implementation

For the Fourier Transform the SciPy (Scientific Python) package2 with default parameters is
used and it is implemented in two ways. For the first implementation, the complete Fourier
representation is used, called ’Fourier complete’ in Results. This means that for a quarter, with
data length 88 as discussed in Section 4.1.1, it filters out the sampling frequency and for the
resulting 44 frequencies the amplitude and phase are used as features, adding in total 88 features.

For the second implementation, a selection of largest valued frequencies is used, called
’Fourier n-largest’ in Results, where n is the number of largest valued frequencies to use. The
larger the value at a certain frequency, the more present this signal is in the data. It is intuitive
to select a certain number of largest valued frequencies and let the machine learning algorithms
formally compare them. With for example n = 10, the frequencies and amplitudes of the 10
largest valued frequencies are used as features, adding in total 20 features.

4.2.2 Wavelet Transform

The discrete Wavelet Transform is another type of transform, which not only gives information
on the frequencies, but also on where the signal occurs in the data. In this way it differs from
the Fourier Transform, which only gives frequency information, but is more detailed. It is given
by

γjk =
T∑
t=0

x(t)
1√
2j
ψ

(
t− k2j

2j

)
, (4.3)

where γ is the detail coefficient, ψ is the mother wavelet, j is the scale parameter and k is the
shift parameter, with k and j both integer. Now, if for j a scale is chosen, so that γjk is only a
function of the time shift k, then it can be seen as a convolution of x(t) with the inverted mother
wavelet. This means that a Wavelet Transform slides a short piece of wave, the mother wavelet
ψ, past the data x(t) and multiplies the nearby values with this wavelet. An example of such
a mother wavelet is given in Figure 4.4. The result of sliding and multiplying the wavelet past
the data is a representation of the data with respect to this wavelet, called the detail coefficients
γjk. If the data has some wave-like characteristics resembling the mother wavelet, these details

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft.html
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coefficients will return high values. There are various shapes of mother wavelets, and these
result in different representations of the data. The detailedness of the mother wavelet can also
vary. By having a very detailed mother wavelet, the data should resemble the mother wavelet
closely in order to return high values. The opposite is also true, as having a less detailed mother
wavelet requires the data to only loosely resemble the shape of the wavelet. The way in which
the Wavelet Transform retrieves frequency information, is that it decomposes the data into
high and low frequency components, indicated by the scale parameter j. It then performs the
same convolution with the mother wavelet again on the low frequency data. The low frequency
components of the data are called the approximation coefficients. The data can be decomposed
several times and this is called the depth. The maximum depth is dependent on the length of
the data and the detailedness of the mother wavelet. This sliding can be performed at each
depth, and will give a representation of the data at those frequency bands.

Figure 4.4: Example of a mother wavelet: Daubechies 2.

Wavelet Transform: implementation

For the Wavelet Transform the PyWavelets package3, with default parameters except for the
mother wavelet, is used and it is implemented in two ways. For the first implementation, the
complete Wavelet representation is used, called ’Wavelet complete’ in Results. The features are
all approximation and detail coefficients at each depth.

For the second implementation, the basic features from Section 4.1 are generated from both
the approximation and details coefficients at each depth. This means that at each depth 14
features are generated.

4.3 Transformations

In an attempt to boost the performance of the model and possibly reduce the number of final
features simultaneously, several data transformations are considered. The first transformation
is PCA, Principal Component Analysis. This is a popular statistical technique of condensing
the information from many variables into fewer. The k largest eigenvectors of the covariance
matrix, which still explain a considerable portion of the variance in the data, are selected, (Jol-
liffe, 2005). Such an eigenvector is a combination of the original variables that, together as one

3https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html
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variable in this proportion, explain the variance in the data to a relatively high degree.

The second transformation is ICA, Independent Component Analysis. Though lesser known
than PCA, it has a similar goal according to Draper et al. (2003). In contrast to picking the
largest eigenvectors, it pursues to select maximally independent (orthogonal) vectors. These
vectors attempt to distinguish the different signals present in the data.

Finally, normalization is used to transform the data. Normalizing the data before applying
signal processing is often done, for example by Shaker (2006), who normalize their brain record-
ing data before using a Fourier and Wavelet Transform. For normalization, the considered data
is simply normalized using Xnormalized = (X−Xminimum)/(Xmaximum−Xminimum). Doing this
scales the analyzed data to a range between 0 and 1. This results in the shapes of the data being
compared more fairly. Specifically, the signals in the data will be compared relatively more on
shape than on amplitude.

4.3.1 Transformations: implementation

When generating the features with these transformations, the practical implementation is as
follows. The transformation is applied to the considered data of each account in the specific
time window, e.g., one quarter, one year. For PCA and ICA the balance and transaction data
are transformed together into two PCA or ICA vectors, respectively. The used packages are
PCA4 and FastICA5, both from scikit-learn. Feature generation is then performed with both
of these vectors. For normalization, the considered data is normalized using the above given
formula, after which the same feature generation is performed.

4.4 Feature selection

As explained in Section 2.3, feature selection is the process of removing uninformative features.
In this research recursive feature elimination with cross validation is used. This is done using
5-fold cross validation and the performance metric is AUC. First, the model is trained on all
features and the importance of each feature is calculated using Shapley values, which are more
thoroughly explained in Section 2.3. Then, a certain number of least informative features is
removed. Repeating the process with this new set of features, the performance of the algorithm
is measured with each shrinking set of features. The performance does not drop immediately,
as at first uninformative features, acting as noise, are removed. Finally, when the process starts
to remove the informative features, performance of the algorithm begins to decrease, as seen in
Figure 4.5.

4.4.1 Feature selection: implementation

Recursive feature elimination

The above process is implemented in the package ShapRFECV7. One needs to specify the amount
of features to be removed at each iteration. In the case of this research, a step of 0.3 (remove
30% of current least informative features) is used to go from more than one thousand features to
around four hundred. Then, a step of 0.2 is used to go to around 50 features. Finally, a step of

4https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
5https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
6https://medium.com/ing-blog/open-sourcing-shaprfecv-improved-feature-selection-powered-by

-shap-994fe7861560
7https://ing-bank.github.io/probatus/api/feature elimination.html#probatus.feature elimination

.feature elimination.ShapRFECV
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Figure 4.5: Typical example of recursive feature elimination. Reprinted from Medium6, by
Mateusz Garbarcz, 2020

0.1 is used to find the optimal number of features. This three stage process limits computational
expensiveness, while still preserving a detailed result.

Features subsets

Feature selection is performed on three sets of features. The first set is called ’Basic set’ in Results
and contains only the regular basic features, without any signal processing or transformations
of the data. The second set is called ’Regular set’ in Results and contains the regular basic and
regular signal processing features. Finally, the third set is called ’All set’ in Results and contains
all features, both basic and signal processing from both regular and transformed data.

4.5 Machine learning

Machine learning algorithms attempt to predict a label based on input data, where in this case
the label is whether a client defaults or not. This is also known as a binary classification prob-
lem, with 1 for default and 0 for non-default. These algorithms solve this problem by processing
input data to detect patterns and combinations which relate to the label. By explicitly feeding
certain properties of the data, called features, to the algorithm, it generally performs better.

Some explanation regarding model training is relevant for the coming sections. An algorithm
is trained on a selection of the data, called the training set. After this, the performance is gauged
on the rest of the data, which it has not seen before, called the validation set. For this research
a train/validation split of 70/30 was used throughout.

4.5.1 Classification algorithms

For this research, two types of machine learning algorithms are used. The first one is Random
Forest and the second is LightGBM. Both will be discussed more in depth in the following
sections.
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Random Forest

Widely used in banking for its relatively explainable predictions, Random Forests are a large
collection of decision trees, introduced by Breiman (2001). Each decision tree uses a random
subset of variables and observations for training. It is possible to limit the number of decisions
per decision tree and this is called the depth. After training the complete Random Forest,
majority voting is used for classification of new samples. For this analysis the package Random-
ForestClassifier8 by scikit-learn is used. All default parameters are used, except those given in
Section 4.5.2.

LightGBM

LightGBM, or Light Gradient Boosting Machine, is a state-of-the-art gradient boosting tree
algorithm as mentioned in Section 2.1. Boosting is the process of training several weak classifiers
and combining them into a strong classifier. This is done iteratively, with each new classifier
improving on the mistakes of the previous one. In general, boosting algorithms can suffer from
overfitting, meaning that it is too dependent on the input data, as explained by Schapire (2003).
The result is that it performs very well on the training set, but not well on the validation set. For
this reason, boosting algorithms generally have a built-in validation system. In this validation
system, a validation set size of 30% is used. For this analysis the package LGBMClassifier9 is
used. All default parameters are used, except those given in Section 4.5.2.

4.5.2 Grid search

Key part of machine learning algorithms is hyperparameter optimization. For example, for a
Random Forest choices have to be made regarding the number of trees and their maximum
depth to reduce overfitting. For the purpose of this thesis, a simple grid search will suffice. In
grid search a reasonable hyperparameter space is defined, with for each parameter a discrete in-
terval. Then, for each combination of hyperparameters, a machine learning algorithm is trained.
The performance of each of these different algorithm implementations is measured with K-fold
cross-validation, where K=5. The hyperparameters resulting in the implementation with the
best average performance are used for the analysis.

An overview and explanation of the hyperparameter grid for both algorithms is given in
Appendix A.1.

4.6 Model comparison

The goal of the models is to maximize the correctly identified number of defaults, while simul-
taneously minimizing the number of wrongly-accused non-defaulters. Model comparison is used
to gauge the relative performance of the models. In this way it can be checked whether one
model significantly outperforms another.

4.6.1 Performance metric

As discussed in Section 2.4.1, the measure of performance for this research is the Area Under
Curve (AUC) of the Receiver Operating Characteristic curve (ROC-curve), (Fawcett, 2006). In
this performance measure, the binary classification threshold is moved while at each threshold
value the True Positive Rate (TPR) and False Positive Rate (FPR) are noted. Plotting the TPR

8https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier

.html
9https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
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versus the FPR results in the ROC-curve. Figure 4.6 shows the ROC-curve for two models, with
the orange model outperforming the grey model. The area under this curve is the AUC, with
the perfect model having an AUC of 1.

Figure 4.6: Averaged ROC-curves with standard deviations. The orange model is
outperforming the grey model.

4.6.2 Statistical tests

When assessing the relative performance of two sets of features, two tests are used. As discussed
in Section 2.4, computational time considerations can cause one to be preferable over another.
However, in this research the emphasis is on confidently assessing the relative performance, so
multiple tests are used.

5x2-cv with t-test

The 5x2-cv method, as discussed in 2.4.2, is used and for each set of features the average AUC
and standard deviation are calculated. An independent two-sample t-test is performed with
these statistics from two different models, to see if their performances are significantly different.
The t-test is given by

t =
X̄1 − X̄2

sp

√
2
a

, (4.4)

where

sp =

√
s2X1

+ s2X2

2
, (4.5)

and where X1 is the set of AUCs from the first model, X2 is the set of AUCs from the second
model and a = 10. t then follows Student’s t-distribution with 18 degrees of freedom.

An important comment on the assumption of the independence of these two samples is
that, in the case of this research, this can not be completely guaranteed. For example, when
calculating the AUCs for the Basic and All features sets, the Basic set will be selected from a
subset of the All set. In this way there can be overlap between the features that generate the
AUCs of the different models. Literature on this specific problem could not be found, though
somewhat similar problems did not excessively influence the results, (Nadeau & Bengio, 2003).
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McNemar’s test

McNemar’s test uses a contingency table, given in Table 4.1, comparing the differently classified
observations by two models. In the table, b is the number of observations that are correctly
identified by model 1 and incorrectly identified by model 2 and for c the situation is reversed.
McNemar’s test statistic is (b−c)2/(b+c) ∼ χ2

1. It should be noted that in the case of (b+c) < 25,
the exact binomial test or (|b− c| − 1)2/(b+ c) should be used, as suggested by Edwards (1948).

Table 4.1: Contingency table for McNemar’s test.

Model 2 correct Model 2 incorrect Row total

Model 1 correct a b a + b
Model 1 incorrect c d c + d

Column total a + c b + d N

4.6.3 Out of time holdout set

When predicting with time series data, it is recommended to use an Out Of Time (OOT) holdout
sample (Bergmeir & Beńıtez, 2012). This is a selection of the data which occurs after the training
data. This is not possible on the public data set, due to all label assessments occurring at the
same date. However, for the private data set this is possible and an OOT holdout sample is
reserved. On this sample the final performance of the model will be measured. By keeping a
holdout sample away from the modelling, the final model will not be biased towards it.

4.7 Benchmarking

To assess the scale-ability for the practical implementation of this feature generation approach,
the feature generation and model training times are measured. The model training time is
defined as the time taken by the optimal model from the grid search to train on all observations
using the selected features. For the feature generation, the total computational time consists of
several parts. First the data is preprocessed and split into time windows, as explained in Sections
3.2 and 4.1.1 respectively. Then the actual feature generation occurs. Finally, all features are
combined into a large data frame and returned. For the benchmarking of the feature generation
time, the duration of this entire process is noted for each features subset, as described in Section
4.4.1.
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Chapter 5

Results

In this section, the results from the research are presented. First, the feature generation, mother
wavelet, feature selection, model comparison and benchmarking are discussed. After this, a
practical contribution in the form of an open source package is presented. Finally, the section
concludes with a discussion.

5.1 Research results

In this section the results from the research are presented. In-depth results from the analysis
on the public data is given, while only abstract results from the private data are given, in order
not to leak confidential information.

5.1.1 Feature generation

Applying the methods proposed in Sections 3.3 and 4.1, the private data set consists of 1,408
accounts (704 defaults) with a total of 1,553,054 transactions. The public data set consists of
90 accounts (45 defaults) with a total of 7,941 transactions. For each account the following
number and types of features, as explained in Section 4.2, are generated from both the balance
and transaction data, not yet considering any transformations:

- Quarterly features over 4 quarters with per quarter:

– 7, Basic

– 88, Fourier complete

– 20, Fourier n-largest, n = 10

– 98, Wavelet complete, depth = 4

– 56, Wavelet basic, depth = 4

- Yearly features over 1 year with per year:

– 7, Basic

– 380, Fourier complete

– 60, Fourier n-largest, n = 30

– 364, Wavelet complete, depth = 6

– 84, Wavelet basic, depth = 6

In total there are 3,942 regular features per account, of which 70 Basic, 1,744 Fourier and
2,128 Wavelet features. On top of this, all features are also generated from the normalized data
set, adding another 3,942 features. Finally, all features are also generated from both vectors
of the PCA and ICA transformed data sets, adding 3,942 features for each transformation. In
total this comes to 15,768 features.
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5.1.2 Mother wavelet

In this section the influence of the mother wavelet is investigated. The following mother wavelets
are used: ’db2’, ’db4’, ’coif2’, ’sym3’. These wavelets are chosen as they were either used in
previous feature generation research within the financial domain as discussed in Section 2.2.1,
or are the more well known discrete mother wavelets. The shapes of these wavelets are given
in the top row of Figure 5.1. Sets of regular features are generated with each mother wavelet
for each data set. Then, for each set of features a grid search, as discussed in Section 4.5.2, is
performed for the LightGBM model. Finally, for each optimal model, 5x2-cv, as discussed in
Section 4.6, is used to assess the performances, which are given in Table 5.1.

Figure 5.1: The used types of mother wavelets, generated with the PyWavelets package.

Table 5.1: Mother wavelet comparison: various.

Mother wavelet
AUC (st. dev.)
on private data

AUC (st. dev.)
on public data

db2 0.74 (0.011) 0.87 (0.029)
db4 0.73 (0.013) 0.87 (0.029)
coif2 0.72 (0.010) 0.87 (0.029)
sym3 0.72 (0.011) 0.87 (0.029)

In the public data set, there is no difference in performance. In the private data set it is
seen that the Daubechies (db) wavelets achieve superior results, though mostly not statistically
significant. However, for this reason ’db3’, ’db5’, ’db6’ and ’db10’ are tried as well. The shapes
of these wavelets are given in the bottom row of Figure 5.1. Results are given in Table 5.2,
where it is seen that ’db2’ still performs equally well or better for the public and private data
set, respectively. Because of this result, ’db2’ is used for the rest of the research.

5.1.3 Feature selection

As discussed in Section 4.4, feature selection is performed on the three sets of features. The sets
being only the regular basic features (Basic set), only the regular features (Regular set) and all
features (All set). As seen in Figure 5.2, the LightGBM algorithm clearly profits from a reduced
set of features, removing noise from the data. Both algorithms show a similar trend with each
set of features. First, performance increases when going from a large number of features to a
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Table 5.2: Mother wavelet comparison: Daubechies wavelets.

Mother wavelet
AUC (st. dev.)
on private data

AUC (st. dev.)
on public data

db2 0.74 (0.011) 0.87 (0.029)
db3 0.73 (0.011) 0.87 (0.029)
db4 0.73 (0.013) 0.87 (0.029)
db5 0.73 (0.011) 0.87 (0.029)
db6 0.73 (0.010) 0.87 (0.029)
db10 0.71 (0.015) 0.87 (0.029)

smaller number. Then, as seen in Figure 5.3, performance plateaus, before it finally decreases
again. The number of features just before performance starts to drop, in this case 11, is optimal.

Figure 5.2: Recursive feature elimination with LightGBM
for the Regular set from the public data.

Figure 5.3: Final stage of recursive feature elimination with
LightGBM for the Regular set from the public data.

This process is applied to both data sets with both algorithms and an overview of the optimal
number of features for both data sets and algorithms is given in Table 5.3.

An overview of the final optimal selection of features for the public data set with LightGBM
is given in Appendix A.2.

Table 5.3: Optimal number of features for the private and public data sets.

Private data Public data
LightGBM Random Forest LightGBM Random Forest

Basic set 6 8 8 10
Regular set 33 19 9 10

All set 37 14 10 16
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5.1.4 Model comparison

In this section, the performances of the optimal selected features from the Basic set, the Regular
set and the All set are compared. Figure 5.4 shows the results, where 5x2-cv is used to com-
pute the average AUC and standard deviation. A full overview of the statistical performance
comparisons is given in Table 5.4.

Because the optimal number of features varies considerably in some cases, the best 15 features
of each features set are also compared. The results are given in Figure 5.5.

Figure 5.4: AUC comparison for the optimal number of
features sets with 95% confidence interval.

Figure 5.5: AUC comparison for the best 15 features from
the feature sets with 95% confidence interval.

Table 5.4: Statistical results for optimal performance comparison of model a versus model b.
* p < 0.05, ** p < 0.01, *** p < 0.001

Model Private data Public data
a b LightGBM Random Forest LightGBM Random Forest

5x2-cv
Basic set Regular set b > a *** b > a ** b > a ** b > a **
Basic set All set b > a *** b > a ** b > a ** b > a **

Regular set All set a = b a = b a = b a = b

McNemar’s test
Basic set Regular set b > a ** b > a * b > a * a = b
Basic set All set b > a ** b > a * b > a * a = b

Regular set All set a = b a = b a = b a = b

In Figures 5.6, 5.7 and 5.8, the respective averaged ROC curves of Basic set versus Regular
set, Basic set versus All set and Regular set versus All set are given for the public data set with
LightGBM.

As mentioned in Section 4.6, the private data set has an Out Of Time holdout sample.
The performance on this holdout set is given in Table 5.5, together with the previously given
cross-validated performance on the regular validation set.

5.1.5 Benchmarking

As explained in Section 4.7, by benchmarking the feature generation and the model training
times, a measure of the scale-ability is observed. Table 5.6 shows this information for both data
sets and algorithms.
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Figure 5.6: Averaged AUCs for the
optimal Basic set versus Regular set

with 95% confidence interval.

Figure 5.7: Averaged AUCs for the
optimal Basic set versus All set with

95% confidence interval.

Figure 5.8: Averaged AUCs for the
optimal Regular set versus All set with

95% confidence interval.

Table 5.5: Performance comparison of the Out Of Time holdout set with the validation set for
the optimal number of features from the private data.

LightGBM Random Forest
OOT Validation OOT Validation

Basic set 0.67 0.69 (0.020) 0.67 0.71 (0.019)
Regular set 0.75 0.79 (0.022) 0.70 0.73 (0.012)

All set 0.77 0.80 (0.020) 0.71 0.73 (0.008)

Table 5.6: Time taken to generate the sets of features and train the respective models.

Feature generation Private data Public data

Basic set 1210 s 34 s
Regular set 2387 s 66 s

All set 9566 s 270 s

Model training Private data Public data
LightGBM Random Forest LightGBM Random Forest

Basic set 0.024 s 8 s 0.008 s 6 s
Regular set 0.030 s 8 s 0.011 s 6 s

All set 0.025 s 8 s 0.008 s 6 s

5.2 Open-source package

In an endeavor to contribute through a practical implementation of this research, the entire
analysis is made publicly available on GitHub1. Instructions on how to acquire the public data
set are included, together with functions for the preprocessing. On top of this, the feature
generation from transaction data part is also programmed as an open-source package2, with
easy to use functions and complementary documentation3.

5.3 Discussion

In this section the results are discussed and interpreted. Starting off with the performances of
the different mother wavelets, it is seen that for the public data set there is no difference in per-
formance. This is likely because the algorithm already achieves a relatively good performance

1https://github.com/JanBargeman/Thesis-FE-SP
2https://pypi.org/project/SPOEF/, install via: pip install SPOEF
3https://janbargeman.github.io/SPOEF/index.html
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on a small number of observations, so the slight changes in mother wavelet shapes have no
influence. For the private data set the Daubechies wavelets generally perform better. Though
not statistically significant, within this family of mother wavelets, the ’db2’ wavelet does get
the best average result. This could be due to it being the least detailed wavelet in this family,
meaning it only has to resemble the shape of the data loosely.

Then, focusing on the feature selection, it is seen that the All set only uses less features than
the Regular set in the case of the private data set with Random Forest. For each other case, the
All set uses more features than the Regular set, indicating that specifically the PCA and ICA
transformations are not condensing the information as was expected. Besides this, the All set
does generally outperform the Regular set, although not significantly. It is interesting to note
that, as seen in Appendix A.2 in Table A.2, the Regular set contains one of the features from
the Basic set, even though the All set does not. This minimum of the balances feature is likely
replaced by a Wavelet representation of the minimum of the balance.

Looking at the results from the model comparisons, it is clearly seen that the signal process-
ing features significantly increase the predictive performance. The LightGBM algorithm also
profits considerably more from the increased features sets than the Random Forest. Further-
more, looking at Table 5.4, 5x2-cv is seen to have more power than McNemar’s test, as was
expected. On top of that, the increase in computational cost for this more powerful test was
hardly noticed and therefore easily justified. Even more, McNemar’s test is not even able to
make claims for the public data set with Random Forest. This is likely because it only has 90
observations and the model already has a high AUC. Inspecting the differences in correct model
predictions it turns out that b+ c is occasionally even less than 2, which is definitely too small
for McNemar’s test. For the Out Of Time holdout set from the private data it is seen that
the performance drops slightly. This is not unexpected and the size of the drop is not prob-
lematic. The change in predictive performance is similar for all features sets and both algorithms.

When inspecting the averaged ROC-curves for the different features sets, it becomes clear
that the improvement from the signal processing features is in both increasing the True Positive
Rate as well as decreasing the False Positive Rate. This indicates that these features improve
the model’s ability to more successfully identify both defaulters and non-defaulters. On top of
this, the All set does have a noticeable smaller confidence region than the Regular set, indicating
that the features from the transformed data are stable predictors.

Finally, considering the benchmarked feature generation and model training times, it should
be noted that feature generation, specifically for the private data, takes considerably longer. This
is due to the transformations of the data and the Fourier and Wavelet Transforms. For even one
feature from a Fourier or Wavelet Transform, the entire transform has to be calculated. Though
it is concluded that with increased computing capacity and correct planning, the increase in
performance is surely worth it. Finally, the model training times experience hardly any change,
and stay relatively small.
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Chapter 6

Conclusion

This research aimed to answer the research question of how signal processing features perform in
comparison to the methodology of a major Dutch bank in predicting company default. This was
done using transaction data from a private and public source. Fourier Transform and Wavelet
Transform features were generated from the regular data and from normalized, PCA and ICA
transformations of the data. Different mother wavelets were tried for the Wavelet Transform,
where the Daubechies 2 wavelet had the best result and was used for the rest of the analysis.
After this, the features were divided into three sets: Basic set, Regular set and All set. Then,
feature selection was performed on each set using recursive feature elimination with the measure
of feature importance being their Shapley value. The performances of the optimal number of
features of each set were then calculated with the LightGBM and Random Forest algorithm,
and compared with 5x2-cv followed by a t-test and McNemar’s test.

This analysis indicated that the signal processing features contributed significantly to pre-
dicting company default for both data sets and both algorithms. For the private data set the
performance improves from 0.69 AUC to 0.80 AUC with LightGBM and from 0.71 AUC to 0.73
AUC with Random Forest. For the public data set the performance improves from 0.91 AUC to
0.98 AUC with LightGBM and from 0.89 AUC to 0.94 AUC with Random Forest. The features
from PCA, ICA and normalized versions of the data sets did not significantly improve the perfor-
mance for either data set or algorithm, but did lower the standard deviation of the performance.
The out of time performance of the private data was tested, showing an acceptable performance
drop of 2% to 4% AUC, which was similar among features sets and algorithms. Finally, when
looking at the ROC-curves it becomes clear that these features improve the model’s ability to
more successfully identify both defaulters and non-defaulters.

Future research

In banking it is very important that features are explainable and fair. Specifically the wavelet
features are difficult to explain and have an unclear business interpretation. On top of this, the
fairness of these features should be investigated by testing the models for robustness on various
aspects. For example, clients requesting their loans or paying salaries in different months or days
of the month. Robustness in general should also be investigated more thoroughly. For example,
signal processing methods behave strangely for clients with very few transactions.

Another extension could be to attempt to reduce the noisiness from the data, mentioned in
Section 2.2, and use signal processing filters. Besides filters to make the data more smooth, it
would also assist in handling resonance. As seen for the Fourier Transform in Figure 4.2, there
is strong resonance from the monthly signal, which disguises possible 2-monthly or quarterly
signals.
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Finally, signal processing methods rely heavily on the sampling frequency. The smaller the
sampling interval, the more precise these methods become. For this research the data was
aggregated onto the daily level. It could be interesting to increase this to a 6-hour period or
even hourly, depending on the detailedness of the data. However, having to fill in a major part
of the data will likely have severe consequences as well, which should be kept in mind.
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Appendix A

A.1 Methodology: grid search

Table A.1: Hyperparameter grid for Random Forest and LightGBM.

Parameter Grid Explanation

Random Forest
n estimators 20, 30, 50, 100 Number of decision trees
max depth 3, 6, 9 Maximum depth of each tree

LightGBM

n estimators 50, 100, 300 Number of boosted trees
max depth 3,6 Maximum depth of each tree
reg alpha 0, 20 Lasso regularization term on the weights

reg lambda 0, 50 Ridge regularization term on the weights
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A.2 Results: final features

Table A.2: Alphabetical overview of features for the public data set with LightGBM when the
optimal number of features is used.

Basic set Regular set All set

reg ba Q 1/4 B max reg ba Q 1/4 wavelet depth 22 ICA 0 Y 1/1 wavelet depth 218
reg ba Q 2/4 B skew reg ba Q 4/4 B min ICA 1 Q 3/4 f2 real 27/44.5
reg ba Q 2/4 B std reg ba Y 1/1 f2 real 162/182.5 PCA 0 Y 1/1 f2 imag 130/182.5
reg ba Q 4/4 B min reg ba Y 1/1 fft size 11/30 norm tr Q 3/4 wav B detail depth 2 min
reg ba Y 1/1 B kurt reg ba Y 1/1 wav B approx depth 1 min reg ba Q 4/4 f2 imag 34/44.5
reg ba Y 1/1 B min reg ba Y 1/1 wav B approx depth 2 min reg ba Q 4/4 wav B approx depth 1 min
reg tr Q 2/4 B max reg tr Q 2/4 f2 imag 33/44.5 reg ba Y 1/1 f2 real 7/182.5
reg tr Q 3/4 B sum reg tr Y 1/1 fft index 8/30 reg ba Y 1/1 wav B approx depth 1 min

reg tr Y 1/1 wavelet depth 55 reg ba Y 1/1 wav B approx depth 2 min
reg ba Y 1/1 wav B approx depth 3 min

Table A.3: Alphabetical overview of features for the public data set with Random Forest when
the optimal number of features is used.

Basic set Regular set All set

reg ba Q 1/4 B min reg ba Q 4/4 f2 real 38/44.5 ICA 1 Q 1/4 f2 real 9/44.5
reg ba Q 2/4 B min reg ba Q 4/4 wav B approx depth 4 min ICA 2 Q 2/4 f2 real 9/44.5
reg ba Q 2/4 B std reg ba Y 1/1 B min PCA 0 Y 1/1 f2 real 7/182.5
reg ba Q 4/4 B mean reg ba Y 1/1 f2 real 7/182.5 PCA 0 Y 1/1 fft size 10/30
reg ba Q 4/4 B min reg ba Y 1/1 wav B approx depth 1 min norm ba Y 1/1 f2 real 7/182.5
reg ba Q 4/4 B sum reg ba Y 1/1 wav B approx depth 2 min norm ba Y 1/1 wavelet depth 363
reg ba Y 1/1 B max reg ba Y 1/1 wav B approx depth 3 min reg ba Q 4/4 wav B approx depth 2 min
reg ba Y 1/1 B min reg ba Y 1/1 wav B approx depth 4 min reg ba Q 4/4 wav B approx depth 3 min
reg tr Q 2/4 B max reg tr Q 1/4 f2 imag 34/44.5 reg ba Q 4/4 wav B approx depth 4 min
reg tr Q 2/4 B mean reg tr Y 1/1 f2 imag 7/182.5 reg ba Y 1/1 B min

reg ba Y 1/1 wav B approx depth 1 min
reg ba Y 1/1 wav B approx depth 2 min
reg ba Y 1/1 wav B approx depth 3 min
reg ba Y 1/1 wav B approx depth 4 min
reg tr Q 2/4 f2 imag 33/44.5
reg tr Y 1/1 f2 imag 7/182.5
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