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Student ID number: 453401

Supervisor: Olga Kuryatnikova

Second assessor: Mikhail Zhelonkin

Supervisor from Amsterdam UMC : Harm-Jan de Grooth

Date final version: August 13, 2021

The content of this thesis is the sole responsibility of the author and does
not reflect the view of the supervisor, second assessor, Erasmus School of

Economics or Erasmus University.

1



Abstract

As from the start of the Covid-19 pandemic, researchers have looked for factors that

predict the mortality risk of patients. We add to this search by using Decision Trees,

Random Forests and Binary Logit models to accurately predict, at any day during

the stay at the ICU, the chances of dying in the coming 24-hours. We also focus on

the interpretability of the models, so clinicians can compare their expert knowledge

with the insights that the fitted models provide. We check whether significant dif-

ferences in model performance and relations between mortality risk and explanatory

variables exist among the 18 hospitals. If so, this could point to between-hospital

practice variation with respect to the perceived chance of succesful recovery due

to continuing the treatment of the most severely ill patients. The Decision Trees

performed inferior, while the Binary Logit models and less interpretable Random

Forests performed very well and similarly. Usual medical variables, such as the

fraction of inspired oxygen, and dummies indicating missing data were important

in model fitting. Two separate tests indicated statistically significant differences

between hospitals in the relation of mortality risk with the interaction term of the

Length of Stay and SOFA score, but out-of-sample prediction performance did not

increase when modelling these differences.
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1 Introduction

Since the Covid-19 pandemic started in 2019, medical researchers have been investigat-

ing which factors were associated with a higher mortality rate for infected patients. The

resulting insights, like those found by Grasselli et al. (2020), have been crucial to warn

people with increased risk of dying due to Covid-19 and help governments make vacci-

nation plans that grant these people priority. Research on treatment of patients at the

Intensive Care Unit (ICU), such as carried out by Meng et al. (2020), has been crucial

as well to advise ICU doctors on providing the patients with the best possible care. Ad-

ditionally, Early Warning Scores (EWS) specifically for Covid-19 have been developed

(e.g. Song et al. (2020)) to flag patients after one or two days at the ICU as being at

increased risk or not, based on mortality prediction over their total period of stay. Before

the pandemic began, dynamic models for predicting the risk of a critical event at the ICU

have been around, like those constructed for cardiac arrest by (Kennedy et al. (2015)).

However, research on modelling dynamic mortality hazards of Covid-19 patients at the

ICU has only led to published contributions to the literature for datasets with a few

hundred patients, like by (Rieg et al. (2020)). Nevertheless, recent preliminary research

has shown that it is possible to use the CovidPredict database (CovidPredict Database

(2020)) to model the short-term mortality risks of over 2000 patients at any moment dur-

ing their stay at the ICU (Smit (2021)). However, data from only 6 hospitals was used and

the research did not address possible between-hospital variation in the relations between

outcomes and explanatory variables. Death in the ICU often depends on the perceived

futility of further treatment by the medical team. This may lead to between-hospital

variation in the predictive performance of the models. Therefore, the goal of our research

is to accurately model this mortality hazard for Covid-19 patients at the ICU using data

from 18 hospitals in this database, while also analyzing this between-hospital variation.

We use several models to predict, at any day during the ICU stay, whether a patient

will pass away in the coming 24 hours or not. Due to a lack of expert knowledge in the

medical field, we do not try to draw conclusions on causal relations between factors and

the mortality risk, since laying these causal relations requires a thorough understanding

of all the back-and-forth interactions between natural events and treatment decisions. So,

we focus only on Granger causality, i.e. whether inputs are useful in forecasting the future
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output (Granger (1969)).

We are primarily interested in accurately classifying patients that are at relative high

risk of mortality. However, in the medical field, it is also especially important to be able

to explain important decisions that are made in cases where wrong decisions can lead to

death. Otherwise, these models will probably not be used by clinicians to increase their

knowledge (Zhang et al. (2019)). This combination of the importance of accuracy and

interpretability in predicting the patient’s life status at the ICU leads us to posing the

following research question:

How can statistical modelling and Machine Learning be used to make accurate and

interpretable predictions on the dynamic mortality hazard of Covid-19 patients at the

Intensive Care Unit?

We use the machine learning tool Decision Tree (DT) and statistical Binary Logit (BL)

models as interpretable methods, whereas the less interpretable Random Forest (RF) is

used as powerful machine learning tool for classification. It will be of interest to see if

the RF outperforms the interpretable models and to what extend it can deliver insights

on the relations between explanatory variables and the mortality hazard more broadly,

though not allowing insight in each individual classification made.

To the best of our knowledge, time spent in the ICU at the moment of evaluation

has not yet been analyzed as an independently or interactively predictive factor for short-

term mortality. Therefore, we believe to bring an important extension to the literature

by making the Length of Stay (LOS) at the hospital an important factor in our models,

in particular as interaction term with the other inputs. These interaction terms can be

used to see if relations between inputs and the output differ between days. Additionally,

we investigate whether insights can be found on how relations between input data on the

health status of a patient and the mortality hazard differ between hospitals. It would

be of interest to see if staff at different hospitals made different decisions on when to

stop treatment, if they were presented with the same patient. However, this question is

too complicated to answer with our knowledge and the methods we use in this research.

Therefore, we analyze whether a statistical reason exists for doing further research on

possible differences in how doctors decide to stop treatment. We extend the BL models

by allowing for variation among hospitals in the relations between the mortality risk and

input variables. If this leads to a better model fit and higher prediction performance, we
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have such a statistical reason to believe different decisions on treatment termination might

have been made among hospitals. For the same end, we use a Leave-One-Hospital-Out

(LOHO) approach in which we fit the RF on the data from all but one hospital. Aberrant

performance in combination with high variation in the importance of a variable could also

point to important differences between hospitals. This leads us to answer the following

second research question:

What is the between-hospital difference in model performance and estimated relations

between mortality hazard and key variables?

We used expert insights of doctors from the Amsterdam University Medical Centres

(UMC) to assist in posing feasible research questions and help in selecting sets of variables

of clinical interest. It will be interesting to see whether the most important explanatory

variables in our models correspond to the variables that doctors consider first when as-

sessing the health status, mortality risk and recovery chances of a patient. Therefore, we

pose the third research question:

Which variables have the most predictive and explanatory power in our statistical and

Machine Learning models?

In Section 2, we provide a review on relevant literature to give context on the problems

we try to solve, background for the methods we use and how the research contributes to

the literature. In Section 3, we describe the data that we use. In Section 4, we describe

how we deal with missing data and present the variable selection procedure, the Binary

Logit models, Decision Tree and Random Forest. In Section 5, the results are shown.

Finally, in Section 6, we answer the research questions, show the limitations and provide

suggestions for further research.

2 Literature Review

The usage of Electronic Health Records (EHR) at ICUs arose in the beginning of the

1990’s and one out of many reasons to transition from paper based patient records to

EHRs was the potential benefit for doing data-driven research (van der Lubbe et al. (1997);

Hippisley-Cox et al. (2003)). Since then, more data has been available for researchers to
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find relations between certain events at the hospital, like death or the progression of a

disease, and available information on the patient and treatment.

Our research falls within the field of applying statistical and Machine Learning models

to predict mortality risk at the Intensive Care Unit. Even before EHRs were broadly used

in the medical field, scoring systems were developed to help doctors assess the condition

of a patient not only from their expert insights. Already in 1985, when patient data was

not yet commonly stored in EHRs, the Acute Physiology And Chronic Health Evaluation

(APACHE) score was developed to quantify the current health status of a patient (Knaus

et al. (1981)). Since then, this metric has been updated several times based on new

researches to optimize its precision. We use not only the derived APACHE, but also the

Sequential Organ Failure Assessment (SOFA) score as explanatory variable in our models.

This SOFA is constructed from 8 measures to capture the risk of organ failure, which can

lead to death (Antonelli et al. (1999)). Other methods have been developed as well

to assist doctors in evaluating their patient’s risks, like the Mortality Prediction Model

(MPM) (Lemeshow et al. (1993)) and the Simplified Acute Physiology Score (SAPS)

(Le Gall et al. (1993)).

In line with these developments of using available data to quantify the health of a

patient, new methods were developed to also use available data to predict Adverse Events

(AE), like cardiac arrest or death, and thereby prepare doctors or even prevent the AE

from happening. These methods are known as Early Warning Scores (EWS), like the

National Early Warning Score (NEWS) that uses only 7 input variables to assign a score

per variable and sum these up to get the score of this metric for determining whether a

patient is at severe risk of an AE (Smith et al. (2013)).

These EWSs are perfectly interpretable in the sense of allowing the doctor to under-

stand how the risk classification is constructed from the variables. However, many more

powerful risk prediction methods exist in the field of Machine Learning and Artificial

Intelligence (AI). For example, not only classical linear regression is used in predicting

cardiac arrest at the ICU, but also Decision Trees (DT), Support Vector Machines (SVM)

and Neural Networks (NN) (Kennedy et al. (2015)). However, for many of these models,

individual predictions cannot be backtracked to the input data to provide the reason why

a patient is classified as she is. This not only makes it hard to explain to patients and their

relatives why big decisions are made, it also gives no insights for medical staff to learn
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from the relations and less opportunities to improve the model using clinical knowledge

after deeply understanding it (Ahmad et al. (2018)).

The task of predicting whether a patient dies within 24 hours or survives, leads us to

making binary classifications. A large range of methods and models exist to do so, from

which the earlier stated DT, SVM and NN are some, but also Logistic Regression, Random

Forests (RF), Adaptive Boosting, Nearest Neighbours and Bayesian methods are popular,

to name a few (Kumari & Srivastava (2017)). Using Logistic Regression in the case of

binary classification leads to using a Binary Logit (BL) model. This is a classic statistical

model that has been used for decades and has the advantage of being interpretable. That

is, for an individual observation, a change in a value of an explanatory variable leads to

a multiplication of the predicted odds for the event of interest to happen. In the medical

field, it is common to use the BL model as a baseline to compare the performance of

another model with, like a Neural Network (Goss & Ramchandani (1998)) or Random

Forest (Hsieh et al. (2018)). We will use this same strategy and use besides the BL

model the RF (Breiman (2001)) as machine learning method since it has become the most

frequently used machine learning classification tool in the past two decades (Kirasich et al.

(2018)). The Random Forest is not interpretable at the level of an individual prediction.

Therefore, we also use a Decision Tree, which is the interpretable building block of a RF

since it provides binary decision rules that determine how a patient is classified based on

the input data (Breiman et al. (1984)).

The Binary Logit Random Effects model exists as useful extension of the BL model

for allowing relations between variables and the binary response to differ between clus-

ters of observations (Longford (1994)). This is especially useful for answering our second

research question, which we do by investigating how these relations differ between hospi-

tals. If modelling variation in relations between mortality and variances leads to higher

performance, this may suggest that different decisions are made among hospitals. On the

other hand, we cannot rule out other explanations, such as differences in data collection

or registration methods causing this performance variation.

8



3 Data

We have longitudinal data from the CovidPredict database for 2245 ICU patients from

18 Dutch hospitals, of whom 22% died in the ICU. These patients were admitted to the

ICU at some day between the end of February 2020 and beginning of March 2021. The

distribution of the admissions over this period can be seen in Figure 1. The number of

patients present in different hospitals ranges from 42 to 242, the number of deaths from

6 to 64 and the average length of stay (LOS) at the ICU from 10 to 19. With the data,

we want to predict the event that a patient dies within 24 hours from the moment of

prediction. Therefore, we get a total of 29,602 daily observations, about 13 per patient.

Since we need to be discreet with the private data, we cannot present a summary table with

hospital specific numbers, as this could help the reader connect results to known hospitals.

As explanatory variables we have demographic data, information on comorbidities (other

diseases besides Covid-19), medicine records, laboratory test results, treatment choices,

frequently updated health conditions (such as temperature and heart rate), the length of

stay at the ICU, informative functions of several variables combined and the hospital at

which a patient is located. We have to account for human errors in the data registration

since many variables are quickly and manually registered. We set up rules that exclude

observations containing infeasible values. With these explanatory variables, we create

extra variables such as cumulative scores over time, squared values and interaction terms.

Our final set of variables can be found in Appendix A.1.

Figure 1: Histogram of ICU admissions per month
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For each individual i we have different LOS (Ti) and thus unequal numbers of obser-

vations. If we do not correct for this, the model will undesirably be fitted better for those

individuals with a longer LOS than those with a shorter LOS. Additionally, only about

1.7% of the observations corresponds to a a death case. This often causes bias towards

predicting survival of patients (Wallace & Dahabreh (2014)). Above that, from a clinical

view, correctly predicting a death instance is more important than correctly predicting

survivals since an accidental death is a big problem whereas an accidental survival is not.

We deal with these data problems by training the models with the final observation of the

stay and one other random observation per patient, raising the number of death instances

to approximately 11% of the training data, since the last observation of a patient’s stay

corresponds to a death case in 22% of the instances and the other observation always

corresponds to a survival. Hereby we bring more balance to the training data, preventing

biases towards predicting observations as survivals. When predicting out-of-sample, so

for model validation or testing final performance, we use the original data. Differences

between hospitals exist in the number of total patients and the distribution of the death

cases. Some hospitals deliver only 2% of the patient data and others 10%. Also, the

fraction of patients that die at a specific ICU ranges from 8% to 40%. When trying

to explain possible differences in model performance or importance of variables among

hospitals, these differences should be considered.

Since the data contains a lot of missing values, we set up a sophisticated approach

to deal with this. This combines forward filling missing values based on the most recent

present value, imputing missing data based on the present values of other variables and

creating dummies for missing values, as we will describe in more detail in Section 4.1.

4 Methodology

We are primarily interested in making 24-hour ahead predictions on patient mortality.

Each observation (i, t) for individual i ∈ N and period t ∈ Ti, is therefore accompanied

with a binary variable:

yi,t =


1, death occurs within 24 hours

0, survival for another 24 hours .
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We have J explanatory variables Xi,t, which can be split into time-invariant static variables

(Xs
i ,) that do not change over time and dynamic variables (Xd

i,t) that do change over time.

Since we consider the possibility that relations of the explanatory variables Xi,t with yi,t

change over time, we include cross terms Xj,i,t · t for some explanatory variable indices j.

In order to assess the prediction performance of the different models, we use 80% of

the patients for model training, whereas the data for 20% of the individuals will only be

used in testing the model performance. For all our models, we will have to fix the values

of some hyperparameters and we will have to find the optimal set of explanatory variables.

Therefore, we will perform 5-fold cross-validation (CV) on the training data to tune the

combination of hyperparameters and set of variables, for each model. This means we split

the training data into 5 sets of 16% of the patients for validating the performance. Then,

we predict the outcomes in one of these sets with a model trained on the data from the

remaining 4 sets. We repeat this for each set and after averaging the performances over

these 5 validation sets, we will see which combination of hyperparameters and variables

yields the highest performance. More details on validation is provided in Section 4.4, after

the models and performance metrics are described.

It is common to use mean prediction accuracy as measure for performance, which is the

fraction of correctly classified observations. However, since we only have 1.7% of deaths

over all observations, only predicting survivals leads to a very high accuracy of 98.3%.

This seems high, but corresponds to never classifying a death case correctly. Additionally,

falsely predicting a severe risk of death is less problematic than falsely considering a

patient not to be at serious mortality risk. Therefore, we use more informative metrics,

all constructed from 4 basic metrics:

• True Positives (TP): Predicted to die and does so

• False Positives (FP): Predicted to die, but survives

• True Negatives (TN): Predicted to survive and does so

• False Negatives (FN): Predicted to survive, but dies

From these 4 metrics, we create

• True Positive Rate (TPR or Recall): TP
TP+FN , what fraction of deaths is found by

the model

11



• False Positive Rate (FPR): FP
FP+TN , what fraction of survivals is mistakenly classified

as deaths

• Precision: TP
TP+FP , what fraction of death predictions corresponds to actual deaths

From these 3 metrics, we build the Area Under the Receiver Operating Characteristic

Curve (AUROC), Area Under the Precision Recall Curve (AUPRC) and F2-score. The

ROC curve has pairs of Recall and FPR respectively on the y-axis and x-axis, corre-

sponding to the possible thresholds. A threshold is a number between 0 and 1 above

which probability estimates are classified as positive cases (deaths). So, the area under

this curve summarizes how well the model predicts observations based on evaluating what

fraction of deaths is found by the model and what fraction of survivals is mistakenly clas-

sified as a death, irrespective of the chosen threshold. A value of 0.5 corresponds to a

random guess, above 0.7 corresponds to moderate performance, above 0.8 is considered as

very good and 1 means perfect prediction (Mandrekar (2010)). However, since the num-

ber of survivals is large (98.3%), an increase in false positives (predicting deaths when

survival is true), will have a minor effect on the AUROC because of a large denominator

in the FPR. Therefore, this metric might not give the best insight in model performance

(Davis & Goadrich (2006)). Where average accuracy puts too much emphasis on correctly

predicting survivals, the AUROC might put too little emphasis on it.

The Precision Recall (PR) curve has pairs of Precision and Recall respectively on

the y-axis and x-axis, corresponding to all possible thresholds. The AUPRC shows the

model’s ability to find the actual deaths without predicting many observations as deaths

that actually correspond to survivals (Boyd et al. (2013)). The difference with AUROC

lies in using Precision instead of the FPR, whereby predicting death in case of survival

is stronger penalized when using AUPRC. So, PRC lies between the extremes of using

accuracy (almost all emphasis on survivals) and AUROC (almost no penalty for missing

survivals). The baseline performance for PRC is equal to the fraction of death cases in

the data (0.017), since by predicting every observation as a death, we would have a Recall

of 1 and a Precision of 0.017, giving 1 ∗ 0.017 = 0.017 (Saito & Rehmsmeier (2015)).

As a final metric we have

Fβ = (1 + β2) ∗ Precision ∗Recall
(β2 ∗ Precision) +Recall

(1)

which summarizes model classification and equals the harmonic mean of Precision and
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Recall if β = 1. However, by using β = 2, we put twice as much weight on the Recall since

we are more interested in correctly predicting deaths than not missing a survival. As the

AUPRC, by using both Precision and Recall, this metric is also suitable for imbalanced

classification (Weiss (2013)). As the F2-score is dependent on the threshold, we use

Nelder-Mead optimization, which is described in Section 4.2, to find the optimal threshold

for maximal F2. So, after fitting the model, we see which threshold gives the highest F2

in validation performance to show the maximum F2 that is attainable. However, this

makes the F2 less useful to tune hyperparameters with because this maximum F2 shows

maximal performance, not average performance on the validation set. For out-of-sample

performance, the tuned threshold from validation phase is used. Hereby, the F2 score is

a useful metric to assess the average performance on the test set.

The AUROC is not a fully representative metric for performance in the imbalanced

case and the F2-score in the validation phase does not show average performance. As a

result, we use the AUPRC as the leading performance metric in the validation phase and

to evaluate performance on the test set.

For answering the second research question, we will modify the methods in such a way

that we can measure how relations between explanatory variables and outcomes differ

between hospitals. For Binary Logit models this means using Random Effects and seeing

whether allowing relations to differ between hospitals improves model fit. Additionally,

we train the RF by using the Leave-One-Hospital-Out (LOHO) approach, so using about

76% of the patients. We then test if the 18 models, one per missing hospital, perform

differently on the test set and whether significant differences exist in the importances of

variables among these models.

Unless stated otherwise, we use the Scikit-learn library for Python to fit the models

(Pedregosa et al. (2011)).

4.1 Dealing with missing values

As stated, we first use three methods to deal with the missing data before we start

modelling. The first is that of Last Observation Carried Forward (LOCF), in which a

missing value is replaced by the most recent present value for that variable. Since we

have data over time, this method is intuitive because it fills gaps when data was not

observed at specific days. The method has two important assumptions. The first is that
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the values which are missing do not differ that much from their last observation moment.

This assumption is realistic for data on laboratory test results since these tests are carried

out frequently, but are not necessarily recorded every day in each hospital. Since the

LOCF approach also assumes that no important information is carried in the fact that

a value is missing, this value must be Missing at Random (MAR) (Kang (2013)). Since

this is a doubtful assumption for most variables, as missing values are strongly correlated

to the hospital they are from or to the health status of a patient, we only use it for filling

laboratory test results.

We need a second method for filling missing values that does not assume the miss-

ing values are MAR, but that the fact they are missing could be correlated to impor-

tant information. Therefore, we use a method that imputes missing data based on data

which is present. To do so, we use the Scikit-learn function IterativeImputer in Python

which is equivalent to the MICE algorithm developed in R by (Van Buuren & Groothuis-

Oudshoorn (2011)). Using only the observations for which the values are present, both

approaches fit a linear model between the variable for which data should be imputed and

the other explanatory variables:

x = Xβ + ε, (2)

where x is the variable for which missing values are to be imputed, X are the other

explanatory variables without x and a constant, β are the coefficients expressing the linear

relation between variables X and x, and ε is the error term depicting random variation.

Based on this fitted model, through applying Ordinary Least Squares (OLS), a prediction

is made for the missing value. This missing value is then replaced by an actually present

value that is close to the prediction from the fitted model. By imputing missing values

based on present values in other variables, we acknowledge that they are not MAR but

that their absence could be correlated to important information. Specifically, the Iterative

Imputer and MICE algorithms use Predictive Mean Matching (PMM), which has been

developed by Little (1988). This algorithm has been described in steps by Vink et al.

(2014) and we paraphrase it as follows:
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Algorithm 1 Predictive Mean Matching
Input: Np observations with present values for variable x. Nm observations for which

values of x are missing.

1: Estimate β̂ and ε̂ by applying OLS on equation (2) to the Np present observations.
2: Get estimated variance σ2∗ = ε̂T ε̂/A, where A is a draw from the χ2 distribution with
Np − r degrees of freedom (with r the number of variables in X).

3: Draw β∗ ∼ N (β̂, σ2∗(XT
p Xp)−1), where N (·) is the multivariate normal distribution.

4: Calculate estimations for present values as x̂p = Xpβ̂ and for missing values as x̂m =
Xmβ

∗.
5: for i ∈ Nm do
6: Calculate d distances ∆d = |x̂p,d − x̂m,i| with d ∈ Np

7: Randomly draw xi from the present values in xp that correspond to the three
lowest values ∆d.

So, we impute an existing value that corresponds to one of the closest estimated

neighbours (in terms of absolute difference) of missing value xi, by using the Bayesian

approach of drawing from a posterior distribution N(β̂, σ2∗(XT
p Xp)−1).

We conclude this session by describing our third method to deal with missing values,

although we can fill all missing values by imputation. This is because the fact that a value

is missing can bear information that could improve model fit and performance. Therefore,

we also create dummy variables that equal one if a value is missing and zero if the value of

the corresponding explanatory variable is present. For example, missing information on

laboratory test results could imply that doctors are not that troubled about a patient’s

health status and therefore do not see the urge to monitor all values frequently, which is

probably correlated to a lower mortality risk. After adding these dummies, we get 279

explanatory variables. The potential problem of very high dimensionality because of all

these dummies is taken care of in variable deletion in the model validation phase.

4.2 Binary Logistic Regression Models

The first class of models to use will be that of Binary Logistic (BL) Regression Models.

These are linear models used to predict the probability of an event while yielding estimated

parameters that can be used to interpret relationships between the input variables and
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the outcomes. To predict whether yi,t is 0 or 1, we use that

yi,t =


1, if y∗

i,t > 0

0, if y∗
i,t ≤ 0 ,

(3)

where we have latent response function

y∗
i,t = β0 + µi +Xi,tβ + εi,t, (4)

where β0 is the constant term over all observations, µi the patient specific constant to

capture variance among observations explained by correspondence to the same individual,

β denotes the relations of explanatory variables X with the mortality hazard and εi,t is

the error term. With this latent variable, we get the following probability function

Pi,t = Prob{yi,t = 1 | β0, β, µi, Xi,t}

= Prob{y∗
i,t > 0 | β0, β, µi, Xi,t}

= Prob{εi,t > −(β0 + µi +Xi,tβ)}

= Λ(−(β0 + µi +Xi,tβ))

= [1 + exp(−(β0 + µi +Xi,tβ))]−1,

(5)

where Λ is the Logit link function because εi,t ∼ Logistic(0, 1). The function domain is

unlimited, whereas the range is between 0 and 1 (Wooldridge (2015)).

To interpret the coefficients, we should look at the odds of getting outcome death. We

have:

Odds{yi,t = 1 | Xi,t} = exp(β0 + µi +Xi,tβ). (6)

Ceteris paribus, we therefore have that an increase in Xi,t,j multiplies the odds of having

outcome death by eβj (Harrell Jr (2015)). We thus can interpret the estimated relations

between variables like age, Body Mass Index (BMI) or the presence of diabetes with the

odds of dying in the next 24-hours. Since variables like age and BMI cannot take on the

value 0, there is no clear interpretation of constants β0 and µi.

4.2.1 Common Effect or Patient specific Random Effects

Since the observations (i, t) are not independent, we have added individual specific effects

µi to the equation to account for the unexplained yet individual specific variance in

the model. However, we first test whether the included time-invariant variables already
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explain all the individual specific variance. This gives the Common Effect (CE) model as

the restricted model with µi = 0. The alternative model that includes these individual

specific effects is either the Random Effects (RE) or the Fixed Effects (FE) model.

The FE model includes individual specific effects β0,i = β0+µi, whereby time-invariant

individual specific variable parameters cannot be estimated, since including both individ-

ual specific effects and these time-invariant variables make the model non-identifiable.

This is because any non-zero coefficient for a time-invariant variable can be offset by ar-

bitrarily changing the individual-specific parameters β0,i. Also, the FE model cannot be

used for predictions of observations from patients that were not included in model fitting,

since no β0,i is known for these new individuals. However, we do want to make predictions

for patients that were not in the training data. Combining this with the fact that we are

interested in interpreting relations between time-invariant variables and the outcomes as

well, the FE model cannot be used for our research.

Therefore, we will use the RE model as the alternative model. We call it the Patient

specific Intercept (PI) model since more Random Effect models will be used in the re-

search. This model assumes µi are independent from each other and Xi,t and that they

follow a normal distribution:

µi ∼ N (0, σ2
µ) (7)

(Longford (1994)). Research has shown that distributions like the student’s t or gamma

distribution could be used for more robust estimations of the variance of the random

effect in case of data with heavy tails or skewed data. Nevertheless, we use the normal

distribution as it is most frequently used to model these random effects and no specific

reason exists to doubt this normality assumption. In this manner, we allow for individual

specific effects, can make predictions and get parameter estimates for the time-invariant

variables. However, if the assumptions do not hold, coefficient estimates could be biased

(Lee & Thompson (2008); Hsiao (2007)).

Despite the fact that the FE model is not used for prediction, in case of linear regression

models, the assumptions of the PI model are usually verified by applying the Hausman test

on the estimated coefficients of the PI and of the FE model (Hausman (1978)). However,

the FE for a logit model can only be estimated with Conditional Logit (CL), for which

only observations can be used from individuals that passed away during their stay at the

ICU, reflected by the following condition on patients to use: i s.t. 0 <
∑Ti
t=1 yi,t < Ti
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(Croissant & Millo (2019)). Since this implies throwing away 78% of the data, it does not

allow for a valid comparison of coefficients.

To decide whether the CE or the PI model should be used in training and predicting,

we fit the PI model and test with the following null-hypothesis:

H0 : σ2
µ = 0 against H1 : σ2

µ > 0 . (8)

As shown by Stram & Lee (1994), we can test this with a Likelihood Ratio Test (LRT),

using a significance level of α = 0.05. We calculate the ratio of the likelihood from the

unrestricted model (PI) over that from the restricted model (CE). The likelihood function

per individual, conditional on µi, is

Li(µi) =
Ti∏
t=1

P
yi,t

i,t (1− Pi,t)1−yi,t . (9)

Since we have σµ = 0 for the CE model, we can use Maximum Likelihood Estimation

(MLE) to estimate β0 and β with joint marginal likelihood function

LCE(θ) =
N∏
i=1

Li(0), (10)

where θ = [β0, β, σµ] and for the CE this σµ is thus assumed to be zero. We maximize

this likelihood with Newton-CG optimization and thereby find the estimates θ̂. To do so,

we first define the Gradient G as the vector of partial derivatives of LCE with respect to

the components of θ and the Hessian H as the matrix of second order partial derivatives.

Then, the basic Newton direction pNk in which to update the k-th coefficient in θ, is the

solution of

Hkp
N
k = −Gk. (11)

To solve this equation and efficiently find an approximation of pNk , we use the Conjugate

Gradient method as described in (Wright et al. (1999)). The estimates are iteratively

updated in these approximated directions p̂N until one of the stopping criteria is met. In

our research, the optimization stops when all elements of the Gradient are smaller than

10−4 in absolute terms or 10,000 iterations have passed.

In order to estimate θ in the PI model, we should integrate over all possible values

of µi in the likelihood function, for each i ∈ N . This gives the following joint marginal

likelihood function:

LPI(θ) =
N∏
i=1

∫
Li(µi)f(µi)dµi, (12)

where f(·) is the probability density function (pdf ) of the normal distribution with mean
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0 and variance σ2
µ. We estimate θ through maximizing this likelihood with the Nelder-

Mead numerical optimization algorithm. It does not use the Gradient or Hessian of

the Likelihood to find a direction towards which the coefficients should be updated, like

in the Newton-CG case. When finding the K coefficient estimates in θ, it starts with

K + 1 candidate estimates of θ and iteratively replaces the candidate estimate that has

the lowest Likelihood by one of three candidate estimates that were calculated using the

Euclidean distance from the worst estimation to the center of all current estimates. If

none of these three candidates is suitable, the space in K dimensions spanned by the K+1

estimates is shrunk inwards and the algorithm continues. Like with Newton-CG, we make

the algorithm stop when 10,000 iterations have passed or when the absolute change in

function value, relative change in function value or relative change in parameter values

falls below 10−5, 10−15 or 10−7, respectively. (Wright et al. (1999)).

Since no closed form exists for the integrand, we rewrite equation (12) as

LPI(θ) =
N∏
i=1

1√
π

∫
Li(
√

2σµυ)) exp (−υ2)dυ, (13)

to use adjusted Gauss-Hermite Quadrature (aGHQ) by numerically approximating

LPI(θ) ≈
N∏
i=1

1√
π

R∑
r=1

wrLi(
√

2σµυr), (14)

with degree R as the number of nodes and weights (υr, wr) in the quadrature (Crois-

sant & Millo (2019)). The weights are derived from the nodes. These nodes are in the

first iteration centered around zero, but are adapted in further iterations to be centered

around the conditional modes µ̃, which maximize the Likelihood given estimates in the

current iteration β̂iter0 , β̂iter and σ̂iterµ (Bates (2014)). By adapting the nodes and thereby

the weights in the iterations, the numerical optimization is faster in finding the optimal

parameters, especially when these conditional modes deviate a lot from zero (Kim et al.

(2013)).

To formally test

−2 log(LCE(θ̂CE)/LPI(θ̂PI)), (15)

which approximately follows ∼ 0.5χ2
q + 0.5χ2

q+1 under H0 (Stram & Lee (1994)), with q

the number of random effects under the null hypothesis. So, with a significance level of

α = 0.05, we reject the null and conclude individual specific effects should be modelled if

−2 log(LCE(θ̂CE)/LPI(θ̂PI)) > 1.921 = 0.5(0) + 0.5(3.841).
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4.2.2 Hospital specific Random Effects

After determining whether the CE or PI is the correct model, we also use the LRT to

investigate hospital level differences between relations of X with the mortality hazard. Of

special interest are the Length of Stay (LOS), the SOFA score as quantified approximation

of the patient’s current health status, and the interaction term between LOS and SOFA.

This is because we want to see whether the data suggests that hospitals differ in how long

they take and how sick patients have to be before the doctors end treatment. We want to

use as many observations as possible for maximum model fit and robustness, so we must

consider an FE or RE model instead of running a regression per hospital. Again, we do

not use Fixed Effects since this does not yield coefficients to variables that are constant

for all patients in the same hospital. For example, a certain hospital might not have data

for the usage of a specific medicine, resulting in zero values for all patients. So to do the

analysis, we stepwise add random effects that differ per hospital to either the CE or PI

model, but only if adding the random effect significantly improves the likelihood. These

added candidate variables to have their coefficients affected by random effects in the new

set-up are the Intercept, LOS, SOFA and interaction term SOFA∗LOS, which are from

now on related to as random effects. We call these models Hospital specific Coefficient

(HC) models. So, we have L additional random effects in each candidate HC model, with

L ∈ {1, 2, 3, 4}.

We copy the data on these L variables from X to treat as random effects into matrix

Z with corresponding hospital specific coefficients γh for each observation corresponding

to an individual that was treated in hospital h. Note that Z might contain a column of

constants. Now we can rewrite equation (5) as

Pi,t = [1 + exp(−(β0 + µi +Xi,tβ + Zi,tγh))]−1, with (16)

γh, µi ∼ N (0,Σ),

Σ =



σ2
γ1

σγ1,γ2 σ2
γ2

... ... ...

σγ1,γL
σγ2,γL

... σ2
γL

σγ1,µ σγ2,µ ... σγL,µ σ2
µ


,

(17)
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where using µi will depend on the outcome of the earlier LRT between the CE and PI

model. The new coefficients γh (and µi) are assumed to follow a multivariate normal

distribution with mean 0 and covariance matrix Σ (Hsiao & Pesaran (2008)). Under the

null hypothesis, all elements in Σ are zero, like in the case with one Random Effect. We

use the Bonferroni correction to adjust the significance level α for multiple testing by

dividing it by the number of candidate random effects in the corresponding step (Neyman

& Pearson (1928)). This correction is required because testing several hypotheses at the

same time with the original significance level α increases the chance of finding a significant

result, though this could be due to applying more than one test. For example, when testing

for 4 random effects with a significance level of 5%, the chance of wrongly rejecting the

null hypothesis (error rate) is 1 − (1 − α)4 ≈ 18.5% > 5%. When using an adjusted α∗

by dividing the significance level by the number of tests, the error rate does not exceed

the original α (Armstrong (2014)).

We again use conditional likelihood, now also conditional on γ, as in equation (9) to

get estimates θ̂ = [β̂0, β̂, Σ̂]. The full marginal likelihood however includes L additional

integrals and a product over H hospitals, whether we use the CE or PI model. This

results in

LHCCE (θ) =
H∏
h=1

∫
...
∫ N∏

i=1
Li,t(0, γh)f(0, γh)dγh,1...dγh,L for CE, or

LHCPI (θ) =
H∏
h=1

∫
...
∫ N∏

i=1

∫
Li,t(µi, γh)f(µi, γh)dµidγh,1...dγh,L for PI,

(18)

where f(·) is now the pdf of a multivariate normal distribution with means µi, γh and

covariance matrix Σ. In order to calculate the integrals, we make use of aGHQs and

Nelder-Mead numerical optimization as described before, but now for L extra integrals

(Longford (1994)).

Predicting with a Binary Logit model is done by inserting the new data into the

estimated model, but µi and γh are not estimated in the RE models. However, we have

the option of estimating the conditional modes (µ̃i, γ̃h) of the random effects based on the

observed outcomes in the training data. In other words, we maximize the unnormalized

posterior distribution of µi and γh, which leads to:

µ̃i, γ̃h = arg max
µi,γh

(
H∏
h=1

N∏
i=1

L(µi, γh|β̂0, β̂, Σ̂)f(µi, γh)
)

(19)

We already used the conditional modes as points around which the nodes in the aGHQs
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were centered, but now use them as well for out-of-sample prediction with

P̂i,t = [1 + exp(−(β̂0 +Xi,tβ̂ + Zi,tγ̃h))]−1 (20)

Note that we have to set µi = 0 instead of inserting µ̃i since in the out-of-sample data,

no observations are present for the individuals from the training set, but we do have

observations from all 18 hospitals in the validation sets and test set (Bates (2014)).

For these RE models, we do not want to choose the specification solely based on the

formal LRT, since it only uses information on in-sample performance, which can make us

choose a model that performs best on the training data, but worse out-of-sample, which

is called overfitting. We therefore also want information on out-of-sample performance

to see for CE and PI what random effects to pick as extension out of the 15 possible

combinations of Intercept, LOS, SOFA and SOFA∗LOS. Hereby, we end up with 32 sets,

but for predicting on the test set we use the one that corresponds with the highest AUPRC

in cross-validation, besides the RE model that resulted from the LRTs.

We fit the RE models by using the Pymer library for Python (Jolly (2018)).

4.3 Decision Tree-Based models

A Decision Tree (DT) is a model that can be used for classifying observations based on

a set of binary decision rules. A huge advantage of a DT is that the corresponding logic

on why a specific observation is assigned a particular class can be shown in a way which

is so easily interpretable, that no expert knowlegde on Machine Learning is required to

understand it. If doctors should be able to understand how a model comes to a specific

classification, interpretable models are required. Combinations of individual DTs result in

Random Forests (RF), which can be used to make more accurate predictions. However,

this comes at the cost of losing interpretability since the way an individual classification

is made by a RF cannot be explained by the combination of explanatory variables and

a set of binary decision rules or coefficients. Nevertheless, methods exist to assess the

importance of the different explanatory variables in the resulting RF. We refer to this as

Feature Importance (FI), for which the calculation will be described for both the DT and

RF in upcoming sections.

Since no parameters are involved to represent the relations between explanatory vari-

ables and outcomes, an approach like the RE model is not possible to answer the second

research questions on variation between hospitals. A way to assess the variability of these
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relations is to train and validate a DT or RF per hospital and then compute the per-

formance metric and FIs. However, with on average only 124 patients per hospital and

a lot of candidate variables, we think the variability to be extreme and not informative.

Therefore, we use a Leave-One-Hospital-Out (LOHO) strategy where we use all but one

hospital in the model building and see whether significant changes in performance and

the FIs occur when a hospital is left out. To test the null hypothesis of no significant

differences in performance, we calculate the median and Median Absolute Deviation with

the metrics corresponding to the test set performances of the 18 hospitals sets. Assuming

that these performances follow a Normal distribution, we conduct robust two-sided mod-

ified z-tests to draw conclusions on whether differences from the median are significant

and so a hospital set performs notably better or worse. To do so, we first take the 18

performance scores sh (h ∈ 1, ...18) and compute the median smed. We use the sample

median, as for large samples it converges to the mean of the Normal distribution, but

is more robust to outliers than the sample mean. Then, we compute the Median of the

Absolute Deviation (MAD):

MAD = median|sh − smed|. (21)

We now get z-scores:

zh = (sh − smed)
1.4826 MAD , (22)

where we have the constant 1.4826 as, for large samples, 1.4826 ∗MAD converges to the

standard deviation of the Normal distribution, but is more robust to outliers than the

sample standard deviation (Kannan et al. (2015)). To see whether possibly significant

differences in hospital performance correspond to large variation in FIs, we again conduct

these modified z-tests, but now on the FI scores of the hospital sets with aberrant perfor-

mance. The set of variables must include LOS, SOFA and SOFA∗LOS so that we are able

to analyze their FIs and also compare conclusions with those from the RE models. We

only use the RF and not the DT for LOHO, since the FIs change more smoothly in the

RF than in the DT when data is being left out because of the combination of thousands

of trees instead of only one. This is important since we use the assumption of normally

distributed FI scores.
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4.3.1 Easily interpretable: CART

Several algorithms to create a DT exist and we will use the Classification and Regression

Tree (CART) technique, first introduced by Breiman et al. (1984). With CART, we will

grow several DTs and by validation we will select the optimal one.

Figure 2: Example Decision Tree

As an illustration of how a DT works, we have Figure 2 where a resulting DT of depth

2 with 7 nodes is shown. For each observation, the model checks to which of the four

resulting nodes (leaves) of the DT it belongs, and classifies the observations with the class

label that belongs to that node. By default, the class label of a leaf node corresponds

to the majority class of all training observations corresponding to the leaf. However,

the DT can also provide a probability estimate for a class, which equals the fraction of

observations of the corresponding class in the leaf node. Then, one could alter the default

of classifying based on majority vote to classifying a death case if the corresponding

probability estimate is larger than a certain probability threshold. The splits based on

values of input variables and the final class labels corresponding to the leaf nodes make

up the final DT. This final DT is found in three steps: growing DTs, pruning these DTs

and selecting the optimal DT (Lewis (2000)).

Starting from the first node (root) of the DT, the CART algorithm selects for each

node the split that is best in discriminating the observations in the training set. This
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‘best’ split is the one with the highest information gain, corresponding to the highest

decrease in the Gini Index. For binary classification, this Gini Index is computed as

follows:

GI(τ) = pτ,0(1− pτ,0) + pτ,1(1− pτ,1) = 1− p2
τ,0 − p2

τ,1, (23)

where pτ,r corresponds to the fraction of training observations in node τ that belong to

class r ∈ 0, 1 (Kiran & Serra (2017)).

So, if we have observations that fall within node τ , the split chosen for the observations

in this node is the one that minimizes the average GI of the two resulting child nodes. In

other words, we choose the split that maximizes information gain

∆GI(τ) = GI(τ)− nA
n
GI(τA)− nB

n
GI(τB), (24)

where n is the number of observations in node τ and A,B correspond to its child nodes.

To assess the relative importance of an explanatory variable j in the fitted DT compared

to the importance of the other variables, we can sum all the differences in GI from splits

in which j was used and divide it by the sum of ∆GI(τ) over all τ . This gives FIj as

Feature Importance score (Menze et al. (2009)).

Candidate DTs are created by CART up till different maximum depths, the maximum

number of splits between the root and a leaf, resulting in several DTs. We also grow a few

DTs up till no further splits can be made, because in all leaf nodes either one observation

is left or no binary rule for an input variable can be found to decrease the Gini Index.

These identical maximum DTs are overfitted on the training data, probably yielding a

lower prediction accuracy on unseen data than smaller, less complex DTs would. This is

because after growing to a certain depth, the DTs have started to make splits that are

so specific to the training data, that these splits result in making wrong classifications on

test data. Therefore, we use a cost-complexity pruning approach on all but one of the

maximum DTs with a unique complexity penalty δ per tree. So, with a DT that has been

trained up till no further split could be found, we start to go back to the origin of the DT.

Each node with two leaf nodes attached to it is a candidate to be pruned, whereby the DT

gets smaller. This results in information loss and so an increase in the average GI, but

also a loss in overfitting and so probably better performance when classifiying new unseen

data. The candidate to prune is the one with the lowest increase in GI. The stopping
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criterion for this pruning process is defined by δ, for which we will assign different values

to get different unique trees. If the increase in GI caused by a potential pruning step

exceeds this δ, that step is not considered. So, when all candidate nodes to prune have a

corresponding increase in GI that exceeds the δ, we have found our pruned DT.

So, with DTs corresponding to different depths and values for δ, we can choose one

DT to use for predicting on the test set. We choose the DT that performs best in the

validation phase.

Unlike with Binary Logit, the classifications made by using the DT can be explained

by pointing to the set of binary rules of the leaf node corresponding to the individual

observation. These rules make more sense to a nurse or doctor, assuming she has no

statistical knowledge of BL, than the effect of inputs on the odds ratio for a death in BL.

4.3.2 Random Forest

A single DT can classify the training data almost perfectly in an interpretable way, but

tends to overfit on this training data and so has much lower performance on external

data. To improve the accuracy on external data, we grow a Random Forest (RF) of DTs

(Denisko & Hoffman (2018)). This RF is a collection of DTs that are trained on randomly

bootstrapped subsets of the data and for which, when grown, at each node separately a

random subset of input variables is available to base the split upon. The size of this

random subset is equal to the square root of the total number of explanatory variables.

In the end, an observation is classified according to the majority of its classifications in all

separate DTs of the RF. We will tune the hyperparameter D, the total number of DTs in

the random forest for optimal performance and prevention of overfitting (Breiman (2001)).

Instead of majority vote classification, we will use the highest relative class frequency for

classifying an observation, averaged over all trees. This relative class frequency per tree

is the fraction of training samples with the same class as the observation, in the leaf node

where the observation is placed. (Bostrom (2007)). Hereby, a classification made in one

tree with a stronger distinction between the two classes has higher weight than in another

since it corresponds to a more ‘certain’ classification. For example, a classification in a

tree where the fraction of death cases is 0.95, has more weight in the model than where

the fraction of survivals is 0.55. With the majority vote approach, the classifications of

these two trees would have had equal weight in determining the final classification made
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by the RF. Additionally, with this relative class frequency, one could alter the threshold

above which an observation is classified as a death case from a 0.5 death frequency to

something else.

A classification made by the RF cannot be traced back to a set of rules to show how

this classification was made. Therefore, the RF is not interpretable in the sense of knowing

how an individual choice was made by the model. However, we can use the same method

as for the DT to quantify the importance of the explanatory variables used in the RF.

For a specific explanatory variable j, its importance can be expressed by the summation

over the information gain of all nodes in the RF where j is used to make a split (Menze

et al. (2009)). We compute this information gain in terms of the Gini Index (see equation

(24)) and therefore have for each j the Feature Importance

FIj =
D∑
d=1

∑
τ

∆GIj(τ, d), (25)

where d is a tree in the RF and τ a node in that tree. We use these FIs in the LOHO

approach to find variance among hospitals in relations between mortality risk and the

variables.

4.4 Validation phase

Before fitting the final model and predicting observations in the test set, we first choose

which (scaled) variables to use, how far we grow and prune the DTs, how many trees are

included in the RF, which threshold to use for getting a maximum F2-score and which

variables to use in the model. To make all these decisions, we use cross-validation on

the training set with AUPRC as performance metric, though conditioning on AUROC

> 0.5, since setting any threshold between 0 and 1 would give an uninformative AUPRC

of 0.509 (= (1 + 0.017) ∗ 0.5) and AUROC of 0.5, for a model that only predicts survivals.

Not setting AUROC > 0.5 would result in always picking this uninformative scenario,

since an AUPRC of 0.509 is very high with ≈ 1.7% of positive cases. In case of a

draw between model specifications for a method in terms of AUPRC, we select out of

these specifications the one with highest AUROC. If a draw still remains, we take the

specification with highest F2-score out of the ones with highest AUPRC and AUROC.

A potential final draw is decided by choosing the model specification that has the least

27



explanatory variables because lower dimensionality possibly causes less overfitting and

thus higher out-of-sample performance (Plastria et al. (2008)). All three metrics have a

flaw when being optimized for the DT since some specifications with only 2 leaf nodes give

only 2 unique probability estimates for a death case. This also gives only 2 thresholds

for in the curves and three ranges for sensible thresholds in finding the optimal F2-

score. Hereby the metrics attain high levels that are often not representative for the

prediction performance. Therefore, we also validate specifications for a DT conditioned

on a minimum number of 8 leaf nodes.

For the numerical variables X, we calculate squared terms, cross-terms with LOS

and cross-terms with LOS after squaring. After adding these variables, we come to

441 explanatory variables, including the dummies for missing values. This means we

have more than one variable per 6 patients. It could be beneficial for out-of-sample

performance and training speed to reduce this number and only use the most important

variables. Therefore, we have 5 strategies for variable selection of which we will use the

one that yields highest performance during validation for predicting on the test set. The

first strategy is to use all available explanatory variables.

For the other four strategies, we first prune the set of variables by looking at the

Variance-Inflation-Factors (VIF), which show the level of multicollinearity between the

explanatory variables. We again consider equation (2). When fitting this equation for

variable x by OLS, we get estimates β̂ and thereby x̂ = Xβ̂. Then, we calculate what

fraction of the variance in x is explained by the other variables X:

R2
x = 1−

∑N
i (xi − x̂i)2∑N
i (xi − x̄)2 , (26)

with N the number of observations and x̄ the average value of variable x. The VIF of x

then becomes

VIFx = 1
1−R2

x

(27)

from which it becomes clear that when more of the variance in an explanatory variable can

be explained by the other variables, its VIF increases. A VIF of 1 implies independence

with the other variables and values above 10 are considered high (Robinson & Schumacker

(2009)). High multicollinearity can bias parameters in Binary Logistic Regression and for

a RF it can cause that some sources of influence on the dependent variable are overly rep-

resented (for example if the condition of the lungs is depicted by several highly correlated
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explanatory variables), giving this source a higher chance of being present in one of the

trees than other sources, thereby making the forest less random and possibly more prone

to overfitting. In three iterations we prune the set of variables, using the whole training

sample together, so without cross-valiation. We first calculate the VIFs and exclude all

variables for which it exceeds 100, then we do a new iteration with a threshold of 20 and

a final one with a threshold of 15. Since there will be more pruning of the variable set

in strategies 2 to 5, we keep more variables than is common by using 15 as a threshold

instead of 10, otherwise we would throw away possibly powerful explanatory variables.

Our second strategy is Scaling, which means we robustly center and scale the ex-

planatory variables that remained after pruning based on VIF. We do so by, for each

variable, extracting the median and dividing by the difference between the 3rd and 1st

quantile. This makes the coefficients for Binary Logit comparable, speeds up the numeri-

cal optimization in model fitting (Wright et al. (1999)) and is required before successfully

applying Principal Components Analysis (PCA) (Wold et al. (1987).

Because of these advantages, we also use pruning the variable set based on VIF and

scaling for the remaining three strategies. This brings us to the third strategy, which is

applying PCA. This is in order to reduce the number of explanatory variables and prevent

overfitting, while we keep the relevant information in the model by constructing the prin-

cipal components (Plastria et al. (2008)). A predefined number of principal components

is constructed, which can be seen as new variables that incorporate as much variation

in the data while being independent from each other, thereby reducing the number of

variables and summarizing the relevant information from the data in uncorrelated new

variables. We lose interpretability of the relations between variables and the mortality

risk, but possibly gain out-of-sample performance due to a reduction in overfitting (Wold

et al. (1987)).

The fourth strategy is MI since we select a percentage of variables based on their

level of Mutual Information (MI). This is a score that shows how strongly the mortality

risk is related to an explanatory variable and can detect strong relationships even if not

indicated by a high covariance (Kraskov et al. (2004)). It does so by measuring how

much information two variables have about each other. The MI is calculated based on a

k-nearest-neighbours approach with k = 3, as follows:
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Algorithm 2 Mutual Information
Input: N observations with binary outcome variable y and explanatory variable x

1: for i ∈ N do
2: Nyi

: set of observations for which yn = yi, n ∈ Nyi

3: d: Distance in terms of the values of x between observation i and the 3rd-nearest-
neighbour in Nyi

4: mi: Number of observations with distance to i smaller or equal to d, in terms of
x.

5: MIi = ψ(N)− ψ (Nyi
) + ψ(3)− ψ (mi)

6: end for

7: MI(x, y) = average(MIi) =0

where ψ(·) is the digamma function (Ross (2014); Muqattash & Yahdi (2006)). To

describe this intuitively, we consider variable x for which the average number of observa-

tions (mi) that fall within the range of the distance (d) to the 3rd-nearest-neighbour is

low. This indicates that the deaths and survivals are clustered around different values of

x, which implies this variable is useful in distinguishing deaths from survivals. To get a

more robust approximation of the importance of the different variables, we calculate the

MI scores in a 5-fold cross-validation scheme in the training set, after which we average

the MI scores. To make selections of variables with this strategy, we choose p% variables

with highest MI scores, for p ∈ [5, 10, 15, 25, 50, 75].

Unfortunately, for large amounts of explanatory variables, fitting a Random Effects

model regularly runs into numerical problems. Therefore, we have final strategy Selection

which means we get the MI scores for the explanatory variables and select the 25% of

variables that have the highest average MI scores based on the cross-validation. Then we

add, in collaboration with doctors from the ICU of the Amsterdam UMC, a few variables

of high interest, replacing some variables that measure approximately the same condition

or that have a relatively low MI. The variables in this Selection can be found in Appendix

A.2.

So, we end with 5 strategies, which are all used in combination with the hyperparame-

ters to create the DT, DTC, RF and CE model that performs best in the cross-validation

phase. For RE models, only the Selection of variables is used, but the best combination

of Random Effects is based on validation performance. Note that we never use squared

terms for DTs or RFs, as these are created with binary splits and the squared terms have a

one-to-one relationship with the original numerical variables, thereby adding no predictive
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power to the DT or RF.

5 Numerical Results

First we will show the results from the validation phase. To find clues for important differ-

ences between hospitals on termination of treatment, we analyze for the RF the variation

in performance and FIs when we use the LOHO approach, after which we investigate for

the Binary Logit model the effect of treating variables as Random Effects that vary over

hospitals. Then, we present the model performances on the test set to answer the primary

research question on how well our models perform in mortality prediction. Finally, we

report the most important coefficients and Feature Importances.

5.1 Validation performance

For getting the optimal sets of hyperparameters and variables, we carried out 5-fold

cross-validation and looked at average AUPRC, while conditioning on AUROC > 0.5.

We present the average AUPRC during cross-validation for the different models and vari-

ables sets in Table 1, where the values for the DT, DTC and RF correspond to their

hyperparameters that yielded the highest score in combination with the corresponding

variable set. The maximal AUPRC per model is depicted in bold in the table and we use

the corresponding variable selection strategy for out-of-sample testing. Different sets of

variables gave exactly the same DTs, which all happened with δ = 0.03, as can be seen by

looking at the maximal AUPRC scores of 0.347. So, they all yielded the highest AUPRC

and the same AUROC and F2. Therefore, we chose from these DTs the smallest set of

variables for out-of-sample testing, which was MI with 5% of the explanatory variables.

The DT conditioned on at least 8 leaf nodes (DTC) gave 0.260 as highest AUPRC for MI

with 75% of the explanatory variables. For the RF, we had the highest AUPRC of 0.163

for the Selection of variables with 10,000 trees. For the CE model, PCA with the highest

25% of the components yielded, with a score of 0.141, the highest AUPRC. When using

Selection as variable selection strategy, highest AUPRC for DT (0.249) was yielded with

δ = 0.03 and for DTC (0.225) with δ = 0.0.
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Table 1: AUPRC from cross-validation

DT DTC RF CE

All variables .259 .259 .152 .099
Scaling .347 .250 .150 .092

PCA 5% .157 .155 .050 .026
PCA 10% .183 .183 .064 .047
PCA 15% .176 .167 .058 .058
PCA 25% .194 .194 .114 .141
PCA 50% .204 .204 .116 .132
PCA 75% .210 .210 .099 .130

MI 5% .347 .244 .124 .102
MI 10% .347 .238 .151 .137
MI 15% .347 .255 .148 .121
MI 25% .347 .245 .156 .109
MI 50% .347 .247 .151 .102
MI 75% .347 .260 .154 .097

Selection .249 .225 .163 .115

For the 30 (2 times 15) candidate RE models, we calculated the AUPRC and reported

the cross-validation results in Table 2, where the Random Effects are represented in the

following way: PI stands for Patient specific varying Intercept and HI for Hospital specific

varying Intercept. The same logic applies to LOS (HL), SOFA (HS) and SOFA∗LOS

(HX). By combining these codes, you get all specifications. The model with hospital

and patient specific varying intercept and hospital specific varying coefficient for the

interaction between LOS and SOFA (called PIHIX) yielded 0.1236 (depicted in bold) as

highest average AUPRC validation score. This is higher than for the CE and PI models,

which both yielded AUPRC scores of 0.1153. So, we use this PIHIX model in predicting

on the test set.
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Table 2: AUPRC for various RE specifications

No Patient specific varying Intercept With Patient specific varying Intercept

Model specification AUPRC Model specification AUPRC

CE .1153 PI .1153
HI .1153 PIHI .1153
HL .1148 PIHL .1147
HS .1188 PIHS .1188
HX .1234 PIHX .1233
HIL .1148 PIHIL .1146
HIS .1188 PIHIS .1188
HIX .1233 PIHIX .1236
HLS .1172 PIHLS .1173
HLX .1229 PIHLX .1227
HSX .1230 PIHSX .1232
HILS .1173 PIHILS .1170
HILX .1233 PIHILX .1228
HISX .1234 PIHISX .1235
HLSX .1230 PIHLSX .1229
HILSX .1232 PIHILSX .1227

5.2 Leave-One-Hospital-Out

We analyze the variation in hospital performance when we use the Leave-One-Hospital-

Out approach with RF. Hospital names cannot be disclosed because of privacy reasons.

As we are primarily special interested in the FIs of LOS, SOFA and their interaction, we

must use a variable set that includes these variables. This is the case for the Selection of

variables that was shown to yield highest RF validation performance in terms of AUPRC

(with 10,000 trees), so we can carry out the LOHO approach with such a RF. The full

tables with results can be found in Appendix B. We have results for 18 sets of hospitals

and 3 performance metrics. We flag a set of hospitals if two of the metrics are significantly

higher or lower than would be expected. With a significance level of α = 0.05 we apply

a multiple testing correction and thus divide α by 18 (hospital sets), by 3 (performance

metrics) and multiply by 2 (since we need at least two significant metrics) . This results

in corrected α∗ ≈ 0.0019. The applied test is the modified z-tests. As can be seen in Table

3 and Figure 3a, this results in 2 outlying hospital sets, because of relative high and low

AUROC and F2-scores. Their AUPRC is deviant, but not significantly. No other hospital

sets corresponds to two or three significantly large or small performance metrics. Leaving

hospital ‘A’ out leads to higher test set performance, indicating that using the hospital in
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training has a negative influence on the out-of-sample performance. Leaving hospital ‘G’

out gives lower performance, which suggests that the corresponding hospital is important

in training the optimal RF. It must be noted that for no single hospital the AUPRC was

significantly aberrant, although this score was highest with ‘A’ and lowest with ‘G’ left

out. The two hospitals with deviating performance scores correspond to the yellow dots

in the AUPRC-AUROC plot in Figure 3b, in which we see that the relative low and high,

yet insignificant, AUPRC scores are in line with the conclusions of significant low and

high AUROC and F2 scores.

(a) F2-AUROC (b) AUPRC-AUROC

Figure 3: RF performance with different hospitals sets

Table 3: The only hospital sets with aberrant performances

AUROC AUPRC F2-score

median 0.874 0.136 0.309

A 0.877+ 0.143 0.330+

G 0.868− 0.121 0.287−

+significantly larger with p < 0.0019
−significantly smaller with p < 0.0019

To look for possible causes of the significant aberrant performance, we first turn to

the distribution of deaths and survivals. From this analysis, as can be seen in Table 4, it

stands out that hospitals ‘A’ and ‘G’ have a much higher death rate, while also delivering

more patients than on average. This high number of dying patients could explain the lower

performance by leaving ‘G’ out, since many death cases are thereby not used in model

training, but it cannot explain why leaving ‘A’ out could lead to a higher performance.

As long as no important information is missing in the explanatory variables, so that
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Table 4: Distribution of patients

patients deaths survivals death rate
mean 124 27 97 21

A 189 64 125 34
G 156 46 110 28

the patients in this hospital are representative, there is statistical reason to believe this

aberrant performance is due to a difference in relations between explanatory variables and

mortality risk.

To see whether a statistical reason exists to further investigate potential differences in

relations between explanatory variables and mortality risk, we take a look at the variation

in FI among the three variables of special interest for the two hospital sets with aberrant

performance. We apply the same z-tests as before, but now on the FIs. Since we consider

two sets of hospitals and these three variables, we get corrected α∗ = 0.05
2∗3 ≈ 0.008. As can

be seen in Table 5, all three FIs are low with hospital ‘A’ and high with ‘G’ left out. For

the interaction term of SOFA with LOS, these differences are significant in both cases,

for SOFA only with ‘G’ and the FIs for LOS are not significantly different. As shown

in Table 6, we see that one other hospital set, ‘F’, yields lower p-values for differences in

the FIs for the interaction term. However, ‘F’ has performance metrics very close to the

medians because the z-tests on significant deviation from the median yield insignificant

p-values of 0.56, 0.99 and 0.16 for the the tests for aberrant AUROC, AUPRC and F2,

respectively. Therefore, we should not conclude that differences in FIs are necessarily

related to aberrant performance. Nevertheless, the differences in performance and FI

of SOFA ∗ LOS for ‘A’ and ‘G’ are significant and therefore these results give reason

to further investigate the causes of these dissimilarities. If the differences in performance

cannot be explained by another reason, like information in missing data, between-hospital

practice variation could be a cause. We will compare these findings with those from the

LRTs for RE models.
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Table 5: FIs for hospital sets with aberrant performances

LOS SOFA SOFA x LOS

median .0267 .0320 .0715

A .0258 .0314 .0685−

G .0275 .0340+ .0750+

+significantly larger with p < 0.008
−significantly smaller with p < 0.008

Table 6: P-values of z-tests corresponding to the 5 lowest p-values of SOFA∗LOS

LOS SOFA SOFA∗LOS AUROC AUPRC F2

F .0551 .0000* .0000* .5583 .9874 .1590
G .2762 .0012* .0001* .0000 .0137 .0000
A .2591 .3265 .0008* .0000 .2228 .0001
O .2618 .0136 .0066* .9406 .9746 .7493
B .2137 .0363 .0399 .0096 .3446 .5072

* p < 0.0019

5.3 Binary Logit Random Effects formal tests

In order to find the correct BL model specification, we run tests on the 80% training set

with the predefined Selection of variables. First, we check whether the intercept varies

significantly between individuals when treating it as a Random Effect. The corresponding

LRT yields a test statistic of 0.0 (with critical value 1.92), whereby the null hypothesis

of no patient specific random intercept cannot be rejected. Hence, we focus on the CE

model next.

Continuing with the CE model, so without Patient specific varying Intercepts, we test

which hospital specific random effect out of 4 candidates yields the highest significant

test statistic. In Table 7, we use the same codes for the different BL specifications as

in Table 2. We see that adding SOFA∗LOS increases the log-likelihood from -693.69

to -690.48 (in bold), which corresponds to a significant test statistic of 6.41 versus the

critical value of 3.16. No other HC model yielded a significant test statistic. Hence, we

conclude that including a hospital specific intercept or slope for LOS or SOFA does not

significantly improve the in-sample fit, although including the interaction term between

LOS and SOFA does. Adding a second random effect does not increase the model fit at
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all, since the log-likelihood remains -690.48. Therefore, we use this Binary Logit Hospital

specific varying interaction term model (HX) for predicting on the test set.

We thus have found a statistically significant indication of a difference among hospitals

in the relation of a variable with mortality risk, though only for one out of three variables

and not so for a varying constant. This insight on differences in the effect of SOFA∗LOS

between hospitals is in line with the results on the variance in FI for the RF. However, since

only one out of the 4 HC models improved the fit, we take this result with caution. We

will analyze out-of-sample performances for more insights to answer this second research

question on variation in the relations between variables.

Table 7: LRT results

Model Log-Likelihood Test statistic Critical value

CE -693.69 - -
PI -693.69 0.0 1.92
HI -693.69 0.0 3.16
HL -692.67 2.03 3.16
HS -692.79 1.79 3.16
HX -690.48 6.41* 3.16
HIX -690.48 0.0 7.05
HLX -690.48 0.0 7.05
HSX -690.48 0.0 7.05

* p < 0.0125

5.4 Performance on the test set

We use the models to get an indication of how well they perform in predicting mortality

and which is the best. For Binary Logit, we had to make decisions on which models to

use in prediction on the test set. We chose the CE (with tuned parameters) since we did

not reject the null hypothesis of no variation in the intercept among patients, by using

the LRT. From further LRTs, we have the HX model and from the cross-validation on

AUPRC, the PIHIX model. We need to use the CE besides these HC models in order to

see whether out-of-sample performance scores increase when using Random Effects.

In Table 8, we show performance when models are tuned on validation performance to

use the best variable set and also the performance when the Selection of variables is used.

The DT conditioned on a minimum of 8 leaf nodes with Selection of variables yields the
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highest AUPRC (0.313), but this is slightly misleading since it corresponds to a tree that

only yields probability estimates of 0 or 1. Hereby, only three evaluation points occur: the

trivial case of predicting all observations as survivals that yields perfect precision (as no

death classifications were wrong), only predicting a death for a probability estimate of 1

and predicting all observations as deaths. This causes the area under that curve to become

much larger and not representative for its corresponding prediction performance. This is

illustrated by comparing the AUPRC curves of the tuned CE and this DTC in Figure 4,

where the area under the orange line from (0,1) to (0.57,0.05) causes the overestimation.

The same problem of too few evaluation points applies to the unrestricted DT, but now

because there are only two leaf nodes. The relatively very low AUROC (0.682, 0.709) and

F2-scores (0.065, 0.186) however indicate the DTs perform inferior to the other models

and so we ignore their too high AUPRC score.

Figure 4: PR curves for CE and DTC

Then, for the remaining models, we look at the highest performance scores (in bold).

We see that the CE model with 25% of its most important Principal Components performs

best in our metric of highest interest with an AUPRC of 0.142. When the CE model is

trained with the Selection of variables (in order to be comparable with the Random Effects

models), the AUPRC radically drops to 0.123, though the AUROC and F2 increase.

This CE with Selection is slightly outperformed by the HX and PIHIX only in terms of

AUROC (0.885 versus 881). This AUROC score of HX (and PIHIX) is the highest of all

models used, which also reflects the in-sample LRT result that the Binary Logit model is

significantly improved by making the intercept vary between hospitals. Since the AUPRC

38



and F2 do not increase when Binary Logit is augmented to a model with Random Effects,

we cannot say the potential differences in the relation between the mortality hazard and

the interaction of LOS with SOFA result in aberrant performance.

We see that the RF performs best in terms of F2 score. So, when looking at the RF,

CE and HX or PIHIX, we see that each model performs best in one of the three metrics,

as is displayed in Figure 5. This shows that their performance is similar, although the

CE performs best for our main metric, the AUPRC.

Table 8: Performance on test set

Tuned hyperparameters Selection of variables
AUROC AUPRC F2-score AUROC AUPRC F2-score

DT 0.682 0.292 0.065 0.682 0.292 0.065
DTC 0.709 0.313 0.186 0.688 0.289 0.174

RF 0.874 0.137 0.307 0.874 0.137 0.307
CE 0.840 0.142 0.269 0.881 0.123 0.272
HX 0.885 0.122 0.274

PIHIX 0.885 0.122 0.272

(a) AUROC (b) AUPRC

(c) F2

Figure 5: Performance on the test set
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5.5 Coefficient estimates and Feature Importances

We want to provide opportunities for clinicians to compare their best practices in assessing

the health status, mortality risk and recovery potential of patients with the variables in

our models that have the highest predictive and explanatory power. Therefore, we look

at all the absolute values of the coefficients for the Binary Logit models, trained on scaled

data, and Feature Importance scores of the tree based models. In order to compare the

importances of these variables between models, we use those models trained with the

Selection of variables. The extensive tables with FIs, absolute coefficients and ranks for

the most important variables can be found in Appendix B, whereas we only show the

most important information in this section of the main paper.

The Binary Logit models used in predicting on the test set were all trained on robustly

standardized data. Therefore, we can roughly compare the importances of different ex-

planatory variables by looking at the absolute values of their coefficients (Menard (2011)).

The regular DT only has one split, namely on the partial pressure of carbon dioxide in

arterial blood (pco2 arterial). Since the Binary Logit models have the squared terms of

age and BMI in contrast to the tree based models, the absolute values of their own and

squared coefficients and FIs cannot be used for comparison. For each model, we ranked

the importances of the explanatory variables. The binary variables (like dummies) yielded

very low FIs for the tree based models, causing discrepancies with the three BL models.

For these BL models, we have that the ranks of absolute values of coefficients are almost

equal. Therefore, In Table 9 and Figure 7, we show the ten most important variables

for the DTC, RF and HX, as it was the correct model after the LRTs. We highlighted

the variables of RF to see the differences with the other 2 models. In the top ten most

important variables for DTC, 6 correspond to the top ten from the RF. For the HX, only

4 variables from the RF appear. The HX has many dummy variables for missing values in

the top 10, indicating that this information of missing values is prominently used in the

model fit. This suggests vital information is missing in the data, possibly influencing the

results in our research. The variable for which we found significant variation over hospi-

tals in terms of FIs, the interaction term between SOFA and LOS, is the most important

one for RF and also in the top 10 for DTC and HX. Additionally, the SOFA score itself

is also in the top 10 of RF and HX, affirming the educated guess that SOFA was of high

importance. On the other hand, the LOS is only found in the top ten for the DTC, but
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Table 9: Variable importances

DTC RF HX

pCO2 SOFA*LOS O2 Flow Dummy
SOFA*LOS pCO2 GCS motor
Leukocytes FiO2 Lung Compliance Dynamic Dummy
Blood pressure paO2/FiO2 Peak Pressure Dummy
FiO2 Driving Pressure FiO2
Driving Pressure Blood pressure SOFA
paO2/FiO2 SOFA Minute Volume
LOS Pressure Above Peep Heart Rate
Phosphate GCS motor Pressure Above Peep Dummy
C reactive protein Leukocytes SOFA*LOS

drops to the 40th and 47th rank out of 48 variables for RF and HX. However, it must be

noted that the interaction with SOFA can have a diminishing effect on the importance of

LOS. So, we must say: given the interaction of SOFA with LOS, the LOS has a relative

tiny importance for model fit.

To see which variables are the most important for both RF and HX, we now look at

the other two variables present in both top ten lists. The first is the Glasgow Coma Scale

(GCS) Motor, which measures the patient’s level of motor responses to test the state

of the nervous system (Teasdale & Jennett (1974). The second variable is the fraction

of inspired oxygen (FiO2), which is increased by doctors when patients have an oxygen

deficit in their blood. Another variable scores very high for both DTC and RF, namely

the partial pressure of carbon dioxide in the arterial blood (pCO2).

After computing the conditional modes of the random interaction SOFA∗LOS for each

hospital in the HX and PIHIX model, which are almost equal for the two models, we find

that hospital ‘I’ has the highest conditional mode (-0.352) for the interaction term in

absolute values. To put this in perspective, the estimated coefficient for the interaction is

0.424. We see the variation in hospital specific effects, which are the conditional modes

plus the estimated coefficient, in Figure 6, with orange lines representing the estimated

coefficient plus and minus the standard deviation of the Random Effect. The question re-

mains whether this variation is caused by varying perceptions between doctors in different

hospitals or by something else, like data collection differences between hospitals.

When looking at the hospitals that stood out with aberrant performance for the LOHO

approach with RF, ‘A’ and ‘G’, we see that they yield the 4th (-0.218) and 5th (0.137)
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highest absolute conditional mode out of 18 hospitals, implying a lot of variation for these

hospitals. This consistency with the Random Effects suggests that the LOHO approach

with FIs is capable of identifying hospitals with aberrant relations between variables

and the outcome, but further research must show whether the approach is consistent

in identifying these clusters (e.g. hospitals) that cause the significant variation in the

importance of the variable of interest, such as the interaction of LOS with SOFA is in our

case.

Figure 6: Hospital specific Random Effect for SOFA ∗ LOS

(a) Feature Importances DTC (b) Feature Importances RF

(c) Absolute coefficients HX

Figure 7: Importances of variables

6 Conclusion

The Binary Logit models and Random Forest performed well, we found some statistical

leads for further investigation of between-hospital differences in the relations of explana-
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tory variables with the 24-hour ahead mortality hazard and we indicated the most im-

portant variables in fitting the models. In this concluding section, we first extensively

answer the three research questions stated in the introduction. Secondly, we discuss the

limitations to this research and finally, we give suggestions for further research. Through

these steps, we touch upon the question of how robust the results are.

6.1 Answers to research questions

The first research question, ‘How can statistical modelling and Machine Learning be

used to make accurate and interpretable predictions on the dynamic mortality hazard

of Covid-19 patients at the Intensive Care Unit?’, has two components: accuracy and

interpretability. The model most easy to interpret because of the binary decision rules, the

DT, performs inferior to the Binary Logit models and RF in terms of predicting deaths and

survivals in the test set. We have seen that in terms of our primary performance metric,

AUPRC, the CE model performs best (0.142) when using the first 25% of the components

resulting from PCA. This 0.142 score indicates the model performs about eight times

better than a random guess since the fraction of deaths among all observations (0.017) is

about eight times smaller. Though the CE performs best in AUPRC, the RF does not

perform much less (0.137) and it even surpasses the CE model in terms of AUROC (0.878

versus 0.840) and F2-score (0.307 versus 0.269). Although the RF cannot be used to

explain individual classifications, it is interpretable in the sense that doctors can see what

the most important variables are for making classifications, through the FI scores. As

the CE is also interpretable at the level of explaining how, for an individual observation,

input variables lead to the made classification, there seems no specific reason to use the

less interpretable RF in practice. We extended the CE model by adding the interaction of

LOS with SOFA as Random Effect that varies per hospital. Though this gave a significant

increase in terms of in-sample fit, there was no increase in terms of AUPRC or F2-score

and only a small increase in AUROC for out-of-sample performance. So, we see that

the AUPRC, AUROC and F2-score were highest for three different models. Therefore, a

conclusion on which model is clearly the best performing one, cannot be robustly made.

The Random Effect was made interpretable by calculating the conditional modes of the

Random Effect for each hospital, whereby the variance in relation between this interaction

and the mortality hazard can be measured and the individual classification be understood.
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So, the interpretable BL models perform very well and similar to the uninterpretable RF,

but the DT, based on very easy to interpret binary decision rules, clearly underperforms.

We now focus on the second research question: ‘What is the between-hospital dif-

ference in model performance and estimated relations between mortality hazard and key

variables?’ We looked for statistical evidence to answer the question by analyzing differ-

ences between hospitals in the coefficients and importance of the LOS, SOFA score and

their interaction. We found a significant increase in in-sample fit when making this in-

teraction term a Random Effect that differs per hospital. If hospitals differed in deciding

to stop treatment, including variation on the relation between the mortality hazard, due

to treatment termination, and the interaction term of the stay duration (LOS) at the

ICU with the approximation of health status (SOFA) would have to lead to higher perfor-

mance. This is not the case for out-of-sample performance in terms of AUPRC. Therefore,

we conclude that no solid statistical argument can be made, based on solely the Random

Effects models performances, for the existence of differences in how staff of different hospi-

tals decide to stop treatment. The LOHO approach also indicated aberrant performance

for two hospitals, which was found by ignoring these hospital in the training phase. These

two hospitals also corresponded to significant differences in the Feature Importance of the

interaction of LOS and SOFA among hospitals. This could suggest that between-hospital

differences exist in the relation between mortality risk and the interaction term, but some

other objections exist. First of all, a significant aberrant Feature Importance does not

imply an aberrant performance, since the hospital with the lowest p-value in the test of

aberrant FIs, had an average performance. Secondly, the aberrant FI could be caused by

differences in the data between hospitals. For example, some hospitals have much more

death cases than other hospitals. Though we found significant aberrant FIs and that in-

sample performance increases due to using Random Effects, this is not sufficient to draw

a solid conclusion, especially since the out-of-sample performances of the RE models do

not reflect this hypothesis of varying relations among hospitals between variables and

mortality hazard. Therefore, more research on these varying relations should be done to

verify the suggested differences among hospitals in relation of the interaction term with

mortality hazard.

Lastly, we look at the importances of the variables in model fitting so that clinicians

can compare their ways to assess a patient’s mortality risk with that of the models. This is
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done by answering the third research question: ‘Which variables have the most predictive

and explanatory power in our statistical and Machine Learning models?’ We saw these

variables were the SOFA score, its interaction term with the LOS, the fraction of inspired

oxygen, the Glasgow Coma Scale Motor score and the partial pressure of carbon dioxide,

though this last one did not end in the top ten of most important variables for the BL

models. The dummy variables that indicate whether a value is missing were important in

fitting the BL models. This shows that important information was missing in the data,

which confirms our choice of assuming they were not missing at random and also not

throwing away these data points. On the other hand, it also implies all results become

less reliable because of missing variables for a fraction of the observations. Perhaps the

results would have been different if no data was missing. In particular, the between-

hospital variations found by LOHO and RE models could (partially) be due to missing

data.

6.2 Limitations

The research has several limitations that could have a negative effect on the prediction

performance, ability to answer the research questions and correctly comparing the models.

The first is using two different optimizers for the CE and Random Effects models, namely

Newton-CG and Nelder-Mead. This was caused by the fact of having to use two different

Python packages (Scikit-learn and Pymer) for model fitting. Hereby, it might be difficult

to perfectly compare their performances, especially since the optimizers have different

stopping criteria and one iteration in the Newton-CG is something different than an

iteration in the Nelder-Mead algorithm. The CE model stopped fitting before reaching

the 10,000 iterations, but the process of fitting the RE models had to be stopped at

the chosen maximum of 10,000 iterations for Nelder-Mead. It was unclear how close

both optimizers were to reaching the maximum likelihood. Being more precise in setting

the stopping criteria could create more equality between the CE and RE models. One

example is to only stop when the increase in likelihood falls below a certain threshold.

Since the optimization for Newton-CG stopped when the size of the gradient fell below

the threshold, an appropriate threshold for the relative change in parameter values for the

Nelder-Mead could be chosen to create equality between the two optimization methods.

Another option is to give the model a fixed amount of time to fit.
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For these RE models, we assumed that the random effects followed a normal distribu-

tion. However, the student’s t or gamma distribution could have been more appropriate,

though no specific reason exists to doubt the validity of the normal distribution.

Next, we chose to deal with the problem of imbalanced data by sampling for each

individual the final day at the hospital and another random day. This has some potential

negative effects on the model fit, like that the health status of a patient at the last day

in the ICU is not representative for the other days. Also, with about 13 observations per

patient in the original data, we throw away many observations in this scenario, namely

about 85% (= 1 − (2/13)). Other sampling scenarios could be tried, like sampling a

few additional other random days or using all days and then oversampling from the

observations that correspond to deaths. Using cross-validation with the training data

could lead to finding the optimal sampling scenario. Also, using a different sampling

scenario should be tried to check the robustness of the results and conclusions in this

research.

About 22% of deaths on 2245 patients with daily observations provides abundant data

for model fitting and testing, whereby the conclusions of high AUPRC performance for

BL and RF are robust. However, when investigating differences per hospital, only about

27 deaths and 96 survivals are available per hospital, which is sparse. On top of that, the

number of observations and distribution of deaths differs per hospital. Hereby it could be

harder to find a significant difference with the LOHO in performance or FI for a hospital

with a low number of patients or low fraction of deaths. Since if such a difference for

a ‘small’ hospital exists, the test might lack the power to detect it. Therefore, a fine-

tuned sampling scheme should be used that balances out the observations and deaths per

hospital, such that hospital variations can be evaluated in a better way. However, this

would imply oversampling, undersampling or deleting hospitals, which all have drawbacks

on their own, as they imply throwing away data or could cause biases.

Another problem remains with the data since many variables come from manual regis-

trations, which are prone to human errors. Although a team of doctors and programmers

did clean the dataset and we used boundaries to truncate strange values in this research,

more extensive cleaning of the dataset could make the results more accurate. Addition-

ally, data was missing, possibly influencing the conclusions in this research. For example,

missing data could have caused the significant variation in performance in the LOHO
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approach.

Finally, the DT was hard to tune for a couple of reasons. First of all, the hyperparam-

eters for maximum depth or the cost complexity pruning constant δ led to small trees of

one split or huge trees. We conditioned on a minimum of leaves, but this could be done

more sophisticated to get better DTs, for example by taking a set of conditions and using

cross-validation to pick the best. Additionally, the AUPRC was not very appropriate for

the DT, since it gave too high scores for trees with only a few unique probability esti-

mates. The calculation of the AUPRC could be made robust to the case of only a few

unique probability estimates, for example by considering the Precision to be zero instead

of one when no positive (death) classification is made. The AUROC and F2 are also not

optimal, but are possibly better for getting the best performing DT. Perhaps a metric

can be used that was not presented in this research.

6.3 Further research

In this study, we considered making predictions per day. The data allows to increase this

frequency in further research, which would have to involve modelling the variability in

predictions caused by the time of day as additional factor. Based on our conclusions and

limitations, we suggest a few other topics for further research. The first is to improve the

way of tuning the DT, for example by validating on conditions for the DT specification

or using a different performance metric in model validation. The second is to see whether

a RF, CE or RE model performs best when (almost) no data is missing. On top of that,

other Machine Learning methods, like SVM and Neural Networks, could be used to see

whether they outperform the models used in this research.

Modelling the Random Effects to follow a student’s t or gamma distribution could

be tried to improve the RE model performance and more accurately identify between-

hospital variation in coefficient estimates. Also, using different variables, like the FiO2,

as candidate Random Effects could give new insights in the variation of relations between

mortality hazard and explanatory variables.

As another method to find these variations, the LOHO approach should be further

developed and refined on new data. Additionally, repeating the research after balancing

out the number of patients and death cases among hospitals could alter the conclusions

from the LOHO approach, leading to new insights. To draw fairer conclusions on the dif-
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ferences in performance between CE and RE models, a new research with better stopping

criteria must be conducted or the same optimization algorithm should be used for all BL

models. Connected to that, investigating the influence of differences in stopping criteria

on the performances of CE and RE models might be useful to show which criteria are the

most appropriate and how robust our results are with the current stopping criteria.

In any case, building dynamic mortality hazard models for ICUs from several different

countries would be interesting, as it could shed light on possible differences between

countries on how they deal with patients at the ICU. Such a research could also include the

LOHO approach to test its value and be used for trying out other methods to investigate

heterogeneity in relations between the outcome and explanatory variables.
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Appendices

A Variables

A.1 All explanatory variables

[’los’, ’female’, ’age’, ’bmi’, ’weight’, ’height’, ’acute kidney injury’, ’cardiovascular insufficiency’,

’chronic dialysis’, ’chronic renal insufficiency’, ’cirrhosis’,

’copd’, ’diabetes’, ’hematologic malignancy’, ’immunodeficiency’,

’neoplasm’, ’respiratory insufficiency’, ’acute kidney injury nan’,

’cardiovascular insufficiency nan’, ’chronic dialysis nan’,

’chronic renal insufficiency nan’, ’cirrhosis nan’, ’copd nan’,

’diabetes nan’, ’hematologic malignancy nan’,

’immunodeficiency nan’, ’neoplasm nan’,

’respiratory insufficiency nan’, ’apache age score’,

’apache blood pressure score’, ’apache creatinine score’,

’apache heart rate score’, ’apache hematocrit score’,

’apache leukocytes score’, ’apache operative score’,

’apache oxygenation score’, ’apache ph score’,

’apache potassium score’, ’apache respiration rate score’,

’apache sodium score’, ’apache temperature score’,

’apache partial’, ’arterial blood pressure diastolic’,

’arterial blood pressure mean’, ’arterial blood pressure systolic’,

’heart rate’, ’activated partial thromboplastin time’,

’alanine transaminase’, ’albumin’, ’alkaline phosphatase’,

’aspartate transaminase’, ’base excess’, ’bicarbonate unspecified’,

’bilirubin total’, ’c reactive protein’, ’calcium’,

’calcium ionised’, ’chloride’, ’creatine kinase’, ’creatinine’,

’d dimer’, ’eosinophils’, ’eosinophils percentage’,

’estimated glomerular filtration rate’,

’gamma glutamyl transferase’, ’glucose’, ’hematocrit’,

’hemoglobin’, ’lactate dehydrogenase’, ’leukocytes’, ’lymphocytes’,

’lymphocytes percentage’, ’magnesium’, ’monocytes’,
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’monocytes percentage’, ’pco2 arterial’, ’ph arterial’,

’phosphate’, ’po2 arterial’, ’potassium’, ’so2 arterial’, ’sodium’,

’thrombocytes’, ’ureum’, ’ureum over creatinine’, ’intubated’,

’intubated cum’, ’driving pressure’, ’end tidal co2’, ’fio2’,

’lung compliance dynamic’, ’lung compliance static’,

’mean pressure’, ’mechanical power’, ’mechanical power per kg’,

’minute volume’, ’minute volume derived’, ’o2 flow’,

’o2 saturation’, ’pao2 over fio2’, ’peak pressure’, ’peep’,

’pressure above peep’, ’rapid shallow breathing index’,

’respiratory rate measured’,

’respiratory rate measured ventilator’, ’respiratory rate set’,

’tidal volume’, ’tidal volume per kg’, ’ventilatory ratio’,

’glasgow coma scale eye’, ’glasgow coma scale motor’,

’glasgow coma scale total’, ’glasgow coma scale verbal’,

’temperature’, ’adjusted sofa cardiovascular’,

’adjusted sofa coagulation’, ’adjusted sofa liver’,

’adjusted sofa nervous’, ’adjusted sofa renal’,

’adjusted sofa respiratory’, ’adjusted sofa total’,

’adjusted sofa total partial’,

’arterial blood pressure diastolic 0dum’,

’arterial blood pressure mean 0dum’,

’arterial blood pressure systolic 0dum’, ’heart rate 0dum’,

’activated partial thromboplastin time 0dum’,

’alanine transaminase 0dum’, ’albumin 0dum’,

’alkaline phosphatase 0dum’, ’aspartate transaminase 0dum’,

’base excess 0dum’, ’bicarbonate unspecified 0dum’,

’bilirubin total 0dum’, ’c reactive protein 0dum’, ’calcium 0dum’,

’calcium ionised 0dum’, ’chloride 0dum’, ’creatine kinase 0dum’,

’creatinine 0dum’, ’d dimer 0dum’, ’eosinophils 0dum’,

’eosinophils percentage 0dum’,

’estimated glomerular filtration rate 0dum’,

’gamma glutamyl transferase 0dum’, ’glucose 0dum’,
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’hematocrit 0dum’, ’hemoglobin 0dum’, ’lactate dehydrogenase 0dum’,

’leukocytes 0dum’, ’lymphocytes 0dum’,

’lymphocytes percentage 0dum’, ’magnesium 0dum’, ’monocytes 0dum’,

’monocytes percentage 0dum’, ’pco2 arterial 0dum’,

’ph arterial 0dum’, ’phosphate 0dum’, ’po2 arterial 0dum’,

’potassium 0dum’, ’so2 arterial 0dum’, ’sodium 0dum’,

’thrombocytes 0dum’, ’ureum 0dum’, ’ureum over creatinine 0dum’,

’driving pressure 0dum’, ’end tidal co2 0dum’, ’fio2 0dum’,

’lung compliance dynamic 0dum’, ’lung compliance static 0dum’,

’mean pressure 0dum’, ’mechanical power 0dum’,

’mechanical power per kg 0dum’, ’minute volume 0dum’,

’minute volume derived 0dum’, ’o2 flow 0dum’, ’o2 saturation 0dum’,

’pao2 over fio2 0dum’, ’peak pressure 0dum’, ’peep 0dum’,

’pressure above peep 0dum’, ’rapid shallow breathing index 0dum’,

’respiratory rate measured 0dum’,

’respiratory rate measured ventilator 0dum’,

’respiratory rate set 0dum’, ’tidal volume 0dum’,

’tidal volume per kg 0dum’, ’ventilatory ratio 0dum’,

’glasgow coma scale eye 0dum’, ’glasgow coma scale motor 0dum’,

’glasgow coma scale total 0dum’, ’glasgow coma scale verbal 0dum’,

’temperature 0dum’, ’adjusted sofa cardiovascular 0dum’,

’adjusted sofa coagulation 0dum’, ’adjusted sofa liver 0dum’,

’adjusted sofa nervous 0dum’, ’adjusted sofa renal 0dum’,

’adjusted sofa respiratory 0dum’, ’adjusted sofa total 0dum’,

’adjusted sofa total partial 0dum’, ’med antibiotics’,

’med antiinfectives and antiseptics for local oral treatment’,

’med carbohydrates’, ’med ceftriaxone’, ’med ciprofloxacin’,

’med clonidine’, ’med dalteparin’, ’med dexamethasone’,

’med electrolytes’, ’med furosemide’, ’med general nutrients’,

’med haloperidol’, ’med insulin aspart’, ’med macrogol’,

’med macrogol combinations’, ’med magnesium sulfate’,

’med metoclopramide’, ’med metoprolol’, ’med midazolam’,

58



’med morphine’, ’med nadroparin’, ’med norepinephrine’,

’med oxazepam’, ’med pantoprazole’, ’med paracetamol’,

’med potassium chloride’, ’med propofol’, ’med remifentanil’,

’med rocuronium bromide’, ’med salbutamol and ipratropium bromide’,

’med sodium chloride’, ’med sodium phosphate’, ’med sufentanil’,

’med antibiotics 0dum’,

’med antiinfectives and antiseptics for local oral treatment 0dum’,

’med carbohydrates 0dum’, ’med ceftriaxone 0dum’,

’med ciprofloxacin 0dum’, ’med clonidine 0dum’,

’med dalteparin 0dum’, ’med dexamethasone 0dum’,

’med electrolytes 0dum’, ’med furosemide 0dum’,

’med general nutrients 0dum’, ’med haloperidol 0dum’,

’med insulin aspart 0dum’, ’med macrogol 0dum’,

’med macrogol combinations 0dum’, ’med magnesium sulfate 0dum’,

’med metoclopramide 0dum’, ’med metoprolol 0dum’,

’med midazolam 0dum’, ’med morphine 0dum’, ’med nadroparin 0dum’,

’med norepinephrine 0dum’, ’med oxazepam 0dum’,

’med pantoprazole 0dum’, ’med paracetamol 0dum’,

’med potassium chloride 0dum’, ’med propofol 0dum’,

’med remifentanil 0dum’, ’med rocuronium bromide 0dum’,

’med salbutamol and ipratropium bromide 0dum’,

’med sodium chloride 0dum’, ’med sodium phosphate 0dum’,

’med sufentanil 0dum’, ’prone position only’,

’supine position only’, ’both positions today’, ’no info position’,

’no hymo info’, ’no labo info’, ’no resp info’,

’no vent info though intubated’, ’no neur info’, ’no temp info’,

’no med info’, ’no sofa info’, ’los p2’, ’age p2’, ’bmi p2’,

’weight p2’, ’height p2’, ’apache partial p2’,

’arterial blood pressure diastolic p2’,

’arterial blood pressure mean p2’,

’arterial blood pressure systolic p2’, ’heart rate p2’,

’activated partial thromboplastin time p2’,
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’alanine transaminase p2’, ’albumin p2’, ’alkaline phosphatase p2’,

’aspartate transaminase p2’, ’base excess p2’,

’bicarbonate unspecified p2’, ’bilirubin total p2’,

’c reactive protein p2’, ’calcium p2’, ’calcium ionised p2’,

’chloride p2’, ’creatine kinase p2’, ’creatinine p2’, ’d dimer p2’,

’eosinophils p2’, ’eosinophils percentage p2’,

’estimated glomerular filtration rate p2’,

’gamma glutamyl transferase p2’, ’glucose p2’, ’hematocrit p2’,

’hemoglobin p2’, ’lactate dehydrogenase p2’, ’leukocytes p2’,

’lymphocytes p2’, ’lymphocytes percentage p2’, ’magnesium p2’,

’monocytes p2’, ’monocytes percentage p2’, ’pco2 arterial p2’,

’ph arterial p2’, ’phosphate p2’, ’po2 arterial p2’,

’potassium p2’, ’so2 arterial p2’, ’sodium p2’, ’thrombocytes p2’,

’ureum p2’, ’ureum over creatinine p2’, ’intubated cum p2’,

’driving pressure p2’, ’end tidal co2 p2’, ’fio2 p2’,

’lung compliance dynamic p2’, ’lung compliance static p2’,

’mean pressure p2’, ’mechanical power p2’,

’mechanical power per kg p2’, ’minute volume p2’,

’minute volume derived p2’, ’o2 flow p2’, ’o2 saturation p2’,

’pao2 over fio2 p2’, ’peak pressure p2’, ’peep p2’,

’pressure above peep p2’, ’rapid shallow breathing index p2’,

’respiratory rate measured p2’,

’respiratory rate measured ventilator p2’,

’respiratory rate set p2’, ’tidal volume p2’,

’tidal volume per kg p2’, ’ventilatory ratio p2’,

’glasgow coma scale eye p2’, ’glasgow coma scale motor p2’,

’glasgow coma scale total p2’, ’glasgow coma scale verbal p2’,

’temperature p2’, ’adjusted sofa total partial p2’,

’med antibiotics p2’,

’med antiinfectives and antiseptics for local oral treatment p2’,

’med carbohydrates p2’, ’med ceftriaxone p2’,

’med ciprofloxacin p2’, ’med clonidine p2’, ’med dalteparin p2’,
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’med dexamethasone p2’, ’med electrolytes p2’, ’med furosemide p2’,

’med general nutrients p2’, ’med haloperidol p2’,

’med insulin aspart p2’, ’med macrogol p2’,

’med macrogol combinations p2’, ’med magnesium sulfate p2’,

’med metoclopramide p2’, ’med metoprolol p2’, ’med midazolam p2’,

’med morphine p2’, ’med nadroparin p2’, ’med norepinephrine p2’,

’med oxazepam p2’, ’med pantoprazole p2’, ’med paracetamol p2’,

’med potassium chloride p2’, ’med propofol p2’,

’med remifentanil p2’, ’med rocuronium bromide p2’,

’med salbutamol and ipratropium bromide p2’,

’med sodium chloride p2’, ’med sodium phosphate p2’,

’med sufentanil p2’, ’age losx’, ’age p2 losx’, ’female losx’,

’apache partial losx’, ’apache partial p2 losx’,

’arterial blood pressure diastolic losx’,

’arterial blood pressure diastolic p2 losx’,

’arterial blood pressure mean losx’,

’arterial blood pressure mean p2 losx’,

’arterial blood pressure systolic losx’,

’arterial blood pressure systolic p2 losx’, ’heart rate losx’,

’heart rate p2 losx’, ’ph arterial losx’, ’ph arterial p2 losx’,

’o2 saturation losx’, ’o2 saturation p2 losx’, ’so2 arterial losx’,

’so2 arterial p2 losx’, ’fio2 losx’, ’fio2 p2 losx’,

’pao2 over fio2 losx’, ’pao2 over fio2 p2 losx’, ’ureum losx’,

’ureum p2 losx’, ’creatinine losx’, ’creatinine p2 losx’,

’temperature losx’, ’temperature p2 losx’,

’adjusted sofa total partial losx’,

’adjusted sofa total partial p2 losx’, ’potassium losx’,

’potassium p2 losx’, ’po2 arterial losx’, ’po2 arterial p2 losx’,

’glasgow coma scale motor losx’,

’glasgow coma scale motor p2 losx’, ’glasgow coma scale eye losx’,

’glasgow coma scale eye p2 losx’, ’thrombocytes losx’,

’thrombocytes p2 losx’, ’lactate dehydrogenase losx’,
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’lactate dehydrogenase p2 losx’, ’pco2 arterial losx’,

’pco2 arterial p2 losx’, ’leukocytes losx’, ’leukocytes p2 losx’,

’mechanical power losx’, ’mechanical power p2 losx’]

A.2 Selection of variables

[’pco2 arterial’, ’driving pressure’, ’lung compliance static’, ’fio2’, ’pressure above peep’,

’glasgow coma scale motor’, ’arterial blood pressure diastolic’, ’mechanical power per kg’,

’minute volume’, ’estimated glomerular filtration rate’, ’pao2 over fio2’, ’glasgow coma scale verbal’,

’peak pressure 0dum’, ’lung compliance dynamic’, ’tidal volume per kg’, ’leukocytes’, ’potas-

sium’, ’peep’, ’pressure above peep 0dum’, ’base excess’, ’albumin’, ’intubated cum’, ’o2 flow’,

’ureum’, ’los’, ’med norepinephrine’, ’alkaline phosphatase’, ’phosphate’, ’magnesium’,

’intubated’, ’heart rate’, ’med sodium chloride’, ’med norepinephrine 0dum’,

’lung compliance dynamic 0dum’, ’lymphocytes percentage’, ’activated partial thromboplastin time’,

’c reactive protein’, ’respiratory rate measured ventilator 0dum’, ’rapid shallow breathing index’,

’estimated glomerular filtration rate 0dum’, ’age’, ’respiratory rate measured’, ’med propofol’,

’creatinine’, ’so2 arterial 0dum’, ’o2 flow 0dum’, ’adjusted sofa total partial’, ’female’, ’bmi’,

’adjusted sofa total partial losx’, ’age p2’, ’bmi p2’]

62



B Tables

Table A1: Hospital performance variation with RF

AUROC AUPRC F2-score

A 0.877321 0.142951 0.329912
B 0.872445 0.141321 0.305556
C 0.873680 0.135605 0.307798
D 0.874680 0.136314 0.310345
E 0.874938 0.126531 0.316804
F 0.874380 0.135792 0.316537
G 0.868200 0.121034 0.287206
H 0.874773 0.136904 0.311203
I 0.873771 0.141063 0.313808
J 0.873462 0.137996 0.303644
K 0.874051 0.127706 0.296610
L 0.872477 0.126359 0.312500

M 0.874487 0.141974 0.312935
N 0.872893 0.126659 0.300401
O 0.874069 0.135888 0.307377
P 0.874018 0.127638 0.302198
Q 0.872671 0.124822 0.292588
R 0.874029 0.135527 0.314246

63



Table A2: Variable importance in terms of FI and absolute coefficient

DT DTC RF CE HX PIHIX

o2 flow 0dum 0.0 0.000 0.001 1.086 1.086 1.125
glasgow coma scale motor 0.0 0.018 0.028 -1.008 -1.008 -0.985

lung compliance dynamic 0dum 0.0 0.000 0.002 -0.971 -0.971 -0.970
peak pressure 0dum 0.0 0.010 0.006 -0.966 -0.966 -0.871

fio2 0.0 0.057 0.045 0.635 0.635 0.645
adjusted sofa total partial 0.0 0.019 0.032 -0.548 -0.548 -0.606

heart rate 0.0 0.023 0.026 0.504 0.504 0.496
minute volume 0.0 0.017 0.024 0.516 0.516 0.493

pressure above peep 0dum 0.0 0.000 0.002 -0.503 -0.503 -0.463
adjusted sofa total partial losx 0.0 0.082 0.072 0.424 0.424 0.444

albumin 0.0 0.008 0.020 -0.371 -0.371 -0.415
pao2 over fio2 0.0 0.033 0.042 -0.348 -0.348 -0.369

respiratory rate measured ventilator 0dum 0.0 0.000 0.002 0.373 0.373 0.357
peep 0.0 0.011 0.017 -0.393 -0.393 -0.342

lung compliance dynamic 0.0 0.010 0.010 -0.320 -0.320 -0.335
pco2 arterial 1.0 0.176 0.064 0.305 0.305 0.309

estimated glomerular filtration rate 0dum 0.0 0.004 0.004 -0.301 -0.301 -0.307
med norepinephrine 0dum 0.0 0.007 0.003 -0.243 -0.243 -0.299

estimated glomerular filtration rate 0.0 0.016 0.019 -0.314 -0.314 -0.290
so2 arterial 0dum 0.0 0.000 0.002 0.367 0.367 0.262

arterial blood pressure diastolic 0.0 0.062 0.035 -0.264 -0.264 -0.260
glasgow coma scale verbal 0.0 0.018 0.015 0.311 0.311 0.234

tidal volume per kg 0.0 0.000 0.015 -0.252 -0.252 -0.231
leukocytes 0.0 0.067 0.027 0.223 0.223 0.225
intubated 0.0 0.000 0.002 -0.247 -0.247 -0.212

ureum 0.0 0.022 0.027 0.133 0.133 0.153
intubated cum 0.0 0.020 0.026 0.138 0.138 0.130

magnesium 0.0 0.018 0.020 -0.101 -0.101 -0.104
activated partial thromboplastin time 0.0 0.015 0.019 0.107 0.107 0.098

driving pressure 0.0 0.034 0.041 -0.105 -0.105 -0.094
lung compliance static 0.0 0.004 0.012 -0.085 -0.085 -0.084

phosphate 0.0 0.025 0.024 0.074 0.074 0.068
respiratory rate measured 0.0 0.021 0.023 0.063 0.063 0.064

creatinine 0.0 0.003 0.019 -0.065 -0.065 -0.056
c reactive protein 0.0 0.024 0.020 0.074 0.074 0.055

pressure above peep 0.0 0.011 0.030 0.051 0.051 0.054
base excess 0.0 0.017 0.022 -0.034 -0.034 -0.041

female 0.0 0.000 0.002 0.026 0.026 0.029
med propofol 0.0 0.002 0.009 -0.032 -0.032 -0.026

los 0.0 0.029 0.027 0.001 0.001 0.022
o2 flow 0.0 0.002 0.004 0.018 0.018 0.019

mechanical power per kg 0.0 0.005 0.021 -0.002 -0.002 -0.019
med sodium chloride 0.0 0.008 0.006 -0.021 -0.021 -0.016

potassium 0.0 0.011 0.021 0.008 0.008 0.014
lymphocytes percentage 0.0 0.016 0.017 -0.019 -0.019 -0.011

rapid shallow breathing index 0.0 0.020 0.010 -0.003 -0.003 -0.003
med norepinephrine 0.0 0.002 0.022 0.001 0.001 0.002
alkaline phosphatase 0.0 0.014 0.018 0.007 0.007 -0.002
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Table A3: Ranks of variable importance

DTC RF CE HX PIHIX

o2 flow 0dum 46 48 1 1 1
glasgow coma scale motor 17 9 2 2 2

lung compliance dynamic 0dum 41 44 3 3 3
peak pressure 0dum 29 38 4 4 4

fio2 5 3 5 5 5
adjusted sofa total partial 16 7 6 6 6

heart rate 11 14 8 8 7
minute volume 21 15 7 7 8

pressure above peep 0dum 44 42 9 9 9
adjusted sofa total partial losx 2 1 10 10 10

albumin 31 23 13 13 11
pao2 over fio2 7 4 15 15 12

respiratory rate measured ventilator 0dum 43 45 12 12 13
peep 28 30 11 11 14

lung compliance dynamic 30 34 16 16 15
pco2 arterial 1 2 19 19 16

estimated glomerular filtration rate 0dum 36 40 20 20 17
med norepinephrine 0dum 33 41 24 24 18

estimated glomerular filtration rate 22 26 17 17 19
so2 arterial 0dum 45 47 14 14 20

arterial blood pressure diastolic 4 6 21 21 21
glasgow coma scale verbal 18 32 18 18 22

tidal volume per kg 47 31 22 22 23
leukocytes 3 10 25 25 24
intubated 42 43 23 23 25

ureum 12 12 27 27 26
intubated cum 14 13 26 26 27

magnesium 19 22 30 30 28
activated partial thromboplastin time 24 25 28 28 29

driving pressure 6 5 29 29 30
lung compliance static 35 33 31 31 31

phosphate 9 16 32 32 32
respiratory rate measured 13 17 35 35 33

creatinine 37 27 34 34 34
c reactive protein 10 24 33 33 35

pressure above peep 26 8 36 36 36
base excess 20 19 37 37 37

female 48 46 39 39 38
med propofol 40 36 38 38 39

los 8 11 47 47 40
o2 flow 38 39 42 42 41

mechanical power per kg 34 21 46 46 42
med sodium chloride 32 37 40 40 43

potassium 27 20 43 43 44
lymphocytes percentage 23 29 41 41 45

rapid shallow breathing index 15 35 45 45 46
med norepinephrine 39 18 48 48 47
alkaline phosphatase 25 28 44 44 48
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