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ABSTRACT i

Abstract

This research investigates whether imposing a constraint on the market capitalization index
can reduce downside risk and what disadvantages applying these constraints have. For this,
we look at naive constraining using restrictions on sectors or stocks taking into account their
fundamentals. Applying constraints leads, in most cases, to statistically significantly decrease
index volatility and smaller average losses in the 5% worst cases. Strict constraints lead to
the best risk-return ratios but have the disadvantage that they incur substantial additional
trading costs and lead to tracking error. Dynamic constraints add value if they are based on
stable decision variables. The decision variables analyzed are the VIX and the Buffett Indicator.
The first in this list is available daily and leads to high transaction costs without the expected
risk reduction. The Buffett Indicator is available on a quarterly basis and leads to significant
risk reduction. Combining (un)constrained indices does not automatically lead to more risk
reduction in the long term. Indices are combined in this study based on volatility and expected
shortfall. Combining indices does appear to have added value in more volatile periods. However,
constraining a market cap index leads most of the time to a higher turnover, which cancels out
the positive consequences of the constraint.
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1 Introduction

Passive investment solutions have become increasingly popular in recent years, as shown in Figure
1. Passive portfolios aim to replicate a chosen benchmark and, unlike many active strategies, offer
exposure to a large number of stocks in combination with low transaction costs and management
fees.

Figure 1: Increasing demand for passive investment solutions1.

The most common way to compile a passive portfolio or index is to use the market capitaliza-
tion of the stocks in the index. The market capitalization-weighted index, hereafter referred to
as the market cap index, is the market standard to which asset managers and pension funds
compare their equity strategies. Researches like Haugen and Baker (1991) and Hsu (2004) show
that creating indices based on market capitalization has some major drawbacks. Where the lack
of diversification in market cap indices, and the inefficiency of these indices are the two main ones.

When an index is compiled based on market capitalization, the exposure to large companies is
substantial, which results in a concentrated index. The ten largest companies in the index as of
December 31, 2020 account for 29% of the total market capitalization2. Passive investors expect
to invest in a diversified portfolio of 500 stocks but are mainly exposed to the largest stocks in
the index. This could allow investors to run unnecessary risks which could be avoided by better
diversification across all 500 stocks. Another way to look at diversification is to evaluate the
sector weights. Historically, the largest companies in the market cap index are often part of the
same industry. Therefore, investors are mainly exposed to one or more sectors within the index.

Haugen and Baker (1991) and Grinold (1992) show that creating an index based on market
capitalization is inefficient, because more weight is assigned to overvalued stocks and less weight
to undervalued stocks within this index. The inefficiency of an index means that it does not
provide the highest expected return for a given level of risk. This led academics and professional
investors to look for an alternative and more efficient way to build indices. Often stock funda-
mentals are used for this, such as price-to-earnings ratio or price-to-book ratio. Most alternative

1Source: Financial Times - Index funds break through $10tn-in-assets mark amid active exodus
2Figure 5 in Appendix A
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weighted indices outperform the market cap indices in the longer-term (Livingston, 2010; Bender
et al., 2019), but have major drawbacks. The main disadvantage being that the weights do not
vary with returns, which means that they have to be rebalanced regularly, making them not
completely passive. Frequent rebalancing automatically leads to higher transaction costs. Be-
cause the advantage of passive strategies is to keep transaction costs to a minimum, this action
is therefore undesirable. Therefore, alternative weighting schemes have not been picked up by
investors and the market cap index remains the market standard to date.

From an investment industry perspective, the question remains whether indices can be created
which have the advantages of market cap indices, but can prevent or reduce their drawbacks.
Introducing weight constraints could be an intuitive simultaneous solution to the inefficiency and
diversification problems of the market cap index. Weight constraints ensure better diversifica-
tion of the index in most cases, as the weights that are restricted are redistributed among the
other stocks in the index. Due to better diversification, the exposure towards mega-companies
decreases, which could prevent downside risk.

As a result of the weight constraint, the return of the constrained index will be lower compared
to the market cap index when the value of a constrained stock rises sharply and vice versa. Since
deviating from the market standard is not ideal, staying as close to the index as possible is prefer-
able. On the other hand, investors might want to deviate from the market in times of crisis, as
different portfolios will react differently to certain market conditions (Amenc et al., 2012). It will
be investigated whether a dynamic constraint leads to less deviation from the market standard
while reducing downside risk. Macroeconomic variables will be used to determine whether the
business cycle is in or close to an economic recession.

Combining different stocks in a portfolio is known to provide diversification benefits. Combin-
ing different covariance estimation matrices has been shown to promote volatility reduction or
provide a more stable portfolio in different market conditions (Caldeira et al., 2017). A leading
portfolio combination example is the optimal mean-variance portfolio from Markowitz (1952),
which is formed by combining risky holdings based on expected returns and volatilities. Kan
and Zhou (2007) also concluded that combining different funds, via their three-fund separation
example, can lead to better results in terms of volatility and returns. It will be investigated
whether combining the weights of multiple (un)restricted indices has benefits in the context of
volatility reduction and diversification benefits. If combining different portfolio weights does not
result in an absolute decrease in volatility, it is investigated whether this method is robust in
different volatility regimes.

To analyze different aspects of a market cap index, the following main question will be central:

"Can you prevent downside risk in a market capitalization-weighted index by
imposing static and/or dynamic weight constraints on the stocks in the index?"

To dissect the problem proposed in the main research question, the following sub-questions are
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considered:

1. Which constraints can improve the market cap index in terms of diversification, returns
and volatility?

2. What are the consequences of the weight constraints on turnover and tracking error com-
pared to the market cap index?

3. Could a dynamic constraint add value in economic recessions in terms of diversification,
returns and volatility?

4. Does combining multiple (un)restricted indices have added value in terms of diversification,
returns and volatility?

To answer all these sub-questions, a constant, stock fundamentals and sector constraint will be
applied to the market cap index. Applying these constraints will cause tracking error with the
market cap index, which is undesirable. Another side effect is the additional transaction costs,
which wants to be kept to a minimum to keep the index as passive as possible. The continuous
application of constraints could lead to high tracking error and turnover. This while apply-
ing a constraint may only have added value during economic recessions. To investigate this,
a dynamic constraint will be tested. Finally, it will be examined whether combining multiple
(un)constrained indices reduces tracking error and turnover while reducing downside risk.

Overall it has been found that constraining the market cap index has a positive influence when
the aim is to reduce downside risk. The diversification created by weight constraints does not
prevent highly negative returns but does ensure a faster recovery. However, the downward risk
reduction does not outweigh the higher turnover that results from constraining weights.

This thesis is structured as follows. In the next chapter, an overview will be given of the
available literature and the contribution of this thesis to the current literature will be described.
Subsequently, the methods, and the implementation of the methods, will be discussed. They
will be used during the analysis of the portfolios. In the results chapter, the results that follow
from the analysis will be discussed. Finally, there will be a conclusion and a recommendation
for further research.
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2 Literature review

2.1 Market cap inefficiency and alternative weighting

The innovative idea of passively investing assets started with Renshaw and Feldstein (1960),
which denounced the high costs of advice and monitoring and divergent returns of active man-
agers in their paper. They concluded that many investors, both in terms of costs and returns,
would be better off with a passive solution that provides exposure to the market portfolio.
According to the capital asset pricing model (CAPM), the market portfolio is mean-variance
optimal. Under the assumptions that the CAPM hold, it is concluded that passive investors
are best off holding the market portfolio. Many large institutional investment companies, with
inspiration from Markowitz (1952), Markowitz (1959) and Sharpe (1965), build a network of
passive investment solutions in an attempt to replicate the market portfolio.

Passive investment solutions are often created based on market capitalization. Hsu (2004) shows
that this way of indexing has many advantages. Most importantly, this portfolio rarely needs
to be rebalanced. This greatly reduces costs, which benefits the investor. However, Haugen and
Baker (1991) and Grinold (1992) already showed the disadvantages of indexing based on market
capitalization even before the passive investment market grew in popularity. Haugen and Baker
(1991) tested the market cap portfolio in a mean-variance environment and Grinold (1992) tested
different market cap indices for efficiency using a GRS test (Gibbons et al., 1989). Investing in
the market cap portfolio is inefficient as it allocated additional weight to overvalued stocks. Raza
et al. (2020) called this phenomenon performance drag and it has a negative influence on market
cap portfolio returns. This mispricing, and the associated mean reversion effect, can be caused
by the irrational behaviour of noise traders, resulting in stock prices that can move far away from
their fundamental price (Poterba and Summers, 1988). The irrational behaviour of investors can
have many causes. Examples include trends (Summers, 1986; McQueen, 1992), overreaction to
recent news or the opportunism of investors.

The inefficiency of the market cap portfolio, which Haugen and Baker (1991) and Grinold (1992)
describe, is a conclusion with potentially serious consequences. It implicitly means that there
must be a better, alternative, way to determine portfolio weights. Many papers, like Arnott et al.
(2005), Treynor (2005), Perold (2007), Choueifaty and Coignard (2008), Maillard et al. (2010),
Amenc et al. (2011), Amenc et al. (2012), Madhogarhia and Lam (2015) and Madhogarhia (2019)
propose various alternative weighting methods to determine portfolio weights in a market efficient
way. They propose weights based on stock fundamentals and/or diversification characteristics.
Examples include: book value, cash flow, sales, revenues, dividends and employment. They
assume that market cap portfolio is inefficient and therefore try to determine portfolio weights
via a different route. Although alternative weighted portfolios do show more efficient results
compared to market cap portfolios, they do not take advantage of the benefits of market cap
portfolios. Determining portfolio weights in an alternative way expose investors to additional
risks, where model selection risk and relative performance risk are the most important. Amenc
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et al. (2012) show that different market conditions favour different alternative weighting strate-
gies. He concludes that investors are most of the time best off with an equal-weighted portfolio
(1/N portfolio), but in recessions might better switch to the minimum volatility portfolio. The
differences in return between the different methods are significant, with a 15% return difference
in a six month recession period. The outperformance of the alternatively weighted indices could
be due to additional exposure to recognized factors. However, this exposure to external factors
can cause greater tracking error with the market cap portfolio, which can yield negative returns
compared to the market cap portfolio. Amenc et al. (2012) show that this relative performance
risk is mainly present for shorter horizons.

2.2 Portfolio constraints

The most naive way to constrain portfolio weights is to give them all the same weight, resulting in
the 1/N portfolio. DeMiguel et al. (2009) shows in his research that the results of this naive way
of constraining are hard to beat. This portfolio is often not found to be mean-variance efficient,
as it is not based on underlying data. However, the mean-variance portfolio will outperform the
1/N portfolio in presence of a limited number of assets and an extensive estimation window as
shown by DeMiguel et al. (2009).

Constraining weights in mean-variance efficient portfolios have a proven positive impact on per-
formance (Frost and Savarino, 1988). Jagannathan and Ma (2003) show that certain constraints
on portfolio weights can be interpreted as a form of shrinkage. The best known and most used
methods to restrict weights in the covariance matrix are linear shrinkage (Ledoit and Wolf,
2003) and sparsity methods (Bien and Tibshirani, 2011). Weight constraints ensure that portfo-
lio weights are not heavily driven by the sampling error, which often leads to highly concentrated
portfolios (Green and Hollifield, 1992). Shrinkage will reduce the relationship between two assets
that are highly correlated, causing a trade-off between two types of errors. If the estimation error
is larger than the specification error, restricting weights would produce better results. Because
the imposition of constraints causes a form of shrinkage, a bias-variance trade-off is created. A
bias is created by imposing a weight restriction to reduce the variance and ultimately reduce the
mean square error of the optimal portfolio.

According to Jagannathan and Ma (2003), the performance of a portfolio improves when short-
selling is prohibited. They also conclude that, for mean-variance efficient portfolios, the intro-
duction of upper bound restrictions can have a positive influence on performance. But this effect
would be minimal if a short-sell constraint had already been applied to the portfolio. According
to them, even imposing the wrong constraints improve portfolio performance as it shrinks large
elements of the covariance matrix and therefore reduces risk. However, Chiou et al. (2009) show
that constraints that are too restrictive could work counteracting and lead to worse portfolio
performance. If this is the case, the specification error will be greater than the estimation error
and a weight restriction will be undesirable.
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Although the restriction of weights in a covariance matrix has been extensively researched, the
application of constraints to weights of an inefficient estimation-free portfolio, like the market cap
portfolio, remains unexposed. This thesis is most similar to the Jagannathan and Ma (2003) and
DeMiguel et al. (2009) papers. The influence of portfolio constraints will be tested and compared
with other portfolios. This thesis contributes to the current literature by testing constraints on
the inefficient market cap portfolio, where the current literature mainly applies constraints to
the efficient minimum variance portfolios.

2.3 Portfolio diversification

Diversification ensures risk spreading within a portfolio since an investor is less dependent on the
results of one stock, sector, region or model as he spreads his risk over several stocks and sectors.
Mao (1970), Woerheide and Persson (1992) and Goetzmann and Kumar (2008) did extensive
research on portfolio diversification across individual stocks. However, they do on how many
assets an average investor should hold to own a well-diversified portfolio that displays risk-return
characteristics of a 1/N portfolio, instead of looking at the diversification of a portfolio itself.

Sector concentration is another way of looking at diversification within a portfolio. Within a
sector, stocks are often highly correlated, which can pose a potential risk. When one sector
shows good results, the market capitalization of the entire sector increases. If this continues for
a longer period, a sector will emerge that dominates the market. When several stocks within
this sector lose value, the entire index will lose value. The most recent example of such an event
is the dot-com bubble, where many stocks within the IT sector gained and lost value (DeLong
and Magin, 2006; Goodnight and Green, 2010). Again, investors thought they were investing
in a widely spread portfolio of hundreds of assets, where they invested mainly in the largest
assets in the index, which also invested in the same sector. As Figure 5 in Appendix A shows,
the concentration of the largest five stocks in the current S&P 500, all of which are classified in
the IT sector, is currently higher than the concentration during the time of the dot-com bubble
(late 90s - early 00s). Tracking a market cap index thus seems to implicitly expose investors to
very specific sectors and stocks. Intuitively, diversification among sectors would be best achieved
through an equal-sector weighted portfolio. Conconi and Demidow (2011) have researched this
portfolio, which appears to have added value in more volatile periods but lags in return in
economic expansion periods.

2.4 Portfolio combinations

Diversification can be achieved by differentiating based on assets or their characteristics, but can
also be achieved by combining different methods. Combining methods is beneficial in a variety
of research areas, such as regression (Mendes-Moreira et al., 2012; Brown et al., 2005) and time
series forecasting (Armstrong, 2001; Timmermann, 2006; Thomson et al., 2019). Combining
different portfolio strategies, or alternative weight measures can reduce model selection risk by
diversifying across different models, as shown in the three-fund-separation example of Kan and
Zhou (2007). Individual methods contain valuable unique information that adds value to the
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combination. When multiple methods are combined, the valuable information of each method
is included, which would lead to more efficient and robust results. In this thesis, the theory can
be applied to the different restricted portfolios. When combining results from several methods,
a result whose probability law of error will be more rapidly decreasing is observed (Kang et al.,
2020). In the portfolio combination, the question is still based on which criteria the different
portfolios should be weighted. Even in the current literature, they are not sure which criteria
provide the best performing combined method (Hsiao and Wan, 2014; Claeskens et al., 2016).
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3 Methodology

3.1 Market capitalization-weighted index

The market cap portfolio has a great advantage in that there is no estimation necessary to calcu-
late the weights. As a result, these portfolios do not suffer from estimation error and parameter
uncertainty as in portfolios that are based on the covariance matrix. Market capitalization refers
to the total market value of a company’s outstanding shares of a stock, and is calculated in the
following way:

MCi,t = Oi,t · Pi,t,

where MCi,t is the ith company’s market capitalization (in $) at time t, Oi,t is the number of
outstanding shares for company i at time t and Pi,t is the ith company’s price per share (in $)
at time t. The initial weights of the market cap portfolio are determined by selecting the 500,
or any other number of stocks that the index must consist of, stocks with the largest market
capitalization on the first trading day of the year. The weight assigned to an individual stock in
the portfolio is the percentage of the stocks market cap compared to the total market cap. This
automatically ensures that all weights add up to one. The portfolio weights are thus determined
as follows:

wi,t =
MCi,t∑N
j=1MCj,t

, (1)

where wi,t is the portfolio weight belonging to the ith company for period t and N is the total
number of stocks of which the index consist. This portfolio is rebalanced annually, where at that
time new constituents can enter the index.

3.2 Static constraints

Weight constraints can be applied in many different ways and areas. In this thesis, three different
algorithms will be used to impose weight constraints. All three algorithms will be discussed below.

3.2.1 Constant constraint

Algorithm 1 uses a constant constraint α. At rebalancing moments, all weights above this thresh-
old α are constrained to that threshold. Outside the rebalancing moments, the portfolio is held
via a buy-and-hold strategy and no adjustments are made to the portfolio. It was decided to
constrain the weights to α to make as few adjustments as possible to the index such that turnover
could be kept to a minimum. As a consequence of constraining weights, the total portfolio weight
will not sum up to one. Therefore, normalization will have to take place. Two methods have
been developed for this, a general normalization where all weights will be adjusted so that they
sum up to one and a sector-neutral normalization where weights are adjusted so that they have
the same sector exposure as before applying the constraints. Algorithm 1 is executed with α

from 0.5% to 5.0% in steps of 0.5%. This grid is reasonable because there are enough stocks to
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exceed this threshold, but not enough for the turnover to increase extremely. Table 1 shows the
average percentage of stocks that exceed the threshold α at rebalancing moments.

Algorithm 1: Calculation of weights under constant constraintsa

Input: Price matrix P , outstanding shares matrix O, return matrix R and sector
matrix S;

Result: Performance, diversification and comparison measures;
1 Introduce rebalancing moments tr;
2 Calculate market cap weights wi,t based on P and O, for i ∈ {1, ..., N} and

t ∈ {1, ..., T};
3 Calculate sector weights st;
4 for t ∈ tr do
5 if wi,t ≥ α then
6 Constraint portfolio weight wi,t ← α;
7 end
8 end
9 Normalize weights wi,t ← wi,t∑N

i=1 wi,t
, to assure

∑N
i=1wi,t = 1;

10 st ← sector of wi,t;
11 Normalize weights such that sector weights are equal to st, to assure

∑N
i=1wi,t = 1;

12 Return rp, σp and SR using calculated weights and return matrix R;

aNote that line 9 is relevant for the general normalization method and lines 10 and 11 are relevant for a sector
neutral normalization method.

Table 1: Average percentage of stocks that exceed threshold α at rebalancing moments.

5.0% 4.5% 4.0% 3.5% 3.0% 2.5% 2.0% 1.5% 1.0% 0.5%

S&P 100 1.00 1.67 2.19 3.10 4.14 6.62 11.57 18.38 30.76 64.14
S&P 500 0.03 0.07 0.09 0.18 0.39 0.60 0.87 1.86 3.73 8.21

Applying a constant stock constraint is a naive way of constraining where no conditional infor-
mation about the constrained stocks is included. To explore the added value of this conditional
information a stock fundamental constraint is introduced.

3.2.2 Stock fundamental constraint

Algorithm 2 can be read in two different ways. In the first approach large exposures above
a threshold α are restricted if these stocks also have an extreme stock fundamental value. This
makes this algorithm similar to Algorithm 1, but not all large exposures are restricted. This would
theoretically require fewer adjustments to the market cap index, resulting in lower turnover and
tracking error compared to the constant constraint in Algorithm 1. The first approach is based
on lines 6 to 10 in the algorithm. The second approach evaluates all stocks that have an ex-
treme stock fundamental value. Because the exposure of these stocks in the index can vary from
large to small, the weights cannot be restricted to one point. That is why it was decided to scale
the weights of these stocks with a factor δ. δ will range from 0.9 to 0.1 in 0.1 increments. The
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second approach is based on lines 11 to 13 in the algorithm.

To determine whether a stock fundamental value is extreme, the 90% quantitative of the funda-
mental is determined by sector. This is because stock fundamentals can differ per sector. The
quantile value has been set at 90% to make as few adjustments as possible to the market cap
index but targeted to restrict the deviating stocks. As with Algorithm 1, after the rebalanc-
ing moments, the portfolio is held via a buy-and-hold strategy and two different normalization
methods are calculated, the general normalization method and the sector-neutral normalization
method.

Algorithm 2: Calculation of weights under fundamental stock data constraintsa

Input: Price matrix P , outstanding shares matrix O and return matrix R;
Stock characteristics matrix C, sector matrix S;

Result: Performance, diversification and comparison measures;
1 Introduce rebalancing moments tr;
2 Calculate market cap weights wi,t based on P and O, for i ∈ {1, ..., N}, and

t ∈ {1, ..., T};
3 Calculate sector weights st;
4 for t ∈ tr do
5 ψt ← 90% quantile of fundamental stock parameter ct in sector st;
6 if wi,t ≥ α then
7 if Ci,t ≥ ψt then
8 Constraint portfolio weight wi,t ← α;
9 end

10 end
11 if Ci,t ≥ ψt then
12 Constraint portfolio weight wi,t ← δwi,t;
13 end
14 end
15 Normalize weights wi,t ← wi,t∑N

i=1 wi,t
, to assure

∑N
i=1wi,t = 1;

16 st ← sector of wi,t;
17 Normalize weights such that sector weights are equal to st, to assure

∑N
i=1wi,t = 1;

18 Return rp, σp and SR using calculated weights and return matrix R;

aThere are two constrained indices calculated. Lines 6-10 are only constraining stock weights that have a
significant influence on the index, lines 11-13 apply a naive constraint which is computed for some fundamentals.
This constraint applies to all stocks, even stocks that have little influence on the index. Note that line 15 is
relevant for the general normalization method and lines 16 and 17 are relevant for a sector-neutral normalization
method. When one wants to constrain the lower values, the 10% quantile is determined and the inequality sign
in lines 7 and 11 changes direction.

Constant and stock fundamental constraints lead to adjustments to specific stocks, while a group
of stocks may have to be constrained. Therefore, a sector constraint is evaluated.
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3.2.3 Sector constraint

Algorithm 3 is similar to Algorithm 1, only the thresholds are determined differently. In this
algorithm, the weights of the three largest sectors are added together at rebalancing moments. If
the sum of these three sectors exceeds the threshold β, the sector exposure of the three sectors is
restricted to β. β will be varied between 71% and 80% in increments of 1% for the S&P 500 and
between 76% and 85% for the S&P 100. Again, after rebalancing the portfolio, the portfolio is
held by a buy-and-hold strategy. Normalization only takes place under the general normalization
method. Table 2 shows how many percent of the time the threshold β is exceeded at rebalancing
moments. And Figure 2 shows the sum of the three largest sector weights. This gives a sense of
how strict the sector constraint is.

Algorithm 3: Calculation of weights under sector constraints.
Input: Price matrix P , outstanding shares matrix O and the return matrix R;

Sector weights matrix S;
Result: Performance, diversification and comparison measures;

1 Introduce rebalancing moments tr;
2 Calculate market cap weights wi,t based on P and O, i ∈ {1, ..., N}, for t ∈ {1, ..., T};
3 for t ∈ tr do
4 Calculate sector exposures w′S;
5 Calculate top 3 sector exposures st;
6 if st ≥ β then
7 Constraint portfolio sector weights β ← st;
8 Calculate constraint portfolio weights wi,t using sector weights st;
9 end

10 end
11 Normalize weights wi,t ← wi,t∑N

i=1 wi,t
, to assure

∑N
i=1wi,t = 1;

12 Return rp, σp and SR using calculated weights and return matrix R;

Table 2: Percent of the time that the constraint β is exceeded at rebalancing moments. For the S&P 100 the grid
will variate between 85% and 76% in steps of 1%.

80% 79% 78% 77% 76% 75% 74% 73% 72% 71%

S&P 100 4.76 4.76 23.81 42.86 61.90 71.43 80.95 80.95 85.71 90.48
S&P 500 4.76 19.05 38.10 38.10 61.90 85.71 85.71 100 100 100
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Figure 2: Sum of three largest sector weights.

The above constraints are applied continuously while this may not add value in some parts of
the economic cycle and only causes more tracking error and turnover. To be able to evaluate
this, a dynamic constraint will be looked at that may offer a solution to this problem.

3.3 Dynamic constraints

Following a market cap index has several advantages. The biggest advantage is the seldom if
ever rebalancing of the portfolio weights, which is to the advantage of the investor. But, as
Amenc et al. (2012) shows, there may be different portfolios that perform well during different
stages of the economic cycle. This will be tested using a dynamic constraint. For example, the
market cap index is followed, but deviations are made in highly volatile periods. To determine
whether you are in an economic recession, several variables can be used. The first variable that
will be used is the VIX. The Chicago Board Options Exchange’s CBOE Volatility Index (VIX)
is a 30-day expectation of volatility based on S&P 500 out-of-the-money options. This variable
measures the volatility of the S&P 500 and thus this constraint is applied when the US stock
market has reached a certain level of volatility. Since the S&P 500 and the VIX are strongly
negatively correlated, this restriction may come too late.

Therefore, another decision variable will be used as well, the Buffett indicator. The Buffett indi-
cator (BI), introduced by Warren Buffett, is a valuation multiple that measures how expensive
or cheap the stock market is at a given point in time. This variable compares the valuation of the
US stock market with the US gross domestic product (GDP), dividing the market capitalization
of the Wilshire 5000 index by the GDP. As a result, it could be a simplified variable reflecting
the over- or undervaluation of the US stock market. Should the BI exceed a certain threshold,
one can choose to impose a constraint to suffer fewer losses during a possible future correction.

The dynamic constraint is applied according to Algorithm 4. The three different algorithms from
Section 3.2 are applied if the decision variable exceeds a certain threshold γ. If after a while
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the decision variable falls below the threshold again, the switch is made from the constrained
portfolio to the market cap portfolio. The value for γ differs for the different decision variables.
For the VIX the thresholds 36 to 40 have been tested and for the BI the thresholds 1.2 to 1.5.

Algorithm 4: Calculation of weights under dynamic constraints.
Input: Price matrix P , outstanding shares matrix O and the return matrix R;

Recession variable X, fundamental stock matrix F , sector matrix S;
Result: Performance, diversification and comparison measures;

1 Calculate market cap weights wi,t based on P and O, i ∈ {1, ..., N}, for t ∈ {1, ..., T};
2 if Xt < γ then
3 Calculate market cap weights based on Equation 1;
4 else
5 Calculate index weights based on Algorithm 1, 2 or 3, buy and hold until Xt < γ;
6 return to line 2;
7 end
8 Return rp, σp and SR using calculated weights and return matrix R;

3.4 Index combinations

Timmermann (2006) gives several reasons why combining different methods may be favourable.
He stated that combining different methods would lead to better results since valuable informa-
tion of individual methods can be combined. This would create a robust method that may lag
slightly behind the best method in good times, but falls less sharply during recession periods.
Combining different methods reduces the influence of possible individual model misspecifications,
as less weight is given to the individual models. Determining the weight given to the different
methods can be done in many ways. This thesis will specifically look at combining risk-based
methods through volatility and expected shortfall. For Y different (un)constrained indices, the
combined index weight will be as follows:

wC,m
t = π1,tw

1,m
t + π2,tw

2,m
t + · · ·+ πY,tw

Y,m
t ,

wherewy,m
t denotes the weight given to themth asset by method y for period t and πy,t denotes the

combination weight for method y for period t, such that
∑Y

i=1 πi,t = 1 and πi,t > 0. It is intuitive
that the index combination approach should assign higher weights to methods that produce lower
(tail)risk while penalising those that produce higher (tail)risk by assigning lower weights to them.
Therefore, the inverse rank approach is used as suggested by Aiolfi and Timmermann (2006),
where πy,t for period t is obtained from:

πy,t =
γ−1
y,t−1∑Y

i=1 γ
−1
i,t−1

,

where γ−1
y,t−1 is the inverse volatility or expected shortfall of model y up to time t− 1.
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3.5 Downside risk

By imposing the constraints one tries to reduce large exposures to certain stocks, fundamentals
or sectors, which can potentially reduce downside risk. The most commonly used measures to
quantify downside risk are value at risk (V aR) and expected shortfall (ES). Below is a brief
description of how these metrics are calculated and how they will be estimated in this thesis.
Throughout the thesis, the 95% V aR and ES will be used.

3.5.1 Value-at-Risk

The V aR is a quantile that indicates the expected negative return in the worst (1 − α) · 100%

of the cases. The value for V aR can be determined in different ways and gives different results
(Jorion, 2002; Alexander, 2009; Kourouma et al., 2010). Each method has its advantages and
disadvantages and the reason for switching between different methods can have different causes.
In the world of risk management, it is often calculated with losses instead of returns, which are
calculated by:

Li = −(Vi − Vi−1)

Vi−1
= −rindex,i−1,

where Li represent index loss at time i and Vi−1 and Vi represent the value of the index at time
i− 1 and i. The probability of having a loss below the V aR is quantified by 1− α, as shown in
Equation 2.

V aRα = inf {lα ∈ R : P (Li+1 ≤ lα) ≥ α} = inf {lα ∈ R : P (Li+1 > lα) ≤ 1− α} . (2)

In this thesis two methods will be used to estimate the V aR. One of these methods is independent
of distribution and for the other, a distribution is estimated.

3.5.1.1 Historical simulation

The big advantage of the historical simulation (HS) method is that no parametric assumptions
are made at all and therefore it is computationally easy to calculate. This method is based on an
empirical distribution function of the losses L. That is, all losses form a distribution that takes
value L1,. . . ,Lk with probability 1/k each:

Fk(l) =
1

k

k∑
i=1

I{Li≤l}

Then the V aR estimate will be:

V̂ aRα = inf{x : F (x) ≥ α} = L(kα),

where L(kα) is the kα order statistic of the losses L.
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3.5.1.2 Normal mixture model

Financial return (loss) data is often leptokurtic, meaning left (right) skewed and often has a high
concentration around the mean resulting in a high kurtosis. As a result, a normal distribution is
not suitable as a representation of the financial data. Although a t-distribution with a low degree
of freedom can be leptokurtic, this distribution cannot incorporate the skewness. A mixture of
different normal distributions can introduce both skewness and excess kurtosis. In this thesis the
two mixture model is used, where the two separate models are a representation of a ’good’ and
’bad’ economy. The probabilities for each of these scenarios are λ and 1− λ respectively. Which
ultimately results in a distribution:

F (x) = λF1(x;µ1, σ
2
1) + (1− λ)F2(x;µ2, σ

2
2),

where F1 and F2 are normally distributed.

The parameters of these distributions must be estimated to estimate the V aR. The parame-
ters are estimated using the Expectation-Maximization (EM) algorithm, elaborated in Hamilton
(1990). In the case of a two-point normal mixture model (NMM), these five parameters have to
be estimated: λ, µ1, σ

2
1, µ2, σ

2
2 by the maximum likelihood estimation (MLE). These five param-

eters are denoted as the θ parameter vector.

The density function of the model, that will be maximized by MLE, is as follows:

f(x) = λf1(x) + (1− λ)f2(x) =
λ

σ1
φ

(
x− µ1

σ1

)
+

1− λ
σ2

φ

(
x− µ2

σ2

)
.

These parameters are estimated by maximizing:

logL =
n∑
i=1

log f(xi).

In this optimization problem, an observation wi will be drawn from a Bernoulli distribution with
probability λ, which will be initialized on the first loop, to determine which scenario one is in,
resulting in a joint ’density’ function of the model:

f(x,w) = (λf1(x))1w=1 ((1− λ)f2(x))1w=2 =

λf1(x) if w = 1

(1− λ)f2(x) if w = 2
,

where 1A is the indicator function: 1 if A is true, 0 is A is false.
This results in the following log-likelihood function:

logL =

n∑
i=1

1wi=1 (log λ+ log f1(xi)) + 1wi=2 (log(1− λ) + log f2(xi)) .

The only problem is that wi is not observable and therefore has to be guessed. An educated
guess would be to take the proportion of observations origination from density function 1:
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λf1(xi)
λf1(xi)+(1−λ)f2(xi)

. This estimate will be improved iteratively until the log-likelihood is maxi-
mized. All in all, this leads to a log-likelihood function of:

logL =
λf1(xi)

λf1(xi) + (1− λ)f2(xi)
(log λ+ log f1(xi))+

(1− λ)f2(xi)

λf1(xi) + (1− λ)f2(xi)
(log(1− λ) + log f2(xi)) .

The parameters are estimated iteratively by the Expectation (E) and the Maximization (M) steps
elaborated in Hamilton (1990). The exposition of the parameters can be found in Appendix B.

After estimating the parameters, a value for the V aR must be estimated. This will be done in
this thesis by the Monte Carlo approach. And will consist of the following steps:

1. Simulate k, which will be 100.000.000 throughout this thesis, observations (B1, . . . , Bk)

from a Bernoulli distribution with P(Bi = 1) = λ̂ and P(Bi = 2) = 1− λ̂

2. Simulate k i.i.d. standard normal observations (Z1, . . . , Zk)

3. If Bi = 1, Li = µ̂1 + σ̂1Zi; If Bi = 2, Li = µ̂2 + σ̂2Zi

4. Then the losses are sorted in ascending order L(1), . . . , L(k), where L(i) is the ith order
statistic.

5. The V aR estimation will be the same as the HS method in Section 3.5.1.1:

V̂ aRα = L(kα)

The advantage of creating a distribution around the data is that it is easy to simulate additional
data points from the same distribution. A disadvantage is that the wrong distribution is assumed,
which leads to model specification error.

3.5.2 Expected Shortfall

Since the global financial crisis of 2008, many regulators have decided to switch from V aR to
expected shortfall ES as the main risk measure. The most important reason for this is that V aR
is not a coherent risk measure. This allowed banks to hold extremely risky portfolios without
this being directly visible in the reported risk figures. A risk measure is coherent if it satisfies
the four axioms mentioned in Artzner et al. (1999). These four axioms consist of monotonicity,
positive homogeneity, translation invariance and sub-additivity. V aR does not meet the latter.
As a result, it might be better to diversify less from a V aR point of view to reduce risk. As
a solution to this shortfall, the ES has been introduced, which represents an "average" loss
when moving into the region below the V aR. In contrast to the V aR, the ES is a coherent risk
measure (Acerbi and Tasche, 2002). This means that this measure is a better representation
of diversification, is a better measure on which to base regulations. The expected shortfall is
calculated by the following equation:
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ESα =
1

1− α

∫ 1

α
VaRu(rindex)du.

And the ES will be estimated by the following equation:

ÊSα =
1

k(1− α)

k∑
i=[kα]+1

L(i)

3.6 Significance tests

The goal of this thesis is to find a constraint that ensures minimal adjustments to the market cap
index, such that a significantly higher Sharpe ratio and/or significantly lower volatility will be
obtained. In addition, the point estimation of the ES, the turnover and tracking error will also
be central to the analysis. To measure whether the differences in Sharpe ratios and volatilities
are significant, the constrained index must be compared with the market cap index. A sim-
ple t-test would suffice provided the observations were individual and identical distributed (iid)
(Jobson and Korkie, 1981). However, we work with financial data that show serial correlation
and volatility clustering. Ledoit and Wolf (2008) provide a solution to this problem in their
paper when the Sharpe ratios and volatilities of two portfolios need to be compared. They rec-
ommend heteroscedasticity-consistent (HAC) standard errors when calculating this significance.
This method works asymptotically but could show undesirable behaviour in finite samples. An
alternative they use for this is a studentized times series bootstrap. There is no general test
known in the literature for significant differences between ESs. Examples of literature close
to this topic are: Acerbi and Szekely (2014); Righi and Ceretta (2015); Wimmerstedt (2015);
Novales and Garcia-Jorcano (2019); Ziegel et al. (2020).

3.6.1 HAC Inference

The Sharpe ratio or volatility difference test need to be performed using heteroskedastic and
autocorrelation consistent (HAC) estimators, since economic data typically contains autocorre-
lation and/or heteroskedasticity of unknown form. The test, using HAC inference, is as follows.
It is assumed that there are two portfolios with excess returns rt,i and rt,j for t = 1, . . . , N with:

µ =

µi
µj

 and Σ =

 σ2
i σi,j

σi,j σ2
j

 .

The difference in Sharpe ratios and volatilities are given by:

∆ = SRi − SRj =
µi
σi
− µj
σj

, and ∆ = σi − σj (3)

with their estimators:

∆̂ = ŜRi − ŜRj =
µ̂i
σ̂i
− µ̂j
σ̂j

, and ∆̂ = σ̂i − σ̂j . (4)
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The notation of the equation can be changed so that ∆ = f(v) and ∆̂ = f(v̂) with,

f(a, b, c, d) =
a√
c− a2

− b√
d− b2

for SR, and f(a, b, c, d) =
√
c− a2 −

√
d− b2 for σ,

where a and b are the respectable means, E (r1,i) and E (r1,j), and c and d are the second
moments, E

(
r2

1,i

)
and E

(
r2

1,j

)
, of portfolio i and j.

When using the Delta method in combination with mild regularity conditions on the higher
moments of excess returns, the following convergence is achieved:

√
N
(

∆̂−∆
)

d−→ N
(
0,∇′f(v)Ψ∇f(v)

)
, (5)

where Ψ is an unknown symmetric positive semi-definite matrix that represents the limiting
covariance matrix and∇ corresponds to the first derivative with respect to all individual variables
a, b, c and d. If a consistent estimator Ψ̂ is available, the standard error for ∆̂ is given by:

s
(

∆̂
)

=

√
∇′f(v̂)Ψ̂∇f(v̂)

N
. (6)

Finally, the two-sided p-value for the null hypothesis H0 : ∆ = 0 is given by:

p̂ = 2Φ

 −|∆̂|
s
(

∆̂
)
 , (7)

where s
(

∆̂
)
is obtained in Equation 6. With this p-value calculation a 1−α confidence interval

can be created:
∆̂± z1−α/2s

(
∆̂
)
,

where zα is the α quantile of the standard normal distribution. The full exposition can be found
in Appendix C.

3.6.2 Studentized time series bootstrap

The biggest disadvantage of HAC inference is that it uses asymptotic normality, which does not
necessarily apply. The inference accuracy could be improved by letting go of this asymptotic
normality assumption and switch to a studentized bootstrap method (Lahiri, 2003). This method
works with the original data and does not assume an underlying distribution. The bootstrap
method uses an indirect approach, which means that the observed data is resampled. A confi-
dence interval can be compiled with this resampled data. Bootstrapping can mainly offer added
value in smaller sample sizes because the asymptotic normality certainly does not have to apply
here. Bootstrapping will be used in this thesis for completeness in all cases, but will be necessary
for the smaller volatility regimes. The studentized statistic is approximated via the bootstrap as
follows:
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L

 |∆̂−∆|

s
(

∆̂
)
 ≈ L

 |∆̂∗ − ∆̂|

s
(

∆̂∗
)
 ,

where ∆ and ∆̂ are the same as defined in Equations 3 and 4, and ∆∗ is the estimated differ-
ence computed from bootstrap data. s

(
∆̂
)

and s
(

∆̂∗
)

are the standard error of ∆̂ and ∆̂∗

respectively. L (X) denotes the distribution of random variable X.

Then z∗|·|,α is introduced as the α quantile of L
(
|∆̂∗−∆̂|
s(∆̂∗)

)
, leading to a 1− α confidence interval

for ∆ of:

∆̂± z∗|·|,αs
(

∆̂
)
. (8)

When data is heavy-tailed, which is usually the case with financial data, the value for z∗|·|,α will
be higher than zα, introduced in the HAC inference section, and thus generate a wider interval.
The bootstrap data is generated by a circular block-bootstrap, introduced by Politis and Romano
(1992). Block-bootstrapping is necessary to ensure the accuracy of the bootstrap. The data is
divided into blocks so that the time series structure of the original data is preserved. The
standard errors are calculated according to Equation 6. The circular bootstrap method aims to
remove the effect of the uneven weighting of observations at the beginning and the end of the
dataset. A block structure would look like this for example:

• B1 = (x1, . . . , xl)

• B2 = (x2, . . . , xl+1)

• BN = (xN−l+1, . . . , xn)

For example, with a block length of five, the observation x5 is included five times in the entire
structure, while observation x1 returns only once. To prevent this from happening, an end-to-
start wrap around of the data is performed to make additional blocks. The only question remains
which value should be chosen for the block length. When Algorithm 3.1 from Ledoit and Wolf
(2008) is followed, an optimal block length of 8 is obtained.

3.7 Performance metrics

The different indices can be evaluated using different metrics that can be observed in Table 3.
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Table 3: Variable description and calculation

V ariable Description Calculation

Risk and return

rp Annualized portfolio return (in %) ((1 + rcum)1/# of years − 1) · 100%

σp Annualized portfolio volatility (in %)
√∑T

i=1(ri−r̄)2
T−1 ·

√
T/# of years

SR Annualized Sharpe ratio
∑T

i=1(ri−rfi )

σexcess
·
√
T/# of years

min and max Minimum and maximum return -

S Skewness
∑T
i=1

(
ri−r̄
σindex

)3

K Kurtosis
∑T
i=1

(
ri−r̄
σindex

)4

TO Portfolio turnover 1
T

∑T
i=1

∑N
j=1 |wi+1,j − wi+,j | · 10−4

rcum Cumulative return for period T -
r̄ Mean return -
rfi Risk-free rate for period i -

σindex Daily index volatility
√∑T

i=1(ri−r̄)2
T−1

Diversification and comparison

AS Average effective number of securities 1
1
T

∑T
i=1

∑N
j=1 w

2
i,j

TE Annualized tracking error
√∑T

i=1 (ri,b − ri,index)
2 ·
√
T/# of years

ri,b Benchmark return at time i -

Significance Testing

pH,σ HAC Inference p-value for σ difference Equation 7
pB,σ Bootstrapping p-value for σ difference Equation 8
pH,SR HAC Inference p-value for SR difference Equation 7
pB,SR Bootstrapping p-value for SR difference Equation 8

The average effective number of securities (AS) is calculated by the inverse Herfindahl-Hirschman
index (Rhoades, 1993), which is a statistical measure of concentration. For example, a portfolio
with a Herfindahl-Hirschman index of 0.02 is equivalent to a portfolio with AS = 1

0.02 = 50

equal-weighted securities. The annualized tracking error identifies the level of consistency in
which a portfolio tracks the performance of a chosen benchmark. The tracking error, therefore,
can be seen as an indicator of how actively a fund is managed. In this thesis, the S&P 500 and
S&P 100 will be used as benchmark indices.
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4 Data

4.1 Stock data - risk and return

Daily US stock data was used for this research. A period of 21 years is used for the analysis,
from the beginning of January 2000 to the end of December 2020. This period contains several
financial business cycles, which makes this a realistic representation of recent history. The S&P
Global website3 has been consulted to obtain a list of current and historical S&P 500 stocks from
January 2000 - December 2020.

The S&P 500 index is created by annually selecting the 500 companies with the largest market
capitalization on the first trading day of the year. After selecting the index constituents, the
stocks are held by a buy-and-hold strategy. As a result, transactions will only take place in
the index when a new year starts, when a company decides to issue more shares and when a
company in the current index goes bankrupt or private. To analyze the effect of diversification,
a more concentrated index will be included in the analysis. This will consist of the largest 100
companies in the index, the S&P 100. In addition, both indices will be included equal weighted
to form a naive 1/N benchmark. To find out the stock prices and outstanding shares of any
company at any time, the Center for Research in Security Prices (CRSP) was consulted. A total
of 723 unique stocks were found for the analyzed period. The CRSP database was accessed via
the data platform Wharton Research Data Services (WRDS).

Table 4: Annualized summary statistics of S&P indices.

rp σp SR min max S K TO TE AS VHS VNM ESHS ESNM

S&P 100 6.4 19.7 0.33 -11.9 11.5 -0.1 13.5 2.2 - 51 1.87 1.94 2.98 3.21
S&P 500 7.6 19.8 0.39 -12.0 11.5 -0.2 13.7 0.6 - 107 1.87 1.91 3.00 3.22
S&P 100 EW 7.2 19.7 0.37 -12.3 11.9 -0.2 14.3 12.0 2.1 97 1.86 1.88 2.97 3.18
S&P 500 EW 12.0 20.4 0.58 -12.4 11.1 -0.3 13.6 9.7 4.4 477 1.91 1.86 3.07 3.25

The summary statistics can be observed in Table 4. In this table, all returns are expressed in
percentages. A negative skewness (S) and excess kurtosis (K) is observed, which is common for
financial data. Financial return data is known to be non-normal. Therefore, it was decided to use
a normal mixture model to represent the data. The S&P index returns, with associated normal
mixture components, are shown in Figures 6 and 7 that can be found in Appendix D. Figure 8 in
Appendix E shows that the equal-weighted S&P 500 has achieved the best results over the past
21 years. There appears to be a correlation between diversification and return. As can be seen
in Table 4, the S&P 500 and S&P 100 EW have about the same AS which gives a comparable
result in terms of returns. The V aR and ES are measured at a 95% significance level. The point
estimations can be observed in Table 4 and were estimated with the historical simulation method
and a Monte Carlo method for a normal mixture model, for which 100,000,000 simulations were

3Source: https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview
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run.

4.2 Stock fundamentals data

Stock fundamentals have an influence on determining the price of a stock. Stock fundamentals
are also the basis of many empirical studies, of which the research of Fama and French (1992) is
perhaps best known. In this thesis, stock fundamentals will be used to create constraints. The
CRSP/Compustat link in WRDS has been used to retrieve stock fundamental data since it is
not included in the CRSP database itself. Stock fundamentals of 603 of the 723 companies were
found in this database. The data that was missing was often from the smaller constituents in the
index. Table 21 in Appendix H gives an overview of all fundamentals that will be investigated
and Table 22 in Appendix H displays their respective mean.

4.3 Sector data

There are many different ways to divide stocks into sectors. The best-known variable used for
classification is the Standard Industry Classification (SIC). This method was developed in 1930
by the US government and has long been the industry standard for categorizing companies.
However, this method has several drawbacks. The industry has changed a lot since the early
years. Companies today are mainly service-based, while in the twentieth century, this was mainly
manufacturing-based. SIC is slow to recognize new and emerging sectors such as information
technology sectors. The figure in Appendix I provide an overview of the S&P index sectors
classified based on SIC, which were retrieved from the CRSP database.

4.4 Volatility regimes

To analyze the effect of different business cycles, a distinction must be made between ’normal’
periods and highly volatile periods. To make this distinction, the National Bureau of Economic
Research4 (NBER) is consulted. The highly volatile periods between January 2000 and December
2020 are indicated in Table 5. Figure 3 plots volatility over time, where high volatility periods
are also highlighted.

Table 5: High volatility regimes between January 2000 and December 2020. Source: NBER

Name Regime reference Period Observations

Early 2000 recession R1 March 2001 - November 2001 208
Global financial crisis R2 December 2007 - June 2009 397
COVID-19 pandemic R3 February 2020 - Ongoing 232

4Source: https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions
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Figure 3: Graph of the CBOE Volatility Index (VIX) with a value for γ displayed (38). Source: CBOE

As can be seen in Figure 8 in Appendix E, the most diversified index has achieved the highest
returns over the past 21 years. Diversification benefits appear to pay off mainly in non-volatile
periods, where higher excess returns are achieved compared to the market cap index. However,
this diversification can be valuable during economic recessions as well, as can be seen in the
figures in Appendix F.

Table 6: V aR and ES estimations on a 95% significance level for highly volatile periods. Estimations are based
on the historical simulation and on 100,000,000 Monte Carlo simulated normal mixture model random variables
with initial parameters θ(0) = (λ(0);µ

(0)
1 ;µ

(0)
2 ;σ

(0)
1 ;σ

(0)
2 ) = (0.75;0;0;1;2) for regime 1, (0.9;0;-7;1;4) for regime 2

and (0.9;0.5;-5;1;4) for regime 3.

R1 R2 R3

VHS VNM ESHS ESNM VHS VNM ESHS ESNM VHS VNM ESHS ESNM

S&P 100 2.44 2.29 3.10 3.20 3.63 3.89 5.63 5.74 3.45 4.00 5.68 6.13
S&P 500 2.16 2.18 2.94 3.04 4.12 4.13 5.79 5.92 3.29 4.05 5.82 6.21
S&P 100 EW 2.33 2.21 2.94 3.07 3.98 4.06 5.79 5.90 3.27 4.00 5.75 6.21
S&P 500 EW 2.02 1.98 2.63 2.75 4.42 4.51 6.12 6.17 3.26 4.12 6.26 6.51

In Table 6, you can see the results of V aR and ES estimations based on historical simulation
and a 100 million Monte Carlo simulated normal mixture model. As can be seen, diversification
through equal portfolio weights is not the solution to reduce downside risk. As seen in Table 4, the
1/N index takes on more volatility compared to the market cap index. A possible explanation for
this additional risk, and the associated downside risks, could be the greater exposure to smaller-
cap stocks. Smaller-cap stocks are generally riskier and this effect is reflected in the statistics.
The size effect has already been investigated by Fama and French (1992), who draw the same
conclusion about smaller-cap stocks.

4.5 Dynamic constraint data

For the dynamic constraint methods, based on the VIX and the Buffett Indicator (BI), 5 different
values for γ are tested. The consequences of the value for γ can be seen in Table 7 below, and
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in Figures 3 and 12 in Appendix G. The VIX data was taken from the Chicago Board Option
Exchange (CBOE) website5, this data is available daily where the close price is used for analysis.
The Buffett Indicator itself is calculated by dividing the market capitalization of the Wilshire
5000 index by the US GDP. Both variables can be retrieved from the Federal Reserve Economic
Data (FRED) website6. US GDP data is available quarterly, therefore the Buffett Indicator is
also available quarterly. This automatically leads to less rebalancing, which can be seen in Table
7.

Table 7: Number of trading days that the constraint γ is exceeded and the corresponding number of rebalance
moments (regular rebalance moments at first day of the year included).

VIX BI
γ 36 37 38 39 40 1.2 1.3 1.4 1.5

Days 271 244 223 206 188 1238 784 197 64
Rebalance 88 76 78 76 74 24 25 26 22

5https://www.cboe.com/tradable_products/vix/vix_historical_data/
6https://fred.stlouisfed.org/
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5 Results

5.1 Static constraints

5.1.1 Constant constraint

In Tables 8 and 9, the performance of two constant constrained S&P 500 indices (Algorithm 1),
one with a general normalization method and one with the sector-neutral normalization method,
can be observed. In the tables, we observe that in most cases, imposing a constraint helps to
reduce risk. This applies to the volatility of the index σp as well as to the downside risk, which
is measured by the ES. This conclusion ties in with the one that Jagannathan and Ma (2003)
made. In almost all cases, the 1/N portfolio proves hard to beat in terms of Sharpe ratios
(DeMiguel et al., 2009).

In Table 8 it is observed that the volatility of the index can be reduced by constraining the index.
However, there appears to be a point where a constraint that is too strict leads to higher index
volatility, this is mainly observed with a constraint of 1.0% and 0.5%. This is in line with the
conclusion of Chiou et al. (2009). However, these strictly constrained indices show significantly
better results in terms of Sharpe ratios compared to the market cap index. This improvement
can be explained by the fact that the index is pushed more towards the equal-weighted index,
which often has a higher Sharpe ratio. The push towards the equal-weighted portfolio can be
observed when looking at the AS, which in the strictest constraint indices more than doubles
compared to the market cap index. However, a major difference with the equal-weighted index
is that the downside risk does not increase, or in some cases is even smaller, compared to the
market cap index.

Logically, an increase is seen in the TE and TO as the index is more strictly constrained. Where
the sector-neutral normalization method, introduced in Section 3.2, seems to ensure that less TE
is incurred. However, this does result in a higher TO, which can be observed in Table 9. Smaller
exposures that were barely adjusted in a general normalization method can be significantly ad-
justed by the sector-neutral normalization method. The general normalization method does allow
for more diversification in the index, as each stock in the index is increased by a certain per-
centage instead of just several stocks, which is the case in a sector-neutral normalization method.



Chapter 5 RESULTS 26

Table 8: Annualized summary statistics of constrained S&P 500 using a constant and the general normalization
method, where a constraint of 5.0% corresponds to a max index weight of 5.0% at the moment of index creation.
Based on Algorithm 1.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 7.74 19.74 0.00 0.00 0.40 0.02 0.02 2.52 0.28 106 2.99 3.21
α of 4.5% 7.75 19.74 0.00 0.00 0.40 0.02 0.03 2.54 0.29 107 2.99 3.21
α of 4.0% 7.77 19.73 0.00 0.00 0.40 0.03 0.04 2.59 0.33 108 2.99 3.20
α of 3.5% 7.78 19.71 0.00 0.00 0.40 0.04 0.05 2.67 0.39 110 2.99 3.20
α of 3.0% 7.78 19.70 0.00 0.00 0.40 0.11 0.12 2.77 0.51 115 2.98 3.20
α of 2.5% 7.78 19.68 0.00 0.00 0.40 0.21 0.22 2.86 0.66 122 2.98 3.20
α of 2.0% 7.81 19.65 0.00 0.00 0.40 0.26 0.26 2.97 0.86 132 2.98 3.19
α of 1.5% 7.91 19.65 0.00 0.00 0.41 0.21 0.21 3.20 1.12 146 2.98 3.19
α of 1.0% 8.17 19.69 0.01 0.00 0.42 0.10 0.10 3.48 1.44 177 2.98 3.19
α of 0.5% 8.71 19.86 0.57 0.57 0.44 0.03 0.03 3.88 2.03 245 3.00 3.21

Table 9: Annualized summary statistics of constrained S&P 500 using a constant and the sector-neutral normal-
ization method, where a constraint of 5.0% corresponds to a max index weight of 5.0% at the moment of index
creation.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 7.70 19.77 0.00 0.00 0.40 0.06 0.07 2.49 0.22 106 3.00 3.21
α of 4.5% 7.70 19.77 0.00 0.00 0.40 0.06 0.09 2.52 0.24 107 3.00 3.21
α of 4.0% 7.71 19.76 0.00 0.00 0.40 0.08 0.10 2.58 0.27 108 2.99 3.21
α of 3.5% 7.72 19.75 0.00 0.00 0.40 0.10 0.11 2.66 0.33 110 2.99 3.21
α of 3.0% 7.72 19.73 0.00 0.00 0.40 0.21 0.22 2.77 0.43 114 2.99 3.20
α of 2.5% 7.72 19.71 0.00 0.00 0.40 0.33 0.34 2.86 0.56 121 2.99 3.20
α of 2.0% 7.75 19.68 0.00 0.00 0.40 0.33 0.33 2.99 0.74 130 2.98 3.19
α of 1.5% 7.85 19.66 0.00 0.00 0.40 0.23 0.22 3.24 0.97 144 2.98 3.19
α of 1.0% 8.08 19.69 0.00 0.00 0.41 0.11 0.11 3.55 1.26 172 2.98 3.19
α of 0.5% 8.57 19.85 0.65 0.65 0.44 0.04 0.04 3.98 1.85 235 3.00 3.21

Table 10 and Table 25 in Appendix J show the results of the constant constrained S&P 100 in-
dices. The benefits of constraining a concentrated index appear to be less significant than a more
diversified one. Although imposing a constraint reduces index volatility, the change in the Sharpe
ratio is not significant. Constraining concentrated indices mainly results in a higher TE and TO.
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Table 10: Annualized summary statistics of constrained S&P 100 using a constant and the general normalization
method, where a constraint of 5.0% corresponds to a max index weight of 5.0% at the moment of index creation.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12.00 2.13 97 2.97 3.18
α of 5.0% 6.54 19.60 0.00 0.00 0.34 0.09 0.11 4.82 0.45 53 2.96 3.19
α of 4.5% 6.51 19.58 0.00 0.00 0.34 0.24 0.24 4.92 0.55 55 2.96 3.18
α of 4.0% 6.48 19.55 0.00 0.00 0.34 0.43 0.43 4.99 0.68 56 2.96 3.18
α of 3.5% 6.46 19.53 0.00 0.00 0.34 0.60 0.61 5.09 0.83 58 2.96 3.18
α of 3.0% 6.44 19.51 0.00 0.00 0.34 0.71 0.72 5.25 1.01 61 2.95 3.17
α of 2.5% 6.47 19.48 0.00 0.00 0.34 0.68 0.69 5.49 1.23 64 2.95 3.17
α of 2.0% 6.53 19.47 0.00 0.00 0.34 0.60 0.60 5.90 1.48 69 2.95 3.16
α of 1.5% 6.68 19.48 0.00 0.00 0.35 0.41 0.41 6.53 1.73 75 2.95 3.16
α of 1.0% 6.90 19.57 0.01 0.01 0.36 0.28 0.28 7.50 2.06 84 2.96 3.17
α of 0.5% 7.14 19.70 0.76 0.75 0.37 0.24 0.23 10.00 2.64 95 2.98 3.19

5.1.2 Stock fundamentals constraint

In the stock fundamentals constraints (Algorithm 2) , seen in Tables 28 - 35 in Appendix J, only
those stocks that show extreme fundamental values within their respective sector are adjusted.
It is assumed that, in the long term, stocks in the same sector show similar stock fundamentals,
which will grow over time at approximately the same rate. Stocks that deviate from this pattern
are assumed to revert to the mean, exposing investors to greater downside risks. A major advan-
tage of this method is that it leads to minimal adjustments in the index and therefore minimally
deviates from the market cap index. This is reflected in the TE, which remains limited, even
in the strictest of constraints. Because so few adjustments are made to the index, the TO is
lower than that of the constant constraint. Nearly every stock fundamental has been able to
achieve a significant reduction in index volatility and thereby reduce downside risk. However,
strict constraints are often required to observe a significant improvement in the Sharpe ratio. An
income-based constraint (price-to-earnings and price-to-earnings-to-growth) appears to achieve
the best Sharpe ratio improvement.

A naive stock fundamentals constraint which can be seen in Table 11 shows promising results.
However, a higher TO is observed because 10% of the index weights are adjusted at rebalancing.
What stands out is the low TE relative to the market cap index, this can be explained by the
fact that mainly the smaller weights in the index are adjusted, which ensures that the rest of
the index continues to move along with the market cap index. Because smaller weights in the
index are also affected by this constraint, the diversification in this index decreases since the
weight of these smaller exposures mainly ends up with the larger exposures in the index after
rebalancing. Ultimately, it appears that the index’s historical downside risk has diminished.
However, applying this constraint creates a potentially greater risk in the future by increasing
exposure to the larger companies in the index.
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Table 11: Annualized summary statistics of naive constrained S&P 500 using price-to-earnings ratio and the
general normalization method, where a constraint of 0.1 corresponds to δ of 0.1. Based on Algorithm 2.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
δ of 0.9 7.73 19.72 0.00 0.00 0.40 0.02 0.02 2.70 0.28 106 2.99 3.18
δ of 0.8 7.77 19.69 0.00 0.00 0.40 0.01 0.01 3.03 0.33 105 2.98 3.18
δ of 0.7 7.81 19.67 0.00 0.00 0.40 0.01 0.01 3.40 0.40 105 2.98 3.17
δ of 0.6 7.85 19.64 0.00 0.00 0.40 0.01 0.01 3.79 0.47 104 2.97 3.17
δ of 0.5 7.89 19.61 0.00 0.00 0.41 0.01 0.01 4.23 0.55 103 2.97 3.16
δ of 0.4 7.94 19.59 0.00 0.00 0.41 0.01 0.01 4.68 0.64 102 2.97 3.15
δ of 0.3 7.98 19.56 0.00 0.00 0.41 0.01 0.01 5.16 0.73 101 2.96 3.15
δ of 0.2 8.03 19.53 0.00 0.00 0.41 0.01 0.01 5.65 0.83 99 2.96 3.14
δ of 0.1 8.08 19.50 0.00 0.00 0.42 0.01 0.01 6.16 0.93 98 2.95 3.13

5.1.3 Sector constraint

In Table 12, and Table 36 in Appendix J, the results of the sector constrained indices (Algo-
rithm 3) can be observed. In this method, the three largest sectors are constrained to β and the
remaining sector weights are adjusted accordingly. As with the stock fundamentals constrained
indices, the sector constrained indices can achieve a reduction in index volatility. In the sector
constrained indices it is hard to observe a significant improvement in the Sharpe ratio. Although
the sector constraint threshold is regularly exceeded, there is almost no difference between the
different constrained indices. Multiple grid sizes and intervals were tested but hardly changed
the results. The sector constraint appears to be able to marginally improve risk at a low tracking
error. However, this decrease in risk does not outweigh the portfolio turnover that is quadrupled
compared to the market cap portfolio.

Table 12: Annualized summary statistics of constrained S&P 500 using a sector constraint, where a constraint of
80% corresponds to max weight of 80% of the top 3 sectors at the moment of index creation. Based on Algorithm
3.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
β of 80% 7.69 19.74 0.00 0.00 0.40 0.08 0.09 2.50 0.26 106 2.99 3.19
β of 79% 7.70 19.74 0.00 0.00 0.40 0.08 0.09 2.50 0.26 106 2.99 3.19
β of 78% 7.70 19.74 0.00 0.00 0.40 0.09 0.09 2.51 0.27 106 2.99 3.19
β of 77% 7.70 19.74 0.00 0.00 0.40 0.09 0.09 2.51 0.27 106 2.99 3.19
β of 76% 7.70 19.75 0.00 0.00 0.40 0.11 0.11 2.51 0.28 106 2.99 3.19
β of 75% 7.69 19.75 0.00 0.00 0.40 0.13 0.15 2.52 0.28 106 2.99 3.19
β of 74% 7.69 19.76 0.00 0.00 0.40 0.16 0.16 2.53 0.29 107 2.99 3.19
β of 73% 7.69 19.77 0.00 0.00 0.40 0.19 0.18 2.54 0.30 107 2.99 3.19
β of 72% 7.69 19.77 0.00 0.00 0.39 0.22 0.23 2.54 0.31 107 3.00 3.19
β of 71% 7.69 19.78 0.00 0.00 0.39 0.26 0.27 2.55 0.32 107 3.00 3.19
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5.1.4 Additional results

The static constrained portfolios, counter-intuitively, show lower returns than the S&P 500.
However, due to diversification benefits, the constrained indices recover more quickly from these
poor returns. In the end, the constrained indices show better returns, on average taking fewer
losses in the worst 5% of cases, resulting in a lower ES. Despite index volatility and ES are
estimated in different ways, there seems to be a certain relationship between the two variables. It
is observed that the two variables move in the same direction. That is when the volatility of the
index decreases, a decrease in the ES is observed. To reduce downside risk, it is probably more
convenient to look for a significant decrease in volatility without sacrificing risk-adjusted returns.

In particular, the effect of the static constrained indices in the different volatility regimes has
been analyzed, which does not appear to yield the desired result. In many cases, the index
volatility is not significantly lower compared to the market cap index and in some cases, it is
even higher. An explanation for this is that the moments at which the constraint is applied come
too late and the damage has already been done. As a result, the applied constraints do even
hurt performance and have too little time to prove their value.

In Appendix J the results of quarterly rebalanced constant constrained indices can be found.
This was investigated to see whether the more frequent application of constraints is conducive
to limiting downside risk. The effect of interim rebalancing and the more frequent application of
constraints appears to be minimal when seeking downward risk reduction. The risk appears to be
greater if the index is rebalanced in between years. However, more frequent rebalancing provides
better diversification within the index, but this improvement is minimal. All this, in combina-
tion with the higher TO and TE, makes the more frequent application of constraints undesirable.

The application of multiple constraints has been tested. However, this turned out to yield no
improvement compared to the single constraint. This is because the strictest constraint will
dominate the less strict constraints.

5.2 Dynamic constraints

From Section 5.1 it appears that a naive constant constraint works best when one wants to
increase the Sharpe ratio of the index or when (downside) risk need to be limited. The sector
constraint proved to be best able to achieve minimal change to the index while reducing volatility
and downside risk. Therefore, these two methods will be tested in a dynamic environment.

In Tables 13 and 14 the results of two constant dynamic constrained indices can be observed.
The other tables can be found in Appendix K. Additionally, Figure 4 has been added to plot the
change in the value of the constrained indices against the S&P 500. At first glance, the dynamic
constraint seems to do its job. By applying the dynamic constraint, the volatility of the index
is significantly reduced. However, it seems that the added value of a dynamic constraint relative
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to a static constraint is marginal.

Table 13: Annualized summary statistics of dynamic VIX constrained S&P 500 for γ = 40 using a constant and
the general normalization method, where a constraint of 5.0% corresponds to a max index weight of 5.0%. Based
on Algorithm 4.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 7.69 19.78 0.00 0.00 0.39 0.09 0.17 3.19 0.22 106 3.00 3.19
α of 4.5% 7.69 19.78 0.00 0.00 0.39 0.11 0.15 3.77 0.22 106 3.00 3.19
α of 4.0% 7.68 19.77 0.00 0.00 0.39 0.15 0.18 4.48 0.23 106 3.00 3.19
α of 3.5% 7.66 19.77 0.00 0.00 0.39 0.31 0.33 5.51 0.24 106 3.00 3.19
α of 3.0% 7.64 19.78 0.00 0.00 0.39 0.54 0.54 7.26 0.26 107 3.00 3.19
α of 2.5% 7.62 19.78 0.00 0.00 0.39 0.83 0.84 9.59 0.29 107 3.00 3.20
α of 2.0% 7.59 19.79 0.05 0.08 0.39 0.86 0.87 12.73 0.33 107 3.00 3.20
α of 1.5% 7.58 19.81 0.70 0.72 0.39 0.69 0.69 18.09 0.40 107 3.01 3.20
α of 1.0% 7.57 19.85 0.31 0.34 0.39 0.65 0.66 28.15 0.50 108 3.01 3.21
α of 0.5% 7.53 19.94 0.01 0.02 0.39 0.52 0.54 48.47 0.75 109 3.03 3.22

Table 14: Annualized summary statistics of dynamic BI constrained S&P 500 for γ = 1.2 using a constant and
the general normalization method, where a constraint of 5.0% corresponds to a max index weight of 5.0%. Based
on Algorithm 4.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 7.73 19.75 0.00 0.00 0.40 0.03 0.03 2.54 0.26 106 2.99 3.19
α of 4.5% 7.73 19.75 0.00 0.00 0.40 0.04 0.05 2.57 0.28 107 2.99 3.19
α of 4.0% 7.73 19.74 0.00 0.00 0.40 0.07 0.08 2.61 0.31 107 2.99 3.19
α of 3.5% 7.74 19.73 0.00 0.00 0.40 0.11 0.12 2.68 0.37 109 2.99 3.18
α of 3.0% 7.73 19.72 0.00 0.00 0.40 0.22 0.23 2.77 0.47 110 2.99 3.18
α of 2.5% 7.72 19.71 0.00 0.00 0.40 0.35 0.36 2.89 0.60 113 2.98 3.18
α of 2.0% 7.70 19.69 0.00 0.00 0.40 0.51 0.52 3.07 0.76 115 2.98 3.17
α of 1.5% 7.69 19.67 0.00 0.00 0.40 0.63 0.63 3.44 0.95 118 2.98 3.17
α of 1.0% 7.70 19.66 0.00 0.00 0.40 0.67 0.67 4.15 1.16 121 2.97 3.17
α of 0.5% 7.81 19.66 0.00 0.00 0.40 0.51 0.50 5.80 1.47 127 2.97 3.16
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Figure 4: Value comparison of different constrained indices

A dynamic constraint has more advantages for more concentrated indices as can be seen in Table
15. When the threshold value of the dynamic constraint is exceeded, more weights are restricted
in a more concentrated index. This makes the impact of the constraint greater and its benefits
more clearly visible. However, restricting more weights in an index does result in a higher TO
and TE.

Table 15: Annualized summary statistics of dynamic constrained S&P 100 for γ = 1.2 using a constant and the
general normalization method, where a constraint of 5.0% corresponds to a max index weight of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12 2.13 97 2.97 3.18
α of 5.0% 6.50 19.62 0.00 0.00 0.34 0.16 0.16 4.82 0.42 52 2.97 3.17
α of 4.5% 6.48 19.61 0.00 0.00 0.34 0.31 0.32 4.90 0.50 53 2.96 3.17
α of 4.0% 6.47 19.60 0.00 0.00 0.34 0.47 0.47 5.01 0.61 54 2.96 3.17
α of 3.5% 6.45 19.57 0.00 0.00 0.34 0.62 0.62 5.14 0.73 54 2.96 3.17
α of 3.0% 6.42 19.56 0.00 0.00 0.34 0.79 0.79 5.31 0.87 55 2.95 3.16
α of 2.5% 6.39 19.54 0.00 0.00 0.34 0.90 0.90 5.60 1.04 55 2.95 3.16
α of 2.0% 6.37 19.51 0.00 0.00 0.33 0.96 0.96 6.10 1.23 56 2.95 3.15
α of 1.5% 6.35 19.50 0.00 0.00 0.33 0.99 0.99 6.82 1.39 57 2.94 3.15
α of 1.0% 6.44 19.50 0.00 0.00 0.34 0.80 0.80 8.02 1.57 58 2.94 3.14
α of 0.5% 6.56 19.52 0.00 0.00 0.34 0.62 0.62 10.07 1.86 59 2.94 3.15

What is striking about the dynamic restriction are the differences between the historical sim-
ulation and the normal mixture model approach for calculating the ES. Where the historical
simulation approach barely manages to benefit from the dynamic constraints, the normal mix-
ture model approach does seem to benefit from this. The dynamic constraint has little impact
on the lowest 5% returns. It is observed, however, that the mean return is more positive and
that the volatility of the normal mixture model with dynamic constraint is lower. This results in
a lower ESNM , which can yield up to 2 to 3 times more improvement compared to the historical
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simulation method.

The dynamic constraint is applied based on two variables, the V IX and the Buffett Indicator.
The V IX is a variable that varies daily. This allows the investor to choose whether or not to
constrain the index daily. The active constrain of the index mainly leads to a much higher TO
without countering a major decrease in downside risk. In fact, in some cases, the risk reduction
is not significant. These effects are mainly observed within the constant constrained indices. The
sector constraint is generally less applied, which automatically results in a lower TO. However,
the dynamic sector constraint does not show better results than the static one. In general, the
V IX does not seem to be a convenient variable to determine the moment of application of the
constraints. The V IX and S&P 500 are heavily negatively correlated (Vodenska and Chambers,
2013). As a result, an increase in the V IX will often lead to negative index returns. The con-
straint is applied after this event, while one probably would have wanted to apply the constraint
a day earlier to limit the loss of the index.

The other variable, on which the moment of applying the constraint was determined, is the Buf-
fett Indicator. This variable is determined once a quarter, which automatically results in fewer
rebalancing moments. This results in a much lower TO compared to the dynamic constraints
based on the V IX. A greater decrease in volatility is observed with the BI constraint than with
the V IX. However, this could be because the index is mainly constrained during the COVID-19
pandemic. This method has not been able to limit downside risk during the great financial crisis,
since the threshold value was not exceeded at that moment. Strict constant dynamic constraints
based on the BI appear to be quite capable of promoting diversification within the index. The
Buffett Indicator could therefore be seen as a convenient variable to determine the moment of
applying the constraints to the index. A lower TE compared to the static constraints is observed
because there are many moments when the dynamic index follows the market cap index. When
looking at diversification, however, one would still be better off with the static constraint. The
return achieved by that index is also almost one percent higher. But when looking for a con-
straint to limit downside risk against a small deviation from the market standard, the Buffett
Indicator can offer a favourable solution.

A similar counter-intuitive pattern is observed with the dynamic constraints as with the static
constraints. This confirms the find that Amenc et al. (2012) made. Namely, that different port-
folios react differently to various economic scenarios. The dynamic constraints do not result
in less negative returns, but they do realize a faster recovery compared to the S&P 500. This
statement is supported by Table 16, which shows the annualized returns, volatilities and ESs in
the different volatility regimes. The subscripts in the variables, therefore, indicate the different
regimes, defined in Section 4.4. The diversification benefits appear to be mainly positive in the
period after the decline. The diversification of the portfolio ensures a faster recovery from the
peak downwards. Ultimately, this leads to a lower value for ES.
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Table 16: Comparison between the dynamic 0.5% BI constrained S&P 500 for γ = 1.2 and the dynamic 5.0% VIX
constrained S&P 500 for γ = 40 using a constant and the general normalization method during volatile periods,
where a constraint of 5.0% corresponds to a max index weight of 5.0%. The subscripts in the variables indicate
the different volatility regimes. Based on Algorithm 4.

rp,1 rp,2 rp,3 σp,1 σp,2 σp,3 ESH,1 ESH,2 ESH,3 ESN,1 ESN,2 ESN,3

S&P 500 -5.25 -23.34 21.11 21.59 37.97 35.54 2.94 5.79 5.82 3.04 5.92 6.21
S&P 500 EW 6.00 -22.11 14.14 20.08 40.36 37.84 2.63 6.12 6.26 2.75 6.17 6.51
BI -4.97 -23.15 17.25 21.53 37.76 35.93 2.93 5.75 5.91 3.04 5.89 6.27
VIX -4.76 -23.21 21.12 21.43 37.89 35.53 2.92 5.77 5.82 3.02 5.91 6.22

5.3 Index combinations

In Tables 17 and 18 the results of a daily combined index can be observed. The difference between
the two tables is the variable on which both indices are combined, in Table 17 this is volatility
and in Table 18 historical simulated ES. The three indices with the lowest ES and/or volatility
from Sections 5.1 and 5.2, in combination with the market cap index, have been chosen to include
in the combined index. The constrained index that showed the best results, the dynamic con-
stant constrained index, is included in all index combinations. The constant constrained index is
added in the index which consists of both 3 and 4 indices, and the sector constrained index is only
included in the largest combined index. As can be seen, combining indices automatically results
in a lower TE. This can be explained by the fact that the market cap index itself is included in
the index combination and the constrained index is therefore only partially included, leading to
a lower TE. Both methods can significantly reduce volatility and thereby achieve a lower ES.
However, this effect is also only a few basis points here. Both methods lead to roughly the same
results, confirming the presumption of a correlation between volatility and downside risk. In
contrast to naive constraints, the conscious pursuit of volatility and expected shortfall reduction
leads to a lower return and a lower Sharpe ratio against marginal risk reduction. Continuously
combining different portfolios based on volatility and ES would therefore not offer a favourable
solution.

Table 17: Annualized summary statistics of the combined S&P 500 index where the combined index will exist
out of 1. market cap index, 2. dynamic constant constrained index, 3. constant constrained index and 4. sector
constrained index. A training time of 1 year is applied and the weight calculation is based on volatility.

rp σp pH,σ pB,σ SR pH,SR pB,SR TE AS ESHS ESNM

S&P 500 8.42 19.63 - - 0.44 - - - 110 3.00 3.20
Comb 4 indices 8.32 19.56 0.00 0.00 0.44 0.82 0.82 0.48 120 2.99 3.19
Comb 3 indices 8.28 19.55 0.00 0.00 0.43 0.76 0.76 0.62 141 2.99 3.19
Comb 2 indices 8.23 19.58 0.00 0.00 0.43 0.16 0.16 0.55 133 2.99 3.19
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Table 18: Annualized summary statistics of the combined S&P 500 index where the combined index will exist
out of 1. market cap index, 2. dynamic constant constrained index, 3. constant constrained index and 4. sector
constrained index. A training time of 1 year is applied and the weight calculation is based on the expected
shortfall.

rp σp pH,σ pB,σ SR pH,SR pB,SR TE AS ESHS ESNM

S&P 500 8.42 19.63 - - 0.44 - - - 110 3.00 3.20
Comb 4 indices 8.32 19.56 0.00 0.01 0.44 0.82 0.82 0.48 120 2.99 3.19
Comb 3 indices 8.28 19.55 0.03 0.04 0.43 0.76 0.77 0.62 141 2.99 3.18
Comb 2 indices 8.23 19.58 0.03 0.05 0.43 0.16 0.16 0.55 133 2.99 3.19

What is interesting to see is how the different combined indexes react to volatile periods, which
can be observed in Tables 19 and 20. Combined indices based on volatility tend to lean more
towards the constrained indices in more volatile times, which we saw in Section 5.2 show more
negative returns during volatile periods. As seen and discussed before, constrained indices bene-
fit in the period after a major decline. Because the volatility regimes are too small, there is not
enough time to show these diversification benefits.

The combined index based on historical simulated ES shows promising results. Unlike the com-
bined index based on volatility, it relies on the market cap index in more volatile times. After
large negative returns, the exposure to the market cap index is reduced and more is allocated to
the constrained indices that outperform the market cap, as can be seen in Sections 5.1 and 5.2.
This results in more positive results causing the V aR to be lower, which often results in lower
values for the ES.

Table 19: Comparison between combined S&P 500 indices based on volatility during volatile periods. Where the
subscripts of the variables indicate the volatility regime introduced in Section 4.4.

rp,1 rp,2 rp,3 σp,1 σp,2 σp,3 ESH,1 ESH,2 ESH,3 ESN,1 ESN,2 ESN,3

S&P 500 -5.25 -23.34 21.11 21.59 37.97 35.54 2.94 5.79 5.82 3.04 5.92 6.21
Comb 4 indices -5.38 -23.62 18.80 21.34 37.87 35.52 2.90 5.77 5.81 3.01 5.90 6.22
Comb 3 indices -5.44 -23.62 18.17 21.33 37.91 35.55 2.90 5.77 5.81 3.01 5.90 6.23
Comb 2 indices -5.57 -23.72 18.95 21.55 37.87 35.60 2.93 5.77 5.83 3.04 5.90 6.24

Table 20: Comparison between combined S&P 500 indices based on historical simulated expected shortfall during
volatile periods. Where the subscripts of the variables indicate the volatility regime introduced in Section 4.4.

rp,1 rp,2 rp,3 σp,1 σp,2 σp,3 ESH,1 ESH,2 ESH,3 ESN,1 ESN,2 ESN,3

S&P 500 -5.25 -23.34 21.11 21.59 37.97 35.54 2.94 5.79 5.82 3.04 5.92 6.21
Comb 4 indices -4.98 -22.04 21.55 21.35 37.90 35.51 2.88 5.72 5.78 2.99 5.87 6.20
Comb 3 indices -5.44 -23.62 21.33 21.33 37.91 35.55 2.90 5.77 5.81 3.01 5.90 6.23
Comb 2 indices -5.57 -23.72 21.55 21.55 37.87 35.60 2.93 5.77 5.83 3.04 5.90 6.24
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6 Conclusion

In this thesis, it is shown that the downside risk of a market cap index can be reduced by apply-
ing constraints. Different constraints have been tested in combination with different rebalancing
methods. The constraints tested are a constant constraint, a stock fundamentals constraint, a
sector constraint and a dynamic constraint. All methods were found to be able to reduce down-
side risk. This was mainly achieved by significantly reducing the volatility of the portfolio, which
seems strongly connected to downside risk reduction. However, applying constraints do not seem
to reduce negative returns. But the extra diversification resulting from the constraints ensures
faster recovery from these negative returns. Ultimately, this leads to better returns in the long
run and the average loss in the 5% worst cases will be less than with a regular market cap index.

Strict constraints allow for broad diversification by forcing the portfolio towards a 1/N portfolio.
This results in higher returns with less downside risk. However, like the conclusion of Chiou et al.
(2009), a point was found when a restriction turned out to be too strict. A constraint that is too
strict exposes the investor to the smaller, riskier stocks in the index. As a result, constraining
the index can lead to more risk. Mild constraints have the advantage that few adjustments are
made to the market cap index. This limits tracking error and turnover. Even a mild weight
constraint reduces downside risk, albeit marginally.

The stock fundamentals constraint produced mixed results. While all variables used were able to
reduce downside risk, the variables analyzed based on earnings appear to give the best results.
Two ways of applying the constraints were tested, a naive way where all stocks in the top 10%
quantile were constrained, and a method where only those stocks that fell in the quantile and
make a significant contribution to the index are constrained. The naive method appears to give
the best results based on downside risk but has the major disadvantage that this is offset by a
lot of turnover and tracking error. This method also allows for a more concentrated index as
the smaller exposures in the index are adjusted. When normalizing the index, this weight will
mainly end up with the larger stocks in the index.

The main disadvantage of constraining a market cap index is that the weights no longer vary
with returns and therefore rebalancing has to take place. This effect is logically greater when
stricter constraints are imposed on the index. Indices consisting of a small number of stocks
suffer the most from these rebalancing disadvantages since threshold values are exceeded more
quickly. One way to avoid this would be to loosen the grid, then similar results to the less
concentrated indices would be observed. Another disadvantage is incurring tracking error with
the market cap index, which is the market standard. This effect seems to be limited if a sector-
neutral rebalancing technique is used. However, applying this rebalancing technique does result
in a higher turnover.

To limit these disadvantages, a dynamic constraining method was considered. This constraint is
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only applied when a decision variable is exceeded and, therefore, will limit turnover. However,
a good choice must be made for the decision variable and threshold. In this thesis, two decision
variables are analyzed, being the VIX and the Buffett Indicator. The frequency at which the
decision variable is available and the limit at which you decide to rebalance appear to be essen-
tial for the success of this method. The Buffett Indicator is available quarterly and therefore
automatically leads to fewer rebalancing moments and therefore a lower turnover. Compared
to the VIX, this variable is less volatile and also ensures less rebalancing. Ultimately, reducing
downside risk in a market cap index appears to work well within a dynamic environment, but
the intended goal of limiting turnover is not achieved.

Jagannathan and Ma (2003) concluded in their research that applying an upper-bound constraint
would add little value from a risk-return standpoint if a short-sell constraint were already in place.
I have to agree with their conclusion. In this study, even with strict constraints, a significant
increase in the Sharpe ratio was rarely observed. However, by imposing these constraints risk
reduction can be achieved, without a negative impact on returns. The second point they make
in their paper, that even applying the wrong constraints works, is confirmed by this research.
Imposing constraints more often has a positive effect on index performance than a negative one.
This research shows that investors are often best off by using a naive way of constraining. That
is, constrain anything above a certain threshold without looking at underlying numbers.

In addition to constraining the market cap index, the potential benefits of combining different
(un)constrained indices based on volatility and expected shortfall were examined. Combining
indices significantly reduces volatility, but comes at the cost of returns. In the different volatility
regimes, combining indices based on expected shortfall can provide added value.

All in all, applying constraints to a market cap index has marginal benefits. While risk in the
index decreases, it comes at the cost of high turnover. As a result, in most cases, the extra
return or the reduction of the marginal risk will not outweigh the extra costs that have to be
incurred. If the investor aims for a higher risk-adjusted return, he is better off investing in the
riskier equal-weighted index (DeMiguel et al., 2009). Although higher turnover is observed here
as well, he will get enough additional return in return.
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7 Discussion

From the results section, some neat and relevant conclusions are drawn. However, several sub-
jects need further investigation. The assumptions that were made throughout this thesis yield
results that do not necessarily apply in general. This section describes what research needs to
follow to complete this study.

First of all, the main question needs to be considered. This thesis looked at how to diversify
a market cap index to reduce downside risk. The philosophical question that arises is whether
investors would like to invest in a broadly diversified US stock index, with diversification across
different companies and sectors, or whether they would like to invest in a reflection of the US
economy. When the latter is the case, a concentrated index towards the largest companies and
sectors is not a disadvantage as they are over-represented in the US economy. These investors
will always exist and so the constrained indices will always be next to the market cap index.

There are several routes that I have followed throughout the thesis which could be followed in
several ways. One of the main variables to be questioned is the way the sectors are defined.
In this thesis, I chose SIC sectors, which were easy to extract from the CRSP database. The
conclusion about sector constraints is therefore partly based on the definition of these sectors.
It is possible that if one had used GSCI sectors or NAICS sectors in the analysis, a completely
different conclusion would have been reached. The effect of the sector choice could be further
investigated in a follow-up study.

The same case can be made for the decision variable in the dynamic models. Two decision
variables were investigated in this thesis, the V IX and BI. However, one could use different
variables which can explain market overvaluation or volatility. Examples include the treasury
bill rate, house prices, business confidence index, business climate indicator, etc.
In this thesis, two different ways are analyzed to estimate the V aR and the ES. However, there
are dozens of other ways in which this is possible. As can be seen, the results for the different
methods can vary widely. In this thesis, the difference between the historical simulation and
normal mixture model approach was often several tens of basis points. For the normal mixture
model, two normal distributions with different initial starting points were used. There is a chance
that the EM algorithm has converged to a local minimum in some cases, resulting in different
results. One solution to this would be to use multiple initial starting points for each analysis. A
possible model selection error is also insurmountable. There is no guarantee that a two normal
mixture model is a good representation of the underlying data. Perhaps multiple underlying
distributions could have improved the estimation of the V aR.

Determining significant differences between ESs is something to be explored in a follow-up study.
There are several ways to estimate the ES, but there is no generic method to determine whether
the differences between two ESs are significant or not. Precisely because ES can be determined
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in different ways, this is a difficult issue for which a PhD could be spent.

In this thesis, it was concluded that there may be a correlation between the volatility and ES of
an index. However, the magnitude of this correlation needs to be further investigated. A question
related to the previous point is, for example, whether a significant reduction in volatility also
results in a significant reduction in ES.
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Appendix

A Company concentration

Figure 5: Mega stock weights in the S&P500 over the last 21 years.

B Expectation Maximization parameter derivation

The log likelihood function, mentioned below and elaborated in Section 3.5.1.2, is estimated
according to the EM algorithm as follows:
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This process is started with an initial guess of the parameters θ(0) and is iterated until it con-
verges: |logL(t+1) − logL(t)| < ε. This MLE estimation converges to the true MLE: limt→∞ θ

(t) =

θ̂MLE . A disadvantage of the EM method is that it could converge to a local maximum. A solu-
tion to this is to provide multiple initial parameters θ(0) and choose the solution with the highest
likelihood.

C HAC Inference derivation

Given the function f , the normalization conditions and the corresponding standard error s
(

∆̂
)

mentioned in Section 3.6.1, the p-value is calculated using the following limiting covariance
matrix in Equation 5:

Ψ = lim
N→∞

1

N

N∑
s=1

N∑
t=1

E
(
ysy
′
t

)
,

where y′t =
(
rt,i − µi, rt,j − µj , σ2

i , σ
2
j

)
.

By change of variables, the limit can be alternatively expressed as:

Ψ = lim
N→∞

ΨN , with ΨN =
N−1∑

j=−N+1

ΓN (j), where

ΓN (j) =


1
N

∑N
t=j+1 E

(
yty
′
t−j

)
for j ≥ 0

1
N

∑N
t=−j+1 E (yt+jy

′
t) for j < 0

A HAC robust kernel k is used to come up with a consistent estimator Ψ̂N . The kernel estimate
for Ψ is given by:

Ψ̂ = Ψ̂N =
T

T − 4

N−1∑
j=−N+1

k

(
j

SN

)
Γ̂N (j), where

Γ̂N (j) =

 1
N

∑N
t=j+1 ŷtŷ

′
t−j for j ≥ 0

1
N

∑N
t=−j+1 ŷt+j ŷ

′
t for j < 0,

where ŷ′t =
(
rt,i − E (rt,i) , rt,j − E (rt,j) , r

2
t,i − E

(
r2
t,i

)
, r2
t,j − E

(
r2
t,j

))
and SN is the bandwidth.

Most commonly used kernel is the Parzen-Gallant kernel, which will be used in this thesis. There
are several automatic methods to determine the asymptotic optimal bandwidth (Andrews and
Monahan, 1992; Newey and West, 1994). In this thesis, the automatic bandwidth selection of
Andrews and Monahan (1992) is used.
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D Return distributions

Figure 6: Histogram of daily S&P 500 index returns and the two density curves of the normal mixture model.

Figure 7: Histogram of daily S&P 100 index returns and the two density curves of the normal mixture model.
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E Cumulative returns

Figure 8: Value over time for the four different indices.

F Value of indices during recessions

Figure 9: Returns of S&P indices during the early 2000 recession.
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Figure 10: Returns of S&P indices during the global financial crisis.

Figure 11: Returns of S&P indices during the COVID-19 pandemic.
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G Dynamic constraint

Figure 12: Graph of the Buffett Indicator with a value of γ (1.2) displayed.

H Stock fundamentals

Table 21: Explanation of stock fundamentals*.

Value

Book-to-
Market ratio

This ratio compares a firm’s book value to its market value. A company’s book
value is calculated by looking at the company’s historical cost, or accounting
value. The firm’s market value is equal to the market capitalization of the
company.
A Book-to-Market (B/M) ratio under 1 could indicate that a company is un-
dervalued, since the stock price of a company is trading for less than the worth
of its assets. The opposite could be true for a B/M ratio above 1.

Price-to-Book
ratio

This ratio compares a firm’s market value to its book value. It’s calculated by
dividing the stock price per share by its book value per share. Therefore, this
ratio takes into account possible stock splits.
High-growth companies often show Price-to-Book (P/B) ratios well above 1,
whereas companies facing severe distress will show ratios below 1.

Price-to-Cash
Flow ratio

The Price-to-Cash Flow (P/CF) ratio measures the amount of cash generated
by a company relative to its stock price. Cash flows can not be manipulated
as easily as earnings, making it a robust measure.
A low P/CF ratio may imply undervaluation of a stock.
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Price-to-
Earnings ratio

This ratio compares a company’s market value to its per-share earnings. This
metric can be used to determine the relative value of a company’s shares.
Again, this metric takes into account possible stock splits by taking the stock
price per share instead of the stock price itself.
A high Price-to-Earnings (P/E) ratio could mean that a company’s stock is
overvalued or that investors expect high future growth rates. Companies that
have no earnings or that are losing money do not have a P/E ratio.

Price-to-
Earnings-
to-Growth
ratio

This ratio is calculated by taking the P/E ratio and divide it by the growth
rate of the company’s earnings. It is used to determine a company’s stock
value while factoring in its historical earnings growth. Therefore it is thought
to provide a more complete picture than the simple P/E ratio. CRSP uses a
historical 3 year EPS growth rate,
A high Price-to-Earnings-to-Growth (PEG) ratio could mean that a company’s
stock is overvalued. Companies that have no earnings or that are losing money
do not have a PEG ratio.

Price-to-Sales
ratio

This ratio compares a company’s stock price to its revenues. It shows how
much investors are willing to pay per dollar of sales for a stock. One downside
of the Price-to-Sales (P/S) ratio is that it does not take into account if the
company makes any earnings.
A low P/S ratio could mean that a company’s stock is undervalued, while the
opposite hold for a high P/S ratio.

Profitability

Debt-to-
Equity ratio

The Debt-to-Equity (D/E) ratio is used to evaluate a company’s financial lever-
age and is calculated by dividing a company’s total liabilities by its shareholder
equity. It measures if a company finances its operations through debt versus
owned funds.
A higher D/E ratio often indicates a riskier stock.

Operating
Profit Margin

The Operating Profit Margin (OPM) measures how much profit a company
makes on one dollar of sales after paying wages and production costs, but
before paying interest or taxes.
Higher OPM values illustrate more efficient operations. This metric is hard to
compare across different sectors, but can be used for competitors.

Return On Eq-
uity

Return On Equity (ROE) is a measure of financial performance calculated by
dividing net income by a company’s asset minus its debt.
A higher ROE reflects higher profitability.

*Source: https://www.investopedia.com/financial-term-dictionary-4769738
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Table 22: Mean index fundamentals.

B/M P/B P/CF P/E PEG P/S D/E OPM($) ROE(%)

S&P 100 0.36 5.20 14.4 26.5 2.03 3.59 2.17 0.23 0.23
S&P 500 0.38 4.85 14.2 24.4 1.87 3.37 2.41 0.19 0.21
S&P 100 EW 0.37 4.98 14.7 21.4 1.79 3.60 2.20 0.21 0.22
S&P 500 EW 0.41 4.01 13.0 18.6 1.49 2.81 2.19 0.10 0.17

I Sector allocation

Figure 13: SIC sector weights over time for the S&P 100.

Figure 14: SIC sector weights over time for the S&P 500.
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J Static constrained indices

J.1 Constant constraints

Figure 15: Value over time for different constant constraints for the S&P 500.

Table 23: Annualized summary statistics of quarterly rebalanced constrained S&P 500 using a constant and the
general normalization method, where a constraint of 5.0% corresponds to a max index weight of 5.0% at the
moment of index creation.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 7.62 19.80 0.00 0.00 0.39 0.77 0.77 3.23 0.16 108 3.00 3.20
α of 4.5% 7.63 19.80 0.00 0.00 0.39 0.69 0.71 3.31 0.22 108 3.00 3.20
α of 4.0% 7.65 19.79 0.00 0.00 0.39 0.48 0.50 3.43 0.30 110 3.00 3.20
α of 3.5% 7.68 19.76 0.00 0.00 0.39 0.34 0.35 3.68 0.41 113 2.99 3.19
α of 3.0% 7.70 19.74 0.00 0.00 0.40 0.38 0.38 3.93 0.55 118 2.99 3.19
α of 2.5% 7.69 19.73 0.00 0.00 0.40 0.52 0.52 4.03 0.70 125 2.99 3.19
α of 2.0% 7.73 19.72 0.00 0.00 0.40 0.48 0.48 4.25 0.90 134 2.99 3.18
α of 1.5% 7.87 19.74 0.03 0.03 0.40 0.29 0.29 4.86 1.15 149 2.99 3.19
α of 1.0% 8.15 19.81 0.83 0.82 0.42 0.12 0.12 5.65 1.49 179 3.00 3.19
α of 0.5% 8.67 19.98 0.02 0.02 0.44 0.05 0.05 6.62 2.14 248 3.02 3.21
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Table 24: Annualized summary statistics of quarterly rebalanced constrained S&P 500 using a constant and the
sector neutral normalization method, where a constraint of 5.0% corresponds to a max index weight of 5.0% at
the moment of index creation.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 7.61 19.81 0.00 0.00 0.39 0.96 0.96 3.28 0.13 107 3.00 3.20
α of 4.5% 7.62 19.80 0.00 0.00 0.39 0.87 0.87 3.36 0.18 108 3.00 3.20
α of 4.0% 7.64 19.79 0.00 0.00 0.39 0.57 0.58 3.50 0.25 110 3.00 3.20
α of 3.5% 7.66 19.77 0.00 0.00 0.39 0.39 0.39 3.78 0.34 112 3.00 3.19
α of 3.0% 7.68 19.75 0.00 0.00 0.39 0.42 0.41 4.04 0.45 116 2.99 3.19
α of 2.5% 7.67 19.74 0.00 0.00 0.39 0.59 0.59 4.18 0.59 123 2.99 3.19
α of 2.0% 7.70 19.73 0.00 0.00 0.40 0.52 0.52 4.42 0.76 132 2.99 3.18
α of 1.5% 7.84 19.73 0.00 0.00 0.40 0.28 0.28 5.08 0.99 145 2.99 3.18
α of 1.0% 8.08 19.78 0.21 0.20 0.41 0.12 0.12 5.99 1.30 173 2.99 3.19
α of 0.5% 8.58 19.94 0.02 0.01 0.43 0.05 0.04 7.09 1.92 238 3.01 3.20

Table 25: Annualized summary statistics of constrained S&P 100 using a constant and the sector neutral normal-
ization method, where a constraint of 5.0% corresponds to a max index weight of 5.0% at the moment of index
creation.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12.00 2.13 97 2.97 3.18
α of 5.0% 6.46 19.64 0.00 0.00 0.34 0.27 0.27 4.91 0.37 53 2.97 3.19
α of 4.5% 6.43 19.62 0.00 0.00 0.34 0.55 0.54 5.00 0.46 54 2.97 3.19
α of 4.0% 6.41 19.59 0.00 0.00 0.34 0.76 0.77 5.08 0.57 56 2.96 3.19
α of 3.5% 6.38 19.56 0.00 0.00 0.33 0.92 0.93 5.18 0.71 58 2.96 3.18
α of 3.0% 6.37 19.53 0.00 0.00 0.33 0.96 0.96 5.33 0.87 60 2.95 3.17
α of 2.5% 6.41 19.49 0.00 0.00 0.34 0.81 0.82 5.58 1.06 63 2.95 3.17
α of 2.0% 6.48 19.46 0.00 0.00 0.34 0.66 0.66 5.99 1.29 67 2.94 3.16
α of 1.5% 6.60 19.45 0.00 0.00 0.35 0.48 0.49 6.99 1.54 73 2.94 3.15
α of 1.0% 6.75 19.49 0.00 0.00 0.35 0.37 0.36 7.54 1.87 82 2.94 3.16
α of 0.5% 6.95 19.65 0.23 0.21 0.36 0.34 0.35 10.00 2.44 91 2.97 3.18
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Table 26: Annualized summary statistics of quarterly rebalanced constrained S&P 100 using a constant and the
general normalization method, where a constraint of 5.0% corresponds to a max index weight of 5.0% at the
moment of index creation.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 6.43 19.65 0.00 0.00 0.34 0.59 0.60 6.14 0.49 54 2.97 3.18
α of 4.5% 6.44 19.62 0.00 0.00 0.34 0.63 0.64 6.41 0.61 56 2.97 3.17
α of 4.0% 6.42 19.59 0.00 0.00 0.34 0.77 0.78 6.58 0.75 57 2.97 3.17
α of 3.5% 6.38 19.58 0.00 0.00 0.33 0.94 0.94 6.73 0.91 59 2.96 3.17
α of 3.0% 6.36 19.57 0.00 0.00 0.33 0.98 0.98 6.97 1.08 62 2.96 3.17
α of 2.5% 6.42 19.57 0.00 0.00 0.34 0.84 0.84 7.56 1.30 65 2.96 3.16
α of 2.0% 6.53 19.58 0.01 0.01 0.34 0.63 0.63 8.48 1.56 70 2.97 3.17
α of 1.5% 6.69 19.63 0.10 0.09 0.35 0.44 0.45 9.67 1.84 76 2.97 3.17
α of 1.0% 6.88 19.73 0.92 0.92 0.36 0.33 0.33 11.55 2.23 86 2.99 3.19
α of 0.5% 7.11 19.92 0.05 0.05 0.37 0.31 0.31 15.92 2.92 97 3.01 3.21

Table 27: Annualized summary statistics of quarterly rebalanced constrained S&P 100 using a constant and the
sector neutral normalization method, where a constraint of 5.0% corresponds to a max index weight of 5.0% at
the moment of index creation.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 6.42 19.65 0.00 0.00 0.34 0.62 0.63 6.38 0.41 54 2.97 3.18
α of 4.5% 6.42 19.62 0.00 0.00 0.34 0.65 0.65 6.65 0.51 55 2.97 3.17
α of 4.0% 6.40 19.59 0.00 0.00 0.34 0.80 0.80 6.82 0.63 57 2.97 3.17
α of 3.5% 6.37 19.57 0.00 0.00 0.33 0.99 0.99 7.01 0.77 59 2.96 3.17
α of 3.0% 6.35 19.55 0.00 0.00 0.33 0.95 0.96 7.23 0.92 61 2.96 3.16
α of 2.5% 6.42 19.54 0.00 0.00 0.34 0.82 0.82 7.84 1.11 64 2.96 3.16
α of 2.0% 6.51 19.53 0.00 0.00 0.34 0.60 0.60 8.80 1.33 68 2.95 3.16
α of 1.5% 6.63 19.54 0.00 0.00 0.35 0.45 0.46 9.98 1.60 74 2.96 3.16
α of 1.0% 6.81 19.61 0.03 0.02 0.35 0.33 0.33 11.85 1.97 83 2.96 3.17
α of 0.5% 7.07 19.79 0.41 0.41 0.37 0.28 0.28 15.97 2.60 92 2.99 3.19

J.2 Stock fundamentals constraints

Constraints based on the different stock fundamentals mentioned in Appendix 21 have been
implemented. However, this Appendix only shows the two constrained indices that show the
best results based on downside risk reduction. This was decided to keep the research compact
and clear. If you are interested in the other results, please contact 543857mk@eur.nl.
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J.2.1 Price-to-Earnings ratio

Table 28: Annualized summary statistics of constrained S&P 500 using price-to-earnings ratio and the general
normalization method, where a constraint of 5.0% corresponds to α of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 7.70 19.74 0.00 0.00 0.40 0.07 0.07 2.50 0.25 106 2.99 3.21
α of 4.5% 7.70 19.74 0.00 0.00 0.40 0.07 0.08 2.50 0.25 106 2.99 3.21
α of 4.0% 7.70 19.74 0.00 0.00 0.40 0.07 0.07 2.50 0.25 106 2.99 3.21
α of 3.5% 7.70 19.74 0.00 0.00 0.40 0.07 0.07 2.50 0.25 106 2.99 3.21
α of 3.0% 7.70 19.74 0.00 0.00 0.40 0.06 0.07 2.52 0.25 106 2.99 3.21
α of 2.5% 7.71 19.74 0.00 0.00 0.40 0.05 0.05 2.55 0.26 106 2.99 3.21
α of 2.0% 7.73 19.72 0.00 0.00 0.40 0.03 0.03 2.61 0.28 107 2.99 3.20
α of 1.5% 7.76 19.70 0.00 0.00 0.40 0.02 0.02 2.72 0.34 108 2.98 3.20
α of 1.0% 7.86 19.68 0.00 0.00 0.40 0.00 0.01 2.98 0.44 108 2.98 3.19
α of 0.5% 8.01 19.64 0.00 0.00 0.41 0.00 0.00 3.54 0.60 108 2.97 3.18

Table 29: Annualized summary statistics of constrained S&P 500 using price-to-earnings ratio and the sector
neutral normalization method, where a constraint of 5.0% corresponds to α of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 7.68 19.77 0.00 0.00 0.39 0.10 0.11 2.48 0.22 106 3.00 3.21
α of 4.5% 7.68 19.77 0.00 0.00 0.39 0.10 0.11 2.48 0.22 106 3.00 3.21
α of 4.0% 7.68 19.77 0.00 0.00 0.39 0.10 0.11 2.48 0.22 106 3.00 3.21
α of 3.5% 7.69 19.77 0.00 0.00 0.39 0.10 0.10 2.48 0.22 106 3.00 3.21
α of 3.0% 7.69 19.77 0.00 0.00 0.39 0.08 0.09 2.50 0.22 106 3.00 3.21
α of 2.5% 7.70 19.77 0.00 0.00 0.40 0.06 0.07 2.53 0.22 106 3.00 3.21
α of 2.0% 7.72 19.76 0.00 0.00 0.40 0.02 0.02 2.60 0.25 107 2.99 3.21
α of 1.5% 7.77 19.74 0.00 0.00 0.40 0.01 0.01 2.74 0.30 108 2.99 3.21
α of 1.0% 7.85 19.71 0.00 0.00 0.40 0.00 0.00 3.05 0.39 109 2.99 3.20
α of 0.5% 8.01 19.68 0.00 0.00 0.41 0.00 0.00 3.71 0.54 108 2.98 3.19
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Table 30: Annualized summary statistics of constrained S&P 100 using price-to-earnings ratio and the general
normalization method, where a constraint of 5.0% corresponds to α of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12 2.13 97 2.97 3.18
α of 5.0% 6.48 19.64 0.00 0.00 0.34 0.07 0.08 4.55 0.30 51 2.97 3.20
α of 4.5% 6.48 19.64 0.00 0.00 0.34 0.07 0.08 4.55 0.30 51 2.97 3.19
α of 4.0% 6.48 19.64 0.00 0.00 0.34 0.07 0.08 4.55 0.30 51 2.97 3.20
α of 3.5% 6.48 19.64 0.00 0.00 0.34 0.09 0.09 4.58 0.30 51 2.97 3.19
α of 3.0% 6.48 19.63 0.00 0.00 0.34 0.09 0.11 4.64 0.32 51 2.97 3.19
α of 2.5% 6.50 19.61 0.00 0.00 0.34 0.07 0.07 4.75 0.35 52 2.96 3.19
α of 2.0% 6.53 19.59 0.00 0.00 0.34 0.04 0.05 4.92 0.41 52 2.96 3.18
α of 1.5% 6.61 19.57 0.00 0.00 0.35 0.01 0.01 5.21 0.50 52 2.96 3.18
α of 1.0% 6.74 19.53 0.00 0.00 0.35 0.00 0.01 5.68 0.63 51 2.95 3.17
α of 0.5% 6.84 19.50 0.00 0.00 0.36 0.00 0.00 6.66 0.80 50 2.94 3.16

Table 31: Annualized summary statistics of constrained S&P 100 using price-to-earnings ratio and the sector
neutral normalization method, where a constraint of 5.0% corresponds to α of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12 2.13 97 2.97 3.18
α of 5.0% 6.46 19.68 0.00 0.00 0.34 0.11 0.14 4.64 0.24 51 2.98 3.20
α of 4.5% 6.46 19.68 0.00 0.00 0.34 0.11 0.14 4.64 0.24 51 2.98 3.20
α of 4.0% 6.46 19.68 0.00 0.00 0.34 0.11 0.14 4.64 0.24 51 2.98 3.20
α of 3.5% 6.46 19.68 0.00 0.00 0.34 0.11 0.14 4.66 0.25 51 2.98 3.20
α of 3.0% 6.47 19.67 0.00 0.00 0.34 0.10 0.12 4.72 0.26 51 2.97 3.20
α of 2.5% 6.49 19.66 0.00 0.00 0.34 0.06 0.06 4.84 0.29 52 2.97 3.20
α of 2.0% 6.52 19.64 0.00 0.00 0.34 0.03 0.04 5.05 0.33 52 2.97 3.19
α of 1.5% 6.59 19.62 0.00 0.00 0.34 0.01 0.02 5.41 0.41 52 2.97 3.19
α of 1.0% 6.69 19.60 0.00 0.00 0.35 0.00 0.01 6.07 0.52 52 2.96 3.18
α of 0.5% 6.79 19.57 0.00 0.00 0.35 0.01 0.01 7.27 0.70 51 2.96 3.17
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J.2.2 Price-to-Earnings-to-Growth ratio

Table 32: Annualized summary statistics of constrained S&P 500 using price-to-earnings-to-growth ratio and the
general normalization method, where a constraint of 5.0% corresponds to α of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 7.70 19.74 0.00 0.00 0.40 0.07 0.07 2.50 0.25 106 2.99 3.21
α of 4.5% 7.70 19.74 0.00 0.00 0.40 0.07 0.08 2.50 0.25 106 2.99 3.21
α of 4.0% 7.70 19.74 0.00 0.00 0.40 0.07 0.07 2.50 0.25 106 2.99 3.21
α of 3.5% 7.70 19.74 0.00 0.00 0.40 0.06 0.06 2.52 0.25 106 2.99 3.21
α of 3.0% 7.71 19.74 0.00 0.00 0.40 0.04 0.05 2.56 0.26 106 2.99 3.21
α of 2.5% 7.72 19.74 0.00 0.00 0.40 0.03 0.03 2.63 0.26 107 2.99 3.21
α of 2.0% 7.74 19.74 0.00 0.00 0.40 0.02 0.02 2.78 0.27 107 2.99 3.21
α of 1.5% 7.77 19.74 0.00 0.00 0.40 0.01 0.01 3.01 0.30 108 2.99 3.21
α of 1.0% 7.84 19.74 0.00 0.00 0.40 0.00 0.00 3.46 0.35 109 2.99 3.21
α of 0.5% 7.94 19.75 0.00 0.00 0.41 0.00 0.00 4.27 0.46 108 2.99 3.21

Table 33: Annualized summary statistics of constrained S&P 500 using price-to-earnings-to-growth ratio and the
sector neutral normalization method, where a constraint of 5.0% corresponds to α of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 7.68 19.77 0.00 0.00 0.39 0.10 0.11 2.48 0.22 106 3.00 3.21
α of 4.5% 7.68 19.77 0.00 0.00 0.39 0.10 0.11 2.48 0.22 106 3.00 3.21
α of 4.0% 7.68 19.77 0.00 0.00 0.39 0.10 0.11 2.48 0.22 106 3.00 3.21
α of 3.5% 7.69 19.77 0.00 0.00 0.39 0.08 0.09 2.49 0.22 106 3.00 3.21
α of 3.0% 7.70 19.77 0.00 0.00 0.40 0.06 0.06 2.54 0.22 106 3.00 3.21
α of 2.5% 7.71 19.77 0.00 0.00 0.40 0.04 0.04 2.62 0.22 107 3.00 3.21
α of 2.0% 7.73 19.77 0.00 0.00 0.40 0.02 0.03 2.77 0.24 108 3.00 3.21
α of 1.5% 7.76 19.77 0.00 0.00 0.40 0.01 0.01 3.01 0.27 108 3.00 3.21
α of 1.0% 7.82 19.78 0.00 0.00 0.40 0.00 0.00 3.52 0.32 109 3.00 3.21
α of 0.5% 7.92 19.79 0.00 0.00 0.41 0.00 0.00 4.49 0.42 109 3.00 3.22
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Table 34: Annualized summary statistics of constrained S&P 100 using price-to-earnings-to-growth ratio and the
general normalization method, where a constraint of 5.0% corresponds to α of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12 2.13 97 2.97 3.18
α of 5.0% 6.49 19.64 0.00 0.00 0.34 0.06 0.07 4.57 0.30 51 2.97 3.20
α of 4.5% 6.49 19.64 0.00 0.00 0.34 0.05 0.05 4.60 0.30 51 2.97 3.19
α of 4.0% 6.50 19.64 0.00 0.00 0.34 0.04 0.05 4.63 0.31 52 2.97 3.19
α of 3.5% 6.51 19.64 0.00 0.00 0.34 0.04 0.04 4.69 0.32 52 2.97 3.19
α of 3.0% 6.52 19.64 0.00 0.00 0.34 0.03 0.03 4.77 0.33 52 2.97 3.19
α of 2.5% 6.53 19.64 0.00 0.00 0.34 0.03 0.03 4.91 0.35 52 2.97 3.20
α of 2.0% 6.55 19.64 0.00 0.00 0.34 0.03 0.03 5.12 0.38 52 2.97 3.19
α of 1.5% 6.59 19.64 0.00 0.00 0.34 0.02 0.02 5.48 0.42 52 2.97 3.20
α of 1.0% 6.65 19.65 0.00 0.00 0.35 0.01 0.02 6.06 0.48 52 2.97 3.20
α of 0.5% 6.70 19.66 0.00 0.00 0.35 0.02 0.02 7.12 0.58 51 2.97 3.20

Table 35: Annualized summary statistics of constrained S&P 100 using price-to-earnings-to-growth ratio and the
sector neutral normalization method, where a constraint of 5.0% corresponds to α of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12 2.13 97 2.97 3.18
α of 5.0% 6.46 19.68 0.00 0.00 0.34 0.10 0.12 4.64 0.25 51 2.98 3.20
α of 4.5% 6.47 19.68 0.00 0.00 0.34 0.07 0.10 4.68 0.25 51 2.98 3.20
α of 4.0% 6.48 19.68 0.00 0.00 0.34 0.05 0.07 4.73 0.25 52 2.98 3.20
α of 3.5% 6.49 19.68 0.00 0.00 0.34 0.04 0.05 4.79 0.26 52 2.98 3.20
α of 3.0% 6.51 19.68 0.00 0.00 0.34 0.03 0.03 4.89 0.27 52 2.98 3.20
α of 2.5% 6.53 19.68 0.00 0.00 0.34 0.02 0.02 5.05 0.29 52 2.98 3.20
α of 2.0% 6.56 19.68 0.00 0.00 0.34 0.01 0.02 5.29 0.31 52 2.98 3.20
α of 1.5% 6.60 19.68 0.00 0.00 0.34 0.01 0.01 5.70 0.36 52 2.98 3.20
α of 1.0% 6.67 19.69 0.00 0.00 0.35 0.00 0.01 6.36 0.42 52 2.98 3.21
α of 0.5% 6.73 19.72 0.43 0.43 0.35 0.01 0.01 7.62 0.54 51 2.98 3.21
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J.3 Sector constraints

Table 36: Annualized summary statistics of constrained S&P 100 using a sector constraint, where a constraint of
85% corresponds to a β of 85% at the moment of index creation.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12 2.13 97 2.97 3.18
β of 85% 6.48 19.64 0.00 0.00 0.34 0.09 0.09 4.55 0.30 51 2.97 3.20
β of 84% 6.48 19.64 0.00 0.00 0.34 0.09 0.11 4.55 0.30 51 2.97 3.19
β of 83% 6.48 19.65 0.00 0.00 0.34 0.10 0.11 4.55 0.31 51 2.97 3.20
β of 82% 6.47 19.65 0.00 0.00 0.34 0.13 0.14 4.56 0.31 51 2.97 3.20
β of 81% 6.46 19.65 0.00 0.00 0.34 0.17 0.18 4.56 0.31 51 2.97 3.20
β of 80% 6.46 19.66 0.00 0.00 0.34 0.22 0.23 4.57 0.31 51 2.97 3.20
β of 79% 6.45 19.67 0.00 0.00 0.34 0.28 0.28 4.58 0.31 51 2.97 3.20
β of 78% 6.44 19.67 0.00 0.00 0.34 0.34 0.34 4.60 0.32 52 2.97 3.20
β of 77% 6.44 19.68 0.00 0.00 0.34 0.41 0.41 4.63 0.32 52 2.98 3.20
β of 76% 6.44 19.69 0.00 0.00 0.34 0.48 0.48 4.65 0.33 52 2.98 3.20

K Dynamic constrained indices

Indices based on dynamic constraints and different values for δ are calculated. However, this
Appendix only shows the two dynamic constrained indices that show the best results based on
downside risk reduction. This was decided to keep the research compact and clear. If you are
interested in the other results, please contact 543857mk@eur.nl.

K.1 VIX

Table 37: Annualized summary statistics of dynamic constrained S&P 500 for γ = 40 using a constant and the
sector neutral normalization method, where a constraint of 5.0% corresponds to a max index weight of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 7.69 19.79 0.00 0.00 0.39 0.09 0.13 5.90 0.20 106 3.00 3.20
α of 4.5% 7.68 19.79 0.00 0.00 0.39 0.10 0.12 6.41 0.20 106 3.00 3.20
α of 4.0% 7.68 19.78 0.00 0.00 0.39 0.13 0.14 7.07 0.20 106 3.00 3.20
α of 3.5% 7.66 19.78 0.00 0.00 0.39 0.23 0.27 8.03 0.21 106 3.00 3.20
α of 3.0% 7.65 19.78 0.00 0.00 0.39 0.41 0.41 9.68 0.23 107 3.00 3.19
α of 2.5% 7.63 19.77 0.00 0.00 0.39 0.65 0.67 11.95 0.25 107 3.00 3.19
α of 2.0% 7.61 19.78 0.00 0.00 0.39 0.88 0.89 15.09 0.28 107 3.00 3.20
α of 1.5% 7.60 19.79 0.01 0.02 0.39 0.96 0.96 20.26 0.33 107 3.00 3.20
α of 1.0% 7.60 19.80 0.31 0.34 0.39 0.88 0.88 30.01 0.42 108 3.00 3.20
α of 0.5% 7.56 19.86 0.18 0.20 0.39 0.66 0.67 50.13 0.63 109 3.01 3.21
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Table 38: Annualized summary statistics of dynamic VIX constrained S&P 500 for γ = 40 using a sector constraint,
where a constraint of 85% corresponds to a β of 85%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
β of 85% 7.69 19.78 0.00 0.00 0.39 0.09 0.13 2.73 0.22 106 3.00 3.19
β of 84% 7.69 19.78 0.00 0.00 0.39 0.09 0.13 2.73 0.22 106 3.00 3.19
β of 83% 7.69 19.78 0.00 0.00 0.39 0.09 0.14 2.73 0.22 106 3.00 3.19
β of 82% 7.69 19.78 0.00 0.00 0.39 0.09 0.14 2.73 0.22 106 3.00 3.19
β of 81% 7.69 19.78 0.00 0.00 0.39 0.09 0.13 2.73 0.22 106 3.00 3.19
β of 80% 7.69 19.78 0.00 0.00 0.39 0.09 0.12 2.73 0.22 106 3.00 3.20
β of 79% 7.69 19.78 0.00 0.00 0.39 0.09 0.14 2.74 0.22 106 3.00 3.19
β of 78% 7.69 19.78 0.00 0.00 0.39 0.09 0.14 2.80 0.22 106 3.00 3.19
β of 77% 7.69 19.78 0.00 0.00 0.39 0.09 0.14 2.95 0.22 106 3.00 3.19
β of 76% 7.69 19.78 0.00 0.00 0.39 0.09 0.15 3.19 0.22 106 3.00 3.19

Table 39: Annualized summary statistics of dynamic constrained S&P 100 for γ = 40 using a constant and the
general normalization method, where a constraint of 5.0% corresponds to a max index weight of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12 2.13 97 2.97 3.18
α of 5.0% 6.44 19.67 0.00 0.00 0.34 0.32 0.33 8.69 0.29 52 2.98 3.18
α of 4.5% 6.43 19.67 0.00 0.00 0.34 0.50 0.52 10.36 0.31 52 2.98 3.18
α of 4.0% 6.41 19.67 0.00 0.00 0.34 0.71 0.72 12.41 0.33 52 2.98 3.18
α of 3.5% 6.39 19.67 0.00 0.01 0.33 0.93 0.93 14.79 0.37 52 2.98 3.18
α of 3.0% 6.37 19.68 0.01 0.04 0.33 0.87 0.86 17.77 0.41 52 2.98 3.19
α of 2.5% 6.36 19.70 0.16 0.22 0.33 0.76 0.76 21.92 0.46 52 2.98 3.19
α of 2.0% 6.34 19.71 0.59 0.63 0.33 0.71 0.70 28.10 0.53 52 2.98 3.19
α of 1.5% 6.35 19.74 0.80 0.81 0.33 0.74 0.75 36.71 0.61 52 2.99 3.20
α of 1.0% 6.34 19.78 0.17 0.19 0.33 0.75 0.75 49.12 0.74 52 3.00 3.20
α of 0.5% 6.33 19.92 0.00 0.03 0.33 0.69 0.70 67.71 1.04 52 3.02 3.23
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Table 40: Annualized summary statistics of dynamic constrained S&P 100 for γ = 40 using a constant and the
sector neutral normalization method, where a constraint of 5.0% corresponds to a max index weight of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12 2.13 97 2.97 3.18
α of 5.0% 6.44 19.67 0.00 0.00 0.34 0.24 0.24 11.87 0.25 52 2.98 3.18
α of 4.5% 6.43 19.67 0.00 0.00 0.34 0.39 0.39 13.41 0.26 52 2.98 3.18
α of 4.0% 6.41 19.67 0.00 0.00 0.34 0.57 0.58 15.32 0.29 52 2.98 3.18
α of 3.5% 6.40 19.66 0.00 0.00 0.33 0.78 0.79 17.56 0.31 52 2.98 3.18
α of 3.0% 6.39 19.66 0.00 0.00 0.33 0.93 0.94 20.48 0.34 52 2.98 3.18
α of 2.5% 6.38 19.67 0.00 0.00 0.33 0.98 0.98 24.61 0.38 52 2.98 3.18
α of 2.0% 6.38 19.67 0.00 0.01 0.33 0.95 0.96 30.44 0.44 52 2.98 3.18
α of 1.5% 6.38 19.67 0.03 0.04 0.33 0.97 0.97 38.96 0.51 52 2.98 3.18
α of 1.0% 6.37 19.69 0.25 0.28 0.33 0.91 0.91 51.40 0.62 52 2.98 3.19
α of 0.5% 6.35 19.78 0.19 0.23 0.33 0.83 0.83 70.11 0.86 52 2.99 3.20

Table 41: Annualized summary statistics of dynamic constrained S&P 100 for γ = 40 using a sector constraint,
where a constraint of 85% corresponds to a β of 85%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12 2.13 97 2.97 3.18
β of 85% 6.48 19.68 0.00 0.00 0.34 0.06 0.09 4.83 0.25 51 2.98 3.18
β of 84% 6.48 19.68 0.00 0.00 0.34 0.06 0.09 4.83 0.25 51 2.98 3.18
β of 83% 6.48 19.68 0.00 0.00 0.34 0.06 0.10 4.83 0.25 51 2.98 3.18
β of 82% 6.48 19.68 0.00 0.00 0.34 0.06 0.09 4.87 0.25 51 2.98 3.18
β of 81% 6.48 19.68 0.00 0.00 0.34 0.07 0.10 5.03 0.25 51 2.98 3.18
β of 80% 6.48 19.68 0.00 0.00 0.34 0.07 0.11 5.35 0.25 51 2.98 3.18
β of 79% 6.48 19.68 0.00 0.00 0.34 0.08 0.12 5.75 0.25 51 2.98 3.18
β of 78% 6.48 19.68 0.00 0.00 0.34 0.08 0.12 6.26 0.25 51 2.98 3.18
β of 77% 6.48 19.69 0.00 0.00 0.34 0.09 0.12 6.82 0.26 51 2.98 3.18
β of 76% 6.48 19.69 0.00 0.00 0.34 0.09 0.12 7.44 0.26 51 2.98 3.18
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K.2 Buffett Indicator

Table 42: Annualized summary statistics of dynamic constrained S&P 500 for γ = 1.2 using a constant and the
sector neutral normalization method, where a constraint of 5.0% corresponds to a max index weight of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
α of 5.0% 7.69 19.78 0.00 0.00 0.39 0.08 0.09 5.40 0.21 106 3.00 3.19
α of 4.5% 7.69 19.78 0.00 0.00 0.39 0.11 0.13 5.47 0.22 107 3.00 3.19
α of 4.0% 7.68 19.77 0.00 0.00 0.39 0.18 0.21 5.60 0.25 107 3.00 3.19
α of 3.5% 7.68 19.76 0.00 0.00 0.39 0.25 0.25 5.78 0.30 109 2.99 3.19
α of 3.0% 7.67 19.75 0.00 0.00 0.39 0.40 0.41 6.06 0.38 110 2.99 3.19
α of 2.5% 7.67 19.74 0.00 0.00 0.39 0.55 0.56 6.43 0.49 112 2.99 3.19
α of 2.0% 7.65 19.73 0.00 0.00 0.39 0.72 0.72 6.93 0.62 114 2.99 3.18
α of 1.5% 7.63 19.72 0.00 0.00 0.39 0.83 0.84 7.62 0.78 117 2.99 3.18
α of 1.0% 7.63 19.72 0.00 0.00 0.39 0.88 0.88 8.74 0.95 121 2.98 3.18
α of 0.5% 7.71 19.73 0.01 0.01 0.40 0.69 0.70 11.28 1.25 126 2.98 3.18

Table 43: Annualized summary statistics of dynamic constrained S&P 500 for γ = 1.2 using a sector constraint,
where a constraint of 85% corresponds to a β of 85%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 500 7.61 19.82 - - 0.39 - - 0.61 - 107 3.00 3.22
S&P 500 EW 12.04 20.37 0.00 0.00 0.58 0.00 0.00 9.66 4.40 477 3.07 3.25
β of 85% 7.69 19.75 0.00 0.00 0.39 0.09 0.10 2.53 0.24 106 2.99 3.19
β of 84% 7.69 19.75 0.00 0.00 0.39 0.09 0.09 2.53 0.24 106 2.99 3.19
β of 83% 7.69 19.75 0.00 0.00 0.39 0.09 0.10 2.53 0.24 106 2.99 3.19
β of 82% 7.69 19.75 0.00 0.00 0.39 0.09 0.10 2.53 0.24 106 2.99 3.19
β of 81% 7.69 19.75 0.00 0.00 0.39 0.10 0.10 2.53 0.24 106 2.99 3.19
β of 80% 7.68 19.75 0.00 0.00 0.39 0.11 0.12 2.53 0.24 106 2.99 3.19
β of 79% 7.68 19.75 0.00 0.00 0.39 0.11 0.12 2.53 0.25 106 2.99 3.19
β of 78% 7.68 19.75 0.00 0.00 0.39 0.12 0.13 2.54 0.25 106 2.99 3.19
β of 77% 7.68 19.75 0.00 0.00 0.39 0.13 0.14 2.55 0.26 106 2.99 3.19
β of 76% 7.68 19.75 0.00 0.00 0.39 0.14 0.15 2.57 0.26 106 2.99 3.19



APPENDICES 63

Table 44: Annualized summary statistics of dynamic constrained S&P 100 for γ = 1.2 using a constant and the
sector neutral normalization method, where a constraint of 5.0% corresponds to a max index weight of 5.0%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12 2.13 97 2.97 3.18
α of 5.0% 6.42 19.66 0.00 0.00 0.34 0.51 0.51 8.79 0.34 52 2.97 3.18
α of 4.5% 6.40 19.66 0.00 0.00 0.33 0.77 0.78 9.05 0.40 53 2.97 3.18
α of 4.0% 6.39 19.64 0.00 0.00 0.33 0.94 0.94 9.36 0.49 53 2.97 3.18
α of 3.5% 6.37 19.63 0.00 0.00 0.33 0.96 0.96 9.73 0.59 54 2.97 3.17
α of 3.0% 6.34 19.61 0.00 0.00 0.33 0.83 0.83 10.17 0.71 55 2.96 3.17
α of 2.5% 6.33 19.60 0.00 0.00 0.33 0.80 0.80 10.74 0.86 55 2.96 3.17
α of 2.0% 6.30 19.58 0.00 0.00 0.33 0.76 0.75 11.56 1.01 56 2.96 3.16
α of 1.5% 6.26 19.59 0.00 0.00 0.33 0.66 0.66 12.62 1.16 57 2.96 3.16
α of 1.0% 6.29 19.59 0.00 0.00 0.33 0.79 0.79 14.37 1.32 58 2.96 3.16
α of 0.5% 6.36 19.61 0.02 0.02 0.33 0.97 0.97 17.42 1.59 59 2.96 3.17

Table 45: Annualized summary statistics of dynamic constrained S&P 100 for γ = 1.2 using a sector constraint,
where a constraint of 85% corresponds to a β of 85%.

rp σp pH,σ pB,σ SR pH,SR pB,SR TO TE AS ESHS ESNM

S&P 100 6.39 19.73 - - 0.33 - - 2.23 - 51 2.98 3.21
S&P 100 EW 7.21 19.68 0.61 0.59 0.37 0.24 0.23 12 2.13 97 2.97 3.18
β of 85% 6.47 19.65 0.00 0.00 0.34 0.09 0.09 4.59 0.28 51 2.97 3.18
β of 84% 6.47 19.65 0.00 0.00 0.34 0.10 0.10 4.59 0.28 51 2.97 3.18
β of 83% 6.47 19.65 0.00 0.00 0.34 0.11 0.12 4.59 0.28 51 2.97 3.18
β of 82% 6.47 19.66 0.00 0.00 0.34 0.12 0.13 4.59 0.29 51 2.97 3.18
β of 81% 6.46 19.66 0.00 0.00 0.34 0.14 0.15 4.59 0.29 51 2.97 3.18
β of 80% 6.46 19.66 0.00 0.00 0.34 0.15 0.16 4.61 0.29 51 2.97 3.18
β of 79% 6.46 19.66 0.00 0.00 0.34 0.17 0.18 4.64 0.30 51 2.97 3.18
β of 78% 6.46 19.66 0.00 0.00 0.34 0.19 0.20 4.68 0.30 51 2.97 3.18
β of 77% 6.46 19.66 0.00 0.00 0.34 0.21 0.21 4.72 0.31 51 2.97 3.18
β of 76% 6.46 19.66 0.00 0.00 0.34 0.23 0.23 4.77 0.31 51 2.97 3.18

L Index combinations

Table 46: Annualized summary statistics of the combined S&P 100 index where the combined index will exist
out of 1. market cap index, 2. dynamic constant constrained index, 3. constant constrained index and 4. sector
constrained index. A training time of 1 year is applied and the weight calculation is based on volatility.

rp σp pH,σ pB,σ SR pH,SR pB,SR TE AS ESHS ESNM

S&P 100 7.43 19.47 - - 0.40 - - - 52 2.96 3.17
Comb 4 indices 7.32 19.35 0.00 0.00 0.39 0.55 0.55 0.57 61 2.95 3.15
Comb 3 indices 7.27 19.34 0.00 0.00 0.39 0.48 0.49 0.83 63 2.95 3.15
Comb 2 indices 7.22 19.38 0.00 0.00 0.39 0.13 0.13 0.57 55 2.95 3.16
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Table 47: Annualized summary statistics of the combined S&P 100 index where the combined index will exist
out of 1. market cap index, 2. dynamic constant constrained index, 3. constant constrained index and 4. sector
constrained index. A training time of 1 year is applied and the weight calculation is based on expected shortfall.

rp σp pH,σ pB,σ SR pH,SR pB,SR TE AS ESHS ESNM

S&P 100 7.43 19.47 - - 0.40 - - - 52 2.96 3.17
Comb 4 indices 7.32 19.35 0.00 0.00 0.39 0.55 0.55 0.55 61 2.95 3.15
Comb 3 indices 7.27 19.34 0.00 0.00 0.39 0.48 0.48 0.83 63 2.95 3.15
Comb 2 indices 7.22 19.38 0.00 0.00 0.39 0.13 0.12 0.57 55 2.95 3.16
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