
Master Thesis Econometrics and Management Science
Specialization: Business Analytics and Quantitative Marketing

On the sensitivity of fair classification to
deviations in data distributions

Abstract
As the use of machine learning within organisations increases, more attention goes to the associ-
ated ethical considerations. In recent years, many bias mitigation methods have been designed.
However, not much focus has been attributed to the robustness of these methods. In this paper,
we examine the sensitivity of several fair classification methods to deviations in the data distri-
butions. We performed sensitivity analyses by creating different levels of bias in the training and
test sets of the Taiwan Default data. Furthermore, we examined the performance of the models
for Dutch census data of two different time periods with associated different amounts of bias. We
find that the considered bias mitigation methods are tuned to the amount of bias contained in
the data and are unable to adjust their predictions to deviating levels of bias between train and
test sets. Furthermore, massaging or reweighing combined with the ensemble method XGBoost
as classifier is found as the best option when taking into account sensitivity to data deviations,
ability to reduce unfairness and predictive performance.

Author:
A.E. Vegter 580948

Supervisor: dr. M.H. Akyuz
Second assessor: dr. A. Alfons

August 4, 2021

The content of this thesis is the sole responsibility of the author and does not reflect the view of
the supervisor, second assessor, Erasmus School of Economics or Erasmus University.



Contents

1 Introduction 1

2 Definitions 3
2.1 Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Literature review 4
3.1 Application of fairness metrics and bias mitigation algorithms . . . . . . . . . . . . . 4
3.2 Measuring sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Data description 6
4.1 Taiwan Default data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Dutch Census data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Methodology 9
5.1 Fairness metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Bias mitigation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Sensitivity analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.4 Census data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Results 14
6.1 Differentiation in test sets Taiwan Default data . . . . . . . . . . . . . . . . . . . . . 15

6.1.1 Reweighing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.1.2 Massaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1.3 Adversarial debiasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.4 Comparison between bias mitigation algorithms . . . . . . . . . . . . . . . . . 21

6.2 Differentiation in training sets Taiwan Default data . . . . . . . . . . . . . . . . . . . 22
6.3 Census data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Conclusion 30

8 Discussion 32

9 Appendix 36
9.1 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2 Differentiation in training sets Taiwan Default data . . . . . . . . . . . . . . . . . . . 36

9.2.1 Reweighing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2.2 Massaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2.3 Adversarial debiasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



1 Introduction

The use of machine learning in our society, and artificial intelligence (AI) in general, is becoming
more prevalent. Over the last decade, the number of AI related papers has experienced exponential
growth (D. Zhang et al., 2021). This phenomenon is not only visible in the academic world. More
and more organisations, both in the public and private sector, are undergoing digital transforma-
tions and are deciding to make use of models, that use some form of AI, to base decisions on.
Organisations that adopt AI in their business processes often report a revenue increase and, to a
lesser extent, they report cost decreases (McKinsey, 2020). However, with the dramatic increase of
AI, the corresponding ethical concerns have been underexposed. Some questions one may raise are:
To what level do we want models to make decisions for us? Can we give these models the ethical
principles we, as humans, have? Can a model exhibit discrimination and how can we restrict the
level of discrimination?

Due to the black-box nature of many AI models, it is hard for engineers and users of these models
to, firstly, understand and, more importantly, explain the behaviour and decisions made by the
model. This problem raises concerns for both transparency and possible biases, causing (unin-
tended) discrimination (Bostrom & Yudkowsky, 2014). In the context of ethics, we consider bias
to be the systematic advantage privileged groups receive in contrast to the systematic disadvantage
unprivileged groups receive (Bellamy et al., 2019). An illustration of this problem is the recruitment
algorithm Amazon had been using, which turned out to be biased against women (Dastin, 2018).
This bias was caused by a bias in the historical data used for training the model, which reflected
the male dominance in the technical sector. Even after removing the protected attribute gender
from the model, the bias did not completely disappear as some attributes highly correlated with
gender were still present in the data. This example highlights the importance of integrating ethics
into the stages of e.g. data collection, model development and model governance.

Over the last five years, the importance of applying ethical principles within AI has received more
attention. In the AI Index Report 2021, D. Zhang et al. (2021) observe that the number of AI
papers mentioning ethics-related keywords in the title is increasing, although still at a rather low
level. These papers have contributed to the development of various ethical guidelines, which con-
tain principles developers should comply with. Furthermore, they provide frameworks which assist
developers in using the right tools to achieve fairness in their models (Bellamy et al., 2019; Saleiro
et al., 2018). Hagendorff (2020) has made an extensive evaluation of the major guidelines within
the field of AI ethics. However, he notes that the extent to which these ethical principles and
values are implemented in the development and application of AI is rather low. One of the reasons
ethics is not well integrated into the development of machine learning models is that it lacks a
reinforcement mechanism. So far, no binding legal framework to adopt ethical guidelines in AI
exists and organisations may only implement self-government. This causes the adoption of ethical
guidelines to remain voluntary (Mokander & Floridi, 2021). Moreover, economic incentives play
a role in the decision of organisations whether to implement ethical principles. Often, a trade-off
exists between fairness and model performance, which is often correlated with earnings (Menon &
Williamson, 2018). Lastly, domain-specific educational resources and tools are required (Holstein
et al., 2019). However, being unable to integrate ethical considerations into the business processes
can still cause damage to the brand by, for example, negative news headlines, of which the Amazon
recruitment algorithm is a good illustration. Therefore, it is important for organisations to focus
on implementing ethical principles, despite the lack of legal obligations.
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As previously mentioned, tools have been developed to achieve fairness in AI and more specifically
machine learning, which include various fairness evaluation metrics and bias mitigating algorithms.
Hagendorff (2020) states that a stronger focus on technological details of the various methods and
technologies regarding fairness in machine learning is needed. In recent years, much research has
been conducted to determine which fairness metrics and bias mitigating algorithms are appropriate
in conjunction with which modeling technique and for which context of use. However, not much
focus has been attributed to the robustness of these models, for which it is desired that predictions
and model performance do not change significantly for slight modifications in the input data or
erroneous data. It will be important for the model designer to understand whether some bias miti-
gating techniques are more resilient to data changes than others, and if so, to what extent. This is
relevant for both the modelling decisions as well as the expertise in determining which alerts should
be set in the data monitoring phase. As a result, more knowledge on robustness may be important
for the actual integration and acceptance of fairness in machine learning within business processes
and, therefore, will be the focus of this research. This leads us to the following research question:

How sensitive are ‘fair’ classification models to deviations in the data?

By performing sensitivity analyses, we aim to answer the following sub-questions and subsequently
our research question:

(1) Are ‘fair’ models able to maintain their achieved level of fairness and predictive perfor-
mance regarding changes in the data distributions?

(2) Which model combinations, in terms of type of classifier and applied bias mitigating tech-
nique, are least sensitive to data deviations?.

In Section 2, we will elaborate on relevant definitions regarding discrimination, fairness and bias
used in the context of machine learning. In Section 3, we will give an overview of existing literature
related to our research and give an indication how our research will contribute to current academic
knowledge. Furthermore, in this research, we will focus on a credit data set, which is used to predict
the probability of default of customers on their credit debt in the next month. This data set, which
is commonly known as the Taiwan Default data set, has been previously used in research regarding
fairness. It has been shown that the data exhibits a bias towards male (Berk et al., 2017). Moreover,
we will consider two Dutch census data sets, which are obtained in two different time periods and
thereby contain different levels of discrimination. In the fairness literature, this data set has been
used to predict whether an individual has a high level profession or not. Kamiran et al. (2010)
have shown that the data sets exhibit a bias towards female, however the amount of bias is varying
between the two time periods. These data sets will be elaborated upon in Section 4. To investigate
the sensitivity of fair models, we will compare the performance between base classifiers and these
classifiers combined with a bias mitigation algorithm and monitor how modifications in the Taiwan
Default data affect the performance measures of the bias mitigation algorithm. These modifications
will be done by means of resampling and relabelling in order to vary the level of unfair bias and class
imbalance in the train data or the test data. We will perform this sensitivity analysis for several
combinations of classifiers and bias mitigating algorithms in order to see how the sensitivity results
may differ between different model configurations. Additionally, as the two Dutch census data
sets contain different levels of discrimination, we are able to measure the sensitivity of our models
on non-manipulated data and, thereby, validate our results. These methods are more extensively
discussed in Section 5. In Section 6, we discuss the results. The main findings are summarized in
Section 7 and, thereby, we provide answers to the two sub-questions and our research question. We
found that the considered bias mitigation methods are tuned to the amount of bias contained in
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the data and are unable to adjust their predictions to deviating levels of bias between the train and
test sets. Massaging or reweighing combined with the ensemble method XGBoost is found as the
best option when taking into account sensitivity to data deviations, the ability to reduce unfairness
and predictive performance. Lastly, we discuss some limitations to our research and give directions
for future research in Section 8.

2 Definitions

We will elaborate on definitions of often used terms throughout this paper regarding discrimination,
fairness and bias in the context of machine learning. The aim of this section is to achieve consistency
of terms used throughout this paper and to align this research with previous research.

2.1 Discrimination

In most parts of the world discrimination based on several characteristics such as race, gender, age
etc. is prohibited. These characteristics are often referred to as protected attributes. What personal
characteristics are exactly considered as protected attributes is determined by local law and regu-
lations, but countries agree upon most of them. We can distinguish two sources of discrimination:
direct discrimination and indirect discrimination (L. Zhang et al., 2016). We will use the following
definitions:

Direct discrimination This form of discrimination occurs when individuals are treated less
favourable explicitly based on the protected attribute(s). This type is also referred to as
disparate treatment.
Indirect discrimination This form of discrimination arises when the treatment is based on
solely non-protected attributes. However, some of these attributes are correlated with the
protected attribute causing the outcome to still be unfavourable. This type is also referred to
as disparate impact.

2.2 Fairness

Verma & Rubin (2018) have discussed the most prominent fairness definitions in the setting of
classification and applied each one of them to a single case study, demonstrating that different
definitions can and will have different outcomes regarding fairness. Therefore, no agreement has
been established on which definitions are most appropriate and will depend on the notion of fairness
one wants to adopt. As many definitions exist, we will only highlight the ones interesting for this
research and refer to Verma & Rubin (2018) for the other, and more elaborate definitions. Fairness
definitions can be subdivided into group fairness definitions and individual fairness definitions. The
former ensures different groups are treated equally and the latter ensures similar individuals receive
similar predictions. In this research, we will only consider group fairness.

Throughout this paper, we will consider the four group fairness definitions stated below. The
first definition is more appropriate when one does not trust the labels of the data due to structural
biases present in the data. This metric only incorporates predicted values and therefore can be
used to close the possible gap between demographic groups. The last three definitions also incor-
porate the true value of the observation and thereby focus more on whether the correctness of the
predictions is equal for different demographic groups. These metrics therefore account for possible
differences in underlying abilities.
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(1) Statistical parity The probability of being assigned to the positive class should be equal
for both sub-groups. This fairness definition is also known as demographic parity.
(2) Equal opportunity The probability of correctly being assigned to the positive class
should be equal for both sub-groups. Mathematically, this will be equal to the probability of
incorrectly being assigned to the negative class. This fairness definition is also known as true
positive rate parity.
(3) Equal mis-opportunity The probability of incorrectly being assigned to the positive
class should be equal for both sub-groups. This fairness definition is also known as false
positive rate parity.
(4) Equalized odds The probability of correctly being assigned to the positive class and
the probability of incorrectly being assigned to the positive class should be equal for both
sub-groups. The equalized odds criterion is equal to the equal opportunity and equal mis-
opportunity criteria together. This fairness definition is also known as positive rate parity.

Mathematically, it has been shown that it is impossible to satisfy different fairness criteria simul-
taneously, except for extreme constrained cases (Kleinberg et al., 2016). Furthermore, enforcing
group fairness often causes the model to suffer from individual bias as in order to ensure different
demographic groups to be treated equally, similar individuals in the different groups have to be
treated unequally (Maity et al., 2021). Hence, one should not blindly rely on one fairness criterion,
but use these criteria with caution and attention to other measures.

2.3 Bias

Following the terminology of Hinnefeld et al. (2018), we define two types of bias data can contain
in the context of fairness: ‘sample bias’ and ‘label bias’. The distinction between these two types
of bias is emphasized by the causal origin of the bias.

Sample bias This type of bias arises when specific sub-groups are sampled more often than
other sub-groups, which causes an incorrect representation of the actual population. The
existence of sample bias can have several reasons, e.g. wrong data collection or historical
human biases present in the data.
Label bias This type of bias occurs when there is a causal link between certain sub-groups
and the class label assigned to individuals of these sub-groups, which is not justified by ground
truth.

3 Literature review

We will discuss the existing literature related to our research and indicate how our research will
contribute to the current academic knowledge. Firstly, we discuss the application of fairness metrics
and bias mitigating algorithms to similar use cases. Several of these metrics and algorithms exist
and each situation or problem requires a different set of such tools. Therefore, to limit the scope of
this literature review, we will only focus on research which meets the following requirements: (1)
it is a classification problem (2) data exhibits class imbalance. Secondly, we examine how previous
research has measured the sensitivity of similar methods.

3.1 Application of fairness metrics and bias mitigation algorithms

To promote a deeper understanding of fairness metrics and bias mitigation techniques, Bellamy et
al. (2019) have created an open-source toolkit. This toolkit includes over 71 bias detection met-
rics and 9 bias mitigation algorithms. Methods to mitigate bias can be used in different stages
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of the modelling process. We can distinguish three different types of algorithms: pre-processing
algorithms, in-processing algorithms, and post-processing algorithms. Pre-processing algorithms
are designed to reduce bias in the data by changing the training data. In-processing algorithms
are aimed to reduce the bias in the classifier itself, as the classifier is taking fairness directly into
account. Post-processing algorithms adjust the predictions of the model in order to reduce bias
and, thereby, do not modify the underlying classifier and data. Suitability of the different metrics
and algorithms is context-dependent. Therefore, there is no general consensus on which metrics and
algorithms perform best. In order help data scientist navigate through all existing fairness metrics
relevant for each use case, Saleiro et al. (2018) designed the Aequitas Fairness Tree. The tree is
designed from the perspective of the decision maker and it is assumed that the decision maker has
decided upon some policy options, such as whether the interventions based on the predictions will
be assistive or punitive.

Kozodoi et al. (2021) specifically focus on the applicability of statistical fairness metrics and bias
mitigating techniques in the context of profit-oriented credit scoring. They argue that the so-called
separation criterion, which is equivalent to equalized odds, is the most suitable fairness criterion
in the credit scoring context as this criterion accounts for the asymmetry in misclassification costs
the customer as well as the financial institution face. Furthermore, they note that the choice of
the bias mitigating technique depends on the feasibility of implementation and the preferences of
the decision-maker regarding the profit-fairness trade-off. Post-processing methods, such as reject
option classification, are easiest to implement, but come at a higher cost for improving fairness.
In-processor methods, such as adversarial debiasing, on the other hand perform best in the profit-
fairness trade-off. However, these methods require the deployment of a new algorithm. Focusing on
the banking sector as well, Crupi et al. (2021) propose a general road map for fairness in machine
learning and the implementation of a toolkit, BeFair, with the purpose of identifying and mitigating
bias. The different stages of the road map include: regulatory aspects, data set assessment, choice
of the fairness metrics, bias mitigation, and comparison and evaluation. The toolkit BeFair can be
used to compare different models in order to identify the best strategy, given a chosen performance
metric and fairness metric. Crupi et al. (2021) applied the framework and toolkit to a credit lending
use case. Comparing different pre-processors, massaging the data set - which changes the labels of
some observations - yielded best results. The in-processing techniques, adversarial debiasing and
reductions, were able to reduce the statistical parity and equalized odds while maintaining the same
performance as the baseline models. Applying pre-processing techniques to, among other data sets,
the Dutch census data, Kamiran & Calders (2012) show that massaging and reweighing perform
very well in lowering the discrimination at the cost of only a minor loss in accuracy.

Ravichandran et al. (2020) note that most bias mitigating methods are restricted to specific model
families such as logistic regression or support vector machine models. However, other machine learn-
ing algorithms, such as XGBoost, have properties to be more scalable, transparent, robust and yield
better performance. To combine these favourable properties with fairness, they propose a fairness
variant of XGBoost that exploits the advantages while also reaching the level of fairness of the cur-
rently existing bias mitigating techniques. To compare the performance of their model with three
in-processing bias mitigating techniques (prejudice remover, fair adversarial gradient tree boosting
and adversarial debiasing), they use several common benchmark data sets, including the Taiwan
Default data set. While using the disparate impact as fairness metric in combination with accuracy
to measure model performance, their method outperforms on all but one data set. Y. Zhang &
Zhou (2019) review statistical methods for imbalanced data treatment and bias mitigation. In their
study, they focus on the impact of imbalanced data, bias metrics and the removal of biases. They
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only consider the LightGBM algorithm, which is a gradient boosting framework that uses tree-based
learning algorithms and therefore, the selection of modelling techniques together with parameter
tuning is out of their scope. To deal with imbalance, they apply an over-sampling technique and
furthermore consider the pre-processing method reweighing. Y. Zhang & Zhou (2019) apply their
methodology to the Taiwan Default data set and consider statistical parity, equal opportunity and
disparate impact as fairness metrics. In their study, the effect of balancing data is much higher
than the effect of mitigating bias.

3.2 Measuring sensitivity

In order to investigate the ability of different fairness metrics to detect the two aforementioned types
of bias, Hinnefeld et al. (2018) manipulate their data by adding artificial causal bias to the data. For
the case of label bias, this is done by introducing different label thresholds regarding the protected
attribute. In the case of sample bias the advantaged sub-group is sampled to have higher scores,
while the disadvantaged sub-group is uniformly sampled. Their results show that metric sensitivity
is dependent on the level of imbalance in the data and the bias type, emphasizing the importance
of considering the causal origin of the bias in the data when selecting a fairness metric. However,
they do notice that it is often not known a priori which type of bias the data contains. Fogliato
et al. (2020) propose a sensitivity analysis framework for statistically evaluating risk assessment
instruments according to several common fairness metrics. Their method shows how these fairness
properties change with the level of bias present in the data. These results are used to determine
the level of bias sufficient to contradict conclusions made on the fairness of the model. In contrast
to this paper, they do not apply bias mitigating techniques and therefore focus on the robustness
of the fairness metrics itself rather than methods to mitigate the bias.

Rukat et al. (2020) state that in order to measure the impact of data quality issues on the perfor-
mance of a machine learning model in general, one can use manipulated copies of the original data
to predict the performance of classifiers. Each copy then resembles common errors and data quality
issues. The model performance and quantified output distribution will be obtained by applying the
original classifier to the manipulated data sets. They suggest to use these outputs as input to a
regression model, that learns to predict the model performance. This allows to set an alarm if the
predicted performance falls below a specified threshold. In this research no bias mitigation algorithm
is considered. However, these methods can be adjusted to be suitable to our context. Kamiran &
Calders (2012) shortly touched upon the choice of the base classifier for the pre-processing tech-
nique massaging. They conducted controlled experiments for the k-nearest neighbour classifier, as
the stability of this classifier can be influenced by the parameter k. They observe that if minimized
discrimination is the main objective, an unstable classifier, i.e. one that is more sensitive to noise,
is the better option. However, if one is also concerned with high accuracy, a stable classifier will
be more suitable. Hence, to our knowledge, so far no research has been focused on measuring the
sensitivity of bias mitigation algorithms to deviating data. However, we can make use of the set-up
and results of the aforementioned researches.

4 Data description

In this study, we will use two different sources of data. Firstly, we will run sensitivity analyses on
the Taiwan Default data. We will create several additional data sets with different levels of artificial
bias, by means of sampling and relabelling the original data. However, as these sensitivity analyses
are based on manipulations to the data, we will validate our findings with Dutch census data. This
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data consists of two data sets, which are obtained in two different points in time and thereby reflect
different levels of discrimination. Therefore, we do not need to perform any manipulations to the
Dutch census data. In this case, the classifier can be trained on one data set and tested on the
other to measure how sensitive the classifier is to deviations in the data.

4.1 Taiwan Default data

The Taiwan Default data set is publicly available in the UCI ML Repository (Yeh & Lien, 2009).
The data is collected in October 2005 from an important bank in Taiwan and the targets were
credit card holders of the bank. The data contains information on default payments, demographic
factors, credit data, history of payment and bill statements of credit card clients from April 2005
to September 2005. The exact attributes and their variable type are given in Table 1. This data
set has been previously used in research regarding algorithmic fairness (Berk et al., 2017; Grari et
al., 2020; Lipton et al., 2018; Y. Zhang & Zhou, 2019). It has already been shown that the data
exhibits a degree of bias towards males. As the goal of this research is not to show whether this
actually the case, but to perform a sensitivity analysis of fair classifiers, we can make use of these
previously obtained results.

Var nr Variable Variable type

1 Default payment Binary
2 Amount of given credit Continuous
3 Gender Binary
4 Education Nominal
5 Marital status Nominal
6 Age Continuous
7-12 Repayment status for months April - September Nominal
13-18 Amount of bill statements for months April - September Continuous
19-24 Amount paid for months April - September Continuous

Table 1: Variables contained in Taiwan Default data set

The goal of this data is to predict the probability of default on payments of customers, where
the target variable is given by default payment. The data set contains 30,000 observations of
which 22.12% are defaults. We consider gender to be the protected attribute. In Table 2 we have
displayed a cross tab of the target variable default payment and the protected attribute gender.
We observe that females are represented in 60.4% of the cases while males constitute only 39.6%
of the observations. Furthermore, for females the percentage of defaults equals 20.7%, while this
percentage is higher for males, namely 24.2%.

Gender

Female Male All

D
ef

a
u

lt
p

ay
m

en
t

No default 14,349 9,015 23,364
Default 3,763 2,873 6,636
All 18,112 11,888 30,000

Table 2: Cross tab of target variable and protected attribute
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As previously mentioned, we will perform sensitivity analyses by manipulating both test data sets
and train data sets. These manipulations are meant to introduce artificial bias into the data and
will be obtained by resampling and relabelling the data. These manipulations will be elaborated
upon in Section 5.3.

4.2 Dutch Census data

As the manipulated Taiwan Default data sets are not able to fully reflect real data, we will test
our findings by means of the Dutch Virtual Census data (Minnesota Population Center, 2020).
This data contains two data sets, one from 2001 and one from 2011. The data sets, released by
Statistics Netherlands (CBS), contain information on personal characteristics, education level and
profession. The Dutch census data is collected in such a way that it is representative of the total
Dutch population. We have matched the coding of the variables of the two data sets to be completely
aligned and the variables used in our analyses are displayed in Table 3 along with their variable
type.

Var nr Variable Variable type

1 High profession Binary
2 Gender Binary
3 Age Ordinal
4 Household size Ordinal
5 Place of residence one year prior to census Binary
6 Country of citizenship Nominal
7 Country of birth Nominal
8 Education Nominal
9 Industry Nominal
10 Marital status Nominal

Table 3: Variables contained in Census data set

The 2001 data has been previously used by Kamiran et al. (2010) to predict whether an individual
has a high level profession or not. They showed that the data exhibits bias towards females.
After filtering out observations with missing values and under aged persons, the 2001 data contains
147,210 observations of which 19.4% have a high level profession and the 2011 data contains 293,430
observations of which 22.0% have a high level profession. Hence, the target variable is given by high
profession and furthermore we consider gender to be the protected attribute. Comparing Table
4 with Table 5, we observe that the bias towards females seems to be decreased over time. In
2001, 13.5% of the women had a high profession compared to 26.2% of the men. These numbers
have become more fair in 2011, as at that time 18.5% of the women had a high profession and
25.5% of men, although still a significant difference is present. We will train our models on the less
discriminatory 2011 data and test it on the more discriminatory 2001 data. This is more elaborately
described in Section 5.4.
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Gender

Female Male All

H
ig

h
p

ro
fe

s-
si

on

Yes 9,857 18,758 28,615
No 65,680 52,915 118,595
All 75,537 71,673 147,210

Table 4: Cross tab of target variable and protected attribute for 2001 data

Gender

Female Male All

H
ig

h
p

ro
fe

s-
si

o
n

Yes 27,408 37,033 64,441
No 120,650 108,339 228,989
All 148,058 145,372 293,430

Table 5: Cross tab of target variable and protected attribute for 2011 data

5 Methodology

In this section, we discuss the fairness metrics used throughout this research to assess the level
of fairness of the different models. Secondly, we make an outline of the different bias mitigation
techniques applied. Then, we discuss how the sensitivity analyses will be performed for the different
manipulated test and train sets of the Taiwan Default data. Lastly, we describe how we are going
to validate our results by means of the Dutch census data.

5.1 Fairness metrics

To scope this research, we will focus on two fairness metrics. As there is no consensus on which
metrics are most appropriate in which use case, we want to briefly clarify our choices. We will
base our decision on both Aequitas’ fairness tree (Saleiro et al., 2018) and previous research. We
make the assumption that the predictions of probability of default will be used to assess whether
customers of the bank should be granted credit and that the predictions of having a prestigious
occupation will be used to assess whether an individual should be offered a prestigious job. Then,
we argue that the predictions in both cases are used to intervene with a rather large part of the
population. As these interventions can both be interpreted as helpful to individuals (assistive) and
hurtful to individuals (punitive), we would like to consider both the true positive parity and false
positive parity. Hence, we will focus on the equalized odds criterion, which is comprised of the
criteria for true positive parity and false positive parity. In previous literature, equalized odds is
often used to assess the fairness of credit scoring models (Crupi et al., 2021; Kozodoi et al., 2021;
Y. Zhang & Zhou, 2019) and of models predicting a prestigious occupation (Pessach & Shmueli,
2020; Xu et al., 2020). Let us denote Y to be the true value of the target variable and let Ŷ be
the predicted value. In the binary classification case this implies that Y ∈ {0, 1} and Ŷ ∈ {0, 1}.
Furthermore, we want to denote the protected attribute gender, by G, where G = 1 is used for the
protected group and G = 0 for the unprotected group. We measure how well the equalized odds
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criterion is satisfied by means of the average odds difference (AOD):

AOD =
1

2
· P [Ŷ = 1|G = 1, Y = 1]− P [Ŷ = 1|G = 0, Y = 1]︸ ︷︷ ︸

true positive parity difference

+

1

2
· P [Ŷ = 1|G = 1, Y = 0]− P [Ŷ = 1|G = 0, Y = 0]︸ ︷︷ ︸

false positive parity difference

.

However, a flaw of the equalized odds criterion is it may not help to close the gap between demo-
graphic groups if structural biases are present in the data. Therefore, we also consider statistical
parity difference. This metric, also known as demographic parity difference, is well-known and com-
monly used in the broader fairness literature as well as specifically for the context of our two use
cases (Crupi et al., 2021; Kamiran et al., 2010; Pessach & Shmueli, 2020; Y. Zhang & Zhou, 2019).
Furthermore, this metric is embedded in practical use as it is associated with anti-discriminatory
regulatory laws. When replacing the difference with a ratio we obtain disparate impact. This ratio
is used in the so-called four-fifths or 80% rule. This rule, established by the U.S. Equal Employ-
ment Opportunity Commission, states that the selection rate for the protected group should be
at least 80% of the selection rate of the unprotected group (Zafar et al., 2017). Statistical parity
equalizes outcomes across different demographic groups. This causes each group to be represented
proportional to their representation in the overall population. However, it should be noted that
this criterion does not take into account possible differences in underlying abilities. The statistical
parity difference (SPD) is measured by:

SPD = P [Ŷ = 1|G = 1]− P [Ŷ = 1|G = 0].

Concluding, in this research we will focus on the following two fairness metrics:

1. Average odds difference

2. Statistical parity difference.

5.2 Bias mitigation algorithms

In this research we will only consider pre-processing and in-processing techniques. Pre-processing
techniques are all meant to, in some way, change the train data which is being used as input to
the predicting model in order to remove discrimination. Firstly, for the pre-processing phase we
have chosen two methods based on previous literature: massaging and reweighing. Massaging and
reweighing differ in the way they change the data (Kamiran & Calders, 2012). The former changes
the labels of some observations while the latter changes the weights given to each observation. Both
methods are aimed at achieving statistical parity. After the pre-processing step, a regular classifier
is trained on the cleaned data. Crupi et al. (2021) showed that massaging yielded best results in
their credit lending use case. In the prestigious job use case, Kamiran & Calders (2012) stated that
massaging is slightly performing better than reweighing. However, Kozodoi et al. (2021); Y. Zhang
& Zhou (2019) apply reweighing and show good improvements regarding fairness scores. We will
examine the two mentioned pre-processing algorithms combined with four different well-known
classifiers, namely logistic regression, random forest, decision tree and XGBoost.
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In-processing methods replace an already deployed scoring model with a new algorithm. In this
research, we will consider adversarial debiasing. This technique has been proven to perform very
well in the performance-fairness trade-off (Crupi et al., 2021; Kozodoi et al., 2021). Adversarial
debiasing constitutes of simultaneously training two competing neural networks (B. H. Zhang et
al., 2018). We will follow the notation previously used and complement the notation by denoting
X to be the set of predictors. The first network, the predictor, is trained to accomplish the task
of predicting Y given X. The predictor tries to minimize its own loss function and at the same
time, in order to maximize the loss function of the adversary, aims to hold back any additional
information on the protect attribute in its output. The second network, the adversary, takes the
output layer of the first network as input with the goal of predicting the protected attribute G.
The adversary is only interested in minimizing its own loss function. The result of training these
networks simultaneously is ensuring fairness. Concluding, we will investigate the following ‘fair’
classifiers:

1. Reweighing and logistic regression

2. Reweighing and random forest

3. Reweighing and decision tree

4. Reweighing and XGBoost

5. Massaging and logistic regression

6. Massaging and random forest

7. Massaging and decision tree

8. Massaging and XGBoost

9. Adversarial debiasing.

5.3 Sensitivity analyses

For the different aforementioned model combinations, we will perform sensitivity analyses to see
how deviations in the data - by creating artificial bias - influence the performance to mitigate bias
and at the same time make correct predictions. These sensitivity analyses will be performed on the
Taiwan Default data and we will run both analyses for manipulated test sets as well as manipulated
train sets. Because of these manipulations to the original data, we are able to observe how the
models perform despite deviations in the data.

We have illustrated the steps to be taken in the sensitivity analyses for the manipulation of test sets
in the pseudo-code below. This pseudo-code is written down generally for the three bias mitigation
techniques we consider.
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Algorithm 1: Sensitivity analysis for a ‘fair’ classifier for manipulated test sets

Input: Original data set D
1 Split data D into 5 folds Fi, i = 1, . . . , 5;
2 foreach Fi (i = 1, . . . , 5) do
3 Use fold Fi as test data: Dtest = Fi;
4 Use remaining folds as training data: Dtrain = Fj , j 6= i;
5 Using 5-fold cross-validation, perform hyperparameter tuning on Dtrain of (1) only the base

classifier and (2) the base classifier combined with a bias mitigation algorithm;
6 Obtain the best models Mbest for (1) and (2) based on the averaged performance scores;
7 Manipulate Dtest in 4 different ways to obtain several manipulated test sets Tk, k = 2, ..., 5 and

the original test set T1;
8 foreach Tk (k = 1, ..., 5) do
9 Test Mbest on Tk;

10 Obtain performance and fairness scores of (1) and (2) for manipulation k;

11 end

12 end
13 Average the performance and fairness scores for each manipulation k over the 5 folds;

14 return Averaged performance and fairness scores of (1) and (2) for each k

To obtain stable sensitivity results, we perform a nested cross-validation. The outer loop as well as
the inner loop are 5-fold cross validations. This pseudo-code will differ between the pre-processing
algorithms and in-processing algorithms in the inner loop (lines 5-6). In this step the train data
Dtrain will again be split five times into train and validation sets. Firstly, we will only train the base
classifier (without any bias mitigation). Secondly, we will train the base classifier in combination
with a bias mitigation algorithm. For the pre-processing algorithm, we will apply the pre-processing
technique on the train data. The classifier will be trained on the transformed train data, after which
we test the models on the validation data sets in order to determine the best model settings. This
process differs a bit for the in-processing algorithm. We will apply the in-processing technique
directly on the train data, after which we test the models on the validation data to obtain the
best model. We will determine which model configuration is best by means of performance scores.
For the pre-processing techniques, we have chosen to optimize the model configurations over re-
call1 rather than accuracy2, as we are dealing with imbalanced data. The implementation of the
in-processing technique we use, is set up in such a way that this algorithm optimizes for accuracy.
We explicitly do not optimize for one of the fairness metrics, as we want to mimic the business
setting as much as possible and their main concern will usually still be the predictive performance,
despite possible concerns of unfairness.

After model training, we test the model on unseen data. However, unlike usual we do not only
feed the original test data to the model, but also several manipulated test sets. These manipulated
test set groups are created by means of sampling. For each test group, we sample one specific sub-
group of the population relatively more, which changes the level of unfair bias in that test group.
We refer to this type of bias as sample bias, as discussed in Section 2.3. We measure the level of
unfair bias by the difference in ratio of default and non-default between the protected group and
the unprotected group. At the same time, we also take into account that the resulting differences
in class imbalance, the total percentage of defaults, between the test groups are well distributed.
The resulting grouping of manipulated test sets is displayed in Table 6, where test group C reflects

1Recall = True positives
True positives+False negatives

2Accuracy = True positives+True negatives
Total
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the original data distribution. Then, we calculate the performance and fairness scores for the model
with and without bias mitigation. By comparing these scores we can measure the effect of bias
mitigation for different test data distributions.

Unfair bias

Smaller Original Larger

C
la

ss
im

b
al

an
ce

Smaller A - E
Original - C -
Larger B - D

Table 6: Dimensions of manipulations resulting in new test data sets

Moreover, we do not only perform manipulations to the test data, but to the training data as well.
Again, we have illustrated the steps to be taken in the sensitivity analysis for the manipulation
of training sets in the pseudo-code below. This pseudo-code differs only slightly from the one for
manipulations of the test sets, and we will therefore only elaborate on the differences.

Algorithm 2: Sensitivity analysis for a ‘fair’ classifier for manipulated train sets

Input: Original data set D
1 Split data D into 5 folds Fi, i = 1, . . . , 5;
2 foreach Fi (i = 1, . . . , 5) do
3 Use fold Fi as test data: Dtest = Fi;
4 Use remaining folds as training data: Dtrain = Fj , j 6= i;
5 Manipulate Dtrain in 4 different ways to obtain several manipulated training sets Tk, k = 2, ..., 5

and the original training set T1;
6 foreach Tk (k = 1, ..., 5) do
7 Using 5-fold cross-validation, perform hyperparameter tuning on Tk of (1) only the base

classifier and (2) the base classifier combined with a bias mitigation algorithm;
8 Obtain the best models Mbest for (1) and (2) based on the averaged performance scores;
9 Test Mbest on Dtest;

10 Obtain performance and fairness scores of (1) and (2) for manipulation k;

11 end

12 end
13 Average the performance and fairness scores for each manipulation k over the 5 folds;

14 return Averaged performance and fairness scores of (1) and (2) for each k

Compared to the case of the different test sets, we now obtain several manipulated training sets,
before training the classifiers. These manipulations will be done in two different ways: sampling
and relabelling. The method of sampling will be similar to the case of manipulating test sets by
sampling a subgroup of the population relatively more and thereby creating artificial sample bias in
the data. However, as we are now considering train sets, we are also able to perform manipulations
by means of relabelling. Now, for specific subgroups of the data, we relabel some observations. So,
observations with default are relabelled to no default and vice versa. This type of bias is referred
to as label bias, as discussed in Section 2.3. Again, both of these manipulations are meant to
change the level of unfair bias for that specific train group while at the same time making sure the
differences in class imbalance are well distributed among the train groups. The resulting grouping
of manipulated training sets is displayed in Table 7. The other parts of the sensitivity analysis are
similar to the case of manipulating test data.
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Unfair bias

Smaller Original Larger

C
la

ss
im

b
a
la

n
ce

Smaller A and G - E and I
Original - C and H -
Larger B and F - D and J

Table 7: Dimensions of manipulations resulting in new training data sets (groups A-E are the result
of sampling and groups F-J are the result of relabelling)

5.4 Census data

In order to see whether the results obtained from the sensitivity analyses on the manipulated data
sets also hold for “real” data, we consider the Dutch census data sets of 2001 and 2011. The level
of discrimination towards females regarding having a prestigious job has naturally decreased over
the years. We will train the different models on the less discriminatory data set of 2011 and make
predictions for the more discriminatory data of 2001. Furthermore, for sake of comparison we will
also test the trained models on the 2011 data itself.

As we do not perform any manipulations to the data sets, it is hard to know for sure which kind
of bias the data might exhibit. However, one can argue that the bias contained in the data could
be due to label bias caused by historical human biases in which women are considered to be less
suitable for higher functions.

6 Results

This section elaborates on the results3 of the sensitivity analyses for the Taiwan Default data and
the modelling results for the census data. Firstly, we will discuss the results of sensitivity analyses
for the differentiation in test sets of the Taiwan Default data. Secondly, we discuss the results of
the sensitivity analyses regarding differentiation in training sets of the Taiwan Default data. Lastly,
we describe the obtained results for the two Dutch census data sets.

For all the different models that have been trained it holds that no variable selection has been
done, hence all variables in Tables 1 and 3 are used. Furthermore, the nominal variables have
been converted into dummy variables and specifically for the Taiwan Default data, the data has
been scaled in order for the features to have the same ranges. Furthermore, for each classifier we
have performed hyperparameter tuning by running a random search on a grid of hyperparameter
values. The grid used for each classifier can be found in Appendix, Section 9.1. Regarding the bias
mitigation algorithms, we have implemented the reweighing and adversarial debiasing algorithms
from the aif360 sklearn4 library and the massaging algorithm from the themis-ml5 library.

We want to compare the effect that the bias mitigation methods have on the level of unfairness for
the different levels of bias contained in the data. To calculate this effect on the statistical parity
difference (SPD) and average odds difference (AOD), which can be interpreted as the percentage of

3Used code can be found on: https://github.com/AukjeE/MasterThesis
4https://github.com/Trusted-AI/AIF360/tree/master/aif360/sklearn
5https://github.com/cosmicBboy/themis-ml
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unfairness that is eliminated, we use the following formulas:

EffectSPD =
|SPDno bias mitigation| − |SPDbias mitigation|

|SPDno bias mitigation|

EffectAOD =
|AODno bias mitigation| − |AODbias mitigation|

|AODno bias mitigation|
.

In cases where unfairness increases after bias mitigation instead of decreases, the above formulas
are not very suitable and therefore the effect is calculated slightly different to prevent dividing by
a value close to zero and keep the results interpretable. These exceptional cases are marked with
an asterisk (*) in the tables and will make use of the following formulas for the effect on SPD and
AOD:

Effect∗SPD =
|SPDno bias mitigation| − |SPDbias mitigation|

|SPDbias mitigation|

Effect∗AOD =
|AODno bias mitigation| − |AODbias mitigation|

|AODbias mitigation|
.

Furthermore, in the boxplots, we display the effect of bias mitigation on the unfairness in a different
way. In this case, we calculate the effect as the difference in SPD and AOD scores without and with
bias mitigation:

DifferenceSPD = SPDno bias mitigation − SPDbias mitigation

DifferenceAOD = AODno bias mitigation −AODbias mitigation.

6.1 Differentiation in test sets Taiwan Default data

For generating the different test sets, we have sampled specific subgroups relatively more to create
“artificial” sample bias. In Table 8, the resulting test sets of these different manipulations are
reported, together with their characteristics regarding the unfair bias and class imbalance. The
level of unfair bias is represented by the difference in default ratio for males and females in the test
group.

Subgroup sampled
relatively more

Difference in default
ratio male and female

Class imbalance

Test group A Male with no default -3.1% 20.0%
Test group B Female with default -0.5% 24.1%
Test group C Original distribution 3.5% 21.9%
Test group D Male with default 7.1% 23.6%
Test group E Female with no default 9.9% 16.9%

Note: Reported numbers are the averages over five folds

Table 8: Generated test sets and their characteristics

These different test sets are used for measuring the sensitivity of both the pre-processing methods
reweighing and massaging, as well as for the in-processing method adversarial debiasing. We mea-
sure the sensitivity of these methods by means of changes in the aforementioned fairness metrics
SPD and AOD. Furthermore, to measure the predictive performance of the model, we report the
recall and accuracy scores. However, as we deal with imbalanced data, we mainly focus on the recall
scores and report accuracy scores for completeness and the ability to compare with other papers.
As no correlation has been observed between the level of class imbalance and the sensitivity of the
different methods, we will not discuss this further.
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6.1.1 Reweighing

We have combined the pre-processing technique reweighing with four different classifiers, namely
logistic regression, decision tree, random forest and XGBoost. The results are presented in Tables
9 and 10.

In Table 9, the SPD scores of the different classifiers are presented without reweighing as well
as with reweighing. Furthermore, we have reported the effect of reweighing by calculating the per-
centage of unfairness that is eliminated. As can be seen from this table, for each classifier the SPD
without reweighing increases with the amount of sample bias in the test data. The size of effect
reweighing has on the SPD varies between the classifiers and test groups. Random forest barely
reduces any bias present in the data and also decision tree is not very effective. Although for logistic
regression and XGBoost reweighing has a better ability to reduce unfairness in their predictions,
this ability is not adaptive to the level of bias contained in the different test groups as the effect
reduces with the increasing bias. The variability in effect is slightly higher for XGBoost. Inspecting
Table 10, we observe that the AOD is not clearly correlated with the amount of sample bias in
the test data. Similar to SPD, the size of effect differs between classifiers and test groups. Again,
reweighing has the least ability to reduce unfairness when combined with random forest and decision
tree. The variability of the effect of reweighing for logistic regression and XGBoost is similarly and
does not seem to be affected by the level of bias in the different test groups. As the differences
between performance scores without and with reweighing for each classifier are negligible, we have
only presented recall and accuracy scores after reweighing in Table 11. A clear relation can be seen
between the SPD and AOD after reweighing and the recall scores of the classifier, this phenomenon
is often referred to as the fairness-performance trade-off. However, it is notable that this trade-off
is only observed between classifiers and not between test groups.

No reweighing Reweighing Effect
LR RF DT XGB LR RF DT XGB LR RF DT XGB

Test A 1.3% 0.6% 1.8% 1.0% -0.2% 0.6% 1.3% 0.0% 85% 0% 28% 100%
Test B 2.0% 1.4% 2.3% 1.6% 0.3% 1.3% 1.7% 0.5% 85% 7% 26% 69%
Test C 3.1% 2.5% 3.2% 2.7% 1.4% 2.4% 2.4% 1.8% 55% 4% 25% 33%
Test D 4.1% 3.7% 3.8% 4.0% 2.5% 3.6% 3.2% 2.9% 39% 3% 16% 28%
Test E 5.2% 4.9% 4.7% 5.1% 3.8% 4.9% 3.9% 4.1% 27% 0% 17% 20%

Average 3.1% 2.6% 3.2% 2.9% 1.6% 2.6% 2.5% 1.9% 58% 3% 22% 50%

Note: Reported numbers of Test A - Test E are the averages over five folds

Table 9: SPD scores without and with reweighing and the effect for logistic regression (LR), random
forest (RF), decision tree (DT) and XGBoost (XGB)
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No reweighing Reweighing Effect
LR RF DT XGB LR RF DT XGB LR RF DT XGB

Test A 3.1% 1.9% 2.0% 2.1% 0.5% 1.7% 1.9% 0.7% 84% 11% 5% 67%
Test B 2.8% 1.7% 2.1% 1.7% 0.1% 1.3% 1.7% 0.3% 96% 24% 19% 82%
Test C 2.8% 1.7% 2.0% 2.0% 0.2% 1.3% 1.6% 0.6% 93% 24% 20% 70%
Test D 2.7% 1.5% 2.1% 1.9% 0.2% 1.2% 1.5% 0.5% 93% 20% 29% 74%
Test E 3.6% 2.4% 2.7% 2.6% 1.2% 2.1% 2.1% 1.2% 67% 13% 22% 54%

Average 3.0% 1.8% 2.2% 2.1% 0.4% 1.5% 1.8% 0.7% 86% 18% 19% 69%

Note: Reported numbers of Test A - Test E are the averages over five folds

Table 10: AOD scores without and with reweighing and the effect for logistic regression (LR),
random forest (RF), decision tree (DT) and XGBoost (XGB)

Recall Accuracy
LR RF DT XGB LR RF DT XGB

Test A 0.335 0.372 0.411 0.360 0.832 0.828 0.734 0.830
Test B 0.335 0.374 0.417 0.361 0.808 0.807 0.720 0.808
Test C 0.332 0.374 0.414 0.360 0.820 0.818 0.728 0.819
Test D 0.333 0.377 0.419 0.362 0.810 0.810 0.722 0.810
Test E 0.334 0.372 0.412 0.358 0.853 0.848 0.749 0.850

Average 0.334 0.374 0.415 0.360 0.824 0.822 0.731 0.823

Note: Reported numbers of Test A - Test E are the averages over five folds

Table 11: Performance scores after reweighing for logistic regression (LR), random forest (RF),
decision tree (DT) and XGBoost (XGB)

To dive deeper into sensitivity of the different models, we consider the boxplots in Figure 1 and
Figure 2. In these boxplots the effect of reweighing is displayed as the difference in percentage
points of SPD and AOD before and after reweighing. These boxplots show the variability of the
effect for SPD and AOD within test groups for the four different classifiers. Within these test
groups the level of sample bias is constant. However, the observations correspond to different folds
of the test data. In Figure 1 we observe that for SPD, logistic regression is the most stable in terms
of deviation within test groups. In contrast, the performance of decision tree with respect to SPD
performs very volatile as it has a high deviation within the different test groups. Both XGBoost and
random forest behave mediocre with respect to this deviation, however random forest barely reduces
any bias in the data. The behaviour of these different classifiers can be explained by their design,
as random forest and XGBoost combine several decision trees, which makes them more robust in
general. Looking at Figure 2, similar conclusions can be drawn with respect to AOD, however some
minor differences regarding these conclusions can be observed. Decision tree behaves even more
volatile in reducing bias and random forest now seems to have a small effect on decreasing the bias,
when considering AOD as fairness metric.
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Figure 1: Effect of reweighing on SPD for different classifiers and test groups

Figure 2: Effect of reweighing on AOD for different classifiers and test groups

6.1.2 Massaging

Similar to reweighing, we have combined massaging with the following four classifiers: logistic re-
gression, decision tree, random forest and XGBoost. In Tables 12 and 13, we have presented the
SPD and AOD scores without massaging and with massaging as well as the effect for the four
classifiers.

Inspecting Table 12, we observe that, similar to reweighing, the SPD scores are correlated with
the level of sample bias in the test groups. We observe that except for test group A, the ability of
massaging to remove all bias in the predictions decreases with the amount of bias in the test data.
As for test group A, massaging is working “too well” for all classifiers, the predictions contain a
reversed bias and therefore the effect of massaging on the fairness is rather low. Comparing the
effect of massaging on SPD for the different classifiers, decision tree is most effective as well as
least differentiating between test groups. In Table 13, we note that for decision tree and XGBoost,
massaging overcompensates the level of unfair bias when considering AOD as fairness metric. For
reducing the AOD, massaging is most effective when combined with logistic regression. This method
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is least variable in the effect as well. From Table 14, we observe that the predictive performance
of massaging in combination with the different classifiers is almost equal to reweighing. To a lesser
extent than in the case of reweighing, a fairness-performance trade-off exists.

No massaging Massaging Effect
LR RF DT XGB LR RF DT XGB LR RF DT XGB

Test A 1.3% 0.6% 1.8% 1.0% -0.5% -0.5% -0.8% -0.7% 62% 17% 56% 30%
Test B 2.0% 1.4% 2.3% 1.6% 0.1% 0.3% -0.5% -0.2% 95% 79% 78% 88%
Test C 3.1% 2.5% 3.2% 2.7% 1.1% 1.5% 0.5% 0.8% 65% 40% 84% 70%
Test D 4.1% 3.7% 3.8% 4.0% 2.2% 2.6% 1.3% 2.0% 46% 30% 66% 50%
Test E 5.2% 4.9% 4.7% 5.1% 3.4% 3.9% 2.1% 3.3% 35% 20% 55% 57%

Average 3.1% 2.6% 3.2% 2.9% 1.3% 1.6% 0.5% 0.8% 60% 37% 68% 59%

Note: Reported numbers of Test A - Test E are the averages over five folds

Table 12: SPD scores without and with massaging and the effect for logistic regression (LR), random
forest (RF), decision tree (DT) and XGBoost (XGB)

No massaging Massaging Effect
LR RF DT XGB LR RF DT XGB LR RF DT XGB

Test A 3.1% 1.9% 2.0% 2.1% 0.1% 0.2% -0.6% -0.2% 97% 89% 70% 90%
Test B 2.8% 1.7% 2.1% 1.7% -0.1% 0.1% -0.9% -0.7% 96% 94% 57% 59%
Test C 2.8% 1.7% 2.0% 2.0% -0.2% 0.4% -0.6% -0.9% 93% 76% 70% 55%
Test D 2.7% 1.5% 2.1% 1.9% -0.2% 0.0% -0.8% -0.9% 93% 100% 62% 53%
Test E 3.6% 2.4% 2.7% 2.6% 0.6% 0.9% 0.3% 0.2% 83% 63% 89% 92%

Average 3.0% 1.8% 2.2% 2.1% 0.0% 0.3% -0.5% -0.5% 92% 85% 70% 70%

Note: Reported numbers of Test A - Test E are the averages over five folds

Table 13: AOD scores without and with massaging and the effect for logistic regression (LR),
random forest (RF), decision tree (DT) and XGBoost (XGB)

Recall Accuracy
LR RF DT XGB LR RF DT XGB

Test A 0.338 0.378 0.414 0.368 0.831 0.826 0.737 0.821
Test B 0.339 0.379 0.423 0.369 0.807 0.805 0.724 0.799
Test C 0.336 0.377 0.417 0.365 0.819 0.815 0.729 0.809
Test D 0.337 0.380 0.422 0.365 0.809 0.807 0.725 0.800
Test E 0.338 0.376 0.413 0.368 0.851 0.844 0.750 0.840

Average 0.338 0.378 0.418 0.376 0.823 0.819 0.733 0.814

Note: Reported numbers of Test A - Test E are the averages over five folds

Table 14: Performance scores after massaging for logistic regression (LR), random forest (RF),
decision tree (DT) and XGBoost (XGB)

We have plotted the variability in effect of massaging on the AOD and SPD between the different
folds for each test group and classifier in Figure 3 and Figure 4. This effect is measured by the
difference in percentage points of AOD and SPD scores without and with massaging. We compare
the deviation of each classifier within the test groups by looking at the sizes of the boxes and
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whiskers in the box plot. It can be noted that of the four investigated classifiers, decision tree has
the most unstable effect within test groups for both SPD and AOD. On the other hand, random
forest is showing least deviation in effect for SPD and AOD within test groups. As can be concluded,
the degree of variability within test groups for each classifier is similar for the two different fairness
metrics SPD and AOD.

Figure 3: Effect of massaging on SPD for different classifiers and test groups

Figure 4: Effect of massaging on AOD for different classifiers and test groups

6.1.3 Adversarial debiasing

We now consider the in-processing technique adversarial debiasing, which simultaneously trains two
competing neural networks; a classifier and an adversary. The results of the sensitivity analysis can
be found in Table 15. We observe that, again, the SPD scores are clearly correlated with the sample
bias in the test data, however this correlation cannot be found for AOD. Adversarial debiasing
reduces the amount of bias in the predictions, however judging the AOD scores with adversarial
debiasing now the predictions contain a certain bias towards female instead. We notice that the
predictive performance of the model, for which we focus on the recall scores, is lower than most of
the classifiers combined with massaging or reweighing. Moreover, when inspecting the boxplots in
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Figure 5 we notice that the effect of adversarial debiasing on the SPD and AOD scores differs quite
a bit within test groups.

No adversarial
debiasing

Adversarial
debiasing

Effect
Predictive

performance
SPD AOD SPD AOD SPD AOD Recall Accuracy

Test A 0.8% 2.3% -0.9% -0.4% -11%* 83% 0.350 0.829
Test B 1.6% 2.1% -0.3% -0.6% 81% 71% 0.355 0.806
Test C 2.5% 1.8% 0.7% -0.8% 72% 56% 0.348 0.816
Test D 4.0% 2.2% 2.0% -0.4% 50% 82% 0.349 0.808
Test E 5.0% 2.9% 3.3% 0.3% 34% 90% 0.350 0.847

Average 2.8% 2.3% 1.0% -0.4% 45% 76% 0.350 0.821

Note: Reported numbers of Test A - Test E are the averages over five folds

Table 15: SPD and AOD scores without and with adversarial debiasing, the effect of adversarial
debiasing and the recall and accuracy scores after adversarial debiasing

Figure 5: Effect of adversarial debiasing on SPD (left) and AOD (right) for different test groups

6.1.4 Comparison between bias mitigation algorithms

We will now compare the results of the different bias mitigation techniques. Firstly, for all three
bias mitigation techniques we observe that SPD is able to measure the difference in bias introduced
into the test set by our manipulations, which cannot be concluded for AOD. This can be explained
by the nature of the bias we created and the nature of how the fairness metrics calculate their
scores. We have only introduced sample bias into the test sets, which lets the ratio of defaults
between gender differ, as is clearly measured by SPD. However, we do not change any of the labels.
As AOD checks for equality between genders in the correctness of the predictions, this metric is not
directly affected by our introduced sample bias. Therefore, in the next section we will also present
the results of the sensitivity analyses when manipulating the training sets. In this case we have
been able to change both the level of sample bias as well as the level of label bias. The second
notion we want to make is, as the level of sample bias increases for the test groups, the percentage
of SPD reduction for all bias mitigation techniques decreases. The bias mitigation techniques are
tuned on the level of bias in the training set and apparently do not adopt well to other amounts of
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bias. Thirdly, comparing the sensitivity of the pre-processing techniques in combination with the
four different classifiers, we do not observe a clear distinction between reweighing and massaging.
Moreover, we see that overall logistic regression and XGBoost exhibit the least deviation to different
data sets. On the other hand, the effect of pre-processing techniques in combination with decision
tree is the most volatile. Lastly, adversarial debiasing is less sensitive to deviations in data than the
pre-processing techniques with decision tree as classifier. However, the effect is clearly deviating
more than the pre-processing techniques in combination with the other three classifiers.

Concluding, when taking into account both the sensitivity and ability in bias reduction of the
different methods and classifiers, massaging in combination with the classifier logistic regression
is performing best with respect to fairness. However, as a fairness-performance trade-off exists,
other methods reach a higher predictive performance at the expense of fairness. It depends on
the (business) objective which method is more desirable. If one wants to reach a higher predictive
performance and accepts a slightly lower level of fairness, the best option will be to use XGBoost
in combination with reweighing or massaging - depending on whether one is more interested in
equalizing SPD or AOD - as this method is still quite stable with respect to deviations in the data.

6.2 Differentiation in training sets Taiwan Default data

For generating different training set groups, we have performed manipulations on two axes: sampling
and relabelling. The former one is similar to the manipulations done on the test sets and the
corresponding training sets contain artificial “sample bias”. The latter one is used to introduce
artificial “label bias” into the training data. In this case, specific subgroups of the data have been
relabelled. Thus, observations with default are relabelled to no default and vice versa. In Table 16
and Table 17, the resulting training groups together with their characteristics regarding the unfair
bias and class imbalance are reported for the case of sample bias and label bias, respectively. The
several training groups are used to train the different models and the non-manipulated test data is
used to measure their sensitivity.

Subgroup sampled
relatively more

Difference in default
ratio male and female

Class imbalance

Training group A Male with no default -2.7% 19.9%
Training group B Female with default -0.2% 24.2%
Training group C Original distribution 3.3% 22.0%
Training group D Male with default 6.9% 23.7%
Training group E Female with no default 10.2% 17.1%

Note: Reported numbers are the averages over five folds

Table 16: Generated training sets which contain sample bias and their characteristics
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Part of subgroup
relabelled

Difference in default
ratio male and female

Class imbalance

Training group F Female with no default -1.9% 25.5%
Training group G Male with default 0.7% 21.0%
Training group H No relabelling 3.6% 22.1%
Training group I Female with default 6.1% 20.6%
Training group J Male with no default 8.9% 24.2%

Note: Reported numbers are the averages over five folds

Table 17: Generated training sets which contain label bias and their characteristics

Again, we have considered the pre-processing techniques reweighing and massaging and the in-
processing technique adversarial debiasing as bias mitigating methods. The sensitivity is measured
by considering the changes in SPD and AOD with and without applying a bias mitigation technique.
The predictive performance of the models is represented by recall and accuracy scores, however we
mainly focus on the recall scores. As the results can be interpreted comparably to the previous
section on differentiation in test data, we will only report the averages over the training groups
corresponding to the artificial sample bias (train groups A-E) and artificial label bias (train groups
F-J) as well as the boxplots. We want to refer the interested reader to Appendix, Section 9.2 for
the detailed results per training group and the predictive performance scores.

Firstly, as the level of bias contained in the train groups increases (both for sample bias and label
bias) the SPD and AOD scores without bias mitigation increase. This means that as a model is
trained on more biased data, the predictions will also contain more bias, as expected. Secondly,
the effect of applying a bias mitigation technique increases, on average, with the increased amount
of bias contained in the training data, as can be observed from Figures 6-10. Similarly reasoning
as to the case of manipulating test data, we note that the bias mitigation methods are tuned on
the level of bias in the training set and reduce this amount of bias in the predictions, regardless of
the data distribution of the test set. Moreover, we want to note that cases in which the training
data exhibits a lower level of bias or even bias towards the non-protected group, the bias mitigation
algorithms are unable to detect this and the predictions contain a higher level of bias with bias
mitigation than without, which is of course not desirable.

No reweighing Reweighing Effect
LR RF DT XGB LR RF DT XGB LR RF DT XGB

SPD
Train A-E 3.2% 2.8% 3.5% 2.9% 1.4% 2.3% 2.3% 1.9% 39% 3% 16% 17%
Train F-J 3.2% 2.6% 2.9% 3.3% 1.4% 2.3% 2.3% 2.1% 37% 9% 15% 26%

AOD
Train A-E 3.1% 1.9% 2.7% 2.0% 0.2% 1.1% 1.2% 0.5% 67% 43% 58% 46%
Train F-J 3.0% 1.7% 2.0% 2.6% 0.1% 1.1% 1.0% 0.9% 59% 10% 11% 5%

Note: Reported numbers are the averages over the train groups

Table 18: Average SPD and AOD scores without and with reweighing and the average effect of
reweighing for logistic regression (LR), random forest (RF), decision tree (DT) and XGBoost (XGB)
over the different training groups
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Figure 6: Effect of reweighing on SPD for different classifiers and training groups

Figure 7: Effect of reweighing on AOD for different classifiers and training groups

Inspecting Table 18, we observe that reweighing is able to, on average, reach the same level of
fairness for the training groups with sample bias as well as with label bias. The fairness is highest,
for both SPD and AOD, when reweighing is combined with logistic regression. However, if one is
not concerned with reaching the highest fairness level, but also needs to take predictive performance
into account, using XGBoost as classifier will be a better option. This combination will reach a
higher predictive performance, while also obtaining a better fairness level than random forest and
decision tree and moreover is quite stable to deviations within train groups, when judging Figures
6 and 7.
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No massaging Massaging Effect
LR RF DT XGB LR RF DT XGB LR RF DT XGB

SPD
Train A-E 3.2% 2.8% 3.5% 2.9% 1.1% 1.0% 0.8% 0.5% 38% 27% 26% 40%
Train F-J 3.2% 2.6% 2.9% 3.3% 1.0% 1.0% 0.5% 0.6% 42% 44% 45% 62%

AOD
Train A-E 3.1% 1.9% 2.7% 2.0% -0.2% -0.5% -0.3% -1.2% 67% 45% 47% 42%
Train F-J 3.0% 1.7% 2.0% 2.6% -0.5% -0.4% -0.9% -1.1% 61% 11% 37% 0%

Note: Reported numbers are the averages over the train groups

Table 19: Average SPD and AOD scores without and with massaging and the average effect of
massaging for logistic regression (LR), random forest (RF), decision tree (DT) and XGBoost (XGB)
over the different training groups

Figure 8: Effect of massaging on SPD for different classifiers and training groups

Figure 9: Effect of massaging on AOD for different classifiers and training groups

Looking at Table 19, we note that compared to reweighing, massaging has a bigger effect on the
level of fairness. However, when judging the AOD scores, massaging is overcompensating for the
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bias present in the data and thereby causing the predictions to be biased towards females. This
is observed for the training groups that exhibit label bias and, to a lesser extent, for the training
groups that exhibit sample bias. Judging Table 20, the same observation for overcompensating,
when basing on AOD, can be made for adversarial debiasing. The performance of adversarial
debiasing, on the axes of bias mitigation and predictive performance, is comparable to massaging
with logistic regression. However, the latter one is less sensitive to data deviations when we compare
Figures 8 and 9 with Figure 10.

No adversarial
debiasing

Adversarial
debiasing

Effect

SPD
Train A-E 2.8% 1.1% 60%
Train F-J 3.1% 0.9% 19%

AOD
Train A-E 2.3% -0.2% 24%
Train F-J 2.7% -0.6% 19%

Note: Reported numbers are the averages over the train groups

Table 20: Average SPD and AOD scores without and with adversarial debiasing and the average
effect of adversarial debiasing over the different training groups

Figure 10: Effect of adversarial debiasing on SPD (left) and AOD (right) for different training
groups

6.3 Census data

For validating the results obtained in the previous sections, we make use of the Dutch census data of
2001 and 2011. We have trained the models on the less discriminatory data of 2011 and tested these
models on both the more discriminatory data of 2001 as well as the 2011 data itself. We measure
the effect of the bias mitigation techniques reweighing, massaging, and adversarial debiasing by
means of changes in the fairness metrics SPD and AOD. These calculated effects can then be inter-
preted as the percentage of unfairness eliminated from the predictions by applying bias mitigation
methods. Furthermore, we report the performance metrics recall and accuracy. We want to note
that, compared to the results of the Taiwan Default data, the scores without bias mitigation are
primarily negative instead of positive as the desired outcome of the dependent variable is now 1,
which was 0 in the case of the Taiwan Default data. However, the results can be interpreted in the
same way. As the standard threshold of the probabilities generated by the model, which is used to
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determine whether an observation should be given a 0 or 1, did not result in good predictive results,
we based the threshold on the highest F1-score, which is the harmonic mean between precision and
recall.

In Table 21, the SPD and AOD scores of the different classifiers without reweighing and with
reweighing are presented along with the effect of reweighing, calculated as the percentage of unfair-
ness eliminated. Furthermore, we reported the recall and accuracy scores in Table 22. Firstly, we
note that, based on the recall scores, the predictive performance of the models for the 2001 test data
is, on average, lower than for the 2011 test set. As expected, although the 2001 and 2011 have the
exact same features and corresponding coding, things have changed over ten years and the model
trained on 2011 data is less suitable for making predictions regarding the 2001 data. Furthermore,
we observe that reweighing removes quite a part of the unfairness from the 2011 predictions, when
looking at the SPD scores of the different classifiers. However, judging from the AOD scores the
unfairness has increased, which could be due to reweighing aiming to achieve statistical parity.
The average odds difference for the 2011 predictions without any bias mitigation was already quite
low and, while trying to achieve statistical parity using reweighing, this caused the average odds
difference to increase. However, we do not see this ability of the reweighing algorithm to remove
unfairness extrapolate to the predictions of the 2001 data. Looking at Figure 11, which contains
boxplots of the differences in SPD and AOD between no reweighing and reweighing, we observe
that the volatility for the 2011 predictions is quite low. Nonetheless, for the 2001 predictions, which
are based on a model trained with different data, the volatility increases. We note that decision
tree has the highest deviance, as was also observed during the sensitivity analyses of the Taiwan
Default data. Also, XGBoost is deviating quite a bit.

No reweighing Reweighing Effect
LR RF DT XGB LR RF DT XGB LR RF DT XGB

SPD
2001 -10.6% -0.4% -0.1% -4.7% -6.6% -0.4% -0.1% -4.8% 37% -12%* -11%* -2%*
2011 -2.6% -5.8% -5.5% -4.7% -2.2% -3.4% -2.9% -2.1% 15% 42% 47% 55%

AOD
2001 0.1% 10.5% 11.6% 7.0% 5.4% 10.5% 10.5% 7.1% -98%* 0% 9% -2%*
2011 3.6% 1.2% 1.6% 2.6% 4.1% 4.1% 4.7% 4.2% -11%* -70%* -66%* -38%*

Note: Reported numbers are the averages over five folds

Table 21: SPD and AOD scores without and with reweighing and the effect of reweighing for logistic
regression (LR), random forest (RF), decision tree (DT) and XGBoost (XGB) and for the 2001 and
2011 test sets

No reweighing Reweighing
LR RF DT XGB LR RF DT XGB

Recall
2001 0.646 0.570 0.429 0.590 0.597 0.568 0.423 0.594
2011 0.603 0.735 0.737 0.743 0.599 0.727 0.729 0.593

Accuracy
2001 0.819 0.815 0.817 0.835 0.865 0.816 0.799 0.841
2011 0.842 0.854 0.854 0.861 0.843 0.856 0.855 0.845

Note: Reported numbers are the averages over five folds

Table 22: Recall and accuracy scores without and with reweighing for logistic regression (LR),
random forest (RF), decision tree (DT) and XGBoost (XGB) and for the 2001 and 2011 test sets
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Figure 11: Effect of reweighing on SPD (left) and AOD (right)

We have displayed the SPD and AOD scores without and with massaging in combination with the
four different classifiers in Table 23, along with the calculated effect of massaging. Moreover, the
recall and accuracy scores have been reported in Table 24. Again, we observe substantially lower
recall scores for the 2001 predictions. Compared to reweighing, massaging has a smaller effect of
reducing SPD in the predictions of 2011. On the other hand, this also causes the increase in AOD,
on average, to be relatively smaller. Inspecting Figure 12, the volatility of the different classifiers is
very low for the 2011 predictions and at the same time is quite high for the 2001 predictions, except
for logistic regression. For the AOD scores, random forest has the highest volatility. However, for
the SPD scores we see that, again, decision tree has the highest deviance, and, to a lesser extent,
random forest and XGBoost exhibit some deviance.

No massaging Massaging Effect
LR RF DT XGB LR RF DT XGB LR RF DT XGB

SPD
2001 -10.2% -0.8% -2.1% -4.6% -5.5% -4.8% -4.9% -5.4% 47% -83%* -58%* -14%*
2011 -3.3% -6.0% -5.0% -4.8% -2.2% -4.9% -4.4% -3.2% 33% 17% 13% 32%

AOD
2001 0.4% 4.5% 6.8% 7.3% 6.8% 6.9% 6.8% 6.7% -95%* -35%* 0% 8%
2011 4.5% 1.0% 2.2% 2.5% 5.8% 2.2% 3.0% 4.3% -22%* -57%* -27%* -43%*

Note: Reported numbers are the averages over five folds

Table 23: SPD and AOD scores without and with massaging and the effect of massaging for logistic
regression (LR), random forest (RF), decision tree (DT) and XGBoost (XGB) and for the 2001 and
2011 test sets
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No massaging Massaging
LR RF DT XGB LR RF DT XGB

Recall
2001 0.639 0.308 0.381 0.563 0.575 0.566 0.571 0.615
2011 0.754 0.732 0.731 0.741 0.751 0.737 0.738 0.742

Accuracy
2001 0.821 0.807 0.805 0.841 0.867 0.853 0.830 0.855
2011 0.858 0.853 0.852 0.861 0.858 0.856 0.853 0.861

Note: Reported numbers are the averages over five folds

Table 24: Recall and accuracy scores without and with massaging for logistic regression (LR),
random forest (RF), decision tree (DT) and XGBoost (XGB) and for the 2001 and 2011 test sets

Figure 12: Effect of massaging on SPD (left) and AOD (right)

In Table 25, we have reported the SPD, AOD, recall and accuracy scores of the predictions for the
2001 and 2011 test data with and without adversarial debiasing along with the calculated effect
adversarial debiasing has for SPD and AOD. Furthermore, in Figure 13 we have displayed boxplots
of the differences in SPD and AOD for the two different test sets. For the 2011 predictions and
to a lesser extent for the 2001 predictions, adversarial debiasing is useful in removing the SPD.
However, at the same time, causes an increase in the AOD, as was also observed for massaging and
reweighing. Judging Figure 13, the volatility of adversarial debiasing is again very small for the
2011 predictions and very large for the 2001 predictions. It seems that the adversarial debiasing
algorithm is quite sensitive to the differences in data distributions of the 2001 and 2011 test data.

No adversarial debiasing Adversarial debiasing Effect
SPD AOD Recall Accuracy SPD AOD Recall Accuracy SPD AOD

2001 -10.3% 1.6% 0.779 0.597 -6.4% 3.0% 0.671 0.695 38% -48%*
2011 -3.8% 3.6% 0.742 0.732 -1.5% 6.4% 0.863 0.863 60% -44%*

Note: Reported numbers are the averages over five folds

Table 25: SPD, AOD, recall and accuracy scores without and with adversarial debiasing and the
effect of adversarial debiasing on SPD and AOD for the 2001 and 2011 test sets
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Figure 13: Effect of adversarial debiasing on SPD (left) and AOD (right)

7 Conclusion

This research examined the sensitivity of several fair classification methods to deviations in the data
distributions. We investigated this sensitivity in two ways: (1) we performed sensitivity analyses
by creating different levels of artificial bias in the training and test sets of the Taiwan Default
data and (2) we examined the performance of the models for Dutch census data of two different
periods in time with associated different amounts of bias. In this paper, we focused on the two pre-
processing methods reweighing and massaging, and the in-processing method adversarial debiasing.
Furthermore, we have combined the pre-processing methods with the well-known classifiers logis-
tic regression, random forest, decision tree and XGBoost. By observing how the fairness metrics
change when applying a bias mitigation, we were able to calculate its effect on the fairness of the
predictions and, thereby, how this deviates for different data distributions. The fairness metrics we
considered in this research are statistical parity difference (SPD), which is focused at the possible
gap between demographic groups and average odds difference (AOD), which is focused at the prob-
ability of correct predictions for different demographic groups.

The modifications to the Taiwan Default data, in order to create artificial bias, have been done
in two axes: resampling and relabelling. We only performed resampling to the test data. For the
training data, both resampling and relabelling methods have been applied. These manipulations
resulted in different test sets, for which we made predictions based on models trained on the original
data, as well as different training sets, which resulted in different trained models which we tested
using the same original test data. We first consider the case of differentiation in test set data. Over-
all, no clear distinction has been observed in the sensitivity between reweighing and massaging. Of
the four classifiers, logistic regression and XGBoost show least deviation for different data sets in
their fairness results. On the contrary, decision tree has been shown to be very volatile. These
observations can be explained by the design of the classifiers and are in line with the findings of
Kamiran & Calders (2012). Comparing adversarial debiasing to the two pre-processing techniques,
we observed that this method is less sensitive than massaging or reweighing combined with decision
tree, but more sensitive than when combined with the other classifiers. If one opts for achieving
the highest fairness, massaging in combination with logistic regression is performing best. However
if one is also concerned with the predictive performance and as a performance-fairness trade-off
exists, XGBoost with reweighing or massaging could be the better option, depending on the busi-
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ness objective. These model combinations are still performing well in terms of fairness and have a
higher predictive performance, while at the same time they are also quite stable. This observation
is in line with Kozodoi et al. (2021), who found that achieving perfect fairness is very costly, but
reducing the bias to a reasonable extent is possible, while still achieving a relatively high predictive
performance.

For the case of differentiation in training data sets, we were able to create both artificial sam-
ple bias as well as label bias. Overall, the highest fairness is achieved by combining reweighing with
the logistic regression classifier. Again, if predictive performance is also an important (business)
consideration, one could better pick the classifier XGBoost as this one obtains a higher predictive
performance, still achieves a rather high level of fairness and has small deviations in its results.
When judging the AOD scores, we note that massaging is overcompensating the level of bias con-
tained in the data, which is observed a bit more for the training sets with label bias than the training
sets with sample bias. This could the explained by the finding of Hinnefeld et al. (2018), who found
that fairness metrics have a differing sensitivity to different causal origins of the bias. Moreover,
this is also the case for adversarial debiasing. Furthermore, in cases where the training data ex-
hibits a lower level of bias than the test data or even bias towards the non-protected group, the
bias mitigation algorithms are unable to detect this and the unfairness in the predictions increases
instead of decreasing, which is undesirable. Moreover, for both the case of differentiation in test
sets and training sets, we see that the bias mitigation algorithms are tuned to a certain level of bias
in the training set and are, on average, able to reduce this amount of fairness in the predictions,
regardless of the data distribution of the test set.

Using the data of Dutch censuses in 2001 and 2011, we were able to see how our chosen mod-
els performed for deviations in the data distributions without the need to manipulate the data
ourselves. We trained the different model combinations on the 2011 data and tested them on both
the 2001 data, which contains more bias, and the 2011 data itself. The data sets only differ in their
observations, the used features and coding of those features are exactly the same for both years.
Firstly, we observed that the predictive performance for the 2001 data decreased compared to the
2011 case. Apparently, the 2011 data is not very suitable to make predictions for the 2001 case.
Moreover, we want to note that reweighing and massaging are designed to decrease the SPD. How-
ever, while aiming for statistical parity, this caused the AOD to increase for this use case, which is
undesirable. This is in line with the findings of Kleinberg et al. (2016), which state that it is almost
never possible to satisfy different fairness criteria simultaneously and that a trade-off between the
fairness metrics is present. Comparing the pre-processing techniques, reweighing performs better
when considering SPD as the fairness metric, while massaging performs better when considering
AOD. As massaging has, on average, a smaller volatility in its results, this technique seems to be
performing better than reweighing. Then, basing our judgement on the ability to reduce unfairness,
the associated predictive performance, and its volatility, we consider XGBoost as the most appro-
priate classifier when combined with massaging. Lastly, adversarial debiasing is very sensitive to
differences in data distributions which causes a high volatility in its results.

Combining these obtained results, we are able to answer our sub-questions and thereby the re-
search question. The ‘fair’ classification methods are tuned on the level of bias contained in the
training set and do not adopt well to other amounts of bias. Hence, when changes in the data distri-
butions occur, the ‘fair’ models are unable to maintain their achieved level of fairness. Furthermore,
we observe that the predictive performance suffers from the deviations. In terms of sensitivity, we
note that no model combination is the winner on all facets of interest. However, XGBoost in com-
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bination with massaging or reweighing seems to be the best option, of course depending on the use
case and business objective. Concluding, we have shown that ‘fair’ classification is quite sensitive to
deviations in the data and is, on average, unable to deal with different levels of bias between train
en test data. These findings can be used in further research, on which we will elaborate in Section
8.

8 Discussion

In this section, we discuss several limitations of our research and propose suggestions for future
research. Firstly, the scope of this research was bounded to binary classification problems with only
one protected attribute. However, the total fairness literature also includes multi-class classification
or regression and several protected attributes. The set-up of this research could be extended to
those areas as well. Secondly, we chose to only consider two pre-processing bias mitigation tech-
niques and one in-processing technique. Of course, the same analyses could also be performed for
other bias mitigation techniques, in order to get a broader and completer picture of the sensitivity
of the different methods. Although we made our statements as general as possible, our conclusions
are based on only two use cases and it might be possible that these results do not (completely)
extrapolate to other use cases.

We want to note that the analyses had rather long run times, usually several hours per model.
This is due to the fact that we performed extensive hyperparameter tuning, applied cross-validation
and needed to test several training or test sets for each model combination we considered. There-
fore, we decided not to apply any feature selection in order to keep the run times within reasonable
ranges. However, applying feature selection would have approximated the real-life situation even
better. Furthermore, during hyperparameter tuning, we decided for the pre-processing techniques
to optimize the classifiers for recall and at the same time, the first network of adversarial debiasing
is aimed at maximizing accuracy. Hence, this causes the results to not be optimized for fairness.
It is possible that the sensitivity results for the fairness metrics would change if the models are
optimized for these fairness metrics. However, we do feel that our approach is more general and
therefore also more applicable to the real-life situation than for such models, which are inherently
fair.

The bias mitigating algorithms we considered are all aimed at achieving statistical parity, and
as was also observed in the results, it can thereby happen that the average odds difference increases
after applying a bias mitigation algorithm. Depending on what is the desired way of defining fair-
ness, it is important to know that these algorithms may not help in achieving the fairness one
aims at. Therefore, one should not focus on solely one fairness metric, but use several criteria to
obtain a completer picture of the model’s fairness. Moreover, in order to scope this research we only
considered group fairness criteria. These criteria ensure that different groups are treated equally.
However, this could cause the model to suffer from individual bias. Therefore, it could be possible
that, when also considering individual fairness metrics, we would have obtained different outcomes
with respect to the best model combinations.

In addition, we did not write the code of the bias mitigation algorithms ourselves, but imple-
mented already existing packages from specific libraries. Overall these functions worked properly.
However, in exceptional cases it seemed that they broke down and are not (yet) able to cope with
this, for which we had to adjust the code. Therefore, it could be very beneficial for the integration

32



of these bias mitigation algorithms into the development of machine learning models to improve
the code of these packages. Furthermore, the current algorithms are quite static in the sense that
they are tuned to the level of bias contained in the training sets and do not adopt well to changing
amounts of bias in the test sets. It could be beneficial in cases where data distributions change
to have less static algorithms, which are in some way able to detect the changed distribution of
the data and adjust their predictions accordingly. We would like to highlight these suggestions as
directions for further research.
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9 Appendix

9.1 Hyperparameter tuning

Tuned hyperparameter Grid values

Logistic regression
penalty [none, l2]
C [0.01, 0.2, 1, 10, 100]

Random forest
n estimators [100, 144, 188, 233, 277, 322, 366, 411, 455, 500]
max depth [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]
min samples split [2, 5, 10]
min samples leaf [1, 2, 4]

XGBoost
learning rate [0.05, 0.10, 0.15, 0.20, 0.25, 0.30]
max depth [3, 4, 5, 6, 8, 10, 12, 15]
min child weight [1, 3, 5, 7]
gamma [0, 0.1, 0.2, 0.3, 0.4]
colsample bytree [0.3, 0.4, 0.5, 0.7]

Decision tree
max depth [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]
max features [1, 3, 5, 7, 10]
min samples leaf [1, 2, 4]
criterion [gini, entropy]

Table 26: Grid values for random search on hyperparameters of classifiers

9.2 Differentiation in training sets Taiwan Default data

9.2.1 Reweighing

No reweighing Reweighing Effect
LR RF DT XGB LR RF DT XGB LR RF DT XGB

Train A -1.0% 0.5% 0.4% -0.7% 1.0% 1.3% 1.6% 1.1% -3%* -61%* -74%* -37%*
Train B 1.7% 2.2% 1.4% 1.4% 1.8% 2.5% 1.5% 1.8% -6%* -11%* -7%* -22%*
Train C 3.2% 2.7% 2.5% 3.0% 1.6% 2.1% 0.3% 1.9% 50% 21% 89% 36%
Train D 4.7% 3.9% 4.2% 5.0% 1.7% 2.9% 3.1% 3.6% 63% 25% 27% 28%
Train E 7.5% 4.8% 8.7% 5.9% 0.7% 2.7% 4.8% 1.0% 90% 43% 44% 83%

Average 3.2% 2.8% 3.5% 2.9% 1.4% 2.3% 2.3% 1.9% 39% 3% 16% 17%

Train F 0.4% 1.9% -0.4% 1.2% 1.4% 2.6% 1.9% 2.1% -73%* -25%* -79%* -40%*
Train G 0.9% 1.1% 0.9% 1.1% 0.3% 1.1% 0.1% 0.7% 64% 1% 93% 39%
Train H 3.3% 2.6% 2.2% 3.3% 1.5% 2.1% 2.4% 2.4% 54% 20% -6%* 28%
Train I 5.3% 3.7% 4.3% 5.3% 1.3% 2.6% 3.5% 2.5% 76% 31% 19% 53%
Train J 6.2% 3.8% 7.5% 5.6% 2.2% 3.0% 3.9% 2.9% 64% 19% 48% 49%

Average 3.2% 2.6% 2.9% 3.3% 1.4% 2.3% 2.3% 2.1% 37% 9% 15% 26%

Note: Reported numbers of Train A - Train E and Train F - Train J are the averages over five folds

Table 27: SPD scores without and with reweighing and the effect for logistic regression (LR),
random forest (RF), decision tree (DT) and XGBoost (XGB)
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No reweighing Reweighing Effect
LR RF DT XGB LR RF DT XGB LR RF DT XGB

Train A -3.5% -1.3% -1.0% -2.9% -0.3% -0.2% 0.4% -0.7% 91% 82% 59% 77%
Train B 0.5% 1.0% 0.7% -0.2% 0.7% 1.2% 0.0% 0.4% -24%* -15%* 95% -39%*
Train C 2.9% 1.7% 2.0% 2.1% 0.4% 1.0% -0.8% 0.8% 87% 41% 61% 61%
Train D 5.1% 3.2% 3.4% 4.5% 0.5% 1.7% 2.6% 2.8% 90% 47% 22% 38%
Train E 10.3% 4.9% 8.5% 6.8% -0.5% 1.9% 3.9% -0.6% 95% 61% 54% 91%

Average 3.1% 1.9% 2.7% 2.0% 0.2% 1.1% 1.2% 0.5% 67% 43% 58% 46%

Train F -1.5% 0.7% -1.3% 0.0% 0.0% 1.4% 1.0% 0.7% 100% -49%* 24% -98%*
Train G -0.4% -0.4% -0.1% -0.5% -1.5% -0.5% -2.1% -1.3% -74%* -24%* -97%* -63%*
Train H 3.0% 1.5% 1.6% 2.6% 0.3% 0.8% 0.9% 1.2% 90% 45% 45% 54%
Train I 6.6% 3.5% 3.9% 5.5% 0.2% 1.9% 3.0% 1.9% 97% 46% 24% 66%
Train J 7.4% 3.1% 5.6% 5.2% 1.3% 2.0% 2.3% 1.8% 83% 33% 58% 64%

Average 3.0% 1.7% 2.0% 2.6% 0.1% 1.1% 1.0% 0.9% 59% 10% 11% 5%

Note: Reported numbers of Train A - Train E and Train F - Train J are the averages over five folds

Table 28: AOD scores without and with reweighing and the effect for logistic regression (LR),
random forest (RF), decision tree (DT) and XGBoost (XGB)

Recall Recall
LR RF DT XGB LR RF DT XGB

Train A 0.288 0.335 0.376 0.329 Train F 0.353 0.387 0.416 0.384
Train B 0.357 0.395 0.428 0.386 Train G 0.286 0.347 0.379 0.332
Train C 0.331 0.365 0.373 0.355 Train H 0.333 0.368 0.404 0.366
Train D 0.351 0.388 0.422 0.384 Train I 0.277 0.336 0.379 0.332
Train E 0.232 0.306 0.368 0.295 Train J 0.347 0.390 0.420 0.379
Average 0.312 0.358 0.394 0.350 Average 0.319 0.365 0.400 0.358

Note: Reported numbers of Train A - Train E and Train F - Train J are the averages over five folds

Table 29: Recall scores after reweighing for logistic regression (LR), random forest (RF), decision
tree (DT) and XGBoost (XGB)

Accuracy Accuracy
LR RF DT XGB LR RF DT XGB

Test A 0.815 0.818 0.742 0.817 Test F 0.819 0.817 0.712 0.812
Test B 0.819 0.815 0.721 0.806 Test G 0.814 0.816 0.730 0.817
Test C 0.819 0.818 0.733 0.819 Test H 0.819 0.817 0.732 0.810
Test D 0.819 0.817 0.720 0.809 Test I 0.814 0.815 0.726 0.816
Test E 0.810 0.814 0.739 0.816 Test J 0.819 0.815 0.711 0.811
Average 0.817 0.817 0.731 0.813 Average 0.817 0.816 0.722 0.813

Note: Reported numbers of Train A - Train E and Train F - Train J are the averages over five folds

Table 30: Accuracy scores after reweighing for logistic regression (LR), random forest (RF), decision
tree (DT) and XGBoost (XGB)
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9.2.2 Massaging

No massaging Massaging Effect
LR RF DT XGB LR RF DT XGB LR RF DT XGB

Train A -1.0% 0.5% 0.4% -0.7% 1.7% 2.1% 1.6% 1.6% -44%* -76%* -74%* -60%*
Train B 1.7% 2.2% 1.4% 1.4% 1.7% 2.3% 2.1% 1.2% -1%* -6%* -33%* 15%
Train C 3.2% 2.7% 2.5% 3.0% 1.3% 1.6% 1.2% 0.9% 61% 41% 50% 69%
Train D 4.7% 3.9% 4.2% 5.0% 1.1% 0.1% -0.1% -0.5% 76% 97% 98% 89%
Train E 7.5% 4.8% 8.7% 5.9% -0.3% -1.0% -0.8% -0.9% 96% 79% 90% 85%

Average 3.2% 2.8% 3.5% 2.9% 1.1% 1.0% 0.8% 0.5% 38% 27% 26% 40%

Train F 0.4% 1.9% -0.4% 1.2% 1.5% 3.0% 0.7% 2.3% -75%* -36%* -42%* -47%*
Train G 0.9% 1.1% 0.9% 1.1% 0.4% 0.9% 0.8% 0.1% 56% 21% 14% 87%
Train H 3.3% 2.6% 2.2% 3.3% 1.2% 0.9% 0.7% 0.4% 64% 63% 69% 88%
Train I 5.3% 3.7% 4.3% 5.3% 0.7% 0.5% -0.3% 0.5% 87% 87% 93% 90%
Train J 6.2% 3.8% 7.5% 5.6% 1.3% -0.5% 0.5% -0.6% 79% 88% 93% 90%

Average 3.2% 2.6% 2.9% 3.3% 1.0% 1.0% 0.5% 0.6% 42% 44% 45% 62%

Note: Reported numbers of Train A - Train E and Train F - Train J are the averages over five folds

Table 31: SPD scores without and with massaging and the effect for logistic regression (LR), random
forest (RF), decision tree (DT) and XGBoost (XGB)

No massaging Massaging Effect
LR RF DT XGB LR RF DT XGB LR RF DT XGB

Train A -3.5% -1.3% -1.0% -2.9% 0.7% 0.8% 0.6% 0.2% 79% 40% 43% 94%
Train B 0.5% 1.0% 0.7% -0.2% 0.6% 1.2% 1.1% -0.5% -16%* -13%* -35%* -51%*
Train C 2.9% 1.7% 2.0% 2.1% 0.0% 0.0% 0.2% -0.9% 99% 98% 89% 56%
Train D 5.1% 3.2% 3.4% 4.5% -0.3% -1.5% -1.1% -2.3% 94% 55% 69% 49%
Train E 10.3% 4.9% 8.5% 6.8% -2.2% -2.7% -2.4% -2.5% 78% 44% 71% 63%

Average 3.1% 1.9% 2.7% 2.0% -0.2% -0.5% -0.3% -1.2% 67% 45% 47% 42%

Train F -1.5% 0.7% -1.3% 0.0% 0.1% 2.0% 0.0% 1.1% 95% -65%* 97% -99%*
Train G -0.4% -0.4% -0.1% -0.5% -1.4% -0.9% -1.0% -2.0% -72%* -58%* -94%* -76%*
Train H 3.0% 1.5% 1.6% 2.6% -0.2% -0.7% -0.9% -1.7% 94% 57% 42% 35%
Train I 6.6% 3.5% 3.9% 5.5% -0.8% -0.6% -1.4% -0.6% 88% 82% 64% 90%
Train J 7.4% 3.1% 5.6% 5.2% -0.1% -1.9% -1.3% -2.5% 99% 37% 77% 51%

Average 3.0% 1.7% 2.0% 2.6% -0.5% -0.4% -0.9% -1.1% 61% 11% 37% 0%

Note: Reported numbers of Train A - Train E and Train F - Train J are the averages over five folds

Table 32: AOD scores without and with massaging and the effect for logistic regression (LR),
random forest (RF), decision tree (DT) and XGBoost (XGB)
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Recall Recall
LR RF DT XGB LR RF DT XGB

Train A 0.309 0.342 0.357 0.344 Train F 0.360 0.402 0.414 0.393
Train B 0.358 0.393 0.433 0.384 Train G 0.292 0.354 0.379 0.339
Train C 0.333 0.368 0.357 0.364 Train H 0.336 0.378 0.403 0.381
Train D 0.356 0.396 0.422 0.393 Train I 0.299 0.341 0.379 0.340
Train E 0.259 0.298 0.349 0.302 Train J 0.355 0.399 0.419 0.397
Average 0.323 0.359 0.384 0.357 Average 0.328 0.375 0.399 0.370

Note: Reported numbers of Train A - Train E and Train F - Train J are the averages over five folds

Table 33: Recall scores after massaging for logistic regression (LR), random forest (RF), decision
tree (DT) and XGBoost (XGB)

Accuracy Accuracy
LR RF DT XGB LR RF DT XGB

Test A 0.816 0.816 0.746 0.816 Test F 0.819 0.816 0.718 0.809
Test B 0.820 0.815 0.723 0.809 Test G 0.815 0.816 0.727 0.815
Test C 0.817 0.816 0.736 0.812 Test H 0.818 0.814 0.727 0.806
Test D 0.817 0.808 0.722 0.802 Test I 0.815 0.809 0.727 0.807
Test E 0.810 0.802 0.744 0.801 Test J 0.816 0.805 0.714 0.798
Average 0.816 0.811 0.734 0.808 Average 0.817 0.812 0.723 0.807

Note: Reported numbers of Train A - Train E and Train F - Train J are the averages over five folds

Table 34: Accuracy scores after massaging for logistic regression (LR), random forest (RF), decision
tree (DT) and XGBoost (XGB)

9.2.3 Adversarial debiasing

No adversarial
debiasing

Adversarial
debiasing

Effect
Predictive

performance
SPD AOD SPD AOD SPD AOD Recall Accuracy

Train A -1.0% -3.2% 0.0% -1.8% 100% 45% 0.322 0.816
Train B 1.3% 0.1% 1.7% 0.6% -23%* -79%* 0.374 0.816
Train C 2.6% 1.8% 0.0% -2.0% 99% -8%* 0.344 0.817
Train D 4.4% 4.3% 2.0% 1.0% 54% 77% 0.368 0.817
Train E 6.7% 8.6% 1.9% 1.2% 72% 86% 0.274 0.814

Average 2.8% 2.3% 1.1% -0.2% 60% 24% 0.336 0.816

Train F 1.7% 0.6% 2.6% 1.9% -37%* -69%* 0.377 0.818
Train G -0.4% -2.5% -2.4% -5.4% -84%* -54%* 0.333 0.813
Train H 3.0% 2.6% 0.8% -0.9% 75% 67% 0.340 0.816
Train I 6.1% 7.3% 2.8% 2.4% 55% 67% 0.320 0.816
Train J 5.1% 5.3% 0.7% -0.9% 87% 83% 0.367 0.817

Average 3.1% 2.7% 0.9% -0.6% 19% 19% 0.347 0.816

Note: Reported numbers of Train A - Train E and Train F - Train J are the averages over five folds

Table 35: SPD, AOD scores without and with adversarial debiasing, the effect of adversarial debi-
asing and the recall and accuracy scores after adversarial debiasing
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