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Abstract

Recent financial crises have made clear the crucial importance of taking into account
the complex cross-border and domestic interlinkages across institutions. We follow
the approach of Engelke and Hitz (2020) who adapt the notion of conditional inde-
pendence to extremal data of threshold exceedences and show that this allows the
construction of sparse graphical models from variogram matrices which characterise
the family of Hüsler-Reiss distributions. We apply extremal graphical models to a
dataset comprising 15 years of stock returns on 32 of the largest publicly traded
banks across 16 countries in the European Economic Area. Additionally, we apply
the key concepts of closeness centrality and betweenness centrality from network
theory to identify the set of banks that have systemic importance with respect to
the underlying financial network in times of market-wide crises. Our results suggest
that extreme events observed in financial data tend to be geographically isolated
and are connected to the rest of the network through a small set of systemically
important banks.
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1 Introduction

Abnormal temperature levels, extreme flooding, and financial crises are few examples of

events which typically lie in the tail of the distribution and have very small probabilities

of occurrence. Such events, however, can have devastating impacts on human life. The

accurate statistical modelling of such rare events, thus, is of significant importance.

Extreme value theory (EVT) provides a theoretical framework for constructing mod-

els that extrapolate beyond the empirical distribution of a particular variable of interest

and allow for statistical inference about events that have never yet occurred. Univariate

extremes have been extensively studied and the results for block-maxima and peaks-over-

threshold methods have found various applications in many different fields (cf. Beirlant

et al. (2004)). In many situations, however, the subject of interest is not just one extremal

event but a chain of contemporaneous rare events that lead to a catastrophic situation.

For example, extreme flooding caused by abnormal rainfall may be observed in several lo-

cations simultaneously. In financial networks, for instance, the risk of systemic instability

in the banking sector and collapse of the entire financial system depends strongly on the

structural relationships among many financial institutions. For such complex systems,

the severity of an extreme episode depends on the strength of the multivariate extremal

dependence between univariate extremes.

Multivariate extreme value theory, thus, models the dependence between different

components of a d-dimensional random vector X = (X1, . . . , Xd). Max-stable distribu-

tions and multivariate Pareto distributions arise as the limits of normalised maxima and

threshold exceedances of the random vector X, respectively. In practice, the complexity

of these models is considerable even in moderate dimensions, and for current statistical

models tractable statistical inference is limited to the 2- and 3-dimensional case. A recent

domain of research in extreme value statistics is centered around the modelling of sparse

structures in extreme events through machine learning techniques and graphical models

(cf. Engelke and Ivanovs (2021)).

Recent financial crises have made it clear that financial institutions should not be

taken in isolation. It is of crucial importance for the stability of the financial system to

take into account the complex cross-border and domestic interlinkages across institutions.
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In this paper, we focus on identifying the underlying network for extreme events that

drive systemic risks in the banking sector using extremal graphical models. We achieve

that by following the approach of Engelke and Hitz (2020) who adapt the notion of

conditional independence to extremal data of threshold exceedances and show that this

allows the construction of possibly sparse graphical models from variogram matrices which

characterise the family of Hüsler-Reiss distributions.

This paper is organized as follows. Section 2 provides an overview of the relevant

literature on extreme value theory and graphical models. Section 3 gives information on

the data sets used throughout the paper and presents summary statistics illustrating the

”stylized facts” of real-life financial time-series that influence the modelling techniques

used in the Methodology section. In Section 4, we introduce the theoretical concepts

and modelling techniques required to construct sparse block graphs for extreme events

in the banking system and to identify systemically important banks. In Section 5, we

apply our model construction methodology to a data set comprising 32 banks and discuss

the optimal graphical structure and the implications this has for systemic importance.

Section 6 draws the conclusion.

2 Literature Review

Classical univariate EVT investigates the question how to make consistent statistical in-

ference about the distribution of extreme values in a population of interest. The two

most popular methods for modelling extreme values are the block maxima (BM) and

peaks-over-threshold (POT) methods. In the block-maxima approach, pioneered in ap-

plications dealing with hydrology and climatology such as river heights and sea levels,

data is split into several non-overlapping, equally-sized time periods, or blocks (see the

plot on the left side of Figure 1 for an illustration). The normalized maxima within each

block are assumed to be independent and identically distributed, and to converge to a

non-degenerate limiting distribution. In analogy to the central limit theorem, Fisher and

Tippett (1928) , showed that the distribution of the limit must belong to the class of

generalized extreme value (GEV) distributions. From practical considerations, the block

maxima method could be considered wasteful of important information, since it discards
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all non-maximal data points. The peaks-over-threshold approach has been the preferred

workhorse in practice since it models all large observations that exceed a designated high

threshold and therefore uses the whole extremal dataset (right plot in Figure 1). Asymp-

totically, the exceedances have been suggested to occur according to a Poisson process and

the excesses (the sizes by which the threshold is exceeded) have been shown to converge to

a generalized Pareto distribution (cf., Pickands (1975)). Another important result demon-

strated by Pickands (1975) and Davison and Smith (1990), is that a necessary condition

for the existence of limit results for threshold exceedances is the convergence of the corre-

sponding block maxima to a GEV distribution. This close link between limit results for

threshold exceedances and limit results for block maxima is often exploited in practical

applications. We refer to Embrechts et al. (1997) and Davison and Huser (2015) for key

results and detailed overview of univariate extreme value statistics.

Figure 1: The Block Maxima (left) and Peaks-Over-Threshold (right) Approach

For applications in practice, such as estimating the tail risk of a portfolio of assets

or the systemic risk in the banking sector, we are predominantly interested in multi-

ple events that drive an extreme episode. Multivariate extreme value theory studies the

joint distribution of extremes of a d-dimensional random vector X = (X1, . . . , Xd). In

this setting, the problem of modelling the tail behaviour of a random vector X is typ-

ically split into modelling of the marginal tail of each component of X and modelling

of the extremal dependence structure. Similar to the univariate setting, two different
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but related directions have been explored - the component-wise maxima approach and

the peaks-over-threshold approach. In the former approach, the asymptotic behaviour of

normalised component-wise maxima of i.i.d. random vectors is represented in terms of

max-stable distributions and various probabilistic properties and statistical aspect have

been established (see de Haan and Resnick (1977), Smith et al. (1990) and Tawn (1990)).

The latter approach proceeds by choosing a suitable high threshold for each component

of X and considers an event to be extreme when at least one component exceeds its

threshold. Thus, one models the whole tail of a given extreme episode and, in theory,

might be able to capture the variation and extremal dependence of the components in

greater detail compared to the maxima approach. Multivariate generalized Pareto (GP)

distributions are the only stable distributions that arise as the limit of normalized thresh-

old exceedances (Rootzén and Tajvidi (2006)). However, for both multivariate maxima

and multivariate threshold exceedances the construction of tractable models and robust

statistical inference in high dimensions is challenging and most current applications are

only limited to moderate dimensions.

These limitations have influenced a relatively new body of research focusing on the

adaptation of classical methods for dimension reduction and detection of sparse models to

multivariate extreme data. Advances in this field link approaches from machine learning

(such as clustering and principal component analysis) and graphical modelling to multi-

variate EVT (see Engelke and Ivanovs (2021) for a review of recent advances). Graphical

models in the classical, non-extreme setting rely on the notion of conditional indepen-

dence for dimension reduction through the factorization of continuous high-dimensional

distributions to lower dimensions. In a recent work, Engelke and Hitz (2020), introduce a

general theory of extremal conditional independence for muiltivariate Pareto distributions

that allows the construction of possibly sparse graphical structures. In particular, they

show that for Hüsler-Reiss distributions the underlying tree structure can be learned and

expanded to block-graphs by likelihood-based methods and statistical inference can be

carried out on lower-dimensional densities.

With this paper, we aim to shed light on the complex relationships occurring be-

tween financial institutions in times of financial crises. To achieve that, we focus on the

identification of the underlying network for extreme events that drives systemic risks in

the banking industry through the application of extremal graphical models to a dataset
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comprising the largest financial institutions in the European Economic Area (EEA). In

addition, we apply key concepts from network theory, known as centrality measures, to

identify the set of banks that have systemic importance with respect to the underlying

financial network in times of market-wide crises. Our methodology bridges together fi-

nancial time-series modelling with graphical modelling for threshold exceedances which

can allow policymakers, academic economists and practitioners in the banking sector to

better understand the mechanisms that drive financial distress.

3 Data

For our analysis, we have selected some of the largest publicly traded banks in the Eu-

ropean Economic Area, sorted by their market capitalisation, together with financial

institutions from the countries most heavily hit by the 2008 financial crisis, namely Por-

tugal, Greece, and Ireland. Our dataset was obtained from Datastream and consists of

nearly 15 years of data measured in terms of daily stock prices taken at closing times

and adjusted for splits, dividends, and other capital actions. The time period considered

is from April 25, 2005 to December 31, 2020, with holidays and market closures treated

as missing values. This yields a dataset comprising n = 4094 observations on d = 32

financial institutions (cf. Table 1)

A first step in our analysis is to transform our data into daily return series

S
(1)
t , . . . , S

(d)
t , with t ∈ {1, . . . , n}

by taking the logarithmic difference of the price as

Sd
t = 100 ∗ log

P d
t

P d
t−1

, (1)

where P d
t denotes the closing price on day t of asset d.
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ID Bank Symbol Country Market Cap Rank

1 Ereste Group Bank AG EBS Austria 11.03 25
2 Raiffeisen Bank Intl AG RBI Austria 6.34 28
3 KBC Group NV KBC Belgium 17.86 21
4 Danske Bank A/S DANSKE Denmark 17.67 22
5 Nordea Bank Abp NDA-Fl Finland 33.10 11
6 BNP Paribas SA BNP France 59.47 3
7 Crédit Agricole SA ACA France 26.98 17
8 Societe Generale SA GLE France 28.78 16
9 Commerzbank AG CBK Germany 10.05 26
10 Deutsche Bank AG DBK Germany 28.85 15
11 National Bank of Greece ETE Greece 5.20 30
12 AIB Group PLC AIBG Ireland 21.18 18
13 Bank of Ireland PLC BIRG Ireland 5.76 29
14 Banco BPM SpA BPM Italy 3.54 31
15 Intesa Sanpaolo SpA ISP Italy 36.09 10
16 UniCredit SpA UCG Italy 30.465 14
17 ING Groep NV INGA Netherlands 37.402 9
18 DNB ASA DNB Norway 18.45 19
19 Banco Comercial Portugues SA BCP Portugal 3.26 32
20 Banco de Sabadell SA SAB Spain 6.78 27
21 Banco Santander SA SAN Spain 71.03 2
22 BBVA SA BBVA Spain 40.94 6
23 Skandinaviska Enskilda Banken AB SEB-A Sweden 16.2 24
24 Svenska Handelsbanken AB SHB-A Sweden 18.09 20
25 Swedbank AB SWED-A Sweden 16.71 23
26 Credit Suisse Group AG CSGN Switzerland 32.38 13
27 UBS Group AG UBSG Switzerland 48.28 4
28 Barclays PLC BARC UK 38.87 8
29 HSBC Holdings PLC HSBC UK 137.81 1
30 Lloyds Banking Group PLC LLOY UK 47.34 5
31 Natwest Group PLC NWG UK 39.43 7
32 Standard Chartered PLC STAN UK 32.77 12

Table 1: List of the European financial institutions used in our analysis with index number,
ticker symbol, country, mean market capitalization (in EUR) and rank with respect to
the mean market capitalization in the period from April 25,2005 to December 31, 2020.
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Financial time-series data is known to exhibit some particular empirical properties

which make their modelling a non-trivial task. Some of these ”stylized facts” include

non-iid return series, strong serial correlation of absolute and squared returns and non-

normality (McNeil et al. (2015)). The graphs of the daily price series and daily log returns

for a subset of the original 32 financial series are presented in Figure 2 and are generally

consistent with previous research. The graphs on the left side show that extreme returns

in one asset often coincide with extreme returns in other series, as is the case during the

2008 financial crisis and the consequent European sovereign debt crisis in the early 2010s.

Visual inspections of the return series plot shown on the right reveals that extreme returns

tend to be followed by other extreme returns. This phenomenon is known as volatility

clustering and is an indication that our series exhibit non-stationarity in volatility.

From the cross-correlograms in Figure 3 it is evident that the squared returns exhibit

significant negative serial dependence and tend to be extremely persistent. Additionally,

the Ljung-Box test of randomness performed on the raw return data and the squared

returns, respectively, shows strong evidence against the null hypothesis of independent

and identically distributed financial returns, Table 2.
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Figure 2: Time-series plot of stock price (left) and returns (right) associated with a subset
of the original 32 banks. The data span the period from April 25, 2005 to December 31,
2020.
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Figure 3: Sample cross correlogram plots of the return series and squared returns asso-
ciated with a subset of the original 32 banks. The data span the period from April 25,
2005 to December 31,2020.
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Distribution of financial stock returns are often observed to diverge from the nor-

mal distribution since they tend to exhibit heavier tails and skewness compared to the

Gaussian distribution. The Q-Q plot is a frequently used visual tool for comparing the

relationship between quantiles of the empirical distribution of the series and theoretical

quantiles of a reference distribution (McNeil et al. (2015)). In Figure 4 we show the Q-Q

plots of the four return series considered earlier against the normal distribution. If the

empirical distributions are linearly related to the Gaussian distribution, we would expect

the points in the plots to lie on a line. In our case, however, the inverted S-shape we

observe suggests that the normal distribution provides a poor fit to the daily log returns.

In addition, we applied a formal test of normality, known as the Jarque-Bera test. For all

32 bank stocks the null hypothesis of normality is rejected (see Table 2).
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Figure 4: Q-Q plots of daily returns for a subset of the original 32 banks against a normal
reference distribution. The data span the period from April 25,2005 to December 31,2020.
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Symbol Country LBraw LBsq p-value (JB)

EBS Austria 0.00 0.00 0.00
RBI Austria 0.07 0.00 0.00
KBC Belgium 0.00 0.00 0.00
DANSKE Denmark 0.00 0.00 0.00
NDA-Fl Finland 0.23 0.00 0.00
BNP France 0.36 0.00 0.00
ACA France 0.01 0.00 0.00
GLE France 0.00 0.00 0.00
CBK Germany 0.01 0.00 0.00
DBK Germany 0.03 0.00 0.00
ETE Greece 0.00 0.00 0.00
AIBG Ireland 0.00 0.00 0.00
BIRG Ireland 0.00 0.00 0.00
BPM Italy 0.00 0.00 0.00
ISP Italy 0.99 0.00 0.00
UCG Italy 0.14 0.00 0.00
INGA Netherlands 0.01 0.00 0.00
DNB Norway 0.13 0.00 0.00
BCP Portugal 0.00 0.00 0.00
SAB Spain 0.00 0.00 0.00
SAN Spain 0.10 0.00 0.00
BBVA Spain 0.00 0.00 0.00
SEB-A Sweden 0.05 0.00 0.00
SHB-A Sweden 0.00 0.00 0.00
SWED-A Sweden 0.59 0.00 0.00
CSGN Switzerland 0.00 0.00 0.00
UBSG Switzerland 0.00 0.00 0.00
BARC UK 0.00 0.00 0.00
HSBC UK 0.05 0.00 0.00
LLOY UK 0.00 0.00 0.00
NWG UK 0.00 0.01 0.00
STAN UK 0.30 0.00 0.00

Table 2: Tests of randomness for returns applied to the set of 32 banks for the period
from April 25,2005 to December 31,2020. The columns LBraw and LBsq give p−values
for Ljung-Box tests applied to the raw and squared returns, respectively. The last column
shows p-values for Jarque-Bera tests of normality.
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4 Methodology

4.1 Financial Time-series Modelling

As we showed in Section 3, bank asset returns exhibit strong temporal dependence and

volatility clustering, and their distributions are typically leptokurtic and heavy-tailed.

This precludes the direct application of statistical models within EVT that require inde-

pendent and identically distributed data. In order to obtain approximately iid returns we

filter the data set. We follow an approach similar to Hilal et al. (2014) and McNeil and

Frey (2000).

As a first step, we convert the log returns from Section 3 to log losses, Lt = (L
(1)
t , . . . , L

(d)
t ) =

−(S
(1)
t , . . . , S

(d)
t ), for t = 1, . . . , n, so that large losses are positioned on the upper tail of

the loss distribution. To remove the temporal dependence and volatility clustering of the

dataset we consider the ARMA-GARCH family which have proved to be parsimonious but

effective tools in practice. In particular, we use ARMA processes to model the dynamics

of the conditional mean and GARCH processes for the volatility of the univariate series

of log losses (see Bollerslev (1986) for more information on GARCH models). We use the

Akaike’s information criterion (AIC = 2 × log-likelihood− 2 × number of parameters)

to select a model which gives a good balance between parsimony and goodness-of-fit. The

AIC score suggests that ARMA(1,0)-GARCH(1,1) is the most appropriate specification

for a large proportion of the univariate series (see Table 4 in the Appendix). Specifically,

we model the dynamics of the log-losses of any given bank, L
(j)
t for j ∈ {1, . . . , d} and

t ∈ {1, . . . , n} as follows

L
(j)
t = µ

(j)
t + σ

(j)
t · Z

(j)
t , (2)

µ
(j)
t = φ · L(j)

t−1, (3)(
σ

(j)
t

)2
= α0 + α1 ·

(
ε

(j)
t−1

)2
+ β ·

(
σ

(j)
t−1

)2
, (4)

ε
(j)
t−1 = L

(j)
t − µ

(j)
t , (5)

Z(j) ∼ WN(0, 1). (6)

where we impose the constraint |φ| < 1 for stationarity of the conditional mean µ
(j)
t .

Furthermore, we assume α0 > 0, α1 ≥ 0, β ≥ 0, and α1 + β < 1 to ensure stationarity
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and positivity of the conditional variance σ
(j)
t−1.

The distribution of the innovations Z(j) is often assumed to be standard normal and the

GARCH model parameters are estimated through maximum likelihood. However, it has

been shown that the assumption of normality tends to underestimate the heaviness of the

tails of the innovations (McNeil and Frey (2000)). Another common approach is to assume

that the innovations come from a Student’s t-distribution scaled to have unit variance.

In this paper, we adopt a third alternative which makes minimal assumptions about the

distribution of the innovations. Essentially, we assume that our model specification fits

the dynamics of the data but the innovations are misspecified as standard normal and

estimate the model parameters through quasi-maximum likelihood (QML) (McNeil et al.

(2015)).

The corresponding standardized filtered losses are calculated from the residuals as

X
(j)
t =

L
(j)
t − µ̂

(j)
t

σ̂
(j)
t

. (7)

If our model is correctly specified X
(j)
t should be approximately i.i.d. We can now

move to modelling the tail behaviour of the standardized residuals.

4.2 Multivariate Extreme Value Theory for Financial Returns

During times of financial distress, strong interlinkages between banks can lead to spread

of losses across institutions and amplify the risk of market-wide crashes. In order to focus

exclusively on modelling the extremal dependence structure we estimate the marginal

distributions Ĥ(j) of X(j) non-parametrically to normalize our data to standard Pareto

distributions. This is tantamount to the transformation 1/[1 − Ĥ(j)(X(j))]. In the re-

mainder of Section 4.2, we assume that the random vector of filtered financial losses

X = (X(1), . . . , X(d)), has already been normalized to standard Pareto marginals F (j), j ∈

{1, . . . , d}.
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4.2.1 Modelling of the extremal dependence

Under the assumption of multivariate regular variation for X the convergence of the

properly normalized tail probabilities is equal to the stable tail dependence function (cf.,

Resnick (2008))

Λ(x) = lim
u→∞

u[1− P(X ≤ ux)], x ∈ E , (8)

where Λ denotes the exponent measure defined on the cone E = [0,∞)d\{0}. Accordingly,

the high threshold exceedances of X converge to a multivariate Pareto distribution (cf.,

Rootzén and Tajvidi (2006) and Rootzén et al. (2018))

P(Y ≤ x) = lim
u→∞

P(X/u ≤ x | ‖X‖∞ > u) =
Λ(x ∧ 1)− Λ(z)

Λ(1)
, x ∈ E , (9)

and concentrate on L = {x ∈ E : ‖x‖∞ > 1}. A necessary condition for the threshold

exceedances to asymptotically have a multivariate GP distribution is the maxima of the

normalized random vector X to be asymptotically extreme value distributed (cf. Rootzén

and Tajvidi (2006), that is

lim
n→∞

P
{

max
t=1,...,n

X
(1)
t ≤ nz1, ..., max

t=1,...,n
X

(d)
t ≤ nzd

}
= P(Z ≤ z), for any z = (z1, ..., zd),

(10)

where Z is the max-stable distribution arising as the limit of the standardized random

vector X. Since X has standard Pareto marginals, the marginal components of Z follow

a standard Fréchet distribution, P(Zi ≤ z) = exp(−1/z), z ≥ 0, and its distribution is

given by

P(Z ≤ z) = exp [−Λ(z)], z ∈ E . (11)

The exponent measure Λ possesses a number of convenient properties. First, it encodes

all available information on the extremal dependence of the normalised random vector X.

Second, as Engelke and Hitz (2020) show, a direct consequence of the max-stability and

the standard Fréchet marginals of Z is that the Radon-Nikodym derivative of the ex-

ponent measure Λ, denoted by λ is homogeneous of order −(d + 1) and has normalised

marginals, and, therefore, is a valid density which defines a max-stable distribution. Es-

sentially, under the assumption that the density fY (y) of Y is positive and continuous it
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is proportional to λ, and thus homogeneous of order −(d+ 1) with

fY (y) =
λ(y)

Λ(1)
, y ∈ L, (12)

since the d-variate extremal coefficient Λ(1) ∈ [1, d] is a known constant.

4.2.2 Hüsler-Reiss Pareto Distributions

From a practical perspective a valid statistical model in the class of multivariate gener-

alized Pareto distributions needs to find the balance between flexibility and tractability.

Some of the classical multivariate statistical models which have found applications in

different domains such as hydrology, climate science, and finance include the Dirichlet

mixture model (Boldi and Davison (2007), the d-dimensional extremal logistic distribu-

tion, and the class of Hüsler-Reiss distributions of Hüsler and Reiss (1989). In this paper

we focus on the latter due to its high degree of flexibility and, as we later show, the suit-

able properties it has which enable it to learn extremal graphical structures in financial

applications.

Consider the realization of a Poisson point process {Ul}l∈N on R+ and independent

copies {Wl}l∈N of a centered d-dimensional Gaussian distribution W with covariance

matrix denoted as Σ. We define the max-stable Hüsler-Reiss distribution as

Z = max
l∈N

Ul exp{Wl − diag(Σ)/2}, (13)

where its distribution is parameterized by the symmetric and conditionally negative def-

inite variogram matrix Γ associated with W

Γ = 1diag(Σ)T + diag(Σ)1T − 2Σ, (14)

see Kabluchko et al. (2009). The Hüsler-Reiss multivariate Pareto distribution Y associ-

ated with Z is similarly parameterized by the variogram matrix Γ = (Γij)1≤i,j≤d.

For any k ∈ {1, . . . , d}, Engelke et al. (2015) show that the density of its exponent
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measure can be written as

λ(y) = y−2
k

∏
i 6=k

y−1
i φd−1(ỹ\k; Σ(k)), y ∈ E , (15)

ỹ\k = {log(yi/yk) + Γik/2}, (16)

where φl(·; Σ) denotes the density of the zero-mean d-variate normal distribution with

covariance matrix Σ and

Σ(k) =
1

2
{Γik + Γjk − Γij}i,j 6=k ∈ R(d−1)×(d−1). (17)

The superscript in Σ(k) denotes the strictly positive definite covariance matrix Σ with

the k-th component omitted. A convenient property of Hüsler-Reiss distributions is their

stability under taking marginals, in the sense that if a random vector ZV , V = {1, . . . , d}

is Hüsler-Reiss distributed, then for I ⊂ V and k ∈ I the lower dimensional marginals are

also Hüsler-Reiss distributed with a parameter matrix induced by the respective entries

of Λ

λI(yI) =

∫
[0,∞)d−|I|

λI(y)dy\I = y−2
k

∏
i∈I\{k}

y−1
i φ|I|−1

{
ỹI\{(k)}; Σk

I

}
, (18)

where we have kept the notation from the previous section.

4.2.3 Threshold Selection

An important question that arises in practical applications of threshold exceedances mod-

els, both in the univariate and multivariate case, is the following: “How can we select the

threshold u such that the limiting distribution of the normalized exceedances is well-

approximated by a generalized Pareto distribution?”. The issue at hand is twofold. On

the one hand, the univariate densities of X(j) − u ≤ x |X(j) > u should be adequately

approximated by univariate GP distributions. This implies the apparent trade-off be-

tween bias and variation. If the threshold is set too high and this results in too few

exceedances being captured, the uncertainty in our estimates is likely to be large and

would limit our ability to draw statistically justified conclusions. Conversely, choosing a

threshold that is too low might result in exceedances that do not follow a GP distribu-

tion, unless the raw data is GP distributed. On the other hand, the dependence structure
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X/u ≤ x | ‖X‖∞ > u should also be well-approximated by a multivariate Pareto distri-

bution.

Threshold selection in the univariate setting has been well-studied and various ap-

proaches, most using graphical diagnostics, have been developed such as Zipf plots, thresh-

old stability plots, and mean excess plots (see Scarrott and MacDonald (2012) for a re-

cent review). Threshold selection for multivariate GP models, however, has just recently

started to attract more attention and research is scarce. A method, recently introduced by

Kiriliouk et al. (2019) and exploited by Engelke and Volgushev (2020) in their definition

of non-parametric minimum spanning trees for threshold exceedances, uses the coefficient

of upper tail dependence. For any non-empty set S ∈ V = {1, . . . , d}, it is defined as

χS = lim
u→1

χS(q) = lim
u→1

P [
⋂

i∈S X
(i) > 1

1−u ]

1− u
, u ∈ (0, 1), (19)

whenever the limit exists, and where X = {X(1), . . . , X(d)} is the random vector of

filtered financial losses normalized to standard Pareto marginals and u is the quantile

of the marginal Pareto distribution. The empirical estimator for the tail dependence

coefficient for a subset S is given by

χ̂S(u) =

∑n
t=1 1{X(i) > 1

1−u , . . . , X
(j) > 1

1−u}
n(1− u)

, u ∈ (0, 1), i, j ∈ S (20)

Consequently, a threshold can be determined by inspecting the empirical estimates of

χS(u) for different randomly chosen subsets S against a range of threshold values close to

one. It is important to note, however, that the empirical estimator of extremal dependence

has a serious drawback. For high thresholds u and for high-dimensional subsets S, the

estimates will be unreliable and will suffer from the curse of dimensionality, i.e. χ̂S(u) ≈ 0,

for u close to 1.

4.3 Graphical Extremal Models for Threshold Exceedances

A major limitation of extreme value models in high dimensions and the Hüsler-Reiss model

class, in particular, is the rapid increase in the complexity of the possible dependence

structures due to the high number of free parameters that need to be estimated, e.g., the
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Hüsler-Reiss model requires the estimation of (d− 1)d/2 parameters.

Graphical models are classical tools allowing the construction of possibly sparse and

parsimonious models in high dimensions, and have the advantage of being interpretable

in terms of the underlying graph. Naturally, the probabilistic graphical model random

vector Y taking values in the Cartesian product Y = ×Yi with Yi ⊂ R, is represented

by an undirected graph G = (V,E) with a set of nodes V = {1, . . . , d} and a set of

edges E ⊂ V × V . It is defined by the set of conditional independence constraints of Y ,

where for disjoint subsets A,B,C ⊂ V , YA is said to be conditionally independent of YC

given YB, YA⊥⊥YC |YB, if B separates A from C. If, in addition, Y has a positive and

continuous Lebesgue density fY on Y , it follows from the Hammersley-Clifford theorem

that the density factorizes for as

fY (y) =
∏
C∈C

ϕC(yC), y ∈ Y (21)

where C denotes the set of all cliques and ϕC are suitably defined functions on ×i∈CYi.

For decomposable graphs, that is, graphs in which each minimal separator is a clique, the

factorization can be expressed in terms of marginal densities

fY (y) =

∏
C∈C fC(yC)∏
D∈D fD(yD)

, y ∈ Y , (22)

and D is a multiset containing all separator sets. We refer the interested reader to

Lauritzen (1996) for basic notions and in-depth treatment of undirected graphs.

In the remainder of Section 4 we return to the standardized setting of Section 4.2.1

where the threshold exceedances of X converge to a multivariate Pareto distribution. The

notion of conditional independence is not directly applicable to threshold exceedances,

since the support L = {x ∈ E : ‖x‖∞ > 1} of a multivariate Pareto distribution X

is not a product space. Engelke and Hitz (2020) show, nonetheless, that there is an

alternative definition of extremal conditional independence for X. For k ∈ V , they

introduce the random vector Xk as X |Xk > 1, which clearly is supported on the product

space Lk = {x ∈ L : xk > 1}. Thus, for non-empty disjoint subsets A,B,C ⊂ V we say
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that, given XB, YA is conditionally independent of XC if

∀k ∈ {1, . . . , d} : Xk
A⊥⊥Xk

C |Xk
B, (23)

and denote it by XA ⊥e XC |XB. Furthermore, for a decomposable graph G = (V,E)

there exists a natural extension of the Hammersley-Clifford theorem which allows the

factorization of the density fX of X, given that it is positive and continuous on L, as

fX(y) =
λ(y)

Λ(1)
=

1

Λ(1)

∏
C∈C λC(yC)∏
D∈D λD(yD)

, y ∈ L, (24)

where C and D are the sets of cliques and separators, and the factors λI are the marginals

of the exponent measure density corresponding to XI for any I ⊂ V .

The theory of conditional extremal independence and extreme graphical models de-

veloped by Engelke and Hitz (2020) is somewhat generic, in the sense that it allows us to

use different parametric families or even non-parametric methods. Here we focus on the

former and note that the stability of Hüsler-Reiss distributions under taking marginals

makes them natural candidates for the further parameterization of graphical models and

will allow us to define possibly sparse and tractable graphical structures in higher dimen-

sions.

4.3.1 Construction of Hüsler-Reiss Block Graphs

Engelke and Hitz (2020) show that the variogram matrix Γ associated with the class of

Hüsler-Reiss distributions plays a similar role as the the precision matrix for Gaussian

distributions - it allows us to identify the conditional independencies between components

of Γ. There are, however, some important differences.

The construction of Hüsler-Reiss models defined in Section 4.2.2, implies that there

might exist multiple, possibly degenerate Gaussian distributions W with variogram Γ

which lead to the same max-stable Hüsler-Reiss distribution. Thus, we cannot simply

transform the covariance matrix Σ to the conditional independence structure of the Hüsler-

Reiss Pareto distribution to which it corresponds. There exists, however, a valid set of

covariance matrices Σ̃(k) ∈ Rd×d, k ∈ V , which coincide with Σ(k) for i, j 6= k and zeros in
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place of the k-th row and column

Σ̃(k) =
1

2
{Γik + Γjk − Γij}i,j∈V ∈ Rd×d. (25)

Consequently, for a random vector Xk, k ∈ V , defined as X|Xk > 1, it can be seen that

Xk d
= P exp

{
W k − diag(Σ̃(k))/2

}
, (26)

where P is a standard Pareto distributed random variable, independent of the centered

normal distribution W k with covariance matrix Σ̃(k). Combined with the definition of

conditional independence in (23), this suggests that the precision matrix of Σ(k) (keeping

notation from Section 4.2.2) denoted by Ω(k) = (Σ(k))−1 contains all relevant informa-

tion on the conditional independence structure of X. Thus, for a Hüsler-Reiss Pareto

distribution X with a set of nodes V = {1, . . . , d}

Xi ⊥e Xj |XV \{i,j} ⇐⇒


Ω

(k)
ij = 0 if i, j 6= k,∑
l 6=k Ω

(k)
lj = 0 if i = k, j 6= k,∑

l 6=k Ω
(k)
il = 0 if j = k, i 6= k.

(27)

where i, j ∈ V with i 6= j, and k ∈ V . We say that Ω(k) contains the graphical structure

of X.

The nature of Γ of a Hüsler-Reiss distribution suggests that unless conditional indepen-

dences are explicitly imposed the resulting graph will be complete with d(d− 1)/2 edges.

An important feature of graphical models for multivariate Perto distributions is that they

allow us to restrict model complexity and for certain types of graphs, to estimate models

parameters on lower-dimensional marginals. Throughout the rest of this paper we consider

block graphs - decomposable connected graphs G = (V,E) with clique set C and singleton

separator set D. Let X = (X(i))i∈V be a random vector which follows a multivariate

Pareto distribution with density fX(y), y ∈ L as before. Assuming fX(y) is an extremal

graphical model in the sense of Equation (23) with respect to the block graph G, Equation

(24) implies a natural construction principle for multivariate Hüsler-Reiss Pareto distri-

butions. First, assume all cliques C ∈ C are Hüsler-Reiss distributed with valid exponent

measure density λC(yC ,Γ
(C)) and parameterized by a |C| × |C|-dimensional variogram
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Γ(C). Since all separator sets are assumed to be singleton and λD(yD) = y−2
D is a valid

homogeneous density, the consistency constraint λD(yD) =
∫

[0,∞)[C\D] λC(yC ,Γ
(C))dyC\D

is trivially satisfied. Thus, a valid d-variate Hüsler-Reiss Pareto distribution that factor-

izes according to a known graph G is defined by the product of the lower-dimensional

exponent measure densities

fX(y) =
1

Λ(1)

∏
C∈C

λC(yC ; Γ(C))∏
j∈D y

−2
j

∏
i∈V

y−2
i , y ∈ L. (28)

Engelke and Hitz (2020) show that the d-variate Hüsler-Reiss distribution that factor-

izes with respect to the block graph G can be uniquely determined as a solution to the

problem:

find a feasible variogram matrix Γ,

subject to

Γij = Γ
(C)
ij , for i, j ∈ C and all C ∈ C,

Ω
(k)
ij = 0, for all k ∈ V, i, j 6= k and (i, j) /∈ E,

(29)

where Γ(C) denotes the variogram matrix of a random vector X with |C|-variate Hüsler-

Reiss distributions on each clique C ∈ C and Ω(k), k ∈ V is the precision matrix of

Σ(k) as before. Importantly, through (28) and (29) we can construct high-dimensional

Hüsler-Reiss distributions out if many low-dimensional ones with number of paramters

1
2

∑
C∈C |C|(|C| − 1) possibly much smaller than the full d-variate Hüsler-Reiss model.

4.4 Estimation of Hüsler-Reiss Block Grpahs

Let X = (X(1), · · · , X(d)) be the d-dimensional standardized vector of filtered financial

losses with standard Pareto marginal distributions. Under this standardized setting, the

threshold exceedances of X are multivariate Pareto distributed as in Equation (9). As-

sume for now that the underlying block graph G = (V,E) with node set V = {1, . . . , d}

and edge set E ⊂ V × V is known and fixed. Furthermore, assume X follows a Hüsler-

Reiss Pareto distribution with variogram matrix Γ and factorizes with respect to the the

block graph G as in Equation (28). The likelihood of X is proportional as a function of
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Γ to

fX(y,Γ) ∝ 1

QΓ

∏
C∈C

λC(yC ; Γ(C))

ΛC(1; Γ(C))
, QΓ =

Λ(1; Γ)∏
C∈C ΛC(1; Γ(C)

(30)

where QΓ is a normalising constant which depends on all parameters through Λ(1; Γ).

Engelke and Hitz (2020) show that for graphs that factorize according to (28), QΓ contains

limited information on Γ and instead of using the full joint likelihood to estimate the model

parameters we can use the separate likelihoods of each clique C ∈ C

fC(yC ; Γ(C)) =
λC(yC ; Γ(C))

ΛC(1; Γ(C))
, yC ∈ LC . (31)

In practice, some observations of XC might not be high enough, i.e. they fall below

the specified threshold u, to justify the use of the multivariate Pareto distribution X. For

such components of X we apply censoring from below to avoid the scenario where small

values have an excessively strong effect on the fit. Censored likelihoods allow for a more

robust estimation of extreme value distributions (see Smith et al. (1997) and Ledford

and Tawn (1997) for more information). For a clique C ∈ C and a data point XC with

‖XC‖∞ > u let H be the set of indices h ∈ C such that xh < u, and respectively, yh < 1.

The censored likelihood for a clique containing such points can be calculated as

f cens
C (yC ; Γ(C)) =

∫
[0,1]J

fC(yC ; Γ(C))dyJ , yC ∈ LC , (32)

and thus we only use the information that such components Y h are smaller than 1, but

not the exact magnitude. Consequently, the censored log-likelihood for each clique C is

given by

Lcens(Γ(C);y1, . . . ,yn) =
∑

yt∈LC

log{f cens
C (yC

t ; Γ(C))} (33)

where each yCt , t = {1, . . . , d } has its own censoring set H(t) ⊂ C.

In the previous section and up to this point we analyse Hüsler-Reiss Pareto distribution

that factorise according to a known and fixed block graph G. In our application to bank

losses, however, the graphical structure is unknown and the conditional independence

structure should be learned from data. Among the family of connected graphs trees are

a natural starting point due to their simplicity and flexibility. A spanning tree G(T ) =

(V,E(T )) is a special case of a block graph with a unique path between any two pairs of
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nodes. Therefore, a tree has no cycles, |E(T )| = |V | − 1 and all cliques are of size two

with singleton separator sets. Due to their relatively simple structure trees are among the

most parsimonious graph models and suitable baseline models that allow the construction

of more complex sparse graphs. The cardinality of the set of all possible spanning trees is

dd−2, however for the class of minimum spanning trees there exist greedy algorithms that

allow us to determine the tree structure efficiently (see, Kruskal (1956) or Prim (1957).

The minimum spanning tree G(MST ) = (V,E(MST )) is the tree that minimizes the sum of

weights on its edges (i, j) ∈ E according to

G(MST ) = arg min
G=(V,E)

∑
(ij)∈E

wij (34)

where the weights wij denotes the “distance” between nodes i and j. Using an algorithm

due to Chow and Liu (1968) we can search for the conditional independence tree that

maximizes the likelihood of the graph model. Assume all pairs of nodes follow the same

class of Pareto distributions, namely, bivariate Hüsler-Reiss distributions. Within this

parametric family, the maximal log-likelihood for any given tree is the sum over the max-

imized clique log-likelihoods as in Equation (33). The minimum spanning tree problem in

Equation (34) thus entails the identification of the tree that maximizes the log-likelihood

over all trees and all distributions within the Hüsler-Reiss family with weights defined as

wij = −Lcens(Γ̂(C);y1, . . . ,yn)− 2
∑
y
(i)
t >1

log y
(i)
t − 2

∑
y
(j)
t >1

log y
(j)
t , (35)

where we include the censored marginal densities y2
i and y2

j as parameters for optimization

(see, Engelke and Hitz (2020)).

We can anticipate that the complexity of the financial system is of higher order than

the bivariate relationships we are imposing. Thus a minimum spanning tree might not

be the true graphical structure to explain the complex dependencies between extreme

observations of negative asset returns. We extend the spanning tree constructed in (34)

with weights (35) by adding additional edges restricting the graphical structure to block

graphs with clique size of at most three. Suppose G(1) = (V,E1) is the estimated Hüsler-

Reiss minimum spanning tree with edge set denoted by E1. We apply greedy forward

selection and in each step we add additional edges {i, j}, i, j ∈ V so that G(k+1) =
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(V,Ek+1), with Ek+1 = Ek ∪ {i, j}, for k = 1, 2, . . . , is still in the class of block graphs

with cliques of size at most three. The clique likelihoods of each graph estimated in

this way yield a unique estimate Γ̂ of the variogram matrix through Equation (29). We

compare different Hüsler-Reiss Graph models by using the Akaike information criterion

AIC = −2Lcens(Γ̂(C);y1, . . . ,yn) + 2p, where p is the number of free parameters in the

respective model (Engelke and Hitz (2020)). At each iteration we add the edge {i, j}

that leads to the biggest decrease in the value of the Akaike information criterion. We

continue this procedure until no more edges can be added. The resulting optimal graphical

representation for extreme financial events is the one that gives the minimum value of the

AIC.

4.5 Measuring the Systemic Importance of Financial Institu-

tions

In times of financial distress, a topic that receives increased public attention is the po-

tential bailing out of particularly large banks by regulators. In such scenario, authorities

are inclined to bailout large financial institutions under the argument that the insolvency

of such institutions poses a significant risk to the financial system, and to the stability of

the economy in general (Zhou (2010)). This suggests that the systemic importance of a

bank is strongly related to its size. In order to test the presence of a correlation between

size and systemic importance in our graphical model for extremes in the following section

we propose two measures on the importance of banks during financial crises.

From network analysis perspective, there are a number of established centrality metrics

which measure the importance of a particular node with respect to various summary

statistics derived from the characteristics of the underlying network. Naturally, centrality

measures have been initially applied to problems in social network theory related to

a person’s importance, power, or influence (see, Marsden (2005) for an overview). In

addition, they have found wide application in many other fields of network theory, such

as telecommunication networks and river networks. We pay special attention to closeness

centrality and betweenness centrality which in our estimated extremal graphical model

can aid us in identifying systemically important financial institutions.
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Albeit both centrality measures are well-defined for unweighted graphs, we investigate

the implications of the dependence structure captured by the Hüsler-Reiss graphical model

estimated using the methodology of the previous sections. Essentially, the stability of the

Hüsler-Reiss distribution under taking marginals allows us to weigh each edge (i, j) ∈ E

by the “distance” wij, given by the estimated bivariate tail correlation 2 − 2Φ(
√

Γ̂ij/2).

Consequently, the path between two non-adjacent vertices l and m is given by the sum of

edge weights between the two vertices.

Closeness centrality sums the shortest paths of a vertex to every other vertex (Bavelas

(1950)), i.e., it indicates how close a vertex is to all other vertices of the network. The

closeness of a vertex j ∈ V is given by

CC(j) =
1∑

i∈V \{j} dj(i)
, (36)

where dj(i) denotes the shortest-path distance from j to i. Betweenness centrality, on

the other hand, measures the fraction of shortest paths that pass through a vertex (see

Freeman (1977)). It is given by

BC(j) =
∑

lk∈V \{j}, l 6=k

σlk(j)

σlk
, (37)

where σlk(j) summarizes the number of shortest paths from vertex l to vertex k passing

through j and σlk denotes the total number of shortest paths from vertex l to k. Essen-

tially, betweenness centrality is a very different metric from closeness centrality: it helps

us identify financial institutions that play a “bridge spanning” role in a graph. In other

words, a bank with high betweenness centrality indicates that more banks depend on this

specific bank to make connections with other institutions. Therefore, we regard such a

bank as possessing higher systemic importance during market wide financial crises.
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5 Empirical Application

In this section, we determine the optimal block graph that captures the extremal depen-

dence between banks, evaluate the robustness of the estimated graphical structure and

discuss the evidence on the systemic importance of banks during financial crises by means

of centrality measures. As detailed in Section 3, our dataset consists of daily returns,

which we convert to log-losses, on 32 publicly traded European banks over the period

from April 25, 2005 to December 31, 2020. The final dataset comprises of n = 4094 daily

observations per series. Due to the strong temporal dependence and volatility clustering

observed in financial time-series data we first filter the univariate series through the use

of an ARMA-GARCH process.

Based on the model selection strategy detailed in Section 4.1 we consider the log-

losses Lt = (L
(1)
t , . . . , L

(d)
t ) to be realisations from ARMA(1,0)-GARCH(1,1) processes.

As evidenced by Figure 5, the filtered losses X
(j)
t = (L

(j)
t − µ̂

(j)
t )/σ̂

(j)
t obtained from this

model show no visual signs of serial correlation in their squared values, in contrast with the

results on the raw data in Section 3. We conclude that while there is strong evidence that

the raw data is not independent and identically distributed, the standardized residuals

can be treated as approximately iid. In addition, the Quantile-quantile plots in Figure

6 of the filtered losses against the normal distribution confirm the assumption of non-

Gaussianity in the innovation processes and the presence of fat tails in the distribution of

the filtered log-losses.
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Figure 5: The sample cross correlogram plots of the squared values of the filtered log-
losses associated with a subset of the original 32 banks. The data span the period from
April 25,2005 to December 31,2020.
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Figure 6: Q-Q plots of the filtered log-losses associated with a subset of the original
32 banks against a normal reference distribution. The data span the period from April
25,2005 to December 31,2020.
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5.1 Estimation of the Optimal Graph Structure

We proceed to model the tail dependence of the standardized filtered losses X = (X(1), . . . ,

X(d)), j ∈ {1, . . . , d}, using an extremal graphical model. For our multivariate dataset,

we first conduct exploratory data analysis to check whether the assumption of extremal

tail dependence is satisfied by inspecting the plots of the empirical estimates of the tail

correlation coefficients χ̂(q) for values of q close to 1. Figure 12 in the Appendix displays

plots of the empirical tail correlations, χ̂S(q) for arbitrary chosen non-empty subsets of

banks, S. A common observation across all subsets is that the tail correlation coefficient

decreases as q and |S| increase. This is a common artifact found in practice which could

be attributed to instability of the estimates for high thresholds and the curse of dimen-

sionality. Nevertheless, χ̂S(q) seems to converge to a positive value and there appears to

be a stable dependence in the tail between the filtered log-losses from around q = 0.9.

Based on the preceding analysis we estimate the extremal dependence in bank returns

by the Hüsler-Reiss minimum spanning tree for a threshold q equal to the 0.9 quantile of

the marginal Pareto distribution. In our estimations, we use the methods implemented in

the R package graphicalExtremes (Engelke et al. (2019)). This yields 2411 observations

with at least one exceedance. Motivated by the estimation approach detailed in Section

4.2, we estimate the extremal tree structure Ĝ(MST ) = (V, Ê(MST )) with weights for each

pair of nodes based on the clique log-likelihoods of bivariate Hüsler-Reiss distribution as in

Equation 35. The estimated tree is shown in Figure 7. Unsurprisingly, the graph suggests

that extreme events observed in financial data tend to be geographically isolated. For

instance, extreme observations in stock prices for Scandinavian banks (i.e. banks with

ID ∈ {5, 18, 23, 24, 25}) are connected to the rest of the graph through the Dutch ING

Groep NV (ID = 17) and similarly South European banks (i.e. ID ∈ {14, 15, 16, 20, 22})

are conditionally independent of other European banks given the stock price value of the

largest bank in Spain, and second largest in our dataset, Banco Santander SA (ID =

21). A striking feature of our minimum spanning tree is the prominent role played by the

largest French bank, BNP Paribas SA, as it seems to connect the different geographic and

economic regions in Europe with each other.
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Figure 7: The tree induced by bank losses for our set of 32 banks for quantile q = 0.9.
Indices can be found in Table 3.

The Hüsler-Reiss minimum spanning tree, however, might not be the true graphical

model to capture the complex relationships occurring between banks. Therefore, we

extend this model by adding additional edges iteratively while restricting the model to

the class of block graphs with cliques of size two and three as described in Section 4.4.

Essentially, this entails the maximization of the censored likelihood of bivariate Hüsler-

Reiss densities. This results in a sequence of graph models, Ĝ1 . . . ĜM . We select the

optimal graph representation, Ĝ∗ for extreme events in bank losses as the one minimizing

the Akaike information criterion. In particular, we choose the model with 44 edges and an

AIC of 112020.0 as indicated by Figure 8. The 13 additional edges of the best graphical

model bring a significant improvement over the simpler minimum spanning tree with 31

edges but an AIC of 114758.8. Compared to the minimum spanning tree from Figure 7,

the optimal Hüsler-Reiss block graph further accentuates the strong domestic and regional

interlinkages between financial institutions suggesting that extreme events in stock prices

of geographically and economically “close” banks are inherently linked.
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Figure 8: AIC values as a function of the number of edges, starting from the minimum
spanning tree.

Figure 9: The estimated optimal block graph induced by bank losses for our set of 32
banks for quantile q = 0.9. Indices can be found in Table 3.

For any two pair of banks, i, j ∈ V , we calculate the bivariate tail correlation implied by

the Hüsler-Reiss graph model as 2−2Φ(
√

Γ̂ij/2), where the bivariate parameter estimates

Γ̂ij are taken from the estimated variogram matrix Γ̂ and Φ(·) is the cumulative density

function of the standard Gaussian. In Figure 10 we compare empirical estimates of the
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extremal correlation coefficients with those implied by the Hüsler-Reiss minimum spanning

tree (left panel) and the optimal block graph (right panel). As expected, the minimum

spanning tree does a poor job at capturing the bivariate extremal dependence between

banks. Extending the Hüsler-Reiss tree model to block graphs with clique size of at

most three brings a noticeable improvement in terms of this bivariate summary statistic.

Interestingly, however, our estimated optimal model seems to be moderately biased, too.

To further assess the robustness of the optimal graph structure with respect to our

chosen threshold, we estimate the graphs for the 88% and 92%-quantiles as shown in

Figure 11. Overall, we see some variation of the optimal graph structure compared to the

90%-quantile graph but the majority of the 44 edges remain stable with 33 identical edges

in the 88%-quantile graph and 28 in the 92%-quantile Hüsler-Reiss graph, respectively.

A key difference that is clearly visible is the less prominent role played by the French

bank BNP Paribas SA and the lack of a direct link between ING Groep NV and Banco

Santander SA.
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Figure 10: Empirically estimated extremal dependence coefficients χ against those implied
by the fitter minimum spanning tree (left panel) and HR graph mode with the minimum
AIC value (right panel).
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(a)

(b)

Figure 11: Estimated optimal graphical structures for quantiles q = 0.88 and q = 0.92.
Edges in red represent edges which are identical to the graph with q = 0.9. Indices can
be found in Table 3.
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5.2 Systemic Importance of Financial Institutions

The economic crisis in the European Union during the early 2000s caused by the intro-

duction of the euro in 1999, and the financial crisis in 2008, have shown that modern

financial markets are strongly interdependent and interconnected. A key paradigm re-

ceiving increased attention in mass media, prudential regulation, and academic research

alike, is the investigation on the role played by systemically important financial institu-

tions during recessions. According to this paradigm large shocks to a small number of

banks exhibiting a high degree of interconnectedness pose a significant risk to the whole

financial system. Furthermore, the collapse of behemoths like Lehman Brothers in the

US has brought the argument of “too big to fail”, often used in support for bailing out of

large companies, under serious scrutiny.

We continue the analysis of the previous section by studying the topology of the

network implied by the optimal Hüsler-Reiss graphical model Ĝ∗, from Section 5.1. As

argued in Section 4.5, we identify the systemically important banks in our dataset of 32

financial institutions by calculating two classic centrality measures, closeness centrality

and betweenness centrality, for each bank in the graph structure. The third column in

Table 3 gives the closeness centrality rank order of each bank (raw values can be found in

Table 5 in the Appendix). Unsurprisingly, the “root” of the optimal Hüsler-Reiss graph

from the previous section, BNP Paribas SA , together with three other banks directly

connected to it, ING Groep NV, KBC Group NV, Banco Santander SA, emerge as the

financial institutions with the highest capacity to propagate information to other banks

in the network in times of financial crises. An unanticipated addition to this list is the

Portuguese bank, Banco Comercial Portugues SA, which despite being the smallest bank

in terms of market capitalization, has a closeness centrality value which puts it among

the most influential banks. This might have a convenient intuitive interpretation. One

of the effects of the 2008 recessions on the Portuguese economy and financial system was

the country’s inability to repay or refinance its government debt. This led to a significant

bailout package ( EUR 78 billion and EUR 12 billion for bank recapitalization) from the

International Monetary Fund and the EU, partly issued through other big EU banks,

such as BNP Paribas, Goldman Sachs International, and The Royal Bank of Scotland,

and financed through the European stock markets which led to an increased exposure to
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other financial institutions. (cf. Sérgio and de Sousa (2016))

The last column in Table 3 gives the betweenness centrality rank order of each bank in

our dataset (again, the raw values can be found in Table 5 in the Appendix). Banks with

a rank value equal to 11 indicate that there are no shortest paths passing through that

node. The financial institutions with the highest values of betweenness centrality (BNP

Paribas SA, ING Groep NV, KBC Group NV, Banco Santander SA) is very similar to

those which exhbit the highest values of closeness centrality, albeit in a slightly different

order. This suggests that the financial institutions with the smallest “distance” to other

banks in the network also play a “bridge-spanning” role between other pair of nodes.

Thus, these four banks not only have the ability to quickly transmit contagion to all

other banks during market-wide financial crises, but can also have an important influence

on other instiutions as they can limit or amplify the contagion effects that pass through

it. Furthermore, it is difficult to establish a clear linear relationship between size and

systemic importance and there seem to be other characteristics which play an important

role in determining systemic importance.
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Bank ID Bank CC(j) BC(j)

1 Ereste Group Bank AG 17 11
2 Raiffeisen Bank International AG 15 11
3 KBC Group NV 2 2
4 Danske Bank A/S 14 11
5 Nordea Bank Abp 20 11
6 BNP Paribas SA 1 1
7 Crédit Agricole SA 13 11
8 Societe Generale SA 8 5
9 Commerzbank AG 25 11
10 Deutsche Bank AG 7 8
11 National Bank of Greece 16 11
12 AIB Group PLC 9 11
13 Bank of Ireland Group PLC 12 11
14 Banco BPM SpA 24 11
15 Intesa Sanpaolo SpA 27 11
16 UniCredit SpA 6 6
17 ING Groep NV 3 4
18 DNB ASA 19 11
19 Banco Comercial Portugues SA 5 11
20 Banco de Sabadell SA 22 11
21 Banco Santander SA 4 3
22 BBVA SA 28 11
23 Skandinaviska Enskilda Banken AB 18 6
24 Svenska Handelsbanken AB 29 11
25 Swedbank AB 31 11
26 Credit Suisse Group AG 11 11
27 UBS Group AG 10 11
28 Barclays PLC 26 11
29 HSBC Holdings PLC 21 8
30 Lloyds Banking Group PLC 23 8
31 Natwest Group PLC 32 11
32 Standard Chartered PLC 30 11

Table 3: Rank order of the closeness centrality (CC) and betweenness centrality (BC)
values for each bank (indices can be found in Table 3).
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6 Conclusion

This paper investigates the complex cross-border and domestic interlinkages accross fi-

nancial institutions in times of financial recessions. We use a novel dataset comprising

15 years of stock returns on 32 of the largest publicly traded banks across 16 countries

in the European Economic Area. We show that by extending the influential approach of

Engelke and Hitz (2020), who introduce the notion of extremal conditional independence

for multivariate Pareto distributions,l, we are able to construct sparse graphical models

that allow us to interpret and measure the systemic importance of financial institutions.

We first remove the temporal dependence and volatility clustering commonly observed

in financial time-series data by modelling the data as realisations from ARMA-GARCH

processes. We normalize our data to standard Pareto distributions and focus exclusively

on modelling the extremal dependence structure in our data. Second, the flexibility and

the stability of the Hüsler-Reiss distribution under taking marginals, coupled with the

notion of conditional independence for extreme events allows us to learn from our data

the underlying graphical structure for extreme events that drive systemic risks in the

banking sector. Lastly, by analysing the topology of the underlying optimal graph we

identify systemically important banks.

Our results show that financial institutions under the optimal Hüsler-Reiss block graph

exhibit strong domestic and regional interlinkages suggesting that extreme events in the

log-losses of geographically and economically “close” banks are inherently linked. In

addition, the two network centrality measures that we propose, closeness centrality and

betweenness centrality, suggest that there is a small subset of banks which play a “bridge-

spanning” role and have a significant influence over other banks in the network.

Nevertheless, our research has one major limitation. Even-though the optimal Hüsler-

Reiss block graph brings a significant improvement over the simpler minimum spanning

tree, the bivariate tail correlation summary statistic suggests that our more complex

model structure might be too simplistic to fully capture the complex relationships that

occur between financial institutions during financial crises. A possible solution, which

could remedy this drawback and allow the estimation of denser Hüsler-Reiss graphs is the

estimation of graphs based on Lasso regularization.



REFERENCES 41

References

Bavelas, A. (1950). Communication patterns in task-oriented groups. The Journal of the

Acoustical Society of America, 22(6):725–730.

Beirlant, J., Goegebeur, Y., Teugels, J., and Segers, J. (2004). Statistics of Extremes:

Theory and Applications. New York: Wiley.

Boldi, M. O. and Davison, A. C. (2007). A mixture model for multivariate extremes.

Journal of the Royal Statistical Society. Series B (Statistical Methodology), 69(2):217–

229.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal

of Econometrics, 31(3):307–327.

Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with

dependence trees. IEEE Transactions on Information Theory, 14(3):462–467.

Davison, A. and Huser, R. (2015). Statistics of extremes. Annual Review of Statistics and

Its Application, 2(1):203–235.

Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds.

Journal of the Royal Statistical Society. Series B (Methodological), 52(3):393–442.

de Haan, L. and Resnick, S. I. (1977). Limit theory for multivariate sample extremes.

Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 40(4):317–337.
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A Supplementary Tables and Figures

Symbol
with intercept w/o intercept

(1,0)-(1,1) (1,1)-(1,1) (1,1)-(2,1) (1,0)-(1,1) (1,1)-(1,1) (1,1)-(2,1)
EBS 4.4413 4.4416 4.4422 4.4418 4.4421 4.4427
RBI 4.6963 4.6968 4.6974 4.6962 4.6966 4.6972
KBC 4.3751 4.3758 4.3766 4.3755 4.3760 4.3767
DANSKE 3.9260 3.9262 3.9270 3.9264 3.9267 3.9274
NDA-Fl 3.9440 3.9444 3.9450 3.9442 3.9449 3.9455
ACA 4.3820 4.3824 4.3831 4.3821 4.3825 4.3832
BNP 4.1893 4.1898 4.1904 4.1891 4.1896 4.1902
GLE 4.4319 4.4319 4.4326 4.4316 4.4316 4.4323
CBK 4.6602 4.6607 4.6613 4.6598 4.6602 4.6609
DBK 4.3408 4.3413 4.3417 4.3404 4.3408 4.3412
ETE 5.4903 5.4905 5.4914 5.4901 5.4903 5.4912
AIBG 5.3506 5.3503 5.3513 5.3504 5.3501 5.3511
BIRG 5.0217 5.0198 5.0208 5.0214 5.0195 5.0205
BPM 4.7855 4.7860 4.7867 4.7851 4.7855 4.7863
ISP 4.2878 4.2876 4.2884 4.2881 4.2879 4.2887
UCG 4.6017 4.6019 4.6026 4.6015 4.6018 4.6025
INGA 4.2673 4.2678 4.2685 4.2674 4.2679 4.2686
DNB 3.9806 3.9796 3.9802 3.9816 3.9807 3.9814
BCP 4.6322 4.6327 4.6336 4.6320 4.6325 4.6334
BBVA 4.0630 4.0634 4.0631 4.0629 4.0632 4.0629
SAB 4.2129 4.2133 4.2140 4.2125 4.2128 4.2135
SAN 4.0969 4.0964 4.0971 4.0975 4.0972 4.0980
SEB-A 3.9652 3.9652 3.9659 3.9667 3.9669 3.9677
SHB-A 3.6872 3.6860 3.6867 3.6868 3.6857 3.6864
SWED-A 3.9980 3.9976 3.9983 3.9976 3.9981 3.9988
CSGN 4.1201 4.1206 4.1213 4.1198 4.1203 4.1210
UBSG 4.0207 4.0207 4.0215 4.0204 4.0204 4.0212
BARC 4.3633 4.3632 4.3640 4.3628 4.3628 4.3635
HSBC 3.4244 3.4243 3.4251 3.4239 3.4238 3.4247
LLOY 4.1503 4.1488 4.1497 4.1500 4.1485 4.1493
NWG 4.4752 4.4741 4.4750 4.4748 4.4736 4.4745
STAN 4.1430 4.1423 4.1430 4.1428 4.1422 4.1428

Table 4: AIC values for different specifications of an ARMA(u,v)-GARCH(p,q) process
with and without a constant for the ARMA(u,v) process (for each row, boldfaced numbers
indicate the specification for which the minimum AIC values is reached). For most of the
univariate series ARMA(1,0)-GARCH(1,1) with long term mean equal to zero provides
close to optimal fit.
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Figure 12: Estimated tail correlation coefficients χ̂S(q) for randomly chosen subsets S of
banks (indices can be found in Table 3) against a quantile q for time series data from
2005 to 2020. The vertical line corresponds to our chosen threshold.
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Bank ID Bank CC(j) BC(j)

1 Ereste Group Bank AG 0.7565 0
2 Raiffeisen Bank International AG 0.7794 0
3 KBC Group NV 1.0319 0.2968
4 Danske Bank A/S 0.7799 0
5 Nordea Bank Abp 0.7340 0
6 BNP Paribas SA 1.2565 0.7441
7 Crédit Agricole SA 0.7876 0
8 Societe Generale SA 0.8377 0.1806
9 Commerzbank AG 0.6407 0
10 Deutsche Bank AG 0.9037 0.0645
11 National Bank of Greece 0.7662 0
12 AIB Group PLC 0.8307 0
13 Bank of Ireland Group PLC 0.7934 0
14 Banco BPM SpA 0.6484 0
15 Intesa Sanpaolo SpA 0.6279 0
16 UniCredit SpA 0.9221 0.1247
17 ING Groep NV 0.9747 0.2882
18 DNB ASA 0.7485 0
19 Banco Comercial Portugues SA 0.9285 0
20 Banco de Sabadell SA 0.6666 0
21 Banco Santander SA 0.9318 0.2925
22 BBVA SA 0.6031 0
23 Skandinaviska Enskilda Banken AB 0.7544 0.1247
24 Svenska Handelsbanken AB 0.5686 0
25 Swedbank AB 0.5560 0
26 Credit Suisse Group AG 0.8242 0
27 UBS Group AG 0.8301 0
28 Barclays PLC 0.6346 0
29 HSBC Holdings PLC 0.7217 0.0645
30 Lloyds Banking Group PLC 0.6559 0.0645
31 Natwest Group PLC 0.5119 0
32 Standard Chartered PLC 0.5629 0

Table 5: Estimated raw values for closeness centrality (CC), betweenness centrality (BC)
for each bank (indices can be found in Table 3).
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B HR Tree Model

A Hüsler-Reiss graphical tree is defined as follows

fY (y) =
1

Λ(1)

∏
{i,j}∈E(T )

λij(yi, yj)

y−2
i y−2

j

∏
i∈V

y−2
i

=
1

Λ(1)

∏
{i,j}∈E(T )

1

y−2
i y−2

j

y−2
i y−1

j√
2πΓij

exp
[
− {log(yj/yi) + Γij/2}2

2Γij

]∏
i∈V

y−2
i , (38)

where λij denote the bivariate marginal distributions of the exponent measure Λ of Y ,

which follow a bivariate Hüsler-Reiss distribution.
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###########################################################

# I l l u s t r a t e Block−Maxima vs Threshold Exceedances Approach

###########################################################

x1 <− c ( 0 . 2 , 0 . 54 )

x2 <− c ( 0 . 2 , 0 . 7 )

x M <− c ( x1 , x2 )

plot ( x= c ( c ( seq ( 0 , 1 , 0 . 5 ) ) , c ( seq ( 0 , 1 , 0 . 5 ) ) , y=x M) )

arrows ( 0 , 0 . 5 , 1 , 1 )

plot ( x= c ( 0 . 1 , 0 . 1 ) , y= c ( 0 , 1 ) , type=” l ” )

x V = seq (10 ,200 ,10)

x M = matrix ( x V, byrow = FALSE, nrow = 20)

y V1 = rep (0 , 20 )

y V2 = runif (20 , 0 . 1 , 0 . 9 )
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y M = matrix ( y V, byrow = FALSE, nrow = 20)

plot ( x=x M, y=y M, type=” l ” )

plot ( x=c ( 20 , 20 ) , y=c ( 0 , 0 . 6 ) , )

l ibrary ( ggp lot2 )

geom v l i n e ( x i n t e r c e p t =3)

plot .new( )

par ( mfrow = c ( 1 , 2 ) )

plot ( x= x V, y=y V1 , xlim= c ( 0 , 200 ) , yl im=c ( 0 , 1 ) , type=”n” , frame . plot = TRUE, main = ” Block Maxima Approach” , yaxs = ” i ” , xaxs = ” i ” , yaxt = ’n ’ )

segments ( x0 = x V, y0 = y V1 , x1 = x V, y1 = y V2)

segments ( x0 = c (49 , 99 , 149 , 199) , y0 = c ( 0 , 0 , 0 , 0 ) , x1= c (49 , 99 , 149 , 199) , y1 = c ( 1 , 1 , 1 , 1 ) , col=” red ” , l t y = ”dashed” , lwd = ”1” )

text ( x=seq (25 ,200 , 50) , y=c ( 0 . 9 , 0 . 9 , 0 . 9 , 0 . 9 ) , labels= c ( ” Block 1” , ” Block 2” , ” Block 3” , ” Block 4” ) , col = ” red ” )

plot ( x= x V, y=y V1 , xlim= c ( 0 , 200 ) , yl im=c ( 0 , 1 ) , type=”n” , frame . plot = TRUE, main = ” Threshold Exceedances Approach” , yaxs = ” i ” , xaxs = ” i ” , yaxt = ’n ’ )

segments ( x0 = x V, y0 = y V1 , x1 = x V, y1 = y V2)

segments ( x0 = c ( 0 ) , y0 = c ( 0 . 7 ) , x1= c (200) , y1 = c ( 0 . 7 ) , col=” red ” , l t y = ”dashed” , lwd = ”1” , )

par ( ’ ann = FALSE ’ , no . readonly = FALSE)

###################################################################################################

###################################################################################################

###################################################################################################

###########################

# Analys i s o f s t o c k re tu rns

###########################

l ibrary ( r eadx l )

l ibrary ( dplyr )
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l ibrary ( xts )

l ibrary ( Per formanceAnalyt ics )

l ibrary (MASS)

#LOAD DATA AND CONVRT TO XTS

fd <− f i l e . path ( ”C: ” , ” Users ” , ” andre ” , ”Desktop” , ” Thes i s ” , ”Data” , ”Data . x l sx ” )

data <− read e x c e l ( fd , shee t = ”Europe (P) ” )

# data l i s t <− l a p p l y ( e x c e l s h e e t s ( fd ) , read exce l , path = fd )

data xts <− xts (data [ , −1 ] , order .by = as . POSIXct (data$DATE) )

data xts <− data xts [ 1 : 4 0 9 4 ]

#LIST OF BANKS SORTED BY COUNTRY AND NAME

colnames so r t ed <− c ( ”29” , ”6” , ”7” , ”21” , ”8” , ”28” , ”10” , ”30” , ”15” , ”17” , ”27” , ”16” , ”31” , ”26” , ”22” , ”32” , ”5” , ”4” , ”9” , ”24” , ”3” , ”18” , ”23” , ”1” , ”25” , ”20” , ”14” , ”2” , ”13” , ”12” , ”19” , ”11” )

# COMPUTE LOG RETURNS

data r e tu rn s <− d i f f ( log (data xts ) , l ag = 1) ∗ 100

data r e tu rn s <− data r e tu rn s [ 2 : nrow(data r e tu rn s ) ]

data l o s s e s <− − data r e tu rn s

# PLOT PRICES AND RETURNS

plot .new( )

plot ( x = data xts [ , ”HSBC” ] , x lab = ”Time” , ylab = ” Pr i ce ” ,

main = ” Pr i ce ” )

plot .new( )

par ( mfrow = c ( 6 , 2 ) )

plot ( x = data xts [ , ”HSBC” ] , grid . col = NA, xlab = ”Time” , ylab = ”” , main = ”HSBC Pr ice ” , yax i s . r i g h t = FALSE, )

plot ( x = data r e tu rn s [ , ”HSBC” ] , grid . col = NA, xlab = ”Time” , ylab = ”Log Returns ” , main = ”HSBC Returns ” )

plot ( x = data xts [ , ”BNP PARIBAS” ] , grid . col = NA, xlab = ”Time” , ylab = ” Pr i ce ” , main = ”BNP Paribas Pr i ce ” , yax i s . r i g h t = FALSE, )

plot ( x = data r e tu rn s [ , ”BNP PARIBAS” ] , grid . col = NA, xlab = ”Time” , ylab = ”Log Returns ” , main = ”BNP Paribas Returns ” )

plot ( x = data xts [ , ”UBS” ] , grid . col = NA, xlab = ”Time” , ylab = ” Pr i ce ” , main = ”UBS” , yax i s . r i g h t = FALSE, )
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plot ( x = data r e tu rn s [ , ”UBS” ] , grid . col = NA, xlab = ”Time” , ylab = ”Log Returns ” , main = ”UBS” )

plot ( x = data xts [ , ”DEUTSCHE BANK” ] , grid . col = NA, xlab = ”Time” , ylab = ” Pr i ce ” , main = ” Deutsche Bank Pr i ce ” , yax i s . r i g h t = FALSE, )

plot ( x = data r e tu rn s [ , ”DEUTSCHE BANK” ] , grid . col = NA, xlab = ”Time” , ylab = ”Log Returns ” , main = ” Deutsche Bank Returns ” )

plot ( x = data xts [ , ”INTESA SANPAOLO” ] , grid . col = NA, xlab = ”Time” , ylab = ” Pr i ce ” , main = ” In t e sa Sanpaolo Pr i ce ” , yax i s . r i g h t = FALSE, )

plot ( x = data r e tu rn s [ , ”INTESA SANPAOLO” ] , grid . col = NA, xlab = ”Time” , ylab = ”Log Returns ” , main = ” In t e sa Sanpaolo Returns ” )

plot ( x = data xts [ , ”SWEDBANK” ] , grid . col = NA, xlab = ”Time” , ylab = ” Pr i ce ” , main = ”Swedbank Pr i ce ” , yax i s . r i g h t = FALSE, )

plot ( x = data r e tu rn s [ , ”SWEDBANK” ] , grid . col = NA, xlab = ”Time” , ylab = ”Log Returns ” , main = ”Swedbank Returns ” )

# l i n e s ( x = bas k e t [ , ”GDX. Close ” ] , c o l = ” go ldenrod ”)

# l i n e s ( x = bas k e t [ , ”DBO. Close ” ] , c o l = ” darkb lue ”)

# l i n e s ( x = bas k e t [ , ”VWO. Close ” ] , c o l = ” d a r k v i o l e t ”)

# legend ( x = ’ t o p l e f t ’ , l e gend = c (”SPY” , ”QQQ” , ”GDX” , ”DBO” , ”VWO”) ,

# l t y = 1 , co l = myColors )

# QQ PLOTS

par ( mfrow = c ( 3 , 2 ) )

chart . QQPlot (data r e tu rn s [ , ”HSBC” ] , main=”Normal Q−Q Plot o f HSBC Returns ” , l i n e=c ( ” robust ” ) , d i s t r i b u t i o n = ”norm” , ylab = ”” , xlab = ”” , )

chart . QQPlot (data r e tu rn s [ , ”BNP PARIBAS” ] , main=”Normal Q−Q Plot o f BNP Paribas Returns ” , l i n e=c ( ” robust ” ) , d i s t r i b u t i o n = ”norm” , ylab = ”” , xlab = ”” , )

chart . QQPlot (data r e tu rn s [ , ”UBS” ] , main=”Normal Q−Q Plot o f UBS Returns ” , l i n e=c ( ” robust ” ) , d i s t r i b u t i o n = ”norm” , ylab = ”” , xlab = ”” , )

chart . QQPlot (data r e tu rn s [ , ”DEUTSCHE BANK” ] , main=”Normal Q−Q Plot o f Deutsche Bank Returns ” , l i n e=c ( ” robust ” ) , d i s t r i b u t i o n = ”norm” , ylab = ”” , xlab = ”” , )

chart . QQPlot (data r e tu rn s [ , ”INTESA SANPAOLO” ] , main=”Normal Q−Q Plot o f In t e sa Sanpaolo Returns ” , l i n e=c ( ” robust ” ) , d i s t r i b u t i o n = ”norm” , ylab = ”” , xlab = ”” , )

chart . QQPlot (data r e tu rn s [ , ”SWEDBANK” ] , main=”Normal Q−Q Plot o f Swedbank Returns ” , l i n e=c ( ” robust ” ) , d i s t r i b u t i o n = ”norm” , ylab = ”” , xlab = ”” , )

# CORRELOGRAMS

plot .new( )

chart .ACF(data r e tu rn s [ , ”HSBC” ] , main = ”ACF” )
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plot .new( )

par ( mfrow = c ( 3 , 2 ) )

r e tu rn s HSBC <− data r e tu rn s [ , ”HSBC” ]

r e tu rn s HSBC <− ts ( r e tu rn s HSBC)

c c f ( r e tu rn s HSBC[ , 1 , drop = TRUE] , r e tu rn s HSBC[ , 1 , drop = TRUE] ˆ 2 , main = ” Cross Correlogram HSBC” , yaxs = ” i ” , xaxs = ” i ” )

r e tu rn s BNP <− data r e tu rn s [ , ”BNP PARIBAS” ]

r e tu rn s BNP <− ts ( r e tu rn s BNP)

c c f ( r e tu rn s BNP[ , 1 , drop = TRUE] , r e tu rn s BNP[ , 1 , drop = TRUE] ˆ 2 , main = ” Cross Correlogram BNP Paribas ” , yaxs = ” i ” , xaxs = ” i ” )

r e tu rn s UBS <− data r e tu rn s [ , ”UBS” ]

r e tu rn s UBS <− ts ( r e tu rn s UBS)

c c f ( r e tu rn s UBS[ , 1 , drop = TRUE] , r e tu rn s UBS[ , 1 , drop = TRUE] ˆ 2 , main = ” Cross Correlogram UBS” , yaxs = ” i ” , xaxs = ” i ” )

r e tu rn s DB <− data r e tu rn s [ , ”DEUTSCHE BANK” ]

r e tu rn s DB <− ts ( r e tu rn s DB)

c c f ( r e tu rn s DB[ , 1 , drop = TRUE] , r e tu rn s DB[ , 1 , drop = TRUE] ˆ 2 , main = ” Cross Correlogram Deutsche Bank” , yaxs = ” i ” , xaxs = ” i ” )

r e tu rn s ISP <− data r e tu rn s [ , ”INTESA SANPAOLO” ]

r e tu rn s ISP <− ts ( r e tu rn s ISP )

c c f ( r e tu rn s ISP [ , 1 , drop = TRUE] , r e tu rn s ISP [ , 1 , drop = TRUE] ˆ 2 , main = ” Cross Correlogram Int e sa Sanpaolo ” , yaxs = ” i ” , xaxs = ” i ” )

r e tu rn s SB <− data r e tu rn s [ , ”SWEDBANK” ]

r e tu rn s SB <− ts ( r e tu rn s SB)

c c f ( r e tu rn s SB [ , 1 , drop = TRUE] , r e tu rn s SB [ , 1 , drop = TRUE] ˆ 2 , main = ” Cross Correlogram Swedbank” , yaxs = ” i ” , xaxs = ” i ” )

# hsbc re turn <− data hsbc [−1]

#Ljung−Box t e s t s

names <− dimnames(data l o s s e s )

LB t e s t <− lapply ( 1 : ncol (data r e tu rn s ) , function ( i ) Box . t e s t (data r e tu rn s [ , i ] , type=”Ljung−Box” , ) )
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LB s t a t i s t i c <− sapply (LB te s t , ” [ [ ” , ” s t a t i s t i c ” )

LB pvalue <− sapply (LB te s t , ” [ [ ” , ”p . va lue ” )

r e tu rn s squared <− data r e tu rn s ˆ2

LB t e s t sq <− lapply ( 1 : ncol ( r e tu rn s squared ) , function ( i ) Box . t e s t ( r e tu rn s squared [ , i ] , type=”Ljung−Box” , ) )

LB sq stat <− sapply (LB t e s t sq , ” [ [ ” , ” s t a t i s t i c ” )

LB sq p <− sapply (LB t e s t sq , ” [ [ ” , ”p . va lue ” )

names <− array (names)

LB <− c ( unlist (names , use .names = FALSE) , c (LB pvalue ) )

LB <− matrix (LB, ncol=2, byrow = FALSE)

LB squared <− c ( unlist (names , use .names = FALSE) , c (LB sq p ) )

LB squared <− matrix (LB squared , ncol=2, byrow = FALSE)

# JB TEST

l ibrary ( t s e r i e s )

JB t e s t <− lapply ( 1 : ncol ( r e tu rn s squared ) , function ( i ) j a rque . bera . t e s t ( r e tu rn s squared [ , i ] ) )

JB pvalue <− sapply (JB te s t , ” [ [ ” , ”p . va lue ” )

JB<− c ( unlist (names , use .names = FALSE) , c (JB pvalue ) )

JB <− matrix (JB , ncol = 2 , byrow = FALSE)

# ARMA−GARCH

l ibrary ( fGarch )

AIC1011 <− vector ( ”numeric ” , ncol (data r e tu rn s ) )

AIC1111 <− vector ( ”numeric ” , ncol (data r e tu rn s ) )

AIC1121 <− vector ( ”numeric ” , ncol (data r e tu rn s ) )
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l o s s e s f i l t e r e d <− numeric (0 )

for ( j in 1 : ncol (data l o s s e s ) ) {

arma var <− ”arma (1 , 0 ) ”

garch var <− ” garch (1 , 1 ) ”

u n i v a r i a t e data <− data l o s s e s [ , j ]

f <− as . formula ( paste ( ”˜” , paste ( arma var , ” + ” , garch var ) ) )

garch <− garchFit ( formula = f , data=u n i v a r i a t e data , i n c l ude .mean = TRUE,

cond . d i s t = c ( ”QMLE” ) , trace = FALSE)

# i f ( c l a s s ( garch ) == ” try−error ”) next

AIC <− garch@f i t [ [ ” i c s ” ] ] [ 1 ]

AIC1011 [ j ] <− AIC

a <− garch@res idua l s/garch@sigma . t

l o s s e s f i l t e r e d <− append( l o s s e s f i l t e r e d , a )

}

AIC <− c ( unlist (names , use .names = FALSE) , AIC1011 , AIC1111 , AIC1121 )

AIC <− matrix (AIC , ncol = 4 , byrow = FALSE)

l o s s e s f i l t e r e d <− matrix ( l o s s e s f i l t e r e d , ncol = 32 , byrow = FALSE)

l o s s e s f i l t e r e d <− l o s s e s f i l t e r e d [ −1 , ]

# QQ PLOTS − FILTERED LOSSES

par ( mfrow = c ( 3 , 2 ) )

chart . QQPlot ( l o s s e s f i l t e r e d [ , ”HSBC” ] , main=”Normal Q−Q Plot o f HSBC Returns ” , l i n e=c ( ” robust ” ) , d i s t r i b u t i o n = ”norm” , ylab = ”” , xlab = ”” , )

chart . QQPlot ( l o s s e s f i l t e r e d [ , ”BNP PARIBAS” ] , main=”Normal Q−Q Plot o f BNP Paribas Returns ” , l i n e=c ( ” robust ” ) , d i s t r i b u t i o n = ”norm” , ylab = ”” , xlab = ”” , )

chart . QQPlot ( l o s s e s f i l t e r e d [ , ”UBS” ] , main=”Normal Q−Q Plot o f UBS Returns ” , l i n e=c ( ” robust ” ) , d i s t r i b u t i o n = ”norm” , ylab = ”” , xlab = ”” , )

chart . QQPlot ( l o s s e s f i l t e r e d [ , ”DEUTSCHE BANK” ] , main=”Normal Q−Q Plot o f Deutsche Bank Returns ” , l i n e=c ( ” robust ” ) , d i s t r i b u t i o n = ”norm” , ylab = ”” , xlab = ”” , )

chart . QQPlot ( l o s s e s f i l t e r e d [ , ”INTESA SANPAOLO” ] , main=”Normal Q−Q Plot o f In t e sa Sanpaolo Losses ” , l i n e=c ( ” robust ” ) , d i s t r i b u t i o n = ”norm” , ylab = ”” , xlab = ”” , )

chart . QQPlot ( l o s s e s f i l t e r e d [ , ”SWEDBANK” ] , main=”Normal Q−Q Plot o f Swedbank Losses ” , l i n e=c ( ” robust ” ) , d i s t r i b u t i o n = ”norm” , ylab = ”” , xlab = ”” , )
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# CORRELOGRAMS − FILTERED LOSSES

par ( mfrow = c ( 3 , 2 ) )

c c f ( l o s s e s f i l t e r e d [ , ”HSBC” , drop = TRUE] , l o s s e s f i l t e r e d [ , ”HSBC” , drop = TRUE] ˆ 2 , main = ” Cross Correlogram HSBC” , xlim = range (0 , 35) ,

yl im = range ( −0.05 ,1) , yaxs = ” i ” , xaxs = ” i ” )

c c f ( l o s s e s f i l t e r e d [ , ”BNP PARIBAS” , drop = TRUE] , l o s s e s f i l t e r e d [ , ”BNP PARIBAS” , drop = TRUE] ˆ 2 , main = ” Cross Correlogram BNP Paribas ” , xlim = range (0 , 35) ,

yl im = range ( −0.05 ,1) , yaxs = ” i ” , xaxs = ” i ” )

c c f ( l o s s e s f i l t e r e d [ , ”UBS” , drop = TRUE] , l o s s e s f i l t e r e d [ , ”UBS” , drop = TRUE] ˆ 2 , main = ” Cross Correlogram UBS” , xlim = range (0 , 35) ,

yl im = range ( −0.05 ,1) , yaxs = ” i ” , xaxs = ” i ” )

c c f ( l o s s e s f i l t e r e d [ , ”DEUTSCHE BANK” , drop = TRUE] , l o s s e s f i l t e r e d [ , ”DEUTSCHE BANK” , drop = TRUE] ˆ 2 , main = ” Cross Correlogram Deutsche Bank” , xlim = range (0 , 35) ,

yl im = range ( −0.05 ,1) , yaxs = ” i ” , xaxs = ” i ” )

c c f ( l o s s e s f i l t e r e d [ , ”INTESA SANPAOLO” , drop = TRUE] , l o s s e s f i l t e r e d [ , ”INTESA SANPAOLO” , drop = TRUE] ˆ 2 , main = ” Cross Correlogram Int e sa Sanpaolo ” , xlim = range (0 , 35) ,

yl im = range ( −0.05 ,1) , yaxs = ” i ” , xaxs = ” i ” )

c c f ( l o s s e s f i l t e r e d [ , ”SWEDBANK” , drop = TRUE] , l o s s e s f i l t e r e d [ , ”SWEDBANK” , drop = TRUE] ˆ 2 , main = ” Cross Correlogram Swedbank” , xlim = range (0 , 35) ,

yl im = range ( −0.05 ,1) , yaxs = ” i ” , xaxs = ” i ” )

hsbc return <− data hsbc [ −1]

# EMPIRICAL CORR COEFF FOR DIFFERENT SUBSETS

par ( mfrow = c ( 3 , 2 ) , xpd=FALSE)

Banks <− l o s s e s f i l t e r e d [ , c ( 5 , 6 ) ]

ch iP lo t (data=Banks , y l a b e l=expression ( widehat ( ch i ) [ S ] ˜ (q ) ) , chimod=NULL, nsim=1000 , nq = 70 ,

qmin = 0 . 7 , qmax = 0 .99 , maintxt = ”S = {8 , 28}” )

Banks <− l o s s e s f i l t e r e d [ , c ( 2 , 3 1 ) ]
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ch iP lo t (data=Banks , y l a b e l=expression ( widehat ( ch i ) [ S ] ˜ (q ) ) , chimod=NULL, nsim=1000 , nq = 70 ,

qmin = 0 . 7 , qmax = 0 .99 , maintxt = ”S = {6 , 19}” )

Banks <− l o s s e s f i l t e r e d [ , c (21 ,30 , 2 9 ) ]

ch iP lo t (data=Banks , y l a b e l=expression ( widehat ( ch i ) [ S ] ˜ (q ) ) , chimod=NULL, nsim=1000 , nq = 70 ,

qmin = 0 . 7 , qmax = 0 .99 , maintxt = ”S = {3 , 12 , 13}” )

Banks <− l o s s e s f i l t e r e d [ , c (2 , 27 , 9 ) ]

ch iP lo t (data=Banks , y l a b e l=expression ( widehat ( ch i ) [ S ] ˜ (q ) ) , chimod=NULL, nsim=1000 , nq = 70 ,

qmin = 0 . 7 , qmax = 0 .99 , maintxt = ”S = {6 , 14 , 15}” )

Banks <− l o s s e s f i l t e r e d [ , c (10 , 29 , 21 , 2 4 ) ]

ch iP lo t (data=Banks , y l a b e l=expression ( widehat ( ch i ) [ S ] ˜ (q ) ) , chimod=NULL, nsim=1000 , nq = 70 ,

qmin = 0 . 7 , qmax = 0 .99 , maintxt = ”S = {1 , 3 , 13 , 17}” )

Banks <− l o s s e s f i l t e r e d [ , c (19 , 7 , 3 , 3 1 ) ]

ch iP lo t (data=Banks , y l a b e l=expression ( widehat ( ch i ) [ S ] ˜ (q ) ) , chimod=NULL, nsim=1000 , nq = 70 ,

qmin = 0 . 7 , qmax = 0 .99 , maintxt = ”S = {7 , 9 , 10 , 19}” )

chiEmp (data = Banks , nq=70, qmin = 0 . 5 , qmax = 0 .99 )

# CONSTRUCTION OF OPTIMAL GRAPHICAL MODEL

l ibrary ( graphica lExtremes )

l ibrary ( igraph )

l o s s e s normal ized <− data2mpareto ( l o s s e s f i l t e r e d , p= 0 . 9 )

l o s s e s t r e e <− mst HR( l o s s e s normalized , p = NULL, cens = TRUE)

plot ( l o s s e s t r e e$ t r e e )

candidate edges <− s e l e c t edges ( l o s s e s t r e e$ t r e e )

l o s s e s graph <− fmpareto graph HR( l o s s e s normalized , graph = l o s s e s t r e e$ t ree , p = NULL, cens = TRUE, edges to add = candidate edges )

optimal graph <− l o s s e s graph$graph [ [ length ( l o s s e s graph$graph ) ] ]

V( optimal graph )$name <− colnames so r t ed

l o s s e s normal ized 88 <− data2mpareto ( l o s s e s f i l t e r e d , p= 0 . 88 )
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l o s s e s t r e e 88 <− mst HR( l o s s e s normal ized 88 , p = NULL, cens = TRUE)

candidate edges 88 <− s e l e c t edges ( l o s s e s t r e e 88$ t r e e )

l o s s e s graph 88 <− fmpareto graph HR( l o s s e s normal ized 88 , graph = l o s s e s t r e e 88$ t ree , p = NULL, cens = TRUE, edges to add = candidate edges 88)

optimal graph88 <− l o s s e s graph 88$graph [ [ length ( l o s s e s graph 88$graph ) ] ]

V( optimal graph88 )$name <− colnames so r t ed

l o s s e s normal ized 92 <− data2mpareto ( l o s s e s f i l t e r e d , p= 0 . 92 )

l o s s e s t r e e 92 <− mst HR( l o s s e s normal ized 92 , p = NULL, cens = TRUE)

candidate edges 92 <− s e l e c t edges ( l o s s e s t r e e 92$ t r e e )

l o s s e s graph 92 <− fmpareto graph HR( l o s s e s normal ized 92 , graph = l o s s e s t r e e 92$ t ree , p = NULL, cens = TRUE, edges to add = candidate edges 92)

optimal graph92 <− l o s s e s graph 92$graph [ [ length ( l o s s e s graph 92$graph ) ] ]

V( optimal graph92 )$name <− colnames so r t ed

# p l o t ( l o s s e s t r e e$ t ree , v e r t e x . s i z e = 15 , v e r t e x . l a b e l = colnames sor ted , l a you t = coord inates , v e r t e x . c o l o r = 2 , edge . co l o r = 8 ,

# edge . width = 3 , margin = c (0 ,0 ,0 ,0) , frame = TRUE, main = expre s s i on (u == 0.90) )

#

# p l o t ( l o s s e s graph$graph [ [ l e n g t h ( l o s s e s graph$graph ) ] ] , v e r t e x . s i z e = 15 , v e r t e x . l a b e l = colnames sor ted , l a you t = coord inates , v e r t e x . c o l o r = 2 , edge . co l o r = 8 ,

# edge . width = 3 , margin = c (0 ,0 ,0 ,0) , frame = TRUE, main = expre s s i on (u == 0.90) )

g r a p h i n t e r s e c t i o n 8 8 <− optimal graph %s% optimal graph88

common edges 88 <− E( g r a p h i n t e r s e c t i o n 8 8 )

ends ( g raph in t e r s e c t i on88 , common edges 88)

g r a p h i n t e r s e c t i o n 9 2 <− optimal graph %s% optimal graph92

common edges 92 <− E( g r a p h i n t e r s e c t i o n 9 2 )

ends ( g raph in t e r s e c t i on92 , common edges 92)

id <− tkp l o t ( opt imal graph , canvas . width = 800 , canvas . he ight = 600 , ver tex . l a b e l = colnames sorted , ver tex . s i z e = 13 , layout = coords , ve r tex . c o l o r = ” l i g h t b l u e ” , edge . c o l o r = 8 ,

edge . width = 3 , margin = c ( 0 . 2 , 0 . 2 , 0 . 2 , 0 . 2 ) )

t k c r e a t e ( tkp l o t . canvas ( id ) , ” l i n e ” , 740 , 60 , 740 , 540 , width=1)
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t k c r e a t e ( tkp l o t . canvas ( id ) , ” l i n e ” , 60 , 540 , 740 , 540 , width=1)

t k c r e a t e ( tkp l o t . canvas ( id ) , ” l i n e ” , 60 , 60 , 740 , 60 , width=1)

t k c r e a t e ( tkp l o t . canvas ( id ) , ” l i n e ” , 60 , 60 , 60 , 540 , width=1)

canvas <− tkp l o t . canvas ( id )

coords <− tk coords ( tkp . id = 24 , norm = TRUE)

id <− tkp l o t ( l o s s e s t r e e$ t ree , canvas . width = 800 , canvas . he ight = 600 , ver tex . l a b e l = colnames sorted , ver tex . s i z e = 13 , layout = coords , ve r tex . c o l o r = ” l i g h t b l u e ” , edge . c o l o r = 8 ,

edge . width = 3 , margin = c ( 0 . 2 , 0 . 2 , 0 . 2 , 0 . 2 ) )

id <− tkp l o t ( opt imal graph88 , canvas . width = 800 , canvas . he ight = 600 , ver tex . l a b e l = colnames sorted , ver tex . s i z e = 13 , layout = coords88 , ver tex . c o l o r = ” l i g h t b l u e ” , edge . c o l o r = 8 ,

edge . width = 3 , margin = c ( 0 . 2 , 0 . 2 , 0 . 2 , 0 . 2 ) )

t k c r e a t e ( tkp l o t . canvas ( id ) , ” l i n e ” , 740 , 60 , 740 , 540 , width=1)

t k c r e a t e ( tkp l o t . canvas ( id ) , ” l i n e ” , 60 , 540 , 740 , 540 , width=1)

t k c r e a t e ( tkp l o t . canvas ( id ) , ” l i n e ” , 60 , 60 , 740 , 60 , width=1)

t k c r e a t e ( tkp l o t . canvas ( id ) , ” l i n e ” , 60 , 60 , 60 , 540 , width=1)

canvas <− tkp l o t . canvas ( id )

# width <− as . numeric ( t k c g e t ( canvas , ”−width ”))

# t k c r e a t e ( t k p l o t . canvas ( id ) , ” t e x t ” , width/2 , 40 , t e x t=”q = 0.88” ,

# j u s t i f y=”cen te r ” , f on t=t c l t k : : t k f o n t . c r ea t e ( f ami l y=”sans ” , s l a n t =

” i t a l i c ” , s i z e =20))

# t c l t k : : t k p o s t s c r i p t ( canvas , f i l e =”C:/Users/andre/Desktop/Thesis/Plo t s/OptimalGraph88 . eps ”)

coords88 <− tk coords ( id , norm = TRUE)

id <− tkp l o t ( opt imal graph92 , canvas . width = 800 , canvas . he ight = 600 , ver tex . l a b e l = colnames sorted , ver tex . s i z e = 13 , layout = coords88 , ver tex . c o l o r = ” l i g h t b l u e ” , edge . c o l o r = 8 ,

edge . width = 3 , margin = c ( 0 . 2 , 0 . 2 , 0 . 2 , 0 . 2 ) )

t k c r e a t e ( tkp l o t . canvas ( id ) , ” l i n e ” , 740 , 60 , 740 , 540 , width=1)

t k c r e a t e ( tkp l o t . canvas ( id ) , ” l i n e ” , 60 , 540 , 740 , 540 , width=1)

t k c r e a t e ( tkp l o t . canvas ( id ) , ” l i n e ” , 60 , 60 , 740 , 60 , width=1)

t k c r e a t e ( tkp l o t . canvas ( id ) , ” l i n e ” , 60 , 60 , 60 , 540 , width=1)

canvas <− tkp l o t . canvas ( id )

coords92 <− tk coords ( id , norm = TRUE)
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AICvsEdges <− numeric (0 )

for ( i in 1 : length ( l o s s e s graph$graph ) ) {

count edges <− ecount ( l o s s e s graph$graph [ [ i ] ] )

AIC value <− l o s s e s graph$AIC [ i ]

a <− c (AIC value , count edges )

AICvsEdges <− append( AICvsEdges , a )

}

AICvsEdges <− matrix ( AICvsEdges , ncol = 2 , byrow = TRUE)

plot .new( )

par ( mfrow = c ( 1 , 1 ) , xpd=FALSE)

plot ( AICvsEdges [ , 1 ] ˜ AICvsEdges [ , 2 ] , pch = 19 , col = ”#56B4E9” , type = ’b ’ , lwd = 2 , xlab = ”Number o f Edges” , ylab = ”AIC” )

plot (Gamma2chi ( l o s s e s t r e e$Gamma) ˜ emp ch i mat( l o s s e s f i l t e r e d , p = 0 . 9 ) , col = c ( ”#56B4E9” , ”#E69F00” ) , pch = 16 ,

xlab = ” Fi t t ed Model” , ylab = ” Empir ica l ” , yl im = c ( 0 , 1 ) , xl im = c ( 0 , 1 ) , yaxs = ” i ” , xaxs = ” i ” )

segments ( x0 = 0 , y0=0, x1=1, y1=1, col = ” grey ” , lwd = 2)

plot (Gamma2chi ( l o s s e s graph 92$Gamma[ [ length ( l o s s e s graph$Gamma) ] ] ) ˜ emp ch i mat( l o s s e s f i l t e r e d , p = 0 . 9 2 ) , col = c ( ”#56B4E9” , ”#E69F00” ) , pch = 16 ,

xlab = ” Fi t t ed Model” , ylab = ” Empir ica l ” , yl im = c ( 0 , 1 ) , xl im = c ( 0 , 1 ) , yaxs = ” i ” , xaxs = ” i ” )

segments ( x0 = 0 , y0=0, x1=1, y1=1, col = ” grey ” , lwd = 2)

#CENTRALITY MEASURES

Gamma optimal <− l o s s e s graph$Gamma[ [ length ( l o s s e s graph$Gamma) ] ]

Chi optimal <− Gamma2chi (Gamma optimal )

adjacency matrix optimal <− as adjacency matrix ( optimal graph , type = ”both” , spa r s e = FALSE)

weights <− adjacency matrix optimal ∗ Chi optimal

weighted graph <− graph from adjacency matrix ( weights , mode = ”upper” , weighted = TRUE)

c l o s e n e s s cent r <− c l o s e n e s s (weighted graph , normal ized = TRUE)

betweenness cent r <− betweenness (weighted graph , normal ized = TRUE)
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write .

#FUNCTIONS

ch iP lo t <− function (data , y l abe l , chimod , nsim , nq = 35 , qmin = 0 . 5 , qmax = 0 .99 , maintxt ){ #chimod i s the model−based va lue

tmp <− matrix ( ,nrow=nsim , ncol=nq )

n <− nrow(data )

for ( j in 1 : nsim ){

nsample <− sample ( 1 : n , s i z e=n , replace=T)

newdata <− data [ nsample , ]

tmp [ j , ] <− chiEmp ( newdata , nq=nq , qmin=qmin , qmax=qmax ) [ , 2 ]

}

CIlow <− apply (tmp , 2 , quantile , 0 . 0 2 5 )

CIhigh <− apply (tmp , 2 , quantile , 0 . 9 7 5 )

ch i <−chiEmp (data , nq=nq , qmin=qmin , qmax=qmax)

par ( cex . lab =2, cex . axis=2, cex . main=2,mar=c ( 5 , 4 . 4 , 4 , 2 )+0 . 9 )

plot ( ch i [ , 1 ] , ch i [ , 2 ] , yl im=c ( 0 , 1 ) , x lab=”q” ,

ylab=ylabe l , lwd=2, main = maintxt , col = ”#56B4E9” , pch = 19)

l ines ( ch i [ , 1 ] , CIlow , l t y =3, lwd=2, col = ” gray ” )

l ines ( ch i [ , 1 ] , CIhigh , l t y =3, lwd=2, col = ” gray ” )

abline (h = chimod , lwd = 2)

abline ( v = 0 . 9 , col = ” l i g h t c o r a l ” , lwd = 2 , mar=c ( 5 , 4 . 4 , 4 , 2 )+0 . 9 )

}

chiEmp <−function (data , nq=25,qmin , qmax){

n<−nrow(data )
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datat r<−(apply (data , 2 , rank ) − 0 . 5 ) /n

qlim<−c ( qmin , qmax)

u <− seq ( qlim [ 1 ] , ql im [ 2 ] , length = nq )

cu<−sapply ( c ( 1 : nq ) , function ( i ) mean(apply ( datatr , 1 ,min) >= u [ i ] ) )

return (cbind (u , cu/(1−u ) ) )

}

dim Gamma<− function (Gamma) {

dimension <− dim(Gamma)

i f ( ( length ( dimension ) == 2) & ( dimension [ 1 ] == dimension [ 2 ] ) ) {

dimension [ 1 ]

} else {

stop ( ”Not a square matrix ! ” )

}

}

s e l e c t edges <− function ( graph ) {

d <− i g raph : : vcount ( graph )

adj mat <− i g raph : : as adjacency matrix ( graph , spa r s e = FALSE) > 0

s e l . edges <− matrix (0 , nrow = 0 , ncol = 2)

for ( i in 1 : ( d − 1) ) {

for ( j in ( i + 1 ) : d) {

# se t new edge

new edge <− c ( i , j )

# check i f new edge i s a l r eady in the graph

i s a l r eady edge <− adj mat [ i , j ] | adj mat [ j , i ]
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# i f not , add i t to the graph ; e l s e s k i p to the next

i f ( ! i s a l r eady edge ) {

extended graph <− i g raph : : add edges ( graph = graph , edges = new edge )

} else {

next

}

# check i f new graph i s decomposable

i s chorda l <− i g raph : : i s chorda l ( extended graph )$ chorda l

# measure the l e n g t h o f the path from i to j in the o ld graph

length path <− length ( as . vector (

igraph : : s h o r t e s t paths ( graph , from = i , to = j )$vpath [ [ 1 ] ]

) )

i f ( i s chorda l & length path != 2) {

s e l . edges <− rbind ( s e l . edges , new edge , deparse . l e v e l = 0)

}

}

}

return ( s e l . edges )

}

mparetomargins <− function (data , set i n d i c e s ) {

data sub <− data [ , set i n d i c e s ]

idx <− which(apply (data sub , 1 , max) > 1)

return (data [ idx , set i n d i c e s ] )

}
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fmpareto HR <− function (data ,

p = NULL,

cens = FALSE,

i n i t ,

maxit = 100 ,

graph = NULL,

method = ”BFGS” ) {

i f ( ! i s . null (p ) ) {

# i f p prov ided −> data not Pareto −> to conver t

data <− data2mpareto (data , p )

} else {

# i f p not prov ided −> data a l r eady Pareto

data <− data

}

# censor ing at 1 s ince data a l r eady normal ized

p <− 1

d <− ncol (data )

i f ( length (p) == 1) {

p <− rep (p , d)

}

# nega t i v e l o g l i k e l i h o o d func t i on

i f ( cens ) {

# censor be low the ( mu l t i v a r i a t e ) t h r e s h o l d

data . p <− censor (data , p )

r <− nrow(data . p )

L <− apply (data . p > matrix (p , ncol = d , nrow = r , byrow = TRUE) , 1 , which)

i f ( i s . matrix (L) ) {

L <− sp l i t ( t (L) , 1 : r )
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}

I <− which( lapply (L , length ) > 0 & lapply (L , length ) < d)

J <− which( lapply (L , length ) == d)

n l l i k <− function (par ) {

i f ( ! i s . null ( graph ) ) {

Gtmp <− complete Gamma( graph = graph , Gamma = par )

par <− Gtmp[ upper . t r i (Gtmp ) ]

}

G <− par2Gamma(par )

S <− Gamma2Sigma(G, k = 1)

i f (any(par <= 0) | ! matr ixca l c : : i s . p o s i t i v e . d e f i n i t e (S ) ) {

return (10ˆ50)

}

else {

i f ( length ( I ) > 0) {

y1 <− mapply ( logdVK HR,

x = as . l i s t (data . frame ( t (data . p ) ) ) [ I ] ,

K = L [ I ] , MoreArgs = l i s t (par = par )

)

}

else {

y1 <− 0

}

i f ( length ( J ) > 0) {

y2 <− logdV HR( x = data . p [ J , ] , par = par )

}

else {
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y2 <− 0

}

y <− sum( y1 ) + sum( y2 ) − ( length ( I ) + length ( J ) ) ∗ log (V HR(p , par = par ) )

return(−y )

}

}

}

else {

r <− nrow(data )

L <− apply (data > matrix (p , ncol = d , nrow = r , byrow = TRUE) , 1 , which)

i f ( i s . matrix (L) ) {

L <− sp l i t ( t (L) , 1 : r )

}

I <− which( lapply (L , length ) > 0) # 1: r

n l l i k <− function (par ) {

i f ( ! i s . null ( graph ) ) {

Gtmp <− complete Gamma( graph = graph , Gamma = par )

par <− Gamma2par(Gtmp)

}

G <− par2Gamma(par )

S <− Gamma2Sigma(G, k = 1)

i f (any(par <= 0) | ! matr ixca l c : : i s . p o s i t i v e . d e f i n i t e (S ) ) {

return (10ˆ50)

}

else {

i f ( length ( I ) > 0) {

y1 <− logdV HR( x = data [ I , ] , par = par )

}
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else {

y1 <− 0

}

y <− sum( y1 ) − length ( I ) ∗ log (V HR(p , par = par ) )

return(−y )

}

}

}

# opt imize l i k e l i h o o d

opt <− s t a t s : : optim( i n i t , n l l i k ,

h e s s i an = TRUE,

control = l i s t ( maxit = maxit ) , method = method

)

z <− l i s t ( )

z$convergence <− opt$convergence

z$par <− opt$par

i f ( i s . null ( graph ) ) {

z$Gamma<− par2Gamma( z$par )

} else {

z$Gamma<− complete Gamma( graph = graph , Gamma = z$par )

}

z$ n l l i k <− opt$value

z$he s s i an <− opt$he s s i an

return ( z )

}

censor <− function (x , p ) {

f 2 <− function (x , p ) {

x i s l e s s <− x <= p

y <− x
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y [ x i s l e s s ] <− p [ x i s l e s s ]

return ( y )

}

return ( t (apply (x , 1 , f2 , p ) ) )

}
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