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Abstract

We introduce a new stochastic volatility model with leading, contemporaneous and lagging

correlation between volatility and return shocks as well as a dedicated parameter for the

median of the returns. We show the latter to impact the estimated contemporaneous cor-

relation through disentangling the mean and skewness of the returns. We use the recently

proposed Bellman filter of Lange (2021) and the particle filter of Malik and Pitt (2011),

the latter of which we find to perform less efficiently. The model is fitted on historical data

from 1990 through 2020 of daily returns of seven stock indices. Results reveal that our

model captures stylistic effects such as leverage, volatility feedback and risk premia through

the lagging, contemporaneous and leading volatility correlation parameters. Furthermore,

correlation between filtered volatility and VIX shocks doubles compared to models without

the added parameters. Lastly, we analyse predictive power and show that, in some cases,

our model outperforms more conventional volatility models.
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1 Introduction

Volatility modeling plays a central role in financial econometrics and option pricing, since

changes in volatility have a great impact on risk assessment and derivative prices. There-

fore, accurate modeling is important for policymakers and financial market participants alike.

Models for varying volatility fall in roughly two categories: (i) observation-driven models such

as autoregressive conditional heteroskedasticity (ARCH), proposed by Engle (1982), and its

generalized counterpart (GARCH), proposed by Bollerslev (1986), and (ii) stochastic volatility

(SV) models as pioneered by Taylor (1986) as an alternative to the former category. Whereas

(G)ARCH-type models make conditional volatility a deterministic function of its lag(s) and

possibly lagged squared return(s), SV models allow this volatility to follow a latent, stochastic

process. The latter has the advantage that is fits more naturally in modern economic theory and

is analogous to continuous-time models. Furthermore, research has shown that SV models can

price European call options on currencies more accurately than GARCH-type model (Melino &

Turnbull, 1990), provide a better in-sample fit with fewer parameters (Danielsson, 1994; Kim et

al., 1998) and provide more flexibility in capturing leptokurtosis and autocorrelation (Fridman

& Harris, 1998; Geweke, 1989; Ruiz et al., 2001).

In its most basic form, the SV model generates a series of independent and identically dis-

tributed (i.i.d.) return shocks multiplied by the latent volatility state, which evolves according

to an AR(1) process and its own i.i.d. shocks. However, this basic formulation is often seen

as an oversimplification as it cannot capture market effects such as ‘leverage’, which is the

phenomenon that negative returns seem to cause high volatility on the next day1. The reverse

effect is called ‘volatility feedback’, where volatility increases and therefore volatility risk pre-

mia should increase, requiring an immediate price decline. To capture such effects, multiple

model extensions have been suggested, which allow for dependence between return and state

(i.e. volatility) innovations. To incorporate leverage, Harvey and Shephard (1996) propose an

1Classically, this effect is coined the leverage effect, because of a hypothesis developed in Black (1976) and

Christie (1982). This hypothesis stipulates that negative returns drive down equity, which increases the leverage

(debt/equity) of companies, which in turn increases the size of its returns. However, this hypothesis has been

mostly discarded, see Bekaert and Wu (2000) for a comprehensive overview, but the name stuck.
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intertemporal correlation parameter ρ1 to create a one-day (as indicated by the subscript) de-

layed volatility response, where state innovations are correlated with the return innovations of

the previous time step. Jacquier et al. (2004) suggest contemporaneous dependence through

correlation parameter ρ0, which implies that volatility shocks are contemporaneously related to

return shocks. Furthermore this relation introduces skewness and therefore a non-zero mean

in the returns, as the size and sign of returns impact each other. These two models are com-

pared by Yu (2005), who finds that the intertemporal specification should be preferred from

a likelihood perspective, dismissing contemporaneous correlation. He also suggests an encom-

passing model containing both ρ1 and ρ0, which he discards as it performs only marginally

better than the strictly intertemporal model. Catania (2020) proposes a more flexible model, in

which the number of correlation parameters and thus state-lags (i.e. ρ1, ρ2, ..., ρn) is determined

by information criteria. Fitting this to daily index returns, he finds that more lags often lead

to a better-quality model. He also finds that ρ0 is significant, in contrast with the findings of

Yu (2005). However, since contemporaneous correlation introduces skewness in the returns, it

implicitly defines the mean of the returns. The models of Catania (2020), Jacquier et al. (2004),

and Yu (2005) all neglect the mean of the returns as it is much smaller than its variance, but

failure to include a dedicated mean parameter effectively constrains ρ0.

For the above reason, we propose a new model that incorporates a model parameter for the

median of the returns, which allows us to set the mean separately from the contemporaneous

correlation. Furthermore, we allow for a freer intertemporal correlation structure by admitting

leading volatility correlation (ρ−1, ρ−2, ..., ρ−m) as opposed to strictly contemporaneous (ρ0) and

lagging (ρ1, ρ2, ..., ρn) correlation parameters. This added opposite intertemporal correlation has

not yet been assessed to the best of our knowledge and implies that return innovations can be

affected by past volatility shocks, but themselves can also influence future volatility shocks. We

are of the belief that (strong) changes in volatility can affect future returns. Economically, this

implies that market volatility can drive fear among investors, leading to a self-fulfilling prophecy

of negative returns, in line with the volatility feedback hypothesis. This fits in with the classical

finance hypothesis that an increase in volatility should lead to higher returns, as increased risk

should lead to a higher premium. This risk premium is allowed for by an initial negative return,
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following the rise in volatility, to ‘pave the way’ for future positive returns. As far as we are

aware, this model is new, as these properties have not yet been assessed before in SV models.

I fit this model by maximum-likelihood optimisation as should be preferred according to Broto

and Ruiz (2004) with an approximate filter and a simulated maximum-likelihood method. The

approximate filter is the recently proposed Bellman filter by Lange (2021), which is built around

a recursively computed (ergo efficient) approximate mode estimator. We choose this online filter

for its quick calculation and estimation time since computational complexity is O(s3t) with s the

dimension of the state and t the length of the time sample. Furthermore, the results of Lange

(2021) show remarkable accuracy when compared with a state-of-the-art importance sampler

and particle filter in the univariate case. According to Lange, this efficiency should extend to

multidimensional cases and therefore allow us to evade ‘the curse of dimensionality’, which is

the phenomenon that computational complexity scales exponentially with the state dimension

(Bellman, 1957). The simulated maximum-likelihood method is the Sequential Monte Carlo

method or particle filter of Malik and Pitt (2011), of which the likelihood estimate is continuous

in the parameter space, allowing for gradient-based optimisation. In contrast with the Bellman

filter, this filter is asymptotically exact as the number of particles goes to infinity. It estimates

the state online by simulating multiple instances (particles) from the Markovian state transition

equation and assessing their posterior likelihood with incoming data using the measurement

equation. However, this method does suffer to a degree from the curse of dimensionality, as

the number of required particles tends to increase quickly with the state dimension, though less

than exponentially as would typically be the case for importance samplers2.

In a simulation study, we find that parameters of five different data generating processes are

estimated accurately, although the particle filter suffers from estimation problems, most likely

due to the required number of particles not being reached within reasonable computation times

and possibly the degeneracy of the state equation (Künsch, 2013; J. Liu & West, 2001). Further-

2The exact computational scaling of particle filters remains a disputed subject, as no theoretical bounds have

been found with respect to the dimension. Research has shown that with a good proposal density and for certain

filtering problems, particle filters can beat the curse of dimensionality, but not generally so. For a comprehensive

overview, see Crisan and Doucet (2002) and Daum (2005).
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more, this method requires high-quality starting values, which we find using the Bellman filter.

The fact that the particle filter cannot be used as a standalone method is a serious drawback.

Fitting our model to daily returns of seven stock indices, we find that our model is able to jointly

capture the stylistic leverage, volatility feedback and volatility premia with lagging, contempo-

raneous and leading correlation parameters. We find that the contemporaneous correlation is

dominant in most indices, contradicting findings of Yu (2005). We believe this is due to the

introduction of a median parameter, which disentangles the mean of the returns from the effect

of the contemporaneous correlation parameter. Furthermore, we observe 66.3% correlation be-

tween filtered volatility shocks of the S&P 500 and changes in the VIX using our new model,

compared to only 31.5% when leaving out the median parameter.

Finally, we compare predictive power using the loss functions of Patton (2011) and the test of

Diebold and Mariano (1995) and West (1996) of our model to an SV model without leading

volatility shocks, an SV model without correlation parameters and the asymmetric GARCH

model of Glosten et al. (1993) and find that on the S&P 500 our model outperforms all the

other models at the 5% significance level. On the FTSE 100, our model still comes out on top,

but the performance differences narrow and the model cannot significantly beat all others. On

two of the other five indices, our model performs the best of the SV models, but no significant

results are found. These results suggest that, on certain indices, our model can contribute

a valuable improvement in terms of forecasting. Furthermore, we conclude that our model

provides economic insight into the relation between volatility and returns and the associated

effects, which we believe to be unprecedented in the domain of stochastic volatility models.
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2 The Model

Let yt be the financial log return at time t, where t is in days. We then assume yt to be generated

according to the following discrete-time stochastic volatility process:

yt = µ+ exp

{
λt
2

}
· ε̃t, ε̃t ∼ N(0, 1),

λt = c+ φλt−1 + ση · ηt, ηt
iid∼ N(0, 1),

ε̃t =

n∑
i=−m

ρiηt+i +

√√√√1−
n∑

i=−m
ρ2i · εt, εt

iid∼ N(0, 1),

(1)

where µ accounts for the median of the returns, c an additive constant, |φ| < 1 the persistence

of the log-variance λt, ση > 0 the volatility of λt and |ρi| < 1 the correlations between return

shock ε̃t and state innovation ηt+i for i = −m,m + 1, ..., n with m,n ≥ 0. Furthermore,

we require
∑n

i=−m ρ
2
i < 1 to ensure that ε̃t is real-valued. The correlations between the two

standard normal random variables allow for shocks to affect each other at different points in

time. Table 1 poses a small overview of the three central correlation parameters, their typical

sign and economical interpretation. This includes the archetypal ‘leverage effect’, where a

negative return shock at time t (ε̃t < 0) leads to a positive shock in volatility at t+ 1 (ηt+1 > 0)

through ρ1. Contemporaneous correlation through ρ0 can capture volatility feedback, as an

increase in volatility can lead to an immediate price decline. Leading volatility correlation via

ρ−1 is also possible, i.e. today’s return is correlated with yesterday’s volatility shock. Positive

Table 1: Correlation parameters from the model of Equation 1 for m = 1, n = 1 with their associated

leading shock, possible economical interpretation and expected sign.

Leading shock Interpretation

ρ1 return leverage, typically < 0

ρ0 simultaneous volatility feedback, typically < 0

ρ−1 volatility
delayed volatility feedback if < 0

risk premium if > 0
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ρ−1 can show a risk premium for higher volatility or a delayed volatility feedback effect if this

is negative. The specification of m and n determines by how many days a shock in the state λt

is allowed to lead respectively lag a shock in the return yt, with larger intertemporal differences

representing more delayed effects.

This general stochastic volatility model encompasses some stochastic volatility models published

in recent years. Constraining m = 0, n = 0, ρ0 = 0 and µ = 0 returns the classic stochastic

volatility model with completely independent innovations and a zero median. The case n =

1,m = 0, ρ0 = 0 and µ = 0 gives the asymmetric stochastic volatility model of Harvey and

Shephard (1996), which can account for intertemporal leverage. However, when we restrict

m = 0, n = 0 and µ = 0 but unfix ρ0, we find the volatility model of Jacquier et al. (2004) with

contemporaneous correlation. Yu (2005) unites the latter two in his encompassing model, which

is a special case of the model presented here with constraints m = 0, n = 1 and µ = 0. Recently,

Catania (2020) studied stochastic volatility models with possibly longer lags (i.e. n ≥ 1, m = 0,

µ = 0) and found that a better model fit can be acquired by this.

However, the existing models all neglect the non-zero mean introduced by the contemporaneous

correlation parameter ρ0, which it triggers through skewness in returns. Typically, we expect

this parameter to be negative, as this implies that an increase in volatility tends to occur simul-

taneously with a negative return. However, since this negative skewness shifts the mean of the

returns, we introduce the parameter µ to be able to set the mean and skewness independently.

We are of the belief that volatility can lead returns and thus present a generalised model which

cannot only account for leverage effects, but also volatility feedback and the associated risk

premia. Furthermore, we suspect that the literature underestimates ρ0 by constraining µ = 0,

effectively setting the mean and skewness of the returns by the same parameter. Another

advantage of this new model is its linear and Gaussian state transition equation, which makes

for a straightforward implementation. This is in contrast with the model of Catania (2020), in

which return shocks are i.i.d. but state shocks are not, resulting in the log-variance following

an ARMA(1,m) process. Furthermore, this model is able to capture the serial correlation in

the return shocks ε̃t, which is a well-established phenomenon even on short horizons as shown
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by e.g. Lo and MacKinlay (1988) and Campbell et al. (1993) and which the model of Catania

(2020) cannot capture.

2.1 Statistical Properties of the Model

Unconditionally, the log-variance λt is normally distributed as

λt ∼ N

(
c

1− φ
, σ2λ

)
, σ2λ =

σ2η
1− φ2

. (2)

Since λt follows an AR(1) process, its autocovariance function is γλ(j) = cov(λt, λt−j) equals

γλ(j) = φjσ2λ. (3)

The autocovariance function of ε̃, γ ε̃(j) = cov(ε̃t, ε̃t−j) for j ≥ 1, is given by

γ ε̃(j) =


∑n

l=j−m ρlρl−j , if j ≤ m+ n

0, otherwise,
(4)

which, conditional on λt and λt−j , is equal to the autocorrelation of the returns. This means

that only under certain restrictions on the correlation parameters, this serial correlation is equal

to zero. Generally, the autocovariance in the returns γyt(j) = cov(yt, yt−j) for j ≥ 1 is expressed

as

γyt(j) =

 exp
(
λt+λt−j

2

)
· γ ε̃(j), if j ≤ m+ n

0, otherwise.
(5)

The expected value of yt can be unequal to zero, due to the skewness in the returns introduced

by ρ0, but is hard to compute. We rewrite the first line of Equation 1 by substituting the AR-

variable λt with the infinite sum of its historical innovations and ε̃ for the last line of Equation 1

and rewrite its first sum, giving

E[yt] = µ+ E

exp

{
1

2
(c+ ση

∞∑
i=0

φiηt−i)

}
·


n∑

i=−m
ρiηt+i +

√√√√1−
n∑

i=−m
ρ2i εt


 . (6)

From this equation, it can be seen that the relation between the state innovations ηt−i for

i = 0, ...,∞ in λt and ηt+i for i = −m, ..., n in ε̃ lead to a non-zero expectation on the right-

hand side, depending on the values of ρi for i = −m, ..., 0. Parameter µ serves to let the

optimiser freely estimate correlation between innovations, without implicitly fixing the mean of

the returns.
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2.2 State-space Formulation

For the estimation approaches we use, it is convenient to write the state transition equation of

the model of Equation 1 in the state space form

αt = c+ Tαt−1 + ηt, ηt
iid∼ N(0,Q), (7)

where αt represents the state vector, c the intercept vector, T the transition matrix and ηt the

multivariate shock vector with covariance matrix Q. The dimension of α we call s, being equal

to n+m+ 2, as at least λt and ηt+1 are required in αt. In the simple case of n = 1 and m = 1,

this becomes
λt

ηt+1

ηt

ηt−1

 =


c

0

0

0

+


φ ση 0 0

0 0 0 0

0 1 0 0

0 0 1 0

 ·


λt−1

ηt

ηt−1

ηt−2

+


0

ηt+1

0

0

 ,Q =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 .

(8)

It can be seen that part of the transition equation is deterministic, introducing degeneracy.

The complete general state space formulation is rather hairy and can therefore be found in

Appendix A.

3 Bellman Filter

The Bellman filter is an approximate filter based on the dynamic programming principle by

Bellman (1957) applied to a mode estimator. It is a generalisation of the Kalman filter and

applicable to a wider range of (non-linear non-Gaussian) models, such as our leveraged stochas-

tic volatility model, while retaining the Kalman filter’s computational simplicity. The latter

is achieved by substituting high-dimensional numerical integrals associated with mean-based

estimators for a dynamically programmed optimisation problem associated with mode-based

estimators. This efficiency gain is traded for the fact that mode estimators are suboptimal for

traditional loss functions such as the absolute or squared loss.
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3.1 Concept

This filter estimates the state online in a recursive fashion. To illustrate this, let us follow Lange

(2021) by defining the estimate of the time t hidden state αt (in Greek writing) as at (in Latin

writing) and the value function as

Vt (at) ≡ max
a1:t−1∈Rs×(t−1)

`(a1:t, y1:t), at ∈ Rs, (9a)

= ` (yt|at) + max
at−1∈Rs

{`(at|at−1) + Vt−1(at−1)} , (9b)

where the value Vt depends on the log-likelihood `(·) of the data y1:t ≡ (y1, ..., yt), the s-

dimensional state estimate at and the arg max of a1:t−1 ≡ (a1, ...,at−1). Equation 9b is the

Bellman equation applied to this function, from which it can be seen that this value can be

calculated recursively through time, which makes this filtering method efficient.

Having assumed this value function, the Bellman-filtered state is defined as

at|t ≡ arg max
at∈Rs

Vt (at) , (10)

where the subscript of the time t state estimate at|t indicates conditionality on yt. This is the

mode or ‘maximum a posteriori’ (MAP) estimate of the state αt.

3.2 Filtering Algorithm

The filtering algorithm is presented in Algorithm 1. The first step is the initialisation of the

variables, which we set to their unconditional mean (where 1 indicates the identity matrix of

the appropriate size). After this preliminary step, we start filtering the state through time by

alternately predicting, optimising and updating our state estimate.

For the prediction step, we compute the first-order condition of Equation 9b with respect

to at−1. For this, we need closed form expressions of `(at|at−1) and Vt−1(at−1). Since the state

transition equation of our model is linear and Gaussian, the former is given by

` (at|at−1) = −1

2
(at − c− Tat−1)′Q−1 (at − c− Tat−1) + constants, at−1,at ∈ Rs. (11)

However, the value function cannot be found exactly in general, an exception being the case

when the model is linear and Gaussian. Then value function becomes multivariate quadratic and

9



we obtain Kalman’s (1960) filter. Nonetheless, when this is not the case, the Bellman equation

still holds, but an approximation is needed to solve it. Lange (2021) suggests a second-order

polynomial approximation, which we follow:

Vt−1 (at−1) ≈ −
1

2

(
at−1 − at−1|t−1

)′
It−1|t−1

(
at−1 − at−1|t−1

)
+ constants, at−1 ∈ Rs, (12)

where at−1|t−1 and It−1|t−1 are the posterior state estimate and its precision matrix of time

t − 1. This is not exact, but, according to Lange (2021), this approximation is generally

sufficient around its peak, which is our region of interest. Substituting Equation 11 and 12

into Equation 9b, computing the first order condition and solving for at−1, we get

a∗t−1 =
(
It−1|t−1 + T ′Q−1T

)−1 {
It−1|t−1at−1|t−1 + T ′Q−1 (at − c)

}
. (13)

Substituting this back into Equation 9b, we get the value function that depends on the mea-

surement likelihood `(yt|at) and a regularising penalty term around the predicted state at|t−1:

Vt (at) = ` (yt|at)−
1

2

(
at − at|t−1

)′
It|t−1

(
at − at|t−1

)
+ constants, at ∈ Rs. (14)

Algorithm 1: Bellman filter for model with linear Gaussian state transition equation

Initialise: a0|0 = (1− T )−1c and vec(I−10|0) = (1− T⊗ T )−1vec(Q−1)

for t = 1:T do

Predict: at|t−1 = c+ Tat−1|t−1 and It|t−1 =
(
TI−1t−1|t−1T

′ +Q
)−1

Optimise: Set a
(0)
t|t = at|t−1 and i = 0

for i < imax ∨∆(i−1) < ε do

a
(i+1)
t|t = a

(i)
t|t +

{
It|t−1 −

d2`(yt|a)
dada′

}−1 {
d`(yt|a)

da − It|t−1
(
a− at|t−1

)}∣∣∣∣
a=a

(i)
t|t

∆(i) = max
∣∣∣∣∣∣a(i+1)

t|t − a(i)t|t
∣∣∣∣∣∣

end

Update: at|t = a
(i)
t|t and It|t = It|t−1 −

d2`(yt|a)
dada′

∣∣∣
a=at|t

end
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Here, the state prediction and associated precision matrix It|t−1 are defined as

at|t−1 = c+ Tat−1|t−1,

It|t−1 = Q−1 −Q−1T
(
It−1|t−1 + T ′Q−1T

)−1
T ′Q−1 =

(
TI−1t−1|t−1T

′ +Q
)−1

,
(15)

where, in the last equality, we use the Woodbury matrix identity to obtain an expression that

remains valid for singular Q. It should be noted that these predicted quantities are the same as

the Kalman filter’s, but written in the information form. The regularisation term of Equation 14

introduces a bias towards the prediction, but reduces the variance of the maximisation step of

Equation 9a, which James and Stein (1992) show may improve the efficiency of the estimator.

The optimisation step is executed by maximising the value function of Equation 14 with

respect to at. Whereas the Bellman filter’s prediction was similar to the Kalman filter’s, the

optimisation step generally is not. Since our measurement equation is nonlinear, this max-

imisation is done numerically. Lange (2021) suggests using a simple iterative method such as

Newton-Raphson, which we choose to employ here and reads

a
(i+1)
t|t = a

(i)
t|t +

[
−d2Vt(a)

da da′

]−1
dVt(a)

da

∣∣∣∣∣
a=a

(i)
t|t

, (16)

where the first and second derivative of Vt(at) are respectively

dVt(a)

da
=

d` (yt|a)

da
− It|t−1

(
a− at|t−1

)
,

d2Vt(a)

dada′
=

d2` (yt|a)

dada′
− It|t−1.

(17)

The first- and second-order derivatives of the measurement log-likelihood with respect to the

state estimate, as stated respectively in Equation 17, are referred to as the ‘score’ and the

‘information’. For our model, these quantities are given in Appendix B. This optimisation

scheme is executed until a maximum number of iteration imax, set to twenty, is reached or

changes in the state become smaller than the precision variable ε, set to 10−5. Generally, this

precision is reached in fewer than five iterations.

The updating step consists of setting the ‘optimal’ state estimate a
(i)
t|t to be the filtered state

estimate at|t and calculating the corresponding precision matrix It|t as the sum of the predicted

information It|t−1 and the realised information evaluated at filtered state at|t.
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3.3 Parameter Estimation

The estimation of the model parameters is done by maximising the decomposed log-likelihood,

output from the Bellman filter. Lange (2021) introduces this decomposition for a single mea-

surement as

` (yt|Ft−1) = ` (yt,αt|Ft−1)− ` (αt|yt,Ft−1) = ` (yt|αt) + ` (αt|Ft−1)− ` (αt|Ft) . (18)

Since αt is latent, we evaluate the log-likelihood at the filtered state estimate at|t which, with

some rearranging, yields

` (yt|Ft−1) = ` (yt|αt)|αt=at|t
− {` (αt|Ft)− ` (αt|Ft−1)}|αt=at|t

, (19)

where ` (yt|αt)|αt=at|t
is the log-likelihood of a measurement given the filtered state estimate

and therefore gives a measure of fit of the filtered state. The second term, which is between curly

brackets, is the realised Kullback-Leibler (1951) divergence: a penalty term which minimises

the distance between predicted and updates state estimates. This regularises the parameters

and prevents over-fitting. However, unless the model is linear and Gaussian, this term generally

cannot be evaluated in closed form. We follow Lange (2021) again in using a second-order

polynomial approximation:

` (αt|Ft) ≈
1

2
log det

{
It|t/(2π)

}
− 1

2

(
αt − at|t

)′
It|t
(
αt − at|t

)
,

` (αt|Ft−1) ≈
1

2
log det

{
It|t−1/(2π)

}
− 1

2

(
αt − at|t−1

)′
It|t−1

(
αt − at|t−1

)
.

(20)

Substituting these expressions back into Equation 19, summing over all measurements and

taking the argmax with respect to the model parameters collected in the vector θ, we get

θ̂ = arg max
θ

T∑
t=1

{
`
(
yt|at|t

)
+

1

2
log det

(
I−1t|t It|t−1

)
− 1

2

(
at|t − at|t−1

)′
It|t−1

(
at|t − at|t−1

)}
,

(21)

which we define as our proposed maximum likelihood estimator and requires the measurement

likelihood as in Equation 1 and various outputs from the Bellman filter. Lange (2021) ar-

gues that the estimator of Equation 21 is only slightly more computationally demanding than

maximum-likelihood estimation of the Kalman filter, the single difference being the number of
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required optimisation steps per time step. Whereas the Kalman filter requires only one step,

the Bellman filter can require more, though typically not more than five, meaning estimation

of the Bellman filter is almost as computationally inexpensive as that of the Kalman filter.

4 Particle Filter

The particle filter we apply is the continuous sampling importance resampling (CSIR) algorithm

from Malik and Pitt (2011). Particle filtering is similar to sequential importance sampling as

introduced by Hammersley and Morton (1954) and first applied in econometrics by Hendry and

Richard (1992), where a latent state is ‘guessed’ numerous times with ‘particles’ and estimated

a posteriori conditionally on the observations. The difference is a resampling step, which was

added by Gordon et al. (1993). This decreases the number of particles required as they are

used more efficiently. This is an important advantage, as for importance sampling the number

of required particles increases exponentially with the dimension of the state. Under certain

conditions, it has been shown that particle filters can beat this curse of dimensionality. The

particle filter from Malik and Pitt (2011) is essentially the traditional particle filter from Gordon

et al. (1993) where the resampling step is changed to ensure that the approximated likelihood

is continuous in the parameters, which allows for gradient-based maximisation of the estimated

likelihood.

4.1 Concept

A particle filter estimates the state by the online simulation of numerous possible states called

‘particles’ and assessing their likelihood based on measurements to approximate the integral

p (αt+1|Ft+1) ∝ p (yt+1|αt+1)

∫
D
p (αt+1|αt) p (αt|Ft) dαt (22)

where yt is the one-dimensional measurement, Ft the filtration of the process up to and including

time t and D is the s-dimensional domain of the time t state αt = (λt, ηt+n, ..., ηt−m)′ with a

straightforward sampling-resampling method. The approximated posterior distribution is the

13



empirical filtering density, given by

p̂ (αt+1|Ft+1) ∝ p (yt+1|αt+1)

N∑
k=1

πkt p
(
αt+1|xkt

)
, (23)

where xkt is the kth s-dimensional particle, representing a possible time t state, πkt its associated

relative probability or ‘weight’ and N the total number of particles. Smith and Gelfand (1992)

prove this estimator to converge to the required density of Equation 22 as N −→∞. This method

therefore requires only two assumptions: that the measurement density is computable and that

samples can be drawn from the Markovian transition density, which are the particles xk for

k = 1, ..., N . Since some particles may be a better estimate of the actual state than others,

many particles are required to ensure a reasonable estimate. Particles are assigned weights

equal to the relative likelihood of that state estimate being correct given the measurement. The

filtered state is estimated a posteriori with a weighted mean of the particles. Since the weights

are multiplied with their likelihood and normalised at each time step, certain particles attain

a very high weight (i.e. likely state estimates), whereas the weights of most particles become

negligible (i.e. unlikely state estimates). To avoid this degeneracy, particles are resampled

according to the distribution of their weights, after which their weights are reset to 1/N .

4.2 Filtering Algorithm

The filtering procedure is depicted in Algorithm 2. At time t = 0, we initialise the N par-

ticles x1
0, ...,x

N
0 , from a diffuse Gaussian distribution p(x0) ∼ N(µα, 10 · 1), where µα is the

unconditional mean (1 − T )−1c and 1 the s × s identity matrix. Subsequently, we assign the

particles weights, gathered in the vector π0 with length N , with each element equal to 1/N .

After initialisation, we predict the particles for the next time step, x̃1
1, ..., x̃

N
1 by sampling from

their corresponding distributions p(x1|x1
0), ..., p(x1|xN0 ). Following the prediction step comes

the correction step, in which we scale the weights with the likelihood of the measurement given

the particles, such that π1 ∝ [p(yt|x̃1
1), ..., p(yt|x̃

N
1 )]′�π0. Subsequently, we estimate the hidden

state αt with at being the weighted mean of the particles. Chopin (2004) shows it is important

to perform estimation before resampling, as the former is more efficient.

Lastly, we consider resampling the particles from their weights distribution, to remove unlikely
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state estimates. We do not resample at every time step, which is a departure from Malik

and Pitt (2011), because the sorting required for the resampling step is of operation order

O(N logN) and thus computationally intensive and introduces unnecessary extra Monte Carlo

variation (Durbin & Koopman, 2012). Therefore, resampling is triggered when the estimated

degeneracy of the particles exceeds a certain threshold, meaning that most of the weight has

accumulated to a small selection of particles, effectively rendering the other particles irrelevant.

This degeneracy leads to waste of memory and computing power and less accurate results. We

measure degeneracy with an estimate of the ‘effective sample size’ as described by J. S. Liu and

Chen (1995):

N̂eff,t =
1

w′t ·wt
, (24)

where wt is the time t unnormalised weights vector from the correction step of Algorithm 2.

Following the ‘rule of thumb’, we resample when N̂eff < 0.5. In our application, this occurs

every 10 - 50 time steps depending on the parameters, sharply decreasing the computation time.

Algorithm 2: CSIR

for k = 1, ..., N do

Initialise xk0 from p(x0) and set πk0 = 1
N

end

for t = 1, ..., T do

for k = 1, ..., N do

Predict: x̃kt ∼ p(xt|xkt−1)

end

Correct: πt = (
∑N

i=1w
i
t)
−1 ·wt, where wt = [p(yt|x̃1

t ), ..., p(yt|x̃
N
t )]′ � πt−1

Estimate: at = [x̃1
t , ..., x̃

N
t ] · πt

Resample: xkt from approximate empirical cdf F̃ (x)

end
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4.3 Continuous Resampling

Instead of resampling the particles from their weighted empirical cumulative distribution func-

tion (cdf) F̂N (x) =
∑N

k=1 π
kH
(
x− x̃k

)
with H(·) being the unit or Heaviside step function, we

sample from its continuous approximation. In a univariate state setting, Malik and Pitt (2011)

propose this continuous approximate empirical cdf to be

F̃N (x) =

N∑
k=0

λkGk

(
x− x(k)

x(k+1) − x(k)

)
, (25)

where Gk(z) is a non-decreasing distribution function on the interval [0, 1] for k = 1, ..., N − 1

and equal to 0 or 1 for k = 0 and k = N respectively. We follow Malik and Pitt (2011)

in their choice of the uniform distribution function such that G(z) = z for straightforward

calculations. λk is the interpolated particle weight, with λk = (πk+1 + πk)/2, λ0 = π1/2

and λN = πN/2. Effectively, this function interpolates the empirical cumulative distribution

function, passing through all the midpoints between steps. Malik and Pitt (2011) extend the

asymptotic convergence result of Del Moral (2004) by proving that as N −→ ∞, F̃N (x) −→

F̂N (x) −→ FN (x).

To make this originally univariate resampling procedure applicable to our model, we apply the

multivariate extension using conditionally independent dimensions suggested by Malik and Pitt

(2011), whom we follow in this section. First, we construct the weighted empirical cdf of the

first state dimension, which we call x1, and split into P quantiles, which we call partitions Rp

for p = 1, ..., P . The number of particles in every partition is then equal to Np = N/P , such

that Rp = {x̃11,p, ..., x̃
Np

1,p}. We renormalise the weights of these particles by π̃jp = P · πjp with

j = 2, .., Np − 1. To ensure that
∑Np

j=1 π
j
p = 1, the weights of the endpoints π̃1p and π̃

Np
p are

adjusted, such that

π̃1p = P ·
(
F̂N
(
x11,p

)
− (p− 1)/P

)
, π̃

Np
p = P ·

(
p/P − F̂N

(
x
Np−1
1,p

))
. (26)

Second, we sample Np times from every partition p for every dimension 1, ..., s using the contin-

uous approximate cdf of Equation 25, which we apply individually per dimension and partition.

This yields independent samples {xj1,p, ..., x
j
s,p} with j = 1, ..., Np and p = 1, ..., P . Third, we
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randomly link samples, one from every dimension, within one partition to form multivariate

samples xjp. Here, we make the assumption that within a partition, the state dimensions are

independent. According to Malik and Pitt (2011), this assumption becomes less troublesome

as the number of partitions increases, but the continuous approximation will be less accurate,

as this is only based on the particles in the partition. Conversely, having a small number of

partitions will ensure continuity will be accurate, but the independence assumption can become

straining. However, since in our case the state dimensions are almost independent in the state

transition equation, we choose P to be 10, such that every partition contains 500 particles. We

believe this to be a good compromise between a reasonably accurate continuous approximation,

while keeping the independence assumption acceptable, but this has to be investigated further.

4.4 Parameter Estimation

The log-likelihood given the model parameters θ is estimated by

log L̂N (θ) =
T∑
t=1

log p̂ (yt|θ;Ft−1) =
T∑
t=1

log

(
1

N

N∑
k=1

wkt

)
, (27)

where wkt is the unnormalised weight of the particle x̃kt , computed in the correction step of

Algorithm 2. The maximum likelihood parameters are then defined as:

θ̂ = arg max
θ

T∑
t=1

log

(
1

N

N∑
k=1

wkt

)
. (28)

This optimisation is executed well given good starting values. However, without this initial

point, the optimiser can get stranded in local maxima, which deteriorates the practicality of

this method.

5 Simulation Studies

We investigate simulation results of the two estimators in finite samples by comparing differ-

ent settings for the parameter vector θ = (µ, c, φ, ση,ρ
′)′ where ρ = (ρn, ..., ρ−m)′ with their

estimated counterparts. Table 2 shows the different scenarios we consider as data generating

processes for the simulation studies.
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The values of µ, c, φ and ση are from Harvey and Shephard (1996) and the specifications of

scenarios 2 and 3 are taken from Catania (2020), who follows Harvey and Shephard (1996) in

the same fashion. Note that scenario 1 considers the ‘classic’ intertemporal specification for

the stochastic volatility model with leverage of Harvey and Shephard (1996), whereas scenario

2 considers the contemporaneous specification of Jacquier et al. (2004). Scenarios 4 and 5 are

newly considered, as they involve volatility leads as well as lags.

5.1 Parameter Estimates

For every scenario, we estimate our model one hundred times using both estimation methods

on generated samples of length T = 5000, which Catania (2020) finds to generally produce good

results for estimates from his implementations of the particle filter of Malik and Pitt (2011)

and the quasi-maximum likelihood estimator of Harvey and Shephard (1996). The number of

particles is set to N = 5000, being a practical constraint, as more particles produced infeasible

computation times. However, simulations show this number to provide a filtering accuracy

comparable to that of the Bellman filter.

Table 2: Scenarios with their associated coefficient values.

Scenario 1 2 3 4 5

µ 0 0 0 0 0

c 0 0 0 0 0

φ 0.975 0.975 0.975 0.975 0.975

ση 0.1 0.1 0.1 0.1 0.1

ρ2 0 0 −0.3 −0.3 −0.3

ρ1 −0.5 0 −0.5 −0.5 −0.5

ρ0 0 −0.8 −0.8 −0.7 −0.7

ρ−1 0 0 0 −0.2 −0.2

ρ−2 0 0 0 0 −0.1
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Starting values for the maximum likelihood optimisation for the Bellman filter are found by

first optimising (µ̂, ĉ, φ̂, σ̂η) keeping ρ̂ = 0, thereby not allowing any correlation between shocks.

In practice, this produces a good initial point and these values are changed only slightly in

the final optimisation. After this, we perform a grid search over ρ to form a complete set of

starting values for the final unconstrained optimisation. Parameter estimation for the particle

filter is more difficult as the optimiser tends to get stuck in local maxima of θ despite the added

continuous resampling step. This may be caused by an insufficient number of particles due to

the state dimension being too large or the degeneracy in the state transition equation, which

can cause particle filters to struggle (Künsch, 2013; J. Liu & West, 2001). Therefore, we resort

to using the ‘optimal’ parameters from the Bellman filter as starting values, which in practice

we find to work well but is a drawback of the particle filter. Furthermore, this vastly decreases

the required estimation time and makes this method feasible, as general starting values are not

guaranteed to lead to good estimates and require a lot of computing capacity.

Average estimate biases of the one hundred replicates with their bootstrapped standard errors

are depicted in Table 3 and 4 for the Bellman and particle filter respectively. At the bottom,

the mean absolute error (MAE) of the filtered state innovations and log-variances is reported,

which is a measure of the quality of the filtration. MAEs are calculated as

MAE ηt|t =
1

R · T

R∑
i=1

T∑
t=1

|η(i)t|t − η
(i)
t |, MAE λt|t =

1

R · T

R∑
i=1

T∑
t=1

|λ(i)t|t − λ
(i)
t |, (29)

where R is the number of replications, T is the length of each sample, η
(i)
t denotes the time

t log-variance shock of replication i, η
(i)
t|t its associated filtered estimate and ditto for the log-

variances λ
(i)
t and λ

(i)
t|t . The ‘naive’ estimate being the unconditional mean can be used as a

benchmark, which yields an MAE of
√

2/π · σ ≈ 0.798 · σ with σ being the standard deviation

of the estimated variable.

From Table 3, it can be seen that the maximum-likelihood optimiser for the Bellman filter is

able to estimate the coefficients remarkably well under correct model-specification, with the

exception of µ̂ which seems positively biased. This can be due to the interplay between the

non-zero mean introduced by skewness in the returns through ρ0 and µ, making these hard
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to estimate. Standard errors are increasing with the number of parameters in the model,

which is illustrated by the relatively high average standard errors of scenario 5 compared to

the relatively low average standard errors of scenarios 1 and 2. Also, standard errors for the

parameter estimates in ρ̂ are generally larger than those in (µ̂, ĉ, φ̂, σ̂η), suggesting that the

correlation parameters are more difficult to estimate. These effects together yield the highest

standard error: ρ̂−1 in scenario 5 is equal to −0.267 with a standard error of 0.150, which

shows that estimates of this parameter are quite volatile. MAEs of the filtered log-variance

shocks ηt|t are on average found at around 0.569, which indicates that these shocks are hard to

filter, seen as their standard deviation is set at 1. However, this is lower than 0.798, showing

out-performance of the naive estimate. The average MAE of λt|t is 0.137, which is smaller

than 0.798 · σλ = 0.359 with σλ being the unconditional log-variance standard deviation of

Table 3: Average coefficient estimate biases with bootstrapped standard errors and MAEs of the filtered

state shocks and states for the five scenarios using the Bellman filter.

Bellman filter

Scenario 1 2 3 4 5

µ̂ 0.001 (0.014) 0.041 (0.016) 0.035 (0.026) 0.057 (0.037) 0.080 (0.077)

ĉ 0.001 (0.002) −0.003 (0.002) −0.002 (0.002) −0.003 (0.002) −0.005 (0.004)

φ̂ −0.002 (0.005) −0.001 (0.004) 0.001 (0.002) 0.002 (0.003) −0.003 (0.015)

σ̂η 0.003 (0.010) 0.008 (0.004) 0.001 (0.007) −0.001 (0.008) −0.004 (0.015)

ρ̂2 x x 0.000 (0.031) 0.036 (0.054) 0.073 (0.092)

ρ̂1 0.045 (0.065) x 0.001 (0.013) 0.046 (0.058) 0.072 (0.132)

ρ̂0 x 0.006 (0.069) 0.000 (0.050) 0.048 (0.084) −0.038 (0.099)

ρ̂−1 x x x −0.043 (0.090) −0.067 (0.150)

ρ̂−2 x x x x −0.052 (0.114)

MAE ηt|t 0.695 0.489 0.470 0.583 0.606

MAE λt|t 0.228 0.201 0.057 0.089 0.112
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Equation 2. For both MAEs, it seems that the number of parameters increases the value of the

loss function, with the exception of scenario 1, which yields the highest values. This could be

caused by a relatively low amount of information in the returns on the state shocks in this data

generating process. Finally, the mean correlation between true and filtered shocks is equal to

69%, suggesting that our filtering of the process is quite accurate.

Table 4 contains the estimates, standard errors and MAEs for the particle filter simulation

results. It can be seen this method also finds coefficient estimates within a reasonable margin

of error, although this declines as the number of parameters increases. (c,φ,ση) are almost

always found within one standard error, but also for this filter it seems that µ̂ is positively

biased. Estimates for ρ are quite accurate for scenarios 1 through 3, but deteriorate for four

and five, the latter being the most extreme. Here, standard errors indicate that estimates are

Table 4: Average coefficient estimate biases with bootstrapped standard errors and MAEs of the filtered

state shocks and states for the five scenarios using the particle filter.

Particle filter

Scenario 1 2 3 4 5

µ̂ 0.001 (0.016) 0.041 (0.016) 0.037 (0.027) 0.050 (0.035) 0.073 (0.083)

ĉ 0.001 (0.002) −0.003 (0.002) −0.002 (0.002) −0.003 (0.002) −0.004 (0.005)

φ̂ −0.038 (0.011) −0.032 (0.011) 0.003 (0.003) 0.002 (0.004) 0.002 (0.004)

σ̂η −0.012 (0.013) −0.012 (0.012) −0.003 (0.008) −0.003 (0.008) 0.000 (0.012)

ρ̂2 x x −0.03 (0.033) 0.031 (0.061) 0.062 (0.112)

ρ̂1 0.023 (0.082) x 0.002 (0.016) 0.031 (0.061) 0.081 (0.147)

ρ̂0 x −0.014 (0.075) 0.053 (0.033) 0.066 (0.068) 0.008 (0.085)

ρ̂−1 x x x −0.045 (0.094) −0.100 (0.160)

ρ̂−2 x x x x −0.063 (0.136)

MAE ηt|t 0.770 0.494 0.483 0.589 0.609

MAE λt|t 0.315 0.272 0.091 0.108 0.108
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more volatile than for the Bellman filter, although their absolute biases seem to be slightly

smaller on average. The same trends are visible in this table as in that of the Bellman filter,

leading to the largest standard errors for ρ in the high-dimensional scenarios. MAEs are very

comparable, albeit slightly higher on average, to those of the Bellman filter, which shows us that

the accuracy of the filtered shocks of these two filters are nearly identical. Average correlation

between true and filtered shocks is found to be 72%, a slight increase over the Bellman filter.

Furthermore, correlation between the Bellman filtered shocks and the particle filtered shocks is

on average equal to 91.7%, indicating that they offer a comparable filtration of the process.

5.2 Model Misspecification

We examine the performance of the model under misspecification for scenarios 1 and 2, the

first stipulating ρ1 = −0.5, the second ρ0 = −0.8 and both all other correlation parameters to

zero. Our research interest is how the model compensates for its misspecification through its

correlation parameter estimates, which is relevant when selecting a model specification for the

empirical study. Since the previous section showed the Bellman and particle filter to produce

very similar estimates, with the latter not only requiring the Bellman’s estimates as starting

values, but also a higher computational load, we solely use the Bellman filter for estimation in

this section. Apart from this, the procedure is exactly the same as in the previous section.

In Table 5, average coefficient estimates for ρ with MAE values for state shocks are given for

Table 5: Average correlation parameter estimates under model misspecification with associated boot-

strapped standard errors and MAEs of the filtered state shocks.

Scenario 1 (ρ1 = −0.5) Scenario 2 (ρ0 = −0.8)

Constraint ρ̂1 ρ̂0 MAE ηt|t ρ̂1 ρ̂0 MAE ηt|t

none −0.472 (0.082) −0.008 (0.051) 0.697 0.000 (0.017) −0.818 (0.028) 0.486

ρ̂1 = 0 - −0.443 (0.089) 0.873 - −0.794 (0.069) 0.489

ρ̂0 = 0 −0.465 (0.065) - 0.695 −0.713 (0.059) - 0.977
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scenario 1 and 2, given different constraints. First we observe scenario 1, where we see that the

constraint ρ0 = 0 corresponds to the correctly specified model with results from Table 3 and

the lowest MAE of 0.695. When unconstraining ρ0, we find estimates for both parameters with

ρ̂1 slightly closer to its true value of −0.5 and ρ̂0 of a negligible value. The standard error of ρ1

widens slightly, which might indicate that the optimiser uses the extra model flexibility to shift

weight between the two parameters to best fit every specific replication. However, the letting

go of the ρ0 = 0 constraint does not seem to deliver a significantly worse performing model,

as coefficient estimates are still accurate within one standard error and MAE has increased

only slightly to 0.697. Constraining ρ1 = 0, forces the optimiser to (incorrectly) only use ρ0

to capture the dependence between state and return shocks. ρ0 is estimated at −0.443 with a

relatively large standard error. It seems to be ‘pulled’ towards the value of ρ1, due to the only

small intertemporal distance. The average MAE value shoots up to 0.873, indicating that this

model not only performs worse than the unconstrained and correctly constrained models, but

also the naive benchmark.

Moving on to scenario 2, we again observe the constraint ρ1 = 0 to return the same results as in

Table 3. Unconstraining ρ1 yields an estimate of 0.000 with a small standard error, indicating

that the optimiser accurately recognises that the associated correlation is not present in the data.

The estimate for ρ0 increases slightly from −0.794 to −0.818, being somewhat further from the

true value of −0.8. Its standard error surprisingly becomes smaller, which might be caused

by some variation in ρ0 being absorbed by the (now free) ρ1, but this remains unclear. The

MAE for the unconstrained scenario is marginally smaller than that of the correct specification,

but this seems negligible. Imposing the incorrect constraint of ρ0 = 0 yields an estimate for

ρ1 of −0.713, showing again that the optimiser tries to siphon some of the contemporaneous

correlation to the intertemporal parameter ρ1, making this close to but smaller then the value of

ρ0. Under this constraint, the mean MAE sharply increases to 0.977, which reveals the average

absolute error of the filtered state shocks to double under this specification with respect to the

others and failing the benchmark.

We conclude from this that adding extra correlation parameters can decrease the in-sample
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performance of the model slightly and make coefficient estimates less accurate. However, leaving

out correlation parameters that are of importance does so much more extreme. Therefore,

we would advise to be hesitant to preferring a smaller model over a larger from a semantic

perspective.

6 Empirical Results

6.1 Data

We obtained daily data of adjusted close-to-close returns of seven stock indices: the AEX from

10 Dec 1992 through 30 Dec 2020 (7152 observations), DAX from 3 Jan 1990 through 30 Dec

2020 (7832 observations), FTSE 100 from 3 Jan 1990 through 30 Dec 2020 (7858 observations),

Hang Seng index (HSI) from 3 Jan 1990 through 29 Dec 2020 (7648 observations), Nikkei 225

(N225) from 4 Jan 1990 through 30 Dec 2020 (7611 observations), NASDAQ from 3 Jan 1990

through 30 Dec 2020 (7810 observations) and the S&P 500 from 3 Jan 1990 through 30 Dec

2020 (7810 observations) from Yahoo Finance and transform them to daily percentage returns

by taking the log, first differences and multiplying by 100%.

These indices are selected as they are from different regions and therefore can reflect different

markets. Furthermore, the indices differ in their construction, as the S&P is a broad index of

500 large-cap American companies, whereas the AEX only consists of 25 companies. Lastly,

indices differ in the sectors they cover, e.g. the DAX is mostly an industry-driven index, but

the NASDAQ, with over 3000 listed securities, almost exclusively consists of tech companies.

Furthermore, we acquired data on realised variance from the Oxford-Man Institute of Quantita-

tive Finance of the same seven stock indices from 3 Jan 2000 up until the end of each respective

index’ dataset of returns. From this variance dataset, we use the daily realised variance based

on 5 minute interval return data as a proxy for variance in the stock index returns. Lastly,

we acquired historical data of the Cboe Volatility Index (VIX), which is a measure of expected

volatility based on the S&P 500, from 3 Jan 1990 through 30 Dec 2020 (7810 observations) from

Yahoo Finance.
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6.2 Full-scale Model Estimation

We estimate our model on logarithmic returns of historical closing prices of the stock indices

AEX, DAX, FTSE 100, HSI, NASDAQ, N225 and S&P 500. To ward off inaccuracies in

parameter estimates and filtered states, we start with estimating the full-scale model considered,

which contains five correlation parameters ρ2 through ρ−2 with both the Bellman filter and the

particle filter. Since estimates from these two methods are very similar, the estimates from

the Bellman filter are depicted in Table 6, whereas the particle filter estimates can be found in

Appendix C together with numerically estimated standard errors for the Bellman coefficients.

These standard errors could not be estimated for the particle filter, possibly due to insufficient

smoothness of the likelihood in the parameters. Statistical insignificance at 5% confidence is

calculated by assuming normality and indicated with a star (?) in Table 6.

The results show conventional values for ĉ, φ̂ and σ̂η, falling in line with previous research.

The estimates for µ are all positive and around 0.1, indicating a positive median daily return

of 0.1%. Values for ρ̂2 and ρ̂−2 show the estimated correlation between volatility shocks and

Table 6: Coefficient estimates from the Bellman filter for historical returns of seven stock indices. A star

(?) indicates insignificance at the 5% level, assuming normality.

AEX DAX FTSE 100 HSI NASDAQ N225 S&P 500

µ̂ −0.125? −0.093? −0.051? −0.099? −0.179? −0.064? −0.109?

ĉ −0.001? −0.006? −0.002? −0.011? −0.000? −0.018? −0.008?

φ̂ −0.988? −0.981? −0.986? −0.982? −0.987? −0.967? −0.984?

σ̂η −0.204? −0.199? −0.171? −0.182? −0.237? −0.236? −0.238?

ρ̂2 −0.056? −0.328? −0.351? −0.043? −0.124? −0.054? −0.008?

ρ̂1 −0.085? −0.595? −0.622? −0.257? −0.038? −0.281? −0.115?

ρ̂0 −0.758? −0.262? −0.288? −0.415? −0.759? −0.500? −0.812?

ρ̂−1 −0.054? −0.110? −0.118? −0.102? −0.012? −0.291? −0.154?

ρ̂−2 −0.053? −0.043? −0.036? −0.092? −0.103? −0.102? −0.010?
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return shocks of two days earlier and later respectively. They are incidentally found at notable

values, but do not seem to imply a strong relation. Exceptions are the DAX and FTSE 100,

where the effect of return shocks on volatility seems to not be fully incorporated within one

day. This could contain a volatility overreaction, where the leverage effect of ρ1 overshoots on

the first day, leading to a relation between a negative return of two days ago and a decrease in

volatility today.

ρ̂1, ρ̂0 and ρ̂−1 tell an interesting story as they could be interpreted as representing three

well-known volatility phenomena: leverage, volatility feedback and the volatility risk premium

respectively. The estimates for ρ1 show that in most of the indices the leverage effect seems to

be present, as there is a consistent negative relation between returns of yesterday and volatility

shocks of today, implying an increase in market distress the day after a negative return. ρ0

captures the contemporaneous relation between the shocks, also showing negative correlation

estimates between the two. This falls in line with the volatility feedback hypothesis which

implies that a rise in volatility requires an immediate decline in price to allow for volatility risk

premia. Some markets seem to be subjected more to one of these effects than the other as the

relative sizes of ρ̂1 and ρ̂0 interchange depending on the index. This could suggest that some

stock indices incorporate volatility changes faster than others. ρ−1 shows the relation between

the volatility shock of today and the return of tomorrow. This relation has not been considered

before, but can capture self-fulfilling prophecies of nervous investors and volatility risk premia.

The results differ per market, but seem economically significant. For some indices, this relation

is found to be negative, whereas for others this is positive. A positive relation combined with

volatility feedback implies a premium for investors after a dip as volatility rises: a negative

return leads to a volatility increase on the same day, which leads to a ‘bounce-back’ return on

the next day. However, a negative relation could mean that declining volatility leads to positive

returns in the future. Furthermore, this could reflect delayed volatility feedback, where price

decline stemming from a volatility surge is not fully incorporated immediately, but is also visible

a day later.

We conclude that the correlation structures suggested by Table 6 are not unambiguous over
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different indices. These indices can be treated as reflecting different markets, e.g. the DAX is

an industry-heavy index, whereas the NASDAQ almost exclusively considers tech companies.

It remains speculative to link economical interpretation to index differences and Table 6, but

a possible interpretation is that indices with a strong contemporary correlation show a larger

volatility risk premium. On the other hand, indices where ‘slower’ leverage dominates through

ρ1, also seem to experience a delayed volatility feedback effects through negative ρ−1 estimates.

It is possible that indices where ρ̂0 is found to be very large incorporate changes in volatility

faster and therefore leave less of the stylistic volatility effects to be absorbed by ρ1 and ρ−1.

Furthermore, the results for these indices are more likely to suggest the existence of a risk

premium for volatility through positive ρ̂−1. Table 6 suggests that the ‘slower’ indices are the

DAX and FTSE 100 and ‘faster’ indices are the AEX, NASDAQ and S&P 500, as the latter

show estimated ρ̂0 of around 80%, whereas the former reach only 27% on average and almost

vice versa for the intertemporal ρ1. Moreover, the ρ−1 estimate for the AEX and S&P 500 show

positive risk premia for volatility, for the NASDAQ only a negligible amount and for the DAX

and FTSE it suggests a delayed volatility feedback effects.

6.2.1 Implied mean, skew and autocorrelation of S&P 500

We estimate the mean and skew of the returns of the S&P 500 numerically through simulation

with the estimated model, since this is difficult in closed form as shown in subsection 2.1. The

estimate of the mean is found at 0.032%, lower than the median of 0.109%, exactly equal to µ̂.

The skewness of the simulated returns equals −1.186, pointing to a strong negative skew with

negative returns being larger in size. This tells us that the non-zero mean, which stems from

the skewness induced by ρ0, is compensated for by µ̂ yielding a slightly positive mean return.

This corresponds to the empirical estimates of the mean, median and skew, which are 0.030,

0.058 and −0.410 respectively. We conclude that the skew is somewhat overestimated, but

mean and median are reasonably correct. Furthermore, we calculate the autocorrelation of the

return shocks implied by ρ̂ with Equation 4, which yields γ̂ ε̃ = (−0.034,−0.016, 0.002, 0.000)′,

sorted from lag one to four. This approximately falls in line with the empirical autocorrelation

γ ε̃ = (−0.056,−0.058, 0.020,−0.011)′ and the negative autocorrelation typical for index returns.
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6.2.2 Impact of µ

We find that omitting µ, as is done in e.g. Catania (2020), can lead to strongly underestimating

ρ0, as the negative mean implied by the negative skewness cannot be offset by increasing µ.

This possibly explains why previous research sometimes finds ρ0 to be irrelevant. It is our belief

that this is incorrect and that this parameter plays an important, in some markets central role

in the relation between stock prices and market volatility.

To support this claim, we estimate our full-scale model, filter the volatility shocks with the

Bellman filter and calculate the correlation with shocks of the VIX. We compare this result

with a model that neglect this parameter by setting µ = 0 and with a ‘simple’ unleveraged

model by setting ρ = 0 but µ unconstrained. The latter reaches a correlation of 28.2%; adding

the correlation parameters but constraining µ = 0 improves this to 31.5%. However, adding

µ back to obtain our full-scale model yields 66.3%, a strong improvement. Furthermore, the

scatter plots in Figure 1 illustrate this difference, as the points and ordinary least squares lines

line up straighter in Figure 1a than in 1b and 1c. This leads us the believe that these parameters

are of vital importance when incorporating correlation between return and volatility shocks.
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Figure 1: Three scatterplots with ordinary least squares lines of the VIX shocks on the x-axis and the

filtered volatility shocks on the y-axis under three different model specifications.
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6.3 Model Selection

We find an indication of parameters’ relevancy by calculating the Akaike information criteria

for different model sizes and depict them in Table 7.

From Table 7, it can be seen that the information criteria mostly point to models with one

volatility lag and either one or two leads. This roughly corresponds to the results of Table 6, as

they show the three ‘central’ correlation parameters to be of the most importance. Moreover,

no index yields the lowest information score with the model without leading volatility. Lastly,

there does not seem to be a structural difference between Bellman and particle filter selection.

For the AEX, both methods point to a model with one lag and lead, which is striking since

all correlation parameters except the contemporaneous were found to be insignificant. DAX

and FTSE results are similar, both once indicating n = 1,m = 1 and once n = 1,m = 2.

Surprising, as in Table 6 they show significant values for ρ̂2, but not for ρ̂−2. It could be that,

although these leading parameters are not found at notable values, their likelihood gains offset

their penalties in the AIC, whereas the lagging ones do not, but this is speculative. The criteria

for both the HSI and the NASDAQ reflect their significant ’slow’ correlation parameters ρ̂2 and

ρ̂−2 as they point to large models. Lastly, the N225 and S&P 500 waddle between the simple

n = 1,m = 1 model and adding one lagging or leading parameter respectively. This falls in line

with their strong central correlation parameters of Table 6.

Table 7: Akaike information criterion values estimated using the Bellman and particle filter. A star (?)

indicates the lowest values for method-index pairs.

AEX DAX FTSE 100 HSI NASDAQ N225 S&P 500

n = 2,m = 2 P B

n = 2,m = 1 B

n = 1,m = 2 P B B P P

n = 1,m = 1 B&P B P P B

n = 2,m = 0
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We conclude that differences found between full-scale model parameter estimates found in Ta-

ble 6 may translate into different model selections, again reflecting our suspicion that the relation

between volatility and returns differs between indices.

6.4 Predictive Performance

6.4.1 Loss functions

In Table 8, we compare out-of-sample volatility forecasts from 4 Jan 2010 through 30 Dec 2020

of our new stochastic volatility model (SV1), which is specified corresponding to the results of

Table 7, with a more traditional volatility model (SV2: m = 0, n = 2) in the style of Catania

(2020) as it allows for contemporaneous and lagging, but not leading volatility correlation.

Furthermore, we compare it with the performance of a completely ‘unleveraged’ stochastic

volatility model (SV3: m = 0, n = 0, ρ0 = 0), where return and state shocks are independent.

To round out our comparison, we also analyse the performance of the asymmetric or ‘leveraged’

GARCH(1,1) model of Glosten et al. (1993), which is given by

yt = µ+ σt · εt,

σ2t+1 = ω + (α+ βH(yt − µ)) (yt − µ)2 + γσ2t .
(30)

where H(·) is the Heaviside step function to differentiate between positive and negative returns.

The future variance σ2t+1 is a deterministic function of the current log-variance λt and return

yt, setting this model apart from stochastic volatility models.

For a quantitative comparison, we apply the robust loss functions from Patton (2011), which

he shows to work well for measuring predictive performance of volatility with imperfect proxies.

These loss functions are the mean squared error (MSE) and quasi-likelihood (QLIKE) given

respectively as

MSE =
(
σ̂2t − expλt|t−1

)2
,

QLIKE = λt|t−1 +
σ̂2t

expλt|t−1
,

(31)

where σ̂t is the proxy for the true variance at time t, in our case being the realised variance,

and λt|t−1 the prediction of the log-variance. Since the MSE is sensitive to outliers, results can
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become distorted. For this reason, we remove squared errors exceeding a value of one thousand,

which typically happens thrice: once on 24 Aug 2015 during a flash crash, and twice in March

2020 during the COVID-19 outbreak. Effectively, we treat these events as being completely

unpredictable.

From Table 8, it can be seen that the predictions of the particle filter are almost always out-

Table 8: Mean squared error (MSE) and quasi-likelihood (QLIKE) values for the Bellman and particle

filtered log-variance λt and the realised variance. SV1 is our new model specified according to Ta-

ble 7, SV2 the model without leading volatility correlation, SV3 the unleveraged model and asymmetric

GARCH(1,1). A star (?) indicates the lowest value for each method-index pair.

MSE QLIKE

Index Filter SV1 SV2 SV3 GARCH SV1 SV2 SV3 GARCH

AEX
Bellman 2.271? 2.283 2.585

2.436
0.865 0.863? 0.859

1.004
Particle 2.535? 2.623 4.138 1.273? 1.338 4.668

DAX
Bellman 3.141 3.122? 3.682

3.668
1.150 1.134? 1.146

1.256
Particle 4.253 4.179? 6.002 1.637 1.503? 4.652

FTSE 100
Bellman 1.840? 1.927 2.147

1.962
0.594? 0.602 0.613

0.756
Particle 1.951 1.943? 2.467 0.620? 0.638 2.083

HSI
Bellman 2.518? 2.520 2.393

2.184
1.291 1.288 1.225?

1.212
Particle 3.235? 3.354 4.011 2.605? 2.644 6.290

NASDAQ
Bellman 2.716 2.636? 3.230

2.973
0.917 0.912? 0.935

1.002
Particle 3.917 3.457? 5.601 1.205 1.190? 3.117

N225
Bellman 4.283? 4.284 4.699

4.736
1.177? 1.177 1.207

1.309
Particle 5.539 5.191? 7.176 1.699 1.621? 3.586

S&P 500
Bellman 2.230? 2.362 3.004

4.138
0.436? 0.439 0.535

0.779
Particle 2.559? 2.742 3.586 0.462 0.443? 0.812
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performed by the Bellman filter. In terms of MSE, the best value using the full-scale model

SV1 is attained eight times and using SV2 six times. In terms of QLIKE, this shift to six

versus seven, with one point for SV3 on the HSI. These results indicate that superior predictive

performance can be attained by adding volatility leads on certain indices. However, it should

be noted that for the HSI, asymmetric GARCH seems unbeatable, yielding the lowest losses.

For this instance, we suspect the SV models to lack robustness, possibly due to regime shifts, a

strong point of (G)ARCH-type models. Nonetheless, it is interesting to note that asymmetric

GARCH, being a model with fewer parameters than the stochastic volatility models, should be

more robust out-of-sample, but typically does not outperform a leveraged SV model.

6.4.2 Diebold-Mariano-West test

To measure statistical significance of differences in predictive power between the models while

accounting for serial correlation in the loss differential, we use the test for comparing predictive

accuracy by Diebold and Mariano (1995) and West (1996). The test statistic is given by

d̄√
σ̂2d/T

∼ N(0, 1), (32)

where d̄ is the average difference between the squared loss of two predictions e2t and r2t :

d̄ =
1

T

T∑
t=1

(
e2t − r2t

)
, (33)

and σ̂d the autocorrelation corrected volatility of d̄

σ̂2d = γ̂d(0) + 2
h∑
j=1

γ̂d(j), (34)

where γ̂d(j) is the empirical estimate of the jth autocovariance of d̄. We found significant

autocorrelation in d̄ up to four days, which is why we choose h = 4.

Resulting p-values for the Diebold-Mariano-West tests are given in Table 9 for the Bellman and

particle filter predictions. For the Bellman filter, we see that on the S&P 500, SV1 outperforms

the other models at the 5% significance level. On the FTSE 100, we also see significant per-

formance increases, but GARCH catches up. On the other indices, results differ. On the AEX

32



Table 9: p-values from the Diebold-Mariano-West tests for the Bellman and particle filter predictions

for volatility with models SV1 being the AIC selected model of Table 7, SV2 the model without leading

volatility correlation, SV3 the unleveraged model, and asymmetric GARCH(1,1). Values larger than 0.5

indicate that the model the to left outperforms the model above and lower vice versa.

Bellman filter Particle filter

SV2 SV3 GARCH SV2 SV3 GARCH

SV1 0.847 0.954 0.358 0.582 1.000 0.127

AEX SV2 0.960 0.352 1.000 0.123

SV3 0.254 0.017

SV1 0.177 0.985 0.969 0.093 0.996 0.084

DAX SV2 0.991 0.965 0.997 0.107

SV3 0.497 0.000

SV1 0.951 0.938 0.891 0.299 0.163 0.696

FTSE 100 SV2 0.864 0.861 0.167 0.726

SV3 0.805 0.846

SV1 0.319 0.009 0.000 0.692 0.960 0.000

HSI SV2 0.007 0.000 0.894 0.000

SV3 0.000 0.000

SV1 0.020 0.980 0.230 0.826 0.668 0.139

NASDAQ SV2 0.983 0.307 0.639 0.138

SV3 0.099 0.137

SV1 0.689 0.976 0.997 0.239 0.975 0.989

N225 SV2 0.976 0.997 0.998 0.994

SV3 0.998 0.859

SV1 0.982 0.998 0.972 0.904 1.000 0.993

S&P 500 SV2 0.999 0.971 0.999 0.993

SV3 0.941 0.939
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and N225, we still find SV1 to perform the best among the SV models, but not significantly so.

On the DAX, HSI and NASDAQ, SV2 defeats SV1, on the latter at 5% significance. GARCH

dominates on the HSI and to a lesser extent on the NASDAQ.

Moving to the particle filter results, we see that the gap between SV1 and SV2 prediction

performances narrows, indicating that particle filter predictive performance benefits less from

adding leading volatility correlation. However, for the S&P 500 we see that SV3 is clearly

defeated by the other SV models, as opposed to for the FTSE 100. Lastly, we notice that here

the GARCH filter is on average more likely to outperform SV models, as p-values fall with the

exception of the S&P 500.

7 Conclusion

Our new stochastic volatility model extends classic volatility models by accounting for both

leading and lagging correlation between return and volatility shocks. Furthermore, we add a

median parameter to the measurement equation, to be able to independently set the skewness

and the mean of the returns as well as effectively unconstraining the contemporaneous correla-

tion parameter ρ0. These changes allow the model to more fully capture the relation between

price fluctuations and their volatility, as not only the classic ‘leverage’ effect can be captured,

where volatility shocks follow return shocks, but also ‘volatility feedback’, where a sudden in-

crease in volatility requires a decline in price to facilitate future volatility risk premia. Lastly,

leading volatility correlation parameters can capture this premium as they show the generally

positive relation between a rise in volatility yesterday and the return shocks of today.

We investigated the performance of this model using the recently proposed Bellman filter by

Lange (2021) and the particle filter of Malik and Pitt (2011). Generally, we found these filters

to give similar results, but estimating and filtering with the Bellman filter is notably quicker

compared to the particle filter. Moreover, the particle filter requires good starting values, which

we produced with the Bellman filter. Without these starting points, the optimiser got stuck in

local maxima of the particle filter’s estimated likelihood function.
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In our empirical study of the returns of seven stock indices from 1990 through 2020, we found

that the added parameters are a relevant addition to the stochastic volatility model. Generally,

the median is found at a positive value, the distribution has a notable negative skew and the

typical negative autocorrelation in returns is captured. Furthermore, we calculated correlation

of our filtered volatility shocks of the S&P 500 with daily changes in the VIX and found that

adding both parameters more than doubled correlation percentage with respect to leaving either

one out.

Lastly, we compared predictive performance of our model through robust loss functions and

Diebold-Mariano-West tests with a stochastic volatility model without leading volatility cor-

relation in the style of Catania (2020), an ‘unleveraged’ model and the asymmetric GARCH

model of Glosten et al. (1993) and conclude that out-of-sample predictions of our new model

can significantly outperform other stochastic volatility models and asymmetric GARCH on the

S&P 500 using the Bellman filter, and to a lesser extent on the FTSE 100. On the five other

indices, our new model outperformed the model without leads twice, but not significantly so.

We suspect these differences to be due to the different behaviour of volatility on these indices,

as implied by the correlation estimates of Table 6. However, from a semantic perspective, our

model gives, to the best of our knowledge, insight into the evolution and interplay of returns

and volatility that is new to the field of stochastic volatility models.

From this point, there are multiple paths for future research. For example, it would be in-

teresting to compare the performance of the model of Catania (2020) with that of our model.

For this, the Bellman filter implementation needs to be changed slightly, as the state transition

equation of this model is degenerate and non-linear. Furthermore, it is appealing to study the

implementation of non-Gaussian distributions in our model, a good example being a Student’s

t-distribution for the returns, as financial returns are generally heavy-tailed. Lastly, an imple-

mentation on high-frequency data could yield interesting results, as this allows the researcher

to ‘zoom in’ on the intertemporal relation between return and volatility.
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Appendix A State space form general model

Below, the complete general state space formulation of the state transition equation of Equa-

tion 1 is given.

λt

ηt+n

ηt+n−1
...

ηt+1

ηt

ηt−1
...

ηt−m+1

ηt−m



=



c

0

0
...

0

0

0
...

0

0



+



φ 0 0 ση 0 0 0 0

0 0 0 . . . 0 0 0 . . . 0 0

0 1 0 0 0 0 0 0
...

. . .
...

. . .
...

0 0 0 0 0 0 0 0

0 0 0 . . . 1 0 0 . . . 0 0

0 0 0 0 1 0 0 0
...

. . .
...

. . .
...

0 0 0
. . .

0 0 0
. . .

0 0

0 0 0 0 0 0 1 0



·



λt−1

ηt+n−1

ηt+n−2
...

ηt

ηt−1

ηt−2
...

ηt−m

ηt−m−1



+



0

ηt+n

0
...

0

0

0
...

0

0


(35)

Appendix B Score and information formulas

In this appendix, we give the formulas for calculating the realised score and information of

a measurement yt with respect to a state estimate at, as well as their expected counterparts,

which can be used for different numerical optimisation methods, such as Fisher’s scoring method.

Conditional on at = [λt ηt]
′, yt is normally distributed yt ∼ N(mt, s

2
t ) with

mt = E [yt|λt,ηt] = µ+ ρ′ηt · exp(λt/2),

s2t = V (yt|λt,ηt) =
(
1− ρ′ρ

)
· exp(λt).

(36)

Using this notation, the realised score, which is defined as the first derivative of the measurement

log-likelihood conditional on the state `(yt|αt) with respect to the state itself, is

d`(yt|αt)
dαt

=

 d`(yt|λt,ηt)
dλt

d`(yt|λt,ηt)
dηt

 =

 yt(yt−mt)
2s2t

− 1
2

ρ√
1−ρ′ρ ·

yt−mt

st

 , (37)
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which in expectation is

E
[

d`(yt|αt)
dαt

]
= E

 d`(yt|λt,ηt)
dλt

d`(yt|λt,ηt)
dηt

 =

 0

0

 . (38)

The second derivative with respect to the state is the realised information and given by

−d2`(yt|αt)
dαtdα′t

= −

 d2`(yt|λt,ηt)
dλ2t

d2`(yt|λt,ηt)
dλtdη′t

d2`(yt|λt,ηt)
dλtdηt

d2`(yt|λt,ηt)
dηtdηt′

 =

 y2t
2s2t
− ytmt

4s2t

ρ′√
1−ρ′ρ ·

yt
2st

ρ√
1−ρ′ρ ·

yt
2st

ρρ′

1−ρ′ρ

 , (39)

which in expectation is equal to

E
[
−d2`(yt|αt)

dαtdα′t

]
= E

−
 d2`(yt|λt,ηt)

dλ2t

d2`(yt|λt,ηt)
dλtdη′t

d2`(yt|λt,ηt)
dλtdηt

d2`(yt|λt,ηt)
dηtdηt′

 =

 1
2 +

m2
t

4s2t

ρ′√
1−ρ′ρ ·

mt
2st

ρ√
1−ρ′ρ ·

mt
2st

ρρ′

1−ρ′ρ

 .

(40)

Appendix C Empirical particle filter coefficient estimates and

Bellman standard errors

Table 10 contains the parameter estimates for the full-scale model on daily index returns of the

AEX, DAX, FTSE 100, HSI, NASDAQ, N225 and the S&P 500 using the particle filter. They

are similar to the estimates produced by using the Bellman filter, as depicted in Table 6.

Table 11 contains the by finite differences numerically approximated standard errors for the

Bellman filter parameter estimates of Table 6.
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Table 10: Coefficient estimates from the particle filter for historical returns of seven stock indices.

AEX DAX FTSE 100 HSI NASDAQ N225 S&P 500

µ̂ −0.133 −0.094 −0.050 −0.100 −0.188 −0.067 −0.100

ĉ −0.001 −0.006 −0.003 −0.011 −0.000 −0.018 −0.008

φ̂ −0.942 −0.933 −0.945 −0.947 −0.938 −0.921 −0.965

σ̂η −0.195 −0.176 −0.142 −0.159 −0.215 −0.212 −0.256

ρ̂2 −0.058 −0.322 −0.370 −0.044 −0.127 −0.055 −0.009

ρ̂1 −0.084 −0.603 −0.623 −0.257 −0.039 −0.287 −0.126

ρ̂0 −0.787 −0.274 −0.307 −0.413 −0.760 −0.507 −0.890

ρ̂−1 −0.055 −0.117 −0.124 −0.107 −0.013 −0.292 −0.157

ρ̂−2 −0.057 −0.046 −0.038 −0.094 −0.109 −0.108 −0.011

Table 11: Coefficients’ standard errors from the Bellman filter for historical returns of seven stock indices.

AEX DAX FTSE 100 HSI NASDAQ N225 S&P 500

µ̂ 0.016 0.016 0.011 0.020 0.015 0.019 0.011

ĉ 0.003 0.003 0.002 0.004 0.003 0.004 0.002

φ̂ 0.128 0.107 0.106 0.101 0.139 0.084 0.115

σ̂η 0.074 0.067 0.070 0.082 0.077 0.073 0.070

ρ̂2 0.049 0.039 0.052 0.047 0.040 0.050 0.047

ρ̂1 0.067 0.051 0.026 0.050 0.053 0.060 0.038

ρ̂0 0.080 0.073 0.027 0.081 0.071 0.047 0.079

ρ̂−1 0.068 0.051 0.069 0.041 0.037 0.026 0.039

ρ̂−2 0.047 0.043 0.038 0.035 0.039 0.023 0.053
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