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Abstract

In this research, I evaluate multiple dynamic one-month-ahead volatility and covariance matrix

forecasts for the S&P 500 constituents in the period January 2000 — December 2020. Covari-

ance matrix predictions are made using a model combining Dynamic Conditional Correlations and

nonlinear shrinkage, and its improved version that exploits open-high-low-close price data. Fur-

thermore, I propose Variance Forecast Shrinkage (VFS) and a picking forecast, which combine the

theoretically optimal iterated and often practically optimal scaled myopic (GJR-)GARCH model

forecasts. Out-of-sample empirical results show that risk-adjusted returns of GMV portfolios, based

on the covariance forecasts, almost triple compared with a simple 1/N portfolio. However, the VFS

and picking forecasts do not improve upon either iterated or scaled predictions, although they show

that none of the latter two is superior.
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1 Introduction

Much research has been conducted on improving covariance matrix estimation and prediction,

because it is useful in a wide variety of research fields. Focusing on Markowitz portfolio selection, one

can create a Global Minimum Variance (GMV) portfolio, given an accurate forecast of the covariance

matrix. Empirical research has namely shown that stocks with low variances tend to obtain higher

(risk-adjusted) returns than more volatile equities (see e.g., Jagannathan and Ma (2003)). This

phenomenon is also called the low-volatility anomaly. A GMV portfolio is therefore not only useful

for investors that want to lower their risks. However, the intuitive and easy-to-calculate sample

covariance matrix starts lacking when the considered stock universe becomes larger, due to the high

number of parameters that need to be estimated. For this reason, Ledoit and Wolf (2004) propose

linear shrinkage. In this procedure, a linear combination of the sample covariance matrix and a

shrinkage target is taken as estimator, with weights that minimize a certain loss function.

Recently, a more useful method for larger dimensions, called nonlinear shrinkage, was proposed

by Ledoit and Wolf (2012). This approach generalizes the idea of shrinking the sample covariance

matrix by a common shrinkage intensity. It uses the spectral decomposition of the sample covari-

ance matrix, and is developed in such a way that it yields a well-conditioned covariance matrix,

even in case the dimension size exceeds the number of observations (N > T ). Ledoit and Wolf

(2017a) show that the theoretical advantage over linear shrinkage also holds empirically. Engle

et al. (2019) combine the Dynamic Conditional Correlations (DCC) model of Engle (2002) with

nonlinear shrinkage, creating the possibility to capture the time-dependence of large covariance ma-

trices in the DCC-NonLinear shrinkage model (DCC-NL). In a comparison of several multivariate

GARCH models, Engle et al. (2019) show that lower volatilities and higher Sharpe ratios than the

1/N portfolio are obtained when using the DCC-NL covariance matrix forecast in a GMV portfolio.

Another striking result is that it significantly outperforms the portfolio of the DCC estimator.

This research focuses on evaluating large dynamic covariance matrix forecasts of S&P 500 con-

stituent returns, and their use in GMV portfolios. Also, an attempt is made to improve variance

predictions by combining iterated and scaled myopic forecasts. Ghysels et al. (2019) namely show

that, although iterated GARCH forecasts are theoretically optimal, scaled GARCH forecasts tend

to be more accurate in practice. Therefore, this paper proposes Variance Forecast Shrinkage (VFS)

and a picking forecast. They determine optimal weights on the iterated and scaled forecasts by

using historical predictive accuracies and estimated kurtoses as explanatory variables. In this way,

ex ante and asset-dependent optimal weights are estimated at each point in time.

De Nard et al. (2020) even further improve the DCC-NL estimator by making use of Open-High-

Low-Close (OHLC) price data. They exploit more efficient daily volatility proxies than the squared

daily returns, all found under the assumption that stock prices follow a geometric Brownian motion

with or without drift. These estimators were introduced by Parkinson (1980), Garman and Klass
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(1980), and Rogers and Satchell (1991). However, none of them use all available data to estimate

the volatility in one day (considering close-to-close as a day): both the previous- and current-day

close price, and the high, low, and open price. Therefore, I propose the COHLC-proxy, which does

use all above values. It also stays similar to the COHL-proxy, the third proposed estimator by

Garman and Klass (1980). Compared with this second most efficient proxy, a theoretical efficiency

improvement of 12.1% is found for the COHLC-proxy. Furthermore, this research considers asset-

dependent estimation of the proportion of variance realized overnight, which is required for the

proxy. It ensures that the daily volatility estimates of stocks with relatively different closed-market

trading activities remain comparable.

In this research, empirical results are obtained using OHLC price data of all S&P 500 constituents

over the period January 1995 — December 2020, where the first five years are used as a burn-in

period. Sharpe ratios of GMV portfolios, based on the covariance forecasts, are shown to be

approximately three times as high as for the 1/N portfolio. Also, GJR-GARCH seems to be of added

value in-sample, while no improvement can be found in the out-of-sample forecasts, compared with

regular GARCH forecasts. Furthermore, for OHLC-based volatility proxies, in-sample estimates

of the proportion of variance realized overnight should be determined asset- and time-dependent.

Large differences are namely found among the stock return variances, and an increasing pattern

of relative trading activity during closed markets is found over time. I also show that the use of

OHLC-based volatility proxies decreases portfolio volatility and increases Sharpe ratios significantly.

It is also shown that the VFS and picking forecasts do not seem to be more accurate than either

iterated or scaled predictions. However, their implied weights show that none of the latter two is

superior to one another in the total cross-section, or over the entire sample period. Furthermore, no

significant performance differences can be found between the VFS forecasts based on the kurtosis

and those based on the historical predictive accuracy. Lastly, one can conclude that there is no

need to use a t-distribution instead of a normal distribution for the GARCH models.

This paper proceeds as follows. Section 2 discusses the literature relevant for this research.

Section 3 elaborates on the data that is used. Section 4 explains the methods considered for

covariance matrix and volatility prediction, and how they are evaluated. In Section 5, the results of

the models and forecasts are given and interpreted. Section 6 concludes and discusses limitations

of the research and possibilities for future research.

2 Literature Review

DeMiguel et al. (2009) focus on the empirical performance of a set of methods in terms of portfolio

Sharpe ratios compared with the simple 1/N portfolio. They strikingly show that the 1/N portfolio

is hard to outperform. However, they do not consider any dynamic models to forecast a next

period’s covariance matrix. Furthermore, they use low-frequency data (monthly) with arguably
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large moving windows, which also causes the methods to fail to capture the dynamic structures.

Therefore, portfolios based on dynamic higher-frequency models might be able to outperform the

1/N portfolio.

Engle et al. (2019) account for conditional heteroskedasticity with the DCC model, and counter-

act the curse of dimensionality with nonlinear shrinkage. They show a predictive improvement over

DCC in an empirical and simulation study, which becomes even larger as the asset space grows.

Also, higher (risk-adjusted) GMV portfolio returns than the 1/N portfolio are obtained. With

DCC-NL, nonlinear shrinkage is applied to the unconditional correlation matrix of the DCC model,

where previously just the sample correlation matrix was used. Ledoit and Wolf (2020) derive an an-

alytical method to determine the optimal individual shrinkage intensities in the nonlinear shrinkage

method by using random matrix theory.

Hautsch et al. (2015) use intraday data of the constituents of the S&P 500 to construct GMV

portfolios. They show that high-frequency data yields better covariance matrix estimators than

low-frequency data. However, this conclusion is only drawn for horizons up to one month, making

their research especially useful for short-term investors and traders. Andersen et al. (1999) also show

that forecasts are improved when using high-frequency data for intraday to one-month horizons.

In a study to exploit OHLC price data, Parkinson (1980), Garman and Klass (1980) and Rogers

and Satchell (1991) propose new volatility proxies that can theoretically improve the efficiency of

the squared return proxy with factors up to 8.4. These improved proxies can be used to replace the

squared return in the GARCH models, as shown by Chou (2005). De Nard et al. (2020) improve

the DCC-NL estimator by using the OHLC data instead of only daily returns. They also use

this intraday data to introduce so-called regularized returns, which are used for a more accurate

correlation matrix estimator.

Engle et al. (2019) state that DCC-NL might also be improved by changing the GARCH model

to a model that incorporates a leverage effect, for example. This allows the variance to react

differently after upward or downward shocks. Hansen and Lunde (2005) compare the performance

of 330 ARCH-type models using ten years of intraday International Business Machines Corp(̇IBM)

return data. They find that out-of-sample performance is improved compared with GARCH when

accommodating this effect. Therefore, this research also considers the GJR-GARCH model of

Glosten et al. (1993).

Next to that, this research aims to improve variance forecasts by generalizing the idea that

one should either use scaled myopic or iterated forecasts. Ghysels et al. (2019) show that a scaled

forecast is preferred when considering one-month-ahead forecasts of the S&P 500 index. Yet, this

finding does not need to hold for the individual equities within the index. For this reason, VFS

is proposed. It uses a measure of forecast uncertainty to determine weights for an optimal linear

combination of the scaled and iterated variance predictions.
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3 Data

The data used in this research comes from the CRSP database, and contains daily information of all

S&P 500 constituents over the period January 1995 — December 2020. This period is chosen because

of the availability of open prices since 1995, which are necessary for OHLC-based models. Also, it

contains periods of high overall volatility and recessions, yielding valid performance comparisons.

Because the index composition changes over time, the dataset does not contain 500 but 1162

stocks, with T = 6547 days of information each. Since it also includes the companies that have

gone bankrupt in this period, there is no survivorship bias. Furthermore, at each point in time,

only companies that are in the S&P 500 at that time are considered, to rule out other look-ahead

biases. Another reason for this, is the fact that constituents of the S&P 500 have high market

capitalizations by construction, which is often accompanied by high liquidity and data availability.

Lastly, at each point in time, stocks that have not been traded for at least five years are left out. In

this way, the considered methods can be estimated using a moving window of five years. It causes

the average number of considered stocks to decrease by only ± 5%, to 476.

For each day-stock combination, the dataset contains the holding period return of that day,

which is already adjusted for, e.g., dividends or stock splits. Furthermore, it consists of the open,

high, low, and close prices, which are used to improve volatility proxies. Next to that, for the sake

of completeness, delisting returns are retrieved to derive returns especially from companies that

were still in the S&P 500 while being delisted.

The dataset also contains ten companies with two share classes, whose returns tend to be highly

correlated in practice. Therefore, of each such pair, if simultaneously occurring, the stock with the

shortest history in the S&P 500 is removed. If these numbers coincide, the stock with the highest

average bid-ask spread is removed. This causes ten stocks to be fully removed from the data, while

the other two pairs of stock do not trade simultaneously at any point in time. Eventually, N = 1152

stocks remain. Next to that, very rarely, an asset’s return is missing on a specific date while being

in the S&P 500, wherefore it is replaced by a zero. This only has a small impact, since the largest

number of missing observations of a stock’s return is just six.

As is common in practice, portfolios in this research are rebalanced monthly, which ensures

that turnovers do not become too large. Furthermore, for simplicity, a month is assumed to be a

period of 21 trading days. This causes the dataset to contain 311 full ‘months’, wherefore the last

16 observations are dropped.

3.1 Index performances

Figure 1a shows the cumulative returns of the equally-weighted (EW) and value-weighted (VW)

S&P 500, while Figure 1b shows daily EW returns over time. One can also observe periods of

recessions and high-volatility regimes by means of the shaded areas.

5



(a) Cumulative returns 1 +Rcum,t of EW & VW (b) Daily returns of EW

Figure 1: Simple returns of the EW and VW S&P 500 indices over January 1995 — December 2020.
The blue-shaded areas represent U.S. recessions1. The red-shaded areas represent high-volatility
regimes from a bivariate Markov Switching model fitted to the EW returns. The purple-shaded
areas are their intersects.

Firstly, the cumulative returns seem to be higher for EW than for VW. This slightly better

performance is also reflected by the higher mean returns and Sharpe ratios for EW in multiple

sub-periods, shown in Table 1. According to Plyakha et al. (2012), the relatively good performance

of the EW S&P 500 index can be explained by its higher exposure to the well-known risk factors

market, size, and value. Yet, they argue it can also be explained by the monthly rebalancing of

the EW portfolio, which takes advantage of, e.g., reversal at a monthly frequency. DeMiguel et

al. (2009) also find higher Sharpe ratios for EW than VW in all six of their considered datasets.

Therefore, in this research, the 1/N portfolio is considered the benchmark. Although the 1/N and

EW portfolio are similarly defined, this paper considers EW to be based on all S&P 500 stocks,

and 1/N only on the stocks considered by the GMV portfolios at each point in time. Note that this

causes the 1/N portfolio to consist out of only ± 5% less stocks than EW. However, comparisons

between 1/N and GMV portfolio performances remain valid because of it.

EW Full period Expansions Recessions Low-vol. High-vol.

Ann. Mean % 13.675 14.138 10.080 17.813 -14.252
Ann. Vol. % 20.470 16.621 39.083 15.087 41.315
Ann. Sharpe 0.668 0.851 0.258 1.181 -0.345

VW Full period Expansions Recessions Low-vol. High-vol.

Ann. Mean % 11.908 13.098 2.662 15.928 -15.224
Ann. Vol. % 19.131 16.385 33.512 15.030 36.168
Ann. Sharpe 0.622 0.799 0.079 1.060 -0.421

Table 1: Performance measures of EW and VW S&P 500 index over January 1995 — December
2020 and different distinctive time periods.

1Coming from the National Bureau of Economic Research.
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Secondly, the returns tend to be very low in the high-volatility regimes, especially during the

global financial crisis from 2007 to 2009, which contains the most extreme daily returns in the

dataset. In the corresponding recession, the EW cumulative return (Rcum,t) went from 421.80% in

December 2007 to 140.42% at its low in March 2009, indicating a loss of 53.92% in only 16 months.

3.2 Constituent performances

To understand the importance of diversification and low stock variances, this section discusses

individual performances of the stocks in the dataset. In Figure 2a, one can see the distribution of

average annualized returns of constituents while being in the S&P 500. The average is 10.54%, with

a maximum of 1144.30%, belonging to the company Pet Inc., that performed well in January 1995,

but was acquired on February 8, 1995. Since most high average annualized returns in the dataset

are from companies that were in the S&P 500 briefly (or acquired quickly), the figure only shows

values up to ± 80%. From the companies that have been a constituent for the whole sample period,

Apple Inc. has the highest average annualized return (26.48%). Furthermore, 299
1152 = 25.95% of

the companies have a negative average return, while 737
1152 = 63.98% do not outperform the EW

portfolio. However, for the Sharpe ratio, we see that 933
1152 = 80.99% do not outperform the EW

portfolio. This finding underlines the importance of diversification, since the probability that a

portfolio contains a stock like Apple Inc. becomes greater when expanding it.

(a) Annualized average returns in % (b) Annualized Sharpe ratios

Figure 2: Histograms of the annualized average returns and Sharpe ratios in the S&P 500-period of
all the constituents over January 1995 — December 2020. The black lines represent the averages,
while the red lines represent the EW portfolio.

A perfect example of the low-volatility anomaly can be found in Figure 3, which shows each

stock’s mean and volatility during their S&P 500-time plotted against each other. This anomaly

states that stocks with lower volatilities tend to outperform stocks with higher volatilities. A simple

linear regression shows us that the expected return on average decreases with the standard deviation

of the return. To be more precise, the fitted model is µ̂i = 34.65 − 0.53σi for i = 1, ..., N. This

means that a stock with volatility σ = 30% is expected to have an average annualized return of
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µ = 18.75%, while σ = 50% coincides with only µ = 8.15%. One can also see that the stocks with

the highest Sharpe ratios are more often low-volatility stocks than stocks with high means.

As indicated by Figure 4, variances are often clustered, while the returns themselves are not.

Therefore, one can predict variances much better. Together with the low-volatility anomaly, this

suggests that it could pay off to forecast the covariance matrix of stock returns, and use it to find

GMV portfolio weights, because a lower variance is expected to yield higher (risk-adjusted) returns.

Figure 3: Standard deviations of daily returns plotted against average returns during January 1995
— December 2020. Each circle represents a stock, and its size grows with the corresponding Sharpe
ratio. The fitted regression line has an intercept and slope of respectively 34.65 and -0.53.

(a) Daily returns (b) Squared daily returns

Figure 4: Sample autocorrelations of (squared) daily EW returns over January 1995 — December
2020, with blue lines representing 95% confidence intervals when no serial correlation is assumed.
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4 Methodology

In this section, the DCC model and its estimation procedure are discussed first. Next, the concept

behind and origin of nonlinear shrinkage are clarified. Subsequently, combining the latter two

subsections, the DCC-NL model is given. Afterwards, the extension of the DCC-NL to the DCC-

NL-OHLC model by means of OHLC price data and regularized returns is explained. Lastly,

different forecast types are discussed, VFS is proposed, and the forecast performance measures are

given.

4.1 DCC

The basis of all methods considered in this research is the DCC model, proposed by Engle (2002).

It is a multivariate GARCH model that generalizes the Constant Conditional Correlations (CCC)

model of Bollerslev (1990). Both models assume a univariate GARCH model (see Bollerslev (1986))

for all individual volatilities. Yet, where the CCC estimator assumes a constant correlation matrix

over time, the DCC estimator allows for time-varying correlations.

To model the volatilities of returns, a GARCH(1,1) model without drift is often used in practice:

ri,t = σi,tεi,t, εi,t
i.i.d.∼ N(0, 1) (1)

σ2i,t+1 = ωi + air
2
i,t + biσ

2
i,t for i = 1, ..., N, t = 1, ..., T, (2)

where ri,t is the return of asset i at time t, and σ2i,t = var(ri,t|It−1) is its variance conditional on

the full information set known at time t− 1. The parameters of the model are restricted by ωi > 0,

and ai, bi ≥ 0. Also, for covariance stationarity, ai + bi < 1 is required.

However, in an application to financial stock returns of IBM,Hansen and Lunde (2005) show

that GARCH can be improved upon by allowing for a leverage effect. This effect was noted by Black

(1976), and it exploits the finding that positive return shocks have less effect on the volatility of a

stock than similar-sized negative shocks. Multiple models exist that take this effect into account,

but the best-known are GJR-GARCH (Glosten et al. (1993)), APARCH (Ding et al. (1993)) and

EGARCH (Nelson and Cao (1992)). All three allow for a different effect of positive and negative

lagged residuals. Because of its relatively good performance (e.g., see Brailsford and Faff (1996),

Peters (2001)) and the fact that it preserves the interpretability of GARCH, this research also

focuses on the GJR-GARCH model. This corresponds to the proposed Model 2 of Glosten et al.

(1993), but assuming no drift in the underlying returns:

σ2i,t+1 = ωi + (ai + γiI[ri,t < 0])r2i,t + biσ
2
i,t, for i = 1, ..., N, t = 1, ..., T, (3)

where I[·] represents an indicator function. The parameters are restricted by ωi, ai > 0, ai+
1
2γi > 0

and bi ≥ 0. Now, for covariance stationarity, ai + 1
2γi + bi < 1 is required. Note that γi = 0 yields
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GARCH, indicating that GJR-GARCH is a generalization of it, which can be very useful in testing

it against GARCH. Presence of a leverage effect, as described above, would imply γi > 0, causing

volatilities to respond heavier to negative stock innovations.

Either using GARCH or GJR-GARCH does not matter for the DCC model, since it models

correlations. The cross-sectional dynamics are thus modelled separately from the individual stock

returns. Given the conditional variances over time, a diagonal matrix Dt := Diag(σ1,t, · · · , σN,t) is

constructed for each time t, only containing the conditional standard deviations on the diagonal.

They are also used to construct st :=
(
r1,t
σ1,t

, · · · , rN,t

σN,t

)′
, vectors of devolatized returns, which are

used to construct correlation matrix innovation terms.

This research focuses on the DCC model as described in Engle et al. (2019), governing the

evolution of the correlation matrix by the correlation targeting idea of Engle (2009):

Qt+1 = (1− α− β)C + αsts
′
t + βQt, (4)

where C is the unconditional correlation matrix of the returns, and thus the covariance matrix of

st. Qt is a pseudo-correlation matrix, which has diagonal elements slightly different from 1. Yet, a

correctly defined correlation matrix can be obtained by:

Rt := Diag(Qt)
−1/2QtDiag(Qt)

−1/2. (5)

Using the diagonal matrix Dt and correlation matrix Rt, the covariance matrix becomes:

Σt := DtRtDt. (6)

Note that the resulting covariance matrix Σt is positive definite (PD). Qt is PD because it is a

weighted sum of C, which is PD, and positive semi-definite weighted sum of sts
′
t. Therefore, Rt

is too, while Dt is a strictly positive diagonal matrix, and thus also PD. In total, Σt eventually is

PD because Dt and Rt are too. This is important, because it ensures that Σt is invertible, and its

inverse is needed when determining GMV portfolio weights.

To estimate the model, Engle et al. (2019) use a so-called composite likelihood method, proposed

by Pakel et al. (2020). Instead of considering the full likelihood, they combine likelihoods of certain

pairs of assets to ease computation. They have also shown consistency of the estimators in the DCC

model. Engle et al. (2019) use the proposed 2MSCLE method, which maximizes likelihoods of a

limited number of pairs, in this case, all contiguous pairs. This changes the number of calculations

to be made from O(N2) for all pairs to O(N) for only contiguous pairs, where N is the asset

space. Pakel et al. (2020) also show that their performances are approximately equal for a large N ,

wherefore the 2MSCLE approach is considered in this research too.

Altogether, fitting GARCH or GJR-GARCH, devolatized returns st and volatility forecasts
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σ̂i,T+1 are obtained first. Afterwards, unconditional correlation matrix C = cov(st) is estimated.

Lastly, the DCC model is fitted by maximizing the composite likelihood to eventually obtain co-

variance matrix forecast Σ̂T+1.

4.2 Nonlinear shrinkage

To understand how nonlinear shrinkage works, an explanation of linear shrinkage for covariance

matrices is useful. It was proposed by Ledoit and Wolf (2004), and based on the shrinkage estimation

of Stein (1956) and James and Stein (1961) for the mean vector. The idea is that a weighted sum

of the sample covariance matrix and a certain shrinkage target is taken as estimator:

Σ∗ = γ∗Γ + (1− γ∗)S, (7)

where Γ denotes the target matrix, S the sample covariance matrix, and γ∗ is called the shrinkage

intensity. The target matrix can be set equal to a scaled identity matrix as in Ledoit and Wolf

(2004), or to a factor model-implied covariance matrix, for example. However, the analytical effort

comes in with determining the optimal shrinkage intensity γ∗. Although each type of target matrix

requires a different way of computation, the goal is always to minimize the MSE function of the

difference between the estimated and real covariance matrix: Σ̂− Σ. For matrices, this function is

the Frobenius loss function (scaled by 1
N for convenience): ‖A‖2F = 1

N

∑N
i=1

∑N
j=1A

2
ij . The case of

a scaled identity matrix as target (Γ = µI) is obtained when only allowing for an estimator that is

a convex linear combination of the identity and sample covariance matrix. This gives the following

minimization problem:

min
ρ1,ρ2

E
[∥∥∥Σ̂− Σ

∥∥∥2
F

]
(8)

s.t. Σ̂ = ρ1I + ρ2S, (9)

where filling in the optimal ρ1 and ρ2 turns out to yield

Σ∗ :=
β2

δ2
µI +

α2

δ2
S, (10)

with α2, β2, δ2 and µ being functions of Σ and S, whose values can be estimated using the data.

Eventually, the optimal covariance matrix estimator is obtained by:

Σ̂∗ = γ∗µ̂I + (1− γ∗)S. (11)

Ledoit and Wolf (2004) note that Σ̂∗ can also be expressed using the spectral decomposition:

Σ̂∗ = U∆∗U ′, where ∆∗ := Diag(δ∗1 , ..., δ
∗
N ), δ∗i := γ∗µ+ (1− γ)λi. (12)
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Here, λi represents the i-th sample eigenvalue, while U represents the matrix of eigenvectors. This

implies that linear shrinkage towards µI is the same as shrinking the eigenvalues of Σ towards µ,

where µ turns out to equal the grand mean of these eigenvalues.

Nonlinear shrinkage, as proposed by Ledoit and Wolf (2012), works similar, in a way that it also

shrinks the eigenvalues. However, it does not use a common shrinkage intensity γ, but an individual

intensity for each sample eigenvalue. This is equivalent to adjusting the sample eigenvalue upward

or downward, as long as the optimal eigenvalues δ∗i stay positive, ensuring the positive definiteness

of Σ̂∗. Using findings from a discipline called random matrix theory, Ledoit and Wolf (2012) find an

oracle shrinkage function φ(λi), which transforms a sample eigenvalue λi into an optimal estimator

of the true eigenvalue. Although Ledoit and Wolf (2017b) come up with the QuEST-function, which

estimates φ, Ledoit and Wolf (2020) derive an analytical formula. This makes nonlinear shrinkage

much faster and straightforward than the indirect approach needed with the QuEST-function. For

a detailed description of the analytical nonlinear shrinkage, the reader is referred to Ledoit and Wolf

(2020), or Section 4.2 of Ledoit and Wolf (2019) for a summary.

4.3 DCC-NL

Instead of just using C = cov(st), Engle et al. (2019) use nonlinear shrinkage of Ledoit and Wolf

(2012) to estimate the unconditional correlation matrix, yielding the DCC-NL model. To show why

this estimate is important in determining conditional correlation matrices, notice that rewriting

Equation (4) gives:

Qt+1 = (1− α− β)C
t∑

k=0

βk + α
t∑

k=0

βksks
′
k + βtC (13)

→ 1− α− β
1− β

C + α
∞∑
k=0

βksks
′
k as t→∞ (14)

where Q0 = C is assumed for the sake of simplicity. One could consider this limit to be a weighted

sum of the unconditional correlation and devolatized covariance matrix innovations, with weights

adding up to 1−α−β
1−β + α

1−β = 1. In an application to daily returns of the 500 most liquid stocks in

the CRSP database from 2005 through 2009, Engle et al. (2019) find estimates of α̂ = 0.0490 and

β̂ = 0.9297 in their DCC-NL model. This indicates that a forecast of the next day’s correlation

matrix has a weight of 1−α̂−β̂
1−β̂

= 0.303 on C. Therefore, the estimate of the unconditional correlation

matrix is important for the forecasts, especially when correlations are less persistent.

Although the sample correlation matrix is often used as an estimator for C, it starts lacking

for large stock universes compared to the sample size (high N/T ). Therefore, Engle et al. (2019)

nonlinearly shrink it, as described in Section 4.2. Yet, they still use the QuEST-function, while this

research implements the analytical nonlinear shrinkage formula of Ledoit and Wolf (2020).
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4.4 Regularized returns

To improve the DCC-NL model even further, De Nard et al. (2020) propose a way in which data of

a higher frequency can be exploited. They specifically focus on the use of OHLC price data, which

compresses much intraday data into four simple, yet powerful observations. First, they intend

to improve upon the very noisy squared returns as a volatility proxy in the GARCH model, as

proposed by Molnár (2016). However, doing this only improves the conditional variance forecast,

while correlations might also be improved using OHLC data. Therefore, De Nard et al. (2020)

introduce so-called regularized returns, which can be used for both purposes. The procedure boils

down to changing the actual returns to a function of the volatility proxy, with the sign of the return

remaining intact. In this way, correlation estimates can be made that are based on intraday data

too.

To understand the definition of the regularized return, first note that the actual return of an

asset at a certain time can be written as:

ri,t = sign(ri,t)
√
r2i,t. (15)

The first considered change regards the volatility proxy r2i,t, which is turned into an improved proxy

v̂i,t, to obtain a naive version of the regularized return:

r̃naivei,t := sign(ri,t)
√
v̂i,t. (16)

However, De Nard et al. (2020) also show that changing the sign-function to a ‘scaled’ hyperbolic

tangent function yields better results in practice:

r̃i,t := stanh(ri,t, κ)
√
v̂i,t =

eκri,t − 1

eκri,t + 1

√
v̂i,t. (17)

The stanh-function ensures that very small differences of ri,t from 0 are made less extreme compared

to the sign-function. For returns in decimals, De Nard et al. (2020) κ = 10, 000 is approximately

optimal in practice, which only shrinks the sign-function for returns within a range of 5 bps from

0. This is somewhat equal to the average transaction cost for highly liquid U.S. stocks nowadays.

Given the regularized returns, the DCC-NL model in Section 4.3 can be estimated using devola-

tized returns st :=
(
r̃1,t
σ1,t

, · · · , r̃N,t

σN,t

)′
. From now on, this OHLC-based model will be referred to as

DCC-NL-OHLC.
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4.5 Volatility proxies

One question remains, which is how to make use of the OHLC data to obtain the best possible

volatility proxy v̂i,t in terms of efficiency and unbiasedness. Because it sometimes occurs that

OHLC observations are missing for a specific date-asset combination, different proxies are used in

various cases. However, missing values of OHLC prices in the considered dataset occur when either

only the open price is missing, or all prices are missing. The latter usually happens around mergers,

acquisitions, and S&P 500 constituent transitions.

This research mostly uses v̂COHLCi,t , but turns to v̂CHLCi,t when the open price is missing. When

all values are missing, the squared return is used, which logically equals zero, since missing returns

are replaced by zeros. To explain the proxies mentioned above, v̂CCi,t , v̂COCi,t , and v̂HLi,t are first

introduced.

All volatility proxies described are based on the strict assumption that, every stock price follows

a continuous-time geometric Brownian motion with variance σ2 on a certain full day. This means

that the variance is assumed to be constant during a day, irrespective of whether the market is

closed or open. Also, by the Brownian motion property of independent increments, the log-return

of a stock between times 0 ≤ t0 < t1 ≤ 1 within that day, follows a normal distribution:

log(1 + rt0,t1) = log(Pt1)− log(Pt0) ∼ N(µ, (t1 − t0)σ2). (18)

The benchmark proxy is only based on the close prices, as normally used in GARCH. However,

instead of using the squared simple return, compounded returns are considered because of the

Brownian motion-assumption. Note that this makes little difference numerically, since daily returns

are close to zero. Eventually, the estimator is:

v̂CCi,t := [log(1 + ri,t)]
2. (19)

In their research to exploiting OHLC data, Garman and Klass (1980) come up with different

ideas. Yet, they are all partly routed in decomposing the variance into two independent parts:

log(1 + ri,t) = log

(
oi,t
c̃i,t−1

)
+ log

(
ci,t
oi,t

)
, (20)

where oi,t and ci,t represent the open and close price of asset i at time t, respectively. c̃i,t−1 is the

close price of the previous day, but adjusted for, e.g., dividend pay-outs or stock splits:

c̃i,t−1 :=
ci,t−1

1 + ri,t−1
. (21)

Note that this can be done because ri,t−1 was already adjusted for all types of corporate action.

The first improving proxy of Garman and Klass (1980) is based on the decomposition in Equation
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(20), and only uses the open and close prices:

v̂COCi,t :=
1

2f

[
log

(
oi,t
c̃i,t−1

)]2
+

1

2(1− f)

[
log

(
ci,t
oi,t

)]2
, (22)

where f represents the proportion of variance realized when the market is closed. Because of

the much higher trading volume during the day, this proportion does not equal the physical time

proportion of closed markets. In other words, the assumed to be constant variance σ2 in Equation

(18) is different for closed and open markets in practice. However, setting f to the realized variance

proportion ensures that σ2 can still be assumed to be constant. Estimation of f is described in

Section 4.5.1, but one can assume it is known for now.

Garman and Klass (1980) show that v̂COCi,t is twice as efficient as v̂CCi,t , since Var(v̂COCi,t ) = σ4,

while Var(v̂CCi,t ) = 2σ4. One caveat of the proxy is the fact that it assumes zero drift, meaning µ = 0

in Equation (18). Although it is plausible for daily returns, volatilities of stocks in a bull or bear

market might be overestimated.

In a study to the connection between high-low price ranges and an asset’s volatility, Parkinson

(1980) finds a proxy that only uses the high and low price:

v̂HLi,t :=
1

4log(2)

[
log

(
hi,t
li,t

)]2
, (23)

where hi,t and li,t represent the high and low price of asset i in day t, respectively. This formula is de-

rived using random-walk mathematics, and it is based on a distribution function of range log
(
hi,t
li,t

)
,

found by Feller (1951). Parkinson (1980) derives that E
([

log
(
hi,t
li,t

)]2)
= 4log(2)σ2 considering

highs and lows of an entire day. Garman and Klass (1980) show that Var(v̂HLi,t ) ≈ 0.385σ4, which

means v̂HLi,t is approximately 5.2 times more efficient than v̂CCi,t . The proxy and this theoretical

efficiency, however, are based on some arguable assumptions: a zero drift, as well as the absence

of overnight price jumps are assumed. This could potentially cause over- and underestimation,

respectively. Yet, using it as a proxy for the variance realized only during open markets, only the

zero-drift assumption needs to be made. And just as with other proxies based on questionable

assumptions, the estimator still tends to improve upon v̂CCi,t (Chou et al. (2010)).

However, Yang and Zhang (2000) show that a better variance estimator is suggested by Rogers

and Satchell (1991), because they also consider the close (and open) price. Furthermore, it has the

property that it remains unbiased under non-zero drift, unlike v̂HLi,t . It is defined as follows:

v̂OHLCi,t := log

(
hi,t
oi,t

)
log

(
hi,t
ci,t

)
+ log

(
oi,t
li,t

)
log

(
ci,t
li,t

)
(24)

v̂CHLCi,t := log

(
hi,t
c̃i,t−1

)
log

(
hi,t
ci,t

)
+ log

(
c̃i,t−1
li,t

)
log

(
ci,t
li,t

)
. (25)
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Rogers and Satchell (1991) show that Var(v̂OHLCi,t ) ≈ 0.331σ4, wherefore it is even slightly more

efficient than v̂HLi,t . Also, notice that open prices can be used in proxy v̂OHLCi,t . But assuming there

are no overnight jumps, Rogers, Satchell, and Yoon (1994) set oi,t = c̃i,t−1 to obtain v̂CHLCi,t , which

can be used in absence of the open price. However, there is a possibility that the previous day

close price is even higher or lower than the current day high or low, respectively. Knowing the open

price must be in range [li,t, hi,t], the assumed to be open price would be theoretically impossible,

and could cause a negative volatility proxy. To overcome this problem, I set c̃i,t−1 = li,t when

c̃i,t−1 < li,t, and c̃i,t−1 = hi,t when c̃i,t−1 > hi,t.

Replacing the latter part of v̂COCi,t by v̂HLi,t , Garman and Klass (1980) find a range-based estimator

that also considers the open and close price:

v̂COHLi,t : =
w

f

[
log

(
oi,t
c̃i,t−1

)]2
+

1− w
1− f

v̂HLi,t , (26)

with Var(v̂COHLi,t ) ≈ 0.323σ4. However, note that it does not involve the close price at time t. Also,

as argued before, the estimator of Parkinson (1980) is theoretically suboptimal to the estimator of

Rogers and Satchell (1991). Therefore, a logical improvement over this proxy would be to replace

the v̂HLi,t part by v̂OHLCi,t , forming:

v̂COHLCi,t :=
w

f

[
log

(
oi,t
c̃i,t−1

)]2
+

1− w
1− f

v̂OHLCi,t , (27)

For v̂COHLi,t , Garman and Klass (1980) argue that setting w = 0.17 would be theoretically optimal.

However, the value of w for which v̂COHLCi,t has the lowest variance is w = 0.14 (see Appendix A).

This yields Var(v̂COHLCi,t ) ≈ 0.284σ4, theoretically improving the efficiency of v̂COHLi,t by 12.1%, and

of v̂CCi,t by no less than 85.8% (7.0 times more efficient). Furthermore, by using v̂OHLCi,t instead of

v̂HLi,t for the second part, the assumption of a zero drift is let go.

Although Garman and Klass (1980) propose even more extensive estimators, Molnár (2016)

shows that their theoretically possible improvements over v̂COHLi,t are hard to be realized in practice.

This is probably mainly due to the heavier exploitation of some assumptions. Yet, v̂COHLCi,t is not

based on the assumptions of zero drift or the absence of overnight jumps, and it considers more

information, wherefore it could be a practical improvement over v̂COHLi,t as well.

4.5.1 Estimating overnight variance proportion

Based on historical data, Yang and Zhang (2000) argue that f = 0.25 typically yields a good fit for

U.S. stocks when using daily data. However, this is a generalization of their finding that it depends

on the stock and that it can differ somewhere between 0.18 and 0.30. Therefore, this research

considers an asset-dependent fi, which can be determined ex ante by estimating proportions of
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return variances realized overnight. To determine the optimal values, Yang and Zhang (2000) use

the fact that, theoretically, (
1

fi
− 1

)
V c
i

V o
i

∼ F (T − 1, T − 1), (28)

where T denotes the number of observations used, and

V o
i := Vari

[
log

(
oi,t
c̃i,t−1

)]
and V c

i := Vari

[
log

(
ci,t
oi,t

)]
, (29)

with Vari[·] representing the variance for asset i over period 1, ..., T . Although Yang and Zhang

(2000) do not go into further detail, a logical way to find the optimal fi is by using the expected

value of an F-distributed random variable:

E
[(

1

fi
− 1

)
V c
i

V o
i

]
=
T − 1

T − 3
⇔ fi =

[
1 +

T − 1

T − 3
·
[
E
(
V c
i

V o
i

)]−1]−1
. (30)

Next, one could estimate fi by estimating the expected open-close variance ratio with
V̂ c
i

V̂ o
i

:

f̂i =

[
1 +

T − 1

T − 3
·

(
V̂ o
i

V̂ c
i

)]−1
=

V̂ c
i

V̂ c
i + T−1

T−3 V̂
o
i

, where f̂i →
V̂ c
i

V̂ c
i + V̂ o

i

as T →∞. (31)

Therefore, using a large enough sample size, one could estimate fi by the fraction of the sample

variance during closed markets over the total variance. Notice that this matches the definition of f

given before.

4.6 Covariance matrix forecasts

Because this research considers portfolios held for longer than one period, a certain approach dif-

ferent from using one-step-ahead forecasts is necessary. Not much research has been conducted in

which different multi-step-ahead forecasts are compared, especially not for multivariate covariance

or correlation forecasts. However, there are studies that have compared the best-known types of

forecasts for longer horizons. They concern scaled, iterated, and direct forecasts.

A scaled (myopic) forecast is a naive type of forecast, since it only predicts one step ahead and

assumes that it is also a good prediction for the subsequent periods. It is then just scaled by the

number of periods in the forecast horizon. Despite its naivety, it is often used in practice because of

its simplicity and sufficient accuracy. Iterated forecasts are the theoretically correct predictions to

use, in the sense of being unbiased. A model-based prediction is made of every step in the considered

forecast horizon, after which they are accumulated to one period’s prediction. Direct forecasts are

somewhat different from iterated and scaled forecasts since they require a different model. For

example, if a four-step-ahead direct forecast is preferred, one needs to model the considered time
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series against information known four steps before, instead of just one, as usual.

In an application to variances of multiple asset classes, Ghysels et al. (2019) study these different

multi-step-ahead forecasts made using GARCH-type, but also Realized Volatility (RV) and Mixed

Data-Sampling (MIDAS) models. They compare the forecast accuracy of direct, iterated and scaled

myopic variance forecasts. For four different stock market indices and five different forecast horizons,

they find various types of models to yield the best fit. The best in-sample GARCH forecasts for the

S&P 500, with a horizon of 22 days, are given by the iterated model. This model also is most often

optimal among different asset classes and horizons. Out-of-sample however, the scaled GARCH

yields the most efficient forecasts, and the iterated GARCH is never optimal for any asset class and

horizon. Also considering the RV and MIDAS models, they still find that the scaled GARCH is

optimal for the S&P 500 and a 22-day forecast horizon.

Yet, one could doubt whether their findings also hold for more volatile returns than those of a

stock index, which is very diverse. Another interesting question is whether scaled forecasts perform

best in a multivariate setting too, considering covariance matrices that are forecasted multiple

periods ahead. This research only aims to improve the variance forecasts and keep the correlation

forecasts simple. This choice is grounded in the decomposition of a covariance matrix forecast:

Σ̂t+1:t+h = D̂t+1:t+hR̂t+1:t+hD̂t+1:t+h. (32)

To make sure that Σ̂t+1:t+h stays PD, and thus invertible, one can change the volatilities (the

diagonal of D̂t+1:t+h) freely. Yet, R̂t+1:t+h is tightly constrained, since it must still be PD too.

Therefore, I focus on improving the variance instead of correlation forecasts in this research.

The correlation matrix forecast is set equal to the simple myopic forecast, but because it concerns

correlations instead of variances, there is no need to scale it. Therefore, the forecast becomes

R̂t+1:t+h = R̂t+1. Now, each entry (i, j) of Σ̂t+1:t+h is described by√
V̂ar(ri,t+1:t+h)

√
V̂ar(rj,t+1:t+h)R̂i,j,t+1. (33)

For both variance parts, using a scaled myopic forecast would mean

V̂ar(ri,t+1:t+h) = hσ̂2i,t+1, (34)

while an iterated forecast is

V̂ar(ri,t+1:t+h) =

h∑
k=1

σ̂2i,t+k. (35)
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4.7 VFS

To understand the possible need for some type of shrinkage on GARCH variance forecasts, it is

useful to rewrite their formulas. Note that myopic GARCH variance forecasts consist of previous

innovation terms and the unconditional variance:

σ2t+1 = (1− a− b)σ̄2
t∑

k=0

bk + a
t∑

k=0

bkr2k (36)

→ 1− a− b
1− b

σ̄2 + a

∞∑
k=0

bkr2k as t→∞, (37)

where, similar as in Equation (13) for the correlation matrix, the weights of the right part add up

to a
1−b .

The same holds for iterated h-day-ahead forecasts:

σ̂2t+h = (1− a− b)σ̄2 + aE[r2t+h−1|It] + bσ̂2t+h−1 (38)

= (1− a− b)σ̄2 + (a+ b)σ̂2t+h−1 (39)

= (1 + a+ b)(1− a− b)σ̄2 + (a+ b)2σ̂2t+h−2 (40)

= ... = (1− a− b)σ̄2
h−2∑
k=0

(a+ b)k + (a+ b)h−1σ2t+1 (41)

= (1− (a+ b)h−1)σ̄2 + (a+ b)h−1σ2t+1, (42)

where one could see that σ̂2t+h → σ̄2 if h → ∞. Note that a single iterated forecast is a weighted

combination of the unconditional and myopic conditional forecast, thus also of the unconditional

variance and previous innovation terms. Therefore, accumulating them to an iterated forecast also

yields this linear combination, but with their weights summed up. In the end, as well scaled myopic

as iterated variance forecasts are just a weighted sum of the unconditional and conditional variance

(or historical innovation terms).

The research of Ghysels et al. (2019) has shown the important practical difference between

in-sample and out-of-sample forecasting (see Section 4.6). As shown before, the iterated multi-step-

ahead forecasts (optimally in-sample) are just weighted sums of the unconditional and conditional

variance. However, the weights are determined under the assumption that the estimated model

parameters are correctly specified. Yet, the longer the horizon, the more uncertainty is involved

around whether the model-implied weights are optimal. One could argue that out-of-sample iterated

forecasts of a certain asset’s variance, should be shrunk towards the scaled forecast when they have

shown to be relatively inaccurate. This follows the empirical findings of Ghysels et al. (2019) that

iterated forecasts are preferred when models are correctly specified (in-sample optimal), and scaled

forecasts are preferred when these specifications are doubtful (out-of-sample optimal).
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Therefore, this research proposes VFS, in which an optimal linear combination of the myopic

and iterated variance forecast is determined, to minimize out-of-sample forecasting errors for each

asset. This means that, instead of using either a scaled myopic or iterated forecast for every asset,

cross-sectionally different weights are assigned to both:

V̂ar(ri,t+1:t+21) = δiσ̂
2
IT,i,t+1:t+21 + 21(1− δi)σ2i,t+1. (43)

where 0 ≤ δi ≤ 1, and σ2i,t+1 is the conditional one-day-ahead forecast of asset i’s variance made at

time t. Iterated forecast σ̂2IT,i,t+1:t+21 can be calculated summing up Equation (42) for h = 1, ..., 21.

An advantage of this approach is that it is empirically useful even if it would not improve forecasts.

It namely ensures that conclusions are drawn ex ante about using either myopic or iterated forecasts.

To determine the optimal δi at each point in time for every asset, this research uses a forecast

uncertainty measure as input, referred to as FUMi. An intuitive measure would be based on past

out-of-sample performances, but one might also use a theoretically estimated uncertainty. Either

way, it can be fitted to the following framework. Although different functions can be argued as

useful, I use the standard normal cumulative distribution function in a probit-type manner:

δi = Φ(η0 + η1FUMi)), (44)

where η0 and η1 are asset-independent parameters to be estimated.

One might estimate them by minimizing the squared differences between variance forecasts and

their ‘realizations’. Yet, one could argue that the sum of squared errors should be made relative to

the levels of RVs, such that all assets are treated equally. Their forecasts are then seen as equally

accurate when they are a certain percentage away from the actual volatility, not a certain absolute

value. Therefore, this research considers the relative sum of squared errors:

min
η

N∑
i=1

∑
m

(
V̂ar(ri,21m+1:21(m+1); η)− RVi,m

)2
∑

m RV2
i,m

, RVi,m =

21∑
k=1

vi,21m+k, (45)

where M is the number of months used to solve the problem. This research considers an expanding

window for the first months, but when at least five years of forecast errors are available, a moving

window of five years is used (M = 60).

Since variance realizations need to be estimated, the best obtainable daily volatility proxies

vi,t, based on the OHLC price data, are used for the monthly RVi,m. The problem can be solved

numerically, and to decrease the risk of obtaining a local instead of global minimum, multiple

starting values for η are considered. The values for which the objective function is minimized are

then chosen as starting value for the minimization problem.
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One could argue that the volatility proxies might not be a very accurate estimate of the actual

variance. However, in a research to multiple loss functions for volatility forecasts, Patton (2011)

show that the MSE loss function is robust for any frequency of data used to determine the proxies.

4.7.1 Predictive accuracy as uncertainty measure

The first type of measure to use for VFS that might come to mind is an out-of-sample accuracy

measure like the Root Mean Squared Prediction Error (RMSPE). With such a measure, a direct es-

timate of the uncertainty of specific volatility forecasts for each asset can be obtained and compared

with another forecast. However, as argued in Section 4.7, a relative measure might be preferred

over an MSE-like measure. Therefore, this research considers the Root Mean Squared Relative

Prediction Error (RMSRPE) of monthly forecasts:

RMSRPEi =

√√√√√ 1

M

∑
m

(
σ̂2i,m − RVi,m

)2
∑

m RV2
i,m

, RVi,m =

21∑
k=1

vi,21m+k, (46)

where σ̂2i,m is the variance prediction of asset i in month m, and the range for m is set to the last

five years if possible (M = 60). If there is not enough information, an expanding window is used.

The same holds for estimating the optimal values of η in Equation (44).

As forecast uncertainty measure for Equation (43), it could be interesting to use the difference

between the RMSRPEs of the myopic and iterated forecast:

∆RMSRPE = RMSRPEMY − RMSRPEIT. (47)

The idea behind it is the expectation that a historical outperformance of one forecast over the other

would imply the same outperformance soon. Therefore, one would expect η1 > 0 in Equation (44),

such that more weight is given to the iterated forecast if its recent performance were relatively

better. From now on, VFS with the RMSRPE differences as uncertainty measures is referred to as

VFS1.

An easier approach than VFS, using the differences in RMSRPEs, is taking the iterated forecast

when ∆RMSRPE > 0, and the scaled forecast when ∆RMSRPE < 0. Although it does not involve

VFS, it is implied when setting η such that |η0| < ∞ and η1 → ∞. Therefore, this ‘picking

forecast’ can be seen as a restricted version of VFS, and it can be used as a benchmark for the

unrestricted version. Note that it assumes momentum in the optimality of a forecast, while VFS

also allows for reversal or neither two. Yet, the most important difference is that VFS considers

linear combinations, and the picking forecast only makes binary choices.
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4.7.2 Kurtosis as uncertainty measure

As mentioned in Section 4.7.1, the difference in historical predictive accuracies might be used as an

indicator for variance forecast uncertainties. However, another useful indicator might be an asset’s

kurtosis estimate.

Kurtoses tend to differ cross-sectionally: some stock returns come close to a normal distribu-

tion, while others are far more fat-tailed. Therefore, Student t-distributions with cross-sectionally

differing degrees of freedom could be considered, implying different kurtoses among stocks. Alberg

et al. (2008) estimate the daily Tel Aviv 25 and 100 index volatilities with asymmetric GARCH

models. They show that one-month-ahead forecasts of an EGARCH model with skewed Student

t-distribution are 22 and 25% more accurate than GARCH forecasts, respectively (in terms of

MSPE). Yet, for the DCC-NL(-OHLC) model, not only good volatility forecasts need to be made.

Also, a good fit of the variances is necessary to devolatize returns, which are used to estimate the

unconditional correlation matrix. Since the different fat tails of stocks are easy to capture with

t-distributions, not only the volatility forecasts, but also their fits might be improved with it. This

already indicates that a t-distribution could be of great importance in this research.

Moreover, an important attribute of the t-distribution for this research is the fact that kurtosis

estimates can be obtained for each asset. One can namely interpret it as some uncertainty measure

of an asset that cannot be captured in the variance. Elaborating on that idea: a portfolio like

GMV wants to obtain minimum variance and therefore puts most weight on assets with the lowest

estimated volatilities. However, GMV can also be seen as some minimum risk portfolio, where one

should not confuse variance with risk. Although an asset could have a relatively low variance, it

might still have a high kurtosis, increasing the risk on very extreme returns, which are unwanted in

a minimum risk portfolio. Therefore, using kurtosis estimates of assets as uncertainty measures in

the VFS framework could turn out to be useful.

The only change compared with the GARCH model, introduced in Section 4.1, is the distribution

assumed to be followed by the error terms. Therefore, the estimation procedure stays the same,

although the likelihood function changes, and an extra parameter, the degrees of freedom ν, needs

to be estimated. Since a GARCH model is fitted to each stock, an asset-dependent νi is estimated.

To obtain an estimate for the kurtosis of a stock’s return, κi, the following property is used:

κi = 3
νi − 2

νi − 4
, for νi > 4, (48)

while κi = ∞ for 2 < νi ≤ 4. The forecast uncertainty measure can then be set to the estimated

excess kurtosis: FUMi = κ̂i − 3. From now on, VFS with the kurtosis as uncertainty measure is

referred to as VFS2. When η1 > 0 in Equation (44), a lower weight on the scaled forecast is ensured

for higher kurtoses. This is intuitive, since the scaled forecast can be expected to be relatively

inaccurate with higher tail risks.
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4.8 Performance measures

To compare the accuracy of the covariance matrix forecasts, different measures are used. First,

two loss functions are considered, which focus on the differences between the one-month-ahead

forecast and the realized covariance matrix of that month. However, the matrix is unobservable,

and the sample covariance matrix would be a bad estimator for only T = 21 days and N ≈ 500

assets. Therefore, nonlinear shrinkage is applied as described in Section 4.2, using the devolatized

regularized returns as described in Section 4.4. In this way, the best possible estimate is obtained,

using the highest frequency of data considered in this research.

The first considered loss function is the well-known Frobenius loss, summing up the squared

errors of every element in the covariance matrix:

LF (Σ, Σ̂) =
∥∥∥Σ̂− Σ

∥∥∥2
F

=

N∑
i=1

N∑
j=1

(Σ̂i,j − Σi,j)
2. (49)

However, because this research focuses on the impact of the forecast on the GMV portfolio, another

loss function is considered. Proposed by Engle et al. (2019), it is called the minimum-variance loss

function (MV), representing the out-of-sample variance of the forecast-based GMV portfolio. One

can therefore consider it a direct GMV portfolio accuracy measure. It is defined as follows:

LMV (Σ, Σ̂) =
Tr(Σ̂−1ΣΣ̂−1)/N

(Tr(Σ̂−1)/N)2
− 1

Tr(Σ̂−1)/N
, (50)

where Tr(·) denotes the trace of a matrix. For convenience, the function is scaled by 1000 in the

results.

Although the loss functions are more direct measures of the covariance matrix forecasts’ accuracy,

one might argue that the proxy for the realization, Σ, is still too uncertain. Therefore, this research

also compares the actual out-of-sample volatilities of the GMV portfolios, which are based on the

covariance matrix forecast. These are expected to be lower for more accurate covariance matrix

forecasts, since GMV portfolios are targeted to have the lowest out-of-sample variance. As described

in Section 3, one can also expect the GMV portfolios to yield relatively high (risk-adjusted) returns,

due to the low-volatility anomaly. For this reason, the average return and Sharpe ratio are also

important in comparing results.

Lastly, portfolio weight statistics should indicate the extremity of the GMV portfolios. These

are the averages of the turnover, Sum of Squared/Absolute Portfolio Weights (SSPW/SAPW), and

the minimum and maximum weight. While the latter four measures are self-evident, the turnover

is defined as follows:

TO =

T∑
t=1

N∑
i=1

|wi,t − w+
i,t|, (51)
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where w+
i,t represents the weight at the end of month t before rebalancing.

Besides comparing performances of the covariance matrix forecasts, measures to compare indi-

vidual volatility forecasts are considered. In this way, we can directly find the impact of VFS, and

compare scaled with iterated forecasts. The performances are measured by means of the average

RMSRPE, as described earlier in Equation (46), but also the QLIKE loss function. Next to the

MSE, it is shown to be robust by Patton (2011), although it is less sensitive to outliers. Just as

with the RMSRPE, a volatility proxy is used as realization, yielding the feasible QLIKE as used by

Ghysels et al. (2019):

QLIKEi =
M∑
m=1

log(σ̂2i,m) +
RVi,m

σ̂2i,m
, (52)

where M is the total number of months considered in the out-of-sample results.

5 Results

In this section, first the estimated parameters are investigated. Next, the predictive accuracies of

the GARCH models, with and without OHLC proxies, and various volatility forecast types are

compared. A special focus is put on the estimated parameters and forecasting accuracies of VFS1.

Subsequently, out-of-sample performances of GMV portfolios based on the different models are

discussed. Lastly, forecast and portfolio performances of VFS2, but also the other methods with a

t-distribution for GARCH are evaluated.

5.1 In-sample fits

Figure 5 shows the (median) estimated parameters of the DCC-NL model over time, using GARCH

to model the volatilities. One can see in Figure 5a that the exposure to innovations in correlations,

α, somewhat evenly increases over time. However, a sudden decrease of β is visible around November

2016. Therefore, one could argue that the persistence of the correlations somewhat decreased over

the entire sample period.

A similar pattern occurs for the median GARCH parameters in Figure 5b. Yet, the value of ā

(b̄) is somewhat higher than α (lower than β) over time, as can also be seen in Equations (53) and

(54). This indicates that correlations have higher persistence than variances, which therefore tend

to deviate less over time. In addition, one can see the same decrease for b̄ as for β around November

2016. Observing the median RV in Figure 6, one can see the start of a period with relatively low

volatilities at approximately November 2011. Since all models are evaluated with an estimation

window of five years, the decreases in β and b̄ around November 2016 seem to be caused by the

absence of highly volatile periods. Nevertheless, no detailed explanation for this phenomenon can

be given, wherefore it is left to further research.
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(a) DCC parameters (b) Median GARCH parameters

Figure 5: Estimated DCC parameters α and β, and cross-sectional median GARCH parameters ā
and b̄ of the DCC-NL model with GARCH over time, evaluated in January 2000 — December 2020
using the previous five years of data at each point in time.

Figure 6: Median RV over January 2000 — December 2020

The median GARCH and DCC-NL model, with parameters averaged over time:

σ2t+1 = 4.10e−5 + 0.095r2t + 0.819σ2t for t = 1, ..., T, (53)

Qt+1 = 0.045C + 0.020sts
′
t + 0.936Qt. (54)

In Figure 7, the cross-sectional distributions of the estimated innovation parameters of the GJR-

GARCH model are shown. First, one can see that the average temporal mean ¯̂a = 0.052, while

¯̂γ = 0.090 is almost twice as high. This indicates that a negative return ri,t leads to an average

0.142r2i,t increase of the median stock’s variance, while a positive return only increases it by 0.052r2i,t.

One can also see in Figure 7b that approximately 95% of the stocks have a positive γ̂i. Therefore, the

GJR-GARCH seems to be important in capturing the much-skewed news impact curve in-sample.
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(a) âi (b) γ̂i

Figure 7: Histograms of all stocks’ temporal average estimated GJR-GARCH parameters âi and γ̂i,
with the red solid line representing the mean, and the dashed lines the 5th and 95th percentiles.

Figure 8 shows the average, and 5th and 95th percentile of the estimated proportion of variance

in closed markets over time. First, note that the average increased from 0.21 in January 2000 to

0.36 in December 2020. This indicates that overnight trading has gained more popularity compared

with intraday trading over the sample period. It is probable that this is caused by the increasingly

common after-hours trading, but also by increased globalization. Since demand for U.S. stocks

by foreign investors has risen2, and due to different time zones, increased stock market activity

overnight could have been expected. Second, one can see that there are large differences in the

proportion between various companies. In January 2000, around the 5th percentile, only 12% of

stock variance is realized during closed markets, while this is no less than 33% for the 95th percentile.

In December 2020, these percentages have risen to 23% and 47%, respectively.

The findings emphasize the importance of using time- and asset-dependent overnight trading

proportions f in calculating volatility proxies, as described in Section 4.5.

Figure 8: Average estimated proportion of variance realized during closed markets (fi) over time,
with the dashed lines representing the 5th and 95th cross-sectional percentiles.

2https://www.investopedia.com/the-biggest-u-s-stock-buyer-in-q1-was-foreign-investors-5069449
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5.2 Volatility forecasts

As mentioned in Section 4.8, volatility forecasts are evaluated using RMSRPE and QLIKE. Because

this research considers many stocks, not only the average measure over the stocks is considered, but

also the median and 95th percentile. In this way, one can determine whether a certain method is

optimal for the whole cross-section, or conversely, suboptimal because of a few outliers.

Table 2 shows the out-of-sample measure realizations for GARCH and GJR-GARCH models,

with and without OHLC, for the different forecast types: the unconditional, scaled, iterated, VFS1

and picking forecast (referring to the methods in Section 4.7.1). Although differences are small

overall, one can see that the iterated forecast is highlighted most often, for all four models. When

it is not bold, note that it is often still close to the optimal value. Comparing the RMSRPEs of the

models with and without OHLC, higher averages can be found for the former. Yet, this only seems

to be caused by outliers, since the medians are lower, and 95th percentiles are higher. Therefore,

most stocks’ variance forecasts seem to be improved when using OHLC data, although differences

are small. For GJR-GARCH, we also see this overall improvement in the average.

without OHLC with OHLC

GARCH Uncond. Scaled Iterated VFS1 Pick Uncond. Scaled Iterated VFS1 Pick

Av. RMSRPE 0.112 0.110 0.104 0.107 0.108 0.113 0.118 0.108 0.114 0.115
Med. 0.082 0.074 0.070 0.071 0.071 0.078 0.072 0.067 0.066 0.068
95% 0.248 0.264 0.236 0.264 0.264 0.244 0.298 0.243 0.293 0.293

Av. QLIKE -3.189 -3.530 -3.530 -3.532 -3.530 -3.010 -3.153 -3.270 -3.282 -3.153
Med. -3.385 -3.644 -3.635 -3.651 -3.648 -3.351 -3.608 -3.588 -3.606 -3.609
95% -1.433 -2.044 -2.005 -2.028 -2.045 -1.414 -2.059 -2.090 -2.058 -2.058

GJR-GARCH Uncond. Scaled Iterated VFS1 Pick Uncond. Scaled Iterated VFS1 Pick

Av. RMSRPE 0.112 0.112 0.109 0.111 0.111 0.113 0.111 0.106 0.108 0.109
Med. 0.082 0.074 0.073 0.073 0.073 0.078 0.069 0.067 0.066 0.066
95% 0.248 0.260 0.240 0.256 0.257 0.244 0.246 0.234 0.244 0.244

Av. QLIKE -3.189 -3.520 -3.525 -3.521 -3.523 -3.010 -3.164 -3.271 -3.238 -3.164
Med. -3.385 -3.631 -3.629 -3.632 -3.633 -3.351 -3.601 -3.588 -3.595 -3.595
95% -1.433 -2.054 -2.091 -2.051 -2.054 -1.414 -2.098 -2.130 -2.077 -2.077

Table 2: Temporal average, median, and 95th percentile of RMSRPEs and QLIKEs in January
2000 — December 2020 based on GARCH or GJR-GARCH models, with or without the use of
OHLC-based proxies. Unconditional forecasts are the unconditional variance. Scaled and iterated
forecasts are as mentioned in Section 4.6. In each panel, the measure realization corresponding to
the optimal forecast type, in terms of that measure, is made bold.

Yet, the conclusions change when considering the QLIKE measure. Almost all QLIKEs clearly

deteriorate when moving from squared returns to OHLC-based proxies, for as well GARCH as GJR-

GARCH. Looking at the forecast types, we also see that VFS1 is optimal using GARCH, while the

iterated forecast remains optimal for GJR-GARCH.
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Another thing one might notice, is the overall underperformance of the unconditional ‘forecast’

compared with all other forecast types, for almost every model-measure combination. This indicates

that modelling the time dependence pays off out-of-sample.

5.3 VFS1

To evaluate VFS1, a comparison is made with its restricted version, the picking forecast. Figure 9

shows the average δ̂i over time for both forecasts using DCC-NL-OHLC with GARCH. Recall that

the picking forecast ‘picks’ either δ̂i = 0 or δ̂i = 1. Therefore, the average at a specific time represents

the proportion of stocks for which an iterated forecast has outperformed the scaled forecast in the

previous five years. Since this proportion is beneath 0.5 most of the time, scaled forecasts are

preferred for most of the stocks over the sample period. Yet, solely using scaled forecasts for all

stocks does not seem to pay off, compared with only using iterated forecasts (see upper right panel

in Table 2). This indicates that the choice of a forecast type should be made individually for each

asset. Furthermore, one can see in Figure 9 that the proportion fluctuates over time. Therefore,

one can conclude that not either scaled or iterated volatility forecasts should be preferred for all

S&P 500 stocks, and that the individual choice should be made dependent of time.

Comparing the average δ̂i of the picking forecasts with those of VFS1, a striking finding is the

sudden tendency towards the iterated forecasts. Half of the time it moves like the picking forecast,

but the other half it is above 0.6, and even equal to 1 for the first five years. This is possibly caused

by some outliers affecting η such that all δ̂i are suddenly set to 1, which is the downside of only

using two parameters. However, the advantage of using VFS instead of the picking forecast is the

possibility for linear combinations of both the iterated and scaled forecast.

Observing the estimated optimal values of η over time, one period is found for which η1 < 0, in

Figure 9: Cross-sectional average of δ̂i over time for VFS1 and Pick, for the DCC-NL-OHLC model
with GARCH.
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which a recent outperformance of iterated over scaled forecasts was overall followed by the opposite.

This period concerns 2009 — 2014, and η is estimated by using the last five years of data. Therefore,

one can conclude that the sudden change of direction is caused by big outliers during the very volatile

market at the end of 2008 (see Figure 6). One can also see in Figure 9 that this period exactly

matches the period that the average δ̂i largely differs between VFS1 and the picking forecast.

Although the two implied δ̂i tend to differ, one cannot see clearly different forecast performances

in Table 2. All measures tend to be very close to each other, despite the forecasts’ theoretical

differences. One explanation could be the somewhat larger, but still small difference between scaled

and iterated forecast performances. Since VFS1 and the picking forecast are weighted combinations

of those, an even smaller difference should not be unexpected. Based on the predictive measures

and ease of computation and understanding, the picking forecast therefore might be preferred.

Furthermore, a slight underperformance over the iterated forecast can be found for both, while

their measures are never worse than the scaled forecast. Yet, the VFS1 and picking forecast do not

contain any look-ahead bias concerning the choice for either scaled or iterated forecasts. For this

reason, the methods remain important for use in practice.

5.4 Portfolio performances

This section focuses on implications of the covariance matrix for GMV portfolios, instead of the

volatility forecasts. Table 3 shows the estimated matrix losses and the performances of the GMV

portfolios for multiple combinations of methods. First, for a direct comparison of the covariance

matrix accuracies, the Frobenius and MV losses are used. As well their averages as medians are

considered because of large outlier impact on the averages. Second, for an indirect but more

conventional approach, the estimated volatilities of the portfolios are compared. Third, for portfolio

purposes the average returns and Sharpe ratios are given. Lastly, some portfolio weight statistics

are provided, indicating the (rebalancing) extremity of the positions.

The first striking result coming from Table 3 is the overall improvement of all methods over the

1/N portfolio. Each combination of methods approximately halves the portfolio volatility, while

average annualized return improvements range between 1.0-5.5% in absolute terms, which is 14-75%

higher, relatively. The risk- and return-wise improvements therefore almost triple the Sharpe ratio

from 0.340 for the 1/N portfolio, to an average of no less than 0.920 for the GMV portfolios.

In Appendix B, the results of significance tests on the means and Sharpe ratios of the portfolios

are given.3 Performing a t-test on the difference between 1/N and GMV mean returns, no significant

improvements for any of the latter are found in Table 6. Yet, using the robust Sharpe ratio test

of Ledoit and Wolf (2008), significant improvements can be found for the Sharpe ratio of all GMV

portfolios over 1/N . This emphasizes the low-volatility anomaly as introduced in Section 3.2.

3From now on, significance levels of 5% are considered for every test.
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A second important finding is the overall outperformance in terms of loss values and portfolio

volatility for the scaled forecasts, despite the earlier found suboptimality of individual volatility

forecasts. Since the correlation matrix that is used is the same for each forecast type, given which

DCC and GARCH model is used, this performance should be caused by the volatility forecasts.

This can probably be explained by the scaled forecasts overall being optimal for stocks with larger

weights in the GMV portfolios. One can namely see low values for the MV loss of scaled forecasts

too.

The third and seemingly most counter-intuitive result is the big increase of the average loss

values, but decrease in portfolio volatility, when using DCC-NL-OHLC instead of DCC-NL. Yet,

observing the losses over time for DCC-NL-OHLC, a high Frobenius loss of no less than 234 can be

found for each forecast type around May 2010. Also, high but stable Frobenius losses of between

4.0-5.5 are realized for exactly five years onward, with a sudden decrease to values around 1.0

afterwards. However, this big outlier and its impact on future values is not observed for DCC-

NL. The problem causing these high values is the combination of using high and low prices for

volatility proxies, and one of the most volatile moments in the history of stock markets; the 2010

flash crash on May 6, 2010. This crash caused the S&P 500 to decrease by 9% in approximately

half an hour, after which it rebounded just as quickly. Because the DCC-NL-OHLC method uses

the COHLC-proxy, the low point in lots of stock prices during that day have increased predicted

volatilities, also via increased unconditional variances. Observing the medians, no big differences

can be found, although they still are not lower for DCC-NL-OHLC. Altogether, the findings indicate

no improvement in the covariance matrix forecasts when using OHLC data.

Another observation one can make from Table 3, is the surprisingly good portfolio performance

using the unconditional forecast. Recall that it uses the unconditional (but nonlinearly shrunk) cor-

relation matrix and volatilities without exploiting any time dependence. It looks slightly suboptimal

in terms of portfolio volatility and losses, but it has a relatively high average return. Therefore, it

still yields competitive Sharpe ratios, which are even highest for DCC-NL. However, because dy-

namic forecasts with DCC-NL-OHLC have higher average returns and lower volatilities, they often

obtain even higher Sharpe ratios.

Again, performing significance tests on the mean returns and Sharpe ratios, conclusions can be

drawn on forecast type differences and whether the use of OHLC data pays off. Comparing the

portfolio returns of the unconditional with the dynamic forecasts, not a single significantly different

mean or Sharpe ratio can be found (see Table 6 of Appendix B). Therefore, one cannot conclude

that the unconditional forecast outperforms the dynamic forecasts (or vice versa). Also, almost no

significantly different performances can be found between all dynamic forecasts. Only for DCC-NL

with GARCH, a significantly higher Sharpe ratio and mean return is found for VFS1, compared

with the scaled forecast. Finally, testing the DCC-NL portfolios against their equivalents of DCC-

NL-OHLC for the same forecast type, again no significantly different mean returns can be found.
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Yet, the scaled and iterated forecast do yield significantly higher Sharpe ratios, and p-values for

the VFS1 and picking forecast are also relatively low. Therefore, one can conclude that the use of

OHLC price data in dynamic forecast-based GMV portfolios pays off in terms of Sharpe ratios.

Furthermore, the table shows that taking into account the leverage effect, by using GJR-

GARCH, does not improve the covariance matrix forecasts. Neither the losses nor the portfolio

volatilities are lower when adding the GJR term to the model. So, the in-sample estimates showed

the presence of a leverage effect in Section 5.1. Yet, one can conclude that GJR-GARCH has no

added value in predicting either only volatilities or covariance matrices of S&P 500 constituents.

Therefore, from now on, only the methods using GARCH are considered.

Lastly, looking at the portfolio weight statistics, relatively mediocre turnovers can be observed

for the unconditional forecasts, as could be expected. This indicates that the positions are adjusted

much smoother compared with the more dynamic forecasts. One can also observe higher turnovers

for scaled than for iterated forecasts, which can be explained by the higher dependence of iterated

forecasts on the unconditional variance. Another interesting finding is the overall decrease in mag-

nitude of the statistics when using the OHLC-based volatility proxies instead of squared returns.

However, high leverages can be found in all methods, since the method-average SAPW is always

larger than 2.8. In that case, negative and positive weights sum up to -0.9 and 1.9, respectively,

indicating a leverage of 0.9
1.9 = 0.47. For the unconditional forecast with DCC-NL and GARCH, an

average SAPW of 4.287, and thus a leverage of no less than 1.644
2.644 = 0.62 occurs. Yet, the uncon-

ditional forecasts yield much more diverse portfolios than the dynamic forecasts, arising from the

much lower average SSPWs.

Figure 10: Cumulative returns of the GMV portfolios in January 2000 — December 2020 based
on DCC-NL-OHLC models with GARCH compared with the 1/N portfolio. The shaded areas
represent high-volatility regimes from a bivariate Markov Switching model fitted to the monthly
1/N portfolio returns.

32



In Figure 10, the cumulative returns of the different forecast types are compared for the DCC-NL-

OHLC model with GARCH. To measure the overall cumulative return performance of the forecasts,

they are also compared with the 1/N portfolio. First, one can see a big difference between the 1/N

and GMV portfolios. As shown before in Table 3, the former is more volatile, and the eventual

cumulative return (Rcum,t) is more than four times as low as for the average GMV portfolio (170.31%

compared with 720.48%). Especially the relatively high and stable returns of the GMV portfolios

during high-volatility regimes are impressive, indicating robust performances in different periods.

Another remarkable observation is, again, the good performance of the unconditional forecast.

However, now becomes clear that most of the outperformance in (cumulative) returns comes from

its stable returns during the 2007-2009 global financial crisis. One can see that this has not been

the case for the 2020 recession, indicating a possibly coincidental superior performance previously.

Over the whole sample period, none of the forecast types seems to be superior to one another.

5.5 VFS2

In this section, VFS based on the kurtosis is evaluated. Because it uses a t-distribution instead of

a normal distribution for GARCH, the results for the other forecast types changed.

Table 4 shows the performances of the volatility forecasts using the t-distributed GARCH model

with OHLC proxies. One can see that VFS2 has a lower average RMSRPE and QLIKE than the

VFS1 and picking forecast, but it is also caused mostly by the higher percentiles. The medians

namely are approximately equal, although the 95th percentile shows relatively lower values. Fur-

thermore, while differences are small, an optimal average QLIKE measure is observed for VFS2

compared with all other forecast types. Both findings indicate that the estimated model-implied

kurtosis is useful in combining iterated with scaled forecasts. A further look into the estimated η

values also shows that η̂1 > 0 most of the time, implying that the variance of stocks with higher

kurtoses is better forecasted using iterated instead of scaled forecasts. This is intuitive since higher

kurtoses tend to go paired with more forecast uncertainty, and scaled forecasts are expected to be

less accurate wit high tail risks.

Next to that, a comparison of the overall measures with those of the GARCH model with OHLC

proxies and normally distributed returns in Table 2 can be made. One can see that most forecasts

yield slightly lower RMSRPEs, while QLIKEs remain similar. This indicates that the use of a

t-distribution might yield better GARCH forecasts.

In Table 5, the GMV portfolio performances for all forecast types are given. Comparing them

with the upper-right panel of Table 3, no overall improvement of the portfolio volatility or any

loss value is found. Different than for the DCC-NL-OHLC model with normal GARCH, one can

now also see a relatively low average Frobenius loss value for the unconditional forecast. Moreover,

although the VFS2 portfolio volatility is highest, VFS2 does yield the highest mean and Sharpe

ratio. Yet, these differences are not significant, as can be seen in Table 7 of Appendix B.
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Uncond. Scaled Iterated VFS1 VFS2 Pick

Av. RMSRPE 0.113 0.110 0.094 0.105 0.097 0.105
Med. 0.078 0.070 0.065 0.064 0.064 0.066
95% 0.244 0.260 0.219 0.259 0.227 0.256

Av. QLIKE -3.010 -3.162 -3.296 -3.167 -3.305 -3.161
Med. -3.351 -3.614 -3.619 -3.623 -3.624 -3.613
95% -1.414 -2.050 -2.088 -2.043 -2.070 -2.028

Table 4: Average, median, and 95th percentile of RMSRPEs and QLIKEs for GMV portfolios in
January 2000 — December 2020 based on the GARCH model with OHLC-based proxies and t-
distributed returns. Unconditional forecasts are the unconditional variance. Scaled and iterated
forecasts are as mentioned in Section 4.6. In each panel, the measure realization corresponding to
the optimal forecast type, in terms of that measure, is made bold.

Furthermore, contrary to the optimistic forecast performances in Table 4, worse portfolio mea-

sures are found for VFS2 compared with VFS1 and Pick. Both losses and the portfolio volatility

are also higher than for most other forecast types. Again, however, Table 7 of Appendix B shows

no significant differences between the means and Sharpe ratios of the forecast types. As argued

before, the VFS and picking forecasts remain important because they leave out any look-ahead bias.

Therefore, one can conclude that the picking forecast is the most prominent for use in practice. It

namely is easier to calculate, interpret, and it does not show a (significantly) weaker performance

than the VFS forecasts.

1/N Uncond. Scaled Iterated VFS1 VFS2 Pick

Av. Frob. loss 3.497 3.903 3.807 3.810 3.816 3.798
Med. Frob. loss 1.260 0.769 0.877 0.820 0.860 0.779
Av. MV loss 9.074 17.390 10.693 13.478 18.063 13.575
Med. MV loss 2.837 3.428 3.367 3.425 3.626 3.332
Ann. Vol. % 21.630 12.901 10.380 10.546 10.846 11.213 10.712
Ann. Mean % 7.360 12.697 8.316 9.968 10.049 8.935 9.557
Ann. Sharpe 0.340 0.984 0.801 0.945 0.927 0.797 0.892

Av. Turnover 0.067 0.497 3.076 2.711 2.790 2.888 2.853
Av. SSPW 0.002 0.051 0.238 0.189 0.199 0.257 0.199
Av. SAPW 1.000 3.380 3.009 3.271 3.085 3.168 3.026
Av. Min. Weight 0.002 -0.026 -0.041 -0.030 -0.030 -0.050 -0.028
Av. Max. Weight 0.002 0.058 0.303 0.255 0.270 0.299 0.279

Table 5: Out-of-sample results of GMV portfolios in January 2000 — December 2020 based on the
DCC-NL-OHLC model with GARCH, compared with results of the 1/N portfolio. Unconditional
forecasts are made using the unconditional variances and correlations. Scaled and iterated forecasts
are as mentioned in Section 4.6. Performance measures are separated from portfolio weight statistics
by dashed lines. In each panel, the measure realization corresponding to the optimal forecast type,
in terms of that measure, is made bold.
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6 Conclusion & Discussion

In this research, I evaluate multiple one-month-ahead (co)variance forecasts and their implied GMV

portfolios for the S&P 500 constituents in the period January 2000 — December 2020. Covariance

matrix predictions are made using the recently-proposed DCC-NL model, and its improved version

that exploits OHLC price data. For the latter model, I derive the daily volatility COHLC-proxy,

that theoretically improves the efficiency of one of the most efficient proxies before by 12.1%.

Furthermore, I propose VFS, which combines iterated and scaled myopic (GJR-)GARCH model

forecasts. It is investigated whether the theoretically optimal iterated forecast, the often practically

optimal scaled myopic forecast, or a combination should be used.

In the empirical results, all GMV portfolios yield Sharpe ratios around 0.920, which are signif-

icantly higher than the Sharpe ratio of 0.340 for the 1/N portfolio. Also, GJR-GARCH seems to

be of added value in-sample, since almost all stock volatilities tend to be affected more by nega-

tive than positive returns. However, no improvement can be found in the out-of-sample forecasts,

comparing them with regular GARCH forecasts. Furthermore, for OHLC-based volatility prox-

ies, in-sample estimates of the variance proportion realized overnight should be determined asset-

and time-dependent. Large differences are found among stock return variances, and an increas-

ing pattern of relative trading activity during closed markets is found over time. I also show that

using OHLC-based volatility proxies decreases portfolio volatility and increases Sharpe ratios signif-

icantly. Yet, covariance matrix losses and volatility forecast accuracies do not improve on average.

A possible explanation is the large impact of outliers in high-low ranges, boosting the proxy.

The VFS and picking forecasts do not show better results than either iterated or scaled forecasts.

However, their estimates show that the optimal choice between iterated or scaled forecasts differs

cross-sectionally and over time. They also are practically better than choosing either iterated or

scaled forecasts for the whole dataset, since it prevents look-ahead biases. The picking forecast

is recommended over VFS because of its easy interpretation and calculation, while it still yields

insignificantly different results. Furthermore, no significant performance differences can be found

between the VFS forecasts based on the kurtosis and those based on the historical predictive ac-

curacy. Lastly, one can conclude that there is no need to use a t-distribution instead of a normal

distribution for the GARCH models.

Although many new insights can be gained from this research, it also contains some limitations.

First, since volatility and covariance predictions concern unobservable values, accuracy measures are

never precisely correct. Given the estimated realizations that are used, conclusions could possibly

change when more accurate estimations are made. Therefore, this research considers the most

accurate estimates given the dataset, which are based on OHLC price data. Although the use of

higher-frequency intraday price data could (slightly) improve the realization estimates, it would be

an unnecessarily large computational burden given the high dimensionality of the dataset.

35



Second, only a forecast horizon and portfolio holding period of one month is considered in this

research. Therefore, none of the conclusions made are expected to be universal for other horizons.

For example, one might expect the GJR-GARCH model to have more impact on the accuracy of

one-day-ahead forecasts, since it focuses on a short-term leverage effect.

Next to using higher-frequency data and considering other forecast horizons, further research

could also focus on dealing with outliers. Although outliers tend to have a role in any quantitative

research area, it might be larger in dynamic (co)variance forecasting. First, each outlier can nega-

tively affect upcoming GARCH forecasts when persistence is high. Second, as shown for the losses in

the empirical results, volatility outliers can be so extreme, that performance measures are shifted,

and therefore becoming unrepresentative for the whole sample. To prevent outliers from having

such a big impact, further research could consider weakening extreme volatility proxies. This will

decrease their effect on the model fit, upcoming forecasts, and performance measures that consider

these proxies as realization estimates. Lastly, extending on the VFS research, a closer look could

be given into the performance differences between scaled and iterated correlation matrix forecasts,

thus in a multivariate setting.
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A Optimal weight COHLC-proxy

To find the optimal w in v̂COHLCi,t , as described in Equation (27), the variance of the proxy is

minimized. To derive the variance, some assumptions are made, also as explained in Section 4.5.

First, prices are assumed to follow a continuous-time geometric Brownian motion with zero drift.

Second, volatility is assumed to be constant during a day, whether the market is open or closed.

Therefore, prices are assumed to fluctuate overnight too. Yet, as indicated in Section 4.5, adjusting

the proxy using f ensures that variance differences between closed and open markets can still be

exploited.

The variance of the COHLC-proxy equals:

Var(v̂COHLCi,t ) =
w2

f2
Var

([
log

(
oi,t
c̃i,t−1

)]2)
+

(1− w)2

(1− f)2
Var(v̂OHLCi,t ), (55)

where the covariance part equals zero, because the two combined proxies consider non-overlapping

periods (closed and open market times), which are independent for Brownian motions. The first

variance part can be easily found using the independent increments property of the Brownian

motion:

log(oi,t)− log(c̃i,t−1) ∼ N(0, σ2f), (56)

since f is the time between close and open. Also using the fact that Var(X2) = 2a2 when

X ∼ N(0, a), yields Var

([
log
(

oi,t
c̃i,t−1

)]2)
= 2σ4f2. Rogers and Satchell (1991) already found

Var(v̂OHLCi,t ) ≈ 0.331σ4 considering open to close being a full day. Adjusting for the fact that σ2 is

from close to close now, Var(v̂OHLCi,t ) = 0.331σ4(1− f)2. Therefore,

Var(v̂COHLCi,t ) = 2w2σ4 + 0.331(1− w)2σ4. (57)

Minimizing this function, one can find the optimal w∗ = 0.14 giving Var∗(v̂COHLCi,t ) = 0.284σ4.

Compared with the COHL-proxy, which has variance Var∗(v̂COHLi,t ) = 0.323σ4 , this means a theo-

retical efficiency gain of 12.1%.
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B Portfolio performance p-values

GARCH DCC-NL DCC-NL-OHLC

Mean Uncond. Scaled Iterated VFS1 Pick Uncond. Scaled Iterated VFS1 Pick

vs 1/N 0.154 0.440 0.332 0.281 0.355 0.090 0.185 0.098 0.137 0.176
vs Uncond. 0.065 0.126 0.195 0.118 0.301 0.642 0.421 0.300
vs Scaled 0.217 0.029 0.338 0.078 0.408 0.995
vs Iterated 0.530 0.665 0.231 0.065
vs VFS1 0.110 0.296
vs DCC-NL 0.745 0.105 0.060 0.258 0.207

Sharpe Uncond. Scaled Iterated VFS1 Pick Uncond. Scaled Iterated VFS1 Pick

vs 1/N 0.010 0.015 0.008 0.004 0.011 0.003 0.000 0.000 0.000 0.000
vs Uncond. 0.164 0.285 0.364 0.202 0.652 0.486 0.727 0.843
vs Scaled 0.269 0.032 0.655 0.603 0.742 0.325
vs Iterated 0.611 0.429 0.399 0.213
vs VFS1 0.047 0.532
vs DCC-NL 0.869 0.020 0.021 0.107 0.058

GJR-GARCH DCC-NL DCC-NL-OHLC

Mean Uncond. Scaled Iterated VFS1 Pick Uncond. Scaled Iterated VFS1 Pick

vs 1/N 0.147 0.363 0.255 0.247 0.308 0.084 0.196 0.104 0.144 0.192
vs Uncond. 0.106 0.216 0.233 0.155 0.241 0.563 0.355 0.230
vs Scaled 0.154 0.099 0.458 0.053 0.340 0.911
vs Iterated 0.995 0.369 0.184 0.030
vs VFS1 0.219 0.219
vs DCC-NL 0.723 0.243 0.174 0.374 0.376

Sharpe Uncond. Scaled Iterated VFS1 Pick Uncond. Scaled Iterated VFS1 Pick

vs 1/N 0.010 0.008 0.003 0.003 0.005 0.002 0.000 0.000 0.000 0.000
vs Uncond. 0.252 0.404 0.410 0.312 0.779 0.560 0.808 1.000
vs Scaled 0.233 0.204 0.630 0.456 0.895 0.302
vs Iterated 0.897 0.370 0.318 0.103
vs VFS1 0.316 0.353
vs DCC-NL 0.792 0.039 0.055 0.118 0.117

Table 6: p-values for significance tests on the means and Sharpe ratios of the portfolios from
Section 5.4. t-tests are used to test means against each other, and robust Sharpe ratio tests of
Ledoit and Wolf (2008) are used for the Sharpe ratios (pre-whitened HAC p-values are given). The
null hypotheses are H0 : µi = µj and H0 : SRi = SRj , and the alternatives are Ha : µi 6= µj and
Ha : SRi 6= SRj . All tests are against the mean or Sharpe ratio of the forecast type indicated in
the row, with the GARCH- and DCC-type model of the corresponding panel. Only for row ‘vs
DCC-NL’, tests are against the mean or Sharpe ratio of the DCC-NL model, given the forecast type
and GARCH-type model. For each test, the p-value is shaded if it is lower than a 5% significance
level.
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Mean Uncond. Scaled Iterated VFS1 VFS2 Pick

vs 1/N 0.094 0.475 0.256 0.240 0.396 0.292
vs Uncond. 0.050 0.181 0.229 0.094 0.149
vs Scaled 0.085 0.130 0.355 0.264
vs Iterated 0.956 0.268 0.606
vs VFS1 0.331 0.199
vs VFS2 0.571

Sharpe Uncond. Scaled Iterated VFS1 VFS2 Pick

vs 1/N 0.003 0.014 0.001 0.001 0.014 0.002
vs Uncond. 0.372 0.932 0.834 0.353 0.686
vs Scaled 0.112 0.241 0.816 0.371
vs Iterated 0.783 0.098 0.490
vs VFS1 0.216 0.320
vs VFS2 0.354

Table 7: p-values for significance tests on the means and Sharpe ratios of the portfolios from Section
5.5, thus for DCC-NL-OHLC with t-distributed GARCH. t-tests are used to test means against each
other, and robust Sharpe ratio tests of Ledoit and Wolf (2008) are used for the Sharpe ratios (pre-
whitened HAC p-values are given). The null hypotheses are H0 : µi = µj and H0 : SRi = SRj , and
the alternatives are Ha : µi 6= µj and Ha : SRi 6= SRj . All tests are against the mean or Sharpe
ratio of the forecast type indicated in the row. For each test, the p-value is shaded if it is lower
than a 5% significance level.
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