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Abstract

————————————————————————————————————–
This paper proposes a novel stochastic volatility model (SV) with non-causal

leverage structure. This correlation structure takes into account the influence of
the future, present, and past volatility shock on the current return shock. We com-
pare it’s forecasting accuracy and ability to capture the leverage effect against the
recently published SV model of Catania (2020). We do this by making use of three
difficult, yet elegant filtering methods in conjunction with maximum likelihood: the
particle filter, the Kalman filter and the Bellman filter of Lange (2020). We per-
form a simulation study to confirm that the estimators are consistent. An empirical
study on the S&P 500 and AEX index returns reveals that the proposed SV model
significantly outperforms Catania’s SV model including a benchmark GARCH(1,1)
model. Inclusion of a mean term to both SV models leads to both a better fit
of the data and improvement in out-of-sample volatility predictions. Finally, the
mean-corrected non-causal SV model is better able to capture the leverage effect.
————————————————————————————————————–

1The content of this thesis is the sole responsibility of the author and does not reflect the view of the
supervisor, second assessor, Erasmus School of Economics or Erasmus University.
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1 Introduction

In finance and financial econometrics, the phenomenon "leverage effect" is well known.
It is defined as the general tendency of asset returns to be negatively correlated to their
corresponding changes in volatility, (e.g. Black 1976 and Christie 1982). According to
Ait-Sahalia et al. (2013), the economic intuition behind this phenomenon is when asset
prices (returns) decline, companies become more leveraged as their debt to equity ratio
increases. It therefore makes economically sense that their stock become more risky, i.e.
more volatile. Furthermore, the term "leverage propagation" is introduced in Catania
(2020), which is defined as the propagation of the leverage effect over time. As illustrated
in Catania (2020), it is of vital importance to correctly model the leverage effect and
propagation effect when it comes to financial applications such as volatility predictions
and henceforth in other areas such as option pricing.

In order to capture the leverage effect and the leverage propagation with time-series
econometric models, we focus our attention on a stream of literature about parameter-
driven models. Such models typically contain parameters/latent variables that vary over
time as dynamic processes with idiosyncratic innovations, see also Koopman et al. (2016).
More specifically, we consider a class of (extended) stochastic volatility models initially
proposed by Taylor (1986). Catania (2020) considers stochastic volatility models with
leverage (SVL) and debates whether the leverage effect is contemporaneous (simultane-
ously) or intertemporal (delayed). If the leverage is simultaneous, we obtain the SVL
model of Jacquier et al. (2004), whereas if the effect is delayed we have the SVL model
of Harvey and Shephard (1996). Besides the timing of the leverage effect, causality is
also addressed as correlation does not imply causality (Ait-Sahalia et al. 2013). The
main contribution of Catania (2020) is the extension of the basic SV model with a flexible
correlation structure which encompasses both SVL models, ensuring causality and allows
for leverage effects longer than one period (leverage propagation).

In this master thesis we conduct similar research as done in Catania (2020). However,
based on the suggestions of Catania (2020) (for further research), we deviate from his pa-
per and contribute to the literature by proposing a novel stochastic volatilty model with
a complicated correlation structure. In this so-called non-causal correlation structure, we
additionally take into account negative lags of the volatility shocks such that the influence
of future volatility on the current return shocks is included. Our main aim is to feasibly
estimate the proposed univariate SV model including a leading volatility lag and
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compare its forecasting ability to that of Catania’s model. This leads to our central
research questions:

1. ”How can we feasibly estimate the proposed univariate stochastic volatility models
with General/Non-causal leverage specification?”

2. ”Can the volatility predictions be improved compared to the univariate stochastic
volatility model of Catania (2020)? ”

In order to resolve the first research question, we follow the same methodology of Cata-
nia (2020) which are simulation maximum likelihood (SML) and quasi-maximum likeli-
hood (QML). In addition, we make use of the Bellman filter proposed by Lange (2020)
in conjunction with maximum likelihood. This method is computationally efficient and
employs a filter-implied log-likelihood decomposition which requires only outputs of the
Bellman filter and no simulations. In this paper, these three methods are used for esti-
mating the univariate SV models with leverage.

Regarding the second question, we conduct a comparative out-of-sample forecasting
study on the S&P 500 and AEX index return series. The mean squared forecast error
(MSFE) and the quasi-likelihood (QLIKE) measure are used for that purpose. Doing so
allows us to check whether the accuracy of the volatility predictions of the model of Cata-
nia (2020) can be significantly improved. Both the 5-min. intra-day realized variances
and noisy squared returns are used for out-of-sample evaluations. As benchmark we have
the standard GARCH(1,1) model but we also consider the asymmetric GARCH(1,1).

The empirical results show that the novel SV model with non-causal leverage is signif-
icantly able to outperform the SV model postulated by Catania (2020) when forecasting
the one-day ahead volatilities. This also includes the outperformance of the (asymmetric)
GARCH(1,1). However this claim only holds when we use the 5-min. realized variances
and not the noisy squared returns. Besides that, the SV model with non-causal leverage
seems to be able to capture the leverage effect properly when corrected for the mean of
the return series. For Catania’s model the inclusion of a mean term does not necessarily
improve the ability to account for the leverage.

The remaining of this thesis is organized as follows. Section 2 provides a literature
review on recent research about our topic. Sections 3 introduces the theoretic state space
framework and Section 4 considers the univariate SV models with detailed explanation of
the corresponding estimation procedures. Section 5 presents a simulation study where we
analyze finite sample properties of our estimators. In this study we validate the estima-
tor’s consistency for both univariate SV models with leverage. The empirical application
is reported in Section 6 and Section 7 concludes.
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2 Literature

In order to better understand the motivation for the approaches that we apply, we
discuss some of the (recent) developments that have been made in the literature of non-
linear, non-Gaussian state space methods. The methods that we apply mostly stem from
cited papers in Catania (2020). We discuss the CSIR method of Malik and Pitt (2011),
the quasi maximum likelihood method of Harvey and Shephard (1996), and the Bellman
filter of Lange (2020). As mentioned in Catania (2020), Broto and Ruiz (2004) conclude
that likelihood based estimation procedures are the most efficient for estimating (exten-
sions of) Stochastic volatility models with leverage. Therefore, we apply such methods to
univariate SVL models as well.

For simulated maximum likelihood, the most relevant paper is Malik and Pitt (2011)
where a specific particle filtering method is proposed. Particle filters, initially proposed
by Gordon et al. (1993), are sequential Monte Carlo algorithms that address the filtering
problem in nonlinear and non-Gaussian state space model. More specifically, particle
filters simply aim to approximate a continuous high-dimensional density (the joint like-
lihood) by using a sample of weighted draws. These weighted draw are resampled from
the population of original draws from a candidate density. Gordon et al. (1993) rename
the particle filter as the SIR method, which stands for sampling importance resampling.
Here the candidate density is termed the importance sampler and weighted or re-sampled
draws from this importance sampler are called particles. The main practical problem
with applying standard particle filters lies in feasibly estimating the hyperparameter.
There is a discontinuity in the log-likelihood which makes numerical optimization diffi-
cult. Malik and Pitt (2011) resolve this issue by using continuous approximations of the
log-likelihood in the resampling step of algorithm SIR. Hence, the name: continuous SIR
method (CSIR). The CSIR filter makes parameter estimation more feasible.

Quasi-maximum likelihood is computationally more efficient approach as compared to
simulation based likelihood estimation since it uses the Kalman filter. That is why this
method is commonly used in the literature of SV models with leverage and it originates
in the paper of Harvey and Shephard (1996). Two key step for feasible estimation of the
SV model with leverage is the logarithmic transformation of the nonlinear observation
equation and doing inference conditional on the signs of the observations. These two
steps render a linear state space model with conditionally uncorrelated disturbance terms
which can be easily estimated with a Kalman filter algorithm. Catania (2020) generalizes
these two steps to according to his proposed SV model with general correlation.
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Alternatively, the recent paper of Lange (2020) proposes a promising filtering algo-
rithm called the Bellman filter, which generalizes the kalman filter (1960). It also includes
the iterated extended kalman filter (Anderson and Moore, 2012) designed for non-linear
state space models. Furthermore, this method differs from SML and QML in the sense
that it concentrates on estimating the posterior mode (of the complete data likelihood)
instead of approximating a complex high-dimensional integral. Therefore, this method
requires no simulation, is computationally efficient and offers scalability to higher dimen-
sions for the latent state variable in state space models. Lastly, the Bellman filter allows
for feasible estimation of the hyperparameters of the joint-likehood function since the
log-likelihood can be computed using only the outputs of the Bellman filter.

Despite the fact we do not estimate multivariate models, it might be interesting to
discuss widely used methods for estimating multivariate SV models based on importance
sampling. For example, Danielsson (1998) illustrate the application of the Accelerated
Gaussian Importance Sampling (AGIS) method of Danielsson and Richard (1993) for esti-
mating a multivariate stochastic volatility model with leverage. Asai and McAleer (2007)
apply the approach of Durbin and Koopman (1997) to assymetric multivariate SV models
where they decompose the high dimensional likelihood function into a Gaussian compo-
nent and a remainder which are evaluated with Kalman filtering methods and importance
sampling, respectively. Despite these succesful application in high-dimensional SV mod-
els, these importance sampling methods still suffer from the curse of dimensionality. This
phenomenon refers to the fact that the simulation variance grows exponentially as the
integration dimension increases. The recent paper of Scharth and Kohn (2013) resolves
this problem by introducing the particle-EIS method. It is a combination of the auxil-
iary particle filtering method of Pitt and Sheppard (1999) and the efficient importance
sampling of Richard and Zhang (2007). Their simulation study show that their P-EIS
approach strongly outperforms the individual methods when evaluating the likelihoods
from univariate and bivariate SV models. To the best of my knowledge, the multivariate
version of the stochastic volatility specification of Catania (2020) has never been explored
before.
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3 State Space Model Framework

In this section, we provide the necessary notation and foundation for the methods that
we apply in this thesis. Stochastic state space models are able to describe the dynamics
of observable variables by letting them depend on hidden states that follow a stochastic
process. Let yt = (y1t, . . . , ylt)′ denote a l × 1 vector of observable time-series and αt =
(αt1, . . . , αmt)′ the m × 1 vector of hidden state variables. The general discrete-time
stochastic state space model for t = 1, . . . , T is given by

yt = f(αt, εt), (1)

αt = g(αt−1,ηt). (2)

Here, the observation equation (1) reflects the contemporaneous relationship of the ob-
servable variables yt with the states αt and measurement noise vector εt, via a function
f(·). The state equation (2) describes the dynamics of the hidden states αt as a function
g(·) of the previous states αt−1 and process noise vector ηt.

In the general state space framework it is common to have a set of assumptions.
Firstly, we assume that the disturbance vectors εt, ηt are i.i.d. and are independent of
each other. The joint densities of the individual noise vectors and the initial state need
to be specified and are formulated as

εt
iid∼ p(εt), ηt

iid∼ p(ηt), α0 ∼ p(α0). (3)

This specification implies the following generic notation for the nonlinear, non-Gaussian
state space model:

yt ∼ p(yt |αt), αt ∼ p(αt |αt−1), α0 ∼ p(α0), (4)

where the observation density can differ from the state transition density. Lastly, the
generic joint densities p(·) are assumed to contain some additional fixed parameters θ
which need to be estimated.

When we allow for a linear Gaussian state equation we obtain the framework men-
tioned in Lange (2020):

yt ∼ p(yt |αt), αt = c+ Tαt−1 + ηt, ηt
iid∼ Nm(0,Q), α0 ∼ p(α0). (5)

In this framework, the observation equation can be nonlinear and allows for non-Gaussian
error terms. The classic linear state space model can easily be recovered from by letting
f(·) be linear in αt and that observation noise vector εt is Gaussian. The fixed parameters
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θ corresponding to the linear state-space model can then be estimated with likelihood
based estimation via the Kalman filtering recursions (1960), see e.g. Koopman and Durbin
(2012).

4 Univariate Models

Two univariate extensions of the stochastic volatility models will be considered in the
upcoming subsections. The first one is the stochastic volatility with general leverage
specification proposed by Catania (2020). The second is a different stochastic volatility
model and contains a novel complicated non-causal leverage structure. Afterwards, three
estimation procedures will be derived for each univariate model. We follow the notation
of Catania (2020) throughout the rest of the paper.

4.1 Stochastic Volatilty with General Leverage

Catania (2020) assumes that the financial log-returns yt at time t are generated ac-
cording to the following data generating process with mean term µ = 0:

yt = µ+ β exp
{
ht
2

}
εt, εt

iid∼ N (0, 1),

ht = φht−1 + κ ηt,

ηt =
m∑
j=0

ρjεt−j + σb bt, bt
iid∼ N (0, 1). (6)

where β > 0, κ > 0, and |φ| < 1 are the level, variance and persistence parameters of the
log-volatility process (ht = logσ2

t ), respectively. Furthermore, the return shocks εt are
assumed to be independent of the the standard normal noise term bt. For identification
of the model, it is required that σb =

√
1−∑m

j=0 ρ2
j > 0, where ρj ∈ (−1, 1) denotes

the unconditional correlations between the return shock and the volatility shocks for
j = 0, . . . , m. This model encompasses a few models. When m = 0 and ρ0 = 0, we obtain
the basic stochastic volatility model of Taylor (1986). When m = 1 and ρ0 = 0, we see it’s
equivalent to the intertemporal stochastic volatility model of Harvey and shephard (1996).
Lastly, when m = 0 but ρ0 6= 0, we retrieve the contemporaneous model of Jacquier et
al. (2004). Catania (2020) explains more details about the statistical properties of his
model, but this is left as a reference to the reader.
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As we can see from the general leverage specification (6), the volatility shocks depend
on multiple lags of the return shocks, which makes it an ARMA(1,m) kind of specification.
This correlation structure of the noise terms enables us to explicitly compute the (implied)
leverage effect and leverage propagation. However, we theoretically show this for ρ0 = 0
only, since relaxing this restriction leads to theoretically inconvenient expressions for the
leverage effect, Yu (2005). The definitions of Catania (2020) are given below:

Definition 1 (Leverage effect) If we denote yt as the financial returns following a
stochastic process, then the leverage effect exists if the following inequality holds:

var[yt+1 | yt < 0] > var[yt+1 | yt ≥ 0].

The leverage propagation refers to the leverage effect over longer horizons and can be
determined with var(yt | yt−k < 0) for k > 0. The analytical expression for the propaga-
tion, derived by Catania (2020), is given by:

var(yt | yt−k < 0) = var(σ2
t | yt−k < 0) ρ0 = 0=


2µσΦ(−κ∑k

j=0 φ
k−jρj), if 0 < k ≤ m,

2µσΦ(−κφk∑m
j=0 φ

m−jρj), if k > m,

where µσ = E(σ2
t ) = β2 exp{σ2

h/2}, and Φ(·) is the Gaussian cumulative distribution
function. The unconditional variance σ2

h is given in section 2.1 of Catania (2020).
In order to apply state space methods, Catania (2020) rewrites model (6) as a nonlin-

ear, Gaussian state space model with uncorrelated noise terms. The resulting SV model
with leverage that we employ is given as:

yt − µ = β exp
{
ht
2

} √√√√1− ρ2
0

1−∑m
j=1 ρ

2
j

ut + ρ0

κ (1−∑m
j=1 ρ

2
j)

×

 ht − φht−1 −
κ

β

m∑
j=1

ρj (yt−j − µ) exp
{
ht−j

2

}  ,

ht = φht−1 −
κ

β

m∑
j=1

ρj (yt−j − µ) exp
{
ht−j

2

}
+ κ

√√√√1−
m∑
j=1

ρ2
j $t, (7)

where ut and $t are uncorrelated noise terms who follow a standard normal distri-
bution. If we condition on previous states αt = (ht, . . . , ht−m+1)′ and observations
yt = (yt, . . . , yt−m+1)′, we get that (yt − µ) |αt,yt−1 ∼ N (µy,t, σ2

y,t) and ht |αt−1,yt−1 ∼
N (µh,t σ2

h,t). The formulas for the conditional mean and variances are shown below:
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µy,t = β exp
{
ht
2

}
ρ0

κ (1−∑m
j=1 ρ

2
j)

×

 ht − φht−1 −
κ

β

m∑
j=1

ρj (yt−j − µ) exp
{
ht−j

2

} 

σ2
y,t = β2 exp {ht}

(
1− ρ2

0
1−∑m

j=1 ρ
2
j

)

µh,t = φht−1 −
κ

β

m∑
j=1

ρj (yt−j − µ) exp
{
ht−j

2

}

σ2
h,t = κ2

1−
m∑
j=1

ρ2
j

 . (8)

4.2 New Stochastic Volatility Model

We now present a new stochastic volatility model with a complicated non-causal struc-
ture in the observation equation. Here, we assume that the log-financial returns yt are
generated from the following model:

yt = µ+ exp
{
ht
2

}
ε̃t, ε̃t ∼ N (0, 1),

ht = c+ ϕht−1 + ση ηt, ηt
iid∼ N (0, 1), (9)

where c, |φ| < 1 and σ2
η are the unknown level, persistence and noise variance parameters

of the model. Furthermore, the observation equation contains return shocks ε̃t that are
not i.i.d. and unknown mean parameter µ. We deviate from the paper of Catania (2020)
by taking the complicated correlation structure:

ε̃t =
 +1∑
i =−1

ρi ηt+i

+ σε εt, εt
iid∼ N (0, 1). (10)

The novelty of the SV model lies in above non-casaul equation where the current return
shock ε̃t depends on the volatility shocks of yesterday (ηt−1), today (ηt) and tomorrow
(ηt+1). These volatility shocks influence the current return shock via ρ−1, ρ0 and ρ1,
respectively. Also, we can easily verify that ε̃t ∼ N (0, 1) remains true. Similarly to the
model of Catania (2020), we require that σε =

√
1−∑+1

i=−1 ρ2
i for identification.
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If Corr(ε̃t, ηt−i) = ρi = 0 for all i, we obtain the basic SV model without leverage since
ε̃t = εt in that case. The standard SVL model of harvey and Shephard (1996) is recovered
when only ρ−1 6= 0.

As before, we can rewrite the model given in equations (9) as a Gaussian state space
model with a linear state equation:

yt − µ = f(αt, εt), αt = c+ Tαt−1 + ηt, ηt
iid∼ N4(0,Q), (11)

where

f(αt, εt) = exp
{
ht
2

}  +1∑
i =−1

ρi ηt+i

+ σεεt

 ,

αt =



ht

ηt+1

ηt

ηt−1

 , c =



c

0
0
0

 , T =



ϕ ση 0 0
0 0 0 0
0 1 0 0
0 0 1 0

 , ηt =



0
ηt+1

0
0

 .

The (singular) symmetric and positive definite covariance matrix of the process noise ηt
is given by

Q =



0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 . (12)

For practical purposes, we can instead use pseudo-inverses of the covariance matrix Q.
Conditional on the current states (and observations), the observations are distributed as
(yt − µ) |αt, y1:t−1 ∼ N(µy,t, σ2

y,t), where y1:t−1 denotes the filtration set of observations
{y1, . . . , yt−1}. The conditional mean and variance of yt are

µy,t = exp
{
ht
2

} +1∑
i =−1

ρi ηt+i

 ,

σ2
y,t = exp {ht}

1−
+1∑
i=−1

ρ2
i

 .
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4.3 SML Estimation

Application of simulated maximum likelihood on the stochastic volatility model with
general leverage seems remarkably difficult. Therefore, we follow the methodology of
Catania (2020) by using the CSIR algorithm of Malik and Pitt (2011) to evaluate the
joint (log-) likelihood function which is not available in closed form. We estimate the
collection of unknown parameters in θ by maximizing the numerically evaluated log-
likelihood. For the general SV model of Catania (2020), we have θ = (β, φ, κ, µ,ρ) with
ρ = (ρ1, . . . , ρm).

Before we discuss and provide the CSIR algorithm of Malik and Pitt (2011), we pro-
vide some preliminaries on particle filtering. The core problem lies in the fact that the
marginal likelihood p(yt | Ft−1) is not available in closed form since the states αt enter the
observation density in a non-linear way. We can write the marginal likelihood as:

p(yt |θ; Ft−1) =
∫
p(yt |αt;θ) p(αt |θ; Ft−1)dαt. (13)

The above integral can be approximated with the Monte Carlo mean:

p̂(yt |θ; Ft−1) = 1/N
N∑
k=1

p(yt |α̃kt ;θ), (14)

where α̃1
t , . . . , α̃

N
t are simulation draws from the the predictive density p(αt |θ; Ft−1).

The particle filtering method: SIR proposed by Gordon et al. (1993) is given in
algorithm 1 on the next page. The algorithm recursively solves the issue of obtaining
simulation draws, αkt , for each time t by making use of the Bayesian updating rule:

p(αt |θ; Ft) ∝ p(yt |αt;θ)
∫
p(αt |αt−1;θ) p(αt−1 |θ; Ft−1) dαt−1. (15)

Essentially, the intuition of this recursive algorithm is as follows. Suppose, we have a
set of "particles", (α1

t−1, . . . ,α
N
t−1) drawn from the filtered state density p(αt−1 |θ; Ft−1),

with discrete probability weights π1
t−1, . . . , π

N
t−1. We propagate the old set of particles to

a new one (α̃1
t , . . . , α̃

N
t ) by sampling from the state transition density p(αt |αkt−1;θ). In

order to filter the propagated particles, we resample from them according to a multinomial
sampling scheme with associating normalized probabilities π1

t , . . . , π
N
t . We then obtain

again the set of filtered particles (α1
t , . . . ,α

N
t ) but now at time t. The SIR method

assumes that we can compute the obervation density p(yt |αt;θ) and sample from the
transition state density p(αt |αt−1;θ) for t = 0, . . . , T .

11



Algorithm 1: SIR

1. For t = 0, we sample a set of particles {αk0}Nk=1 from the stationary distribution
p(α0).

For t = 1, . . . , T , do:

2. For k = 1, . . . , N : sample α̃kt ∼ p(αt |αkt−1;θ)

3. For k = 1, . . . , N : compute the normalized weights:

πkt = ωkt∑N
i= 1 ω

i
t

, where ωkt = p(yt |α̃kt ;θ).

4. For k = 1, . . . , N : sample from the mixture: αkt ∼
∑N
i=1 π

i
t δ(αt − α̃it),

where δ(·) denotes the Diract-delta function centered at 0.

With the output of Algorithm 1, the log-likelihood can be approximated with

ˆ̀
N,T (θ) =

T∑
t=1

log p̂(yt |θ; Ft−1) =
T∑
t=1

log
(

1
N

N∑
k=1

ωkt

)
. (16)

However, Malik and Pitt (2011) argue that (step 4) resampling from the mixture em-
pirical distribution function F̂N(αt) = ∑N

i=1 π
i
t δ(αt − α̃it) leads to discontinuities in

ˆ̀
N,T (θ). Such discontinuities may be detrimental for estimating the parameter θ with
maximum likelihood. They remedy this by replacing the mixture function of step 4, with
a continuous approximate function F̃N(αt), which leads to CSIR algorithm. As in Cata-
nia (2020) we apply the resampling step only for the first element of the state vector
αt = (ht, . . . , ht−m+1)′ and leave the remaining m elements unchanged while filtering. For
details on practical implementation of continuous resampling, we refer to appendix A.

Let the continuous function be

F̃N(ht) =
N∑
k=0

λkt GK

 ht − h(k)
t

h
(k+1)
t − h(k)

t

 , (17)

where we set

λkt =


π1
t /2 , if k = 0,

πk+1
t + πkt )/2 , if k = 1, . . . , N − 1,

πNt /2 , if k = N,

Gk(z) =


1(z > 0) , if k = 0,

FU(z) , if k = 1, . . . , N − 1,

1(z > 0) , if k = N.
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Here, 1(z > 0) denotes the indicator function taking on 1 if z > 0 and FU(z) is the
uniform cumulative function. Furthermore, we need that h(0)

t = −∞ and h
(N+1)
t = ∞,

where h(k)
t denotes the k-th order statistic. As the number of particles N goes to infinity,

we know that particles (h̃t) drawn from F̃N(ht) will be equivalent to draws from the true
predictive density p(ht |Ft−1), with probability 1. The output of the CSIR algorithm can
then be used to evaluate the log-likelihood function given in equation (26), which now
becomes continuous in θ. The SML estimates are then obtained as

θ̂SML = argmax
θ

ˆ̀
N,T (θ). (18)

4.4 QML Estimation

In contrast to the SML method, the quasi-maximum likelihood approach does not
require simulation draws to estimate θ for the SV model of Catania (2020). We cannot
apply QML to the non-causal SV model, because taking the logarithm of the squared
return shocks ε̃ 2

T in equation (9) leads to complications. However, this could be a neat
extention for future research. Since it is already explicitly discussed in Catania (2020),
we will not go into much details when discussing the QML method.

Essentially, the crux of the QML approach is to write model (6) as a state space model
with linear equations where the observation and volatility shocks are uncorrelated. If we
square and take logarithms, the observation equation becomes

y∗t = ω + ht + ξt, ht+1 = φht + κ gt, (19)

where y∗t = log (yt−µ)2, ω = 2 log β+ζ, ξt = E( log ε2
t )−ζ with ζ = E( log ε2

t ) ≈ −1.270.
Here, the above state space model is linear, but not Gasssian and the return shocks
ξt ∼ iid(0, σ2

ξ ) are correlated with the volatility shocks gt = ηt+1. In order to make QML
estimation via the Kalman filter feasible, the strategy of Harvey and Shephard (1996) is
adopted to construct a linear state space model with uncorrelated error terms. In this
strategy the information about the correlation between the noise terms are recovered by
using the auxiliary variables st = (st, . . . , st−m+1) where st = sign(yt). In addition, by
introducing the latent i.i.d stochastic variables qt and zt, Catania (2020) derives that the
log-volatility ht can be written as

ht+1 = ct +
m∑
j=1

φj,t ht−j+1 + κυ
m∑
j=1

ρjqt−j+1 + κυ zt, (20)
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where

ct = κ

 µ∗ m∑
j=1

ρjst−j+1 + (γ∗/σ2
ξ )

m∑
j=1

ρjst−j+1 (y∗t−j+1 − ω)
 , υ2 = 1−

(
µ∗2 + γ∗2

σ2
ξ

)
m∑
j=1

ρ2
j ,

φ1,t = φ− κ γ∗ st ρ1

σ2
ξ

, φj,t = − κ γ
∗ ρj st−j+1

σ2
ξ

, µ∗ = E( |εt| ), γ∗ = E( |εt| · log ε2
t ).

By using the formulas given above, we can write (19) compactly and linearly as

y∗t = ω +Zαt + ξt, ξ ∼ iid (0, σ2
ξ ), (21)

αt+1 = bt + T tαt +Hwt, wt ∼ iid

0,

σ2
z 0

0 σ2
q

 , (22)

where αt = (ht, . . . , ht−m+1, qt, . . . , qt−m+1)′, wt = (zt, qt+1)′ are the new state vector,
noise terms and the 1 × 2m vector Z = (1, 0, . . . , 0), respectively. The variances of the
state shocks wt are

σ2
q =

(
1− µ∗2 − γ∗2

σ2
ξ

)
1
υ2 , σ2

z = 1− σ2
q

m∑
j=1

ρ2
j .

The time-varying fixed parameter matrices are defined as

bt =



ct

0
...
0

 , T t =



φ1,t φ2,t . . . φm,t κυρ1 . . . κυρm−1 κυρm

1 0 . . . 0 0 . . . 0 0
0 1 . . . 0 0 . . . 0 0
... ... . . . ... ... . . . ... ...
0 0 . . . 0 0 . . . 0 0
0 0 . . . 0 1 . . . 0 0
... ... . . . ... ... . . . ... ...
0 0 . . . 0 0 . . . 1 0



, H =



κυ 0
0 0
0 0
... ...
0 1
0 0
... ...
0 0



,

where bt is 2m×1, T t: 2m×2m andH : 2m×2. It is important to note that Catania (2020)
assumes that ρ0 = 0 as otherwise we would obtain a non-linear system for log (yt − µ)2

rendering the efficient Kalman filter obsolete. Despite the restriction, we can assume ξt
and wt to be normally distributed. Given that we know µ∗, γ∗ and σ2

ξ , the QML estimator
is obtained by maximizing the prediction error decomposition via the Kalman filter:

θ̂QML = argmax
θ

T∑
t=1

[
log var(y∗t |Ft−1) + (y∗t − E(y∗t |Ft−1))2

var(y∗t |Ft−1)

]
. (23)
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4.5 Bellman Filter

The Bellman filter introduced by Lange (2020) is a computationally efficient filtering
algorithm based on the dynamic programming technique of Bellman (1956). The Bellman
filter generalizes the standard Kalman filter and iterated extender Kalman filter for non-
linear state space models. Since the algorithm of Lange (2020) specifically requires that
the state equation is linear and Gaussian, we apply this method only to the SV model
with non-causal leverage.

The method aims to find a set of filtered states {α̃1:1, . . . , α̃T |T} by maximizing the
complete data log likelihood `(α1:T ,y1:T ) = log p(α1, . . . ,αt,y1, . . . ,yT ). The key in-
sight for making the Bellman filter computationally efficient is that we can recursively
write the joint log-likelihood as

`(α1:t,y1:t) = `(yt |αt) + `(αt |αt−1) + `(α1:t−1,y1:t−1),

for 2 ≤ t ≤ T . If we take the value function:

Vt(αt) = max
α 1:t−1

`(α1:t,y1:t),

then we can write the recursive Bellman equation with its solution definition as

Vt(αt) = `(yt |αt) + max
α t−1
{ `(αt |αt−1) + Vt−1(αt−1) } ,

αt|t = max
α t−1

Vt(αt), (24)

where αt|t = α̃t|t for all t = 2, . . . , T .
Lange (2020) proposes to solve the Bellman equations for each time point by using

a multivariate quadratic value function. However, the Bellman filter algorithm we use,
works only in the state space framework (5), where the state is linear and Gaussian. The
observation equation may involve nonlinearity. Therefore, this filtering method perfectly
suits the SV model with non-causal leverage given in (9). The prediction and updating
steps are shown in algorithm 2 on the next page. For derivations of the necessary score
and the information matrix, we refer to appendix B.

In order to obtain feasible estimates of the unknown parameters θ, Lange (2020)
decomposes the marginal likelihood into a "fit" term and a "penalty" term, which is the
difference between the filtered and predicted states. The components are easily computed
by the output of Algorithm 2. Finally, the Bellman Filter estimates are obtained as:

θ̂BF = argmax
θ

T∑
t=1

[
`(yt |αt) + 1

2 log det(I−1
t | tI t | t−1)− 1

2 (αt | t −αt | t−1)′I t | t−1(αt | t −αt | t−1)
]
.

(25)
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Algorithm 2: Bellman Filter
For t = 0:

1. Initialization step:
Set α0|0 = (1− T )−1c and vec(I0|0) = (1− T ⊗ T )−1vec(Q) .

For t = 1, . . . , T :

2. Prediction step:
αt|t−1 = c+ Tαt−1|t−1.
I t|t−1 = (TI−1

t−1|t−1T
′ +Q)−1.

3. Optimization step:
Set α(0)

t|t = αt|t−1. Choose one of the three steps for i = 1, . . . , imax :

Newton :

α
(i)
t|t = α

(i−1)
t|t +

{
I t|t −

d2`(yt|α)
dαdα′

}−1 {
d`(yt|α)
dα

− I t|t−1(α−αt|t−1)
}∣∣∣∣∣∣

α=α(i−1)
t|t

Fisher :

α
(i)
t|t = α

(i−1)
t|t +

{
I t|t +E

[
− d

2`(yt|α)
dαdα′

|α
]}−1 {

d`(yt|α)
dα

− I t|t−1(α−αt|t−1)
}∣∣∣∣∣∣

α=α(i−1)
t|t

BHHH :

α
(i+1)
t|t = α

(i)
t|t +

{
I t|t + d`(yt|α)

dα

d`(yt|α)
dα′

}−1 {
d`(yt|α)
dα

− I t|t−1(α−αt|t−1)
}∣∣∣∣∣∣

α=α(i)
t|t

4. Update step:
Set αt|t = αimax

t|t .

Newton :

I t|t = I t|t−1 −
d2`(yt|α)

dαdα′

∣∣∣∣∣
α=αt|t

Fisher :

I t|t = I t|t−1 +E

[
− d2`(yt|α)

dαdα′ |α
]
α=αt|t

BHHH :

I t|t = I t|t−1 + d`(yt|α)
dα

`(yt|α)
dα′

∣∣∣∣∣
α=αt|t
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5 Simulation Study

In this section, we investigate the finite sample performance of the likelihood-based
estimators by performing Monte Carlo simulations. Particularly, we focus on validating
the consistency of the parameter estimates obtained with the aforementioned estimation
methods. For this purpose, we repeatedly generate artifical observations ỹ1, . . . , ỹT from
two data generating processes which are given in equations (6) and (9). We then estimate
the model parameters by using the replicated data sets. This is done for different sample
sizes T and different values m, the number of return shock lags. For comparison with
the true parameter values, the root mean squared error (RMSE) is used. This indicator
should decreases as we increase the sample size T .

5.1 Design

Since not every estimation approach is equally efficient, we need different numbers of
replication R for each estimator. Following Catania (2020), we perform R = 100 MC
replication for SML estimation and R = 1000 replications for QML. For the Bellman
Filtering method we set R = 100 as done in the simulation study of Lange (2020). Fur-
thermore, we consider sample sizes T ∈ {500, 1000, 2000, 5000}. The model parameters of
the SV model of Catania (2020) are denoted by θ = (β, φ, κ,ρ). We set β = 1, φ = 0.975,
κ = 0.1, µ = 0 and consider three cases for the SML and QML estimators:

Case I: m = 0 for SML and m = 1 for QML:
ρSML

0 = −0.8 , ρQML
1 = −0.8

Case II: m = 1 for SML and m = 2 for QML:
ρSML

0 = −0.8, ρSML
1 = −0.5, ρQML

1 = −0.8, ρQML
2 = −0.5

Case III: m = 2 for SML and m = 3 for QML:
ρSML

0 = −0.8,ρSML
1 = −0.5,ρSML

2 = −0.3 , ρQML
1 = −0.8,ρQML

2 = −0.5, ρQML
3 = −0.3

We use the above DGP values, just to replicate the simulation results of Catania (2020).
However, the focus is more on the model parameter of the SV model with non-causal
leverage for which we estimate the model parameters using the Bellman filter (BF).
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Similarly, we consider three cases for the SV model with non-causal leverage. We set
c = 0, ϕ = 0.975, σ2

η = 0.01 and µ = 0. We estimate in Case I, the standard SV model
without leverage. We estimate in Case II, the 2-dimensional version of the anti-causal
SV: ρ1 = −0.5. Lastly, we estimate in Case III, the 4-dimensional anti-causal SV model
where the correlation parameter are set to ρ−1 = −0.3, ρ0 = −0.8, ρ1 = −0.5.

The steps that we take to generate log returns from the anti-causal SV model for the
monte carlo simulations are:

(i) Draw T random return shocks ε1, . . . , εT and T + 2 random volatility shocks
η0, . . . , ηT+1 from a standard normal distribution.

(ii) Construct new return shocks ε̃1, . . . , ε̃T by using the non-causal formula

ε̃t =
 +1∑
i =−1

ρi ηt+i

+ σε εt,

where σε =
√

1−∑+1
i=−1 ρ2

i .

(iii) Furthermore, recursively construct a series of log-volatilities h1, . . . , hT by using
the state transition equation:

ht = c+ ϕht−1 + ση ηt, (26)

where the log-volatility process starts with h0 = E(ht) = 0.

(iv) Afterwards, the set of artificial observations ỹ1, . . . , ỹT , are then obtained with the
observation equation:

ỹt = exp
{
ht
2

}
ε̃t. (27)

(v) Apply the BF estimation method on the generated data set {ỹt}Tt=1 and store the
obtained model parameter estimates θ̂BF.

(vi) Repeat steps (i) till (v) R times.
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Simulating log-returns from the SV model of Catania (2020) is analogue. The steps
that we take to perform MC simulations for the SV model with general leverage structure
are:

(i) Draw T + m random return shocks ε1−m, . . . ε0, ε1, . . . , εT and T random shocks
b1, . . . , bT from a standard normal distribution.

(ii) Construct the volatility shocks ηt, . . . , ηT by using the general leverage formula:

ηt =
m∑

j = 0
ρj εt−j + σb bt,

where σb =
√

1−∑m
j = 0 ρ

2
j .

(iii) Furthermore, recursively construct a series of log-volatilities h1, . . . , hT by using
the state transition equation:

ht = φht−1 + κ ηt,

where the log-volatility process starts with h0 = E(ht) = 0.

(iv) Afterwards, the set of artificial observations ỹ1, . . . , ỹT , are then obtained with the
observation equation:

ỹt = β exp
{
ht
2

}
εt.

(v) Apply the QML and SML estimation methods on the generated data set {ỹt}Tt=1

and store the obtained model parameter estimates θQML and θSML

(vi) Repeat steps (i) till (v) R times.

5.2 Results

By applying the three parameterization cases for the QML and SMLmethods described
in Section 5.1, we obtain Monte Carlo estimates for the parameters of six different SV
models. These estimates including their RMSE are shown in tables 1 and 2. Furthermore,
the use of the Bellman filter regarding the SV model with anti-causal leverage rendered
valid Monte Carlo estimates as well. The results are formatted similarly in table 3. From
tables 1 to 3 we can confirm that all three method provide valid and pretty consistent
estimates when T increases. From computational point, the QML approach is the fastest
and the SML approach the slowest whereas BF is in between and is the most stable.
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Table 1: Monte Carlo simulation results for QML estimators without mean µ.

Case I: m = 1

T β φ κ ρ1 ρ2 ρ3 Computing Time

500 1.006 0.728 0.133 -0.871 - - 2.43
(0.140) (0.473) (0.209) (0.289) - - -

1000 1.001 0.928 0.120 -0.846 - - 3.98
(0.065) (0.183) (0.110) (0.224) - - -

2000 1.001 0.971 0.103 -0.829 - - 6.71
(0.041) (0.014) (0.029) (0.142) - - -

5000 1.001 0.974 0.101 -0.807 - - 15.15
(0.025) (0.006) (0.016) (0.080) - - -

Case II: m = 2

500 1.001 0.945 0.105 -0.899 -0.501 - 4.88
(0.122) (0.135) (0.061) (0.134) (0.139) - -

1000 1.001 0.970 0.104 -0.894 -0.450 - 9.26
(0.068) (0.036) (0.036) (0.152) (0.210) - -

2000 1.002 0.974 0.105 -0.874 -0.415 - 17.87
(0.040) (0.007) (0.027) (0.187) (0.265) - -

5000 1.000 0.975 0.110 -0.852 -0.349 - 43.83
(0.023) (0.004) (0.023) (0.189) (0.335) - -

Case III: m = 3

500 0.998 0.963 0.099 -0.854 -0.523 -0.296 6.542
(0.084) (0.078) (0.040) (0.068) (0.079) (0.076) -

1000 1.001 0.972 0.101 -0.851 -0.513 -0.285 12.902
(0.070) (0.012) (0.027) (0.081) (0.098) (0.094) -

2000 1.002 0.974 0.101 -0.843 -0.510 -0.264 25.706
(0.046) (0.006) (0.020) (0.082) (0.110) (0.120) -

5000 1.000 0.975 0.103 -0.827 -0.517 -0.227 62.676
(0.023) (0.003) (0.016) (0.108) (0.117) (0.153) -

Note: The results of the Monte Carlo simulations with QML method are based on 1000 replicates. The true
values are β = 1, φ = 0.975, κ = 0.1 and µ = 0. For case I: ρ1 = −0.8, case II: ρ1 = −0.8, ρ2 = −0.5, and
case III: ρ1 = −0.8, ρ2 = −0.5, ρ3 = −0.3. The entries in brackets are the root mean squared errors. The
last column represents the average computing time per sample.
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Table 2: Monte Carlo simulation results for SML estimators without mean µ.

Case I: m = 0

T β φ κ ρ0 ρ1 ρ2 Computing Time

500 0.997 0.964 0.105 -0.804 - - 200.85
(0.029) (0.032) (0.031) (0.028) - - -

1000 0.998 0.973 0.098 -0.802 - - 375.66
(0.025) (0.009) (0.014) (0.013) - - -

2000 0.999 0.975 0.100 -0.802 - - 750.17
(0.016) (0.005) (0.012) (0.014) - - -

5000 0.998 0.975 0.100 -0.800 - - 1925.90
(0.009) (0.003) (0.007) (0.006) - - -

Case II: m = 1

500 1.001 0.973 0.096 -0.799 -0.500 - 225.62
(0.006) (0.014) (0.011) (0.005) (0.005) - -

1000 1.000 0.976 0.096 -0.800 -0.500 - 425.58
(0.005) (0.004) (0.008) (0.004) (0.004) - -

2000 1.000 0.976 0.098 -0.800 -0.500 - 875.56
(0.002) (0.003) (0.006) (0.003) (0.002) - -

5000 1.000 0.976 0.098 -0.799 -0.499 - 2125.80
(0.003) (0.002) (0.004) (0.004) (0.003) - -

Case III: m = 2

500 0.999 0.976 0.094 -0.792 -0.495 -0.296 250.49
(0.012) (0.006) (0.012 (0.021) (0.013) (0.013) -

1000 1.000 0.978 0.094 -0.794 -0.497 -0.297 500.79
(0.006) (0.004) (0.009) (0.013) (0.009) (0.007) -

2000 1.001 0.977 0.096 -0.794 -0.496 -0.298 975.16
(0.004) (0.003) (0.007) (0.011) (0.008) (0.005) -

5000 1.000 0.977 0.095 -0.793 -0.496 -0.297 2473.30
(0.004) (0.003) (0.007) (0.012) (0.008) (0.006) -

Note: The results of the Monte Carlo simulations with SML method are based on 100 replicates. The true
values are β = 1, φ = 0.975, κ = 0.1 and µ = 0. For case I: ρ0 = −0.8, case II: ρ0 = −0.8, ρ1 = −0.5, and
case III: ρ0 = −0.8, ρ1 = −0.5, ρ2 = −0.3. The entries in brackets are the root mean squared errors. The
last column represents the average computing time in seconds per sample.
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Table 3: Monte Carlo simulation results for BF estimators without mean µ.

Case I: ρ1 = ρ0 = ρ−1 = 0

T c ϕ σ2
η ρ−1 ρ0 ρ1 Computing Time

500 -0.009 0.915 0.027 - - - 0.48
(0.070) (0.199) (0.068) - - - -

1000 0.002 0.953 0.016 - - - 0.51
(0.007) (0.060) (0.028) - - - -

2000 0.002 0.966 0.014 - - - 0.76
(0.004) (0.020) (0.010) - - - -

5000 0.003 0.970 0.013 - - - 1.56
(0.003) (0.009) (0.005) - - - -

Case II: ρ0 = ρ−1 = 0

500 0.000 0.956 0.017 - - -0.568 18.14
(0.012) (0.045) (0.090) - - (0.285) -

1000 0.001 0.957 0.012 - - -0.501 33.41
(0.006) (0.072) (0.090) - - (0.197) -

2000 0.001 0.970 0.012 - - -0.478 61.77
(0.003) (0.011) (0.089) - - (0.116) -

5000 0.002 0.972 0.012 - - -0.491 140.19
(0.002) (0.007) (0.088) - - (0.063) -

Case III: ρi 6= 0 for i ∈ {−1, 0, 1}

500 0.000 0.969 0.011 -0.310 -0.790 -0.500 58.14
(0.003) (0.014) (0.089) (0.070) (0.028) (0.083) -

1000 0.000 0.973 0.010 -0.319 -0.801 -0.481 59.25
(0.002) (0.006) (0.090) (0.052) (0.022) (0.069) -

2000 0.000 0.974 0.010 -0.314 -0.801 -0.484 174.36
(0.001) (0.004) (0.090) (0.042) (0.018) (0.056) -

5000 0.000 0.975 0.010 -0.305 -0.801 -0.493 391.97
(0.001) (0.002) (0.090) (0.026) (0.011) (0.035) -

Note: The results of the Monte Carlo simulations with BF method are based on 100 replicates. The true
values are c = 0, ϕ = 0.975, σ2

η = 0.01 and µ = 0. For case I: no leverage, case II: ρ1 = −0.5, and case
III: ρ−1 = −0.3, ρ0 = −0.8, ρ1 = −0.5. The entries in brackets are the root mean squared errors. The last
column represents the average computing time in seconds per sample.
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6 Empirical Study

The empirical study that we perform is similar to that of Catania (2020) and is two-
fold. Firstly, we consider the in-sample results where we estimate our univariate SV
models on the whole data sample. Secondly, we perform out-of-sample volatility prediction
analysis to compare the forecast accuracy of the SV models with leverage against the
benchmark GARCH(1,1) model.

6.1 Data

For the purpose of the in-sample study and out-of-sample forecasting analysis, equity
index returns are used. Particularly, we consider two indices: the Standard & Poor’s 500
index (SP500) and the Amsterdam Exchange index (AEX). The raw data set consists
of daily prices for the two index return series, where the AEX prices are obtained from
the Oxford-Man institute’s realized library and SP500 from the Wharton research data
services. As the raw data are closing prices, the index returns are transformed to log-
returns by calculating the differences in the natural logarithm of the closing prices. The
data range in this case is 2010/01/04 - 2020/12/31. This leaves us with a data set of
T = 2618 observations for SP500 and T = 2730 observations for AEX.

Table 4: Summary statistics of the log returns of the AEX and S&P500 indices.

S&P 500 AEX

Mean 0.056 0.020
Std.Dev. 1.106 1.134
Skewness −0.679 −0.512
Kurtosis 17.986 10.188

Note : This table shows descriptive statistics
of the AEX and S&P 500 indices over the full
sample period: 2010/01/04 - 2020/12/31.

In table 4, we present summary statistics for both indices. Moreover, in Figures 1
and 2 the development of the price and log-returns of the S&P 500 and AEX indices are
shown. From the plots and table, we confirm our notion that the stylized facts of returns
hold, i.e. high kurtosis, negative skewness, volatility clustering. Interestingly, sharp drops
of the price of both indices in for example 2011 and 2020, correspond with periods of large
return swings, indicating the presence of the leverage effect.
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Figure 1: The level and log returns of the S&P 500 index over sample period
2010/01/04 - 2020/12/31.
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Figure 2: The level and log returns of the AEX over sample period 2010/01/04 -
2020/12/31.
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6.2 Full sample performance

We estimate the model parameters of the SV models with general and non-causal
leverage structures using the three methods on the full data set. This is done with and
without a mean term µ, since we expect that the mean parameter µ will off-set the poorly
estimated leverage parameter ρ0. Especially for the SV model with non-causal, this should
make a difference. We determine the SV model with the best fit to our data set by con-
sidering the BIC model selection criterion.

The full sample estimation results without µ are given in table 5. It show the maximum
likelihood estimates of the SV model with general leverage (QML/SML) and SV model
with non-causal leverage (BF) on both the S&P 500 and the AEX index. Furthermore
the in-sample fit criterion BIC is included. For each method the model with the lowest
BIC value is chosen to be shown in the table. This means that for SML, the BIC criterion
chooses Catania’s SV model with m = 1 and m = 3 lags for the S&P 500 and AEX index,
respectively. For QML, we obtain the best fit when m = 1 for both the S&P 500 and
AEX index but the restriction ρ0 is imposed causing the BIC values to be way higher than
the BIC values obtained with SML. For the BF method, the 4-dimensional non-causal
SV model gives the second to lowest BIC values. The best fit of all three approaches are
obtained when we use the SML approach. For both the S&P 500 index and AEX index,
the SML approach renders the best fit of BIC values of 6331 and 7384, respectively. This
means that neither of the intertemporal SVL model and contemporaneous SVL model is
a good fit to the returns of the S&P 500 and AEX indices. Despite that, the SV model
with non-causal leverage still give a comparable full-sample fit value of BIC = 6347 for
S&P 500 and BIC = 7408 for AEX.

Table 6 similarly shows parameter estimates of the three methods on the full sample
but now we estimate with an additional mean parameter µ. What we generally observe is
that the full sample fit slightly increases for each model (and method). Also, the ranking
stays unchanged (SML gives best BIC values for both S&P 500 and AEX). More impor-
tantly, we see that in table 6, the leverage parameters ρ0 of the non-causal SV model
for both S&P 500 and AEX are significantly estimated as -0.736 and -0.731. In table 5
(without a mean term), the leverage parameters ρ0 are -0.013 and -0.093. This confirms
the suspicion that the mean parameter µ indeed influences the estimate of leverage pa-
rameter ρ0. The inclusion of a mean term µ therefore actually improves the ability of
the non-causal SV model to capture the leverage effect. For SML and QML, the leverage
parameter parameters do not change considerably.
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Table 5: Parameter estimates of the univariate SV models with leverage from the SML/QML/BF estimators

SML General SV

β φ κ ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 BIC

S&P 500 1.012 0.946 0.314 −0.336 −0.669 —— —— —— —— 6331
(0.001) (0.001) (0.001) (0.002) (0.001) —— —— —— —— –

AEX 1.051 0.972 0.242 −0.403 −0.698 0.047 0.273 —— —— 7384
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) —— —— –

QML General SV

S&P 500 0.921 0.948 0.379 – −0.731 —— —— —— —— 12225
(0.060) (0.008) (0.034) – (0.045) —— —— —— —— –

AEX 1.015 0.979 0.211 – −0.862 —— —— —— —— 12406
(0.067) (0.004) (0.022) – (0.046) —— —— —— —— –

BF Non -Causal SV

c φ ση ρ−1 ρ0 ρ1 BIC

S&P 500 0.005 0.939 0.157 −0.137 −0.013 −0.639 —— —— —— 6347
(0.007) (0.008) (0.022) (0.036) (0.030) (0.051) —— —— —— –

AEX 0.004 0.951 0.090 −0.044 −0.093 −0.647 —— —— —— 7408
(0.004) (0.006) (0.010) (0.040) (0.046) (0.041) —— —— —— –

Note : This table shows parameter estimates of the univariate SV models with leverage selected by BIC. Entries in parenthesis are
the asymptotic standard errors. Empirical log returns on the S&P 500 and AEX are used over the full sample period: 2010/01/04 -
2020/12/31 (T = 2618 for SP500 and T = 2730 for AEX). For SML the standard errors are unstable. For QML we set ρ0 = 0.
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Table 6: Parameter estimates of the univariate Leverage SV models with mean µ from SML/QML/BF estimators

SML General SV

β φ κ µ ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 BIC

S&P 500 0.831 0.962 0.293 0.065 −0.428 −0.519 —— —— —— —— 6306
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001) —— —— —— —— –

AEX 1.000 0.978 0.250 0.033 −0.420 −0.693 0.082 0.295 —— —— 7383
(0.001) (0.001) (0.001) (0.001) (0.004) (0.001) (0.001) (0.001) —— —— –

QML General SV

S&P 500 0.337 0.980 0.253 0.255 – −0.587 —— —— —— —— 11673
(0.076) (0.004) (0.025) (0.001) – (0.069) —— —— —— —— –

AEX 1.109 0.980 0.196 −0.016 – −0.884 0.009 —— —— —— 12311
(0.073) (0.004) (0.012) (0.001) – (0.043) (0.030) —— —— —— –

BF Non -Causal SV

c φ ση µ ρ−1 ρ0 ρ1 BIC

S&P 500 −0.0012 0.968 0.096 0.091 0.204 −0.736 −0.126 —— —— —— 6319
(0.006) (0.006) (0.012) (0.011) (0.039) (0.035) (0.040) —— —— —— –

AEX 0.002 0.972 0.062 0.058 0.155 −0.731 −0.184 —— —— —— 7397
(0.005) (0.006) (0.011) (0.015) (0.041) (0.045) (0.043) —— —— —— –

Note : This table shows parameter estimates of the univariate SV models with leverage selected by BIC. The SV models now contain
a mean term µ. Entries in parenthesis are the asymptotic standard errors. Empirical log returns on the S&P 500 and AEX are used
over the full sample period: 2010/01/04 - 2020/12/31 (T = 2618 for SP500 and T = 2730 for AEX). For QML: ρ0 = 0.
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6.3 Forecasting Performance

For the comparison of the predictive performance of the different SV models, we do the
following. The total data sample is equally split up such that the first T/2 observations
are used for in-sample (IS) estimations and the last T/2 observations for out-of-sample
(OOS) volatility evaluations. We construct one-day ahead volatility forecasts σ̂2

t | t−1 =
var(yt |Ft−1) using the outputs of the particle filter (SML), Kalman filter (QML) and the
Bellman filter (BF). The forecast criteria that we employ are the robust Quasi-likelihood
(QLIKE) and the usual mean squared forecast error (MSFE):

QLIKE =
T∑

t= T/2

 log( σ̂2
t | t−1 ) + σ̃2

t+1
σ̂2
t | t−1

 ,

MSFE =
T∑

t= T/2

(
σ̂2
t | t−1 − σ̃2

t+1

)2
,

where σ̃2
t+1 is the "observed" volatility. For σ̃2

t+1, we use two proxies: the squared returns
and the 5 -min. intra-day realized variances. The latter can be obtained from Oxford-
Man institute’s realized library.2

In order to confirm that improvements in volatility predictions are significant, we make
use of a test for equal predictive ability proposed by Diebold-Mariano (1995). For the
two loss functions (QLIKE and MSFE) denoted L, the out-of-sample average of the loss
differentials between models i and j is computed as:

d̄ = 1
(T/2)

T∑
t= T/2

(Li,t − Lj,t) .

We use the formula mentioned in Harvey et al. (1997) to obtain the asymptotic variance
of d̄. Additionally, we also take into account the fact that the Diebold-Mariano statistic
(DM) is large for small sample sizes. Given the forecast horizon h = 1 and sample size
T/2, the adjusted Diebold-Mariano statistic becomes:

S ∗1 =
[
T − 2

2

]1/2 d̄√
γ̂0

.

Here, γ̂0 is the out-of-sample variance of the loss differentials. The asymptotic distribution
of the adjusted DM test is a t -distribution with (T − 2)/2 degrees of freedom.

2https://realized.oxford-man.ox.ac.uk/data/download
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6.4 Results

In this section, we present the results of the out-of-sample volatility prediction analy-
sis. Since two proxies are used for the "true" volatility with and without a mean term µ,
we consider four separate cases. We start off with results of the 5-min. intra-day realized
variance proxy and end with the noisy squared returns proxy.

Table 7 shows the absolute and relative QLIKE and MSFE values for all three meth-
ods. The relative values are used using the absolute QLIKE and MSFE value of the
benchmark GARCH(1,1) model. For QML, we estimate and predict with the SV general
leverage models for values of m = 1 up to m = 10 since it is quickly done due to the
use of the Kalman filter. However, for SML, we only use values m = 0 till m = 5 due
to the long computation time. For BF, we consider the 2-dimensional and 4-dimensional
SV model with non-causal leverage3. Generally, what we can see from table 6 is that the
SV model with non-causal leverage significantly outperforms all other leverage SV model,
including the GARCH(1,1), with the exception for the QLIKE on the AEX index. In that
case, the QML approach with m = 6 seems to be the best at predicting the volatility, but
the QLIKE value does not differ significantly from the QLIKE values obtained from the
non-causal SV models (0.436 vs. 0.452). Another neat thing of table 6 is that all three
estimation approaches deliver significantly better volatility predictions than the asym-
metrics GARCH(1,1). This also holds for the standard GARCH(1,1) model, but QML
approach seems to produce worse volatility prediction for the AEX index when the MSFE
measure is used. This could be due to possible outliers in the AEX index (e.g. corona-
crisis). These observations provide evidence for the claim that stochastic volatility models
are significantly superior to the observation driven models. Table 8 displays similar re-
sults, but now the models are estimated with an additional mean term µ. The ranking of
the model remains largely unchanged with the exception for the QLIKE measure on the
AEX index. Here the best predictive model now becomes the 4-dimensional non-causal
SV model instead of the 2-dim. non-causal SV model. The volatility predictions of the
non-causal SV models seem to improve from adding a mean term (e.g. from 0.059 to
0.046 for QLIKE on SP500). On the other hand the QLIKE and MSFE values (volatility
predictions) obtained with QML seem to become larger (worse). The same holds for the
SML approach.

Tables 9 and 10 are similar to tables 7 and 8. They show absolute and relative
QLIKE/MSFE values with and without mean µ, but now with the noisy squared returns
as proxy. Here, the results are different as expected. There seems to be (significant)

3See appendix B for more details on the 2-dim. SV model.
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dominance of Catania’s SV model used with SML for the QLIKE values on both indices.
However, for the MSFE measure on the AEX, only the SML approach renders signifi-
cant volatility predictions. For the S&P 500 index, the asymmetric GARCH(1,1) model
seems to do the best in that case with a MSFE value of 29.010. This applies to both
the cases with and without a mean term. The worst volatility predictions are obtained
with the QML method since all the relative QLIKE and MSFE values are larger than 1
(both with and without mean term). This means the SV model with non-causal leverage
(BF) performs relatively worse to Catania’s SV model with QML when using the noisy
squared returns. However, the difference again are not (significantly) large. The other
relative QLIKE and MSFE values are interpreted similarly. Adding a mean term results
in significant volatility predictions only for the QLIKE measure on the S&P 500 index.
The important thing to note is that the results for the squared returns are very unreliable
due to the high variance of this noisy estimator. Therefore, the results with the 5-min.
realized variances should be preferred over the noisy squared returns.
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Table 7: Out-of-sample volatility forecasting results with 5 -min. realized variance - µ = 0.

QLIKE MSFE

SP500 AEX SP500 AEX

Benchmark

GARCH(1,1) 0.162 (1.000) 0.525 (1.000) 4.796 (1.000) 2.116 (1.000)
A-GARCH(1,1) 0.138 (0.852) 0.515 (0.981) 7.971 (1.662) 2.703 (1.277)

QML General SV

m = 1 0.082 (0.504) 0.437 (0.832) 1.549 (0.323) 2.441 (1.154)
2 0.081 (0.501) 0.437 (0.831) 1.551 (0.323) 2.443 (1.154)
3 0.081 (0.498) 0.436 (0.831) 1.551 (0.323) 2.465 (1.165)
4 0.080 (0.495) 0.436 (0.830) 1.560 (0.325) 2.464 (1.165)
5 0.082 (0.507) 0.436 (0.830) 1.576 (0.329) 2.467 (1.166)
6 0.082 (0.504) 0.436* (0.829) 1.579 (0.329) 2.464 (1.165)
7 0.082 (0.504) 0.436 (0.830) 1.580 (0.329) 2.464 (1.164)
8 0.082 (0.507) 0.436 (0.830) 1.577 (0.329) 2.462 (1.164)
9 0.082 (0.504) 0.436 (0.831) 1.579 (0.329) 2.455 (1.160)
10 0.082 (0.505) 0.436 (0.831) 1.577 (0.329) 2.446 (1.156)

SML General SV

m = 0 0.093 (0.574) 0.479 (0.912) 1.375 (0.287) 1.636 (0.773)
1 0.123 (0.759) 0.475 (0.905) 1.524 (0.318) 1.381 (0.652)
2 0.122 (0.753) 0.476 (0.907) 1.682 (0.351) 1.440 (0.680)
3 0.114 (0.704) 0.466 (0.888) 1.603 (0.334) 1.531 (0.724)
4 0.117 (0.722) 0.477 (0.909) 1.688 (0.352) 1.748 (0.826)
5 0.111 (0.685) 0.474 (0.903) 1.708 (0.356) 1.671 (0.790)

BF Non -Causal SV

2-dim 0.062 (0.383) 0.452 (0.861) 1.344* (0.280) 1.340* (0.633)
4-dim 0.059∗ (0.364) 0.453 (0.863) 1.358 (0.283) 1.361 (0.643)

Note: The entries are the average Quasi-likelihood (QLIKE) and Mean Squared Forecast Error (MSFE) values com-
puted using one-day ahead volatility predictions over the out-of-sample period. For SP500: 2015/06/05 - 2020/12/31
and AEX: 2015/06/25 - 2020/12/31. The numbers in parenthesis denote relative QLIKE and MSFE values where the
benchmark is GARCH(1,1). Entries < 1 indicates outperformance of the benchmark. Numbers in bold are QLIKE- and
MSFE- best and * indicates significant improvement of best model over the benchmark GARCH(1,1) at 1% level.
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Table 8: Out-of-sample volatility forecasting results with 5 -min. realized variance - µ 6= 0.

QLIKE MSFE

SP500 AEX SP500 AEX

Benchmark

GARCH(1,1) 0.162 (1.000) 0.525 (1.000) 4.796 (1.000) 2.116 (1.000)
A-GARCH(1,1) 0.138 (0.852) 0.515 (0.981) 7.971 (1.662) 2.703 (1.277)

QML General SV

m = 1 0.951 (5.872) 0.438 (0.833) 5.309 (1.107) 2.446 (1.160)
2 0.942 (5.817) 0.437 (0.833) 5.461 (1.139) 2.458 (1.161)
3 0.942 (5.817) 0.437 (0.832) 5.283 (1.102) 2.479 (1.172)
4 0.942 (5.814) 0.437 (0.832) 5.280 (1.101) 2.479 (1.172)
5 0.939 (5.795) 0.437 (0.832) 5.228 (1.090) 2.482 (1.173)
6 0.994 (6.133) 0.437* (0.831) 5.346 (1.115) 2.479 (1.172)
7 0.984 (6.077) 0.437 (0.832) 5.282 (1.101) 2.478 (1.171)
8 0.970 (5.985) 0.437 (0.832) 5.292 (1.103) 2.477 (1.171)
9 0.974 (6.015) 0.437 (0.832) 5.445 (1.135) 2.555 (1.207)
10 0.978 (6.035) 0.472 (0.898) 5.461 (1.139) 2.852 (1.348)

SML General SV

m = 0 0.119 (0.735) 0.484 (0.922) 1.814 (0.378) 1.697 (0.802)
1 0.116 (0.716) 0.469 (0.893) 1.652 (0.351) 1.379 (0.652)
2 0.119 (0.735) 0.469 (0.893) 1.748 (0.364) 1.432 (0.677)
3 0.143 (0.883) 0.476 (0.907) 2.073 (0.432) 1.567 (0.805)
4 0.132 (0.815) 0.478 (0.911) 2.016 (0.420) 1.702 (0.805)
5 0.123 (0.759) 0.487 (0.928) 1.934 (0.403) 1.846 (0.872)

BF Non -Causal SV

2-dim 0.059 (0.364) 0.452 (0.861) 1.328 (0.277) 1.341* (0.634)
4-dim 0.046* (0.284) 0.441 (0.840) 1.262* (0.263) 1.356 (0.641)

Note: The entries are the average Quasi-likelihood (QLIKE) and Mean Squared Forecast Error (MSFE) values com-
puted using one-day ahead volatility predictions over the out-of-sample period. For SP500: 2015/06/05 - 2020/12/31
and AEX: 2015/06/25 - 2020/12/31. The numbers in parenthesis denote relative QLIKE and MSFE values where the
benchmark is GARCH(1,1). Entries < 1 indicates outperformance of the benchmark. Numbers in bold are QLIKE- and
MSFE- best and * indicates significant improvement of best model over the benchmark GARCH(1,1) at 1% level.
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Table 9: Out-of-sample volatility forecasting results with squared returns - µ = 0.

QLIKE MSFE

SP500 AEX SP500 AEX

Benchmark

GARCH(1,1) 0.637 (1.000) 0.935 (1.000) 30.084 (1.000) 20.675 (1.000)
A-GARCH(1,1) 0.640 (1.005) 0.898 (0.960) 29.010 (0.964) 20.623 (0.997)

QML General SV

m = 1 0.748 (1.175) 0.987 (1.056) 35.947 (1.195) 21.388 (1.034)
2 0.750 (1.177) 0.987 (1.056) 35.962 (1.195) 21.390 (1.035)
3 0.751 (1.180) 0.989 (1.058) 35.950 (1.195) 21.426 (1.036)
4 0.752 (1.181) 0.990 (1.058) 36.003 (1.197) 21.430 (1.037)
5 0.763 (1.198) 0.990 (1.059) 35.730 (1.188) 21.438 (1.037)
6 0.763 (1.197) 0.990 (1.059) 35.716 (1.187) 21.435 (1.037)
7 0.763 (1.197) 0.990 (1.058) 35.724 (1.187) 21.431 (1.037)
8 0.763 (1.198) 0.990 (1.058) 35.822 (1.191) 21.430 (1.037)
9 0.762 (1.197) 0.989 (1.058) 35.808 (1.190) 21.414 (1.038)
10 0.762 (1.197) 0.988 (1.057) 35.767 (1.189) 21.399 (1.035)

SML General SV

m = 0 0.599 (0.940) 0.890 (0.952) 33.618 (1.117) 20.071 (0.971)
1 0.609 (0.956) 0.884 (0.945) 31.690 (1.053) 19.687 (0.952)
2 0.607 (0.953) 0.881* (0.943) 31.727 (1.055) 19.684* (0.952)
3 0.596 (0.936) 0.882 (0.943) 31.489 (1.047) 19.883 (0.962)
4 0.597 (0.937) 0.884 (0.945) 31.408 (1.044) 19.986 (0.967)
5 0.600 (0.942) 0.883 (0.945) 31.727 (1.055) 19.939 (0.964)

BF Non -Causal SV

2-dim 0.633 (0.994) 0.897 (0.959) 31.781 (1.056) 19.993 (0.967)
4-dim 0.631 (0.991) 0.897 (0.960) 31.789 (1.057) 20.041 (0.969)

Note: The entries are the average Quasi-likelihood (QLIKE) and Mean Squared Forecast Error (MSFE) values com-
puted using one-day ahead volatility predictions over the out-of-sample period. For SP500: 2015/06/05 - 2020/12/31
and AEX: 2015/06/25 - 2020/12/31. The numbers in parenthesis denote relative QLIKE and MSFE values with bench-
mark GARCH(1,1). Entries < 1 indicate outperformance of the benchmark. Numbers in bold are QLIKE- and MSFE-
best. A star * indicates significant improvement of the best model over the benchmark GARCH(1,1) at 5% level.
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Table 10: Out-of-sample volatility forecasting results with squared returns - µ 6= 0.

QLIKE MSFE

SP500 AEX SP500 AEX

Benchmark

GARCH(1,1) 0.637 (1.000) 0.935 (1.000) 30.084 (1.000) 20.675 (1.000)
A-GARCH(1,1) 0.640 (1.005) 0.898 (0.960) 29.010 (0.964) 20.623 (0.997)

QML General SV

m = 1 1.320 (2.073) 0.989 (1.058) 43.777 (1.455) 21.413 (1.035)
2 1.324 (2.078) 0.989 (1.058) 43.849 (1.458) 21.415 (1.036)
3 1.324 (2.078) 0.991 (1.059) 43.848 (1.458) 21.451 (1.038)
4 1.323 (2.077) 0.991 (1.060) 43.844 (1.457) 21.456 (1.038)
5 1.317 (2.067) 0.992 (1.061) 43.769 (1.455) 21.463 (1.038)
6 1.398 (2.194) 0.991 (1.060) 44.249 (1.471) 21.460 (1.038)
7 1.394 (2.189) 0.991 (1.060) 44.225 (1.470) 21.456 (1.038)
8 1.404 (2.204) 0.991 (1.060) 44.319 (1.473) 21.455 (1.038)
9 1.406 (2.207) 1.003 (1.073) 44.408 (1.476) 21.537 (1.042)
10 1.405 (2.205) 1.034 (1.106) 44.399 (1.476) 21.388 (1.035)

SML General SV

m = 0 0.582* (0.914) 0.887 (0.949) 31.851 (1.059) 19.864 (0.961)
1 0.600 (0.942) 0.883 (0.944) 31.159 (1.036) 19.691* (0.952)
2 0.597 (0.937) 0.882* (0.943) 31.257 (1.039) 19.790 (0.957)
3 0.604 (0.948) 0.882 (0.943) 30.555 (1.016) 19.942 (0.965)
4 0.597 (0.937) 0.882 (0.943) 30.855 (1.026) 19.889 (0.962)
5 0.598 (0.939) 0.885 (0.947) 31.086 (1.033) 20.000 (0.967)

BF Non -Causal SV

2-dim 0.632 (0.992) 0.897 (0.959) 31.630 (1.051) 20.009 (0.968)
4-dim 0.589 (0.925) 0.893 (0.955) 32.517 (1.081) 19.932 (0.964)

Note: The entries are the average Quasi-likelihood (QLIKE) and Mean Squared Forecast Error (MSFE) values com-
puted using one-day ahead volatility predictions over the out-of-sample period. For SP500: 2015/06/05 - 2020/12/31 and
AEX: 2015/06/25 - 2020/12/31. The numbers in parenthesis denote relative QLIKE and MSFE values with benchmark
GARCH(1,1). Entries < 1 indicate outperformance of the benchmark. Numbers in bold are QLIKE- and MSFE- best. A
star * indicates significant improvement of the best model over the benchmark GARCH(1,1) at 5% level.
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7 Conclusion

In this paper, we propose a novel stochastic volatility model which is based on the
stochastic volatility model of Catania (2020). The major innovation of this new model lies
in the inclusion of a leading volatility shock instead of only considering lagging volatility
shocks in the general leverage structure. The aim is to find out how we can feasibly
estimate the new SV model and use it for improving the volatility predictions on the
S&P 500 and AEX index return series. Three difficult, yet elegant filtering methods are
applied in conjunction with maximum likelihood to realize this goal. Lastly, we extend
the SV model of Catania (2020) by adding an additional mean term to correct for the
bias in capturing the leverage effect.

From the simulation and empirical study, we conclude with the following. The new SV
model with non-causal leverage indeed significantly outperforms the SV model of Catania
(2020). However, this only holds when we use the 5-min. intra-day realized variance proxy
for the true volatility. If we use the noisy squared returns, the novel SV models fails to
beat the SV model of Catania (2020). On the other hand, we find that the leverage effect
can be properly accounted for when adding an additional mean term in the non-causal
SV model. For the SV model of Catania (2020) the effect of adding a mean term is
less pronounced. The question whether the contemporaneous or the intertemporal SV
leverage model gives a better full sample fit can now be answered. We can argue that
for both the S&P 500 and AEX indices a SV model with leverage of at least one lag
(intertemporal) suits the data better according to BIC.

In this research, we could not investigate more due to time constraints. However,
there is room for future research. A good first idea would be to consider an alternative
filtering method to estimate the SV model of Catania (2020) given the fact that the
particle filter is computationally very slow. Perhaps applying the Bellman filter of Lange
(2021) would be worth the effort to investigate in the future. Second neat extension would
be to estimate a bi-variate SV leverage model using a Bayesian MCMC approach. This
requires the researcher to find a strong prior for the correlation matrix of the return shock
and volatility shock vector. Kirby et al. (2006) is recommended in this case.
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9 Appendix

A: Continuous resampling of algorithm CSIR

The continuous resampling step of algorithm: CSIR requires a set of ordered uniforms:
u1 < u2 < · · · < uN .We follow the advice to generate stratified uniforms to prevent sample
impoverishment as suggested by Malik and Pitt (2011). That is, we simply generate a
single random number u ∼ Unif(0, 1) and use that to get stratified and sorted uniforms
with uj = (j− 1)/N + u/N for j = 1, . . . , N. This is done for each time t during filtering
implying the need for T fixed random uniform numbers prior to the application of the
resampling steps of the continuous particle filter.

Recall that we had to resample from the continuous mixture density function

F̃N(ht) =
N∑
k=0

λkt GK

 ht − h(k)
t

h
(k+1)
t − h(k)

t

 ,
where λkt = π1

t /2 if k = 0, λkt = πNt /2 if k = N and λkt = πk+1
t + πkt )/2 otherwise. The

pseudo-code for resampling from the continuous function F̃N is given below:

Algorithm Continuous resampling pseudo-code
1: Input: particles: Ht = {hkt }Nk=1, normalized weights: Πt = {πkt }Nk=1, uniform: u
2: Output: Continuously resampled particles: H̃t = {h̃kt }Nk=1

3:

4: Construct uniforms: u1 < u2 < · · · < uN ←− Stratify(u)
5: Sort Ht in ascending order and arrange Πt accordingly
6: Set s = 0, j = 1
7: for k = 0 to N do
8: Compute λkt
9: s = s+ λkt

10: while uj ≤ s AND j ≤ N do
11: rj = i

12: u∗j = (uj − (s− λkt ))/λkt
13: j = j + 1
14: h̃kt = h

(1)
t if rj = 0,

15: h̃kt = h
(N)
t if rj = N

16: h̃kt =
(
h

(rj+1)
t − h(rj)

t

)
u∗j + h

(rj)
t if rj = 1, . . . , N − 1

17: end while
18: end for
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B: Derivations score and information matrix for BF

For the optimization step and evaluating the (negative) BF-implied log-likelihood, an
analytical expression of the gradient and negative Hessian of `( yt − µ |αt ) = log p( yt −
µ |αt) is necessary. Recall we constructed a linear state transition equation with 4-
dimensional state vector αt = (ht, ηt+1, ηt, ηt−1)′. We assumed that (yt−µ) |αt is normally
distributed with conditional mean and variance:

E ( yt − µ |αt ) = exp
{
ht
2

} +1∑
i =−1

ρi ηt+i

 ≡ mt,

Var ( yt − µ |αt ) = exp {ht}
1−

+1∑
i=−1

ρ2
i

 ≡ s2
t .

The score vector (gradient) and negative information matrix (negative Hessian) of log
p( yt − µ |αt) are shown below for the 4-dimensional state vector.4

Score vector :



d `( yt |αt )
dht

d `( yt |αt )
d ηt+1

d `( yt |αt )
d ηt

d `( yt |αt )
d ηt−1



=



yt(yt −mt)
2 s2

t

− 1
2

ρ1√
1− (ρ2

−1 + ρ2
0 + ρ2

1)

(
yt −mt

st

)

ρ0√
1− (ρ2

−1 + ρ2
0 + ρ2

1)

(
yt −mt

st

)

ρ−1√
1− (ρ2

−1 + ρ2
0 + ρ2

1)

(
yt −mt

st

)



4For the 2-dimensional SV model with non-causal leverage, the scores and information matrix can
be computed analogously. The 2-dimensional state vector becomes in that case: αt = (ht, ηt+1)′ with
imaginary correlation parameters ρ−1 = ρ0 = 0.
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Realized Information matrix :



−d2`(yt|α)
dh2

t

−d2`(yt|α)
dht dηt+1

−d2`(yt|α)
d η2

t+1

−d2`(yt|α)
dht dηt

−d2`(yt|α)
dηt+1 dηt

−d2`(yt|α)
d η2

t

−d2`(yt|α)
dht dηt−1

− d2`(yt|α)
dηt+1 dηt−1

−d2`(yt|α)
dηt dηt−1

−d2`(yt|α)
d η2

t−1



− d2`(yt|αt)
dh2

t

= y2
t

2 s2
t

− ytmt

4 s2
t

− d2`(yt|αt)
dht dηt+i

= ρi√
1− ( ρ2

1 + ρ2
0 + ρ2

−1 )

(
yt

2 st

)
for i = −1, 0, 1

− d2`(yt|αt)
d η2

t+i
= ρ2

i

1− ( ρ2
1 + ρ2

0 + ρ2
−1 ) for i = −1, 0, 1

− d2`(yt|αt)
dηt+1 dηt

= ρ1 ρ0

1− ( ρ2
1 + ρ2

0 + ρ2
−1 )

− d2`(yt|αt)
dηt+1 dηt−1

= ρ1 ρ−1

1− ( ρ2
1 + ρ2

0 + ρ2
−1 )

− d2`(yt|αt)
dηt dηt−1

= ρ0 ρ−1

1− ( ρ2
1 + ρ2

0 + ρ2
−1 )
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Expected Information matrix :



−E
(

d2`(yt|αt)
dh2

t

|αt
)

−E
(

d2`(yt|αt)
dht dηt+1

|αt
)
−E

(
d2`(yt|αt)

d η2
t+1

|αt
)

−E
(

d2`(yt|αt)
dht dηt

|αt
)
−E

(
d2`(yt|αt)
dηt+i dηt

|αt
)
−E

(
d2`(yt|αt)

d η2
t

|αt
)

−E
(

d2`(yt|αt)
dht dηt−1

|αt
)
−E

(
d2`(yt|αt)
dηt+1 dηt−1

|αt
)
−E

(
d2`(yt|αt)
dηt dηt−1

|αt
)
−E

(
d2`(yt|αt)

d η2
t−1

|αt
)



−E
(

d2`(yt|αt)
dh2

t

|αt
)

= 1
2 + 1

4

(
m2
t

s2
t

)

−E
(

d2`(yt|αt)
dht dηt+i

|αt
)

= ρi√
1− ( ρ2

1 + ρ2
0 + ρ2

−1 )

(
mt

2 st

)
for i = −1, 0, 1

−E
(

d2`(yt|αt)
d η2

t+i
|αt

)
= ρ2

i

1− ( ρ2
1 + ρ2

0 + ρ2
−1 ) for i = −1, 0, 1

−E
(

d2`(yt|αt)
dηt+1 dηt

|αt
)

= ρ1 ρ0

1− ( ρ2
1 + ρ2

0 + ρ2
−1 )

−E
(

d2`(yt|αt)
dηt+1 dηt−1

|αt
)

= ρ1 ρ−1

1− ( ρ2
1 + ρ2

0 + ρ2
−1 )

−E
(

d2`(yt|αt)
dηt dηt−1

|αt
)

= ρ0 ρ−1

1− ( ρ2
1 + ρ2

0 + ρ2
−1 )

41


	Introduction 
	Literature
	State Space Model Framework
	Univariate Models
	Stochastic Volatilty with General Leverage
	New Stochastic Volatility Model
	SML Estimation
	QML Estimation
	Bellman Filter

	Simulation Study
	Design
	Results

	Empirical Study
	Data
	Full sample performance
	Forecasting Performance
	Results

	Conclusion
	References
	Appendix

