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Abstract

In this thesis, we explore the advantages of estimating covariances of time series in the

spectral domain. Estimation of covariance is of key importance in fields such as asset

pricing and portfolio management. We propose a novel Fourier transform based covariance

measure and show its applications to asset pricing and portfolio management, along with

other spectral methods based on wavelet transforms. We perform a simulation study to

compare the spectral methods with classical econometric methods and apply the covariance

measures to systematic risk and the creation of minimum variance portfolios. We find that

spectral methods are beneficial in both portfolio management and asset pricing, the benefits

in our application to asset pricing seem to be larger. Using the spectral methods, we conclude

that there is evidence for a long-run risk premium as well as a short term volatility feedback

or leverage effect in the stock market.
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1 Introduction

Correctly estimating covariance is crucial in fields in econometrics such as asset pricing and

portfolio management. In asset pricing, one of the most used models is the capital asset pricing

model (CAPM) of Sharpe (1964). This model relates systematic risk to returns by estimating

the covariance between the individual assets and the market. The CAPM has come under

a lot of critique, due to evidence that the relationship between the classical interpretation of

systematic risk of the model and returns of assets does not hold (Bali et al., 2017; Frazzini

& Pedersen, 2014; Jensen et al., 1972; Reinganum, 1981). However, by using the wavelet

transform to expand systematic risk into the spectral domain, Gençay et al. (2005) showed

that the relationship between systematic risk and returns became much stronger for greater

time horizons. In portfolio management, one of the most used frameworks is the framework of

Markowitz (1952), which aims to create optimal mean-variance portfolios. In this framework,

correctly estimating covariances between assets is crucial and is currently still one of the main

challenges (Ledoit & Wolf, 2020). Low correlations between assets are advantageous in the

construction of portfolios. This advantage is caused by the fact that a low correlation implies

that diversification is more effective. As Conlon et al. (2018) have shown by using the wavelet

transform, assets tend to have a higher correlation in the long-run than what is implied by most

classical econometric techniques.

This thesis aims to research the advantages of estimating the covariance of time series in

the spectral domain. To answer this question, we propose a covariance measure based on

the Fourier transform. This covariance measure is a completely model free estimator for the

covariance of a subset of the spectral domain. We also consider the wavelet-based covariance

measure that was introduced by Whitcher et al. (2000) as well as the long-run wavelet-based

covariance measure of Conlon et al. (2018). The advantage of using a wavelet transform instead

of a Fourier transform is that the projections of Fourier transform are global. While when

using a wavelet transform, the projections can essentially be seen as local (Ramsey, 1999). This

property of local projections allows us to localise specific frequency components in time, since

we do not assume that if a mapping exists, it exists everywhere. The advantage of using the
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Fourier transform over the wavelet transform is that it allows for more flexibility, since we do not

have to work in predefined wavelet scales, but can specify the frequencies of interest ourselves.

To test the performance of the proposed Fourier-based covariance measure, the wavelet-based

covariance measure of Whitcher et al. (2000) and the long-run wavelet-based covariance measure

of Conlon et al. (2018), we first set up a simulation study. In the first part of the simulation

study, we use four different data generating data-generating processes (DGPs) to select which

wavelet from the Daubechies family performs best when estimating correlation for the wavelet-

based covariance of Whitcher et al. (2000) and the long-run wavelet-based covariance of Conlon

et al. (2018). Next, we use the same DGPs with varied parameter settings for the correlation

to compare the performances of the Fourier-based covariance, the wavelet-based covariance of

Whitcher et al. (2000) and the long-run wavelet-based covariance of Conlon et al. (2018) with

the Dynamic Equicorrelation (DECO) algorithm as proposed by Engle and Kelly (2012) and

the sample correlation of the generated time series. After the simulation study, we study two

applications of the spectral covariance measures. The first application highlights the advantages

of using the spectral domain approaches for longer time horizons, while the second application

provides evidence for the advantages of using the spectral domain approaches for shorter time

horizons. The first application is to systematic risk, or the CAPM beta. In a study similar to

Gençay et al. (2005), we show that the relationship between systematic risk and the returns

of assets becomes stronger at greater horizons. This strong relationship however, appears at

greater horizons than initially shown by Gençay et al. (2005). For the second application, we

create minimum variance portfolios by using the Fourier-based covariance, the wavelet-based

covariance of Whitcher et al. (2000), the long-run wavelet-based covariance of Conlon et al.

(2018), the DECO algorithm of Engle and Kelly (2012), as well as the sample covariance matrix

and a naive equal weight strategy. We formally test the difference in variance of the portfolios by

making use of the robust variance test of Ledoit and Wolf (2011). This test uses bootstrapped

confidence intervals to test the null hypothesis of equal variance between portfolios.

For the first application to systematic risk, we consider all stocks in the S&P500 at the

time of writing from 3 January 2005 until 28 May 2021. We retrieve all the price paths of the

individual stocks from Google Finance, the time series are sampled with a daily frequency. We
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rule out the stocks that had their initial public offering after the start of our sample period,

which leaves us with 411 stocks. We linearly interpolate any missing values. We use the S&P500

index over the same time period for the market returns. To construct the minimum variance

portfolios, we consider daily return time series from the main indices of 15 countries (Australia,

Canada, China, France, Germany, India, Italy, Japan, Netherlands, Russia, Spain, Sweden,

Switzerland, United Kingdom, United States). The corresponding indices for each country are

given in Table 6 in Appendix A. We retrieve all the time series of the returns of the indices

from Bloomberg. The time series run from 10 April 2007 to 7 April 2021. We convert each

index from its original currency to EUR. We linearly interpolate missing values, caused by e.g.

a mismatch in trading days and holidays.

In the simulation study, we find that within the Daubechies family of wavelets, the wavelet

with six vanishing moments tends to perform the best when using the wavelet-based covariance

of Whitcher et al. (2000). For the long-run wavelet-based covariance of Conlon et al. (2018), the

wavelet with eight vanishing moments tends to perform the best overall. When comparing the

performances of the Fourier-based covariance, the wavelet-based covariance of Whitcher et al.

(2000), the long-run wavelet-based covariance of Conlon et al. (2018), the DECO algorithm of

Engle and Kelly (2012) and the sample correlation, we find that the DECO algorithm and the

sample correlation perform quite poorly when the correlation in time series is induced by cyclical

behaviour of the time series. These methods however tend to outperform the spectral domain

methods when the DGP is a multivariate normal distribution with constant correlation. We see

this result as a bias-variance trade-off. This bias-variance tradoff is also present between spectral

methods, the less specific a method is, the better its overall performance tends to be, while the

more specific methods tend to outperform the more general methods in specific circumstances.

We see that the Fourier-based method performs the best when cyclical behaviour is present,

while the wavelet-based methods tend to outperform the Fourier-based method in situations

where no cyclical behaviour is present. In turn, the wavelet-based method of Whitcher et al.

(2000) tends to outperform the more general long-run wavelet-based method of Conlon et al.

(2018) when cyclical behaviour is present, while being outperformed by the long-run wavelet-

based method of Conlon et al. (2018) when there is no cyclical behaviour.
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In the application to systematic risk, we see strong evidence that the relationship between

the CAPM beta and the returns of an asset are strongly related in the long-run, when using an

appropriate method to estimate the long term beta. We argue that this finding indicates the

existence of a long-run risk premium in the stock market. We also find evidence for a short term

volatility feedback effect or leverage effect. In the application to minimum variance portfolios,

we see that there is some statistically significant evidence that spectral methods can improve

minimum variance allocation, although the observed improvement is relatively small. In sum,

we conclude that the spectral domain methods for covariance estimation can provide a benefit

to applications with short horizons as well as longer horizons. However, the advantage seems

to be greater when working with longer time horizons.

2 Spectral methods

2.1 Fourier transform

To compute spectral domain covariance measures, we will analyse time series in the frequency

domain. To analyse time series in the frequency domain, we can make use of the Fourier

transform. The Fourier transform is essentially an integral transform. Integral transforms map

functions from their original function space to a new function space. An integral transform is

given as

G(s) =

∫ b

a
g(t)K(s, t)dt, (1)

where g(t) is the original function, G(s) is the transform of g(t), K(s, t) is the kernel of the

transform and a and b are the limits of integration. It is possible that a = −∞ and/or b =∞.

The Laplace transform of a function g(t) : R → R, denoted by L{g(t)} or G(s) : C → C, is an

integral transform with the kernel K(s, t) = e−st, where s ∈ C. The Laplace transform has as

limits of integration a = −∞ and b =∞ and is thus given as

L{f(t)} = G(s) =

∫ ∞
−∞

g(t)e−stdt. (2)

The Laplace transform is a more general version of the Fourier transform, where the s in the

kernel of the Laplace transform is any number in the complex domain, it is fixed at the imaginary
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axis for the kernel of the Fourier transform, i.e. the real part is zero. The kernel of the Fourier

transform is given by K(f, t) = e−2πift, where f ∈ R. The Fourier transform of a function

g(t) : R→ R, denoted by F{g(t)} or G(f) : R→ C, is given as

F{g(t)} = G(f) =

∫ ∞
−∞

g(t)e−2πiftdt.1 (3)

When g(t) is a real-valued function of time, then F{g(t)} will be a complex-valued function of

frequency. The magnitude of the function indicates how strong a sine function is present. The

argument of the function indicates the phase offset of the basic sine function. We can explain

this property by using Euler’s formula, which states that eix = cos(x) + i sin(x) ∀x ∈ R. By

applying the inverse Fourier transform to the Fourier transform of a function, we get the original

function back. The inverse Fourier transform of G(f), denoted by F−1{G(f)}, is an integral

transform with kernel K(t, f) = e2πitf and is thus given by

F−1{G(f)} = g(t) =

∫ ∞
−∞

G(f)e2πitfdf. (4)

The theorem that we can reconstruct the original function from its Fourier transform is also

known as the Fourier inversion theorem and a proof can be found in, e.g., Rahman (2011).

The intuition behind the theorem is that, by knowing all frequency and phase information of a

function, we can reconstruct the function completely.

Since we are not working with a continuous function, the need for the discrete time Fourier

transform arises. The discrete time Fourier transform is applicable to sequences instead of

continuous functions. The discrete time Fourier transform of a sequence x[n] : Z → R is

denoted by F{x[n]}, or X(ω) : R→ C and is given as

F{x[n]} = X(ω) =
∞∑

n=−∞
x[n]e−ωin, (5)

where ω is given in units of radians/sample. Note that X(ω) is a continuous function, while x[n]

is a discrete sequence. X(ω) is periodic with respect to ω with a period of 2π i.e. X(ω+2πa) =

X(ω) ∀a ∈ Z. Due to this periodicity, it suffices to only consider the interval ω ∈ [−π, π].

1It can be noted that the Fourier transform is closely related to the characteristic function of a probability

density function.
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Now let x[n] be a sequence sampled from a continuous function g(t) with a sampling interval of

Ts seconds, such that we have Ts · g(xTs) = x[n]. We can then relate the discrete time Fourier

transform to frequency by writing

X(2πfTs) =
∞∑

n=−∞
x[n]e−2πifTsn =

∞∑
n=−∞

Ts · g(nTs)e
−2πifTsn, (6)

where f is then given in cycles per second, f ∈ [−1/(2Ts), 1/(2Ts)].

Using the Poisson summation formula, we can rewrite the above expression for X(2πfTs)

to

X(2πfTs) =
∞∑

n=−∞
Ts · g(nTs)e

−2πifTsn =
∞∑

n=−∞
G

(
f − k

Ts

)
, (7)

where G(f) is the continuous Fourier transform of g(t) as given in Equation 3. From this

expression, we can see that the discrete time Fourier transform in this form is essentially a

repetition of the regular Fourier transform, shifted with the sampling frequency fs = 1/Ts.

Therefore, we require that

fs ≥ 2B, (8)

where B is the so called bandwidth of the function g(t). B is defined as the difference between

the minimum and maximum non-zero frequency domain component of a function, i.e. B =

fmax − fmin, where fmin = min(f) such that G(f) 6= 0 and fmax = max(f) such that G(f) 6= 0.

When we satisfy this condition, we assure that there is no overlap in the repetitions of the

Fourier transform. If we do not satisfy this condition, the frequencies that exceed the threshold

are ‘mapped around’ to the lower frequencies. This phenomenon is also know as the Nyquist-

Shannon sampling theorem.

The discrete time Fourier transform has its own inverse and is given as

F−1{X(ω)} = x[n] =
1

2π

∫ π

−π
X(ω)eωindω. (9)

When using frequency f instead of radians/sample ω, the inverse discrete time Fourier transform

becomes

F−1{X(f)} = x[n] = Ts

∫ 1
2Ts

− 1
2Ts

X(f)e2πifTsndf. (10)
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We do however not work with infinite sequences, but with a finite amount of data. The

necessary finite sample approximation of the discrete time Fourier transform is called the discrete

Fourier transform. The discrete Fourier transform of a time series x[n] : N → R is denoted by

X(k) : N→ C and is given as

F{x[n]} = X[k] =
N−1∑
n=0

x[n]e−2πik
n
N , (11)

where k ∈ N is the discrete frequency bin. We usually let k run from 0 to N − 1, implying that

we have N discrete frequency bins. When using the discrete Fourier transform, we essentially

split up the interval of ω ∈ [−π, π], or f ∈ [−1/(2Ts), 1/(2Ts)] of the discrete time Fourier

transform in the chosen number of frequency bins. The inverse discrete Fourier transform is

given by

F−1{X[k]} = x[n] =
1

N

N−1∑
k=0

X[k] · e2πik
n
N . (12)

2.2 Short-time Fourier transform

Eventhough Fourier transforms are a useful tool for spectral analysis, we would like to capture

the time behaviour of the spectral components in order to compute a covariance measure.

Fourier transforms are only localised in time. Therefore, it is not possible to determine how

certain frequency components evolve over time by using the basic Fourier transform. We can

however add a time dimension by making use of the windowed Fourier transform, also known

as the short-time Fourier transform (STFT). When computing the STFT of a function, we

essentially slide a fixed-sized window function w(τ) over the time axis of the original function.

We then compute the Fourier transform of the multiplication of this window function and the

original function, resulting in a time and a frequency dimension. The STFT of a function

g(t) : R→ R, denoted by STFT{g(t)} or X(τ, ω) : R2 → C, is given as

STFT{g(t)} = X(τ, f) =

∫ ∞
−∞

g(t)w(t− τ)e−2πiftdt, (13)

where w(τ) is a window function. Using a rectangular window would be the same as constantly

changing the limits of integration.
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The discrete, finite sample STFT of a function x[n] : N → R, denoted by STFT{x[n]} or

X[m, k] : N2 → C, is given as

STFT{x[n]} = X[m, k] =
L−1∑
n=0

x[n]w[n−m]e−2πik
n
L , (14)

where, similar to the continuous case, w[n] is the window function with fixed length L ∈ N.

In practise a rectangular window creates a lot of spectral leakage (Harris, 1978). This

spectral leakage can essentially be seen as added noise onto our frequency spectrum and is

caused by the frequency domain properties of the used window. One of the best performing

window functions is the Blackman-Nutall window introduced by Nuttall (1981).

When using the discrete STFT, we have the major drawback that we have to make a trade-

off between time and frequency resolution. In the discrete case, we have a time series sampled

with sampling frequency fs and a window of length L. Following the Nyquist-Shannon sampling

theorem, we can separate the frequencies from 0 to fs/2 in L/2 discrete frequency bins. Implying

that all frequency bins are spaced apart by fs/L Hertz. Increasing the window size will result

in frequency bins that are spaced closer together, thus results in a higher frequency resolution.

Increasing the window size however implies that we lower the time resolution, due to the fact

that we can fit less windows within the original function. This resolution trade-off renders the

STFT almost useless in a financial setting.

2.3 Wavelet transform

To overcome the drawback of the STFT, we turn to the wavelet transform. The wavelet trans-

form allows us to capture the spectral behaviour of a time series over time without the resolution

trade-off of the STFT. Especially in a financial setting, the use of wavelet transforms instead

of Fourier transforms of the STFT makes a lot more sense. Due to localisation in time of the

wavelet transform, we can capture time variations and shocks in the time series much better.

When applying a wavelet transform, we perform a multiresolution decomposition. Meaning that

we decompose the original signal into its constituent multiresolution components. We divide

the original function into so called scales. When discussing wavelets, we follow the notation of

Crowley (2007).
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Wavelets come in pairs, the wavelet function itself, denoted by ψ(t), and a scaling function,

denoted by φ(t). The wavelet function and the scaling function integrate to 0 and 1, respectively,

i.e. ∫
ψ(t)dt = 0, (15)

∫
φ(t)dt = 1. (16)

Complex valued wavelet functions do exist. However, for this thesis we will restrict ourselves

to the use of real valued functions. As such, we have that ψ(t) : R→ R and φ(t) : R→ R.

Important properties of the wavelet and scaling functions are those of scaling and shifting.

We use these scaled and shifted functions to decompose the series into a sequence of projections.

The scaled and shifted wavelet functions and scale functions are given as

ψj,k(t) =
1√
j
ψ

(
t− kj
j

)
and φj,k(t) =

1√
j
φ

(
t− kj
j

)
, (17)

respectively. In these expressions, j is used as the index of the scale and k is used as the index

for the shift. We let the scale j run from 1 to J .

In practise, we usually scale with powers of two. The reason for scaling with the power

two is to prevent redundancy as well as that doing so is easily implemented in computationally

efficient algorithms, such as done in Mallat’s algorithm (Mallat, 1989). The scaled and shifted

functions are then given by

ψj,k(t) =
1√
2j
ψ

(
t− k2j

2j

)
and φj,k(t) =

1√
2j
φ

(
t− k2j

2j

)
. (18)

Using these scaled and shifted wavelet and scale functions, we can calculate the wavelet coeffi-

cients of a function g(t) : R→ R by the integrals

dj,k =

∫
g(t)ψj,k(t) and sJ,k =

∫
g(t)φJ,k(t). (19)

Note that these coefficients are obtained by integral transforms, where the used kernel is the

wavelet or scaling function.

Figure 1 compares the resolution obtained from such a wavelet transform with the resolution

of the STFT. Considering the wavelet transform resolution in Figure 1b, we can see that we have
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a high time resolution for the finer scales, while having a lower time resolution for the coarser

scales, where such a high resolution is not required. This way we circumvent the resolution

trade-off that we have when using the STFT.

(a) (b)

Figure 1: (a) Schematic representation of the time-frequency resolution obtained by applying a STFT,

and (b) schematic representation of the resolution obtained by using a wavelet transform by scaling the

wavelet with powers of two.

Due to the fact that we scale the wavelet and scaling functions with a power of two for

each step, the frequencies contained in scale j are 2j to 2j+1. Table 7 in Appendix A gives an

overview of the frequencies and time horizons corresponding to each scale for different sample

frequencies.

Having obtained all wavelet coefficients of all the scales, we can reconstruct the original

function using the wavelet coefficients. The original function g(t) is given as

g(t) =
∑
k

d1,kψ1,k(t) +
∑
k

d2,kψ2,k(t) + · · ·

+
∑
k

dJ,kψJ,k(t) +
∑
k

sJ,kφJ,k(t).
(20)

Having obtained this multiresolution decomposition, we accumulate the coefficients in the scale

vectors

[d̃1, d̃2, ...d̃J−1, d̃J , s̃J ], (21)

where d̃1 is the first term of Equation 20, i.e. d̃1 =
∑

k d1,kψ1,k(t). d̃2 is the second term until
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s̃J , which is the last term.

Since we are decomposing the original time series in these basis functions with finite energy,

we do not have to assume that each of the projections exists everywhere such as in the decom-

position into sines and cosines as is the case with the Fourier transform. This decomposition

into finite energy basis functions allows us to capture typical financial time-series characteristics

such as trends, volatility clustering and abrupt shocks much better (Gençay et al., 2002).

The coarsest scales can be accumulated together, i.e.,

s̃j−1,k = s̃J,k + d̃J,k + d̃J−1,k + · · ·+ d̃j,k. (22)

This implies that the coarsest (highest numbered and thus lowest frequency) scale contains

everything that is not explained with the finer frequency scales, so this coarsest scale can be

seen as the trend component.

The discrete wavelet transform is implemented by the aforementioned Mallat’s algorithm.

In this algorithm, we convolve the original time series x[n] : N→ R with two filters, one being

the wavelet function filter, the other being the scale function filter. We then downsample the

result with a factor two and keep the scale coefficients obtained by the wavelet filter. The scale

coefficients obtained from the scale filter are then filtered again. We repeat this procedure until

we have obtained all scales coefficients [d1,k, ..., dJ,k] and the residual scale coefficients sJ,k. This

procedure results in a pyramid style algorithm. A schematic representation of this algorithm

is depicted in Figure 2. In this figure, the transfer function of the series of filter coefficients of

the wavelet function is denoted by Fψ[i] and is a m-length filter, i.e. 1 ≤ i ≤ m. The transfer

function of the series of filter coefficients of the scale function filter is denoted by Fφ[i] and

is also a m-length filter. Fψ[i] and Fφ[i] are given by the Fourier transforms of the series of

filter coefficients for the wavelet function and scale function, respectively. These series of filter

coefficients are obtained by solving

φ[x] =
√

2
∑
i

fφ[i]φ[2x− i] and ψ[x] =
√

2
∑
i

fψ[i]φ[2x− i] (23)

for fψ[i] and fφ[i], which are the series of filter coefficients for the wavelet function and scale

function, respectively. This will result in

fψ[i] = (−1)i+1fφ[m− i], (24)

11



implying that fψ[i] is the so called quadrature mirror filter of fφ[i].

Figure 2: Schematic representation of Mallat’s algorithm for the discrete wavelet transform of a given

input series x[n].

One drawback of the discrete wavelet transform is that, due to the downsampling of a

factor two for each step, we require the the length of the original time series two be equal to

a power of two. The maximum overlap discrete wavelet transform (MODWT) as described

by Percival and Mofjeld (1997) offers a solution to this problem. Instead of downsampling

after each filtering operation, we scale the transfer function of the series of filter coefficients

of the next filter operation with a factor of two. A schematic representation for the MODWT

algorithm is depicted in Figure 3.

Figure 3: Schematic representation of the MODWT algorithm for a given input series x[n].

The MODWT is highly redundant. We do not gain any more information compared to

the regular discrete wavelet transform, while having a lot more coefficients. However, we gain

two important features. The first being the fact that we do not require the length of the time

series to be equal to a power of two. The second property is the preservation of energy. This

preservation of energy is, as with the Fourier transform, the reason we can draw conclusions on

the distribution of variance across the different scales. Due to these features, we will use the

MODWT as the wavelet transform within this thesis.

When using the wavelet transform, we can choose from a wide variety of wavelet families, as
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well as different wavelets within each family. As shown by Gençay et al. (2002), the Daubechies

family of wavelets generally has the best performance when the MODWT is performed for fi-

nancial data. For this reason, we will use the Daubechies family of wavelets when performing

the MODWT. The Daubechies family of wavelets was introduced as a family of compactly sup-

ported orthonormal wavelets by Daubechies (1992). In her book, Daubechies lists all necessary

and sufficient conditions for her family of wavelets and then gives the numerical solutions for

the filter coefficients of the scaling function with 2 to 10 vanishing moments. The number of

vanishing moments and the domain are the only conditions that are varied across the different

wavelets within the family. A wavelet function with mv vanishing moments satisfies∫ ∞
−∞

tkψ(t)dt = 0 for 0 6 k < mv, (25)

where k ∈ N ∪ 0. The domain of the wavelet and scaling functions, also called the support of

the wavelet, is given as [0, 2mv − 1]

The filter coefficients for the scaling filters with 2 to 10 vanishing moments can be found

in Table 8 in Appendix A. Since the wavelet and scaling filters are orthonormal, the filter

coefficients of the wavelet filters are given by the quadrature mirrors of the scaling filters. The

filter coefficients of the wavelet filters are given in Table 9 in Appendix A.

Using filter coefficients, we can construct the wavelet and scaling functions themselves by

using the cascade algorithm of Daubechies (1992). Given the series of scaling filter coefficients

fφ[i] we iterate over

φ(k+1)(t) =
√

2fφ[n] ∗ φ(k)extended[n], (26)

where k is the current iteration, ∗ denotes the convolution operator and φ
(k)
extended denotes the

series of φ(k) but extended by adding a zero value in between each of the individual values in

the series, i.e.

φ
(j)
extended[2j] = φ(k)[j],

φ
(j)
extended[2j − 1] = 0,

(27)

where j ∈ N.

The results of the cascade algorithm are depicted in Figure 9 and Figure 8 in Appendix B

for the wavelet functions and scaling functions, respectively.
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3 Covariance measures

3.1 Fourier transform based covariance measure

The first proposed covariance measure is based on the simple Fourier transform. The Fourier

transform is an energy preserving transform, implying that we can draw conclusions on the

variance of the original function after the transform. A proof is provided in Appendix D. We

create an expression for the crosscovariance for specific frequency components as a horizon

specific covariance measure. We will first show that the cross covariance of two functions g(t)

and h(t), denoted by γgh(τ) τ ∈ R can be written as F−1{F{h(t)}F{g(t)}}. This property will

prove to be useful when evaluating (cross)spectral variance.

Let γgh(τ) the cross covariance function of two processes g(t) and h(t), where τ ∈ R repre-

sents the lag of the cross covariance function. The cross covariance function is then given by

γgh(τ) =

∫ ∞
−∞

g(t)h(t+ τ)dt. (28)

We can write the functions g(t) and h(t) as the inverse Fourier transform of its Fourier transforms

G(f) and H(f), respectively, resulting in

g(t) =

∫ ∞
−∞

G(f)e2πiftdf and h(t) =

∫ ∞
−∞

H(f)e2πiftdf. (29)

The time shifted by τ function h(t+ τ) is then given by

h(t+ τ) =

∫ ∞
−∞

H(f)e2πif(t+τ)df =

∫ ∞
−∞

H(f)e2πifte2πifτdf. (30)

The complex conjugate of g(t), denoted by g(t), can also be written as the inverse Fourier

transform of its Fourier transform and can thus be written as

g(t) =

∫ ∞
−∞

G(f ′)e−2πif
′tdf ′. (31)

Plugging the expressions of the time shifted function h(t+τ) and the complex conjugate function

g(t) into the expression for the cross covariance gives us

γgh(τ) =

∫ ∞
−∞

[∫ ∞
−∞

H(f)e2πifte2πifτdf

∫ ∞
−∞

G(f ′)e−2πif
′tdf ′

]
dt. (32)
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Rewriting this expression yields

γgh(τ) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

H(f)G(f ′)e2πit(f−f
′)e2πifτdtdfdf ′. (33)

Which we then rewrite as

γgh(τ) =

∫ ∞
−∞

∫ ∞
−∞

H(f)G(f ′)

∫ ∞
−∞

e2πit(f−f
′)dte2πifτdfdf ′

=

∫ ∞
−∞

∫ ∞
−∞

H(f)G(f ′)e2πifτ
∫ ∞
−∞

e−2πit(f
′−f)dtdfdf ′.

(34)

The inner integral over t is the Fourier transform of a constant and a time shift. Resulting in

a time shifted Dirac delta function, denoted by δ(f ′ − f). The Fourier transform of the Dirac

delta function and some of its properties are given in Appendix C. Filling in the Dirac delta

function results in

γgh(τ) =

∫ ∞
−∞

∫ ∞
−∞

H(f)G(f ′)e2πifτδ(f ′ − f)dfdf ′. (35)

We then swap the order of the two integrals to get

γgh(τ) =

∫ ∞
−∞

∫ ∞
−∞

H(f)G(f ′)e2πifτδ(f ′ − f)df ′df. (36)

Then by the properties of the Dirac delta function we rewrite the expression of the cross co-

variance to

γgh(τ) =

∫ ∞
−∞

H(f)G(f)e2πifτdf, (37)

Which is the inverse Fourier transform of the product of H(f)G(f). Therefore, we get our result

that

γgh(τ) = F−1{H(f)G(f)} = F−1{F{h(t)}F{g(t)}}. (38)

This result can be generalised to autocovariance as well, i.e. γgg(τ) = F−1{F{g(t)}F{g(t)}}.

We consider the result γgh(τ) = F−1{F{h(t)}F{g(t)}}. By filling in the discrete Fourier

transforms we get

γgh[τ ] =
1

N

N−1∑
k=0

H[k]G[k]e2πik
τ
N , (39)
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where G[k] : N→ C and H[k] : N→ C are the discrete Fourier transforms of g[n] : N→ R and

h[n] : N→ R, respectively. Since we are only interested in the covariance at lag τ = 0, we get

Cov(g[n], h[n]) = γgh[0] =
1

N

N−1∑
k=0

H[k]G[k]e0 =
1

N

N−1∑
k=0

H[k]G[k]. (40)

With this expression, we have obtained a clear decomposition of the covariances across all

frequencies. We can now define a subset of interest, I ⊆ {0, ..., N − 1}, which contains the

frequency bins we are interested in. When summing over these specific frequency components,

we get a frequency specific covariance measure defined as

CovI(g[n], h[n]) =
1

N

∑
k∈I

H[k]G[k]. (41)

Computing the covariance in this manner is essentially the same as computing the sample

covariance of the, by the subset I restricted, reconstructed functions. Where we would use the

inverse discrete time Fourier transform to reconstruct the functions.

3.2 Wavelet-based covariance measure

The wavelet cross-covariance estimator for scale j of time series x[n] and y[n] for lag τ proposed

by Whitcher et al. (2000) is given as

γj,XY (τ) =
1

Nj

N−τ−1∑
l=Lj−1

d
(X)
j,l d

(Y )
j,l+τ , (42)

where d
(X)
j,l denotes the element l of the scale vector dj of the MODWT of x[n]. Lj denotes

the length of the series of the MODWT filter coefficient used for scale j of the MODWT. Lj is

given as

Lj = 2j−1(L− 1) + 1, (43)

where L is the length of the series of the MODWT filter coefficients of the first scale and is thus

equal to L1. N is the length of the original time series x[n] and Nj is the number of times we

can fit the MODWT filter of scale j within the original time series of length N . Nj is given as

Nj = N − Lj + 1. (44)

16



Since we are only interested in the covariance at a certain scale at lag τ = 0, our expression for

the MODWT covariance between x[n] and y[n] at scale j becomes

Covj(x[n], y[n]) =
1

Nj

N−1∑
l=Lj−1

d
(X)
j,l d

(Y )
j,l . (45)

3.3 Long-run wavelet-based correlation

We now follow the derivation of the Long-run wavelet-based correlation measure of Conlon et al.

(2018). the long-run correlation can be computed from the long-run covariance, which can be

seen as the regular sample covariance coefficient with a series of correction terms for the serial

and cross-serial correlation.

The vector of wavelet scale coefficients of scale j for a T length vector of returns rm, denoted

by sm,j , is given by the convolution of the vector containing the level j scaling filter coefficients

gj and rm, i.e.,

sm,j = gj ∗ rm. (46)

Since gj is the level j scaling filter, the filter coefficients of gj are given by the convolution of

scaling filter 1 until scaling filter j, as represented in Figure 3. They then write the the wavelet

scaling covariance between the time series of returns rm and rn as

Cov(sm,j , sn,j) = Cov(gj ∗ rm, gj ∗ rn) = gj ∗ gj ∗ Cov(rm, rn)

=

Lj−1∑
k=0

Lj−1∑
l=0

gj,kgj,l Cov (rm,t−k mod T , rn,t−l mod T ) .
(47)

Which they split up for k = l and k 6= l. For k = l they write

gj,kgj,l Cov (rm,t−k mod T , rn,t−l mod T ) = g2j,l Cov (rm, rn) =
(
g21,l
)j

Cov (rm, rn) . (48)

For k 6= l they use the relation Cov(rm, rn) = ρ(rm, rn)σ(rm)σ(rn) to write

gj,kgj,l Cov (rm,t−k mod T , rn,t−l mod T ) = gj,kgj,lρ
k−l (rm, rn)σ (rm,t−k mod T )σ (rn,t−l mod T )

= gj,kgj,lρ
k−l (rm, rn)σ (rm)σ (rn) ,

(49)
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where ρk−l(rm, rn) denotes the cross correlation between rm and rn for lag k − l. They then

combine the expressions and use the MODWT filter property
∑L1−1

l=0 g21,l = 1/2, where L1 is the

length of g1, to get

Cov (sm,j , sn,j) =

(
1

2

)j
Cov (rm, rn)

+

Lj−2∑
k=0

Lj−1∑
l=k+1

gj,kgj,l

[
ρk−l (rm, rn) + ρ−(k−l) (rm, rn)

]
σ (rm)σ (rn)

(50)

Similarly, they express the long-run variance as

σ2 (sm,j) =

(
1

2

)j
σ2 (rm) + 2

Lj−2∑
k=0

Lj−1∑
l=k+1

gj,kgj,lρ
(k−l) (rm)σ2 (rm) . (51)

They then express the long-run correlation as

ρ (sm,j , sn,j) =
cov (sm,j , sn,j)

σ (sm,j)σ (sn,j)
=

(
1
2

)j
Cov (rm, rn) +

∑Lj−2Lj−1

k=0

∑Lj−2

l=k+1 gj,kgj,l
[
ρk−l (rm, rn) + ρ−(k−l) (rm, rn)

]
σ (rm)σ (rn)√((

1
2

)j
σ2 (rm) + 2

∑Lj−1

k=0

∑Lj−2

l=k+1 gj,kgj,lρ
k−l (rm)σ2 (rm)

)((
1
2

)j
σ2 (rn) + 2

∑Lj−1

k=0

∑j
l=k+1 gj,kgj,lρ

k−l (rn)σ2 (rn)
) .

(52)

3.4 Dynamic equicorrelation

We will now consider the DECO model proposed by Engle and Kelly (2012), which we use as

a non-spectral benchmark. The DECO model is a multivariate generalised autoregressive con-

ditional heteroskedasticity (GARCH) model. These multivariate GARCH models are used to

model the variancec and covariances of time series. We derive the DECO model as a computa-

tionally efficient estimator of the Dynamic Conditional Correlation (DCC) model proposed by

Engle (2002). The DCC model is thus also a multivariate GARCH model and is a generalisation

of the constant conditional correlation (CCC) model proposed by Bollerslev (1990).

The generalisation lies within the property of the DCC model to allow for a time vary-

ing correlation matrix, while the CCC model assumes a constant correlation over time. Engle

(2002) has shown that the DCC model outperforms the CCC model, as well as other multi-

variate GARCH models and other covariance estimation methods such as moving averages and
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exponential smoothing. This result even holds when the simulated covariance matrix is constant

over time. The DCC model is one of most used methods for covariance estimation due to its

good performance and the fact that the model is easy to implement and estimate with a two-

step estimation procedure. In this estimation procedure, the first step is to estimate univariate

GARCH models as described by Bollerslev (1986) for each individual time series. Thereafter,

we estimate the covariance relations between the individual time series. In this thesis, when

estimating the first step GARCH models, we use GARCH(1,1) models.

Engle (2002) defines the returns of k assets at time t, denoted by rt given the filtration at

time t− 1, Ft−1, to follow a multivariate normal distribution, i.e.,

rt | Ft−1 ∼ N (0,Ht) , (53)

where Ht is the covariance matrix at time t. It can be noted that when the returns are not

normally distributed, the model still holds. In the case of non-normality, We can simply pro-

ceed using the regular estimation method, which will then result in quasi-maximum likelihood

estimation. Ht is defined as

Ht = DtRtDt, (54)

where Rt is the correlation matrix at time t and Dt is a diagonal matrix of dimension k × k

containing the time varying standard deviations from each univariate GARCH model. Dt can

thus be expressed as

D2
t = diag {ω}+ diag {κ} � rt−1r′t−1 + diag {λ} �D2

t−1, (55)

where ω is a vector containing the estimated offset of the k estimated univariate GARCH

models, κ is the vector of length k containing the estimated coefficients for the ARCH term

of the univariate GARCH models and λ is the vector of length k containing the estimated

coefficients for the GARCH term of each of the univariate GARCH models. diag{·} denotes

the diagonalisation operator and results in a matrix with the input vector on the diagonal.

� denotes the Hadamard matrix product operator. The vector containing the standardised

residuals of the univariate GARCH models at time t is denoted as εt and is given as

εt = D−1t rt. (56)
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The modeled correlation structure is then given as

Rt = diag (Qt)
− 1

2 Qt diag (Qt)
− 1

2 , (57)

where diag (Qt) is given as

diag (Qt) = I �Qt. (58)

I denotes a k by k identity matrix. Q is then expressed as

Qt = (1− α− β)S + α
(
εt−1ε

′
t−1
)

+ βQt−1, (59)

where S is the covariance matrix of the standardised residuals of the univariate GARCH models

from the first estimation step. α and β are the DCC parameters to be estimated. We estimate

α and β by maximising the log likelihood of rt | Ft−1. The expression for the log likelihood L

is given by

L = −1

2

T∑
t=1

(
k log(2π) + log (|Ht|) + r′tH

−1
t rt

)
. (60)

We then fill in the expression for Ht to get

L = −1

2

T∑
t=1

(
k log(2π) + log (|DtRtDt|) + r′tD

−1
t R

−1
t D

−1
t rt

)
. (61)

Which we rewrite by using the expression for ε, resulting in

L = −1

2

T∑
t=1

(
k log(2π) + 2 log |Dt|+ log (|Rt|) + ε′tR

−1
t εt

)
. (62)

Since r′tD
−1
t D

−1
t rt − ε′tεt = 0, we can add this term to get

L = −1

2

T∑
t=1

(
k log(2π) + 2 log |Dt|+ r′tD−1t D

−1
t rt − ε′tεt + log (|Rt|) + ε′tR

−1
t εt

)
. (63)

Which we then separate into two terms

L = L1 + L2, (64)

where

L1 = −1

2

T∑
t=1

(
k log(2π) + 2 log |Dt|+ r′tD−1t D

−1
t rt

)
(65)
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and

L2 = −1

2

T∑
t=1

(
log (|Rt|) + ε′tR

−1
t εt − ε′tεt

)
. (66)

We can now see that L1 is simply the sum of the univariate GARCH model log likelihood func-

tions. This term is thus maximised by filling in the estimated univariate GARCH parameters

of the first estimation step. For convenience, we remove the constant term from L2 to get

L2 = −1

2

T∑
t=1

(
log (|Rt|) + ε′tR

−1
t εt

)
. (67)

Which we then maximise over α and β under the constraints of α ≥ 0, β ≥ 0 and α + β < 1.

This maximisation over α and β is possible since Rt is a function of Qt, in which only α and β

are unknown parameters.

Engle and Kelly (2012) proposed DECO as a feasible DCC estimator. The idea behind

this estimator is imposing a constant correlation structure when maximising the likelihood

of L2. Due to this constant correlation structure, an analytical expression of the inverse of

the correlation matrix exists. Replacing a numerically computed inverse of a matrix with an

analytical expression reduces the computational time of the maximum likelihood estimation.

Engle and Kelly (2012) also found to be the DECO estimator for the DCC model to outperform

the regular DCC model, which they explain by claiming that the DECO estimator smooths out

more of the estimation noise than it compromises on the true underlying correlation structure.

The imposed correlation structure used by DECO is given by

RDECO
t = (1− ρt) I + ρtJ , (68)

where J denotes a k by k matrix of ones. ρt is given as

ρt =
1

k(k − 1)

(
ι′Rtι− k

)
. (69)

By applying the first theorem given in Appendix E, we can write the inverse of RDECO
t as

RDECO−1

t =
1

1− ρt

(
I − ρt

1 + (k − 1)ρt
J

)
. (70)

Using the second theorem of Appendix E, we rewrite the determinant of RDECO
t as

|RDECO
t | = (1− ρt)k−1(1 + (k − 1)ρt). (71)
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These expressions allow us to rewrite the log likelihood function L2 to

L2 = −1

2

T∑
t=1

(
log
(∣∣RDECO

t

∣∣)+ ε′tR
DECO−1

t εt

)
= −1

2

T∑
t=1

(
log
(

(1− ρt)k−1(1 + (k − 1)ρt)
)

+ ε′t

(
1

1− ρt

(
I − ρt

1 + (k − 1)ρt
J

))
εt

)

= −1

2

T∑
t=1

(
log
(

(1− ρt)k−1(1 + (k − 1)ρt)
)

+
1

1− ρt

 k∑
i=1

(ε2i,t)−
ρt

1 + (n− 1)ρt

(
k∑
i=1

εi,t

)2
 .

(72)

Which is the new likelihood function that we maximise to get the DECO estimates for α and

β of the DCC model.

4 Simulation study

To evaluate the performance of the proposed covariance measures, we set up two simulation

studies. The fist simulation study will be used to determine which of the wavelets within

the Daubechies family performs the best for the wavelet-based covariance measure, as well as

for the long-run wavelet-based correlation. In the second simulation study, we compare the

performances of all proposed covariance measures for four different DGPs.

4.1 DGPs

The first DGP is a set of two discrete Hull-White short rate processes as described by Hull and

White (1990), which are given by

∆y1,t = κ(µ1,t − y1,t) + σε1,t,

∆y2,t = κ(µ2,t − y2,t) + σε2,t,
(73)

where y1,t and y2,t are the simulated rates given at time t, κ is the speed of mean reversion,

µ1,t and µ2,t are the time varying means of the first and second process, respectively. ε1,t

and ε2,t are the values of two independent standard normal random variables and σ is the
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volatility of the process. We impose a sine function as the time varying mean to model a

cyclical component in the time series. Such a cyclical component represents a financial cycle as

described by Borio (2014). We then impose a correlation structure by giving the sine function a

phase shift, leading to a lead-lag relationship. There exists strong evidence that such a lead-lag

relationship is common in financial time series (Cohen & Frazzini, 2008; Hong et al., 2007; Hou

& Moskowitz, 2005; Lo & MacKinlay, 1990). µ1,t and µ2,t are given by

µ1,t = µ0 + a sin

(
2π

T
t

)
,

µ2,t = µ0 + a sin

(
2π

T
(t+ θ)

)
,

(74)

respectively. The means of µ1,t and µ1,t are given by µ0, a is the amplitude of the sine function,

T is the period of the sine given in number of time steps t and θ is the phase shift of the two

sines.

The second DGP is a geometric Brownian motion with a time varying drift as given in

Equation 74. The DGP is thus given by

y1,t = exp

((
µ1,t −

σ2

2

)
t+ σW1,t

)
,

y2,t = exp

((
µ2,t −

σ2

2

)
t+ σW2,t

)
,

(75)

where W1,t and W2,t are two independent Brownian motions.

The third DGP is a geometric Brownian motion with the lead-lag correlation structure

imposed by adding the sine functions given in Equation 74. Resulting in

y1,t = exp

((
µ0 −

σ2

2

)
t+ σW1,t

)(
1 + a sin

(
2π

T
t

))
,

y2,t = exp

((
µ0 −

σ2

2

)
t+ σW2,t

)(
1 + a sin

(
2π

T
(t+ θ)

))
.

(76)

The correlation between the time series of the first three DGPs is given by

cos

(
2π

T
θ

)
, (77)

as shown in Appendix F. The fourth DGP is a series of draws from a multivariate normal

random variable,  y1,t

y2,t

 ∼ N2

 µ1

µ2

 ,

 σ21 ρσ1σ2

ρσ1σ2 σ22

 . (78)
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Table 1: MSE·10−3 of the wavelet-based correlation for wavelet 2 to 10 of the Daubechies family for all

four DGPs. Simulations are performed 10,000 times for generated time series of length 10,000.

Number of vanishing moments of Daubechies wavelet

DGP 2 3 4 5 6 7 8 9 10

1 58.700 52.855 51.094 49.810 48.262 47.514 47.719 47.652 46.793

2 46.533 42.893 41.007 40.633 40.681 40.036 39.242 39.223 39.563

3 8.851 8.421 8.336 7.908 7.629 7.739 7.889 7.665 7.651

4 0.523 0.627 0.702 0.766 0.821 0.875 0.929 0.979 1.028

4.2 Wavelet selection

For both the wavelet-based correlation and the long-run wavelet-based correlation, we test which

wavelet performs the best in terms of mean squared error(MSE). This performance is tested by

generating 10,000 pairs of time series of length 10,000 for each of the four aforementioned DGPs.

For the first DGP we select κ = 0.01. A yearly volatility of 12.5%, resulting in σ = 0.125/
√

252,

assuming a year contains 252 trading days. We choose a constant drift of zero, µ0 = 0. We set

a = 0.175 and choose a yearly cycle resulting in T = 252 and a phase sift of 1 month, resulting

in θ = 252/12 = 21. For the second DGP, a yearly drift of 5% is selected, so µ0 = 0.05/252.

the yearly volatility is set to 25%, resulting in σ = 0.25/
√

252. a is chosen to be equal to

0.005. We choose a period of one year, so T = 252 and a phase sift of 1 month, resulting in

θ = 252/12 = 21. For the third DGP, we select a yearly drift of 5%, resulting in µ0 = 0.05/252,

we select a yearly volatility of 25%, resulting in σ = 0.25/
√

252. a is chosen to be equal to 0.33.

We choose a yearly cycle, so T = 252 and a phase sift of 1 month, resulting in θ = 252/12 = 21.

For the fourth DGP, we select µ1 = µ2 = 0, σ1 = σ2 =
√

2 and ρ = 0.85. We select to use

the seventh scale for the wavelet-based correlation, meaning that we examine the correlation

corresponding to 128 to 256 days. For the long-run wavelet-based correlation we select the sixth

scale, meaning that we examine the correlation or 128 days onward. The resulting MSE for

each wavelet when using the wavelet-based correlation is displayed in Table 1. The results for

the long-run wavelet-based correlation of Conlon et al. (2018) are displayed in Table 2. From
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Table 2: MSE·10−3 of the long-run wavelet-based correlation for wavelet 2 to 10 of the Daubechies family

for all four DGPs. Simulations are performed 10,000 times for generated time series of length 10,000.

Number of vanishing moments of Daubechies wavelet

DGP 2 3 4 5 6 7 8 9 10

1 244.834 238.511 236.123 235.157 234.777 234.647 234.623 234.644 234.679

2 48.568 45.768 44.722 44.272 44.065 43.967 43.919 43.895 43.882

3 8.999 8.415 8.196 8.100 8.053 8.029 8.016 8.008 8.002

4 0.404 0.427 0.440 0.448 0.453 0.458 0.461 0.464 0.466

Table 1, we observe that the wavelet-based correlation has the lowest MSE, thus performs better

when using a higher wavelet for DGP1 and DGP2, while for DGP3 a wavelet in the middle of

the range seems more suitable. The wavelet-based correlation performs the best for DGP4

when a low wavelet is selected. Combing these observations, we choose to use the Daubechies

wavelet with 6 vanishing moments when working with the wavelet-based correlation from now

on. According to Table 2, the long-run wavelet-based correlation performs the best for DGP1,

DGP2 and DGP3 for a higher wavelet. the long-run wavelet-based correlation performs the

best for DGP4 when using a low wavelet. Therefore, we choose to use Daubechies wavelet with

8 vanishing moments for the long-run wavelet-based correlation.

4.3 Simulation

We now perform a Monte Carlo simulation similar to the simulation used to select the used

wavelets. We use the four aforementioned DGPs with the same parameters as for the simulations

for the wavelet selection. Next to these simulations, we also simulate all four DGPs with a

negative and zero correlation. For the first three DGPs the negative correlation is induced by

setting θ to be equal to 5 months, i.e., θ = 5/12 · 252 = 105 days. This value for θ ensures

that the underlying cycles of the DGPs are almost in antiphase. For the zero correlation of the

first three DGPs, the θ is set to be equal to 3 months, so θ = 3/12 · 252 = 63 days. For the

fourth DGP, we set the negative and zero correlation by setting ρ to be equal to −0.85 and 0,
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respectively.

We then apply six methods of estimating the correlation, of which the last two are the

non-spectral methods.

1. The Fourier-based correlation with frequencies of interest ranging from once in 128 to

256 days. This range is chosen to be equal to range of the seventh wavelet scale. The

corresponding frequency bins are 39 until 79.

2. The same Fourier-based correlation, but now for frequency bins more specifically for pe-

riods of 1 year. The frequency bins chosen for this method are 38 to 42, corresponding to

a frequency of once in 238 to 263 days.

3. The wavelet-based correlation, using the Daubechies wavelet with 6 vanishing moments

and selecting the seventh scale.

4. The long-run wavelet-based correlation, with the Daubechies wavelet with 8 vanishing

moments and selecting the sixth scale.

5. The DECO model

6. The regular sample correlation coefficient of the series.

We run 1,000 simulations, where the length of each pair of generated time-series is equal

to 10,000. The results are shown in Table 3. In Table 3, we see that both the Fourier-based

correlation measure, as well as the specific Fourier-based correlation perform very well overall.

Where, as expected the specific Fourier-based correlation generally outperforms the Fourier-

based correlation when cyclical behaviour is present, while it is the other way around for the

fourth DGP, which does not have cyclical behaviour. We attribute this finding to a bias-variance

trade-off, by setting the Fourier measure more specific, we see that the estimator will be less

biased when the cyclical behaviour is present, while the estimator appears to have a higher

variance when no cyclical behaviour is present. Next, we see that the wavelet-based correlation

performs very well overall, it outperforms the Fourier correlation when no cyclical behaviour is

present, but gets outperformed by the Fourier correlation for the DGPs where cyclical behaviour

is present. We attribute this to the fact that the first three DGPs have their correlation induced

by sine functions, which are generally better picked up by the Fourier transform, while the
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wavelet transform picks up all cyclical behaviour and not just sine functions. So, this can

also be seen as a bias-variance trade-off. The long-run wavelet correlation seems to perform

similar to the wavelet-based correlation, except for DGP1 where it has a substantially larger

MSE, from this we conclude that the long-run wavelet correlation generally performs well when

the underlying time series contain cyclical behaviour and less when the returns themselves are

cyclical. DECO seems to perform extremely well under perfect specification of a multivariate

normal distribution, but behaves poorly when the correlation is induced by cyclical behaviour.

We even see MSEs of almost 1.5 for DGP1 when using the DECO algorithm, which is very

high when estimating correlations. Looking closer at the raw outputs, we find that the absolute

estimate for the correlation is often close to the actual value, but with an inverted sign, resulting

in large errors. We see similar results for the sample correlation as for DECO. Even though that,

unlike DECO, the sample correlation is non-parametric. From these findings, we conclude that

the Fourier and wavelet-based methods of correlation estimation perform well in every scenario,

while DECO only performs accurately when using the model under perfect specification. This

result highlights the advantages of using model free spectral domain techniques such as the

wavelet transform and Fourier transform

5 Empirical study

5.1 Application to systematic risk

The first application of our spectral covariance measures is to systematic risk, or the CAPM

beta of Sharpe (1964). The CAPM beta of an asset i is given as

βi =
Cov (ri, rm)

σ2m
, (79)

where ri denotes the vector of returns of asset i, rm denotes the vector of market returns and

σ2m denotes the variance of the market. According to the CAPM, there should be a linear

relationship between the beta of an asset and the expected returns of that asset. Jensen et al.

(1972) first showed that the CAPM relationship between beta and returns does not hold by

creating beta sorted portfolios and showing that the returns the relationship was inverted, i.e.,
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low beta stocks tended to have higher returns compared to high beta stocks. Reinganum (1981)

later came to the same conclusion that the CAPM relationship does not hold, but that the beta

sorted portfolios take on a parabolic shape in their returns. More recent papers, e.g., Bali et al.

(2017) show that the expected relationship still does not hold and that this relation still takes on

a parabolic shape as opposed to the expected linear relation. There even exists a strategy called

betting against beta, introduced in the influential paper of Frazzini and Pedersen (2014) that

exploits this phenomenon. The observation that low beta stocks usually have higher returns

compared to the low returns of high beta stocks is referred to as the beta anomaly (Bali et al.,

2017). We will conduct a similar experiment by creating beta sorted portfolios, but extend

the estimator for beta in the spectral domain by calculating horizon specific betas using the

long-run wavelet-based covariance estimator, the wavelet-based covariance estimator and the

Fourier-based estimator.

For the analysis, we use the 505 individual stocks in the S&P500 at the time of writing

from 3 January 2005 until 28 May 2021, sampled with a daily frequency. We exclude the stocks

that had their initial public offering after 3 January 2005 to ensure that all the time series

have the sane length. This approach leaves us with 411 assets. All missing values are linearly

interpolated. For the market, we use the S&P500 index over the same period.

In an approach similar to Reinganum (1981) and Gençay et al. (2005), we calculate log price

differences ri,t of asset i at time t for all assets, i,e. ri,t = log(pi,t)− log(pi,t−1), where pi,t is the

price asset i at time t. We also calculate the log price differences for the market, denoted by rm,t.

We then apply a moving window of 8 years to the data and determine the beta of each asset

over the time period of the window with the preferred method. We then sort the stocks from

high beta to low beta and create 15 portfolios based on the beta of the stocks and determine

the average beta as well as the average daily returns of the portfolios.2 We first estimate the

beta with the regular sample covariance estimator. The results are displayed in Figure 4. In

the figure we clearly see the parabolic relation of the beta anomaly. We now use the long-run

wavelet-based covariance measure for scale 1 to 9 to estimate the beta for each of these 9 scales.

The results are shown in Figure 5. In this figure we clearly see that as the wavelet scale becomes

2For robustness, the moving window length and number of portfolios were varied, yielding similar results.
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Figure 4: Scatterplot of the beta of the portfolios against their average daily returns, the betas are

computed by using the sample covariance function. the x-axis corresponds to the beta of the portfolios,

the y-axis corresponds to the average daily returns.

higher, the CAPM relationship between the beta and the returns of a portfolio becomes stronger.

Next, we apply the wavelet-based covariance measure. The results are shown in Figure 6, we

see that the relationship does become stronger with the increase of the scale. However, the

relationship at the higher scales is not quite as strong as seen with the long-run wavelet-based

covariance measure. This is caused by the fact that the long-run estimator also takes the scales

after the selected scale into account, as opposed to the wavelet-based measure, which only takes

into account the selected scale. Therefore, we conclude that the CAPM relationship becomes

the strongest after the ninth wavelet scale, corresponding to a horizon of about four years. The

Fourier-based covariance measure yields similar results to the wavelet-based covariance measure

when we examine the same frequencies of interest in the Fourier-based covariance measure that

correspond to the wavelet scales. However, the Fourier-based covariance measure provided more

flexibility due to the fact that we can select the frequencies of interest. As such, we are not

restricted to specific wavelet scales and have the possibility to split up the examined scales into

finer bins. So we now split up the 8 years of the moving window into 16 evenly spaced Fourier

frequency bins and compute the Fourier-based betas for each of these frequency bins. This

results in Figure 7. From this figure, we can confirm our previous hypothesis that the CAPM

relationship becomes the strongest after more than four years. We also see that the relationship
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becomes especially strong after around six years.

The finding that the relationship between systematic risk and returns becomes strong after

six years indicates that there exists a long term risk premium. This finding is in alignment with

the finding of Bandi and Perron (2008), who show that there exists a strong risk premium for

horizons of six to ten years by regressing excess market returns on past market variance. In a

later study, Bandi et al. (2019) show that the risk premium follows a hump shaped curve, as

a function of the time horizon, which is the strongest for a horizon of six to twenty years, but

weakens thereafter.

The finding of the negative relation between high systematic risk and returns in the short

term also aligns with existing literature, especially with the notions of the volatility feedback

effect and the leverage effect. The volatility feedback effect, discussed in, e.g., Bollerslev et al.

(2006), describes the idea that there should be a time-varying risk premium if volatility, or

another risk measure, is priced. When an increase in volatility is expected, the future expected

returns in the long-run should be higher, driving the short term prices down to allow for these

higher returns. Thus, an increase in risk decreases the price in the short term implying that an

increase in risk leads a decrease in price. The leverage effect, described in, e.g., Aı̈t-Sahalia et al.

(2013), describes the observation that when the price of a stock declines, the debt to equity

ration of that stock increases. Thus, the stock becomes riskier. So, according to the leverage

effect, a decrease in price should lead to an increase in risk implying that the risk increase lags

the decrease in price. In this application we do not gain information on the lead-lag relationship

between systematic risk and returns, so we can not conclusively say which effect plays a more

important role in our analysis. However, due to the fact that, for a high beta, we observe both

the increase in returns in the long-run and the decrease of the short term returns, we argue that

the volatility feedback effect seems more likely to play an important role in this application.

We conclude that the CAPM relation between beta and returns becomes stronger for greater

horizons. The results are very strong for a horizon greater than six years. Implying that there

is a long term risk premium and if we are allocating assets for a horizon of more than six years

and use an appropriate covariance measure to compute beta, we can actually expect a strong

positive relationship between the beta and the returns.
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(a) Wavelet scale 1
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(e) Wavelet scale 5

-2 0 2 4

0

2

4

6

8

10
-4

(f) Wavelet scale 6
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(g) Wavelet scale 7
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(h) Wavelet scale 8
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(i) Wavelet scale 9

Figure 5: Scatterplots for the portfolio betas of wavelet scale 1 to 9 against the average daily returns,

the betas are computed by using the long-run wavelet-based covariance measure. The x-axis corresponds

to the beta of the portfolios, the y-axis corresponds to the average daily returns. Each scatterplot

correspond to the following wavelet scale: (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g), 7, (h) 8, (i) 9.
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(a) Wavelet scale 1
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(b) Wavelet scale 2
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(c) Wavelet scale 3
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(e) Wavelet scale 5
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(f) Wavelet scale 6
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(g) Wavelet scale 7
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(h) Wavelet scale 8
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(i) Wavelet scale 9

Figure 6: Scatterplots for the portfolio betas of wavelet scale 1 to 9 against the average daily returns,

the betas are computed by using the wavelet-based covariance measure. The x-axis corresponds to the

beta of the portfolios, the y-axis corresponds to the average daily returns. Each scatterplot correspond

to the following wavelet scale: (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g), 7, (h) 8, (i) 9.
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(g) 3 to 3.5 years
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(h) 3.5 to 4 years
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(i) 4 to 4.5 years
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(j) 4.5 to 5 years
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(k) 5 to 5.5 years
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(l) 5.5 to 6 years
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(m) 6 to 6.5 years
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(n) 6.5 to 7 years
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(o) 7 to 7.5 years
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(p) 7.5 to 8 years

Figure 7: Scatterplots for the Fourier-based betas of the portfolios against the average daily returns, the

betas are computed by using the Fourier-based covariance measure and are spaced evenly over 8 years

from (a) to (p), i.e. a jump of half a year for each figure. The x-axis corresponds to the beta of the

portfolios, the y-axis corresponds to the average daily returns.
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5.2 Application to asset allocation

Another application and widely used test for covariance measures is the construction of portfolios

based on the covariance matrices. We will construct minimum variance portfolios. For minimum

variance portfolios only require to estimate the covariance matrix as opposed to for example

mean-variance portfolios, which also require to make an estimate for the future expected returns.

We create minimum variance portfolios by minimising the expression for the variance of the

portfolio. The expression for the portfolio variance is given as

σ2p = w′Σw, (80)

where w is the vector of weights and Σ is the covariance matrix of the assets. We want all

weights of the portfolio to sum up to 1. So we minimise the expression for σ2p over the portfolio

weights, w, under the constraint that

wι′ = 1, (81)

where ι is a vector of ones. The analytical solution to this minimisation problem is given by

w =
Σ−1ι

ι′Σ−1ι
. (82)

The data used are the returns of the main stock indices of 15 countries. The list of countries

and the corresponding indices can be found in Table 6 in Appendix A. We convert all indices to

EUR before computing returns. The returns are over the period from 10 April 2007 to 7 April

2021 and are sampled with a daily frequency.

For the analysis, we apply a moving window of 10 years to the data and calculate the weights

for the minimum variance portfolios using the chosen covariance measure, which we will use as

our estimate of the covariance matrix for the next day. We then shift the moving window by

one day and estimate the weights again. We continue this estimation procedure until we have

covered 1008 days, or 4 years when we assume a year contains 252 trading days. We thus have

an out-of-sample period of four years.

For the estimation of the covariance matrices, we use six methods. The first method is by

using the Fourier-based covariance measure, where we select the frequency bins corresponding to

a period of 1 to 4 days. We chose such a short horizon because we rebalance the portfolio every
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day. The second method used is the wavelet-based covariance measure, where we select the first

wavelet scale. The third method is the long-run wavelet-based covariance measure, where we

also use the first wavelet scale. We use DECO as the fourth estimation method. For the fifth

estimation method, we use the regular sample covariance estimator. For the sixth method, we

do not use an estimated covariance matrix, but use a naive strategy and create equal weight

portfolios. So for our 15 assets, all values of w will be equal to 1/15. The sample variances

of the methods in the out-of-sample period are shown in Table 4. The sample variances are

computed for the time series of percentage returns of the strategies. In Table 4, we see that

Table 4: Sample variance over the four year out-of-sample period of time series of percentage returns of

the constructed portfolios using the six different methods for the estimation of the covariance matrix.

Method Variance

Fourier 0.2700

wavelet-based 0.2997

Long-run wavelet-based 0.2569

DECO 0.2797

Sample 0.2644

Equal weight 0.2972

only the long-run wavelet-based covariance outperforms the portfolio constructed by the sample

covariance matrix. This is a notable result, since the sample covariance matrix can be seen as

one of the simpler methods. We also see that the wavelet-based covariance measure performs the

worst, closely followed by the most naive strategy of equal weight. The Fourier-based method,

as well as DECO seem to perform average compared to the rest.

To formally test whether the variances of the constructed portfolios actually differ from

each other, we perform the robust variance test of Ledoit and Wolf (2011). We use this test

instead of regular F-test because the returns are correlated and their distribution has heavier

tails compared to a normal distribution, which means that two of the assumptions of the F-

test do not hold. The p-values of the test for all pairs of portfolio constructions are shown in

36



Table 5. The test has as null hypothesis that the variances are equal and tests this hypothesis by

creating bootstrapped confidence intervals. Surprisingly, Table 5 shows that DECO does have

Table 5: p-values of the robust variance test between the pairs of constructed portfolio.

Fourier Wavelet Long-run wavelet DECO Sample Equal weight

Fourier 0.000 0.000 0.731 0.000 0.009

Wavelet 0.000 0.132 0.000 0.639

Long-run wavelet 0.231 0.001 0.001

DECO 0.540 0.131

Sample 0.001

Equal weight

a statistically different performance compared to all the other methods. All other pairs, except

for the wavelet-based and equal weight pair, seem to perform significantly different from each

other on even a 1% level. Therefore, we conclude that the long-run wavelet-based approach

performs the best. We conclude that, while there is evidence that using spectral covariance

measures is beneficial in asset allocation, the benefits are relatively small.

6 Discussion and Conclusion

In conclusion, we find that spectral domain methods such as the proposed Fourier-based co-

variance measure, the wavelet-based covariance of Whitcher et al. (2000) and the long-run

wavelet-based covariance of Conlon et al. (2018) can contribute greatly to the estimation of

covariance. Especially when certain cyclical behaviour is present or when the data does not

follow a multivariate normal distribution as under the assumption of the DECO algorithm of

Engle and Kelly (2012).

In the empirical application to systematic risk, we find that the relationship between asset

returns and the CAPM beta becomes very strong at greater horizons, indicating a long-run

risk premium. In the empirical application to minimum variance asset allocation, we find
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evidence that the long-run wavelet-based covariance measure of Conlon et al. (2018) marginally

outperforms the other methods. The robust variance test of Ledoit and Wolf (2011) indicates

that this outperformance is statistically significant to all other methods, except the DECO

algorithm of Engle and Kelly (2012).

We argue that the covariance estimates for the application to systematic risk performs

the best at greater horizons because we filter out all the short term noise, allowing for the

true covariance relationship between the assets and the market to appear. We also argue

that long term dynamics seem to be important in the estimation of covariance matrices for

minimum variance portfolios, so filtering the long term dynamics out completely does not really

improve the minimum variance allocation. Filtering out the noise of the shortest term, while

still preserving the long term dynamics, as done with the long-run wavelet-based covariance of

Conlon et al. (2018), performs the best and is therefore seen as evidence of the importance of

the long term dynamics in the estimation of the covariances.

Suggested future work could be to perform a lead-lag analysis with the phase information

of the Fourier transform to discern whether the observed short term effect in the application

to systemic risk is due to the volatility feedback effect or the leverage effect. More future work

could be to extend the concept of spectral domain betas to other factors, so to extend classical

factor models to spectral domain factor models. Another suggestion for future work is to extend

upon the minimum variance allocation, by combining the spectral domain estimation procedure

for the covariance with commonly used techniques in portfolio management such as shrinkage

and applying constraints.
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Appendix A Additional tables

Table 6: Index corresponding with each country.

Country Index

Australia S&P/ASX 200

Canada S&P/TSX 60

China SSE Composite Index

France CAC 40

Germany DAX 30

India Nifty-50

Italy FTSE MIB

Japan TOPIX

Netherlands AEX

Russia MOEX

Spain IBEX-35

Sweden OMX Stockholm 30

Switzerland SMI

United Kingdom FTSE 100

United States S&P 500
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Table 7: Frequencies corresponding to different scales for different sample frequencies. Assuming 252

trading days per year, 21 trading days per month.

sample frequency

Scale yearly monthly daily

1 2-4 2-4 2-4

2 4-8 4-8 4-8

3 8-16 8-16 = 8m-1y4m 8–16

4 16-32 16-32 = 1y4m-2y8m 16-32 = 16d-1m11d

5 32-64 32–64 = 2y8m–5y4m 32-64 = 1m11d-3m1d

6 64-128 64–128 = 5y4m–10y8m 64-128 = 3m1d-6m2d

7 128-256 128–256 = 10y8m–21y4m 128-256 = 6m2d-1y4d

8 256-512 256-512 = 21y4m-42y8m 256-512 = 1y4d-2y8d

9 512-1024 512-1024 = 42y8m-83y4m 512-1024 = 2y8d-4y16d
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Table 8: Filter coefficients for Daubechies scaling filters with 2 to 10 vanishing moments.

Number of vanishing moments

index 2 3 4 5 6 7 8 9 10

1 0.4830 0.3327 0.2304 0.1601 0.1115 0.0779 0.0544 0.0381 0.0267

2 0.8365 0.8069 0.7148 0.6038 0.4946 0.3965 0.3129 0.2438 0.1882

3 0.2241 0.4599 0.6309 0.7243 0.7511 0.7291 0.6756 0.6048 0.5272

4 -0.1294 -0.1350 -0.0280 0.1384 0.3153 0.4698 0.5854 0.6573 0.6885

5 -0.0854 -0.1870 -0.2423 -0.2263 -0.1439 -0.0158 0.1332 0.2812

6 0.0352 0.0308 -0.0322 -0.1298 -0.2240 -0.2840 -0.2933 -0.2498

7 0.0329 0.0776 0.0975 0.0713 4.7248e-04 -0.0968 -0.1959

8 -0.0106 -0.0062 0.0275 0.0806 0.1287 0.1485 0.1274

9 -0.0126 -0.0316 -0.0380 -0.0174 0.0307 0.0931

10 0.0033 5.5384e-04 -0.0166 -0.0441 -0.0676 -0.0714

11 0.0048 0.0126 0.0140 2.5095e-04 -0.0295

12 -0.0011 4.2958e-04 0.0087 0.0224 0.0332

13 -0.0018 -0.0049 -0.0047 0.0036

14 3.5371e-04 -3.9174e-04 -0.0043 -0.0107

15 6.7545e-04 0.0018 0.0014

16 -1.1748e-04 2.3039e-04 0.0020

17 -2.5196e-04 -6.8586e-04

18 3.9347e-05 -1.1647e-04

19 9.3589e-05

20 -1.3264e-05
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Table 9: Filter coefficients for Daubechies wavelet filters with 2 to 10 vanishing moments.

Number of vanishing moments

index 2 3 4 5 6 7 8 9 10

1 -0.1294 0.0352 -0.0106 0.0033 -0.0011 3.5371e-04 -1.1748e-04 3.9347e-05 -1.3264e-05

2 -0.2241 0.0854 -0.0329 0.0126 -0.0048 0.0018 -6.7545e-04 2.5196e-04 -9.3589e-05

3 0.8365 -0.1350 0.0308 -0.0062 5.5384e-04 4.2958e-04 -3.9174e-04 2.3039e-04 -1.1647e-04

4 -0.4830 -0.4599 0.1870 -0.0776 0.0316 -0.0126 0.0049 -0.0018 6.8586e-04

5 0.8069 -0.0280 -0.0322 0.0275 -0.0166 0.0087 -0.0043 0.0020

6 -0.3327 -0.6309 0.2423 -0.0975 0.0380 -0.0140 0.0047 -0.0014

7 0.7148 0.1384 -0.1298 0.0806 -0.0441 0.0224 -0.0107

8 -0.2304 -0.7243 0.2263 -0.0713 0.0174 -2.5095e-04 -0.0036

9 0.6038 0.3153 -0.2240 0.1287 -0.0676 0.0332

10 -0.1601 -0.7511 0.1439 -4.7248e-04 -0.0307 0.0295

11 0.4946 0.4698 -0.2840 0.1485 -0.0714

12 -0.1115 -0.7291 0.0158 0.0968 -0.0931

13 0.3965 0.5854 -0.2933 0.1274

14 -0.0779 -0.6756 -0.1332 0.1959

15 0.3129 0.6573 -0.2498

16 -0.0544 -0.6048 -0.2812

17 0.2438 0.6885

18 -0.0381 -0.5272

19 0.1882

20 -0.0267
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Appendix B Additional figures
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Figure 8: Plots of the scaling functions generated by the cascade algorithm using the coefficients of

Table 8. Each scaling function corresponds to the wavelet with the following number of vanishing

moments: (a) 2, (b) 3, (c) 4, (d) 5, (e) 6, (f) 7, (g), 8, (h) 9, (i) 10.
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Figure 9: Plots of the wavelet functions generated by the cascade algorithm using the coefficients of

Table 9. Each wavelet function has the following number of vanishing moments: (a) 2, (b) 3, (c) 4, (d)

5, (e) 6, (f) 7, (g), 8, (h) 9, (i) 10.

47



Appendix C Fourier transform and properties of the Dirac

delta function

The Dirac delta function, denoted by δ(t), is formally defined as a distribution. However, in

the context of this thesis we can view it as a function. The Dirac delta function can be seen as

the derivative of the Heaviside step function. The Heaviside step function is defined as

H(t) =

 1, t ≥ 0

0, t < 0
, (83)

where t ∈ R. So for the Dirac delta function, we have that

lim
t→t0

δ (t− t0) =∞, (84)

as well as that

δ(t) = 0 ∀t 6= 0. (85)

If a function f(t) is continuous at t0, the Dirac delta function has as property that∫ t0+ε

t0−ε
f(t)δ(t− t0)dt = f(t0) ∀ε > 0, (86)

another property of the Dirac delta function is that∫ ∞
−∞

δ(t)dt = 1. (87)

Its Fourier transform is given as

F{δ(t− t0)} =

∫ ∞
−∞

e−2πiftδ (t− t0) dt = e−2πift0 . (88)

In general, shifting a function in time domain by ±c is equivalent to multiplying the frequency

domain function with a factor e±2πfic. To proof this equivalency, let c ∈ R be arbitrary and let

x(t) be a function with the corresponding Fourier transform X(f). Then

F{x(t+ c)} =

∫ ∞
−∞

x(t+ c)e−2πiftdt. (89)

We perform a change of variables on t′ = t+ c to get∫ ∞
−∞

x(t′)e−2πif(t
′−c)dt′ = e2πfic

∫ ∞
−∞

x(t′)e−2πift
′
dt′ = X(f)e2πfic. (90)
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Which proves our result. Therefore, when we integrate e2πif(t−t0) over f , we get a time shifted

Dirac delta function, i.e. ∫ ∞
−∞

e2πif(t−t0)df = δ(t− t0). (91)

Appendix D Proof of preservation of energy

One important property of the Fourier transform and its inverse transform is that the transforms

are energy preserving. Where energy of a time series x(t) is defined as

Ex = 〈x(t), x(t)〉 =

∫ ∞
−∞
|x(t)|2dt. (92)

To prove this property of preservation of energy, Let X(f) be the Fourier transform of x(t) and

X(f) it’s complex conjugate. X(f) and X(f) are given by

X(f) =

∫ ∞
−∞

x(t)e−2πiftdt and X(f) =

∫ ∞
−∞

x(t′)e2πift
′
dt′ (93)

respectively. The energy of the Fourier transform of x(t) is then given as∫ ∞
−∞
|X(f)|2df =

∫ ∞
−∞

X(f)X(f)df. (94)

Filling in the Fourier transforms from Equation 93 results in∫ ∞
−∞

[∫ ∞
−∞

x(t)e−2πiftdt

∫ ∞
−∞

x(t′)e2πift
′
dt′
]

df. (95)

Rewriting this expression yields∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

x(t)x(t′)e2πif(t
′−t)dfdtdt′ =

∫ ∞
−∞

∫ ∞
−∞

x(t)x(t)

∫ ∞
−∞

e2πif(t
′−t)dfdtdt′. (96)

The inner integral over f is the inverse Fourier transform of a constant and the Fourier transform

of a time shift. Resulting in a time shifted Dirac delta distribution, denoted by δ(t′ − t). The

Fourier transform of the Dirac delta distribution some of its properties are given in Appendix C.

Filling in the Dirac delta distribution results in∫ ∞
−∞

∫ ∞
−∞

δ(t′ − t)x(t)x(t′)dtdt′. (97)

Then by the properties of the Dirac delta distribution we rewrite the expression to∫ ∞
−∞

x(t)x(t′)dt =

∫ ∞
−∞
|x(t)|2dt. (98)

Which completes our proof of preservation of energy.
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Appendix E Inverse and determinant of a matrix with equicor-

related structure

First theorem Let a k by k matrix C be given, such that

C = (a− b)I + bJ , (99)

where a and b are scalars, I is a k by k identity matrix and J is a k by k matrix of ones. Then,

the inverse of matrix C exists if and only if a 6= b and a 6= −(k − 1)b and is given by

C−1 =
1

a− b

(
I − b

a+ (k − 1)b
J

)
. (100)

Proof: We will prove the theorem by showing that CC−1 = I.

CC−1 = [(a− b)I + bJ ]

[
1

a− b

(
I − b

a+ (k − 1)b
J

)]
=
a− b
a− b

I

(
I − b

a+ (k − 1)b
J

)
+

b

a− b
J

(
I − b

a+ (k − 1)b
J

)
= I − b

a+ (k − 1)b
J +

b

a− b
J − b2

(a+ (k − 1)b)(a− b)
JJ .

(101)

Which we rewrite by noting that JJ = kJ to get

CC−1 = I − b

a+ (k − 1)b
J +

b

a− b
J − b2k

(a+ (k − 1)b)(a− b)
J

= I + J

(
−b

a+ (k − 1)b
+

b

a− b
+

−b2k
(a+ (k − 1)b)(a− b)

)
= I + J

(
−b(a− b) + b(a+ (k − 1)b)− b2k

(a+ (k − 1)b)(a− b)

)
= I + J

(
−ab+ b2 + ab+ b2(k − 1))− b2k

(a+ (k − 1)b)(a− b)

)
= I + J

(
b2(k − 1))− b2k + b2

(a+ (k − 1)b)(a− b)

)
= I + J

(
b2(k − 1))− b2(k − 1)

(a+ (k − 1)b)(a− b)

)
= I,

(102)

which proves the first theorem.
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Second theorem Let C be the same matrix as given in the first theorem of this appendix,

the determinant of this matrix is then given by |C| = (a− b)k−1(a+ (k − 1)b).

Proof This matrix can be written as

C =



a b b b · · · b

b a b b · · · b

b b a b · · · b
...

...
...

...
...

b b b b · · · a


. (103)

Adding multiples of a row to another row causes the determinant to remain the same. We now

define C ′ where we subtract the second row from the first row. Then subtract the third row

from the second row and so on to where we subtract row k from row k− 1. C ′ is then given as

C ′ =



a− b b− a 0 0 · · · 0

0 a− b b− a 0 · · · 0

0 0 a− b b− a · · · 0
...

...
...

...
...

b b b b · · · a


. (104)

Since we have only subtracted rows from each other, we have that |C| = |C ′|. Adding multiples

of a column to another column also leaves the matrix determinant unchanged. We define C ′′

where we take C ′ and add the first column to the second column. then add the second column

to the third column and so on until we add column k − 1 to column k resulting in

C ′′ =



a− b 0 0 0 · · · 0

0 a− b 0 0 · · · 0

0 0 a− b 0 · · · 0
...

...
...

...
...

b 2b 3b 4b · · · a+ (k − 1)b


. (105)

We still have that |C| = |C ′| = |C ′′|. It can be noted that C ′′ is a lower triangular matrix,

which implies that |C ′′| = (a− b)k−1(a+ (k − 1)b). Therefore, |C| = (a− b)k−1(a+ (k − 1)b).
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Appendix F Correlation of sines

Let

µ1,t = µ0 + a sin

(
2π

T
t

)
,

µ2,t = µ0 + a sin

(
2π

T
(t+ θ)

)
.

(106)

Then

Corr =

∫ T
0 (µ1,t − µ1,t)(µ2,t)− µ2,tdt√∫ T

0 (µ1,t − µ1,t)2dt
√∫ T

0 (µ2,t − µ2,t)2dt
, (107)

where µ1,t and µ2,t denote the mean of µ1,t and µ2,t, respectively. Since the mean of a sine

function is equal to zero, µ1,t = µ2,t = µ0. So

Corr =

∫ T
0 a2 sin

(
2π
T t
)

sin
(
2π
T (t+ θ)

)
dt√

a2
∫ T
0 sin2

(
2π
T t
)

dt
√
a2
∫ T
0 sin2

(
2π
T (t+ θ)

) (108)

We rewrite this expression using the trigonometric identity

sinφ1 sinφ2 = 1
2 (cos (φ1 − φ2)− cos (φ1 + φ2)) and that

∫
sin2(x)dx = x

2 −
1
4 sin(2x) to get

Corr =

∫ T
0 a2 12

(
cos
(
2π
T t−

2π
T t−

2π
T θ
)

cos
(
2π
T t+ 2π

T t+ 2π
T θ
))

dt√
a2 T2

√
a2 T2

=
1
2a

2
∫ T
0

(
cos
(
−2π

T θ
)

cos
(
4π
T + θ

))
dt

a2 T2

=
1
2a

2
(
T cos

(
−2π

T θ
)

+ 0
)

a2 T2
= cos

(
−2π

T
θ

)
= cos

(
2π

T
θ

)
(109)
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