
Master Thesis Econometrics and Management Science

Name Student: Sem Keegstra - Student ID: 475459

Quantitative Finance

Equity Trading by means of Interpretable
Machine Learning

Abstract

This research concentrates on the implementation of various interpretable machine learning models within

an equity trading context. The dataset consists of historical S&P 500 constituents, which are analysed on

a quarterly basis over a time period stretching from 2000 to 2020. In order to assess the feasibility of rule-

based classifiers, the CART, Classy, Ripper and RUG algorithm are evaluated in terms of interpretability,

classification and portfolio performance. The models are also compared with the Random Forest algorithm,

which serves as a state-of-the-art benchmark model. In particular, it is found that for small- and large-sized

rolling windows respectively the Ripper and RUG algorithm are able to match the performance of the Ran-

dom Forest model in terms of long position forecasts. Furthermore, implementing a certainty threshold for

short position forecasts results in all model-based allocations providing a higher compounded return than the

market portfolio while not being significantly more volatile.

Keywords: Interpretability; stock selection; classification; rule-learning; certainty threshold

ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Supervisor: Dr. Hakan Akyüz

Second assessor: MSc. Utku Karaca

Date final version: 28th of July 2021

The views stated in this thesis are those of the author and not necessarily those of the supervisor,

second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Contents

1 Introduction 2

2 Literature Review 4

3 Data 7

3.1 Data Cleaning . 7

3.2 Feature Engineering . 9

3.3 Feature Selection . 10

4 Methodology 11

4.1 Decision Trees . 11

4.2 Random Forest . 13

4.3 Classy Algorithm . 14

4.4 Ripper Algorithm . 16

4.5 Rule Generation Algorithm . 17

4.6 Evaluation Metrics . 19

4.7 Certainty Threshold . 22

5 Results 22

5.1 Computational Platform . 22

5.2 Rule Structure . 23

5.3 Classification Performance . 25

5.4 Portfolio Performance . 29

6 Conclusion 33

References 35

A Data Glossary 38

B Python Scripts 41

1

1 Introduction

In the field of quantitative finance, scientific research has primarily distinguished three stages within

trading strategies, namely: stock selection (van der Hart et al., 2003), portfolio evaluation (Sharpe,

1970) and market timing (Shen, 2003). As the importance of equities increased over the past

decades, differentiating between ‘good’ and ‘bad’ stocks has become a demanding part of the port-

folio optimization process. In combination with the great economic uncertainty of today’s financial

market and low-interest rates, investors seek a reliable technique to aid them in the selection of

stocks. Incorporating a classification framework that is able to consistently create a profitable

portfolio structure, while identifying attractive stocks with minimum effort could be beneficial for

investors and give them a competitive advantage.

Both in the industry and academia, different trading strategies have been examined and proposed

based upon fundamental and technical evaluation. Markowitz (1952) introduced the so-called Mod-

ern Portfolio Theory (MPT), which has served as the groundwork for numerous innovations in

the field of portfolio selection. However, such mean-variance approaches frequently concentrate on

maximizing the expected risk-adjusted return and obtaining a reliable estimate for this is found to

be extremely difficult in practice. In addition, the investable universe is very broad and even in

the most simplified scenarios the dataset often contains more stocks than price history. Therefore,

calculating risk measures such as the covariance matrix is simply not feasible. Despite there being

possible solutions for this dimensionality problem, DeMiguel et al. (2009) demonstrate that the

mean-variance optimal portfolio cannot consistently outperform näıve distribution approaches in

the modern stock market.

After the Global Financial Crisis (GFC) of 2008, the adoption of machine learning models grew

tremendously in quantitative finance as the traditional factor models lost their profitable edge. In

particular, Fu et al. (2018) and Gu et al. (2018) find that these new algorithms perform extremely

well in equity trading scenarios using a classification and regression framework respectively. Simi-

larly across various fields outside of finance, classical benchmarks are significantly outperformed by

the implementation of machine learning models. Two main reasons for this trend, as established by

Rasekhschaffe and Jones (2019), are that they allow for better detection of non-linear interactions

within the dataset and are more effective in the presence of multicollinearity as opposed to more

linear orientated econometric techniques. Nevertheless, this high performance level comes with a

major obstacle given that the methods often do not allow for any interpretation from a decision

making point of view. Several techniques have been introduced to try and overcome this, however

they are mostly based on either feature importance or reducing the complexity of well-established

‘black-box’ models. In terms of feature importance, the main disadvantage is that it does not offer

2

the interpretability in such a way that one is able to understand and trust the decisions made by a

predictive model. In addition, reducing the complexity of machine learning algorithms often means

purposely decreasing the accuracy of the predicter which in many applications cannot be properly

justified. As a result, current literature is overflowed with research that compares the predictive

performance of models which are not capable of giving investors beneficial insights on the behaviour

of stocks.

In order to improve the human understanding of the choices made by automatic decision-making

systems, recent studies have explored the potential of algorithms that are based on decision-rules.

Prior work in this area, such as Decision Trees (DT) as proposed by Breiman et al. (1984) or the

Ripper algorithm of Cohen (1995), displayed great results in terms of transparency. However, these

simplistic models are often no match for the complex machine learning techniques that are em-

ployed in the industry today. As an alternative, Proença and van Leeuwen (2020) introduce the

Classy algorithm, which finds probabilistic rule lists that facilitate a balance between accuracy and

interpretability through the Minimum Description Length (MDL) principle. Furthermore, a recent

study by Akyüz and İlker Birbil (2021) takes advantage of linear programming and formulates a Rule

Generation (RUG) algorithm using column generation. Both studies indicate that their approach

is capable of providing a clear decision-making procedure whilst also matching the classification

accuracy of state-of-the-art machine learning models. Given that these studies are very promising

to the field of interpretable machine learning, further research has mostly focussed on extending

such ideas by introducing alternative formulations or further optimizing the computational process.

This had led to a gap in the literature, where innovations in rule-based learning algorithms have

not been analysed in a variety of real-world domains that heavily rely on human decision making.

Based on the two problems described above, the research question of this paper arises:

To what extent is an interpretable classifier capable of building a financial portfolio that is both

efficient and profitable?

To try and broaden the financial literature on interpretable machine learning, this research evaluates

the performance of various interpretable learning algorithms within an equity trading context. In

particular, the following sub-questions are taken into account:

1. Are the interpretable models able to match the classification performance of black-box models?

2. Do their resulting decision rules translate to efficient diversification strategies?

3. Can they provide this performance whilst being less volatile than the market portfolio?

4. Does a certainty threshold for short positions improve the model-based portfolio allocations?

The dataset consists of stock observations from historical S&P 500 constituents, which are analysed

3

on a quarterly basis over a time period stretching from 2000 to 2020. In terms of interpretable

classifiers, this paper evaluates the CART, Classy, Ripper and RUG algorithm. Furthermore, the

Random Forest (RF) model is implemented as the benchmark algorithm due to its great empirical

performance across recent studies on the subject of stock selection. Both the classification perfor-

mance and portfolio results are assessed for a variety of rolling windows. In addition, this study

explores the practical implications of a lower bound on the forecasting probability of short position

stocks when rebalancing the portfolio.

Considering the transparency of the decision-making process, all classifiers construct their deci-

sion boundaries based on significantly less rules compared to the RF algorithm. The individual

rules are also more concise on average, making them easier to interpret for investors. Furthermore,

it is found that for small- and large-sized rolling windows the Ripper and RUG algorithm respec-

tively match the classification performance of RF in terms of long position forecasts. However, the

RF algorithm is more versatile as all interpretable models exhibit a sharp decrease in classification

performance for short position forecasts. The RUG algorithm is the only classifier that can beat

both the machine learning benchmark and the market based on average quarterly returns when only

including long positions. In addition, implementing a certainty threshold for short position fore-

casts results in all model-based allocations providing a higher compounded return that the market

portfolio. Unfortunately, none of the interpretable classifiers offers this return while concurrently

being less volatile than the market.

This paper proceeds with a literature review, which explains the current state of the financial

literature regarding equity trading through interpretable learning algorithms and the corresponding

contributions made by this research. This is followed by a description of both the dataset and the

pre-processing steps that are needed to make the observations applicable for machine learning mod-

els. Subsequently, the theoretical framework of the various classifiers is described together with the

relevant metrics that are incorporated to evaluate the classification and portfolio performance. Fi-

nally, the empirical results of the experiment are examined and the research questions are discussed

within the final conclusion of the research.

2 Literature Review

This research is primarily motivated by the inspiring studies of Proença and van Leeuwen (2020) and

Akyüz and İlker Birbil (2021) in the field of interpretable machine learning. While there exist various

rule learning approaches, Proença and van Leeuwen (2020) propose a combination of probabilistic

rule lists and the MDL principle which facilitates a balance between accuracy and interpretability.

As a result, their so-called Classy algorithm finds small probabilistic rule lists that, in terms of a

4

performance-transparency trade-off, outperform state-of-the-art machine learning models. In ad-

dition, their method successfully avoids both overfitting and the need for hyperparameter tuning.

Akyüz and İlker Birbil (2021) take a linear programming attitude in which they construct new rules

by means of column generation. The computational time of this approach is exceptionally low, as

their RUG algorithm takes advantage of an ordinary DT to retrieve the initial rule set and get ap-

proximate solutions of the pricing subproblem. Furthermore, their numerical experiments indicate

that the RUG algorithm achieves an average classification accuracy similar to that of the RF model.

In the current financial literature, numerous machine learning models have been implemented within

a stock selection environment. Although research is quite active, most articles in this field focus

on constructing a portfolio via regression techniques. Both Chen et al. (2020) and Batres-Estrada

(2015) found success by pricing individual stocks through deep learning. Wang and Luo (2012) pro-

vided a comprehensive outline of the AdaBoost algorithm to forecast equity returns and Chia-Cheng

et al. (2020) assess the performance of different models using historical S&P 500 data. Comparing

the empirical results of different studies, it is found that the RF model is the most consistent algo-

rithm and efficiently predicts stock price movements based on risk-adjusted measures. This level of

performance translates to a classification approach, as Fu et al. (2018) introduce a machine learn-

ing framework to distinguish ‘good’ stocks from ‘bad’ stocks and also observe that RF is capable

of consistently outperforming traditional statistical learning methods. In addition, they describe

the model as a more risk-neutral alternative to econometric techniques, which generally behave

more radically, resulting in higher portfolio returns. This paper incorporates the RF algorithm as

a machine learning benchmark in order to evaluate the stock selection results of the interpretable

learning models. Moreover, ordinary DTs and the Ripper algorithm are covered to assess in what

extent the newly proposed techniques can outperform more simplistic interpretable classifiers.

One disadvantage of Ensemble Learning is the drastic decrease in interpretability. Whilst RF

is a combination of highly transparent Decision Trees (DTs), it increases the total number of rules

significantly. As a result, the model returns a large set of overlapping decision boundaries that are

no longer explicable. Recent studies have tried to counter this problem by reducing the complex-

ity of the given boundaries. Birbil et al. (2020) introduced the Minimum Rule Cover (MIRCO)

algorithm, which main objective is to extract a smaller set of rules that covers all observations and

minimizes the total impurity. They find a subset that achieves this while closely matching the ac-

curacy of the initial RF model. However, MIRCO itself is not a classification algorithm as it merely

extracts the decision rules from a fully trained RF and therefore does not necessarily cover the entire

feature space. Furthermore, the user study of Lakkaraju et al. (2016) indicates that the decision

rules obtained from models such as DTs are far less interpretable due to their hierarchical structure.

5

Besides rule-based algorithms, other complex machine learning techniques often achieve high ac-

curacy in modern datasets. These so-called ‘black-box’ models create tension between accuracy

and interpretability during the classification process as experts struggle to comprehend the logic

of the offered decisions. In response, current research has particularly focused on increasing the

interpretability through feature importance. Whereas these solutions are commonly tailored to a

specific classifier, Lundberg and Lee (2017) introduce Shapley Additive Explanations (SHAP) which

serves as a unified approach for ranking the features of any machine learning algorithm. Centred

around classical game theory, it ties the optimal credit allocations with local explanations using

the Shapley values of Shapley (1953). While this approach allows for new insights in terms of the

role that a feature plays when predicting a specific observation, it does not explain how the feature

is incorporated. Therefore, the interpretability is not increased in such a way that one is able to

understand and trust the decisions made by a predictive model.

In classical portfolio theory, equities are usually ranked by means of numerical measures which

researchers believe to capture some sort of market inefficiency (Jegadeesh and Titman (2012) and

Sloan (1996)). This paper follows a similar attitude by categorizing stocks with a classification func-

tion, based upon the stock selection framework that Fu et al. (2018) designed for machine learning

models. Only the firm’s fundamental data is considered when training the classifiers, as supported

by the efficient market hypothesis of Malkiel and Fama (1970). In addition, this research applies an

equally weighted portfolio strategy seeing that the empirical results of Plyakha et al. (2012) indicate

that it consistently outperforms price- and value-weighted portfolios.

Whilst distinguishing between stocks through classification, current studies often neglect the pos-

sibility of going short. Therefore, I extend the portfolio evaluation of Fu et al. (2018) by allowing

both long and short positions via a class probability threshold during the stock selection process

(see Section 3 for a more detailed explanation). Huerta et al. (2013) find that only using the top

and bottom percentage of available equities improves the out-of-sample performance. They argue

that the stocks ranked in between are more likely to be idiosyncratic and tend to follow the market

trend, which adds noise to the training procedure. During this research, a 5 percent quantile selec-

tion is implemented to handle the noisy observations and make certain that the individual classifiers

are only trained on stocks that hold conventional characteristics. Lastly, one problem that occurs

frequently in this field of equity trading is the so-called current constituent bias as covered by Wang

and Luo (2014). Due to the broad investable universe, studies often simplify their dataset by only

including stocks that are part of an index at a specific point in time. However, exploiting the

current index constituents involves a look-ahead bias during back testing. In response, this paper

takes a more pragmatic approach by tracking the historic constituents of the S&P 500 index for

6

each observation period.

Note that this paper makes the following contributions to the current financial literature. Firstly,

while the RF algorithm seems to excel within a stock selection framework, other rule-based decision

models have not yet been examined inside the same setting. Furthermore, the main focus of recent

studies has been to solely maximize the accuracy of classifiers and as a result the interpretability

aspect has been overlooked almost entirely. This paper tries to fill this gap by analysing the clas-

sification performance of various interpretable rule-learning models. In addition, whilst the RUG

algorithm is tested on a large collection of frequently used datasets, the possible value it might

add to the stock selection process is still unknown. Similarly, the Classy algorithm has only been

examined on relatively simple classification datasets and therefore it is still uncertain how it will

perform compared to other models within a noisy real-world scenario such as equity trading. Fi-

nally, this study explores the practical implications of a lower bound on the forecasting probability

of short positions when rebalancing the portfolio to obtain an equity trading framework that is both

profitable and transparent.

3 Data

In order to evaluate the added value that interpretable classifiers bring to equity trading, I analyse

quarterly stock prices of available historical S&P 500 constituents from 2000 until 2020. This time

period is of interest as it captures the full financial cycle of the stock market, including: recessions,

a bubble and a bull market. In particular, both the Global Financial Crisis (GFC) of 2008 and

the Coronavirus Crash of 2020 are covered. The observations are obtained from the Compustat

database, accessible at the Wharton Research Data Services, consisting of 630 fundamental indica-

tors and 10 technical indicators. Furthermore, the historical constituents of the index are retrieved

by means of web scraping (see Appendix B for more detail). The set of unique assets in which we

are allowed to invest is denoted by the so-called investable universe. Hence, during this research the

investable universe within each quarter is equivalent to the historical constituents of the S&P 500

index. Before this dataset is suitable for machine learning models, the following important steps

are performed: data cleaning, feature engineering and feature selection.

3.1 Data Cleaning

The data cleaning process starts by evaluating the availability of the various indicators throughout

the entire observation period. All features that either have an average of at least 20 missing values

across all quarters or have more than 20% of the observations missing in a particular quarter are

removed. From the remaining stock observations, each data point that still contains some missing

7

information is deleted as well. This results in a total of 40,047 observations with 107 company specific

features and an average of around 482 stocks per quarter (see Appendix A for a more extensive

overview of the data). The level of the different firm characteristics varies considerably, therefore all

numerical features are scaled by subtracting the mean and dividing by the corresponding standard

deviation. In general, the objective functions of machine learning algorithms cannot work properly

if the features did not undergo such normalization, as stated by Dougherty (2012) and Garćıa et al.

(2014). Apart from the company name and observation date, there are two categorical features left

indicating the financial quarter and the activity status respectively. Both features are transformed

into separate dummy variables such that all possible states are still covered numerically.

Figure 3.1: Equally weighted returns of all stocks (shaded areas are NBER-defined recession periods)

In terms of outliers, values that fall outside of 3 standard deviations from the mean are evaluated

more closely before deciding if it will be part of the final dataset. Only in the third quarter of 2009

a stock observation is actually removed, which corresponds to Charter Communications, Inc. After

filing for bankruptcy at the end of the first quarter that year, the company restructured financially

reducing its debt by several billion dollars. As a result they obtained a documented quarterly return

of around 1,118%, which is significantly higher than the average return of 7.2% amongst all other

stocks that period. Figure 3.1 displays the equally weighted return of the historical S&P stocks

that are part of the final dataset, indicating the total quarterly return one would have achieved

when rebalancing their portfolio accordingly to the changes in the index. Apart from the periods

surrounding the Lehman bankruptcy in 2008, the so-called flash crash in 2010 and the Covid Crisis

at the start of 2020, the index remains mostly positive and fluctuates around a mean of roughly

4.3%. The corresponding compounded return from 2000 to 2020 lies around 363%, demonstrating

8

the thoroughness behind the S&P admittance standards.

3.2 Feature Engineering

The feature engineering step involves the construction of the dependent variable. In particular, its

structure should characterize the stock selection problem whilst also being suitable for the predictive

models. Instead of individual stock returns, Rasekhschaffe and Jones (2019) state that forecasting

discrete variables is more efficient in a machine learning context as it limits the risk of overfit-

ting. Therefore, this research categorizes the out-performing and under-performing stocks through

a 5 percent quantile selection. This implies that all stocks with a positive (negative) return that

are part of the top (bottom) 5 percent are labelled as long (short) position stocks in the training set.

Figure 3.2: Class distribution of available stocks for a 5 percent quantile selection

Figure 3.2 depicts the resulting class distribution across the different observation periods. The

stocks labelled as neutral are removed from the training process, as current literature (Huerta et al.

(2013) and Fu et al. (2018)) indicates that these observations are likely to decrease the out-of-sample

performance due to extra noise. Individual classifiers, therefore, only train on those stocks that hold

feature values which are conventional to out- and under-performing assets. To ensure that there is

no selection-bias, all available stocks are taken into account within the testing period and a long

(short) position label is assigned to each stock with a positive (negative) return. This strategy

simplifies the equity trading context to a binary classification problem. Due to the admittance

standards of the S&P 500 index, large positive returns are far more likely to occur within this in-

vestable universe than large negative returns. As a result, incorporating short positions without any

restrictions might lead to substantial performance reduction inside an equally weighted allocation.

9

Hence, several lower bounds on the class probability of short position forecasts are assessed when

rebalancing the portfolio based on the model predictions. The objective behind evaluating different

probability bounds is to find a lower limit that restricts the portfolio from going short in risky stocks

(e.g. stocks that hold less conventional feature values for short positions), while also maximizing

the compounded return over time. Note that this optimal certainty threshold may differ across the

various classifiers as it depends on how well a model can diversify in terms of probability.

Finally, the machine learning models should be trained on observations that are likely to be repre-

sentative for the upcoming financial state of the stock market. In general, quarters that are closer to

the testing period consist of stocks that appertain to the same macro-economic conditions. However,

due to the quantile selection smaller windows might not contain enough training observations and

therefore classifiers may possibly fail to capture the applicable market conditions. Increasing the

rolling window will result in more training samples, but also gives rise to the possibility of equally

weighting current and outdated conditions. To optimize performance, each model is examined for

different rolling-windows ranging from 1 to 9 years. For simplicity, their results are categorized in

3 size groups: small (1 to 3), middle (4 to 6) and large (7 to 9).

3.3 Feature Selection

The last step of data pre-processing involves taking care of the dimensionality problem. In par-

ticular, high-dimensional datasets often contain irrelevant and redundant features that diminish

the efficiency of machine learning algorithms. Guyon and Elisseeff (2003) indicate that including

such features during training commonly leads to an increase in computational time and possible

overfitting. Therefore, only features that are well associated with future stock returns should be

involved throughout the forecasting process in order to enhance the classification performance.

During this research the dimensionality is reduced by means of a selection framework based on

feature importance. In particular, the Adaboost method is incorporated as applied by Zhu et al.

(2009) with one-level DTs as the weak classifier. Taking into account the stochastic nature of the

algorithm, I then use a validation set and implement stratified 5-fold cross-validation to obtain a

ranking of the various stock related features through their individual error reduction. Subsequently,

the first combination of features that is capable of obtaining a minimum Area Under the Curve

of 65% is sought by iteratively adding the highest ranked feature using a Specific-to-General ap-

proach. Furthermore, the feature selection is completed before the construction of the interpretable

classifiers, because this allows the models to be trained and evaluated on the exact same dataset.

10

Table 3.1: Overview of the average dimension reduction across different rolling windows

Window Small Middle Large

Avg. 20.34 26.81 27.11

Min. 8 12 12

Max. 33 37 38

Table 3.1 gives an overview of the dimension reduction that results from this procedure. On average

the number of features decreases significantly from the initial 107 to around 25 remaining variables.

The total also seems to exhibit a minor increase for larger training windows. However, around

periods of economic growth the number of substantial features consistently tends to a minimum of

8 to 12 variables and in the course of a recession it inclines to slightly more than 30.

4 Methodology

In this section, both the classification methods and the evaluation techniques of the research are

defined. The first part concentrates on rule-learning through Decision Trees, it includes the CART

algorithm and the Random Forest model which is implemented as the machine learning benchmark.

This is followed by classifiers based on alternative learning approaches, namely: the Classy, Ripper

and RUG algorithm. Finally, the metrics that are needed to assess the classification performance

and the portfolio results are discussed.

4.1 Decision Trees

Currently, rule-based classification is regarded as the backbone of interpretable machine learning.

The transparent structure that is imposed by decision rules resembles our natural language se-

mantically, which allows them to be interpreted as independent if-then statements. In particular,

Lakkaraju et al. (2016) define an individual rule r as a tuple (S, y(r)) consisting of an itemset S that

filters the stocks and a general class label y(r) ∈ Y that is assigned to all the observations covered

by rule r. Within the binary classification framework of this research, the set of possible classes Y is

defined as either taking a long or short position in the stock. The filtering process is constructed as

a conjunction of one or more predicates that take the following form: (feature, operator, threshold).

Given a set of stock observations xi ∈ Rn, i = 1, . . . , N , a possible predicate θ could be (xj > 10)

with xj denoting the jth feature of the stock. Hence, the structure of some rule r consisting of two

predicates can intuitively be displayed as:

Rule r : IF θ1 and θ2 hold THEN assign class y(r).

11

One of the rule-learning techniques that is frequently applied today is the so-called Classification

And Regression Trees (CART) algorithm, as introduced by Breiman et al. (1984). During this

approach the feature space of a training set D = {(x1, y1), ..., (xN, yN)} is split in binary fashion

by means of recursive partitioning. Specifically, denote Qm ⊂ D as the remaining Nm observations

at the mth node of the DT and predicate θ = (j, tm) a possible split of the feature space involving

feature j and threshold tm. Based on θ the stocks in Qm can be split into the following subsets:

Q(0)
m (θ) = {(X,y)|xij ≤ tm} and Q(1)

m (θ) = Qm \Q(0)
m (θ) , (1)

where all xi ∈ Qm that satisfy (xij ≤ tm) are included in Q
(0)
m and the remaining observations are

covered in Q
(1)
m . The CART algorithm finds the best possible predicate θ∗ to split the data at node

m according to the minimization of a pre-specified impurity measure H(·):

θ∗ = argminθ G(Qm, θ) with G(Qm, θ) =
N

(0)
m

Nm
H(Q(0)

m (θ)) +
N

(1)
m

Nm
H(Q(1)

m (θ)) , (2)

here N
(0)
m and N

(1)
m represent the number of observations in Q

(0)
m (θ) and Q

(1)
m (θ) respectively. In this

research, the quality of each possible split is measured by means of the Gini index:

H(Qm) =
∑
k

pmk(1− pmk) with pmk =
1

Nm

∑
y∈Qm

I(y = k) , (3)

where pmk represents the ratio of observations in Qm that belong to class k ∈ Y. Hence, H(Qm)

measures the probability of a certain observation being falsely classified when it is randomly chosen.

After obtaining the subsets Q
(0)
m (θ∗) and Q

(1)
m (θ∗), the algorithm continues splitting iteratively until

either a maximum number of nodes mmax is reached or the minimum amount of allowed observations

Nmin is attained. To find the optimal values for mmax and Nmin, a grid-search is performed using

a stratified 5-fold cross-validation. As the feature space is split into two complementary subspaces

at each node through a pair of contrasting predicates, the structure of the resulting rules can be

interpreted as dependent if-then-else statements:

Rule r1,2 : IF θ1 holds THEN assign class y(r1) ELSE assign class y(r2).

Constructing an ordinary DT through the CART algorithm is almost effortless and classification of

new observations can be done rapidly. In addition, the resulting decision boundaries are relatively

transparent if they are built from intelligible features and the length of the rules is not too large.

However, the user study of Lakkaraju et al. (2016) indicates that this nested predicate structure

decreases the transparency of the rules significantly when the number of performed splits increases.

12

4.2 Random Forest

In general, ordinary DTs have two main disadvantages that make them less favourable in practice.

Due to the hierarchical structure in which rules are constructed within the CART algorithm, each

itemset s consists of a nested conjunction of predicates. As a result, individual DTs are prone to

over-fitting and very sensitive to changes in the training data. To overcome said shortcomings,

Breiman (2001) proposes the RF model in order to obtain a more robust tree-based classification

approach. The main goal of this method is to construct an ensemble of uncorrelated DTs, which

produces more robust forecasts as it allows the different trees to protect one another from their

individual classification errors.

Algorithm 4.1: Random Forest

Input: D = {(x1, y1), ..., (xN, yN)}
Process:

1: for z = 1, . . . , Z do

2: Draw bootstrap sample Z of size N from D.

3: Grow decision tree Tz from Z as follows:

4: until mmax reached or Nm = Nmin do

5: Select p random features from the n total features.

6: Find optimal predicate θ∗ among these p features.

7: Split Qm based on θ∗ into Q
(0)
m (θ∗) and Q

(1)
m (θ∗).

8: end

9: end

Output: The ensemble {Tz}Z1 .

Classification:
Let ŷ(z)(xi) be the class prediction of Tz.

Then ŷ(rf)(xi) = majority vote {ŷ(z)(xi)}Z1 .

Note: Pseudocode of the Random Forest algorithm is based on Hastie et al. (2009).

Algorithm 4.1 illustrates the RF model within the classification scenario of this research. Given a

training set D consisting of N stock observations, the algorithm first generates a specified number

(Z) of random training samples Z through bootstrap aggregation (bagging).1 For each sample

z ∈ Z, the model then creates an individual DT denoted as Tz. The procedure for constructing

trees is similar to the CART algorithm, however the RF approach differs slightly as it searches for

the best predicate θ∗ amongst a random selection of p < n features at each node m. Due to the

unstable nature of DTs, this combination of bagging and randomization of the features results in

the required uncorrelated tree structures. Finally, let ŷ(z)(xi) be the prediction from Tz for stock

observation xi and {Tz}Z1 the fully trained ensemble. The RF algorithm makes its final prediction

1See Breiman (1996) for a detailed explanation of the bootstrap sampling method applied to DTs.

13

ŷ(rf)(xi) by applying a majority vote across all ŷ(z)(xi) ∈ {ŷ(z)(xi)}Z1 . It is important to mention

that the RF approach loses the transparency factor that the DTs initially offered, as it provides a

large set of overlapping decision rules that are often hard to explain in practice. Conversely, this

structure allows for more robust predictions and is found throughout literature to realize a higher

out-of-sample performance.

4.3 Classy Algorithm

An alternative rule-based learning approach is the so-called probabilistic rule lists. Similarly to an

ordinary rule r, a probabilistic rule rp can be defined as a tuple that consists of an itemset S which

filters the stocks as a conjunction of one or more predicates. However, instead of a general class

label y(r) it assigns a categorical distribution Φ(S) over both the long and short class:

Φ(S) = (φlong, φshort) such that φlong + φshort = 1 and φlong, φshort > 0. (4)

Hence, a probabilistic rule that consists of an itemset with two predicates can be displayed as:

Rule rp : IF θ1 and θ2 hold THEN y(rp) ∼ Φ(S) = (φlong, φshort).

To retrieve class probabilities, ordinary decision rules integrate a frequentist approach and simply

make use of the resultant accuracy of a rule during training. Alternatively, probabilistic rules take

a Bayesian attitude which might lead to more precise information regarding the certainty of an

out-of-sample forecast. In terms of structure, a probabilistic rule list R can be interpreted as an

ordered list of if-then statements that ends with a default rule rp,∅ such that the list covers the

entire feature space. For instance:

Rule rp,1 : IF θ1 and θ2 hold THEN Pr(long) = 0.65 and Pr(short) = 0.35

Rule rp,2 : IF θ3 holds THEN Pr(long) = 0.20 and Pr(short) = 0.80

Rule rp,∅ : ELSE Pr(long) = 1.00.

Note that a stock observation xi is classified by going through the list top-down and assigning

the class with the highest probability level as the preferred stock position. By design, the model

automatically executes the default rule if none of the previous itemsets are applicable. For the

sake of simplicity, the support of a rule its itemset supp(S) is defined as the number of times that

the predicates are satisfied within the training data D and the usage U(S) is equal to the support

subtracted by the number of stock observations covered by the preceding rules in R.

Proença and van Leeuwen (2020) introduce the Classy algorithm, which generates a probabilis-

tic rule list based on the MDL principle. Given the complete space of possible lists R, their

methodology is tailored to find the optimal classifier R ∈ R that minimizes:

L(D, R) = L(y|R,X) + L(R), (5)

14

where L(R) denotes the encoded Description Length (DL), in bits, of the probabilistic rule list and

L(y|R,X) represents the DL of the class labels given the rule list and the set of available stock

observations in D. The class labels are encoded by means of the Normalized Maximum Likelihood

approach (Shtarkov (1987)), while the length of the rule list is retrieved by using both the universal

code for integers (Rissanen (1983)) and the uniform code (Grünwald et al. (2007)). As more complex

lists result in a larger total DL, this objective function imposes a trade-off between the complexity

of the model and the corresponding fit.

Algorithm 4.2: Classy

Input: D = {(x1, y1), ..., (xN, yN)} and C = {rp,1, . . . , rp,k}
Process:

1: Remove strictly redundant itemsets from C
2: Set the default rule: R∗ = {rp,∅}
3: until δL(D, R∗ ∪ {r′p}) ≤ 0 ∀ r′p ∈ C do

4: r∗p = argmaxr′p∈ C δL(D, R∗ ∪ {r′p})
5: R∗ = R∗ ∪ {r∗p}
6: Update C
7: end

Output: The probabilistic rule list R∗.

Note: Pseudocode of the Classy algorithm is based on Proença and van Leeuwen (2020).

In order to find the optimal list that minimizes Equation (5), the algorithm evaluates the normalized

compression gain that is realized by adding an extra rule to the list:

δL(D, R ∪ {rp}) =
L(D, R)− L(D, R ∪ {rp})

U(S)
, (6)

here the numerator denotes the absolute compression gain. Including the usage helps the model

favour those rules that cover less stock observations yet provide a higher accuracy relative to the

absolute gain. The Classy approach, as depicted in Algorithm 4.2, finds the best probability rule

list R∗ by means of the separate-and-conquer strategy. In particular, given a set of candidate

rules C = {rp,1, . . . , rp,k} it iteratively adds the rule that inflicts the largest change in normalized

compression until there are no more existing rules that lead to a positive gain. After each additional

rule, the usage of the remaining candidate rules is updated by removing the stock observations they

have in common with the prior added rule. To obtain the candidate rules, Proença and van Leeuwen

(2020) mine frequent itemsets using the beam-search algorithm. This decreases the computational

time of the mining procedure with several magnitudes compared to classical approaches such as

FP-growth and the Apriori algorithm, while finding an almost identical set of rules. Furthermore,

the corresponding categorical distributions are calculated using a smoothed maximum likelihood

15

estimator:

φ̂k =
U(S, k) + ξ

U(S) + |Y|ξ
, (7)

where U(S, k) represents the usage of the itemset taking into account only the training observations

that are labelled as class k ∈ Y and ξ a small pseudo count to avoid division by zero errors even

when there is no class-specific usage. After finalizing the candidate set, strictly redundant rules

are easily removed by means of their anti-monotone support to improve the computational time of

the model. Specifically, if there are two rules such that S1 ⊂ S2 then the first rule is removed as

it will never be preferred due to supp(S2) ≥ supp(S1) which by encoding always results in a larger

DL for the first rule. Lastly, the main benefit of the Classy algorithm is that, by means of the

objective function, it naturally considers a trade-off between complexity and accuracy. In addition,

it simultaneously avoids overfitting and the need for hyperparameter tuning.

4.4 Ripper Algorithm

The Ripper algorithm is an inductive rule learning approach that is widely adopted in the field of

machine learning. As illustrated by Cohen (1995), its main goal is to reduce the classification error

through pruning, while also maintaining a simplistic set of rules and preventing the model from

overfitting. To accomplish this, the classification procedure consists out of two phases, namely:

rule construction and rule optimization. Similarly to the framework of probabilistic rule lists, this

methodology adopts a default forecast. In this research, a short position is set as the default class in

every observation period, since in general there are slightly more stock observations with a negative

return across the different quarters. Due to the binary set-up of the classification problem, the

model only searches for rules that classify observations that are part of the long position class.

During the first phase of the Ripper classifier, rules are constructed using the Sequential Cov-

ering Algorithm (SCA). In particular, a rule r is built by greedily adding the best possible predicate

θ∗ to the itemset S until all remaining stock observations are long positions. To determine θ∗, each

possible predicate within the feature space is evaluated by means of the FOIL’s Information gain:

FOIL(S0,S1) = L(log2
l1

l1 + s1
− log2

l0
l0 + s0

) , (8)

where lc and sc denote the number of long and short observations covered by the predicates in

Sc respectively for c = 0, 1. Furthermore, S0 indicates the current itemset while S1 includes an

additional predicate θ /∈ S0 and L is the total number of long position stocks covered by both S0
and S1. In order to prevent overfitting, the final itemset S∗ is incrementally pruned by assessing

the following cover-ratio:

V (S) =
L+ 1

L+ S + 2
, (9)

16

with S denoting the total number of short position stocks covered by S. Starting at the last added

predicate θ̃, the model re-evaluates iteratively if a predicate should be included by replacing S if

V (S \ θ̃) ≥ V (S). After finalizing a rule r, the model removes all covered stock observations from

the training set and starts building a new rule until one of the stopping criteria is met:2

1. There are no more long position stock observations left in the training set.

2. The misclassification rate of the current set of rules exceeds 50%.

3. The DL of the entire set of rules is 64 bits greater than the smallest DL observed so far.

During the second phase of the Ripper algorithm, the obtained set of rules is optimized by con-

structing and pruning two additional variants of each individual rule from a random selection of

the data. One of the new variants is constructed from an empty rule, while the other is acquired by

greedily adding predicates to the original rule. The model selects the rule with the smallest DL as

the final representative amongst the three variants. Instead of Equation (9), the accuracy measure

is implemented as the pruning metric throughout the entire second phase of the algorithm. Note

that the recurrent use of performance evaluation throughout the training process of the Ripper

algorithm results in higher empirical performance as it reduces the possibility of overfitting.

4.5 Rule Generation Algorithm

Akyüz and İlker Birbil (2021) propose the RUG algorithm in which they combine the interpretive as-

pect of an ordinary DT with linear programming, making their approach scalable for large datasets.

Compared to most other optimization-based classification approaches, this model can be applied to

multivariate class scenarios. In order to accomplish this, they characterize a vector-valued mapping

for the classes. Within a binary problem the formulation of this class vector and its prediction can

be simplified as:

#»y (xi) =

(1,−1), if yi = long

(−1, 1), if yi = short
and #»y ∗(xi) =

∑
r∈Rt

airRr(xi)wr, (10)

here #»y ∗(xi) denotes the forecast of stock observation xi ∈ D with air ∈ {0, 1} specifying if a certain

rule r ∈ Rt at iteration t covers asset i and wr a set of nonnegative weights. Moreover, vector

Rr(xi) is constructed in the same fashion as ~y(xi) and is assigned to observation xi by rule r. Note

that the largest element of #»y ∗(xi) is ultimately appointed as the final position forecast ŷi of the

stock.

2These stopping criteria correspond to those applied in the Ripper software distribution of Witten et al. (2016).

17

The main goal of this methodology is to minimize the total classification error by means of the

following linear programming model:

minimize
∑
i∈D

vi +
∑
r∈Rt

crwr

subject to
∑
r∈Rt

âirwr + vi ≥ 1, i ∈ D;

∑
r∈Rt

airwr ≥ ε, i ∈ D;

vi ≥ 0, i ∈ D;

wr ≥ 0, r ∈ Rt;

(11)

here the auxiliary variable vi, i ∈ D imposes the said objective through the first set of constraints

by evaluating the so-called hinge loss function:∑
i∈D

max
{

1−
∑
r∈Rt

âirwr, 0
}
, (12)

where âir = 1
2

{
airRr(xi)

T~y(xi)
}

.3 In addition, the cost coefficients cr ≥ 0, r ∈ Rt penalize rules

with more predicates and avoid outcomes with a large number of rules holding nonzero weights.

Hence, this method encourages interpretability as it tries to find a small and concise group of

decision rules. The second set of constraints in model (11) ensure that all stock observations xi ∈ D
are covered, which is essential for obtaining consistent and interpretable decision boundaries. Note

that different values of ε could alter the optimal rule set, however Akyüz and İlker Birbil (2021)

indicate that it is sufficient to set it equal to a small strictly positive value (e.g. 0.01) as these

constraints simply regard to coverage.

Algorithm 4.3: Rule Generation

Input: D = {(x1, y1), ..., (xN, yN)}
Process:

1: Grow T(e) and extract initial rule set R0

2: until R− = ∅ do

3: Solve Dual Model (13) and obtain optimal β(t)

4: Grow T(β(t)) and extract R−
5: Rt = Rt−1 ∪R−
6: end

Output: The final set of rules R.

Note: Pseudocode of the RUG algorithm is based on Akyüz and İlker Birbil (2021).

3The generalized formulation of Akyüz and İlker Birbil (2021) involves the term κ = (|Y|−1)/|Y|, which simplifies

to 1/2 for binary classification.

18

Algorithm 4.3 illustrates the steps of the RUG approach within the classification scenario of this

research. Given a training set D, the initial rule set R0 is obtained by creating a DT based on

a weight vector e consisting of only ones T(e). Thereafter, the model iteratively generates rules

through an optimization procedure known as column generation. At each iteration t, the dual

formulation of (11) is solved based on the current rule set Rt−1:

maximize
∑
i∈D

(βi + εγi)

subject to
∑
i∈D

(âirβi + airγi) ≤ cr, r ∈ Rt;

0 ≤ βi ≤ 1, i ∈ D;

γi ≥ 0, i ∈ D,

(13)

here βi, i ∈ D represent the dual variables of the loss constraints, while γi, i ∈ D correspond to the

dual variables of the coverage constraints. After obtaining the optimal solution (β(t),γ(t)), it tries

to improve the current rules by solving its pricing subproblem. In particular, rules with negative

reduced costs are identified by constructing an additional DT using the previously found β(t). A

rule r
′

that is part of the newly obtained set R̄ is said to improve the current objective value if it

satisfies:

c̄r′ = cr′ −
∑
i∈D

(âirβ
(t)
i + airγ

(t)
i) < 0 with r′ ∈ R̄ \ Rt−1, (14)

where c̄r′ defines the reduced cost of rule r
′
. Now, denote R− as the set of rules that satisfy

Equation (14) and have a negative reduced cost. The algorithm continues at iteration t + 1 with

Rt = Rt−1 ∪ R− and terminates if it cannot find a single rule that improves te current objective

function, that is R− = ∅. As previously mentioned, the construction of an ordinary DT can be

completed rapidly and therefore the computational time of RUG is very low compared to state-of-

the-art machine learning models. In addition, the algorithm obtains a set of rules that is larger than

that of a DT, however the rules are generally shorter which supports interpretability. Furthermore,

the model is found capable of performing at the same level as the RF algorithm in terms of accuracy.

4.6 Evaluation Metrics

The forecasts of the various interpretable learning algorithms are assessed with respect to both

their classification and portfolio performance. The latter is evaluated by means of the average

quarterly return and the total compounded return that results from re-balancing an equally weighted

portfolio based on the position forecasts of the classifiers. In order to evaluate how well the models

can differentiate between long and short positions, the following metrics are taken into account:

the Accuracy (ACC), Recall (RCL), Specificity (SPC), F1-score and their precision in terms of

19

Positive Predicted Value (PPV) and Negative Predicted Value (NPV). Note that all five measures

are essentially based on the confusion matrix, depicted in Figure 4.1.

Figure 4.1: Illustration of the confusion matrix within a stock selection framework

In the context of this research, the positive and negative class correspond to long and short po-

sitions respectively. Therefore, a True Positive (TP) observation is defined as the prediction of a

long position for a stock that exhibits a positive return over the next quarter. Conversely, True

Negative (TN) observations are defined as predicting short positions for stocks that have negative

future returns. Both scenarios lead to a positive return on their investment, while False Positive

(FP) and False Negative (FN) position forecasts clearly hold negative returns.

The ACC of a classifier indicates the proportion of stocks that are assigned a forecast position

that coincides with its future return, in other terms:

ACC =
TP + TN

TP + FP + FN + TN
, (15)

where a higher value implies that the model captures a larger portion of the underlying relations

between a firm’s fundamental characteristics and its future price. However, if a model does not

distinguish between long and short positions and only concentrates on one particular class it could

still obtain a high ACC in periods of economic expansion or turmoil. Therefore, it is also beneficial

to consider the fraction of correctly classified stock positions for each individual class:

RCL =
TP

TP + FN
and SPC =

TN

TN + FP
, (16)

here the RCL measures the fraction of correctly classified long positions and the SPC the fraction

of correctly classified short positions. Furthermore, portfolio construction is a practice in which

investors need to be overly cautious with their investment strategies as taking positions with too

20

much risk may harm the trust of their customers. Note that the trade-off between RCL and SPC

does not demonstrate to what extent a model is more exact in classifying a certain position class.

For that reason, the corresponding forecast precision is expressed by means of the PPV and NPV :

PPV =
TP

TP + FP
and NPV =

TN

TN + FN
, (17)

where the PPV illustrates the proportion of long position forecasts that actually exhibit a positive

return over the next quarter, while the NPV concentrates on short positions for stocks with negative

future returns. Finally, the F1-score is used to exemplify the trade-off between this precision and

the fraction of correctly classified stocks for a certain investment position:

F
(k)
1 =

2× PPV×RCL
PPV+RCL , if k = long

2× NPV×SPC
NPV+SPC , if k = short

, (18)

which can be interpreted as the corresponding harmonic mean. In particular, for higher RCL (SPC)

or PPV (NPV) values the F1-score of long (short) positions goes to 1 while for lower values it

comes closer to 0.

To assess if the provided return series of the model-based allocations are significantly different

from the market portfolio, their respective means are tested for equality using the two-sample t-test

introduced by Snedecor and Cochran (1989):

R̄C − R̄M√
2(s2/P)

∼ t1−α/2,v with s2 =

∑P
p=1(R

(p)
C − R̄C)2 +

∑P
p=1(R

(p)
M − R̄M)2

2(P − 1)
, (19)

here P indicates the total number of periods that are investigated and the test statistic follows a

Student’s t-distribution with v degrees of freedom at a significance level of α. Furthermore, R
(p)
C

and R
(p)
M denote the return on investment at quarter p provided by the allocation of the classifier

and market respectively, while R̄C and R̄M are their corresponding average quarterly returns. The

volatility of the model-based portfolios is compared with the volatility of the market allocation by

means of an F -test for equality of two variances as covered by Heij et al. (2004):∑P
p=1(R

(p)
M − R̄M)2∑P

p=1(R
(p)
C − R̄C)2

∼ F (vM , vC), (20)

where the test statistic follows an F -distribution with the degrees of freedom for both the model-

based allocation (vC) and market portfolio (vM) equal to P − 1. Note that all statistical tests are

performed using the EViews 10 software.

21

4.7 Certainty Threshold

The current financial literature regarding stock classification has primarily focussed on construct-

ing portfolios based on long positions. Recall that the investable universe, being the historical

constituents of the S&P 500 index, denotes the set of assets in which we are allowed to invest.

As previously explained, large positive returns are far more likely to occur within the investable

universe of this research than large negative returns. Including short positions at the same rate as

long positions could therefore harm the portfolio, as misclassifying short positions might possibly

have a more damaging effect than misclassifying long positions.

To solve the issue, this paper evaluates the addition of a minimum class probability that needs

to be exceeded before a short position forecast is included in the portfolio. Using such a ‘certainty

threshold’ will expectantly force the model-based allocations to take fewer and less risky short po-

sitions. The optimal threshold for each classifier is set as the minimum lower bound that achieves

a NPV of at least 80% during training amongst the short position forecasts that lie above the

threshold. Here, the general performance is estimated using stratified 5-fold cross validation and

the lower bound is chosen from the set {5x | x ∈ {11, . . . , 19}}. Note that the certainty threshold

might differ across the various learning algorithms, as the range of class probabilities depends on

how well a model is capable to differentiate between safe and risky investments.

5 Results

This section describes the computational platform of the experiment and investigates the perfor-

mance of the classification models in three stages. The first part concentrates on the interpretability

of the algorithms with respect to the RF model by evaluating the structure of their resulting rule

sets. This is followed by assessing the classification performance regarding both long and short

positions for different rolling windows. Finally, the portfolio returns of the interpretable learning

models are compared with the market allocation and the impact of including short positions through

a certainty threshold is analysed.

5.1 Computational Platform

All algorithms are implemented in Python 3.8.5 using the Spyder IDE. The modules are executed

on a Windows 10 pro computer with an Intel Core i7-2600 CPU at 3.40 GHz, 16.0 GB of RAM

and a 64-bit Operating System. Table 5.1 provides an overview of the specific packages that were

used to construct each classifier. As previously mentioned, the hyperparameters of the models are

optimized in each quarter by means of a grid-search (if applicable). The general performance of each

22

possible combination of parameters is estimated within the training set using stratified 5-fold cross

validation. After the optimal set of hyperparameters is found, the performance of the optimized

model is determined by training the classifier on all available training observations. Note that the

model-based portfolio allocations are formed using this final class prediction.

Table 5.1: Overview of the Python packages that are used to construct the rule-learning models

Model Package Distribution Additional Requirements

RF / CART scikit-learn anaconda/pip scipy, joblib, numpy and threadpoolctl

Classy rulelist pip scipy, typing, scikit-learn and gmpy2

Ripper python-weka-wrapper3 pip javabridge, OpenJDK 11 and Weka 3.9.5

RUG rulediscovery anaconda numpy, pandas, scikit-learn, cvxpy, cvxopt and gurobi

Regarding the CART algorithm, mmax and Nmin are both evaluated for all integer values in the

range of [2, 20]. The optimal combination of hyperparameters that is found for CART is also used

for the RUG algorithm, as the RUG utilizes a DT based on CART to construct its rules. Moreover,

the Gurobi solver is used to solve the linear programming problems from RUG. The number of

trees used in the RF model is chosen from the set {25s | s ∈ {1, . . . , 12}} and the maximum

depth from {None, 1, 2, 3, 4, 5s | s ∈ {1, . . . , 12}}. The only important parameter for the Ripper

algorithm is the number of folds used during pruning, however changing this value has a negligible

effect on the classification performance and is therefore set to 5. Finally, Classy avoids the need

for hyperparameter tuning as shown in the original paper by Proença and van Leeuwen (2020).

All of the remaining parameters that exist within the packages are set to their default values in

this experiment. Furthermore, the computational time is denoted in seconds and both the average

quarterly and compounded return of the portfolios in percent.

5.2 Rule Structure

As previously mentioned, the number of rules that a model produces and the average amount of

predicates that are associated with these rules are two of the main drivers of interpretability. While

the RF algorithm is known for its great empirical performance, it often does not perform well in

these two areas and produces a large set of overlapping decision rules that is too complicated for

investors to understand. This also becomes clear from Table 5.2, which shows its average number

of rules and predicates across the different observation periods. The number of rules seems to

increase with the length of the rolling window, however for small windows it already utilizes over

6000 rules to construct the decision boundaries. In addition, the rules can contain up to 8 or 9

predicates which adds another layer of complexity. Besides the clear lack of interpretation, the

computational time for an individual quarter already takes roughly 7 minutes for windows with 700

to 900 training observations. Expanding the investable universe or grid-search can therefore have

23

detrimental effects on the feasibility of the RF algorithm in terms of training time.

Table 5.2: Average number of rules, predicates and computational time of the RF algorithm

Window Rules Predicates Time (sec.)

Small 6,231.68 9.23 219

Medium 9,981.28 8.86 305

Large 14,895.83 8.20 449

Figure 5.1 compares the average number of rules created by the interpretable learning algorithms

with that of the RF model. Note that for the sake of visualization it depicts the logarithm as the

other classifiers construct a significantly lower amount of rules. In general, their mutual ratio stays

consistent when increasing the length of the rolling window. Note that for the tree-based models

there is a sizeable increase in the number of rules for larger windows, while the Ripper and Classy

algorithm experience an almost negligible effect. Furthermore, the tree-based models seem to find a

considerably larger set of rules. Both the Classy and Ripper algorithm only yield a hand full of rules,

yet they differ in terms of their rule mining abilities. Ripper is capable of consistently finding a

small set of relations in each observation period, whilst the Classy algorithm seems to underperform

in a more complex data environment. On average it only finds one additional rule in 7.8% of the

observation periods for small windows, however this proportion increases for bigger windows with

15.6% and 56% for middle and large windows respectively. Hence, it becomes apparent that the

Classy algorithm requires more training observations compared to the other classifiers in order to

perform well within more complex datasets.

Figure 5.1: Average number of rules from 2000Q1 to 2020Q3

24

To get a better grasp of the difference in rule structure between the interpretable classifiers, an

overview is given in Table 5.3 containing their average composition and computational time for

the various rolling windows. By construction the RUG algorithm results in a larger set of rules

than CART, nevertheless this increase coincides with a decrease in predicates. In particular, there

is an average difference of around 2 predicates within an individual rule between the models. As

a result, the RUG algorithm constructs more concise rules in this experiment which makes them

easier to comprehend for investors. Nonetheless, both classifiers construct their decision boundaries

on a significantly smaller set of rules compared to RF. The Ripper algorithm assembles the most

transparent set of rules in this scenario, averaging around 3 decision rules per forecasting period.

Moreover, most of its rules only consist of 1 or 2 predicates which translates to relatively simplistic

decision boundaries. Whilst this is a beneficial characteristic from a clarity perspective, it could

also have an adverse effect on the classification and portfolio performance.

Table 5.3: Average number of rules, predicates and computational time of the interpretable models

CART Classy Ripper RUG

S M L S M L S M L S M L

Rules 29.74 56.04 58.75 1.08 1.15 1.61 2.69 2.99 3.02 63.80 123.04 162.53

Predicates 6.71 6.98 5.81 2.33 3.71 5.43 1.46 1.67 1.83 4.77 5.26 4.36

Time (sec.) 20.28 43.44 58.46 4.47 4.93 6.61 0.04 0.14 0.24 1.24 8.04 24.41

In terms of practical feasibility for investors, all models terminate on average within 1 minute making

their implementation almost effortless. Note that the RUG algorithm is initialized using the optimal

hyperparameters obtained from the CART grid-search. Therefore, the denoted computational time

of the RUG can be understood as the additional time it takes after tuning the maximum allowed

nodes and minimum allowed observations parameters. In addition, the training time of the CART

algorithm increases at a lower rate than the RF model for larger rolling windows. Hence, broadening

the investable universe or increasing the number of unique parameters in the grid-search is less

problematic for the CART and RUG approach.

5.3 Classification Performance

The classification performance of the interpretable machine learning models is evaluated in three

stages. First their overall ability to differentiate between stocks with positive and negative future

returns is assessed by means of the average ACC measure for the different rolling window groups.

This is followed by a more detailed investigation of the forecasts, evaluating the classification of

long and short positions from an individual perspective.

25

Table 5.4: Average accuracy of the classification models across the rolling windows

Model Small Middle Large

RF 0.59 0.57 0.57

CART 0.49 0.50 0.51

Classy 0.50 0.49 0.49

Ripper 0.54 0.51 0.51

RUG 0.50 0.53 0.60

Note: the best performing classifier in terms of average accuracy for a specific group of rolling windows

is indicated in bold.

Recall that the ACC indicates the proportion of stocks that is assigned a forecast position leading

to a positive return on investment in the next quarter. Hence, it indicates to what extent a classifi-

cation model can capture the underlying relations between the fundamental characteristics of a firm

and its future stock return. Table 5.4 contains the average ACC of the different classifiers. For the

interpretable models, its range lies between 0.49 and 0.60. Note that especially for the RUG and

Classy algorithm this outcome is substantially lower than the presented results of their respective

introductory papers. However, this is most likely explained by the high complexity of stock selection

problems as the ACC of the RF model lies within the same range. Regarding the size of the rolling

window, only the CART and RUG algorithm seem to separate well between market conditions of

different periods as they achieve their highest ACC level for the large window group. The remaining

models in this experiment perform better within small sample scenarios, where the training data

mostly contains stock observations that are close to the testing period. For rolling windows ranging

from 1 up to 6 years (e.g. small and medium windows), the RF model outperforms all interpretable

classifiers based on ACC while for the larger windows it comes second after the RUG algorithm.

In particular, RUG is the only interpretable machine learning model that is capable of beating the

benchmark in this aspect and achieves the highest ACC obtained (0.60) across the different training

scenarios for any model. Furthermore, while on average the Ripper algorithm constructs its decision

boundaries based on 93.5% less rules than CART it never underperforms in terms of ACC. In fact,

this more generalized decision approach outperforms all the other interpretable learning models for

small window sizes and comes only second to RUG for the middle windows.

Table 5.5 gives an overview of the classification performance with respect to long position fore-

casts, in order to assess to what extent their classification contributes towards the ACC of the

models. As the RCL denotes the average fraction of correctly classified long positions, it is clear

that the RUG algorithm captures the most stocks that exhibit a positive future return. In partic-

ular, it consistently outperforms all other classifiers independent of the rolling window size. For

26

Table 5.5: Average classification performance of the learning algorithms in regard to long positions

RF CART Classy Ripper RUG

S M L S M L S M L S M L S M L

RCL 0.59 0.56 0.57 0.48 0.45 0.47 0.51 0.50 0.45 0.53 0.51 0.51 0.64 0.66 0.68

PPV 0.64 0.62 0.60 0.63 0.63 0.63 0.37 0.34 0.49 0.60 0.58 0.58 0.53 0.61 0.76

F1-score 0.61 0.59 0.57 0.51 0.49 0.51 0.40 0.38 0.42 0.58 0.54 0.54 0.57 0.63 0.71

Note: the best performing model for each metric per group of rolling windows is denoted in bold.

short- and middle-sized windows this comes at the cost of precision as it respectively covers a smaller

proportion than the RF and CART algorithm in terms of PPV . The rule sets from RUG in these

training scenarios clearly favour long positions too excessively, which is a possible motive for the

considerably lower ACC in shorter windows. Nevertheless, the F1-score (0.71) indicates that the

RUG algorithm for large rolling windows realizes the best trade-off between quantity and precision

as it on average captures 68% of the long stocks correctly with only an average of 24% of its long

positions making a negative return on investment.

Whilst the CART model is used to construct the initial rule set of RUG, the algorithm itself

achieves the lowest RCL out of all classifiers and is even outperformed by the Classy algorithm.

This is partly explained by a lower total of forecasted long positions as the PPV of CART indi-

cates a competitive level of precision relative to the RUG and RF model. Still, the proportion of

correctly classified long positions lies on average below 50% which might suggest that it is beneficial

for investors to follow the market portfolio in this investable universe when only looking at long

positions instead of the selection made by CART. In addition, note that by construction the Classy

allocation closely follows the market allocation for rolling-windows up to 6 years as in these training

scenarios it barely finds any decision rules additional to the default forecast. For larger windows

it finds rules more often, yet on average it captures less of the total long positions. The increase

in F1-score shows that this does not mean that the model necessarily performs worse, since the

decrease in RCL is offset by an increase in PPV resulting in more accurate predictions of long

position stocks. Furthermore, the Ripper algorithm performs reasonably well considering that it

only uses a hand full of rules. On average it captures 52% of the total long positions with around

59% of its long position forecasts actually having a positive return on investment.

In the overview from Table 5.6 it becomes clear that the RF model is far more versatile than

the interpretable learning algorithms, as it maintains a similar performance level for short position

forecasts. Whilst the RUG and Ripper algorithm seemed competitive in some areas for long posi-

tion stocks, all interpretable classifiers display a substantial reduction in their forecasting precision

(lower NPV) when it comes to short positions. In particular, the RF model outperforms the other

27

Table 5.6: Average classification performance of the learning algorithms in regard to short positions

RF CART Classy Ripper RUG

S M L S M L S M L S M L S M L

SPC 0.60 0.58 0.57 0.51 0.54 0.52 0.49 0.51 0.55 0.53 0.51 0.51 0.32 0.33 0.38

NPV 0.56 0.52 0.54 0.36 0.37 0.36 0.20 0.20 0.29 0.46 0.41 0.41 0.41 0.38 0.30

F1-score 0.57 0.55 0.56 0.39 0.40 0.39 0.27 0.27 0.34 0.49 0.43 0.43 0.36 0.36 0.33

Note: the best performing model for each metric is denoted in bold per group of rolling windows.

classifiers in all aspects independent of rolling window size. On average it captures 58% of the total

short positions with more than half of these positions providing the investor a positive return. This

consistent classification performance across both short and long positions is the reason why the

RF algorithm outperforms the other models in terms of ACC for short- and middle-sized windows.

Note that RUG is the only classifier that has a considerable decrease in correctly classified stocks,

while the other models obtain a similar proportion for SPC compared to RCL. Nevertheless, all

interpretable learning algorithms suffer from a substantial reduction in forecast precision and there-

fore obtain a far lower F1-score for short stocks.

Note that this low performance for short position forecasts further emphasizes how well the RUG

algorithm finds long investment opportunities for large rolling windows, as it still achieves a higher

ACC than the RF model in this scenario. The big difference in its F1-score between both classes

implies that the decision boundaries from RUG are more tailored towards the prediction of long

positions. In fact, it performs second to worst out of all models from a short perspective for small-

and middle-sized windows and even attains a lower F1-score than Classy for larger widows. Out of

all the interpretable learning models, the Ripper algorithm finds the best trade-off between total

captured short positions and the corresponding precision. Unfortunately, it only finds an average of

52% of the total short positions with roughly 57% of the short positions that it takes resulting in a

negative return on investment. Recall that the investable universe, being the historical constituents

of the S&P 500 index, denotes the set of assets in which we are allowed to invest. As previously

explained, large positive returns are far more likely to occur within the investible universe of this

research than large negative returns. This status quo in combination with a large proportion of the

forecasted short positions exhibiting a positive future return on average could supposedly lead to a

significant reduction in quarterly returns for equally weighted allocations. Since the performance of

the RF model also is slightly lower for short positions, this might explain why the current literature

of stock classification has only focused on constructing portfolios based on the predictions of positive

future returns.

28

5.4 Portfolio Performance

Although the average F1-score regarding long position forecasts only lies around 54% across the

various machine learning models, this does not necessarily imply that the models perform poor

in terms of portfolio return. The market allocation itself already has an average quarterly return

of roughly 6.05%, resulting in a compounded return of 284.35% over a period of almost 12 years

from 2009Q1 to 2020Q3. Hence, if the balance between RCL and PPV is more than sufficient,

the correctly taken long positions might possibly compensate for the losses received by the FP

observations and improve upon the market return. This development can also be seen in Table 5.7,

which contains a summary of the portfolio allocations that are constructed by the classifiers with

respect to long positions. All model-window combinations that obtained an F1-score above 58%

(see Table 5.5) provide a higher average quarterly return than the market and therefore result in a

larger compounded return. Note that there are two exceptions to this rule, as the CART and RUG

algorithm both deliver an average quarterly return slightly higher than the market allocation for

small- and large-sized windows respectively while their corresponding F1-score is below 58%. This

could be a result of their more aggressive approach towards long positions when compared to the

other classifiers. In particular, these two cases exhibit an increase of around 30% in the average

number of involved stock positions with respect to the other model-based allocations.

Table 5.7: Average portfolio performance of an equally weighted allocation in terms of long positions

RF CART Classy Ripper RUG

S M L S M L S M L S M L S M L

Quarterly (%) 6.50 6.25 5.68 6.10 6.04 5.88 2.90 3.26 5.18 6.56 6.01 6.18 5.98 6.14 7.18

Compounded (%) 306 294 2.67 287 2.84 2.76 1.36 1.53 2.44 308 2.83 291 2.81 288 338

Positions 262 264 274 324 257 259 261 267 236 246 234 342 258 276 243

Note: average number of long positions taken per allocation is rounded to the closest integer; the highest

average quarterly return per rolling window is denoted in bold; and the underlined values indicate a larger

compounded return than the market allocation.

As expected from the classification results, the RUG algorithm is the best performing model for

large rolling windows and provides an average quarterly return of 7.18% resulting in a compounded

return of roughly 338%. In addition, all model-based allocations are substantially smaller than

the S&P 500 index and on average consist out of 47% fewer stocks. For the small- and middle-

sized windows the Ripper approach (6.56%) and RF model (6.25%) respectively achieve the highest

average quarterly return. Therefore, the simplistic attitude of the decision boundaries created by

Ripper continues to perform well for small rolling windows in terms of its practical application.

Due to the lack of rules mined by the Classy algorithm, it is the only classifier that cannot obtain a

higher quarterly return than the market independent of window size. Nevertheless, the big increase

29

in returns for the larger windows is promising and shows signs of investment potential when more

observations are included in the training process.

Figure 5.2: Average quarterly returns of the equally weighted long position allocations from the

best classifier per rolling window group (shaded areas are NBER-defined recession periods)

Whilst some of the machine learning models outperform the market allocation, it does not need to

result in a return series that is significantly different from the S&P 500. In particular, the mean

equivalence test actually indicates that all of the models fall outside of the 10% significance level. To

demonstrate this situation, Figure 5.2 depicts the average quarterly return series of the best classifier

per group of rolling windows. Here, the RUG algorithm uses 8 years of training observations and

has an average quarterly return around 8.61%, while the RF model (6 years) and Ripper (2 years)

respectively have an average return of roughly 6.81% and 6.58%. Note that even with a higher

average return of 2.56 percent points per quarter the RUG still closely follows the market portfolio.

Most of the difference in returns clearly results from three specific periods, namely: the first half

of 2010 and the second half of 2016 and 2019. Nevertheless, these intervals of high returns still

hold some value for investors as the allocation of the RUG algorithm helps surpass the compounded

return of the equally weighted market allocation by 66.67 percent points. In terms of consistency, all

models experience a statistically significant difference in variance at the 5% confidence level except

for the Classy algorithm. Unfortunately, as the classifiers closely follow the market allocation during

most periods in terms of quarterly returns, it suggests that on average none of the model-based

allocations are less nor more volatile than the market portfolio.

30

Table 5.8: Average portfolio performance of an equally weighted allocation including short positions

RF CART Classy Ripper RUG

Quarterly Return (%) S M L S M L S M L S M L S M L

No certainty threshold 0.83 0.11 0.41 0.31 -0.32 0.33 -0.85 -0.72 0.13 0.47 0.73 -0.51 -0.15 -0.20 -0.22

Certainty threshold 9.79 7.81 7.01 6.51 6.33 6.05 -0.90 -0.78 6.27 7.39 6.34 6.43 6.11 7.22 9.01

Optimal lower bound (%) 79 85 86 92 95 90 65 65 65 71 75 80 75 81 80

Note: the highest average quarterly return for both strategies per rolling window is denoted in bold and

the optimal lower bound per group of rolling windows is rounded to the closest integer.

Next, Table 5.8 considers the addition of short positions to the model-based allocations. As ex-

pected, including short position forecasts at the same rate (meaning no certainty threshold) as the

long investments from Table 5.7 drastically decreases the average quarterly return of the portfolios.

Moreover, none of the model-based allocations is able to reach a 1% quarterly return and in 7 out

of the 15 cases the portfolios even exhibit a negative return on investment. This further substanti-

ates the notion that within the investible universe of this experiment, misclassifying long positions

as short position stocks is more costly than going long in stocks that exhibit a positive future return.

To reduce the risk of the model-based portfolios in terms of short position forecasts, this research

introduced a certainty threshold. Note that, as shown in Table 5.8, the optimal lower bound differs

across the learning algorithms. The Classy algorithm requires the lowest certainty threshold as it

assigns a consistent lower bound of 65% across all quarters independent of window size. However,

this is mostly due to the lack of diversification power between safe and risky stocks. In particular,

it assigns 100% probability to the default class if the algorithm was not able to find more rules and

consistently assigns a probability of 66% to the most likely class if there are multiple rules within

its rule list. The remaining models find their best certainty threshold roughly in the range of 70%

to 85%, while CART has it slightly higher between 90% and 95%.

Note that apart from the Classy algorithm for small- and middle-sized windows, all model-based

allocations now provide a higher average quarterly return compared to their long position alterna-

tive in Table 5.7. Overall, the RF model now achieves the highest possible earning on investment

with an average quarterly return of 9.79% for small rolling windows. This results in an average

increase of around 175.6 percent points in compounded return with respect to the equally weighted

market portfolio. This dominant performance of the RF algorithm for both small- and middle-sized

windows is likely due to its consistent classification performance across short and long positions.

As a consequence, it diversifies better between the risky short position stocks in contrast to the

interpretable learning models and therefore shows signs of a larger increase in returns. However,

the considerable decrease in portfolio returns remains when the size of the rolling window is in-

31

creased. This suggests that the model still struggles to differentiate between the market conditions

of previous and recent periods. Hence, the RUG algorithm still outperforms all remaining classifiers

for rolling windows from 7 to 9 years with an average quarterly return of 9.01%. Note that on

average the Ripper algorithm never provides a lower return than CART after including a certainty

threshold, while it only implements roughly 3 rules to construct its decision boundaries.

Figure 5.3: Compounded returns of the equally weighted allocations with certainty threshold for

the best rolling window per classifier (shaded areas are NBER-defined recession periods)

Whilst the majority of the model-based allocations display an increase in portfolio returns, they

still do not significantly differ from the S&P 500 index based on the equality test. Figure 5.3 depicts

the compounded return of the market portfolio and the best performing allocation of each machine

learning algorithm. It is evident that each model-based portfolio follows the market allocation to

some extent, yet during several short periods exhibit a slight positive difference in returns resulting

in a higher return on investment in the long-run. In particular, all classifiers provide a higher

compounded return for their optimal training window than the historical constituents of the S&P

500 index over a period stretching from 2009Q1 till 2020Q3. After the inclusion of short positions,

none of the interpretable classifiers outperform the RF model. However, the RUG algorithm comes

reasonably close with an average difference in quarterly returns of 0.78%.

32

6 Conclusion

The current financial literature is overflowed with research that compares the predictive perfor-

mance of models that are not capable of providing investors beneficial insights on the behaviour of

stocks. In addition, there is large gap regarding rule-based learning algorithms, as the performance

of new innovative models has not been analysed in a variety of real-world domains. To broaden

the financial literature on the topic of interpretable machine learning, this research analysed the

performance of various interpretable learning algorithms within an equity trading context. The

dataset consisted of quarterly stock observations from historical S&P 500 constituents, which are

available at the Wharton Research Data Services for a time period stretching from 2000 to 2020. To

assess the feasibility of the classifiers, their execution was analysed in terms of interpretability, clas-

sification, and portfolio performance. Furthermore, this study explored the practical implications of

a lower bound on the forecasting probability of short position stocks when rebalancing the portfolio.

Considering the transparency of the decision-making process, all classifiers construct their deci-

sion boundaries using substantially less rules than the RF algorithm independent of rolling window

size. Their rules are also more concise as they contain less predicates on average, making them

easier to interpret for investors. The tree-based algorithms show a sizeable increase in the number

of rules for larger rolling windows, while the remaining models exhibit a negligible effect. In general,

the Ripper algorithm provides the most understandable rule set and the Classy algorithm struggles

to find enough sufficient rules due to a possible lack of training observations.

Both Ripper and RUG perform reasonably well regarding the classification of long position forecasts.

It is found that for small- and large-sized rolling windows they respectively match the classification

performance of RF. This also translates over to their portfolio returns, as they provide the highest

average quarterly return out of all models for these respective window groups when only including

long positions. In particular, the RUG algorithm is the only classifier that can beat both the ma-

chine learning benchmark and the market allocation in this scenario.

However, incorporating short positions without any restrictions drastically decreases the average

quarterly return of all model-based portfolios. The reason for this is two-fold. Firstly, all inter-

pretable models exhibit a sharp decrease in classification performance for short position forecasts.

In addition, misclassifying long positions as short position stocks is more costly within the investible

universe of this experiment. Implementing a certainty threshold for short position forecasts appears

to be a successful solution to both problems. As a result, all model-based allocations obtain a higher

compounded return than the market portfolio after incorporating the threshold. However, none of

the interpretable classifiers offers this return while concurrently being less volatile than the market.

33

This is largely explained by the fact that the return series of the model-based allocations closely

follow the return of the market portfolio in most quarters and only exhibit a limited amount of

periods in which they significantly outperform the market.

Nevertheless, the stock selection procedure of the interpretable learning algorithms still holds value

for some financial investors. Those that closely follow the S&P 500 index can especially benefit in

the long-run, as the average quarterly return does not significantly differ, yet 47% less positions are

required to form the model-based portfolios. Furthermore, classifiers such as the Ripper and RUG

algorithm outperform the market by a substantial margin in several quarters while never performing

significantly worse in others. As a result, one could have received up to 139 percent points more

in terms of compounded return from 2009Q1 till 2020Q3 by following an equally weighted selection

of RUG instead of the S&P 500. In addition, the decision boundaries might still give valuable

insights on the general behaviour of stocks which could help improve more sophisticated investment

strategies.

For future research it might be interesting to deviate from the fundamental data attitude of this

experiment and evaluate the model allocations based on well-known factors from the field of port-

folio management. Including more developed performance measures as features could potentially

lead to a return series that behaves significantly different from the market. Recall that the Classy

algorithm showed small signs of potential for the larger windows. Hence, increasing the data-

frequency could possibly lead to significant improvements in terms of its rule-learning capability

without adding noise from more period dependent market conditions. Besides an alternative data

approach, different variations of the interpretable classifiers can be evaluated as well. For instance,

future research could investigate the portfolio allocations of RUG while employing other rule-based

models to initialize and optimize its rule set. Note that such classifiers require the application of

class weights within the rule-learning process. Lastly, more refined feature selection procedures such

as the Genetic algorithm might reduce noise more sufficiently than the AdaBoost framework.

34

References

Akyüz, M. H. and İlker Birbil, (2021). Discovering classification rules for interpretable learning

with linear programming.

Batres-Estrada, B. (2015). Deep learning for multivariate financial time series. Master thesis, KTH

Royal Institute of Technology.

Birbil, S. I., Edali, M., and Yuceoglu, B. (2020). Rule covering for interpretation and boosting.

Breiman, L. (1996). Bagging predictors. Mach. Learn., 24:123–140.

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression

Trees. Wadsworth and Brooks, Monterey, CA.

Chen, L., Pelger, M., and Zhu, J. (2020). Deep learning in asset pricing. Working paper, Stanford

University.

Chia-Cheng, C., Chun-Hung, C., and Ting-Yin, L. (2020). Investment performance of machine:

Analysis of S&P 500 index. International Journal of Economics and Financial Issues, 10(1):59–

66.

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the Twelfth International

Conference on International Conference on Machine Learning, ICML’95, page 115–123, San Fran-

cisco, CA, USA. Morgan Kaufmann Publishers Inc.

DeMiguel, V., Garlappi, L., and Uppal, R. (2009). Optimal versus naive diversification: How

inefficient is the 1/n portfolio strategy? The review of Financial studies, 22(5):1915–1953.

Dougherty, G. (2012). Pattern Recognition and Classification: An Introduction. SpringerLink :

Bücher. Springer New York.

Fu, X., Du, J., Guo, Y., Liu, M., Dong, T., and Duan, X. (2018). A machine learning framework

for stock selection.

Garćıa, S., Luengo, J., and Herrera, F. (2014). Data Preprocessing in Data Mining. Intelligent

Systems Reference Library. Springer International Publishing.

Grünwald, P. D., Grunwald, A., and Rissanen, J. (2007). The Minimum Description Length Prin-

ciple. Adaptive computation and machine learning. MIT Press.

Gu, S., Kelly, B., and Xiu, D. (2018). Empirical asset pricing via machine learning. Working Paper

25398, National Bureau of Economic Research.

35

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. J. Mach.

Learn. Res., 3(null):1157–1182.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. Springer series in statistics. Springer.

Heij, C., de Boer, P., Franses, P. H., Kloek, T., and van Dijk, H. (2004). Econometric Methods with

Applications in Business and Economics. Oxford University Press.

Huerta, R., Corbacho, F., and Elkan, C. (2013). Nonlinear support vector machines can systemat-

ically identify stocks with high and low future returns. Algorithmic Finance, 2(1):45–58.

Jegadeesh, N. and Titman, S. (2012). Returns to buying winners and selling losers: Implications

for stock market efficiency. The Journal of Finance, 48(1):65–91.

Lakkaraju, H., Bach, S. H., and Leskovec, J. (2016). Interpretable decision sets: A joint framework

for description and prediction. In Proceedings of the 22nd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD ’16, page 1675–1684, New York, NY, USA.

Association for Computing Machinery.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. In

Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,

R., editors, Advances in Neural Information Processing Systems 30, pages 4765–4774. Curran

Associates, Inc.

Malkiel, B. G. and Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical

work. The Journal of Finance, 25(2):383–417.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1):77–91.

Plyakha, Y., Uppal, R., and Vilkov, G. (2012). Why does an equal-weighted portfolio outperform

value- and price-weighted portfolios? Working paper, Social Science Research Network.

Proença, H. M. and van Leeuwen, M. (2020). Interpretable multiclass classification by mdl-based

rule lists. Information Sciences, 512:1372–1393.

Rasekhschaffe, K. C. and Jones, R. C. (2019). Machine learning for stock selection. Financial

Analysts Journal, 75(3):70–88.

Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length.

The Annals of Statistics, 11(2):416–431.

Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games, 2(28):307–

317.

36

Sharpe, W. F. (1970). Portfolio theory and capital markets. McGraw-Hill, New York.

Shen, P. (2003). Market timing strategies that worked. The Journal of Portfolio Management,

29(2):57–68.

Shtarkov, Y. M. (1987). Universal sequential coding of single messages. Problems of Information

Transmission, 23(3):3–17.

Sloan, R. (1996). Do stock prices fully reflect information in accruals and cash flows about future

earnings? The Accounting Review, 71(3):289–315.

Snedecor, G. W. and Cochran, W. G. (1989). Statistical Methods. Iowa State University Press, 8th

edition.

van der Hart, J., Slagter, E., and van Dijk, D. (2003). Stock selection strategies in emerging markets.

Journal of Empirical Finance, 10(1):105–132. Emerging Markets S.I.

Wang, S. and Luo, Y. (2012). Signal processing: The rise of the machines. Technical report,

Deutsche Bank Quantitative Strategy.

Wang, S. and Luo, Y. (2014). Signal processing: Seven sins of quantitative investing. Technical

report, Deutsche Bank Quantitative Strategy.

Witten, I. H., Hall, M. A., and Frank, E. (2016). Data Mining: Practical Machine Learning Tools

and Techniques. Morgan Kaufmann, San Francisco, 4th edition.

Zhu, J., Zou, H., Rosset, S., and Hastie, T. (2009). Multi-class adaboost.

37

A Data Glossary

Table A.1: Glossary of the dataset

Variable Identifier Description

FRETURN Future Quarterly Return (in Percent)

FQTR Fiscal Quarter (divided into 4 separate Dummy Variables)

TIC Ticker Symbol

AJEXQ Adjustment Factor (Company) - Cumulative by Ex-Date

AJPQ Adjustment Factor (Company) - Cumulative by Pay-Date

ACOQ Current Assets - Other - Total

AOQ Assets - Other - Total

APQ Account Payable/Creditors - Trade

ATQ Assets - Total

CAPSQ Capital Surplus/Share Premium Reserve

CEQQ Common/Ordinary Equity - Total

CHEQ Cash and Short-Term Investments

COGSQ Cost of Goods Sold

CSH12Q Common Shares Used to Calculate Earnings Per Share - 12 Months Moving

CSHFD12 Common Shares Used to Calc Earnings Per Share - Fully Diluted - 12 Months Moving

CSHFDQ Com Shares for Diluted EPS

CSHOQ Common Shares Outstanding

CSHPRQ Common Shares Used to Calculate Earnings Per Share - Basic

CSTKQ Common/Ordinary Stock (Capital)

DILADQ Dilution Adjustment

DILAVQ Dilution Available - Excluding Extraordinary Items

DLTTQ Long-Term Debt - Total

DOQ Discontinued Operations

DVPQ Dividends - Preferred/Preference

EPSF12 Earnings Per Share (Diluted) - Excluding Extraordinary Items - 12 Months Moving

EPSFI12 Earnings Per Share (Diluted) - Including Extraordinary Items

EPSFIQ Earnings Per Share (Diluted) - Including Extraordinary Items

EPSFXQ Earnings Per Share (Diluted) - Excluding Extraordinary items

EPSPI12 Earnings Per Share (Basic) - Including Extraordinary Items - 12 Months Moving

EPSPIQ Earnings Per Share (Basic) - Including Extraordinary Items

ESOPCTQ Common ESOP Obligation - Total

IBADJQ Income Before Extraordinary Items - Adjusted for Common Stock Equivalents

IBCOMQ Income Before Extraordinary Items - Available for Common

IBQ Income Before Extraordinary Items

38

Table A.2: Glossary of the dataset (continued)

Variable Identifier Description

ICAPTQ Invested Capital - Total - Quarterly

INVTQ Inventories - Total

LCOQ Current Liabilities - Other - Total

LOQ Liabilities - Other

LSEQ Liabilities and Stockholders Equity - Total

LTMIBQ Liabilities - Total and Non-controlling Interest

LTQ Liabilities - Total

NIQ Net Income (Loss)

NOPIQ Non-Operating Income (Expense) - Total

OEPF12 Earnings Per Share - Diluted - from Operations - 12MM

OEPS12 Earnings Per Share from Operations - 12 Months Moving

OEPSXQ Earnings Per Share - Diluted - from Operations

OIADPQ Operating Income After Depreciation - Quarterly

OPEPSQ Earnings Per Share from Operations

PIQ Pretax Income

XIDOQ Extraordinary Items and Discontinued Operations

PSTKNQ Preferred/Preference Stock - Nonredeemable

PSTKQ Preferred/Preference Stock (Capital) - Total

PSTKRQ Preferred/Preference Stock - Redeemable

RECTQ Receivables - Total

REQ Retained Earnings

REVTQ Revenue - Total

SALEQ Sales/Turnover (Net)

SEQQ Stockholders Equity - Parent - Index Fundamental - Quarterly

SPIQ Special Items

TSTKQ Treasury Stock - Total (All Capital)

TXTQ Income Taxes - Total

XOPRQ Operating Expense- Total

XIQ Extraordinary Items

XOPRQ Operating Expense- Total

ACCHGY Accounting Changes - Cumulative Effect

CHECHY Cash and Cash Equivalents - Increase (Decrease)

COGSY Cost of Goods Sold

CSHFDY Com Shares for Diluted EPS

CSHPRY Common Shares Used to Calculate Earnings Per Share - Basic

DILADY Dilution Adjustment

39

Table A.3: Glossary of the dataset (continued)

Variable Identifier Description

DILAVY Dilution Available - Excluding Extraordinary Items

DVPY Dividends - Preferred/Preference

DVY Cash Dividends

EPSFIY Earnings Per Share (Diluted) - Including Extraordinary Items

EPSFXY Earnings Per Share (Diluted) - Excluding Extraordinary items

EPSPIY Earnings Per Share (Basic) - Including Extraordinary Items

EPSPXY Earnings Per Share (Basic) - Excluding Extraordinary Items

EXREY Exchange Rate Effect

FIAOY Financing Activities - Other

FINCFY Financing Activities - Net Cash Flow

IBADJY Income Before Extraordinary Items - Adjusted for Common Stock Equivalents

IBCOMY Income Before Extraordinary Items - Available for Common

IBY Income Before Extraordinary Items

IVACOY Investing Activities - Other

IVNCFY Investing Activities - Net Cash Flow

NIY Net Income (Loss)

NOPIY Non-Operating Income (Expense) - Total

OANCFY Operating Activities - Net Cash Flow

OEPSXY Earnings Per Share - Diluted - from Operations

OIADPY Operating Income After Depreciation - Year-to-Date

OPEPSY Earnings Per Share from Operations

PIY Pretax Income

REVTY Revenue - Total

SALEY Sales/Turnover (Net)

SPIY Special Items

TXTY Income Taxes - Total

XIDOY Extraordinary Items and Discontinued Operations

XOPRY Operating Expense- Total

COSTAT Active/Inactive Status Marker (divided into two seperate Dummy Variables)

CSHTRQ Common Shares Traded - Quarter

DVPSPQ Dividends per Share - Pay Date - Quarter

DVPSXQ Div per Share - Exdate - Quarter

PRCCQ Price Close - Quarter

PRCHQ Price High - Quarter

PRCLQ Price Low - Quarter

ADJEX Cumulative Adjustment Factor by Ex-Date

40

B Python Scripts

IndexScraper.py - This module retrieves the indices of the historical S&P 500 constituents by

means of web scraping using the BeautifulSoup environment. Needed as the subscription of the

Erasmus University at the Wharton Research Data Services does not have access to the historical

indices. The script consists of the following functions:

1. scraper(path): Retrieves information and constructs two Dataframes containing information

on the current constituents and all the historical changes made over time.

– path = url of the web page containing the information of interest.

2. timespan(first, last): Constructs a list with all observation dates on monthly basis.

– first = first observation date within period of interest.

– last = last observation date within period of interest.

3. write(sheet, row, date, indices): Saves the given S&P constituents to a given excel sheet.

– sheet = worksheet in which the indices are saved.

– row = specific row to which the indices are saved.

– date = date corresponding to a specific group of the historical S&P 500 constituent.

– indices = list of ticker values representing the S&P 500 constituents.

4. snapshot(index, changes): Constructs a monthly snapshot of the S&P 500 index constituents.

– index = dataframe containing the current S&P 500 constituents.

– changes = dataframe containing the historical changes made to the S&P 500 index with

corresponding date.

DataPreperation.py - This module combines the scraped historical S&P 500 constituents with

the stock data retrieved from wharton and pre-processes the data accordingly, constructs the target

variable and saves the training (based on rolling window) and test sets in separate files. The script

consists of the following functions:

1. quarterSPX(): Constructs quarterly observations of the stock data based on the scraped

historical constituents of the S&P 500 index.

2. futureReturn(obs): Calculates feature quarterly return of a certain firm.

– obs = all stock observations of a single firm.

41

3. targetStock(indic1, indic1): Constructs a class variable using a 5-percent quantile selection

using future quarterly return.

– indic1 = list of remaining indicators after manual pre-processing steps (regarding missing

values and outliers).

– indic2 = list of indicators that need to be standardized.

FeatureSelection.py - This module performs feature selection for all rolling windows in each

prediction period. The feature selection is performed using the training data. Finally, a new

version of the training and test set is saved in separate files. The script consists of the following

functions:

1. main(wind per): Performs feature selection for given rolling window size and prediction period.

– wind = size of the rolling window.

– per = prediction period of interest.

2. dataSelector(wind, per, path): Given the size of the rolling window and period to be predicated,

retrieves the pre-processed training and test set of interest.

– wind = size of the rolling window.

– per = prediction period of interest.

– path = location of folder with pre-processed stock data files.

3. importanceCalculator(data): Costructs a ranking of the features based on their mean decrease

in impurity estimated from stratified 5-fold cross-validation.

– data = set of training observations.

4. featureSelector(train, test, mdi): Performs specific-to-general approach to reduce the dimen-

sions of the original training and test set based on the feature importance ranking.

– train = set of training observations.

– test = set of test observations.

– mdi = feature importance ranking.

StockClassification.py - This module performs the actual stock classification of the experiment.

Besides some additional functions that for structuring the experiment and functions that evaluate

the results, this script consists of the following main function:

42

1. main(windowLength, testPeriod, model): First retrieves the training and test set of interest.

Next, optimizes the assigned classification model using its corresponding prediction function

and makes the final prediction. This is followed by obtaining all evaluation metrics of interest

and saving the results in csv worksheet.

– windowLength = size of the rolling window used during training.

– testPeriod = prediction period of interest.

– model = classification model of interest.

43

	Introduction
	Literature Review
	Data
	Data Cleaning
	Feature Engineering
	Feature Selection

	Methodology
	Decision Trees
	Random Forest
	Classy Algorithm
	Ripper Algorithm
	Rule Generation Algorithm
	Evaluation Metrics
	Certainty Threshold

	Results
	Computational Platform
	Rule Structure
	Classification Performance
	Portfolio Performance

	Conclusion
	References
	Data Glossary
	Python Scripts

