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Abstract

In this research, we use the Hierarchical Archimedean Copula (HAC) to obtain optimal hedge

ratios that minimize the downside-risk of oil refineries. Spot and futures prices of three oil

products are used. These three oil products, crude oil, gasoline and heating oil are used by oil

refineries to make a profit. We compare the profit series of oil refineries that only buy and sell

the oil products and oil refineries that also buy and sell futures of the oil products. Different

copulas are used to compare the performance of the HAC in finding optimal hedge ratios,

denoted as the percentage we need to invest in futures relative to the underlying oil product.

We evaluate and compare these copula-models using different downside-risk measures. The

performance measure that we use is the hedging effectiveness, denoted as the reduction in

downside-risk when we use the optimal hedge ratios following from the copula-model. We

conclude that, in general, the HAC with Gumbel generator function is the best copula model

for hedging downside-risk.
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1 Introduction

In the financial world investing always comes with a certain degree of risk. Some investors try

different hedging strategies against certain investment risk. All hedging strategies make use of

risk measures. Sukcharoen and Leatham (2017) state that variance is not a good risk measure

for investment risk, although it is mostly used to measure the investment risk. Especially when

the returns on investments are not normally distributed (which is mostly the case), variance is

not a valid risk measure. This is because investors are only interested in the downside of risk,

as upwards movements are beneficial to the investor. This research is all about improving the

effectiveness of the hedging strategies. We look at hedging strategies that make use of futures to

cover a certain position. The problem for this hedging strategy is to find the optimal amount of

futures an investor needs to buy to cover the position. The proportion of futures needed to cover

a certain position is commonly denoted as a hedge ratio (Haigh & Holt, 2002). In this research,

we aim to find optimal hedge ratios that minimize the downside-risk. For this purpose, we use

the downside-risk measures Semi-Variance (SV), Lower Partial Moment (LPM), Value-At-Risk

(VaR) and Expected-Shortfall (ES) rather than the commonly used risk measure variance. The

data set that we use contains spot and futures prices of three oil products, namely crude oil,

gasoline and heating oil. With this data series, we make a profit equation for refineries that

buy and sell these oil products. To calculate the downside-risk measures, we thus need the

joint distribution of the spot and futures price changes of the three oil products. To model this

joint distribution we make use of copulas, which capture the dependence structure of the spot

and futures price changes, so that we decompose the joint distribution into multiple marginal

distributions. We, however, do not model the dependence structure directly, but first apply a

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) filter to the data series to

model the conditional volatility. The copulas are then used for the filtered series. By doing this,

we create a so called copula-GARCH model.

We investigate what the best multivariate copula is in the copula-GARCH model to find

optimal hedge ratios for the downside-risk measures. The copulas that we consider are the

standard Gaussian and Student t copula. In addition, the more advanced and nested C-vine

and D-vine copulas and the (penalized) Hierarchical Archimedean Copula (HAC) with different

copula generator functions are used. To see which copula is the best copula for our data set, we

measure the performance using the Hedging Effectiveness (HE) that we define in section 3. This

measure is also used by Sukcharoen (2017) to classify the performance of copulas in a hedging

framework. Besides this, we check if the results are consistent for the various risk measures that

we use.
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Using spot and futures price changes of crude oil, gasoline and heating oil in the copula-

GARCH hedging framework makes this research especially relevant to oil refineries, as exactly

these three oil products are used by oil refineries. The oil refineries may use the hedging frame-

work to hedge against unexpected and unfavorable price changes. Other companies that may

want to hedge against unfavorable price movements of crude oil, gasoline or heating oil are air-

lines, cruise lines and trucking companies (Turner & Lim, 2015). Airlines can also hedge the

price of jet fuel using crude oil prices, as these prices are correlated with each other. Next to

oil products, the hedging framework can also be used for sectors where different commodities

are produced and processed. Take for example the major American beverage industry players,

such as Coca-Cola. As described by Dewally and Marriott (2008), this industry demands all

the six base metals (aluminum, copper, lead, nickel, tin, and zinc) in their production pro-

cess. They may use our approach to find optimal hedging ratios for the base metal futures

price changes. Furthermore, Tejeda and Goodwin (2014) give us the soybean complex industry

(where soybeans are converted to soybean oil and soybean meal) as yet another example where

our proposed multiproduct approach is relevant to.

For all our methods, we use spot and futures prices obtained from the Datastream database

(Refinitiv, 2021). Both spot and futures prices are used for the commodities crude oil (WTI),

unleaded gasoline, and number 2 heating oil. We use first differences of the price series for the

analysis to obtain a sort of return series. The period that we consider runs from 2005 until 2021.

The further analysis of the data can be found in section 2.

Our motivation to use the (penalized) HAC model comes from the fact that it is an innovative

model and not yet used in solving the empirical problem of finding optimal hedge ratios. The

reason for using the commodity products crude oil, gasoline and heating oil is that the data is

easily accessible and obviously perfectly suited for investigating multiproduct hedge ratios. The

oil products are also considered volatile, so the data is suited for hedging.

We conclude that, generally, the best copula is the HAC with Gumbel generator function,

as this copula outperforms the standard Gaussian, Student t copula and the vine copulas. We

further show the potential of using multiple generator functions in a HAC. Unfortunately, it is

also shown that penalizing the HAC structure does not influence the performance. However, a

larger rolling window size does improve the performance. To conclude, all the different downside-

risk measures obtain similar hedge ratios for each copula model.

To describe our contribution, we should first place our research in the current literature by

comparing it with other papers surrounding the estimation of optimal (mulitproduct) hedge

ratios. A first contribution could be the use of the downside-risk measures Semi-Variance (SV),
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Lower Partial Moment (LPM), Value-At-Risk (VaR) and Expected-Shortfall (ES), as most pa-

pers do not consider these downside-risk measures. For example, Ji and Fan (2011) and Haigh

and Holt (2002) all search for an optimal hedge ratio that minimizes the variance. Ji and Fan

(2011) however do use a comparable procedure to obtain the hedge ratios for oil refineries. They

give us the profit equation at time t of oil refineries considering the changes of spot and futures

prices of the oil products and the hedge ratios. Only the hedge ratios are unknown in this

profit equation. Then, they take the variance of the profit equation and calculate the optimal

hedge ratios by taking partial derivatives of the profit variance. Furthermore, they model the

variance and covariance for the profit variance at time t, using a Dynamic Conditional Corre-

lation (DCC)-Error Correction Model (ECM)-Multivariate Generalized Autoregressive Condi-

tional Heteroskedasticity (MVGARCH) model. Sukcharoen and Leatham (2017) use a similar

procedure by first giving the profit equation of an oil refinery, but in contrast to Ji and Fan

(2011) do use the downside-risk measures and more importantly, make use of copulas in the

procedure. We closely follow the approach of Sukcharoen and Leatham (2017), but we do the

following things different. First, their data is sampled weekly, while we use daily data. Another

difference is that we use different copulas in addition to the other copulas that they use. The

last and most important difference is that Sukcharoen and Leatham (2017) directly use the

original data series to estimate the copula distributions. We, however, first use the GARCH

filter to obtain a filtered series and then use a copula to capture the dependence structure. In

this aspect, we follow the copula-GARCH model proposed by Yuan et al. (2020). However, they

do not use the model to obtain hedge ratios.

In the literature there is also an elementary different procedure which is a more simple way to

obtain optimal hedge ratios. This procedure is described by Power and Vedenov (2008), Louhichi

and Rais (2019), Hsu et al. (2008) and Tejeda and Goodwin (2014). They all assume that the

optimal hedge ratio is given by the the covariance between spot and futures prices divided by the

variance of the futures prices. They propose several methods to model the variance and covari-

ance of the spot and futures prices. The simplest method proposed to estimate the covariance is

by regressing the spot prices on futures prices using Ordinary Least Squares (OLS). This is thus

another approach compared to the ones described by Sukcharoen and Leatham (2017), Ji and

Fan (2011) and Haigh and Holt (2002). The difference is in the fact that this simpler approach

assumes that the optimal hedge ratio is already defined, while the more empirical approach of

Sukcharoen and Leatham (2017) searches the value of the optimal hedge ratio that minimize

the risk measure.

Coming back to our contribution to the literature, we consider the use of the innovative HAC
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and penalized HAC framework proposed by Okhrin et al. (2015) as maybe our most important

contribution. The (penalized) HAC is not often used in an empirical setup, so the use of the HAC

is certainly a contribution to the current literature on multiproduct hedging. In the literature,

vine-copulas (which are also nested and very flexible) are used to optimize hedge ratios, but the

HAC is not. Furthermore, there are some papers that describe the HAC, but do not compare

the performance with other copulas. We compare the performance of different HAC by using

different copula generator functions in each HAC structure. Furthermore, we consider one HAC

that uses multiple copula generator functions in its structure to investigate if this improves

the performance. Therefore, our contribution can be considered as a new application of the

framework of Okhrin et al. (2015).

The remainder of this paper is structured as follows. First, we describe the data in section 2

and highlight some of the characteristics of the price changes series of crude oil, gasoline and

heating oil. Then, we describe the procedure to obtain optimal hedge ratios in section 3, where

we also explain the used methods in detail. In section 4 the results are presented and discussed.

Finally, we conclude our research by providing a discussion of the obtained results and by giving

suggestions for future research.

2 Data description

Our data consists of spot and futures prices for:

1. Crude oil, WTI - Cushing

2. Unleaded Gasoline, New York Harbor, Regular

3. Number 2 heating oil, New York Harbor

We use daily prices from 04/10/2005 until 23/03/2021, using only weekday information. The

data sample thus consists of 4036 data points. All prices are converted to USD/Barrel, using

that a barrel of oil contains 42 gallons. The data comes from the Datastream database and is

presented to us as an Excel file (Refinitiv, 2021). For our analysis we are not interested in the

prices itself, but only in the price changes. Therefore, we consider the first differences of the oil

product prices. The figure below shows the first differences of the oil product spot and futures

prices.
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(a) Crude oil

(b) Gasoline (c) Heating oil

Figure 1: plots of spot and futures price changes for the different oil products

Figure 1 shows three plots, where in each plot the differences in spot and futures prices are

displayed for the respective oil product. We know that spot and futures prices of oil products

can be volatile and we observe different periods of high volatility interchanged by periods of

low volatility. Furthermore, the graphs show that all oil products are closely correlated. This is

supported by Table 7 in Appendix A, as this table shows the correlations between all the data

series. To give some more characteristics of the data series, we show summary statistics of the

series in the table below.

Table 1: Summary statistics of first differences of spot and futures prices of all oil products

Statistics
Crude oil Gasoline Heating oil
Spot Futures Spot Futures Spot Futures

Mean -1.537 ×10−3 -1.522 ×10−3 -2.045 ×10−3 5.270 ×10−4 -2.718 ×10−3 -3.131 ×10−3

SD 1.936 1.929 2.025 1.796 1.707 1.679
Skewness -2.543 -2.360 -0.339 -0.334 -0.104 -0.157
Kurtosis 259.9 271.9 9.535 7.188 6.563 6.691
JB 1110* ×104 1216* ×104 7256* 3024* 2142* 2306*
Q2(12) 881.26* 913.1* 1071.9* 380.25* 673.65* 985.7*
* Indicates rejection of the null-hypothesis at 1% level.

Table 1 shows summary statistics of the first differences of all oil product spot and futures prices.

An important characteristic that we need to check is the distribution of the price changes series.
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We can clearly see that all series are skewed and leptokurtic. We notice that the kurtosis is much

higher for the crude oil prices, as this series contains more outliers. Removing the two largest

outliers from the crude oil spot and futures price series results in a skewness of -0.0407 and

-0.125, a kurtosis of 10.8 and 11.6 and a JB statistic of 10259 and 12456, respectively. Jarque-

Bera (JB) denotes the test for normality with the null-hypothesis that the data is normally

distributed. The test statistic is denoted as

JB = n

6 (S2 + 1
4(K − 3)2), (1)

where the skewness is indicated with an S and the kurtosis with a K. The null hypothesis states

that the skewness is zero and the excess kurtosis is zero. From the test outcomes we conclude

that all the price changes series are not normally distributed. Sukcharoen and Leatham (2017)

state that if returns are non-normal, variance is not a good measure to capture the downside-

risk. Therefore, the statistics in Table 1 can be used to support the use of other risk measures

than variance.

Furthermore, as proposed by Louhichi and Rais (2019), we use the Ljung–Box statistics of

order 12 applied to squared differences. The test statistic of the Ljung-box test is denoted as

Q = n(n+ 2)
h∑
k=1

ρ̂2
k

(n− k) , (2)

where n denotes the sample size, ρ̂2
k denotes the auto estimated autocorrelation at lag k between

the squared differences. The number of lags that we test is denoted by h (in our case 12). The

null-hypothesis states that the correlations in the squared data series are zero. The critical

region for rejection of the null-hypothesis for a given probability level α is Q > χ2
(1−α),h , as

Q asymptotically follows a χ2
(h) under the null-hypothesis. The null hypothesis is rejected,

indicating that there is serial correlation over time. We use the outcome of the Ljung-Box

statistics to give certain specifications to the model that we present in section 3.

3 Methodology

To find optimal hedge ratios we need to solve the hedging problem. Following the notation

of Sukcharoen and Leatham (2017) and Ji and Fan (2011), we describe our hedging problem

as follows. Our hedging problem focuses on the problem of a regular oil refinery, where two

barrels of gasoline and one barrel of heating oil are created from three barrels of crude oil

(NewYorkMercantileExchange, 2021). The refinery hedges downside-risk using the crude oil,
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gasoline and heating oil futures. Therefore, we need to estimate yt(b), denoted as the profit/loss

at time t

yt(b) = −∆SCt + 2
3∆SGt + 1

3∆SHt + bC∆FCt −
2
3bG∆FGt −

1
3bH∆FHt , (3)

where SCt , SGt and SHt are the spot prices of crude oil, gasoline and heating oil, respectively.

FCt , F
G
t and FHt are futures prices for the same products at time t. ∆SCt = SCt − SCt−1, so this

indicates that we use price changes instead of the normal series. Furthermore, b = {bC , bG, bH}

are hedge ratios at time t determined at time t− 1. In (3), we only consider the costs of buying

the oil products and ignore other costs that influence the profits and losses of the refinery.

We want to know the profit/loss at time t, using historical data. Therefore, we will use a

rolling window to estimate the profit/loss. We use different rolling window sizes of {262, 786, 1310}

days or {1, 3, 5} years. For the rolling window size of 262 observations, the first hedge ratio that

we estimate is thus the hedge ratio at time t = 263.

The objective of our research is to find optimal b∗, that minimize downside-risk measures.

We formulate this by

b∗ = argmin
b

Risk(yt(b)), (4)

where Risk(yt(b)) denotes the value of the downside-risk measure given yt(b). The risk measures

that we consider are displayed in Table 2.

Table 2: The four risk measures and their definition

Risk Measure Definition

SV
∫ 0
−∞(x)2dFx

LPM
∫ 0
−∞(−x)ndFx

VaR F−1
x (1− p)

ES E[x|x ≤ V aRp]
Note:
Fx denotes the distribution function of variable x. n de-
notes the value of risk appetite and is set equal to 3, mean-
ing it represents a risk-averse hedger. The number p de-
notes the probability level and is set equal to 0.90, 0.95 or
0.99.

3.1 Copula-GARCH approach

From the table and graphs in section 2 we conclude that our data series show the character-

istics of heteroskedastic, clustered and fat-tailed volatility. This terms are further explained

by Engle and Kroner (1995). Furthermore, Yuan et al. (2020) state that these characteristics
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are common for daily commodity returns. To explain and fit these characteristics we use the

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model that is widely used

in the financial world, as stated by Louhichi and Rais (2019). GARCH was first introduced

by Bollerslev (1990) and following this model, we denote the conditional variance as a linear

function of lagged squared error terms and lagged conditional variance terms

yt = µ+ ξt

ξt = σtzt, where zt ∼ Skewed t(η, λ)

σ2
t = w + αξ2

t−1 + βσt−1,

(5)

where ξt denotes the random error at time t, µ denotes the conditional mean and σt the con-

ditional variance at time t. Furthermore, α and β denote the GARCH parameters with the

restriction that α + β < 1 to ensure stationarity. The parameters η and λ denote the kurtosis

parameter and skewness respectively. We do not make the assumption that zt ∼ N(0, 1), as the

skewed student t distribution would be a better fit to our data. It makes it a bit more com-

plicated, as the skewed student t distribution has more parameters that need to be estimated.

The degrees of freedom are determined by the sample kurtosis, as they are related and the

skewness parameter is determined by the sample skewness. Let yt denote the first differences at

time t for the series of (3), such that yt ∈ {∆SCt ,∆SGt ,∆SHt ,∆FCt ,∆FGt ,∆FHt }. We model the

heteroskedasticity and other features of the marginal distribution for each series in y. As we can

see from the formula of the VaR in Table 2 for example, the distribution of yt(b) is needed and

therefore we need to model the entire joint distribution of all spot and futures prices mentioned

before.

As commodities appear to co-move symmetrically, which is also shown by the graphs of

section 2, we use a copula to capture these co-movements and interdependence structures. Let

C be a copula and let F (x1, . . . , xn) be the entire distribution. We can transform the joint

distribution to C(F (x1), . . . , F (xn)), where the copula C describes the dependence structure. A

copula thus can be considered as a sort of function that decomposes the joint distribution into

various marginal distributions (Sukcharoen, 2017). After obtaining all necessary parameters in

the copula, we use the same procedure as Sukcharoen and Leatham (2017) to compute the four

downside-risk measures. We start by simulating six vectors of 10.000 standard uniform variables

from the copula, such that we get {u1,s, u2,s, . . . , u6,s}10.000
s=1 . We choose 10.000 simulations as

this a sufficient large number for which we can incorporate all dependency structures implied by

the copulas. By using the copula density functions for the simulations, these six vectors have the

same dependency structure as modeled by the copula. As the values of the uniform variables lie
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between zero and one, we use the inverse marginal distribution of the price change series to get

simulated series of the spot and futures price changes. By using the profit/losses equation as in

(3), the simulated series are used to calculate yt(b). This simulated series from the simulated

joint distribution of yt(b) is then used to compute the risk measures.

Instead of using the marginal distributions of the original series to get the simulated series,

as done by Sukcharoen (2017), we follow the approach that that is not implemented, but never-

theless mentioned by Sukcharoen (2017). We summarize all the steps of the approach as follows:

First, a GARCH filter is used to filter out the the white noise process implied by zt from (5) for

each price change series. Second, the marginal distributions with corresponding parameters for

the white noise series are determined (in our case the assumed skewed t distribution). Third, the

white noise series are transformed to uniform variables using the marginal distribution. Then,

we estimate the copula distribution (parameters etc.) using the uniform variables based on white

noise series. After this is done, we simulate a number of standard uniform variables from the

copula distribution. Thereafter, the inverse marginal distribution is used to obtain simulated ẑt.

Then, we use the estimated σ̂t+1 from GARCH and ẑt to obtain ŷt estimates. Finally, we use

the simulated ŷt to obtain risk measures (99% percentile of ŷt for VaR, for example). Combining

a copula and the forecast function of the GARCH model gives us the copula-GARCH approach.

3.1.1 Standard copulas

The standard copulas that we use in this research are the multivariate Gaussian copula and

Student t copula. An arhimedean copula of dimension n is defined as

C(x1, . . . , xn) = φ(φ−1(x1), . . . , φ−1(xn)), where φ is a so called copula generator function. The

copula generator function is defined by Louhichi and Rais (2019) as

φ ∈ L =
{
φ : [0;∞) −→ [0, 1] | φ(0) = 1, φ(∞) = 0; (−1)kφ(k) ≥ 0; k ∈ N

}
. (6)

The copulas are archimedian copulas with copula generator function φ = Φ and φ = t. The

Gaussian copula is defined as follows

C(x1, . . . , xn) = Φ(Φ−1(x1), . . . ,Φ−1(xn)), (7)

where x1, . . . , xn denote the marginal distributions and Φ the Gaussian distribution function and

Φ−1 its inverse. For the standard Student t copula, we take the Student t distribution function

t and its inverse t−1 instead of Φ and Φ−1. We generate 10.000 uniform variables from these

copulas using the following procedure, as described by Torrent-Gironella and Fortiana (2011)
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Algorithm 1: Simulation algorithm for the standard Gaussian and Student t copula
Input: Matrix of n data series X = {x1, . . . , xn};

1 Find correlation matrix P of X = {x1, . . . , xn} ;
2 Find Cholesky matrix A of P ;
3 if Gaussian copula then
4 Y = AZ, with Z ∼ N(0,Σ) of length 10.000 ;
5 U = Φ(Y );
6 end
7 if Student t copula then
8 Y =

√
v
sAZ, with s ∼ χ(v), Z ∼ N(0,Σ) of length 10.000 ;

9 U = t(Y )
10 end
11 return U

3.1.2 Vine copulas

Standard Gaussian and Student t copulas restrict the tail dependence between all input variables,

or in our case the six spot and futures price changes series, to be the same. These restrictions

on the dependence structure are obviously not optimal. It is therefore beneficial to look at

more advanced ways to model dependency structures. One way is the use of vine copulas. The

first to introduce the vine copulas were Bedford and Cooke (2002). They state that the key

advantage of this approach is that these copulas ”allow heterogeneous dependence structures

between input variables during normal and extreme market conditions”. This means that we

can use different dependency structures for the 6 input variables. The vine copula describes

the dependence of these variables by mixing a group of different bivariate copulas. There exist

several vine structures, but we make use of the C-vine and D-vine structures, as described by

Sukcharoen and Leatham (2017).

To give the general explanation of a vine copula structure, we represent the joint distribution

function

f(x1, x2, x3, x4, x5, x6) =f1(x1)f2|1(x2|x1)f3|1,2(x3|x1, x2)f4|1,2,3(x4|x1, x2, x3)

f5|1,2,3,4(x5|x1, x2, x3, x4)f6|1,2,3,4,5(x6|x1, x2, x3, x4, x5),
(8)

where fi|j,k = fi|j,k(xi|xj , xk).

From (8) we see that the joint distribution is split into six conditional marginal distributions.

Each marginal distribution is conditioned on the previous variable(s), where the first marginal

distribution is obviously unconditional. Using the conditional probability formula we can write

every conditional distribution as the joint distribution divided by its marginals. If we then use

copulas we can decompose each conditional marginal distribution in (8) into six unconditional

marginal distributions and accessory bivariate copula distributions to model the dependency

between each of the six variables. There are several combinations of bivariate copulas that we
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can use to model the dependence. For example, for the C-vine structure, we first model the

dependence of the first variable with all the other variables by taking the bivariate copulas of

the first variable with all the other variables. This is also called a tree, were the first variable is

the ”root node” that is connected to the other variables. Then, conditioned on the first variable,

we take the bivariate copulas of the second variable with the the remaining variables. This way,

we create a new tree where the second variable is the ”root node”. This goes on until we only

have the bivariate copula of the fifth and sixth variables left, conditioned on all other variables.

This bivariate copula is the fifth and last tree where we use the bivariate copula of the first and

sixt variable, conditional on all other variables. This is also illustrated in Figure 2.

For the D-vine, the dependency structure is modelled a bit different by using other bivariate

copulas and therefore creating different trees. For instance, we first take the bivariate copulas

of the first and second variable, the second and third variable, third and fourth, fourth and fifth

and finally the fifth and sixth variables. This is also our first tree, where in contrast to the

C-vine, we do not have a root node with one variable that connects all the others, but rather

a ”path structure” where more variables are connected directly with each other. The second

tree consists of the bivariate copulas of the first and third variable, third and fifth variable,

second and fourth variable and fourth and sixth variable, conditional on the variable that lies

in between. In the third tree, we take the bivariate copula of the first and fourth variable, the

second and fifth variable and the third and sixth variable. Again we take the bivariate copulas

conditional on the variables that lie in between. The fourth tree consists of two bivariate copulas,

namely between the first and fifth variable and the second and sixth variable again conditional

on the variables in between. To illustrate, we can rewrite (8) as a C-vine structured copula

f(x1, x2, x3, x4, x5, x6) =f1f2f3f4f5f6C1,2C1,3C1,4C1,5C1,6C2,3|1C2,4|1C2,5|1C2,6|1

C3,4|1,2C3,5|1,2C3,6|1,2C4,5|1,2,3C4,6|1,2,3C5,6|1,2,3,4,
(9)

where fi denotes the marginal distribution of xi and Ci,j|k denotes the conditional bivariate

copula of xi and xj conditional on information of xk. If we decompose the joint distribution in

(8) slightly different, we can give the D-vine structured copula as

f(x1, x2, x3, x4, x5, x6) =f1f2f3f4f5f6C1,2C2,3C3,4C4,5C5,6C1,3|2C2,4|3C3,5|4C4,6|5

C1,4|2,3C2,5|3,4C3,6|4,5C1,5|2,3,4C2,6|3,4,5C1,6|2,3,4,5,
(10)

where we use the same notation as in (9), but clearly observe a different structure. To give some

more clarification on the equations above and to get a more vivid picture of the structures of

the D-vine and C-vine, we present the following figures. These figures are inspired by the figures
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presented earlier by Sukcharoen and Leatham (2017).

(a) C-vine (b) D-vine

Figure 2: plots of six dimensional vine structures

From Figure 2 we observe again that the C-vine and D-vine copulas have different structures.

If we look for example at V1 in both figures. The C-vine models the dependence between the

first variable and all other variables, while the D-vine models the dependence of all successive

variables. This way, only one variable is directly connected other variables for the C-vine, while

for the D-vine we have multiple variables that are directly connected with other variables. An

advantage of the vine copulas overall is that we do not have to use one standard copula, but we

can use multiple different bivariate copulas for each pair of variables in the vine trees. Therefore,

the vine copulas can model different types of the dependence structures instead of just one.

For both vine copulas it matters which order you choose for x1, . . . , x6. We follow the

proposed method of Sukcharoen and Leatham (2017) to obtain an optimal order. We look at

the variable which is most connected or better said has the highest degree of association with

the other variables and select this variable as x1. Then we select the variable with the second

highest degree of association to be x2 and so on. We measure the degree of association for each

variable i

Θi
τ =

6∑
j=1,i 6=j

|τi,j |, (11)

where τi,j denotes the Kendall’s tau coefficient between a pair of variables i, j (Sukcharoen &

Leatham, 2017). For the D-vine copula, we use a slightly different measure for the degree of

association, namely

Ψ(k)
τ =

5∑
i=1
|τi,i+1|, (12)

where τi,i+1 is the Kendell’s tau coefficients for each variable pair i, i + 1. We have k possible

orders for the six variables and determine for each order Ψτ . Then, we choose the order k such

that Ψτ is maximized. We already observe that the C-vine finds it important that one variable

has a high degree of association with all the other variables. The D-vine only finds it important

that the degree of association is high between two successive pairs of variables.
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The last step to complete the procedure of fitting both C-vine and D-vine copulas is to choose

the suited bivariate copula for each copula pair in (9) and (10). We consider various bivariate

copulas and use the Akaike Information Criterion (AIC) to choose which bivariate copula is best

suited for each pair of variables. After obtaining the optimal order of the variables and after

fitting the bivariate copulas we can simulate data from the C-vines and D-vines. To perform

the simulations, we use the algorithms proposed by Aas et al. (2009). algorithm 2 shows us

the procedure to simulate 10.000 uniform values for our 6 input variables from the C-vine. We

start the algorithm with 6 vectors containing uniformly distributed values between 0 and 1 and

change the random values with the use of copula functions to get 6 simulated series that follow

the dependency structure of the C-vine.
Algorithm 2: Simulation algorithm for a C-vine

Input: Simulate vectors u1, . . . , u6 containing n independent uniform values between
[0,1];

1 y1 = w1,1 = u1 ;
2 for i ∈ {2, . . . , 6} do
3 wi,1 = ui;
4 for k ∈ {i− 1, i− 2, . . . , 1} do
5 wi,1 = h−1(wi,1, wk,k,Θk,i−k);
6 end
7 yi = wi,1;
8 if i = 6 then
9 Stop;

10 end
11 for j ← 1, . . . , i− 1 do
12 wi,j+1 = h(wi,j , wj,j ,Θj,i−j);
13 end
14 end
15 return y1, . . . , y6

y1, . . . , y6 denote the final simulated values from the C-vine. For our research we use 10.000

simulated values, so in our case n = 10.000. These simulated values for y1, . . . , y6 are used

to obtain a simulated profit/loss series as in (3) for which we can calculate the downside-risk

measures. In the algorithm, we repeatedly make use of the h-function and the inverse of this

function. This function denotes the density function of a specified bivariate copula. The first two

arguments of the h-function denote the input data for the copula function and the last argument

Θj,i denotes the set of parameters for the copula function Cj,j+i|1,...,j−1 from (9). The algorithm

to sample from the D-vine is a bit longer as more conditional copula distributions need to be

calculated. Also, the h-function is defined a bit different, as Θj,i denotes the parameters for the

copula function Ci,i+j|i+1,...,i+j−1, which is different to the C-vine. The algorithm for the D-vine

is shown in Appendix C
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3.1.3 Hierarchical Archimedean Copula (HAC)

Another type of copula that we consider is the Hierarchical Archimedean Copula (HAC), as

proposed by Okhrin et al. (2013). Similar to vine copulas, these copulas are also nested and

have an advanced dependence structure. To explain the HAC and especially its structure better

we look at the following figure.

Figure 3: Four-dimensional fully nested (left) and partially nested (right) HAC

There are numerous different structures proposed in the literature, such as partially or fully

nested structures or binary nested structures. Figure 3 clearly shows the differences between

fully nested and partially nested HAC. Both displayed HAC have binary structures, as each

(sub-)copula has at most two inputs. This way, the Archimedean (sub-)copulas in the structure

are all bivariate copulas. The HAC with binary nested structure for our research purposes can

look as follows
Cl1 = φl1(φ−1

l1 (x1) + φ−1
l1 (x2))

Cl2 = φl2(φ−1
l2 (x3) + φ−1

l2 (x4))

Cl3 = φl3(φ−1
l3 (x5) + φ−1

l3 (x6))

Cl4 = φl4(φ−1
l4 (Cl1) + φ−1

l4 (Cl2))

Cl5 = φl5(φ−1
l5 (Cl4) + φ−1

l5 (Cl3)),

(13)

where we observe the use of five different Archimedean copulas to model the dependency of our

six input variables. We can see that it is a nested copula with different generator functions

and different sub-copulas. To give an example of a non-binary structure, we can simply look

at the fully nested copula in (13) and merge Cl4 and Cl3 such that the structure becomes

Cl5 = φl5(φ−1
l5 (Cl1) + φ−1

l5 (Cl2) + φ−1
l5 (Cl3)) and therefore non-binary. The non-binary HAC do

have advantages compared to binary HAC. The non-binary HAC structure has less (sub-)copulas

and coming with that it has less parameters that need to be estimated. It is therefore beneficial
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to also look at non-binary structures in finding the optimal structure of the HAC. However, we

follow the approach of Okhrin et al. (2013) and only look at binary structured HAC to find the

optimal structure. We follow their procedure, as it is computationally efficient. For now, we

also take just one Archimedean copula that we use during the whole procedure of finding an

optimal structure. The copulas that we consider are the Archimedean copulas with the Clayton,

Gumbel, Frank, Joe or Ali-Mikhail-Haq (AMH) generator function. We present the generator

functions for the copulas in the table below.

Table 3: The copula generator functions that we use

Copula Parameter φ(t)

Clayton θ ∈ (0,∞) (1 + t)−
1
θ

Gumbel θ ∈ (1,∞) e−t
1
θ

Frank θ ∈ (0,∞) −1
θ log(1− (1− e−θ)e−t)

Joe θ ∈ (1,∞) 1− (1− e−t)
1
θ

AMH θ ∈ (0, 1) 1−θ
et−θ

Note:
For each copula we report the parameter range and the generator
function.

We observe that all reported copulas have quite different generator functions and accept

different parameter values. The possible parameter values for the AMH copula are between 0

and 1, which seems quite restrictive. When we have decided which copula to use in the HAC,

we need to choose an optimal structure. At each step of this procedure we join two variables

in the structure with the highest value of the dependence parameter θ of the chosen copula.

We estimate θ using maximum likelihood. This is a very simple and fast approach to find an

optimal hierarchical structure, as this approach does not ”seek and try” every possible structure.

Be that as it may, if the ”true” HAC is not a binary copula we have a misspecified model.

Okhrin et al. (2013) come with a solution for this possible problem as they state that while the

difference in the structure may exist between a binary and non-binary structure, the difference in

distribution functions is small under certain conditions. For example, consider the binary copula

C2[C1{u1, u2}, u3] with parameters θ1 for copula C1 and θ2 for copula C2. Furthermore, consider

the non-binary copula C3{u1, u2, u3} with parameter θ3 and the same variables {u1, u2, u3}.

Assuming that the copulas C1, C2, C3 all have the same generator function and following the

property of associativity of the HAC, if θ1 and θ2 are not significantly different than the copula

distribution functions C2[C1{u1, u2}, u3] and C3{u1, u2, u3} are not significantly different and

therefore the binary and non-binary structures are not significantly different (Nelsen, 2007).

Using this theory we can evaluate the optimal binary structure and transform it to a standard
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HAC. To combine three variables in the hierarchical structure we must evaluate the difference

of the two copula dependency parameters at subsequent hierarchy levels. Okhrin et al. (2013)

propose several methods to test if two subsequent parameters are significantly different. We

however, follow Okhrin et al. (2015) and use the proposed penalized framework to test for

significant differences. Okhrin et al. (2015) propose to combine two subsequent variables if

θ1 − θ2 ≤ ε. Now we use an empirical method to specify the value for ε (Okhrin et al., 2015).

ε = Î(θ̂2)−1p′λn(θ̂1 − θ̂2) (14)

Where we denote Î as

Î(θ̂2) = −n−1
n∑
i=1

l′′i (θ2), (15)

where li(θ2) are the log-likelihood contributions. The function pλn denotes the Smoothly Clipped

Absolute Deviation (SCAD) penalty function and p′λn its derivative. We denote this derivative

penalty function as

p′λn(x) = λ

[
1{x ≤ λn}+ max{aλn − x, 0}

λn(a− 1) 1{x > λn}
]
, (16)

where λn is a tuning parameter and a = 3.7 as suggested by Fan and Li (2001). Î(θ̂) is com-

putationally hard to evaluate, as it is complicated to obtain second derivatives of log-likelihood

contributions. The Clayton copula is an exception, as we can write the second order derivative

as

l′′i (θ) = −
∑d−1
k=0( k

θk+1)2 + 2
θ2

[
t′θ(u)

1+tθ(u) −
1
θ log(1 + tθ(u))

]
+ (d+ 1

θ )
[
( t′θ(u)

1+tθ(u))2 −
∑d

j=1(log(uj))2u−θj
1+tθ(u)

]
,

(17)

where d denotes the number of variables in the copula and uj denotes the data series of variable

j. tθ(u) =
∑d
j=1 u

(−θ)
j − d+ 1 and tθ(u)′ =

∑d
j=1(− log(uj))u−θj . Now we only need to choose a

suitable value for the tuning parameter λn. We choose λn such that

λn = argmax
λn

2
n∑
i=1

li{θ̂2 + ε(λn)} − q log(n), (18)

where θ̂2 denotes the parameter at the highest hierarchical level. ε denotes the function in

Equation 14 with inputs λn, θ̂1 and θ̂2. q denotes the number of estimated parameters up the

current hierarchical level and n the numbers of observations. Finally, we have li denoting the
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log-likelihood contributions, which for the Clayton copula is denoted as

li(θ) = d log(θ) + log(Γ(1
θ

+ d))− log(Γ(1
θ

))− (θ + 1)
d∑
j=1

uj − (1
θ

+ d) log(
d∑
j=1

u−θj − d+ 1),

(19)

where we use the same notation as in Equation 17. For computational reasons we only use

consider this penalization on the hierarchical structure for the Clayton HAC.

3.1.4 Mixing copulas in HAC structure

For now we only considered HAC where one copula generator is used in the entire structure. This

way, we can only model different dependency structures between our input variables by choosing

a different dependence parameter θ. However, if we use different copulas in the hierarchical

structure, we can model completely different dependencies between the input variables. Each

copula there is has its unique properties and to take the most suitable property of a copula

for each dependency in the nested structure of the HAC can be a huge advantage. A part of

this research about optimal copulas should therefore address and investigate the use of different

copula generators in the HAC structure. How beneficial it might be to combine several copulas

in the HAC structure, it is not possible to combine every copula. To explain this, we need to

consider two different copulas with generators φ0 and φ1. With these generators we can write a

simple HAC as φ0[φ−1
0 (φ1[φ−1

1 (u3) + φ−1
1 (u2)]) + φ−1

0 (u1)]. To obtain a valid copula and to be

able to sample from this copula, the derivative of φ−1
0 φ1[. . . ] needs to be completely d-monotone

for all parameter values in the parameter range. If φ is d-monotone, it has to hold that, for

all d ∈ N, φ is d − 2 times differentiable. All these derivatives have to satisfy (−1)kφ(k), for

k = 1, . . . , d − 2 as stated before in Equation 6. Furthermore, (−1)(d−2)φ(d−2) has to be non-

increasing and convex. Unfortunately, not all combinations of copula generators lead to a valid

copula. For example, if we take a Clayton generator for φ0 and a Gumbel generator φ1 in the

example above, we do not obtain a monotone function φ−1
0 (φ1[. . . ]). Hofert (2010) discusses

sampling methods for nested Archimedean copulas. There are several combinations named of

two different copula generators that result in a valid nested copula. The combinations are

{(A,C); (A, 19); (A, 20); (C, 12); (C, 14); (C, 19); (C, 20)}, (20)

where the first element of the combination denotes the copula at the higher hierarchical level of

the nested copula. ”A” denotes the AMH copula and ”C” denotes the Clayton copula. The rest

of the numbers correspond to the numbered copulas presented by Nelsen (2007). To implement
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these combinations in our HAC framework we need to determine the structure first. We do

this by combining two data series with the highest degree of association, which is measured by

Kendall’s tau. Then, we can perform a goodness-of-fit test to see which copula is the best choice

from Equation 20 for these two data series. However, this goodness-of-fit test is computation-

ally inefficient. To be able to evaluate HAC with different copula generators, we consider the

predetermined binary structure A(A(C(C(12)))). This means that the copula of the highest

hierarchical level is the bivariate AMH copula and the copula at the lowest hierarchical level is

the number 12 copula. Now that we know what copula to use at each level of the structure we

need to estimate the copula dependence parameters. We can use Kendall’s tau to estimate the

dependence parameter, as for each copula it is possible to write Kendall’s tau as a function of

the dependency parameter.

3.1.5 Simulate from HAC

Like with the C-vine and D-vine, we want to simulate data from the HAC to find optimal hedge

ratios in our hedging framework. To simulate six data series for each of our input variables from

the HAC that we construct we use the algorithm below.
Algorithm 3: Simulation algorithm HAC

Input: HAC C with copula C0 at the highest hierarchical level with generator φ0;
1 Simulate V0 ∼ F0 = LS−1(φ0) and set i = 1;
2 for Inputs u1 and/or u2 of copula C0 that are data series do
3 Simulate w ∼ U [0, 1] ;
4 Set xi = φ0(− log(w)

V0
) ;

5 Set i = i+ 1
6 end
7 for Inputs u1 and/or u2 of copula C0 that are copulas itself do
8 Set C1, with generator φ1 to be copula u1 and/or u2 ;
9 Simulate V01 ∼ F01 = LS−1(φ01(. . . |V0)), where φ01 = φ−1

0 (φ1[. . . ]) ;
10 Set C0 = C1, φ0 = φ1, V0 = V01 ;
11 Continue to next hierarchical level and go to step 2 ;
12 end
13 return X = {x1, x2, x3, x4, x5, x6}
We have to explain some more details about algorithm 3. For example, for each φ0 we need

the corresponding distribution function F0. This distribution can be considered as the inverse

Laplace-Stieltjes transform, denoted as LS−1, of the generator function φ0. In the literature,

several algorithms are proposed to numerically inverse the Laplace-Stieltjes transform of φ0.

Unfortunately, these algorithms again prove to be computationally too inefficient. Therefore,

we make use of assumptions about the distributions of F0. This way we can sample from the

assumed distribution functions for the Clayton, AMH and the number 12 copula for our mixed

structure.
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Table 4: Copula generators that are used for the mixed HAC

Copula Parameter φ(t) V0 ∼ F0 V01 ∼ F01 τ

12 θ ∈ (1,∞) 1
(1+t1/θ) S(1

θ , 1, (cos(
π
2θ ))θ, I{θ=1}; 1)eθ - 1− 2

3θ

Clayton θ ∈ (0,∞) (1 + t)−
1
θ Γ(1

θ , 1) S̃(α, 1, (cos(πα2 ))
1
α , V0I{α=1}, I{α 6=1}; 1) θ

2+θ
AMH θ ∈ (0, 1) 1−θ

et−θ Geo(1− θ) V0 +NB(V0,
1−θ1
1−θ0

) 1− 2(θ+(1−θ)2 log(1−θ))
3θ2

Note:
S(. . . ) denotes the stable distribution, S̃(. . . ) denotes the exponentially tilted stable distribution.
Geo(. . . ) denotes the geometric distribution, NB(. . . ) the negative binomial distribution and
Γ of course denotes the gamma distribution. Furthermore, note α = θ0

θ1

To simulate from our mixed HAC structure, described by A(A(C(C(12)))), we first sample V0

from the AMH copula of the highest hierarchical level. Then we sample V01, again from the

AMH copula. Then, we sample V01 from the Clayton copula, but we cannot take V01 from

Table 4, as the copula at the higher level is not a Clayton copula, but the AMH copula. We

therefore use the formula

V01 = S̃V θ1 , (21)

where V ∼ Γ(V0,
1

1−θ0
) and S̃ ∼ S̃( 1

θ1
, 1, (cos( π

2θ1
))θ1 , I{θ1=1}, V

θ1I{θ1 6=1}; 1). θ0 is the parameter

of the higher hierarchical level and θ1 is the parameter at the lower level. In the next step there

again follows a Clayton copula function, but since the copula in the level above is also a clayton

copula, we use S̃(α, 1, (cos(πα2 ))
1
α , V0I{α=1}, I{α 6=1}; 1) from Table 4 to sample V01. At the last

hierarchical level, we have the number 12 copula. We can sample V01 through

V01 = SS̃θ1 , (22)

where S ∼ S( 1
θ1
, 1, (cos( π

2θ1
))θ1 , I{θ1=1}; 1) and S̃ ∼ S̃(θ0, 1, (cos(πθ0

2 ))
1
θ0 , I{θ0 6=1}, V0I{θ0=1}; 1).

θ0 is again the parameter of the higher hierarchical level and θ1 is the parameter at the lower

level. Now that we have all V0 and V01, we can use algorithm 3 to simulate our six data series

from the mixed HAC.

3.2 Performance measure

Using the different copulas to estimate the joint distribution of yt(b) from (3), we calculate each

risk measure for different hedge ratios b. We find the optimal hedge ratios for which Risk(yt(b))

is minimized, in accordance with the minimization problem in (4). We find the optimal hedge

ratios b∗ by solving the minimization problem using the Nelder-Mead direct search method, as

proposed by Sukcharoen and Leatham (2017). To assess all the hedge ratios that we find from
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each copula model, we use the Hedging Effectiveness (HE). The HE is proposed by Sukcharoen

and Leatham (2017). We use the following formula

HEt =
(

1− Risk(yt(b∗))
Risk(yt(0))

)
× 100, (23)

where yt(b∗) is the hedged profit/loss of (3), where we fill in the optimal hedge values. yt(0) is

the unhedged profit/loss, where we fill in 0 for all b in (3). The HE is presented in percentages

and we want a highest possible value for this measure, as we want the hedged risk measure

Risk(yt(b∗)) as low as possible compared to the unhedged risk measure Risk(yt(0)). As we

work with dynamic hedge ratios and a rolling window approach, we take the average of all

estimated HE. We compare the performance of the standard multivariate Gaussian and Student

t copula with the C-vine and D-vine copula model and the different (penalized) HAC.

4 Results

4.1 Optimal hedge ratios

The goal of this research is to find optimal hedge ratios using different copulas. Table 5 shows

the optimal hedge ratios for each copula and for each downside-risk measure. In Table 5 a

rolling window size of 262 observations is used, which means that we forecast the hedge ratios

3773 times. The numbers in the table are averages of all estimated hedge ratios in the forecast

window. The numbers between brackets denote the standard deviation of the forecasted optimal

hedge ratios.
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Table 5: The optimal average hedge ratios for different downside-risk measures

Rolling window size 262
SV LPM VaR ES

0.99 0.95 0.90 0.99 0.95 0.90
Model

Crude oil hedge ratios
SGC 0.777 0.777 0.812 0.799 0.795 0.799 0.789 0.786

(0.185) (0.199) (0.211) (0.189) (0.185) (0.229) (0.199) (0.190)
STC 0.566 0.547 0.534 0.575 0.586 0.501 0.541 0.556

(0.191) (0.200) (0.213) (0.191) (0.184) (0.239) (0.205) (0.194)
C-vine 0.870 0.828 1.083 0.983 1.000 0.980 0.869 0.906

(0.079) (0.096) (0.122) (0.079) (0.082) (0.134) (0.091) (0.099)
D-vine 0.691 0.660 0.666 0.725 0.742 0.628 0.685 0.695

(0.270) (0.286) (0.262) (0.253) (0.272) (0.275) (0.263) (0.271)
HAC

Clayton 0.612 0.644 0.377 0.435 0.477 0.356 0.426 0.490
(0.395) (0.420) (0.357) (0.368) (0.377) (0.337) (0.360) (0.385)

Gumbel 0.505 0.485 0.600 0.582 0.570 0.572 0.541 0.523
(0.495) (0.491) (0.501) (0.504) (0.503) (0.498) (0.500) (0.497)

Frank 0.531 0.490 0.533 0.584 0.609 0.478 0.517 0.543
(0.259) (0.263) (0.262) (0.270) (0.280) (0.260) (0.257) (0.257)

Joe 0.293 0.242 0.544 0.496 0.473 0.456 0.400 0.356
(0.514) (0.521) (0.535) (0.518) (0.521) (0.494) (0.504) (0.514)

AMH -0.073 -0.090 0.053 0.014 -0.010 0.036 -0.013 -0.040
(0.102) (0.116) (0.133) (0.109) (0.107) (0.169) (0.129) (0.118)

Mixed 1.857 2.044 -0.558 -0.429 -0.466 0.181 0.389 0.486
(1.758) (1.759) (3.031) (2.637) (2.401) (0.336) (0.239) (0.222)

Gasoline hedge ratios
SGC 0.691 0.711 0.627 0.634 0.640 0.641 0.673 0.685

(0.246) (0.271) (0.268) (0.247) (0.250) (0.287) (0.261) (0.259)
STC 0.471 0.479 0.470 0.508 0.522 0.449 0.493 0.506

(0.224) (0.287) (0.265) (0.236) (0.235) (0.306) (0.247) (0.239)
C-vine 0.928 0.859 0.755 0.934 1.004 0.683 0.851 1.026

(0.247) (0.264) (0.239) (0.229) (0.244) (0.250) (0.242) (0.260)
D-vine 0.723 0.706 0.548 0.678 0.737 0.531 0.657 0.706

(0.333) (0.342) (0.305) (0.334) (0.360) (0.330) (0.327) (0.337)
HAC

Clayton 0.638 0.609 0.820 0.803 0.778 0.661 0.664 0.647
(0.299) (0.309) (0.479) (0.410) (0.391) (0.436) (0.353) (0.326)

Gumbel 0.789 0.781 0.583 0.665 0.713 0.601 0.702 0.758
(0.403) (0.426) (0.374) (0.394) (0.410) (0.376) (0.384) (0.401)

Frank 0.720 0.682 0.548 0.700 0.773 0.502 0.636 0.706
(0.313) (0.400) (0.334) (0.343) (0.361) (0.383) (0.339) (0.336)

Joe 0.657 0.633 0.355 0.459 0.540 0.304 0.438 0.538
(0.408) (0.469) (0.256) (0.303) (0.355) (0.377) (0.292) (0.336)

AMH 0.206 0.240 0.043 0.094 0.116 0.114 0.167 0.183
(0.114) (0.201) (0.214) (0.149) (0.135) (0.268) (0.172) (0.147)

Mixed 0.215 0.229 1.450 1.282 1.389 1.005 0.807 0.735
(0.402) (0.470) (0.866) (1.134) (1.557) (0.632) (0.469) (0.430)

Heating oil hedge ratios
SGC 0.691 0.711 0.627 0.634 0.640 0.641 0.673 0.685

(0.246) (0.271) (0.268) (0.247) (0.250) (0.287) (0.261) (0.259)
STC 0.764 0.682 0.737 0.741 0.726 0.719 0.718 0.716

(0.414) (0.806) (0.548) (0.410) (0.373) (0.724) (0.515) (0.459)
C-vine 0.929 1.121 1.235 0.741 0.786 1.339 0.858 0.766

(0.188) (0.316) (0.465) (0.267) (0.196) (0.505) (0.363) (0.275)
D-vine 0.998 1.050 0.999 0.909 0.887 0.965 0.943 0.944

(0.643) (0.773) (0.669) (0.580) (0.559) (0.754) (0.627) (0.626)
HAC

Clayton 0.631 0.635 0.673 0.654 0.645 0.808 0.719 0.664
(0.343) (0.514) (0.519) (0.403) (0.384) (0.742) (0.484) (0.382)

Gumbel 0.836 0.891 0.622 0.615 0.633 0.622 0.652 0.728
(0.480) (0.591) (0.480) (0.429) (0.436) (0.523) (0.439) (0.438)

Frank 0.761 0.750 0.690 0.689 0.684 0.591 0.673 0.714
(0.471) (0.778) (0.535) (0.373) (0.340) (0.767) (0.480) (0.434)

Joe 0.765 0.783 0.538 0.524 0.531 0.408 0.463 0.521
(0.518) (0.703) (0.537) (0.435) (0.422) (0.699) (0.456) (0.398)

AMH 0.334 0.338 0.038 0.131 0.184 0.095 0.224 0.277
(0.301) (0.678) (0.468) (0.309) (0.294) (0.648) (0.427) (0.349)

Mixed -0.209 -0.109 3.006 2.922 3.110 1.934 1.631 1.431
(1.609) (1.671) (4.290) (3.671) (4.506) (1.240) (1.143) (1.149)

SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH denotes the Ali-Michail-Haq HAC.

We observe that all hedge ratios are fairly similar. Almost all averages of the hedge ratios are

between 0.5 and 1.1. Only the hedge ratios of the AMH copula and the mixed HAC are different
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from the hedge ratios of the rest of the copulas. The standard deviation of the hedge ratios are

also quite similar for the different oil products. These results are in line with Figure 1, as the

price changes series co-move quite similar and have similar summary statistics. Observe also

that in some cases the hedge ratios are larger than one, meaning that we need to buy more

futures than we have in the position of the spot prices. The optimal hedge ratios for the other

two rolling windows are presented in Appendix D. The hedge ratios for these rolling window

sizes are a bit different, but the differences are not big enough to go into more detail. The hedge

ratios of the rolling window size of 786 observations are really close to the rolling window size

of 1310 observations.

4.2 Hedging effectiveness

Using all optimal hedge ratios from Table 5 and Table 8, Table 9 from Appendix D we calculate

the HE and report them in the table below.
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Table 6: The hedging effectiveness using the optimal hedge ratios from different hedging models
and different downside-risk measures

Risk measures
SV LPM VaR ES

0.99 0.95 0.90 0.99 0.95 0.90
Model

Rolling window size 262
SGC 38.97 51.69 24.43 23.32 23.14 24.87 23.43 23.15
STC 23.15 28.69 12.85 14.48 15.44 12.12 12.73 13.34
C-vine 63.66 75.93 34.27 41.48 43.85 32.12 35.35 38.25
D-vine 50.25 59.48 28.50 32.72 34.34 26.16 28.71 30.17
HAC

Clayton 42.87 50.39 29.27 31.45 32.10 24.16 24.79 25.64
Gumbel 63.10 76.35 37.95 36.69 36.99 36.37 35.93 37.58
Frank 47.34 53.59 24.12 30.83 34.20 20.75 25.47 28.69
Joe 47.80 58.25 24.78 26.44 27.43 20.49 20.47 21.68
AMH 9.03 14.84 3.04 2.12 2.43 4.28 3.55 4.04
Mixed 68.63 77.87 37.69 47.07 53.93 29.56 33.04 34.93

Rolling window size 786
SGC 38.94 52.33 24.19 22.99 22.63 24.54 23.07 22.68
STC 22.25 27.77 12.09 13.67 14.46 10.97 11.74 12.41
C-vine 43.42 57.00 26.25 27.04 28.01 27.58 26.08 26.54
D-vine 50.05 59.16 28.60 32.77 34.47 25.05 27.90 29.81
HAC

Clayton 40.83 47.59 31.73 33.12 32.81 25.49 24.98 24.76
Gumbel 68.41 81.49 43.98 42.25 42.07 41.49 40.80 42.19
Frank 50.95 56.48 26.62 34.52 38.00 22.04 27.94 31.26
Joe 52.71 62.66 27.45 30.21 31.66 21.71 22.56 23.98
AMH 6.87 11.39 3.27 2.47 2.62 4.53 3.41 3.46
Mixed 70.24 80.29 28.33 35.97 41.82 27.98 31.69 33.43

Rolling window size 1310
SGC 39.40 52.87 24.31 23.34 23.08 24.61 23.45 23.09
STC 23.07 29.00 12.31 14.09 14.94 11.05 12.22 12.90
C-vine 46.83 57.26 29.41 30.32 30.77 28.04 28.68 29.15
D-vine 50.42 58.24 29.22 34.67 36.28 24.86 27.94 30.72
HAC

Clayton 40.10 47.27 32.66 33.72 33.10 26.18 25.24 24.53
Gumbel 70.39 83.28 44.49 43.56 43.73 41.89 41.96 43.63
Frank 52.63 58.78 26.50 34.83 38.52 22.22 28.77 32.18
Joe 56.69 65.88 31.49 35.19 37.02 24.83 26.09 27.40
AMH 7.39 12.04 3.27 2.73 2.90 4.53 3.66 3.77
Mixed 71.08 82.03 26.64 33.78 39.56 27.39 32.08 33.85
SGC denotes the standard Gaussian copula and STC denotes the standard student t
copula. AMH denotes the Ali-Michail-Haq HAC. The values for the hedging effectiveness
are presented in percent.

Table 6 shows us the average of the HE for all downside-risk measures and all copula models.
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The HE denotes the percentage of risk reduction if we hedge our profit/loss from Equation 3.

For every copula model, there is an average reduction of risk. The greatest improvement is

observable for the downside-risk measure LPM. The best copula model for each downside-risk

measure, having the highest HE, is indicated in bold. To compare different copula models, we

need to test whether the values for the HE are significantly different from each other. Therefore,

a paired t-test is performed to test for significant differences. The statistics from all the tests

are displayed in Appendix F. We observe that for each downside-risk measure, either the HAC

with Gumbel generator or the HAC with mixed generators performs best. The differences in

the HE between the Gumbel HAC and the mixed HAC are not significant for the downside-risk

measure LPM considering the three rolling window sizes. The performance of the mixed HAC

is remarkable after considering the contrasting optimal hedge ratios from for example Table 5.

The hedge ratios tend to differ for each downside-risk measure, especially compared to the other

copulas. The standard deviation of the hedge ratios is also much higher for the mixed HAC,

but this does not seem to influence the performance. From Table 6 we can conclude that the

only copula that is competitive with these best performing copulas is the C-vine copula, as the

values for the HE are quite close for the rolling window size of 262 observations. Especially after

considering that the difference between the Gumbel HAC and the C-vine is not significant for

the downside-risk measures SV and LPM.

If we look at all the nested copulas, the AMH has the worst performance of all models,

without a clear explanation and in contrast to our hypothesis. It is even stranger, as this copula

is used in the mixed HAC structure. The AMH copula is however used in the top two levels of

the hierarchical structure of the mixed HAC, which means that this copula mostly models the

dependence between two (sub-)copulas. If the AMH copula is used at every hierarchical level

of the HAC, also the dependency between the input variables is modelled. Maybe this does not

suit the AMH copula. The same reasoning could be used to explain the increase in performance

when using a mixed HAC instead of the Clayton HAC, as the Clayton copula is used in the

HAC for the second and third hierarchical level. This way, the Clayton copula mostly models

the two pairs of input variables, which probably suits the Clayton copula better than modelling

the dependency at higher hierarchical levels.

To elaborate more on the Clayton HAC, remember that this is the only HAC where we use

a penalization on the hierarhical structure. This penalty, as described in section 3, does not

improve the performance significantly. This penalization gives us a systematic way to overcome

our shortcoming of only considering binary structures, but cannot help us by improving the

performance.
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Looking at the standard copulas, the standard Student t copula is clearly a benchmark

copula that is outperformed by the nested copulas. The standard Gaussian copula is much

more competitive and even outperforms the Clayton HAC for the downside-risk measure LPM.

Furthermore, the standard Gaussian copula sometimes significantly outperforms the Frank and

Joe HAC for the downside-risk measure ES. The Gumbel HAC and the mixed HAC are superior

to the benchmark copulas considering all downside-risk measures.

Addressing the vine copulas, we first observe that they outperform the standard copulas. The

vine copulas also show that they are tough competitors for the different HAC. It is remarkable

that the performance between the vines is quite different, as the C-vine significantly outperforms

the D-vine for all downside-risk measures in the rolling window size of 262 observations, but not

for the other rolling window sizes. In the literature, the D-vine mostly outperforms the C-vine

in a similar setting to ours. This is because the D-vines can directly model the dependence

between each spot and futures price, while the C-vine can only model the dependence of one

spot price with all other spot and futures prices directly (see Figure 2).

We observe that the results are a bit different when using different rolling window sizes.

For example, we find the largest HE to be 83.28% for the Gumbel HAC and the downside-risk

measure LPM for the rolling window size of 1310 observations. This value is significantly higher

than the largest value for the HE of the rolling window size of 262 observations.

On average, the HE for the Gumbel HAC are higher for all downside-risk measures when the

rolling window size of 786 or 1310 observations is used instead of the rolling window size of 262

observations. In contrast to the Gumbel HAC, the mixed HAC only performs better considering

the downside-risk measure SV and LPM, as the performance for other downside-risk measures

significantly drop. An explanation for this can be the high standard deviation of the optimal

hedge ratios of the mixed HAC. Another copula with diminishing performance for larger rolling

window sizes is the C-vine. In the case of the two largest rolling window sizes, the C-vine cannot

be considered as a competitor of the Gumbel HAC. In addition, the performances of the C-vine

and D-vine are much closer to each other. The D-vine outperforms the C-vine for seven out

of eight downside-risk measures for the rolling window size of 786 observations, and five out of

eight times for the rolling window size of 1310 observations. These results are more in line with

results from the literature and more in line with our hypothesis. For the standard Gaussian

copula and the standard Student t copula, the performance seems unrelated to the choice for

rolling window size. The HAC easily outperform these standard copulas, but only the Gumbel

HAC and mixed HAC outperform the vine copulas significantly.

The results for the rolling window size of 1310 observations are very similar to the results
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of the rolling window size of 786 observations. This rolling window size comes closest to the

one used in Sukcharoen and Leatham (2017). They use a rolling window size of 261 weekly

observations, which comes closest to the 1310 daily observations that we use. The results for the

SGC, STC and vine copulas that they present are a bit different to our results. First, the HE

of the four copulas lie closer to each other. Moreover, the STC in their results shows a slightly

better performance than the SGC, while the vines have superior performance. That vines are

superior to the SGC and STC is also shown by Table 6, but the STC is not performing as good

as, or better than the SGC.

Looking at all the HE, we can conclude that the HE improves when using a larger rolling

window size. A reason for this is the fact that a larger rolling window size means more observa-

tions that we can use. This way, the copulas have more information about the data series and

therefore also more information about the dependency structure that they can use to simulate

the profit series of the oil refineries. To give a small restraint, this effect is not really (clearly)

seen for the Clayton HAC, C-vine and mixed HAC.

4.2.1 Development of HE over time

To obtain a comprehensive view of the performance of each copula, we present and discuss the

development of the HE with the use of the figures below in addition to the reported averages of

the HE. The development of the HE of all models and for all rolling window sizes is displayed

in Appendix E. The first thing to observe is that for all copulas (except the C-vine), the HE

is less volatile for larger rolling window sizes. There seems to be a direct relation between the

standard deviation of the estimated optimal hedge ratios from Table 5, Table 8, Table 9 and

the volatility of the HE, which is also logical. Some copulas have stable performance for the

whole forecasting period, while others, deviate a lot. When we make a choice for the best copula

model, we need to keep this in mind.

Looking at Figure 1, we observe three periods of high volatility in the price changes. The

first and most notable period is of course the well-known crisis between 2007-2009. For the

rolling window size of 262 observations, we observe from the figures in subsection E.1 a drop in

HE. Especially the HAC copulas suffer from this drop in HE, as the SGC and STC show a minor

drop and the vine copulas only show some increased volatility in the HE. This is maybe a strange

results, as we would expect that hedging would be more effective during high volatility periods.

The reason for this could be that the downside-risk of an unhedged profit series and a hedged

profit series increases sharply during high volatility periods. It is in this case much harder to

improve with 50% than it is when the downdside-risk measures have lower values for example.
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The other rolling window forecasts do not cover the crisis period, as the observations of the crisis

period are used in the rolling window to make predictions, so they cannot be in the forecast

window. Next to the big crisis between 2007-2009, there is the period between 2011-2013 that

records a period of high volatility in the price changes of the oil products (not as high as the

2007-2009 period). For the rolling window of 262 observations, we cannot observe a significant

influence on the HE in the figures from subsection E.1. Only the Gumbel and Joe copula record

a notable dip in HE during this period, while STC has an increased HE for this period. For the

rolling window of 786 observations, we observe from subsection E.2 a large but short dip for the

Gumbel and Joe HAC for this period. These results are not found for the rolling window size

of 1310 observations, as the high volatility in the price changes for the period 2011-2013 seems

to have no effect on the HE. The last period with high volatility is the period at the beginning

of 2020. This small period records huge spikes in the price change series. In this period the oil

prices dropped below 0 USD/barrel, which is a unique situation. This price recovers quite fast,

explaining the short period of huge spikes in the price changes series. We observe the same effect

for all copulas and for all rolling window sizes, namely an increase in the HE. This is expected,

as the sudden price changes do not effect the hedged profit series as much as the unhedged profit

series.

To compare the copula models with each other, we plot the HE of different copulas in the

figures below. To keep a good overview we only plot the two benchmark copulas SGC and STC,

the best performing vine copula, the best performing HAC with a single generator function

and the HAC with multiple mixed generators. We only show the development of the HE for

the downside-risk measures SV and VaR with 99% probability level to keep the results clear

and concise. Moreover, these downside-risk measures are a good representation of the other

downside-risk measures.

(a) HE minimizing SV (b) HE minimizing VaR

Figure 4: plots of the development of the HE using a rolling window of 262 observations
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From Figure 4a we observe that the development of the series of HE for the copula models

have a similar pattern. All series of HE can be stacked on top of each other. The HE for the STC

at the lowest part of the figure and the mixed HAC on top. As the mixed HAC has the highest

volatility, there are some periods where the other copula models have a better performance.

Despite this, both HAC outperform the standard copulas and the D-vine. Looking at the final

period of the figure, we observe that the SGC performs really well, which is quite remarkable.

Considering the HE of the downside-risk measure VaR with a probability level of 99%, the

first thing we observe from Figure 4b are the periods where the mixed HAC has an extremely

high HE. There is no clear explanation or theory for this behaviour. Despite this periods of high

HE, the mixed HAC is outperformed by the Gumbel HAC (as well as all other copulas), but its

performance is still much better than the performance of the standard copulas and the D-vine.

Overall, the Gumbel HAC seems the best performing copula, but its performance is not impec-

cable. We observe some periods where other copulas outperform the Gumbel HAC. Especially

during the crisis period between 2007-2009, the Gumbel HE lacks performance. During the high

volatility period in the beginning of 2020, this lack of performance is not noticeable.

To evaluate the performance of all the copulas for the larger rolling window of 1310 obser-

vations, we use the figure below.

(a) HE minimizing SV (b) HE minimizing VaR

Figure 5: plots of the development of the HE using a rolling window of 1310 observations

We immediately observe less volatile HE series for all copula models for this rolling window

of 1310 observations. The figures are much clearer and they become much more interpretable. It

is clear to see which copula performs best. From Figure 5a we observe that there is a period from

2013 until the end of 2018, where the Gumbel HAC is superior to the other copulas. However,

difference in performance between the mixed HAC and the Gumbel HAC is not significant. Only

at the beginning of the forecast window and at the end, there are other copulas that outperform

the Gumbel HAC, with the mixed HAC is the best performing copula. Looking at Figure 5b,
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we notice that the HE is lower for all copula models when minimizing the VaR instead of the

SV. The order of best copula models is also quite different for the VaR. The Gumbel HAC is

now the best performing copula while the STC is still the worst performing copula. However,

the mixed HAC is outperformed by the D-vine and almost by the SGC. Again, in the beginning

and ending period, the Gumbel HAC is outperformed. A remarkable thing to notice is the last

period of the series, where the highest HE is obtained by the SGC. This period denotes the

short and extremely high volatility period at the beginning of 2020. The SGC shows to make

use of this period of extreme volatility to boost its performance.

5 Conclusion

The main goal of this research is to find optimal hedge ratios for three oil products that are

processed in oil refineries. The copula-GARCH model is used to find the optimal hedge ratios.

We do this, by first estimating a GARCH model for the spot- and futures price change series

to capture the heteroskedastic volatility that is present in our price changes series. We then

use the copulas to model the dependence between the white noise processes from the GARCH

and simulate data series accordingly. After this, we find optimal hedge ratios that minimize a

certain downside-risk and check how effective these optimal hedge ratios are. The main research

question is to find the best copula that finds the most effective hedge ratios. It is important

to choose the best copula to model the dependency structure and this research evaluates the

Standard Gaussian copula (SGC) and Standard Student t copula (STC), the C-vine and D-vine

and the HAC. In the literature, there is the least attention for the HAC. Especially the use of

the HAC in a practical manner such as our described hedging framework is underexposed in

the current literature. We therefore construct different HAC that make use of one generator

function and a HAC that makes use of multiple generator functions. Furthermore, the penalty

framework of Okhrin et al. (2015) is used to improve the performance of the HAC.

To see how the different copulas in our hedging framework perform, we show the HE of all

models in section 4. We conclude that the best copula for our data set is the Gumbel HAC.

This result is not, however, consistent for all the different downside-risk measures that we use.

For the downside-risk measures SV and LPM, the mixed HAC shows it can outperform the

Gumbel HAC. The Gumbel HAC is still competitive for these risk measures, while the mixed

HAC is not competitive for the other risk measures. Therefore, we conclude that the best copula

model overall is the Gumbel HAC. This copula only uses only the Gumbel generator function

for the whole HAC structure. We also use multiple generators in the HAC structure (mixed

HAC), as in the D-vine structure multiple copulas from different families are used, which seems
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a huge benefit. Due to computational reasons, we only use one predetermined mix of different

generators for the mixed HAC, while it is preferable to choose a copula generator function that

fits for that particularly copula in the structure. We can realise this with a goodness-of-fit

test for every copula in the structure, but this is too computationally expensive. Although we

are limited by the predetermined structure with mixed copulas, we show the potential of this

copula, as the mixed HAC outperforms the Gumbel HAC and vine copulas several times. The

use of different generator functions in one HAC structure is to our knowledge never evaluated

and compared with other copulas using a certain performance measure. We therefore cautiously

conclude that this copula has got a high potential.

To place our result in the existing literature, let us first compare this result with Sukcharoen

and Leatham (2017), as they perform a similar research. Their main conclusion is that the D-

vine performs best in terms of HE, considering the SGC, STC and C-vine among others. They

do not consider HAC, so this research tries to add a competitor for their research question.

Although we show that the D-vine generally outperforms the SGC, STC and C-vine, the D-vine

is not the best performing copula. We should however mention that, they use a different data

set where the data is also sampled weekly instead of daily. We should also mention that not all

HAC outperform the D-vine, as the AMH HAC is the worst copula with terrible performance,

for example. Thus, we cannot make the statement that HAC in general are better copulas in

hedging downside-risk. Based on our results we can, however, advise the use of the Gumbel

HAC in hedging downside-risk. Especially oil refineries, for which our research and our data set

should be very relevant could try the Gumbel HAC to estimate optimal hedge ratios. We would

also propose the use of the rolling window size of 1310 observations (approximately 5 years of

data), as this results in the highest HE and the most stable predictions. We cannot point out one

certain downside-risk measure that results in the best estimated hedge ratios. We do see that,

although the HE differs per downside-risk measure because of different scaling of the value of

the downside-risk measures, the estimated hedge ratios are really similar. We therefore propose

the use of all downside-risk measures and taking the average of all estimated hedge ratios.

If we try to explain the superior performance of the (Gumbel) HAC compared to the D-

vine we should look at the structures of both copulas. For the HAC, we construct a binary

structure where we put a pair of variables together in the structure if they have the highest

value for the estimated dependence parameter. The structure for our six input variables that we

find most is C5[C4(C1{u1, u2}, C2{u3, u4}), C3{u5, u6}]. We observe that each pair of variables

(mostly the spot and futures variables of the same oil product) are put together and are given

a dependency parameter. Then, the dependency of two pairs of variables are described by a
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copula and then the last pair is added to complete the sturcture of the HAC. This way, we

mostly model the dependency of one spot price series and one futures price series directly and

then model the dependency of the three pairs. A huge advantage of the HAC is that we can

use different dependency parameters for each copula in the structure. The superior performance

of the HAC with Gumbel generator function, compared to the other generator functions can

only be explained by the simple fact that the dependencies of our data series suits the Gumbel

generator function best. Considering the D-vine, the structure is already predetermined and

we use the copula variables u1 and u2 in one copula and the copula variables u2 and u3 in one

copula etc. This structures thus considers the dependence between variables u1, u2, but also for

u2 and u3. For our set up of three variable pairs (three oil products) of spot and futures prices,

it is maybe more beneficial to only look at the dependence between the pairs u1, u2 and of u3,

u4 and then model the dependency between these pairs instead of modelling the dependence

between each input variable separately. If we do however model the dependency of one input

variable with more than one other input variable, the D-vine is preferable to the C-vine. We

see in Figure 2 and (10) that each spot price input variable is directly linked to its futures price

input variable, while in for example the C-vine structure, they are not. This could be the reason

why the D-vine has the best performance for this data compared to the C-vine.

In our framework, we only use six input variables. For other commodity hedging problems,

more input variables could be needed. In that case, the D-vine has a clear advantage compared

to the HAC, as the structure of the D-vine is predetermined, which is not the case for the HAC.

Determining the structure of the HAC can be a difficult task, whereas for the D-vine, only the

order of the input variables need to be determined. We show a fast method to obtain that

optimal order in section 3.

To deal with another part of our research, we should address the penalization of the HAC. In

section 3 we show a systematic method to aggregate the binary structure of a HAC, so that more

than two variables can be modeled by one (sub-)copula in the HAC. This systematic method

aggregates two subsequent copula if the difference between the dependency parameter of the

two copulas at the subsequent hierarchical levels is smaller than a threshold. This threshold is

calculated with the use of the SCAD derivative penalty function. We implement this approach

but find no significant difference in performance.

This brings us to the limitations of our research. Due to the computationally hard derivation

of the second derivative of the copula log-likelihood functions, we only consider the penalized

HAC for the Clayton copula. This did not result in an improved performance, but it might for

other copulas. Moreover, we could not perform a goodness-of-fit test to determine which mix
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of copula generator functions is optimal in the HAC structure. We showed the potential of a

mixed HAC, but can most certainly improve the performance by using the goodness-of-fit test.

To add a final point, the results show that the Gumbel HAC is outperformed by other copulas

in periods with high volatility in the price changes series. For example, the D-vine performance

is stable in this high volatility periods and therefore outperforms the Gumbel HAC. As these

periods of high volatility are short and our used data set is large, the average performance of the

Gumbel HAC is still superior. A solution for the decrease in performance during high volatility

periods can be the use of a threshold system, that uses the D-vine when we enter a economic

turbulent time, and for the other periods the Gumbel HAC.
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Appendices

A Appendix A

A.1 Graph of level

We know that the oil prices can be very volatile, as we show in the graph below.

Figure 6: The development of spot and futures prices for our products crude oil, unleaded
gasoline and number 2 heating oil.

Figure 6 shows the price development from 2005 until 2021. We observe from the graph that all

oil products are closely correlated.

A.2 Correlation matrix

The table below shows the correlations between all data series that we use in this research.
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Table 7: Correlation of first differences in spot and futures prices of oil product

Crude oil Gasoline Heating oil
Spot Futures Spot Futures Spot Futures

Crude oil Spot 1
Futures 0.964 1

Gasoline Spot 0.479 0.481 1
Futures 0.592 0.602 0.758 1

Heating oil Spot 0.587 0.600 0.655 0.743 1
Futures 0.616 0.634 0.643 0.787 0.894 1

B Appendix B

B.1 Algorithm to simulate from a D-vine

The algorithm below shows us how to simulate series from a D-vine copula. We observe that

the algorithm is larger than the simulation algorithm of the C-vine.
Algorithm 4: Simulation algorithm for a D-vine

Input: Simulate vectors u1, . . . , u6 containing n independent uniform values between
[0,1];

1 y1 = w1,1 = u1 ;
2 y2 = w2,1 = h−1(u2, w1,1,Θ1,1) ;
3 for i ∈ {3, . . . , 6} do
4 wi,1 = ui;
5 for k ∈ {i− 1, i− 2, . . . , 2} do
6 wi,1 = h−1(wi,1, wi−1,2k−2,Θk,i−k);
7 end
8 wi,1 = h−1(wi,1, wi−1,1,Θ1,i−1);
9 yi = wi,1;

10 if i = 6 then
11 Stop
12 end
13 wi,2 = h(wi−1,1, wi,1,Θ1,i−1);
14 wi,3 = h(wi,1, wi−1,1,Θ1,i−1);
15 if i > 3 then
16 for j ← 2, . . . , i− 2 do
17 wi,2j = h(wi−1,2j−2, wi,2j−1,Θj,i−j);
18 wi,2j+1 = h(wi,2j−1, wi−1,2j−2,Θj,i−j);
19 end
20 end
21 wi,2i−2 = h(wi−1,2i−4, wi,2i−3,Θi−1,1);
22 end
23 return y1, . . . , y6

B.2 Nelder-Mead search method

After we use the copula-GARCH approach to model the first difference series of the six spot and

futures prices, we can find yt(b) in (3) for which we only need the hedge ratios b = {bC , bG, bH}.

As said before, we use the Nelder-Mead direct search algorithm to find the optimal values for

{bC , bG, bH} for which a certain risk measure Risk(yt(b)) is minimized. Therefore, we create a
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function f() that uses b as input and has an output of Risk(yt(b)), so f(b) = Risk(yt(b)). The

Nelder-Mead algorithm can be summarized as follows:
Algorithm 5: Nelder-Mead direct search method algorithm

Input: Test sets b1, . . . ,bn+1 containing possible hedge ratio solutions ;
f(b̂) is standard deviation of function values f(b1), . . . , f(bn) ;

1 while f(b̂) > ε do
2 Order test sets such that f(b1) ≤ · · · < f(bn);
3 Calculate f(b̂) ;
4 Calculate b0 as the average of all sets except bn+1 ;
5 Compute reflected set br = b0 + α(b0 − bn+1) ;
6 if f(b1) ≤ f(br) ≤ f(bn+1) then
7 Replace bn+1 with br and go back to line 2
8 end
9 if f(br) < f(b1) then

10 Compute expand set be = b0 + γ(br − b0)
11 if f(be) < f(br) then
12 Replace bn+1 with be and go back to line 2
13 else
14 Replace bn+1 with br and go back to line 2
15 end
16 end
17 end
18 if f(br) ≥ f(bn) then
19 Compute contracted set bc = b0 + ρ(bn+1 − b0) if f(bc) < f(bn+1) then
20 Replace bn+1 with bc and go back to line 2
21 end
22 end
23 Replace all values except b1 with bi = b1 + σ(bi − b1) and go back to line 2
24 end
25 Set b∗ = b1 ;
26 return b∗

The Nelder-Mead direct search method is a local method that does not contain derivatives and

does not handle explicit constraints. Furthermore, the method is suited for a maximum of ten

dimensions and in our case we only need three. The parameters that we use are the standard

parameters α = 1, γ = 2, ρ = 1
2 and σ = 1

2 (Nelder & Mead, 1965).

C Appendix C

C.1 R coding

The methods of this research are all implemented in the software from R Core Team (2013).

The data that we collect are from Refinitiv (2021) and given to us in an ”Excel” file. The first

modifications to the data, converting to USD/Barrel and taking first differences, are done before

we load the data into R. To read all the data into R, we make use of the package ”readxl” from

Wickham et al. (2019). Then, for all methods, we first fit a GARCH model to the six data series

using the package ”rmgarch” from Ghalanos (2019). To fit the standard Gaussian and Student

t copulas, we do not download a specific package, but use our own code. However, for the C-

vine and D-vine copulas, after obtaining the correct order of the six input variables, we use the
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package ”CDVineCopulaConditional” from Bevacqua (2017). This package tracks down which

bivariate copulas in the vine structure are optimal using the AIC. Then, these bivariate copulas

are used in the algorithms from Aas et al. (2009) that we write ourselves to simulate data from

the vine structures. For the HAC, we use the ”copula” package to obtain the binary copula

parameter, needed to obtain the optimal structure. Then, we use the structure as an input for

the ”HAC” package from Okhrin (2020) to simulate observations from the HAC. For the mixed

HAC, we write our own code to simulate observations. Finally, all simulated series are used to

calculate the risk measures with and without optimal hedge ratios. We find the optimal hedge

ratios by using the Nelder-Mead algorithm from ”optimization” package (Husmann & Lange,

2017).
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D Appendix D

Table 8: The optimal average hedge ratios for different downside-risk measures

Rolling window size 786
SV LPM VaR ES

0.99 0.95 0.90 0.99 0.95 0.90
Model

Crude oil hedge ratios
SGC 0.793 0.787 0.829 0.820 0.815 0.813 0.808 0.804

(0.104) (0.116) (0.134) (0.110) (0.110) (0.154) (0.117) (0.110)
STC 0.533 0.503 0.556 0.592 0.599 0.493 0.533 0.545

(0.132) (0.151) (0.156) (0.117) (0.111) (0.184) (0.141) (0.132)
C-vine -0.002 -0.014 0.103 0.071 0.056 0.130 0.070 0.045

(0.671) (0.757) (0.544) (0.515) (0.506) (0.574) (0.550) (0.568)
D-vine 0.712 0.685 0.747 0.787 0.804 0.723 0.725 0.729

(0.209) (0.228) (0.218) (0.208) (0.209) (0.224) (0.210) (0.196)
HAC

Clayton 0.686 0.714 0.430 0.482 0.525 0.398 0.459 0.526
(0.174) (0.203) (0.158) (0.181) (0.188) (0.180) (0.200) (0.220)

Gumbel 0.661 0.638 0.760 0.739 0.726 0.734 0.699 0.680
(0.276) (0.278) (0.281) (0.292) (0.294) (0.288) (0.295) (0.289)

Frank 0.605 0.549 0.606 0.665 0.693 0.546 0.593 0.619
(0.172) (0.185) (0.207) (0.209) (0.215) (0.208) (0.192) (0.191)

Joe 0.406 0.350 0.674 0.623 0.599 0.574 0.517 0.473
(0.426) (0.443) (0.432) (0.416) (0.422) (0.396) (0.406) (0.427)

AMH -0.059 -0.064 0.002 -0.022 -0.034 0.010 -0.031 -0.045
(0.079) (0.090) (0.122) (0.095) (0.089) (0.142) (0.108) (0.098)

Mixed 1.413 1.597 0.370 0.381 0.340 0.378 0.492 0.621
(0.124) (0.307) (0.200) (0.354) (0.317) (0.153) (0.111) (0.129)

Gasoline hedge ratios
SGC 0.697 0.715 0.632 0.635 0.634 0.642 0.678 0.687

(0.194) (0.225) (0.210) (0.184) (0.181) (0.248) (0.210) (0.201)
STC 0.487 0.484 0.400 0.452 0.465 0.364 0.438 0.469

(0.174) (0.214) (0.279) (0.184) (0.169) (0.368) (0.236) (0.203)
C-vine 0.162 0.157 0.091 0.135 0.133 0.090 0.155 0.166

(0.579) (0.617) (0.553) (0.542) (0.554) (0.569) (0.563) (0.590)
D-vine 0.707 0.638 0.559 0.703 0.732 0.512 0.653 0.686

(0.204) (0.211) (0.197) (0.212) (0.225) (0.233) (0.217) (0.218)
HAC

Clayton 0.721 0.668 0.934 0.909 0.882 0.770 0.757 0.730
(0.180) (0.198) (0.347) (0.264) (0.241) (0.301) (0.215) (0.204)

Gumbel 0.975 0.975 0.752 0.840 0.891 0.768 0.875 0.938
(0.306) (0.336) (0.272) (0.290) (0.303) (0.285) (0.291) (0.306)

Frank 0.780 0.711 0.631 0.801 0.878 0.557 0.710 0.781
(0.219) (0.247) (0.281) (0.252) (0.255) (0.405) (0.273) (0.239)

Joe 0.813 0.815 0.453 0.582 0.682 0.389 0.539 0.654
(0.383) (0.446) (0.241) (0.277) (0.314) (0.407) (0.323) (0.331)

AMH 0.107 0.130 0.012 0.033 0.051 0.072 0.080 0.090
(0.212) (0.238) (0.362) (0.300) (0.262) (0.380) (0.293) (0.266)

Mixed 0.202 0.213 1.517 1.413 1.454 0.701 0.609 0.595
(0.150) (0.242) (0.433) (0.540) (0.595) (0.164) (0.064) (0.072)

Heating oil hedge ratios
SGC 0.984 1.024 1.125 1.004 0.970 1.187 1.056 1.011

(0.225) (0.303) (0.365) (0.271) (0.252) (0.467) (0.323) (0.271)
STC 0.731 0.707 0.732 0.764 0.773 0.674 0.727 0.740

(0.304) (0.464) (0.576) (0.322) (0.255) (0.854) (0.500) (0.376)
C-vine 0.364 0.410 0.851 0.601 0.553 0.999 0.603 0.493

(1.363) (1.542) (1.249) (1.190) (1.146) (1.343) (1.240) (1.231)
D-vine 1.088 1.261 1.127 0.948 0.957 1.183 1.020 1.056

(0.531) (0.641) (0.571) (0.494) (0.439) (0.594) (0.562) (0.515)
HAC

Clayton 0.538 0.574 0.527 0.509 0.506 0.732 0.627 0.562
(0.298) (0.329) (0.420) (0.335) (0.316) (0.638) (0.454) (0.349)

Gumbel 0.793 0.856 0.582 0.576 0.595 0.554 0.594 0.682
(0.394) (0.451) (0.476) (0.409) (0.396) (0.501) (0.415) (0.388)

Frank 0.769 0.813 0.717 0.670 0.653 0.651 0.687 0.708
(0.358) (0.543) (0.520) (0.360) (0.322) (0.718) (0.458) (0.397)

Joe 0.717 0.755 0.552 0.503 0.499 0.409 0.375 0.434
(0.456) (0.547) (0.569) (0.447) (0.415) (0.689) (0.552) (0.420)

AMH 0.211 0.222 0.069 0.099 0.123 0.111 0.156 0.183
(0.382) (0.518) (0.607) (0.461) (0.412) (0.735) (0.517) (0.432)

Mixed 0.151 0.215 2.326 2.115 2.219 1.288 0.954 1.087
(0.637) (0.673) (2.997) (1.800) (1.129) (0.327) (0.113) (0.214)

SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH denotes the Ali-Michail-Haq HAC. The values
for the hedging effectiveness are presented in percent.
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Table 9: The optimal average hedge ratios for different downside-risk measures

Rolling window size 1310
SV LPM VaR ES

0.99 0.95 0.90 0.99 0.95 0.90
Model

Crude oil hedge ratios
SGC 0.791 0.785 0.830 0.825 0.817 0.815 0.811 0.804

(0.085) (0.094) (0.113) (0.095) (0.093) (0.132) (0.104) (0.097)
STC 0.537 0.507 0.559 0.598 0.605 0.501 0.542 0.552

(0.090) (0.103) (0.128) (0.101) (0.098) (0.153) (0.112) (0.103)
C-vine -0.133 -0.150 -0.073 -0.096 -0.099 -0.073 -0.098 -0.104

(0.530) (0.587) (0.531) (0.498) (0.468) (0.564) (0.522) (0.498)
D-vine 0.739 0.711 0.757 0.785 0.816 0.726 0.759 0.755

(0.194) (0.217) (0.178) (0.174) (0.184) (0.197) (0.190) (0.201)
HAC

Clayton 0.664 0.688 0.412 0.457 0.501 0.373 0.426 0.488
(0.146) (0.166) (0.142) (0.155) (0.159) (0.154) (0.160) (0.180)

Gumbel 0.697 0.677 0.805 0.784 0.771 0.778 0.746 0.724
(0.220) (0.224) (0.225) (0.235) (0.236) (0.246) (0.248) (0.236)

Frank 0.613 0.560 0.606 0.667 0.696 0.564 0.604 0.626
(0.187) (0.187) (0.220) (0.221) (0.224) (0.216) (0.211) (0.209)

Joe 0.593 0.540 0.860 0.810 0.791 0.751 0.700 0.664
(0.175) (0.171) (0.218) (0.195) (0.193) (0.201) (0.182) (0.186)

AMH -0.079 -0.084 -0.016 -0.034 -0.048 -0.008 -0.045 -0.059
(0.096) (0.102) (0.129) (0.106) (0.104) (0.154) (0.122) (0.110)

Mixed 1.410 1.575 0.375 0.401 0.351 0.349 0.556 0.622
(0.092) (0.174) (0.164) (0.129) (0.147) (0.111) (0.063) (0.115)

Gasoline hedge ratios
SGC 0.685 0.704 0.637 0.635 0.631 0.649 0.677 0.682

(0.199) (0.225) (0.207) (0.186) (0.183) (0.241) (0.211) (0.204)
STC 0.485 0.480 0.406 0.452 0.468 0.369 0.446 0.470

(0.169) (0.196) (0.253) (0.181) (0.163) (0.355) (0.227) (0.195)
C-vine 0.044 0.040 0.032 0.013 0.004 0.038 0.026 0.038

(0.708) (0.712) (0.694) (0.646) (0.674) (0.677) (0.644) (0.701)
D-vine 0.738 0.684 0.553 0.695 0.753 0.483 0.645 0.710

(0.213) (0.237) (0.229) (0.210) (0.242) (0.287) (0.226) (0.222)
HAC

Clayton 0.709 0.653 0.950 0.899 0.867 0.783 0.747 0.713
(0.191) (0.174) (0.395) (0.321) (0.293) (0.345) (0.287) (0.263)

Gumbel 0.974 0.976 0.746 0.837 0.893 0.766 0.872 0.939
(0.309) (0.340) (0.345) (0.339) (0.333) (0.338) (0.319) (0.314)

Frank 0.762 0.693 0.617 0.780 0.852 0.570 0.698 0.763
(0.233) (0.252) (0.341) (0.297) (0.276) (0.361) (0.306) (0.275)

Joe 0.937 0.954 0.516 0.669 0.790 0.467 0.628 0.752
(0.361) (0.408) (0.337) (0.338) (0.351) (0.348) (0.327) (0.329)

AMH 0.103 0.122 0.026 0.045 0.048 0.087 0.085 0.090
(0.225) (0.246) (0.338) (0.301) (0.296) (0.343) (0.296) (0.275)

Mixed 0.191 0.188 1.497 1.345 1.359 0.761 0.734 0.685
(0.072) (0.119) (0.415) (0.335) (0.357) (0.115) (0.138) (0.120)

Heating oil hedge ratios
SGC 0.992 1.032 1.121 1.012 0.975 1.189 1.058 1.010

(0.192) (0.246) (0.312) (0.223) (0.213) (0.414) (0.262) (0.233)
STC 0.731 0.711 0.753 0.776 0.779 0.735 0.738 0.748

(0.322) (0.519) (0.573) (0.312) (0.265) (0.723) (0.472) (0.383)
C-vine 0.270 0.275 0.551 0.456 0.372 0.561 0.458 0.347

(1.501) (1.527) (1.582) (1.513) (1.473) (1.651) (1.498) (1.478)
D-vine 0.997 1.110 1.126 1.008 0.950 1.126 1.104 1.001

(0.537) (0.752) (0.598) (0.358) (0.326) (0.805) (0.517) (0.457)
HAC

Clayton 0.487 0.522 0.411 0.419 0.425 0.616 0.513 0.462
(0.308) (0.384) (0.459) (0.376) (0.335) (0.586) (0.438) (0.368)

Gumbel 0.792 0.857 0.538 0.553 0.583 0.502 0.580 0.667
(0.506) (0.574) (0.739) (0.631) (0.563) (0.859) (0.659) (0.584)

Frank 0.754 0.789 0.649 0.631 0.638 0.632 0.670 0.693
(0.521) (0.761) (0.808) (0.544) (0.455) (0.965) (0.697) (0.580)

Joe 0.849 0.898 0.728 0.644 0.620 0.575 0.524 0.543
(0.505) (0.574) (0.693) (0.626) (0.541) (0.913) (0.633) (0.521)

AMH 0.205 0.219 0.082 0.104 0.127 0.137 0.167 0.185
(0.438) (0.514) (0.633) (0.532) (0.503) (0.736) (0.566) (0.507)

Mixed 0.194 0.223 2.004 1.928 2.079 1.456 1.390 1.171
(0.130) (0.209) (0.506) (0.382) (0.427) (0.250) (0.268) (0.167)

SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH denotes the Ali-Michail-Haq HAC. The values
for the hedging effectiveness are presented in percent.
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E Appendix E

This section displays the development of the HE for every rolling window size. Each figure shows

the development of the HE for one copula and for all downside-risk measures.

E.1 Rolling window size of 262 observations

(a) (b)

Figure 7: plots of the development of the HE using a rolling window of 262 observations

(a) (b)

Figure 8: plots of the development of the HE using a rolling window of 262 observations
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(a) (b)

Figure 9: plots of the development of the HE using a rolling window of 262 observations

(a) (b)

Figure 10: plots of the development of the HE using a rolling window of 262 observations

(a) (b)

Figure 11: plots of the development of the HE using a rolling window of 262 observations
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E.2 Rolling window size of 786

(a) (b)

Figure 12: plots of the development of the HE using a rolling window of 786 observations

(a) (b)

Figure 13: plots of the development of the HE using a rolling window of 786 observations

(a) (b)

Figure 14: plots of the development of the HE using a rolling window of 786 observations
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(a) (b)

Figure 15: plots of the development of the HE using a rolling window of 786 observations

(a) (b)

Figure 16: plots of the development of the HE using a rolling window of 786 observations

E.3 Rolling window size of 1310 observations

(a) (b)

Figure 17: plots of the development of the HE using a rolling window of 1310 observations

44



(a) (b)

Figure 18: plots of the development of the HE using a rolling window of 1310 observations

(a) (b)

Figure 19: plots of the development of the HE using a rolling window of 1310 observations

(a) (b)

Figure 20: plots of the development of the HE using a rolling window of 1310 observations
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(a) (b)

Figure 21: plots of the development of the HE using a rolling window of 1310 observations

F Appendix F

In this section, we present the paired t-test statistics for tables Table 6. The paired t-test

compares the means of the HE between two different copula models. For each rolling-window

period and for each downside-risk measure we present the test statistics in the tables below.

F.1 Rolling window size of 262 observations

Table 10: Paired t-test statistics of equal HE of two copula models

Rolling window size 262
Downside-risk measure: SV

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 70.44 -110.94 -56.69 -11.83 -70.47 -23.02 -25.02 102.93 -80.40
STC -218.61 -123.22 -66.22 -119.74 -91.20 -92.32 66.11 -183.29
C-vine 62.88 63.18 2.55* 50.94 54.41 308.23 -19.25
D-vine 25.07 -38.49 9.03 9.21 163.04 -53.10
Clayton -64.33 -16.21 -15.98 107.13 -58.96
Gumbel 62.46 80.85 182.30 -12.02
Frank -2.15* 151.43 -59.46
Joe 170.23 -62.35
AMH -199.63

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test.
If the number is positive, the model on the left obtained a higher HE. If the number is negative, the
model above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at
1% and 5% significance level, respectively.
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Table 11: Paired t-test statistics of equal HE of two copula models

Rolling window size 262
Downside-risk measure: LPM

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 77.85 -105.00 -36.73 3.15 -67.88 -4.47 -17.98 105.24 -62.50
STC -177.07 -102.75 -61.56 -126.91 -85.46 -98.00 46.25 -180.37
C-vine 69.97 63.87 -0.47** 58.05 57.39 238.42 -5.09
D-vine 22.98 -43.82 14.40 4.32 134.84 -44.62
Clayton -69.69 -10.14 -21.93 94.89 -59.70
Gumbel 74.02 88.16 206.03 -1.71**
Frank -17.23 131.11 -67.25
Joe 169.97 -55.59
AMH -179.97

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test.
If the number is positive, the model on the left obtained a higher HE. If the number is negative, the
model above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at
1% and 5% significance level, respectively.

Table 12: Paired t-test statistics of equal HE of two copula models

Rolling window size 262
Downside-risk measure: VaR 0.99

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 56.08 -57.06 -28.46 -22.23 -49.28 1.40** -1.49** 119.97 -27.53
STC -155.35 -80.22 -115.75 -74.69 -73.46 -47.70 76.29 -61.98
C-vine 34.04 31.04 -10.09 55.87 39.90 386.09 -8.80
D-vine -3.19 -32.28 22.46 18.11 145.59 -19.23
Clayton -27.46 32.87 17.68 161.44 -18.08
Gumbel 53.51 73.74 114.88 2.23*
Frank -3.25 133.66 -28.16
Joe 94.07 -23.07
AMH -87.07

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test.
If the number is positive, the model on the left obtained a higher HE. If the number is negative, the
model above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at
1% and 5% significance level, respectively.

Table 13: Paired t-test statistics of equal HE of two copula models

Rolling window size 262
Downside-risk measure: VaR 0.95

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 58.32 -106.00 -64.91 -43.16 -50.03 -35.94 -12.95 113.05 -48.58
STC -220.64 -117.23 -117.06 -73.79 -89.40 -46.24 114.56 -76.81
C-vine 53.49 57.11 17.01 52.84 59.94 534.60 -13.89
D-vine 7.52 -14.24 10.20 30.97 179.83 -28.39
Clayton -19.71 3.83 20.68 179.67 -31.58
Gumbel 27.54 66.28 114.62 -15.04
Frank 21.51 153.77 -30.28
Joe 94.85 -34.38
AMH -110.77

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test.
If the number is positive, the model on the left obtained a higher HE. If the number is negative, the
model above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at
1% and 5% significance level, respectively.
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Table 14: Paired t-test statistics of equal HE of two copula models

Rolling window size 262
Downside-risk measure: VaR 0.90

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 61.19 -121.30 -75.06 -49.27 -52.88 -52.61 -17.69 109.54 -65.54
STC -237.80 -126.92 -108.10 -76.15 -95.02 -47.65 116.89 -92.28
C-vine 56.52 61.73 24.15 43.75 64.40 518.89 -25.47
D-vine 13.07 -9.41 -0.67** 34.40 183.29 -40.01
Clayton -20.36 -12.52 20.74 166.01 -44.02
Gumbel 14.66 65.90 117.48 -26.60
Frank 34.88 153.83 -36.75
Joe 97.13 -45.61
AMH -132.32

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If
the number is positive, the model on the left obtained a higher HE. If the number is negative, the model
above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and
5% significance level, respectively.

Table 15: Paired t-test statistics of equal HE of two copula models

Rolling window size 262
Downside-risk measure: ES 0.99

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 57.86 -44.99 -9.59 3.21 -45.61 19.32 21.18 119.34 45.58
STC -130.02 -66.34 -92.63 -77.23 -63.77 -37.31 56.07 -38.74
C-vine 38.72 44.77 -13.00 63.74 55.41 286.66 83.73
D-vine 9.38 -37.29 26.83 29.42 127.61 40.73
Clayton -42.87 26.89 16.85 135.80 31.95
Gumbel 64.07 95.11 118.63 65.66
Frank 2.03** 114.69 10.54
Joe 84.19 4.65
AMH -103.91

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test.
If the number is positive, the model on the left obtained a higher HE. If the number is negative, the
model above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at
1% and 5% significance level, respectively.

Table 16: Paired t-test statistics of equal HE of two copula models

Rolling window size 262
Downside-risk measure: ES 0.95

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 59.34 -73.58 -41.02 -7.01 -50.88 -9.29 14.71 104.57 9.68
STC -177.63 -101.01 -87.42 -84.49 -85.93 -37.42 83.86 -57.82
C-vine 45.95 61.61 -0.86 50.97 72.80 309.69 77.18
D-vine 23.44 -28.98 17.48 48.89 152.04 42.76
Clayton -50.82 -5.64 25.57 153.59 19.10
Gumbel 50.67 107.17 124.02 61.09
Frank 30.48 140.56 17.38
Joe 88.74 -14.46
AMH -120.39

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test.
If the number is positive, the model on the left obtained a higher HE. If the number is negative, the
model above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at
1% and 5% significance level, respectively.
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Table 17: Paired t-test statistics of equal HE of two copula models

Rolling window size 262
Downside-risk measure: ES 0.90

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 61.46 -92.08 -52.21 -12.98 -59.14 -24.93 7.76 98.47 -7.27
STC -216.40 -117.85 -73.27 -94.12 -93.28 -44.03 84.38 -63.41
C-vine 54.65 64.98 3.59 46.22 82.74 308.25 73.21
D-vine 27.41 -31.06 7.37 54.43 158.67 38.53
Clayton -60.57 -21.18 25.88 125.08 11.86
Gumbel 48.27 112.11 132.84 63.25
Frank 46.87 147.39 23.58
Joe 98.69 -19.72
AMH -112.78

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test.
If the number is positive, the model on the left obtained a higher HE. If the number is negative, the
model above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at
1% and 5% significance level, respectively.

F.2 Rolling window size of 786 observations

Table 18: Paired t-test statistics of equal HE of two copula models

Rolling window size 786
Downside-risk measure: SV

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 116.24 -12.33 -71.71 -6.65 -101.80 -41.36 -56.42 124.10 -125.04
STC -59.49 -145.17 -67.07 -154.11 -110.24 -145.04 98.89 -270.44
C-vine -17.38 6.53 -65.01 -20.40 -26.68 88.38 -63.00
D-vine 33.87 -70.30 -3.85 -12.06 148.31 -71.00
Clayton -94.20 -37.72 -44.25 113.05 -72.60
Gumbel 105.33 100.16 175.97 -5.15
Frank -10.68 149.11 -57.69
Joe 183.78 -63.15
AMH -233.92

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH denotes
the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If the number
is positive, the model on the left obtained a higher HE. If the number is negative, the model above obtained
a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and 5% significance
level, respectively.

Table 19: Paired t-test statistics of equal HE of two copula models

Rolling window size 786
Downside-risk measure: LPM

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 117.13 -12.71 -38.36 13.46 -101.88 -11.83 -38.82 117.81 -86.04
STC -71.74 -122.06 -61.47 -177.68 -100.67 -161.15 64.22 -249.89
C-vine -5.14 20.06 -61.00 1.13** -14.07 93.04 -48.76
D-vine 33.16 -75.71 8.24 -12.93 122.94 -58.82
Clayton -101.84 -28.24 -47.34 105.86 -74.76
Gumbel 114.01 104.13 212.21 3.48
Frank -28.97 133.84 -69.86
Joe 170.77 -63.48
AMH -185.81

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH denotes
the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If the number
is positive, the model on the left obtained a higher HE. If the number is negative, the model above obtained
a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and 5% significance
level, respectively.
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Table 20: Paired t-test statistics of equal HE of two copula models

Rolling window size 786
Downside-risk measure: VaR 0.99

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 90.80 -9.10 -35.09 -40.88 -80.71 -15.05 -16.23 148.88 -21.73
STC -62.52 -101.95 -139.15 -114.11 -110.47 -75.69 91.28 -109.92
C-vine -9.47 -24.52 -53.20 -1.54** -3.97 90.36 -8.39
D-vine -17.25 -64.29 13.56 5.65 145.93 1.28**
Clayton -41.07 31.81 16.84 173.28 18.03
Gumbel 84.55 106.95 116.75 43.68
Frank -5.01 131.12 -7.84
Joe 91.02 -3.07
AMH -158.57

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If
the number is positive, the model on the left obtained a higher HE. If the number is negative, the model
above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and
5% significance level, respectively.

Table 21: Paired t-test statistics of equal HE of two copula models

Rolling window size 786
Downside-risk measure: VaR 0.95

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 99.82 -16.26 -81.08 -61.51 -77.13 -67.14 -34.80 134.41 -61.76
STC -56.74 -136.34 -139.89 -105.09 -123.97 -74.24 174.09 -118.97
C-vine -22.21 -27.40 -46.79 -31.41 -9.94 89.46 -31.19
D-vine -1.98** -46.13 -13.98 15.04 149.07 -13.11
Clayton -35.09 -9.17 11.59 203.45 -11.63
Gumbel 46.37 88.24 109.26 16.36
Frank 25.37 143.34 -5.25
Joe 90.41 -16.84
AMH -234.96

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test.
If the number is positive, the model on the left obtained a higher HE. If the number is negative, the
model above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at
1% and 5% significance level, respectively.

Table 22: Paired t-test statistics of equal HE of two copula models

Rolling window size 786
Downside-risk measure: VaR 0.90

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 107.88 -20.46 -87.27 -61.61 -77.98 -83.21 -42.81 124.71 -94.92
STC -55.07 -135.59 -123.10 -103.77 -125.48 -76.37 148.37 -147.50
C-vine -23.63 -20.19 -43.64 -39.81 -11.56 87.62 -46.69
D-vine 9.18 -38.81 -26.65 17.37 137.89 -28.55
Clayton -38.85 -32.05 4.95 174.50 -33.49
Gumbel 28.20 82.72 107.83 0.68**
Frank 40.51 136.77 -13.15
Joe 90.05 -29.56
AMH -259.26

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If
the number is positive, the model on the left obtained a higher HE. If the number is negative, the model
above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and
5% significance level, respectively.
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Table 23: Paired t-test statistics of equal HE of two copula models

Rolling window size 786
Downside-risk measure: ES 0.99

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 96.46 -13.84 -4.07 -5.44 -73.80 15.60 15.29 132.95 67.13
STC -69.66 -81.77 -112.33 -116.91 -96.15 -62.37 58.90 -71.10
C-vine 9.82 8.79 -43.25 21.52 20.17 88.11 42.33
D-vine -2.38* -70.45 18.08 17.21 116.15 47.87
Clayton -62.94 27.09 18.72 146.82 54.24
Gumbel 98.40 122.83 116.64 95.99
Frank 2.38* 112.26 30.23
Joe 75.24 21.01
AMH -123.05

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test.
If the number is positive, the model on the left obtained a higher HE. If the number is negative, the
model above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at
1% and 5% significance level, respectively.

Table 24: Paired t-test statistics of equal HE of two copula models

Rolling window size 786
Downside-risk measure: ES 0.95

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 99.77 -13.88 -44.41 -12.52 -78.08 -28.62 3.05 119.67 13.93
STC -66.98 -113.21 -105.40 -117.36 -114.83 -63.76 110.56 -107.61
C-vine -7.63 5.18 -50.04 -8.21 13.20 92.50 21.02
D-vine 19.71 -67.26 -0.31 39.88 126.32 55.86
Clayton -77.91 -26.44 14.59 166.58 39.65
Gumbel 81.62 138.81 117.80 93.73
Frank 44.08 138.77 53.73
Joe 82.57 5.92
AMH -149.99

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If
the number is positive, the model on the left obtained a higher HE. If the number is negative, the model
above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and
5% significance level, respectively.

Table 25: Paired t-test statistics of equal HE of two copula models

Rolling window size 786
Downside-risk measure: ES 0.90

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 101.55 -16.33 -61.69 -12.50 -86.71 -47.87 -7.87 112.12 -6.40
STC -62.44 -122.62 -78.21 -123.78 -116.83 -70.79 115.09 -98.71
C-vine -12.90 7.33 -53.93 -19.93 9.99 86.32 13.79
D-vine 31.35 -67.31 -10.71 49.74 123.02 51.73
Clayton -90.95 -47.80 5.22 118.80 16.87
Gumbel 81.72 150.96 124.18 97.70
Frank 71.99 137.10 61.53
Joe 90.36 4.03
AMH -131.96

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If
the number is positive, the model on the left obtained a higher HE. If the number is negative, the model
above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and
5% significance level, respectively.
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F.3 Rolling window size of 1310 observations

Table 26: Paired t-test statistics of equal HE of two copula models

Rolling window size 1310
Downside-risk measure: SV

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 158.87 -18.84 -59.13 -2.08* -97.16 -39.33 -83.66 135.09 -152.17
STC -62.83 -184.72 -57.97 -175.72 -105.80 -217.32 97.74 -284.34
C-vine -9.07 15.78 -57.62 -13.57 -26.58 101.97 -55.90
D-vine 37.19 -87.64 -8.85 -44.74 191.64 -101.53
Clayton -108.93 -48.32 -58.54 101.95 -83.48
Gumbel 123.60 70.37 210.72 -2.18*
Frank -17.65 148.41 -53.79
Joe 229.40 -73.59
AMH -223.45

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH denotes
the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If the number
is positive, the model on the left obtained a higher HE. If the number is negative, the model above obtained
a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and 5% significance
level, respectively.

Table 27: Paired t-test statistics of equal HE of two copula models

Rolling window size 1310
Downside-risk measure: LPM

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 162.64 -10.47 -22.12 14.57 -104.26 -15.68 -59.18 134.34 -115.46
STC -69.19 -151.09 -54.49 -234.15 -98.77 -235.53 70.84 -267.79
C-vine -2.15* 19.39 -58.54 -3.08 -20.42 103.13 -52.62
D-vine 33.14 -114.30 -1.87** -46.19 144.51 -108.29
Clayton -112.77 -37.40 -53.79 91.62 -86.74
Gumbel 129.82 96.73 244.55 4.79
Frank -26.25 130.07 -67.46
Joe 177.29 -86.65
AMH -188.80

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH denotes
the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If the number
is positive, the model on the left obtained a higher HE. If the number is negative, the model above obtained
a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and 5% significance
level, respectively.

Table 28: Paired t-test statistics of equal HE of two copula models

Rolling window size 1310
Downside-risk measure: VaR 0.99

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 116.64 -18.12 -30.19 -44.85 -65.86 -10.96 -36.55 207.85 -15.22
STC -61.93 -115.61 -153.56 -116.19 -96.05 -111.75 130.38 -140.08
C-vine 0.67** -13.96 -37.13 9.28 -6.32 90.22 9.95
D-vine -20.61 -63.20 16.41 -17.12 147.19 14.92
Clayton -41.15 37.43 5.64 165.29 40.50
Gumbel 96.96 63.94 110.89 54.75
Frank -30.29 113.30 -0.70**
Joe 119.09 23.80
AMH -162.52

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If
the number is positive, the model on the left obtained a higher HE. If the number is negative, the model
above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and
5% significance level, respectively.
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Table 29: Paired t-test statistics of equal HE of two copula models

Rolling window size 1310
Downside-risk measure: VaR 0.95

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 131.42 -24.30 -94.70 -52.29 -68.08 -52.80 -61.63 180.44 -73.24
STC -58.39 -187.04 -124.93 -106.49 -112.41 -113.88 206.70 -180.01
C-vine -14.93 -14.34 -35.47 -14.49 -15.23 96.02 -12.38
D-vine 5.38 -39.16 -1.01** -3.73 234.28 5.17
Clayton -38.14 -6.72 -6.73 182.35 -0.31**
Gumbel 56.05 40.69 116.92 29.77
Frank -1.91** 144.39 4.32
Joe 133.62 6.20
AMH -240.32

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH denotes
the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If the number
is positive, the model on the left obtained a higher HE. If the number is negative, the model above obtained
a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and 5% significance
level, respectively.

Table 30: Paired t-test statistics of equal HE of two copula models

Rolling window size 1310
Downside-risk measure: VaR 0.90

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 137.24 -26.24 -107.15 -47.92 -71.09 -67.04 -73.30 161.21 -113.66
STC -55.68 -185.85 -102.53 -105.41 -115.27 -118.91 165.80 -203.61
C-vine -17.98 -9.32 -36.79 -24.45 -20.51 97.02 -31.16
D-vine 16.48 -31.96 -11.88 -4.76 226.17 -17.05
Clayton -44.95 -31.53 -18.61 168.09 -32.11
Gumbel 37.19 33.46 122.52 12.76
Frank 8.05 149.51 -3.87
Joe 141.97 -10.83
AMH -274.41

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH denotes
the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If the number
is positive, the model on the left obtained a higher HE. If the number is negative, the model above obtained
a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and 5% significance
level, respectively.

Table 31: Paired t-test statistics of equal HE of two copula models

Rolling window size 1310
Downside-risk measure: ES 0.99

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 116.34 -12.74 -1.52** -9.20 -60.69 13.54 -1.27** 170.10 64.83
STC -62.52 -102.79 -127.28 -121.87 -89.60 -94.57 78.95 -76.12
C-vine 10.99 7.86 -36.08 19.40 9.99 84.33 37.28
D-vine -8.56 -74.09 17.50 0.22** 125.85 59.12
Clayton -63.09 28.60 7.84 145.96 65.08
Gumbel 108.96 91.42 113.67 94.89
Frank -18.73 108.06 33.31
Joe 103.46 50.80
AMH -126.50

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If
the number is positive, the model on the left obtained a higher HE. If the number is negative, the model
above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and
5% significance level, respectively.
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Table 32: Paired t-test statistics of equal HE of two copula models

Rolling window size 1310
Downside-risk measure: ES 0.95

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 128.04 -19.23 -35.00 -9.84 -68.92 -27.34 -16.47 147.91 11.13
STC -62.27 -148.22 -97.34 -123.61 -110.58 -97.78 129.84 -120.69
C-vine 2.67* 14.24 -39.83 -0.30 8.82 92.31 25.24
D-vine 18.30 -69.79 -5.80 18.09 176.24 61.13
Clayton -81.60 -28.35 -5.19 156.93 34.90
Gumbel 93.55 89.81 130.09 98.25
Frank 18.90 143.26 56.48
Joe 121.23 33.16
AMH -184.06

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH
denotes the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If
the number is positive, the model on the left obtained a higher HE. If the number is negative, the model
above obtained a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and
5% significance level, respectively.

Table 33: Paired t-test statistics of equal HE of two copula models

Rolling window size 1310
Downside-risk measure: ES 0.90

SST C-vine D-vine HAC
Clayton Gumbel Frank Joe AMH Mixed

SGC 130.41 -21.80 -61.76 -6.95 -78.24 -42.92 -28.34 132.35 -5.29
STC -60.58 -172.22 -69.13 -131.66 -112.72 -108.38 116.49 -102.51
C-vine -5.60 17.60 -46.32 -10.56 6.39 93.39 20.03
D-vine 36.87 -66.51 -9.28 34.61 188.57 65.37
Clayton -99.46 -54.17 -16.86 117.86 7.41
Gumbel 92.90 94.82 144.48 106.32
Frank 32.78 146.96 65.15
Joe 134.35 29.85
AMH -160.09

Note:
SGC denotes the standard Gaussian copula and STC denotes the standard student t copula. AMH denotes
the Ali-Michail-Haq HAC. The numbers in the graph denote the statistic of the paired t-test. If the number
is positive, the model on the left obtained a higher HE. If the number is negative, the model above obtained
a higher HE. * and ** denote that the hypothesis of equal HE is not rejected at 1% and 5% significance
level, respectively.
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