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Abstract
This paper uses the VAR-GARCH-BEKK model to investigate the return and volatility
spillover effects between Bitcoin, AEX, DAX, FTSE100, EUR/USD and GBP/USD.

Furthermore, the copula-GARCH model is used to analyze safe haven and hedging properties
of Bitcoin during the COVID-19 pandemic. It is found that EUR/USD only shows

one-directional volatility spillover effects. All other assets show one-directional return
spillover effects and bidirectional volatility spillover effects. The return spillover effects are all

positive and relatively small, while the volatility spillover effects differ. Furthermore, it
appears that the spillover effects of Bitcoin on the assets is significantly weaker than the

spillover effects of the assets on Bitcoin, indicating that Bitcoin is still a small asset. In case
of the safe haven and hedging properties, it is found that Bitcoin does not act as a hedge

against the assets during the COVID-19 pandemic. Furthermore, it is found that Bitcoin acts
as a safe haven against AEX and EUR/USD, while it does not act as a safe haven against

DAX, FTSE100 and GBP/USD.
DISCLAIMER The views stated in this research are those of the authors and not
necessarily those of Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Bitcoin is a decentralised digital currency that was outlined in a paper by Nakamoto, Bitcoin

(2008) and went online in 2009. In the years after its establishment, it has become increasingly

popular and its price has been growing rapidly. Fidelity (2020) conducted a survey of many

investors, advisors and institutions to investigate how they think of digital assets in general and

as a apart of an investment portfolio. This survey finds that 36% of the respondents invests in

digital assets and 26% has exposure to Bitcoin. Almost 60% of the respondents has a positive

or neutral perception towards digital assets and another 60% feel digital assets have a place

in portfolios. Furthermore, almost all respondents that are interested in investing in digital

assets expect that digital assets will be 0.5% of their investment portfolio in the next five years.

These results show that bitcoin has become increasingly popular among institutional investors.

A reason for its popularity can be its extremely high level of return and volatility. Since there

is an increasing interest in Bitcoin as an investment and more institutional investors are ac-

cepting it as a legitimate investment asset, there is a need to examine the relation between

Bitcoin and other asset classes. This research investigates the relation between Bitcoin and

European financial assets in two different ways. First, the return and volatility spillover effects

in the period between june 2013 and june 2021 are analyzed. Then, the safe haven and hedging

capabilities of Bitcoin against European financial assets during the COVID-19 pandemic are

explored.

Thus far, many existing studies investigate Bitcoin its safe haven and hedging capabilities.

Most studies, such as (Kliber et al., 2019), (Stensås et al., 2019), (Bouri et al., 2017), (Dyhrberg,

2016), use a Dynamic Conditional Correlation (DCC) based method to analyze the dependency

between Bitcoin and other stock market prices and find that it acts as a hedge against other

stock prices. As the DCC model assumes bivariate normality on the join distribtuion and it

only captures linear relationship between marginals of different time series, it might not be

the most appropriate model to model dependencies between Bitcoin and European financial

assets. Taking this into account, this paper adds to existing literature by investigating the safe

haven and hedging properties of Bitcoin through a copula analysis that appropriately describes

the average and tail dependence structure between financial assets (Reboredo, 2013), (Junker

et al., 2006) and (Liu et al., 2016). Main advantages of copula models are that they are able

to capture complex and non linear dependency structure between different assets, that the

marginal behaviour and the dependence structure are separated by the framework of copulas

and the fact that copulas are invariant to increasing and continuous transformations, such as
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taking logarithm returns, which is commonly used in the field of finance. Only a few studies

investigate volatility spillover effects between bitcoin and other assets by using Multivariate

Generalized Autoregressive Conditional Heteroscedasticity (MGARCH) models. Bouri, Das,

Gupta, and Roubaud (2018) study the spillover effects between Bitcoin and assets in different

market conditions. However, the study only considers the MSCI World, MSCI Emerging market

and MSCI China equity index when examining the spillover effects between Bitcoin and stocks

indices. Wang et al. (2019) use the multivariate VAR-GARCH-BEKK model to investigate

return and volatility spillover effects. However, this study focuses only on the Chinese market.

Existing studies mainly focus on the Chinese market and major world stock indices. As

results may vary between different regions, this study extends existing literature by focusing on

European financial assets. To the best of the author’s knowledge, this is the first paper to focus

on this region. The dynamic relation between Bitcoin and European financial assets may be of

interest for investors who invest in European assets. Therefore, the aim of this research is to in-

vestigate mean and volatility spillover effects between bitcoin and European assets and explore

its hedge and safe haven capabilities during the COVID-19 pandemic. Hence, some research

questions are: Are there any significant return and volatility spillover effects between Bitcoin

and the European financial assets? What is the direction and magnitude of these significant

volatility spillover effects? Are there tail dependencies? If the tail dependence exist, are they

symmetric or asymmetric? How is the dependence structure between Bitcoin and the assets on

average? Which copula model captures the dependency with the best fit? Does Bitcoin act as

a hedge or a safe haven during the COVID-19 pandemic?

This paper first measures return and volatility spillover effects by using the VAR-GARCH-

BEKK model. We use AIC values to determine the parameters of the VAR and GARCH-BEKK

model. Additionally, to check for adequate model specification, we perform a multivariate

Ljung-Box test. This test checks whether serial correlation exists in the standardized residuals.

We use the Cholesky decomposition method to standardize the residuals of the GARCH-BEKK

model. By recursively fitting the VAR and the GARCH-BEKK models with different combi-

nation of parameters, the optimal model can be chosen. We determine the direction and

magnitude of the spillover effects based on statistical significance. The safe haven and the

hedging properties during the COVID-19 pandemic are examined by using the five most fre-

quently used copulas in this kind of study: Gaussian, Student-t, Clayton, Gumbel and Frank.

For the marginals, we follow Garcia-Jorcano, Muela (2020) and use the univariate APARCH

model to fit the returns. The APARCH model not only captures all relevant stylized facts

of financial returns such as volatility clustering, leptokurtotic and the leverage effect, but has
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also great flexibility. The distribution of the innovations, student-t or normal, that is used to

estimate the APARCH model is selected based on AIC, log-likelihood and a visual inspection of

the QQ-plot. Since the copulas are different, because each of them capture a different pattern

in dependence, and consequently have non comparable dependence parameter, the Kendals τ

coefficient, which is a rank correlation measure, is used to measure the dependence structure

on average. Unlike traditional methods that are used to measure dependency between asset

returns, a copula function also provides information about dependencies in the tails of the

distribution. The dependence in the tail of the distribution provides information during times

of extreme market movements and is therefore useful to assess the safe haven property of Bit-

coin against European assets. Also here, each copula captures a different pattern in the tail

dependence: tail independence, symmetric tail dependence and asymmetric tail dependence.

To find out which of the five different copulas suit the data best, we perform a model selec-

tion process based on AIC, mean absolute error (MAE) and the Cramér-von Mises test with

parametric bootstrapping. This research uses daily data of Bitcoin, the Amsterdam Stock Ex-

change Index (AEX), the Deutscher Aktien index (DAX), the Financial Times Stock Exchange

index (FTSE100), the Euro (EUR/USD) and the Pond (GBP/USD) between June 2013 and

june 2021. These equity indices and exchange rates are among the most important prosperity

indicators of Europe.

This study provides a detailed literature review in section 2 and will further deepen the

analysis in our data in section 3. This is followed by the methodology in section 4, where the

models are described. The results are shown in section 5 and the paper is concluded with a

brief summary of our findings in section 6.
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2 Literature review

Wang et al. (2019) use the the multivariate VAR-GARCH-BEKK model to investigate return

and volatility spillover effects between Bitcoin and six major Chinese financial assets from 2013

to 2017. This study uses the VAR model to assess the mean spillover effects and the GARCH-

BEKK model to measure the volatility spillover effects. Empirical results show that only the

monetary market has a mean spillover effect on Bitcoin. Gold, monetary and bond markets

affect the volatility of Bitcoin. Bitcoin itself has spillover effects on the volatility of gold.

Furthermore, Bitcoin is a hedge against stocks and bonds and a safe haven against monetary

market during times of stress.

Vardar, Aydogan (2019) examined the volatility and return spillover effects between Bitcoin

and other asset classes from turkey by also using the multivariate VAR-GARCH-BEKK model,

where the VAR model is used to estimate the mean equation and the multivariate GARCH-

BEKK model is used to model the conditional variance. Firstly, the study finds return spillover

effects in only one direction. The return of the bond market affects the return of Bitcoin, while

the return of Bitcoin does not affect the return of the bond market. Secondly, the study finds

evidence for the existence of bidirectional cross-market volatility spillover effects. The volatility

of Bitcoin and all other financial assets except the U.S. dollar affect each other. Their findings

support the position of Bitcoin as a new investment asset class, since it is connected with other

financial assets. According to Vardar, Aydogan (2019), Bitcoin offers opportunities for diver-

sification swings. This is because of its relatively high return and low correlation with other

financial assets. They also concluded that the continued rapid growth of Bitcoin and its unreg-

ulated nature could create new vulnerabilities in the international finance system. Therefore,

the study recommends regulators and policy makers to closely monitor the Bitcoin market and

be aware of the return and volatility spillover effects among Bitcoin and other asset classes for

selected and specific countries.

Many studies investigate the safe haven and hedging properties of Bitcoin. However, most

of them, such as (Stensås et al., 2019), (Bouri et al., 2017), (Kliber et al., 2019) and (Dyhrberg,

2016) used a Dynamic Conditional Correlation (DCC) method to analyze these properties. Ex-

isting literature based on a copula approach to assess the safe haven and hedging properties

of Bitcoin is limited. However, more research is available related to other assets such as gold.

Reboredo (2013) uses a copula approach to investigate average movements across marginals as

well as upper and lower tail dependence (joint extreme movements) in order to determine the

hedging and safe haven capabilities of gold against oil price movements. In order to capture
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different patterns of dependence and tail dependence different copula functions are used. More

specifically, the Gaussian, Student-t, Clayton, Gumbel and Clayton-Gumbel copula functions

are used. Additionally, as in Patton (2006), the time-varying dependence is measured by al-

lowing the correlation parameter of the Student-t and Gaussian copula to vary according to

the ARMA(1,q)-type process. In order to fit the marginal densities, the threshold generalised

autoregressive conditional heteroskedasticity (TGARCH) is used. Based on Akaike information

criterion (AIC) and the pseudo-likelihood ratio test of Chen, Fan (2006), the Gaussian copula

with time varying parameters (TVP Gaussian) is selected as the best performing model. Fur-

thermore, they find that gold does not act as a hedge against oil price movements, as the copula

functions reveal a positive and significant dependence between the two assets on average. On

the other hand, they find evidence that gold and oil prices are independent in the tail of the

distribution, indicating that gold acts as a safe haven in periods of extreme downward price

movements of the oil market.

Reboredo (2013) also investigates the safe haven and hedging properties of gold against the

US dollar (USD) using a copula approach to measure the average and extreme market depen-

dence between gold and USD. In their research, they considers different copula specifications in

order to capture different patterns of dependence and tail dependence such as tail independence,

tail dependence, asymmetric tail dependence or time-varying dependence. They consider the

Gaussian, Student-t, Clayton, Gumbel, Symmetrized Joe-Clayton (SJC), TVP Gaussian and

TVP Student-t copulas. For the marginal distribution, the ARMA (p,q) model with TGARCH

is considered with the aim to account for the most important stylized features of gold such

as fat tails and the leverage effect. Based on AIC it appears that the Student-t copula is the

one that most adequately represents the dependence structure between gold and the USD. The

Student-t copula was the best performing copula for all exchange rates except CAD and JPY

where the SJC and TVP Gaussian performed best. Furthermore, this study finds evidence that

gold is a hedge against USD on average and a safe haven during periods of USD market stress.

Garcia-Jorcano, Muela (2020) use the Gaussian, Student-t, TVP Gaussian, TVP Student-t,

Clayton, Gumbel and Frank copulas to investigate the role of Bitcoin as a hedge or diversi-

fier against the following international market stock indexes: SP500 (US), STOXX50 (EU),

NIKKEI (Japan), CSI300 (Shanghai), and HSI (Hong Kong). For the marginals, this research

considers the univariate APARCH model because of its great flexibility, having as special cases,

among other, the GARCH and GJR-GARCH models. In order to select the copula that fits

the data best, Garcia-Jorcano, Muela (2020) use a grapic method that compares the empirical

and parametric distribution of the copulas, multiple information criteria and goodness of fit
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tests. All methods appear to rule out Clayton, Gumbel and Frank, which are also known as the

Archimedean copulas, as an appropriate model to describe the dependencies between Bitcoin

and the stock indices analyzed. In the case of the US, European and Hong Kong markets both

Gaussian and Stundent-t copulas appear to describe the dependencies adequately with Bitcoin.

In case of the Japanese market and the Chinese market, the Gaussian copula appears to be

the one that describes the dependency structure best. Furthermore, Garcia-Jorcano, Muela

(2020) find that Bitcoin acts as a hedge against all stock indexes analyzed on average and as

an diversifier during periods of market stress. The TVP Gaussian gives the same result as the

constant copula models. However, according to the Student-t copula the hedging property of

Bitcoin fails on a high percentage of days. Our research extends the work of Garcia-Jorcano,

Muela (2020) by also taking into account the safe haven properties of Bitcoin. e.tex
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3 Data

This research uses daily data of Bitcoin, European equity indices and exchange rates. The eq-

uity indices are represented by the Amsterdam Stock Exchange (AEX), the Deutscher Aktien

(DAX) and the Financial Times Stock Exchange (FTSE100). The exchange rates are the EU-

R/USD and the GBP/USD. Bitcoin data, consisting of daily closing prices, is extracted from

Coinmetrics whereas the daily closing prices of equity indices and exchange rates are extracted

from Yahoo Finance. Figure 7 illustrates daily prices of all assets from June 2013 to june 2021.

(a) BTC/USD (b) AEX Index (c) DAX Index

(d) FTSE100 Index (e) EUR/USD (f) GBP/USD

Figure 1: Daily prices of Bitcoin (BTC), the Amsterdam Stock Exchange Index
(AEX), the Deutscher Aktien Index (DAX), the Financial Times Stock Exchange
Index (FTSE100), the Euro (EUR/USD) and the Pond (GBP/USD)

Since bitcoin is traded every day and the other assets are not, there is more bitcoin data

available than the other assets. To make sure that data of all assets are available at each given

date, all dates that contain missing values of at least one of the assets are omitted. This results

in a sample of 2001 observations. This research focuses on log-returns which is calculated as

follows: ri = ln(pricei,t/pricei,t−1) ∗ 100, where i denotes the asset i at time t and t-1. Figure

2 shows the log-returns. It is clear that all assets exhibit volatility clustering. Table 1 shows

summary statistics of the data. It can be observed that Bitcoin has a higher mean and standard

deviation than the other assets. The Jarque Bera test rejects the null-hypothesis in all cases,

which indicates that the returns are not normally distributed for all assets.1 The high kurtosis
1See appendix A.1 for the specification of the Jarque Bera test
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(a) Log return BTC/USD (b) Log return BOVESPA (c) Log return IGBVL

(d) Log return IPC (e) Log return BRL/USD (f) Log return PEN/USD

Figure 2: Log returns of Bitcoin (BTC), the Amsterdam Stock Exchange Index
(AEX), the Deutscher Aktien index (DAX), the Financial Times Stock Exchange
Index (FTSE100), the Euro (EUR/USD) and the Pond (GBP/USD)

values indicate heavy tails and the negative skewness means that negative returns are more

likely to occur than positive returns. The univariate Ljung-Box and squared Ljung-Box tests

have been performed to check for auto-correlation of the returns and the squared returns.2 It

can be observed that all assets except the GBP/USD reject the null hypothesis of the Ljung-

Box test at the 1% significance level. This indicates that there is evidence for serial correlation

for all assets except GPB/USD. After performing the squared Ljung-Box test, we observe that

all assets reject the null hypothesis at the 1% significance level. This suggests that all assets

exhibit volatility clustering and thus can be modelled by GARCH-type models. The ADF test

is performed to check the presence of stationary time-series.3 It can be observed that there

is evidence for stationarity for all assets at the 1% significance level. This allows the Vector

Autoregressive (VAR) model to be used for modelling.

2See appendix A.2 for the specification of the Ljung-Box Q-test
3See appendix A.4 for the specification of the ADF test
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Table 1: Summary statistics

Variable BTC AEX DAX FTSE100 EUR/USD GBP/USD
N 2001 2001 2001 2001 2001 2001
Mean 0.291 0.035 0.032 0.005 -0.003 -0.004
Std 5.130 1.103 1.251 1.032 0.494 0.588
Min -48.090 -11.376 -13.055 -11.512 -2.417 -8.401
Max 38.049 8.59074 10.414 8.667 3.025 2.985
Skewness -0.502 -0.851 -0.722 -0.887 0.049 -1.482
Kurtosis 12.651 13.548 14.055 16.747 5.507 25.939
Jarque Bera 7849.7* 9517.5* 10364* 16018* 524.92* 44604*
Ljung-Box-
Q(10)

36.463* 22.662* 23.331* 40.357* 21.749** 13.461

Ljung-Box-S-
Q(10)

135.73* 876.27* 647.48* 935.4* 260.96* 91.672*

ADF -10.605* -13.517* -12.962* -13.555* -13.449* -14.011*

The Jarque Bera statistic tests for normality. LB-Q(10) and the LB-S-Q(10) are the Ljung-Box Q-test statis-
tics of returns and squared returns up to tenth lag and are used to test serial auto correlation. ADF is a statistic of the
Augmented Dickey Fuller and is performed to test for unit roots. * and ** indicate that the null hypothesis is rejected
at the 1% and 5% significance levels, respectively.
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4 Methodology

This section focuses on the methodology of the research. The first half of this section presents

VAR-GARCH-BEKK model that is used to measure the return and volatility spillover effects.

The second half of the methodology presents the copula-GARCH model with APARCH for the

marginals and several copulas for the dependence structure. This model is used to analyze the

safe haven and hedging properties of Bitcoin.

In order to decide whether Bitcoin acts as a hedge or a safe haven we follow the definitions

given by Baur, McDermott (2010) and Kaul, Sapp (2006). According to them, an asset is a

hedge if it is uncorrelated or negatively correlated with another asset or portfolio on average

and a safe haven if it is uncorrelated or negatively correlated with another asset or portfolio

in times of extreme downwards market movements. Hence, we can formulate the following two

conditions to determine whether Bitcoin can serve as a hedge or a safe haven against European

financial assets: condition 1. τ ≤ 0 (Bitcoin is a hedge). condition 2. λL ≤ 0 (Bitcoin

is a safe haven). The parameter τ is the Kendall’s tau coefficient and is used to assess the

dependence structure between Bitcoin and the European financial assets on average. λL is

the lower tail dependence coefficient and is used to assess the dependence structure between

Bitcoin and the European assets in times of extreme downwards market movements. The

parameter of the copulas are estimated by using the Maximum Likelihood (ML) method. The

standard errors and the estimated coefficients are used to calculate the t-statistics and p-values.

Statistical significance of the parameters are tested based on the p-values that are obtained.

Based on the copula parameter, the Kendall’s tau and the tail dependence coefficients are

calculated.

4.1 The VAR-GARCH-BEKK model

We use the multivariate VAR-GARCH-BEKK model to analyze the return and volatility

spillover effects between Bitcoin and European financial assets. The Vector Autoregressive

(VAR) model is used to analyze the return spillover effects, while the GARCH-BEKK model is

used to examine the volatility spillover effects.

4.1.1 The Autoregressive (VAR) model

The Vector Autoregressive (VAR) model is specified as follows:
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r1,t

r2,t

r3,t

 =


α1

α2

α3

+
∑k

i=1


β11,i β12,i β13,i

β21,i β22,i β23,i

β31,i β32,i β33,i



r1,t−i

r2,t−i

r3,t−i

+


ε1,t

ε2,t

ε3,t

,
where rt denotes the return vector, rt−i the lagged return vector, α a vector of constants,

β a matrix containing parameters that are associated with the lagged return vector and εt a

vector that contains the error terms. The return spillover effects between Bitcoin and the Eu-

ropean assets are measured by the coefficients of the β matrix and their statistical significance.

For example, if β13 is significant and equal to zero, the lagged return of the third time series

has no return spillover effect on the return of the first time series.

Another model that could be considered to analyze the return spillover effects is the Vec-

tor Autoregressive Moving Average (VARMA) model. As Tsay (2005) mentions that the VAR

model is adequate in financial applications and the VARMA model may experience issues such

as the identification problem, this research uses the VAR model to determine the return spillover

effects between Bitcoin and European financial assets.

4.1.2 Baba, Engle, Kroner and Kraft (BEKK) MGARCH

The variance equation is the MGARCH-BEKK model of Engle, Kroner (1995). The error

terms of the mean equation are assumed to have a conditional distribution with mean zero and

variance Ht. These residuals are used to model the conditional variance in the BEKK model,

which is explicitly given by

Ht =


h11,t h12,t h13,t

h21,t h22,t h23,t

h31,t h32,t h33,t

 =


c11 c12 c13

0 c22 c12

0 0 c33


′ 
c11 c12 c13

0 c22 c12

0 0 c33

+

∑p
i=1


a11,i a12,i a13,i

a21,i a22,i a23,i

a31,i a32,i a33,i


′ 

ε211,t−i ε1,t−iε2,t−i ε1,t−iε3,t−i

ε2,t−iε1,t−i ε222,t−i ε2,t−iε3,t−i

ε3,t−iε1,t−i ε3,t−iε2,t−i ε233,t−i



a11,i a12,i a13,i

a21,i a22,i a23,i

a31,i a32,i a33,i

+

∑q
j=1


g11,j g12,j g13,j

g21,j g22,j g23,j

g31,j g32,j g33,j


′ 
h11,t−j h12,t−j h13,t−j

h21,t−j h22,t−j h23,t−j

h31,t−j h32,t−j h33,t−j



g11,j g12,j g13,j

g21,j g22,j g23,j

g31,j g32,j g33,j

 ,
where Ht denotes the time-varying conditional variance-covariance matrix. C is the upper
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triangular matrix of constants. The elements of matrix A, also called the ARCH coefficient

matrix, measure the lagged and cross shocks from asset i to j. These shocks are spillover effects.

The cross-asset spillover effects are represented by the off-diagonal coefficients, while the effect

of the lagged shocks are represented by the diagonal coefficients. The elements of matrix g,

also called the GARCH coefficients matrix, measure the volatility spillover effects. To be more

specific, the coefficients in matrix G measures the conditional volatility spillover effects from

asset i to asset j. Here again, the cross-asset volatility spillover effects are represented by the

off-diagonal coefficients, while the effect of the lagged volatility are represented by the diago-

nal coefficients. Furthermore, Maximum Likelihood Estimation (MLE) is used to estimate the

parameters of the model.

The main drawback of the BEKK model is that the number of free parameters go up very

fast with the number of time series. For a number of time series N, the number of parameters

is equal to (N(N+ 1))2/2 +N(N+ 1)/2. Despite this drawback, this research still chooses to

use the BEKK model. One of the advantages of using the BEKK model for volatility spillover

effects is the fact that it enforces Ht to be positive definite (Doan, 2013). Another important

advantage of the BEKK model is that it allows all complicated interactions among different

time series and thus, in contrast to other multivariate GARCH models, all volatility spillover

effects can be measured. The full VECH model is not chosen because it has more parameters

than the BEKK model and only enforces positive definite Ht under certain restrictions. The

DCC model performs well in capturing volatility, correlation and time-varying correlation, but

its main drawback in this application is that it does not capture volatility spillover effects nor

is DCC closed under linear transformation (Basher, Sadorsky, 2016).

Bauwens et al. (2006) state that the BEKK model is a flexible model, but requires too many

parameters when more than four time series are estimated. To prevent difficulties that come

with estimating too many parameters, this paper considers two different multivariate VAR-

GARCH-BEKK models. The first model analyzes volatility spillover effects between Bitcoin

and European stock indices and the second model analyzes volatility spillover effects between

Bitcoin and European exchange rates.

4.2 Introduction to copula

A copula is a multivariate cumulative distribution function (CDF) that is introduced by Sklar

(1959). It joins univariate distributed functions to a multivariate distribution and extracts the

dependence structure from the joint distribution, independent of marginal distributions. The
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multivariate CDF is denoted by C in the following equation:

F (x1, ...xd) = C(F1(x1), ..., Fd(xd)), (1)

where Fi(xi), i = 1,..., d are uniform marginals on [0,1]. Alternatively, a copula can be written

as the multivariate distribution, C, of a vector of random variables with uniformly distributed

marginals U(0,1).

C(u1, ..., cd) = F (F−11 (u1), ..., F
−1
d (ud)) (2)

where the ui = F (Xi)’s are the quantile functions of the marginals. Equation 2 represents the

Elliptical copula family. Elliptical copulas are the ones that are derived from elliptical contoured

multivariate distributions (Frahm et al., 2003). As elliptical distributions are characterized by

radial symmetry, the upper and lower tail dependence are equal. The normal and student-

t distributions are the most commonly used elliptical distributions in financial application.

Another important class of copulas is the Archimedean copula. This type of copula can be

written in the following form:

C(u1, u2) = ψ−1(ψ(u1) + ψ(u2)), (3)

where ψ(ut) is the decreasing, continuous and convex generator that maps [0,1] into [0,∞].

An attractive feature of this function is the single parameter θ that allows modelling in high

dimensions without increasing the number of parameters. Archimdedean copulas that are

frequently used in financial application are the Clayton, Gumbel and Frank copula.

4.3 Kendall’s tau

The Kendall’s τ is a rank correlation matrix which fulfills the scale invariant property and is a

commonly used measure to investigate dependence. The scale invariant property means that it

remains unchanged given a strictly increasing transformation of the random variables. Given a

random vector (X1, X2), consider an independent copy (X̃1, X̃2). Denote Y = (X1− X̃2)(X2−

X̃2). The Kendall’s τ is then specified as follows:

τ(X1, X2) = E(sign(Y )) = Pr(Y > 0)− Pr(Y < 0) (4)
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The general idea is that it measures concordance. (X1, X2) and (X̃1, X̃2) are concordant ifX1 <

X̃1 and X2 < X̃2 or if X1 > X̃1 and X2 > X̃2. Alternatively, this can be formulated as Y =

(X1−X̃2)(X2−X̃2) > 0. (X1, X2) and (X̃1, X̃2) are disconcordant if Y = (X1−X̃2)(X2−X̃2) < 0.

As we can observe, the definition of Kendalls τ in equation 5 is equal to the difference between

the probability of concordance and the probability of disconcordance. The kendall’s τ is linked

to the copula theory through the following definition4:

τ(C1, C2) = 4

∫ ∫
C(u1, u2)dC(u1, u2)− 1, (5)

where C1 and C2 are the copulas and u1 and u2 are the univariate marginals.

4.4 Tail dependence

Tail dependence measures co-movements in the tails of the distribution between a pair of

random variables. It is a characteristic of copula functions that is not captured by traditional

linear correlation functions. Many researchers, such as Hu (2006) and Lin (2011), have shown

that financial assets exhibit tail dependence. The upper tail dependence coefficient between a

pair of random variables X1 and X2 is specified as follows5:

λu = lim
q→1

Pr(X2 > V aRq(X2)|X1 > V aRq(X1)) (6)

The lower tail dependence is given by

λl = lim
q→0

Pr(X2 > F−12 (q)|X1 > F−11 (q)) (7)

4.5 The copula-APARCH model

Let r1 and r2 denote the two asset returns series. The specification of the copula-APARCH is

then given by the following characteristics:

4See appendix C.1 for the Kendall’s tau of each copula
5See appendix C.1 for tail dependence features of each copula
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The dynamics of r1 is described by the following APARCH process:


r1,t = µ1 + ε1,t

ε1,t = σ1,tz1,t, z ∼ N (0,1)

σδ1,t = ω1 +
∑q

i=1 αi(|ε1,t−1|+ γiε1,t−i)
δ +

∑p
j=1 βjσ

δ
1,t−j

The dynamics of r2 is described by the following APARCH process:


r2,t = µ2 + ε2,t

ε2,t = σ2,tz2,t, z ∼ N (0,1)

σδ2,t = ω2 +
∑q

i=1 αi(|ε2,t−1|+ γiε2,t−i)
δ +

∑p
j=1 βjσ

δ
2,t−j,

where µi, ωi,γi, αi, βj and δ are parameters that need to be estimated. The paramater γ

∈(-1,1) represents the leverage effect. A positive (negative) value of γ means that past positive

(negative) shocks have more effect on the current conditional volatitlity than past negative

(positive) shocks. The parameter δ is the Box-Cox transformation of the conditional variance

and the asymmetric absolute residuals. It is used to linearise non-linear models.

The dependence structure between innovations z1 and z2 is modeled by using bivariate

copula functions, characterized by the copula parameter θ. This paper employs the following

copula functions to model the dependency structure: Gaussian (θ := ρ), Student-t (θ:=(v,ρ)),

Clayton (θ:= α, α > 0), Gumbel (θ := α, α > 1), Frank (θ := α, α 6= 0).6

4.6 Estimation

The Maximum Likelihood (ML) method chooses C and the marginals F1, ..., Fn, such that the

probability of observing the data is maximized. Given a data set (x1,t, ..., xn,t), the ML function

calculates for which θ the following likelihood function is maximized:

l(θ) =
T∏
t=1

(
c(F1(x1t), ..., Fn(xnt; θ)

n∏
i=1

fi(xi,t); θ)

)
, (8)

where θ is the parameter vector of the copula function that is used. θ also maximizes the

following log-likelihood function:

log l(θ) =
T∑
t=1

log c(F1(x1t), ..., Fn(xnt); θ) +
T∑
t=1

n∑
i=1

log fi(xi,t); θ). (9)

6See appendix B for specification of the Gaussian, Student-t, Clayton, Gumbel and Frank copula
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The ML estimator is then given by:

θ̂ML := argmax
θ
l(θ). (10)

4.7 Goodness of fit

A commonly used method to analyze the best fitting copula is comparing the log-likelihood

and Akaike information criterion (AIC) values. The AIC criteria is specified as follows:

AIC = 2k − 2ln(L̂), (11)

where k denotes the number of parameters and L̂ is the maximum value of the likelihood

function for the model. Beyond this, Genest et al. (2009) review different "blanket tests"

which are goodness of fit tests of copula models. These "blankets tests" test the hypothesis

H0 : C ∈ C0, where C0 represents a specific parametric family of copulas. As the underlying

copula of a random vector is invariant by continuous, strictly increasing transformations of

its components, the only reasonable option for testing H0 is using a function of a collection

pseudo observations that can be interpreted as random variables from the underlying C: U1 =

(U11, ..., U1d), ..., Un = (Un1, ..., Und)..

Genest et al. (2009) investigate five different goodness of fit tests and find that the Cramér-

von Mises test with parametric bootstrapping is the best performing test. To test H0, the

"distance" between the empirical copula Cn and the parametric copula Cθn is measured. The

empirical copula summarizes the information contained in U1, ..., Un and is given by

Cn(u) =
1

n

n∑
i=1

1(Ui1 ≤ u1, ..., Uid ≤ ud), (12)

where u = (u1, ..., ud) ∈ [0, 1]d. The study measures the distance considering the rank-based

versions of the familiar Cramer–von Mises and Kolmogorov–Smirnov statistics. The Cramér-

von Mises test appears to be more powerful than the Kolmogorov–Smirnov test and is specified

as:

Sn =

∫
[0,1]d

Cn(u)2dCn(u), (13)

where Cn(u) = (
√
n(Cn(u) − Cθn(u)). The hypothesis H0 is rejected for large values of Sn.

Furthermore, Sn is a consistent statistic. This means that if C /∈ C0, H0 is rejected with

probability 1 as n −→ ∞.
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In addition, the goodness of fit between the empirical copula and the parametric copula is

measured by using the mean absolute error (MAE) evaluated on all data points of the empirical

copula:

MAE =
1

n

n∑
i=1

|Cn(u1, ..., ud)− Cθn(u1, ..., ud)|, (14)

where Cn is the empirical copula, Cθn the parametric copula, d the dimension of the data and

n the number of data points.
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5 Results

This section presents the results of the paper. Firstly, The VAR-GARCH-BEKK model is

used to measure the return and volatility spillover effects. The return spillover effects are

measured by using the VAR model, while the volatility spillover effects are measured by using

the GARCH-BEKK model. Secondly, the results of the copula-APARCH model are presented.

Lastly, a model selection strategy is performed to find the copula that fits the data best. The

hedging and safe haven properties of Bitcoin are measured based on the chosen copula.

5.1 Spillover effects between Bitcoin and European Stock Indices

The VAR model is used to examine return spillover effects between Bitcoin and European stock

indices. Before constructing the model, the optimal lag order is determined by using Akaike

Information Criterion (AIC). Based on AIC, the second order lag is chosen to be optimal.

Subsequently, the multivariate Ljung-Box (LB) test is used to check for adequate model spec-

ification. However, the multivariate LB test rejects the null hypothesis which means that the

residuals of the model are serially correlated. Therefore, by recursively fitting the model for

other lag values, we find that VAR(4) is the optimal model, where no serial correlation exists

in the residuals up to lag 6.

The VAR(4) model is fitted in order to obtain the estimates of the VAR model that is

used for the return spillover effects between Bitcoin, AEX, DAX and FTSE100. Table 2 shows

all significant results. It appears that the return of bitcoin is only affected by its own lagged

returns. The return of AEX is affected by the fourth lag of Bitcoin return. The return of DAX

is affected by the second and fourth lag of Bitcoin return. Lastly, the return of FTSE100 is

affected by the fourth lag of Bitcoin return. As we can observe, Bitcoin and the stock indices

show return spillover effects in only one direction. Bitcoin affects all stock indices, while the

stock indices don’t affect Bitcoin. All significant effects are positive, which means that if the

return of Bitcoin increases, the return of the stock indices also increase. Furthermore, the ef-

fects are more or less of the same magnitude, which indicates that no clear regional differences

exist. All coefficients are relatively small, indicating a weak relation between the returns of

Bitcoin and the stock indices.

The GARCH-BEKK(p,q) model is used to analyze the volatility spillover effects between

Bitcoin and European stock indices. The parameters of the GARCH-BEKK(p,q) model, where

p and q are the lag orders of the ARCH and GARCH coefficients, are selected based on AIC.

The GARCH-BEKK model assumes that no serial correlation exists in the standardized resid-
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uals and squared standardized residuals. To check whether this assumption is violated, the

multivariate Ljung-Box (LB) test is performed on the standardized and squared standardized

residuals. The standardized residuals are calculated by using the Cholesky decomposition. The

Cholesky decomposition maps the covariance matrix of the GARCH-BEKK model into the

product of a lower triangular matrix and its transpose. Then the standardized residuals are

obtained by the product of the inverse of the lower triangular matrix and the residuals.7 It

appears that the GARCH-BEKK(2,1) has the lowest AIC value. However, the multivariate LB

test reveals that serial correlations exists in the standardized residuals. Although the GARCH-

BEKK(1,2) has higher AIC value than the other models, it is the only model that shows no

serial correlation in the standardized residuals and the squared standardized residuals up to

lag 6. Therefore, the GARCH-BEKK(1,2) is chosen as an adequate model to analyze volatility

spillover effects between Bitcoin and European stock indices.

Table 2 also shows the estimation results of the GARCH-BEKK(1,2) model. As the coef-

ficients of the constant matrix in the GARCH-BEKK model do not measure spillover effects,

it is not shown in the table. From the results, it can be observed that the volatility of Bitcoin

is negatively affected by its own lagged shocks (ARCH coefficients) and volatility (GARCH

coefficient) at the 1% significance level. All past shocks and past volatility of DAX impact the

volatility of Bitcoin. In case of FTSE100, only its past shocks impact Bitcoin its volatility.

Additionally, the past volatility of AEX and its shock at lag 2 affects Bitcoin its volatility at a

1% significance level. It appears that the past volatility of FTSE100 and AEX negatively affects

Bitcoin its volatility, while the past volatility of DAX positively affects Bitcoin. Furthermore,

we can observe that AEX has a significantly bigger impact on the volatility of Bitcoin than the

other assets.

On the other hand, we can observe that Bitcoin its shocks at lag 1 impacts the volatility of

DAX and FTSE at a 5% significance level. However, it affects DAX negatively, while it affects

FTSE100 positively. Additionally, the results show that Bitcoin its past volatility positively

affects the volatility of AEX, DAX and FTSE100 at 1% significance level. Unlike the return

spillover effects, the volatility spillover effects between Bitcoin and all stock indices are bidi-

rectional. Overall, it appears that the volatility spillover effects between Bitcoin and the stock

indices are stronger than the return spillover effects between Bitcoin and the stock indices.

We can observe more and stronger volatility spillover effects compared to the return spillover

effects. When we look at the magnitude of the volatility spillover effects, it also appears that

all effects of Bitcoin on the stock indices are much weaker than the effects of stock indices on
7See appendix A.5 for the specification of the Cholesky decomposition
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Bitcoin. This is in line with the findings of Wang et al. (2019) and indicates that Bitcoin is

still a rather small asset compared to the European stock indices.

Table 2: Estimation results of the VAR(4)-GARCH-BEKK(1,2) model

Parameters Coefficient Parameters Coefficient

β11,t−1 -0.06786*** β21,t−4 0.013902***

(0.02253) (0.004853)

β11,t−2 0.05533*** β31,t−2 0.0121025***

(0.02255) (0.0054856)

β11,t−3 0.06034*** β31,t−4 0.0170193***

(0.02258) (0.0054936)

β11,t−4 0.06841*** β41,t−4 0.0126937***

(0.02258) (0.0045453)

α11,t−1 -0.197*** α31,t−1 -0.008**

(-0.082) (0.007)

α12,t−1 0.615 α32,t−1 0.401**

(1.561) (0.144)

α13,t−1 -3.808*** α33,t−1 0.117

(1.291) (0.102)

α14,t−1 -2.300** α34,t−1 0.060

(1.309) (0.127)

α21,t−1 -0.003 α41,t−1 0.015**

(0.139) (0.006)

α22,t−1 0.216 α42,t−1 0.193

(0.109) (0.131)

α23,t−1 0.326** α43,t−1 0.216

(0.132) (0.119)

α24,t−1 0.304** α44,t−1 0.364***

(0.132) (0.121)

α11,t−2 -0.348*** α31,t−2 0.016

(0.125) (0.011)

α12,t−2 -4.285*** α32,t−2 0.606***

(1.613) (0.157)
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α13,t−2 -1.932** α33,t−2 -0.146**

(1.265) (0.133)

α14,t−2 2.929** α34,t−2 -0.455***

(1.332) (0.123)

α21,t−2 0.016 α41,t−2 0.013

(0.012) (0.016)

α22,t−2 0.760*** α42,t−2 0.682***

(0.152) (0.144)

α23,t−2 -0.068 α43,t−2 -0.042

(0.123) (0.100)

α24,t−2 -0.571*** α44,t−2 -0.663***

(0.138) (0.125)

g11,t−1 -0.561*** g31,t−1 -0.054***

(0.017) (0.004)

g12,t−1 -7.000*** g32,t−1 -0.796***

(0.907) (0.106)

g13,t−1 -1.905*** g33,t−1 0.096

(0.475) (0.105)

g14,t−1 -0.274 g34,t−1 -0.101**

(1.422) (0.100)

g21,t−1 -0.003*** g41,t−1 -0.003***

(0.0009) (0.001)

g22,t−1 0.211** g42,t−1 0.928***

(0.085) (0.102)

g23,t−1 -0.612*** g43,t−1 -0.691***

(0.062) (0.053)

g24,t−1 -0.052 g44,t−1 -0.660***

(0.105) (0.049)

Table 2: Return and spillover effects between Bitcoin, AEX, DAX and FTSE100. βij,t−k denote
the parameter that belongs to the returns, where i ∈ (1, .., 4) is the asset, j ∈ (1, .., 4) the lagged
asset and k the lag order. ai,j and gi,j correspond to the coefficients in the ARCH and GARCH
matrix. The numbers 1,2,3,4 represent Bitcoin, AEX, DAX and FTSE100, respectively. * and
** and *** indicate the 10%, 5% and 1% significance levels.
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5.2 Spillover effects between Bitcoin and European Exchange Rates

Based on AIC, VAR(2) is chosen as the optimal model. However, the multivairate Ljung-Box

(LB) test rejects the null hypothesis, which means that the residuals are serially correlated.

In order to find an adequate model that measures return spillover effects, we recursively fit all

models up to lag 10. Again, VAR(4) appears to be optimal. It has the lowest AIC value and

no serial correlation exists in the residuals up to lag 6.

Again, the VAR(4) model is fitted in order to obtain the estimates of the VAR model that is

used to measure return spillover effects between Bitcoin, EUR/USD and GBP/USD. It appears

that that there are no spillover effects between Bitcoin and EUR/USD, while one-directional ef-

fects exists between Bitcoin and GBP/USD. The fact that the returns of Bitcoin and EUR/USD

do not impact each other might indicate a hedging property of Bitcoin against EUR/USD. We

can observe that the past return of Bitcoin at lag 2 and 3 significantly impact the return of

GBP/USD. Furthermore, it appears that return spillover effects between Bitcoin and exchange

rates is even smaller than the ones between Bitcoin and the stock indices. This indicates that

there is a even weaker relation between the returns of Bitcoin and the exchange rates.

For the exchange rates, we again recursively fit the BEKK(p,q) model. Based on AIC,

the BEKK(1,1) model slightly outperforms BEKK(1,2) and BEKK(2,1) models. However, the

multivariate Ljung-Box (LB) reveals that BEKK(1,2) is the only model that shows no serial

correlation in the standardized residuals and squared standardized residuals. Therefore, the

BEKK(1,2) model is chosen as an adequate model to assess spillover effects between Bitcoin

and European exchange rates.

From the results shown in table 5, it appears that there is one-directional volatility spillover

effects between Bitcoin and EUR/USD, while there is a bidirectional volatility spillover effect

between Bitcoin and GBP/USD. It appears that Bitcoin its past shocks affects the volatility of

the GBP/USD negatively, while it affects the volatility of EUR/USD positively. Furthermore,

we can observe that Bitcoin has less volatility spillover effects with the exchange rates than with

the stock indices, indicating that there is a weaker relation between the volatility of Bitcoin

and the exchange rates. Lastly, The effect of Bitcoin on the exchange rates is smaller than the

effect of the exchange rates on Bitcoin. This can be explained by Bitcoin its small market cap

and trading volume compared to the exchange rates and proves again that Bitcoin is still a

small asset that has not much impact on major European financial assets.
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Table 3: Estimation results of the VAR(1)-GARCH-BEKK(1,2) model

Parameters Coefficient Parameters Coefficient

β11,t−1 -0.07068*** β11,t−4 0.06992***

(0.02241) (0.02248)

β11,t−2 0.05958*** β31,t−2 0.004255**

(0.02243) (0.002580)

β11,t−3 0.06240*** β31,t−3 0.006908***

(0.02244) (0.002581)

α11,t−1 0.309*** α31,t−1 -0.003**

(0.038) (0.003)

α12,t−1 0.252 α32,t−1 -0.148***

(0.430) (0.046)

α13,t−1 -0.652** α33,t−1 -0.398***

(0.334) (0.045)

α21,t−1 0.000 α11,t−2 0.527***

(0.001) (0.046)

α22,t−1 -0.0443** α12,t−2 0.480

(0.026) (0.672)

α23,t−1 -0.082*** α13,t−2 0.470

(0.019) (0.324)

α21,t−2 0.004** α31,t−2 -0.005**

(0.002) (0.003)

α22,t−2 0.213*** α32,t−2 -0.077**

(0.020) (0.057)

α23,t−2 -0.024** α33,t−2 0.278***

(0.015) (0.046)

g11,t−2 -0.546*** g21,t−2 0.005***

(0.072) (0.002)

g12,t−2 0.551 g22,t−2 -0.993***

(0.283) (0.012)

g13,t−2 0.371 g23,t−2 0.049**

(0.403) (0.018)

g31,t−1 -0.009***
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(0.004)

g32,t−1 -0.300***

(0.035)

g33,t−1 -0.492***

(0.081)

Table 3: Return and volatility spillover effects between Bitcoin, EUR/USD and GBP/USD.
βij,t−k denote the parameter that belongs to the returns, where i ∈ (1, .., 3) is the asset, j
∈ (1, .., 3) the lagged asset and k the lag order. ai,j and gi,j correspond to the coefficients in
the ARCH and GARCH matrix. The numbers 1,2 and 3 represent Bitcoin, EUR/USD and
GBP/USD, respectively. * and ** and *** indicate the 10%, 5% and 1% significance levels.

5.3 Marginal modeling

The APARCH(p,q) model is used to model the marginals of each asset return series separately.

For the lags, we use p = 1 and q = 1. According to literature, this specification usually fits

time series data best. The ARCH test is used to check for adequate model specifications. The

ARCH test rejects the null hypothesis in all cases, indicating that the volatility of the innova-

tions are adequately captured. In table 6 estimation results of the APARCH(1,1) model with

ν degrees of freedom are reported. For each asset return except EUR/USD, we can observe

that the Log-Likelihood of the student-t distribution is higher than the Log-Likelihood of the

normal distribution. This indicates that the student-t distribution better fits the data. The

Akaike Information Criterion (AIC) provides the same result. Additionally, in order to examine

the goodness-of-fit of the distribution, a visual analysis of the QQ-plot is made.8 Also here,

for each asset except EUR/USD, we can observe that the student-t distribution better fits the

data, especially the left and right tails. As the student-t distribution is better at capturing the

fat tails of the return distribution, this result was expected.

8See appendix C.3 for the QQ-plot of each asset return series.
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. Table 6: Estimates of the APARCH(1,1) model

Asset Distribution µ ω α β γ δ ν LL AIC

Bitcoin
Normal

Student-t

0.45*

0.45***

6.00

0.17

0.17**

0.11***

0.70***

0.92***

0.26**

0.19*

2.40***

1.43*** 2.86***

-1085.04

-1024.61

6.06

5.73

AEX
Normal

Student-t

0.13***

0.13***

0.03***

0.03

0.10***

0.11**

0.91***

0.91***

-0.99***

-0.96***

0.61***

0.66** 5.80***

-583.61

-576.17

3.27

3.24

DAX
Normal

Student-t

0.09***

0.08***

0.02***

0.01*

0.11***

0.11***

0.91***

0.93***

-0.97***

-1***

0.40***

0.62 *** 3.88***

-616.08

-603.48

3.45

3.39

FTSE100
Normal

Student-t

-0.009

0.014***

0.027***

0.013**

0.082***

0.079***

0.93***

0.94 ***

-0.99***

-0.99***

0.53***

0.61*** 4.68***

-593.68

-579.13

3.33

3.25

EUR/USD
Normal

Student-t

0.027

0.027

0.014

0.014

0.093**

0.094**

0.82***

0.82***

-0.21

-0.21

2.07*

2.00* 99

-199.62

-199.70

1.14

1.15

GBP/USD
Normal

Student-t

0.031

0.035

0.028*

0.026**

0.13***

0.11

0.78***

0.81***

-0.08

-0.13

1.98***

2.01*** 11.12**

-299.18

-297.6

1.70

1.69

LL represents the Log-likelihood value. * and ** and *** indicate the 10%, 5% and 1% significance levels.

Before explaining what the parameters indicate, it should be mentioned that not all parameters

are significant, especially in case of the exchange rates. This is in line with the QQ-plot analysis

in which we observed that that the student-t and normal distribution fit the data of the stock

indices better than the exchange rates.

Bitcoin its µ and ω parameters are higher than the stock indices and exchange rates. This

is because Bitcoin its returns and volatility is relatively high. We also find that β is slightly

higher for Bitcoin and the stock indices compared to the exchange rates. This means that

volatility of Bitcoin and the stock indices is slightly more persistent compared to the exchange

rates. Furthermore, the γ parameter, which measures the leverage effect, is positive for Bitcoin,

while it is negative for the European financial assets. In case of Bitcoin, this means that past

positive shocks have more effect on the current conditional volatility than pas negative shocks.

This is called the inverse leverage effect and is a characteristics of gold and commodities in

general. Baur (2012) states that the inverse leverage effect might be an indication of the safe

haven property. In case of the European financial assets, it means that past negative shocks

have more effect on the current conditional volatility than past positive shocks. δ, which is

the power parameter, is around 1 for Bitcoin and the stock exchanges and around 2 for the

exchange rates. Apparently, in case of Bitcoin and the stock indices, modeling the standard

deviation is better than modeling the variance.
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5.4 Dependence modeling

Table 6 reports estimations of copula models that are used in this paper. The Kendall’s τ and

the tail dependence parameters are derived from the copula functions and included in the table.

Table 4: Elliptical and Archimedean copula specifications and estimations

Asset Pair Copula Copula pa-
rameter

df Kendall’s τ Lower tail Upper tail

BTC-AEX Gaussian 0.221*** - 0.141 0 0
Student-t 0.218*** 16.72 0.140 0.0034 0.0034
Clayton 0.289*** - 0.126 0.091 0
Gumbel 1.131*** - 0.116 0 0.154
Frank 1.218*** - 0.024 0 0

BTC-DAX Gaussian 0.204*** - 0.131 0 0
Student-t 0.199*** 9.39 0.128 0.024 0.024
Clayton 0.290*** - 0.127 0.092 0
Gumbel 1.121*** - 0.107 0 0.144
Frank 1.123*** - 0.123 0 0

BTC-
FTSE100

Gaussian 0.178*** - 0.114 0 0

Student-t 0.163*** 9.41 0.104 0.020 0.020
Clayton 0.244*** - 0.109 0.058 0
Gumbel 1.097*** - 0.088 0 0.118
Frank 0.872** - 0.096 0 0

BTC-
EUR/USD

Gaussian 0.106**
(0.053)

- 0.068 0 0

Student-t 0.113** 10.83 0.072 0.0099 0.0099
Clayton 0.108* - 0.351 0.0016 0
Gumbel 1.066*** - 0.062 0 0.084
Frank 0.669** - 0.074 0 0

BTC-
GBP/USD

Gaussian 0.146*** - 0.093 0 0

Student-t 0.140** 9.22 0.089 0.019 0.019
Clayton 0.234*** - 0.105 0.052 0
Gumbel 1.069*** - 0.065 0 0.088
Frank 0.791*** - 0.087 0 0

Note: * and ** and *** indicate the 10%, 5% and 1% significance levels. The first column denotes the struc-
ture dependence (copula) between Bitcoin and one of the assets.

For the copula of the Bitcoin and AEX pair, we can observe that the Kendall’s tau of the

Gaussian, Student-t, Clayton, Gumbel and Frank copulas are 0.141, 0.140, 0.126, 0.116 and

0.024, respectively. Following the condition for the hedging property, it appears that all copu-

las indicate that Bitcoin can not be used as a hedge against AEX index during the COVID-19

pandemic. In order to assess the safe haven property of Bitcoin against the AEX index, we
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analyze the co-movement in times of extreme downward movements. The lower tail dependence

parameter provides information about the probability of a joint crash. As we can observe, the

Gaussian and Frank copula do not exhibit tail dependence, the Student-t copula captures sym-

metric tail dependence that is close to zero, the Clayton copula captures lower tail dependence

which is equal to 0.091 and the Gumbel copula captures a positive upper tail dependence which

is equal to 0.154. Hence, the lower tail dependence parameter is zero or close to zero for all

copulas except the Clayton copula. Following the conditions for the safe haven property, it

appears that the Gaussian, Student-t, Gumbel and Frank copula indicate that Bitcoin acts as a

safe haven, while the Clayton copula indicates that Bitcoin does not act as a safe haven during

the COVID-19 pandemic. The copula of all other asset pairs can be analyzed in a similar way.

5.5 Model selection

As the copulas imply a disparity of results, this section explains step by step how the best fitting

copula is chosen. The best fitting copula is eventually used to determine the hedging and safe

haven property of Bitcoin against the assets. First, we make pre-estimation observations by

presenting the empirical copulas and analyzing whether they exhibit well known properties of

the copulas that are proposed in this paper. Figure 3 gives informative examples of the well

known properties of the copulas that are proposed in this paper.

(a) Clayton with α = 0.5 (b) Gumbel copula with α = 0.5 (c) Frank copula with α = 5

Figure 3: An example of the bivariate Archimedean copulas with N=5000

(a) Gaussian copula with ρ = 4 (b) Student-t copula with ρ = 1.5

Figure 4: An example of the bivariate Elliptical copulas with N=5000
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Figure 4 and 5 present the bivariate empirical copulas, which are also called the true or non-

parametric copulas. The bivariate empirical copulas are the pairs of standardized residuals from

the APARCH(1,1) model that are mapped within the uniform distributions, as an input to fit

the copulas. The empirical copulas contain 360 observations, which is rather small compared

to the simulated copulas shown in figure 3 and 4.

(a) BTC-AEX (b) BTC-DAX

(c) BTC-FTSE100

Figure 5: Empirical copula of Bitcoin-AEX, Bitcoin-DAX and Bitcoin-FTSE100 with
N=360

(a) BTC-EUR (b) BTC-GBP

Figure 6: Empirical copula of Bitcoin-EUR/USD, Bitcoin-DAX and Bitcoin-GBP
with N=360
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As the sample size during the Covid 19 pandemic is rather small, the plots are almost indistin-

guishable and it is really hard to recognize the well known properties shown in figure 3. This

proves that, in this case, observing the plots does not help and statistical inference is needed.

Therefore, we will not further discuss and compare the plots of the parametric (fitted) copulas

with the ones of the empirical copulas. We further analyze the copulas by using statistical

inference based on the Akaike Information Criterion (AIC), the Cramér-von Mises test with

parametric bootstrapping and the Mean Absolute Error (MAE). Statistical results of the AIC,

Cramér-von Mises test and MAE are reported in table 5.

Table 5: AIC, Cramér-von Mises and MAE results of the copula models

Asset Pair Copula Copula pa-
rameter

AIC Sn p-value MAE

BTC-AEX Gaussian 0.221*** -15.07 0.014 0.78 0.00494
Student-t 0.218*** -13.90 0.013 0.88 0.00492
Clayton 0.289*** -17.09 0.026 0.24 0.00652
Gumbel 1.131*** -9.57 0.018 0.57 0.00550
Frank 1.218*** -12.07 0.018 0.51 0.00556

BTC-DAX Gaussian 0.204*** -12.42 0.015 0.73 0.00517
Student-t 0.199*** -12.82 0.013 0.84 0.00498
Clayton 0.290*** -17.28 0.017 0.57 0.00540
Gumbel 1.121*** -8.30 0.025 0.26 0.00677
Frank 1.123*** -9.88 0.018 0.48 0.00571

BTC-
FTSE100

Gaussian 0.178*** -8.91 0.011 0.96 0.00457

Student-t 0.163*** -9.55 0.009 0.99 0.00455
Clayton 0.244*** -12.71 0.013 0.87 0.00482
Gumbel 1.097*** -5.88 0.013 0.88 0.00495
Frank 0.872*** -5.29 0.012 0.92 0.00492

BTC-
EUR/USD

Gaussian 0.106** -1.84 0.017 0.58 0.00550

Student-t 0.113** -2.46 0.015 0.76 0.00530
Clayton 0.108* -0.81 0.024 0.33 0.00665
Gumbel 1.066*** -2.32 0.020 0.50 0.00571
Frank 0.669** -2.32 0.017 0.59 0.00549

BTC-
GBP/USD

Gaussian 0.146*** -5.35 0.045 0.012 0.00904

Student-t 0.140** -6.52 0.044 0.009 0.00913
Clayton 0.234*** -11.30 0.028 0.2 0.00702
Gumbel 1.069*** -2.83 0.059 0.002 0.01034
Frank 0.791*** -4.01 0.047 0.004 0.00930

Note: * and ** and *** indicate the 10%, 5% and 1% significance levels. Sn is the test statistic of Cramér-
von Mises test. The test uses 1000 repetitions of the parametric bootstrap. The lowest AIC values, highest p-values and
lowest MAE values are in bold.
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For the copula of the BTC and AEX pair, we can observe that the Gaussian, Student-t and

Clayton copulas are among the three best performing copulas based on AIC. They have the

lowest AIC values which are close to each other. To test the goodness-of-fit and thus check

whether the dependence structure of the empirical copula is well represented by the specific

parametric family of copulas, we use the Cramér-von Mises test with 1000 repetitions of the

parametric bootstrap and the Mean Absolute Error (MAE) metric. The Cramér-von Mises test

and the MAE both indicate that the Student-t copula fits the data best. Therefore, we choose

the Student-t copula as the most appropriate copula to model the dependency between Bitcoin

and the AEX index. This indicates that the data of the Bitcoin and AEX pair is characterized

by a symmetric dependence structure. Furthermore, The Kendall’s tau (τ) and the lower tail

dependence parameter (λL) of the Student-t copula are 0.140 and 0.0034, respectively. The τ

parameter is positive , while λL is close to zero. Following the two conditions for the hedging

and safe haven property, we can conclude that Bitcoin does not act as a hedge against AEX,

while it does act as a safe haven against AEX during the Covid-19 pandemic.

For the copula of the BTC and DAX pair, we observe the same results. Based on AIC, the

Gaussian, Student-t and Clayton copulas are among the three best performing copulas. The

Cramér-von Mises and MAE criteria both select the Student-t copula as the one that fits the

data best. Therefore, the Student-t copula is chosen as the most appropriate copula to model

the dependency between Bitcoin and DAX. This indicates that the data of the pair Bitcoin and

DAX is characterized by a symmetric dependence structure. Furthermore, the Kendall’s tau

(τ) and the lower tail dependence parameter (λL) of the Student-t copula are 0.128 and 0.092,

respectively. The τ and λL parameters are both positive. Following the two conditions for the

hedging and safe haven property, we can conclude that Bitcoin does not act as a hedge or a

safe haven against DAX during the Covid-19 pandemic.

For the copula of the Bitcoin and FTSE100 pair, we also observe the same results. The

Gaussian, Student-t and Clayton are the ones with the lowest AIC values. Their values are

close to each other and therefore these copulas are further investigated by using the goodness

of fit test and MAE. The Cramer-von Mises test and the MAE both select the Student-t copula

as the copula that fits the data best. Therefore, again the Student-t copula is selected as the

most appropriate copula. This indicates that the data of the pair Bitcoin and FTSE100 is

characterized by a symmetric dependence structure that captures both upper and lower tail

dependence. Furthermore, the Kendall’s tau (τ) and the lower tail dependence parameter

(λL) of the Student-t copula are 0.104 and 0.020, respectively. The τ and λL parameters are

both positive. Following the two conditions for the hedging and safe haven property, we can
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conclude that Bitcoin does not act as a hedge or a safe haven against FTSE100 during the

Covid-19 pandemic.

For the copula of the Bitcoin and EUR/USD pair, the AIC, Cramér-von Mises test and

MAE provide the same results. They all select the Student-t copula as the copula that fits the

data best. Therefore, the Student-t copula is chosen as the most appropriate one to measure the

dependency between Bitcoin and EUR/USD. This indicates that the data of the pair Bitcoin

and EUR/USD is characterized by a symmetric dependence structure that exhibits both upper

and lower tail dependence. Furthermore, the Kendall’s tau (τ) and the lower tail dependence

parameter (λL) of the Student-t copula are 0.072 and 0.0099, respectively. The τ parameter is

positive , while λL is close to zero. Following the two conditions for the hedging and safe haven

property, we can conclude that Bitcoin does not act as a hedge against EUR/USD, while it

does act as a safe haven against EUR/USD during the Covid-19 pandemic.

For the copula of the Bitcoin and GBP/USD pair, the AIC, Cramer-von Mises test and

MAE also provide the same results. They all select the Clayton copula as the best performing

copula. Therefore the Clayton copula is chosen as the most appropriate copula to measure the

dependency between Bitcoin and GBP/USD. This indicates that the data of the pair Bitcoin

and GBP/USD is characterized by a asymmetric dependence structure in which only lower

tail dependecy exists. The Kendall’s tau (τ) and the lower tail dependence parameter (λL)

of the Student-t copula are 0.105 and 0.052, respectively. The τ and λL parameters are both

positive. Following the two conditions for the hedging and safe haven property, we can conclude

that Bitcoin does not act as a hedge or a safe haven against GBP/USD during the Covid-19

pandemic. Furthermore it appears that in case of the Gaussian, Student-t, Gumbel and Frank

copulas, the null hypothesis of the Cramér-von mises test is rejected. This means that the

dependence structure of Bitcoin and GBP/USD is not well represented by these copulas. The

MAE measure provides the same results.
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6 Discussion and Conclusion

This paper uses the VAR-GARCH-BEKK model to analyze return and volatility spillover ef-

fects between Bitcoin and major European financial assets. Furthermore, the copula-APARCH

model is used to investigate the safe haven and hedging properties of Bitcoin against the assets.

It is found that the return spillover effects between Bitcoin, AEX, DAX, FTSE100 and

GBP/USD are one-directional. The returns of the assets do not impact the return of Bitcoin,

while past returns of Bitcoin do have a positive impact on the assets. However, these return

spillover effects are weak and therefore we can conclude that there is a weak relation between

the returns of Bitcoin and the assets. Furthermore, it is found that there are no return spillover

effects between Bitcoin and EUR/USD. The volatility spillover effects between Bitcoin and all

assets except EUR/USD are found to be bidirectional. It appears that FTSE100, AEX, DAX

and GBP/USD have different effects on the volatility of Bitcoin and vice versa. In case of

the EUR/USD rate, it appears that there are only one-directional volatility spillover effects.

Bitcoin affects EUR/USD, while EUR/USD does not affect Bitcoin. It is found that there are

more volatility spillover effects than return spillover effects. These volatility spillover effects

are also stronger than the return spillover effects. Furthermore, the effects of Bitcoin on the

assets appear to be small compared to the effect of the assets on Bitcoin. This indicates that

Bitcoin is still a small asset in comparison to the European assets.

For the safe haven and hedging properties, we found that in all cases except the BTC-GBP

pair the Student-t copula fits the data best. This indicates that the data of these asset pairs

is characterized by a symmetric dependence structure in which both upper and lower tail de-

pendence can be captured. For the Bitcoin and GBP/USD pair, the Clayton copula fits the

data best, indicating that the dependence structure between Bitcoin and GBP/USD is best

described by an asymmetric copula where the upper tail dependence is equal to zero. Based on

the Student-t and the Clayton copula it appears that Bitcoin does not act as a hedge against

the assets. Furthermore, it is found that Bitcoin does act as a safe haven against EUR/USD

and AEX, while it does not act as a safe haven against DAX, FTSE100 and GBP/USD.

As these findings have implications for portfolio selection decisions, investors can benefit

from it. However, they should be aware that Bitcoin is still a highly volatile and thus risky

asset. A limitation of this paper is that the APARCH(1,1) model does not fit the EUR/USD

and GBP/USD rates well. Therefore, future research could try to improve the goodness of

fit of these two marginals. Furthermore, it might be interesting to investigate how to allocate

Bitcoin in a portfolio with the European financial assets.
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8 Appendix

8.1 A

A.1 Jarque-Bera

The Jarque-Bera (JB) test statistic is given by

JB =
n

6
∗ (S2 +

(K − 3)2

4
), (15)

where S is the skewness, K the kurtosis and n the sample size. JB has an asymptotically chi-

squared dsitribution with two degrees of freedom. H0 is rejected if JB ≥ X1−α,2

A.2 Univariate Ljung-Box-Q

The Ljung-Box-Q test statistic is given by

Q(h) = N(N + 2)
h∑
i=1

p̂2i
N − i

, (16)

where N is the number of observations, h the lag order and pi represents the auto-correlation

of the observation at lag i. H0 is rejected if Q > X2
1−α,h

A.3 Multivariate Ljung-Box-Q

The multivariate test statistic is given by

Q(m) = N2

h∑
i=1

1

N − i
tr(Γ′mΓ−10 ΓmΓ−10 ), (17)

where H0 = Γm = 0 for m > 0

A.4 Augmented Dickey–Fuller

The Augmented Dickey–Fuller (ADF) test statistic is given by:

∆yt = α + +γyt−1 + δ∆yt−1 + ...+ δp−1∆yt−p+1 + εt, (18)

where α is a constant, δ is the coefficient of the time trend and p is the lag order. If H0 : γ = 0

is rejected, it means that no unit root exists.
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The ADF A.5 Cholesky decomposition

The Cholesky decomposition is given by

Ht = L ∗ LH , (19)

where Ht is the covariance matrix, L is the lower triangular matrix and LH is its transpose.

The standardized residuals are derived from the following equation:

Lzt = εt, (20)

where zt represents the standardized residuals and ε the residuals. The standardized residuals

is then given by

zt = L−1 ∗ εt (21)

8.2 B

B.1 Gaussian copula

The bivariate Gaussian copula can be written in the following form:

C(u1, u2; p) = φ2(φ
−1(u1), φ

−1(u2)), (22)

where u1 and u2 are marginal probabilities, φ2 is a multivariate CDF of a standard normal distri-

bution with correlation coefficient p and φ−1 is the inverse of the standard normal distribution.

After deriving equation 8, we obtain the following equation:

c(u1, u2; p) =
1√

1− p2
exp(− 1

2(1− p2)
(x21 − 2px1x2 + x22)), (23)

where p is the linear correlation coefficient between the two time series. For p=0 it is a indepen-

dence copula, For p=1 it is a comonotonicity copula and for p=-1 it is the countermonotonicity

copula. Furthermore, the Gaussian copula does not exhibit tail dependence.

B.2 Student-t copula
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The bivariate Student-t copula is specified as follows:

C(u1, u2; p, v) = Tv(t
−1
v1

(u1), t
−1
v2

(u2)), (24)

Where Tv is the multivariate CDF of the student-t distribution with correlation coefficient p

and v degrees of freedom, t−1vi is the inverse univariate CDF of the Student-t distribution. After

deriving equation 10, we obtain the following expression:

C(u1, u2; p, v) =
K√

1− p2
[1 +

1

v(1− p2)
(ξ21 − 2pξ1ξ2 + ξ22)]

v + 2

2 [(1 + v−1ξ21)(1 + v−1ξ22)]

v + 2

2 ,

(25)

where p is the correlation coefficient, v the degrees of freedom of the student-t distribution,

K = Γ(
v

2
)Γ(

v + 1

2
)−2Γ(

v

2
+ 1) and ξi = t−1vi (ui). The Student-t copula is characterized by the

fact that it is symmetric and has a nonzero tail dependence.

B.3 Clayton copula

The Clayton copula belongs to the Archimedean copula family and is specified as follows:

C(u1, u2;α) = (
n∑
i=1

u−αi − n+ 1)−1/α, (26)

where α is the parameter of the copula that describes the dependence structure among the vari-

ables. for α = 0 it means that it is a independence copula and for α = inf it is a comonotonicity

copula. After deriving equation 13, we get the following expression:

c(u1, u2, α) = (1 + α)(u−α1 + u−α2 − 1)−1/α−2(u1u2)
−α−1 (27)

The tail dependence of the Clayton copula is asymmetric. It only exhibits lower tail depen-

dence.

B.4 Gumbel copula
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The distribution of the Gumbel copula is specified as follows:

C(u1, u2;α) = exp(−
n∑
i=1

(−ln(ui))
α)1/α, (28)

where α is the dependence parameter. α = 1 implies independence and α = inf implies perfect

positive dependence. After deriving equation 15, we obtain the following expression:

c(u1, u2;α) = (A+ α− 1)A1−αexp(−A)(u1u2)
−1(−lnu1)α−1(−lnu2)α−1, (29)

where A = [(−lnu1)α(−lnu2)α]1/α. Also the Gumbel copula has asymmetric tail dependence.

It only exhibits upper tail dependence.

B.5 Frank copula

The Frank copula is given by the following equation:

C(u1, u2;α) = − 1

α
ln(1 +

∑n
i=1 exp(−αui)− 1

exp(−α)− 1
), (30)

where α is the copula parameter that satisfies α ∈ (− inf,+ inf). This copula allows positive

as well as negative dependence values. Furthermore, α = 0 implies independence copula. After

deriving equation 17, we obtain the following expression:

c(u1, u2;α) =
α[1− exp(−α)exp(−αu1u2)]

([1− exp(−α)]− (1− exp(−αu1))(1− exp(−αu2))2
(31)

This copula has no tail dependence and thus the lower and upper tail dependencies are equal

to zero.

8.3 C

C.1 Kendall’s tau and tail dependency
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Table 6: Kendall’s τ

Copula Kendall’s τ range of tau
Gaussian τ = (2/π)× arcsin(pt) [-1,1]
Student-t τ = (2/π)× arcsin(pt) [-1,1]
Clayton τ = αt/(αt + 2) [0,1]
Gumbel τ = 1− δ−1t [0,1]
Frank τ = 1− 4[1 +D1(θt)]/θ [-1,1]

Note: D1(θt) =
1

θt

∫ θt
0

1

exp(t)− 1
dt (Debye function)

Table 7: Tail dependence

Copula Lower tail dependence (λL) Upper tail dependence (λU)
Gaussian 0.00 0.00

Student-t λ = 2tv+1(

√
v + 1

√
1− pt√

1 + pt
) λ = 2tv+1(

√
v + 1

√
1− p√

1 + p
)

Clayton 2−1/αt 0.00
Gumbel 0.00 2− 21/δt

Frank 0.00 0.00

Note: λL of the Clayton copula only exists if αt > 0. Also, λU of the Gumbel copula only exists if δt > 1

C.2 VAR-GARCH-BEKK test statistics

Table 8: Multivariate LB test statistic: BEKK(1,2) model between BTC and the exchange
rates

m Q(m) df p-value
1.0 4.5 3.0 1.00
2.0 17.5 12.0 0.13
3.0 25.4 21.0 0.23
4.0 36.2 30.0 0.20
5.0 47.3 39.0 0.17
6.0 59.8 48.0 0.12

Table 9: Multivariate LB test statistic: BEKK(1,2) model between BTC and the stock indices

m Q(m) df p-value
1.0 17.9 10.0 1.00
2.0 28.0 26.0 0.36
3.0 40.6 42.0 0.53
4.0 68.1 58.0 0.17
5.0 76.2 74.0 0.41
6.0 90.8 90.0 0.46
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Table 10: Multivariate LB Statistic: VAR(4) model between BTC and the stock indices

m Q(m) df p-value
1.0 0.06 -48.0 1.00
2.0 0.17 -32.0 1.00
3.0 0.53 -16.0 1.00
4.0 0.86 0 1.00
5.0 23.36 16.0 0.10
6.0 43.21 32.0 0.09

Table 11: Multivariate LB test statistics: VAR(4) model between BTC and the exchange rates

m Q(m) df p-value
1.0 0.014 -27.0 1.00
2.0 0.039 -18.0 1.00
3.0 0.1 -9.0 1.00
4.0 0.25 0 1.00
5.0 11.53 9 0.24
6.0 28.46 18 0.06

C.3 QQ-plot marginals

(a) BTC/USD (b) AEX (c) DAX

(d) FTSE100 (e) EUR/USD (f) GBP/USD

Figure 7: QQ-plot of Bitcoin (BTC), the Amsterdam Stock Exchange Index (AEX),
the Deutscher Aktien Index (DAX), the Financial Times Stock Exchange Index
(FTSE100), the Euro (EUR/USD) and the Pond (GBP/USD)
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