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Abstract

In this paper I minimise downside price risk for U.S. refineries using a model for the entire

distribution of petroleum prices. I focus on out-of-sample hedging by modelling price changes

with hierarchical outer power transformed Archimedian copulas (HOPACs). HOPACs may

provide much needed stability, capture asymmetrical supply and demand characteristics of

the underlying commodities and allow for non-normality. Furthermore, I include transac-

tion and margin costs both in estimation and out-of-sample study, which are generally not

included in literature. I find that HOPACs significantly improve hedging effectiveness rel-

ative to one-to-one hedging strategy for a value at risk objective, while minimising costs.

I encourage managers to apply a HOPAC hedging strategy, which provides more downside

risk protection for lower costs than the ‘hard-to-beat’ one-to-one hedging strategy.
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1 Introduction

Extreme volatility of crude and finished oil products prices during the COVID-19 pandemic

shocked the oil refining industry as never before. The closing future price of crude oil with

a delivery of one month reached a historic negative 38 $/barrel on 20 Apr 2020. During the

pandemic, finished product prices, e.g. heating oil and gasoline, were reduced to one fourth of

that years high, causing challenging risk management decisions for refineries. The product yield

of a typical U.S. refinery can be approximated with the 3:2:1 crack spread, that measures the

difference in purchasing price of three barrels of crude oil and selling price of two barrels of

gasoline and one barrel of heating oil1. Historically, oil refineries have operated under relatively

low margins. To hedge price risk in a low margin industry, oil refineries buy the crack spread, i.e.

they buy crude oil futures and sell finished product futures (Energy Information Administration,

2002). The proportion of future contracts bought or sold relative to the spot contracts used for

feedstock or produced as finished products are hedging ratios.

Adverse price movements, e.g. simultaneous increase in crude oil and decrease in finished

product prices, are likely to push refineries in the red. For this purpose, Haigh and Holt

(2002) estimate mean-variance multi-product crack-spread hedge ratios while accounting for

time-varying covariability between energy prices. Moreover, Ji and Fan (2011) investigate a

minimum-variance dynamic hedging approach for the crack-spread. Both studies assume nor-

mality in the disturbance terms. However, Lai (2012) shows that the joint distribution of spot

and futures price changes are known to be skewed. Additionally, Lien and Tse (1998) show

that corporate managers are less concerned by upside potential as they are with downside risk.

Therefore, variance reduction may not be an adequate risk measure when returns are skewed.

Furthermore, Alexander et al. (2013) finds that a one-to-one hedging strategy outperforms all

variance reduction studies when incorporating transaction and margin costs. Moreover, they

find that time series models perform poorly when costs are included, which may be caused by

high transaction costs and instability in parameter estimates. Lui et al. (2017) are one of the few

that investigate downside risk in crack-spread hedging using a kernel copula method on log re-

1See https://www.eia.gov/todayinenergy/includes/crackspread explain.php for more information.
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turns to examine minimum lower partial moment and variance as hedging objectives. However,

uncommon news, e.g. the 1990 Iraqi invasion into Kuwait, can lead to jumps in prices (Chan

& Maheu, 2002; Maheu & McCurdy, 2004). Consequently, log returns, can be a poor proxy for

percentage returns. Sukcharoen and Leatham (2017) investigate several downside crack-spread

risk measures on price returns by using Archimedean copulas and the more advanced vine cop-

ula models. They find that the symmetrical margins of Archimedean copulas are too restrictive,

while vine copula models reduces risk for oil refineries significantly. However, model robustness

is very important in hedging the crack spread, as fluctuating hedging-ratios can void the use

of sophisticated price model building, since hedging costs can increase substantially relative to

one-to-one hedging (Alexander et al., 2013). Furthermore, oil price volatility exhibits structural

breaks and tends to increase altogether, favouring models that can accurately estimate on a

shorter window (Peng et al., 2020; Salisu & Fasanya, 2013).

The aim of this research is to minimise downside risk of oil refineries using a multi-product

hedging model. Multi-product refers to using several future contracts to hedge price risk expo-

sure. This is in contrast to single-product hedging, which uses only one commodity to hedge

price risk exposure. I use this approach for the different supply-demand dynamics of crude oil,

heating oil and gasoline (The Energy Data Modeling Center, 2006). Moreover, I investigate

optimal crack-spread hedging ratios on unfiltered2 price changes in the refining industry with

an out-of-sample hedging validation for several downside risk criteria, using a copula model.

Furthermore, I model prices using a hierarchical multivariate price modelling approach, that

allows for: (1) skewed price changes and asymmetric margins, (2) more intuitive and flexible

dependence structures compared to simple Archimedean copulas, and (3) more parsimonious

modelling than other sophisticated models (Ostap et al., 2013). A more parsimonious model

can significantly reduce standard errors, relative to other sophisticated copulas, possible leading

to more robust hedge-ratios and lower transaction and margin costs. Additionally, modelling

price changes with a hierarchical model may be more logical, since spot and future price changes

2Some studies use filtered date to capture the time varying covariance structutes (e.g. Sukcharoen et al.

(2015)). Other studies use unfiltered data (e.g. Sukcharoen and Leatham (2017)), to avoid errors in the estimation

of conditional mean and variance models. Moreover, Alexander et al. (2013) shows GARCH models generate

high transaction costs and instability in parameter estimates.
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of commodities have related supply and demand dynamics (The Energy Data Modeling Center,

2006). Moreover, transaction and margin costs are included directly into the decision making

process. This may improve the profitability of a historically low margin industry. To the best of

my knowledge, this study is first in incorporating transaction and margin costs in the decision

making process for downside risk hedging, using a model for the entire distribution of petroleum

prices.

Given the skewed price changes and asymmetrical marginals of petroleum prices, modelling

multi-product hedging ratios to minimise downside risk can be difficult. For this purpose,

Sukcharoen and Leatham (2017) model the joint distribution of price changes with vine copulas.

These copulas are very flexible and alleviate the aforementioned problems, but require many

parameters to be estimated and do not seem to be supported by the logic in petroleum product

markets. Consequently, the standard deviations of hedging ratios are relatively large, which may

lead to higher transaction and margin costs. I deviate from Sukcharoen and Leatham (2017) by

modelling price changes jointly with hierarchical outer power Archimedes copulas (HOPACs)

and test the performance against industry-standard fully-hedged one-to-one hedging strategy

(Alexander et al., 2013). HOPACs allow for the more technical properties of Sukcharoen and

Leatham (2017) models, e.g. asymmetry and non-normality, while staying true to the supply

and demand characteristics of petroleum product markets, e.g. structure dependence between

difference products. Górecki et al. (2021) introduce a construction and estimation technique

for HOPACs that allow for a good fit in the body and tail, skewness, asymmetry, and robust

estimation. Additionally, I introduce an estimation technique by incorporating transaction

and margin costs from Alexander et al. (2013) directly into the hedge-ratio estimation for

downside risk measures, which voids the use sophisticated models in a variance reduction setting

(Alexander et al., 2013).

To hedge the crack spread, I consider weekly spot and future price data from 17 Mar 1995

to 12 Mar 2021. The spot and future prices are West Texas Intermediate (WTI) crude oil at

Crushing Oklahoma, regular unleaded gasoline at New York Harbour (NYH), RBOB regular

gasoline at NYH, and no. 2 heating oil at NYH. Furthermore, I use 3-month Treasury Bill yields

and ICE BofA BBB U.S. corporate index yields from 17 Mar 2000 to 22 Jan 2021 to compute
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margin costs for the hedging strategy. The 3-month Treasury Bill yields are used as a proxy

for the interest received on a future margin account, while the BBB U.S. corporate index yields

are used as a proxy for the cost of capital for a typical U.S. refinery to initiate the margin

(Alexander et al., 2013).

I compare value at risk and expected shortfall hedging effectiveness (HE) at a weekly fre-

quency of a HOPAC hedging strategy to a one-to-one hedging strategy and find that HOPAC

hedging usually outperforms one-to-one hedging in an out-of-sample setting when trading ex-

cluded from estimation. Furthermore, including transaction and margin costs in estimation

successfully increases profitability, while always outperforming one-to-one hedging. In sum,

managers that are interested in downside risk hedging of oil refineries should consider modelling

price changes with HOPACs to provide more downside risk protection for lower costs relative

to the ‘hard-to-beat’ one-to-one hedging strategy.

2 Data

2.1 Spot and Future Prices

I obtain spot prices per barrel for crude oil, gasoline and no. 2 heating oil, from 17 Mar 1995

to 22 Jan 2021 at a weekly frequency (3 times 1349 observations) from the U.S. Energy In-

formation Administration3. These are West Texas Intermediate (WTI) crude oil at Crushing

Oklahoma, regular unleaded gasoline at New York Harbour (NYH), and no. 2 heating oil at

NYH. Furthermore, I obtain one and two months to delivery future prices per barrel, for crude

oil, gasoline and no. 2 heating oil, from 17 Mar 1995 to 12 Mar 2021, at a weekly frequency (3

times 1349 observations), from the U.S. Energy Information Administration. These are WTI

crude oil at Crushing Oklahoma, regular unleaded gasoline at NYH, RBOB regular gasoline at

NYH, and no. 2 heating oil at NYH. I construct gasoline future data by concatenating regular

unleaded gasoline (17 Mar 1995 to 29 Dec 2006) and RBOB regular gasoline (5 Jan 2007 to

12 Mar 2021), as unleaded gasoline futures were faced out. RBOB regular gasoline spot prices

are unavailable to me, so I use regular unleaded gasoline spot prices for the entire window, as

3See https://www.eia.gov/petroleum/data.php for more information.
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supply and demand trends are the same for both types of gasoline (Alexander et al., 2013). As

such, they are highly correlated4.

First, I transform the data by converting gasoline and no. 2 heating oil to dollar per barrel.

Second, price changes are computed by taking the first discrete difference over time for all series.

Third, I convert the futures to a continuous series. This can be done with the constant-maturity

or roll-over method. Alexander et al. (2013) shows that the roll-over method creates artificial

jump caused by seasonality of heating oil and gasoline. These jumps produce outliers that

are detrimental to tail risk analysis and are not present in continuous series constructed with

constant-maturity method. By using Galai’s (1979) constant-maturity return-index method, I

can construct continuous futures that provide realisable investments, which is crucial for my

hedging analysis. I follow the adaptation of the method by Alexander et al. (2013), which is

given by,

∆Ft,T = ηt∆Ft,T1 + (1− ηt) ∆Ft,T2 , 0 ≤ ηt ≤ 1 (1)

where ∆Ft,T1 and ∆Ft,T2 are constant maturity futures expiring in T1 and T2, respectively, and

ηt is given by,

ηt =
T2 − (t+ T )

T2 − T1
, T1 < T < T2 (2)

where T is equal to 44 calendar days, which is always between the first and second contract time

to expiry (Alexander et al., 2013). Fourth, similarly to Alexander et al. (2013) and Sukcharoen

and Leatham (2017), I remove the price data during extreme market conditions of Hurricane

Katrina from 29 Aug 2005 to 9 Sep 2005, where I assume no trades are taking place, which is

realistic as most production was shut down. Finally, the 3:2:1 crack spread is computed, by

subtracting 2 barrels of gasoline and 1 barrel of heating oil, from 3 barrels of crude oil.

Table 1 shows that mean and median for weekly price changes are small in comparison to

the standard deviation. Additionally, the standard deviations for finished products are higher

than the standard deviation of the crude oil. Moreover, the difference between the minimum

and maximum is smallest for no. 2 heating oil, followed by crude oil, and largest for gasoline.

Taken together, these findings indicate that symmetrical marginals in the model may be too

4ρspearman′s = 0.97 for weekly Los Angeles RBOB and NYH unleaded gasoline from 12 Sep 2003 to 12 Mar

2021.
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Table 1: Summary statistics for weekly crude oil spot price change (∆SC ), gasoline spot price change

(∆SG), heating oil spot price change (∆SH), crude oil futures price change (∆FC), gasoline future price

change (∆FG ), heating oil future price (∆FH) change from 24 Mar 1995 to 12 Mar 2021 (6 times 1357

observations). JB refers to the Jarque-Bera test statistic, where ∗ shows rejection of null hypothesis of

normality at 1% significance. Furthermore, ADF refers to the Augmented Dickey-Fuller (with intercept

and trend) test statistic, where ∗ shows rejection of null hypothesis that price changes follow a unit

root process at 1% significance. Finally, LB refers to the Ljung–Box test statistic, where where ∗ shows

rejection of null hypothesis that price changes are independently distributed at 1% significance.

∆SC ∆SG ∆SH ∆FC ∆FG ∆FH

Mean 0.026 0.034 0.033 0.026 0.031 0.035

Median 0.130 0.168 0.084 0.120 0.197 0.082

S.D. 2.361 2.968 2.652 2.235 2.794 2.497

Skewness -0.557 -0.555 -0.289 -0.634 -0.746 -0.306

Kurtosis 6.540 3.072 3.211 5.189 3.814 2.818

Min -16.800 -18.816 -14.196 -14.445 -19.272 -14.392

Max 13.930 12.516 12.810 11.649 10.837 10.276

JB 2452.363∗ 594.012∗ 592.335∗ 1589.655∗ 934.556∗ 462.762∗

ADF -10.120∗ -11.717∗ -10.497∗ -9.982∗ -9.982∗ -10.152∗

LB 58.874∗ 80.511∗ 90.944∗ 74.119∗ 82.010∗ 87.856∗

restrictive. Skewness and excess kurtosis show signs of non-normality for both the feedstock

and finished products. I reject the null of the Jarque-Bera test, and therefore I should take

non-normality into account. Moreover, the augmented Dickey-Fuller (ADF), with trend and

intercept, is rejected, hence a stationary model is suitable. Additionally, I reject the Ljung-Box

test, so the series may not be independently distributed, which should be taken into account.

Table 2 shows all correlations are positive and correlation is highest between price changes of

the spot/future pairs for each commodity, with crude oil being highest, followed by heating oil,

while being lowest for gasoline. Therefore, a structured model that links spot/future pairs is

fitting.
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Table 2: Kendall’s tau for weekly crude oil spot price change (∆SC ), gasoline spot price change (∆SG),

heating oil spot price change (∆SH), crude oil futures price change (∆FC), gasoline future price change

(∆FG ), heating oil future price (∆FH) change from 24 Mar 1995 to 12 Mar 2021 (6 times 1356 obser-

vations).

∆SC ∆SG ∆SH ∆FC ∆FG ∆FH

∆SC 1.000 0.521 0.618 0.898 0.574 0.646

∆SG 1.000 0.528 0.532 0.732 0.546

∆SH 1.000 0.629 0.573 0.857

∆FC 1.000 0.587 0.660

∆FG 1.000 0.597

∆FH 1.000

Figure 1 shows considerable changing co-movement between spot and future prices for crude

oil, gasoline and heating oil. Furthermore, non-constancy of the variance of price changes

can be observed. Both can be explained by evolving supply and demand characteristics, as

this is the most important fundamental factor in petroleum product markets. For example,

before the ‘Shale Revolution’ from 2010-2012, when large reserves of WTI light sweet crude oil5

was rediscovered in the U.S. most finished products were refined from heavy and sour middle

eastern oil. Higher supply of WTI post Shale Revolution may have caused the divergence of

WTI and finished products, while U.S. refineries still use heavy sour middle eastern oils as

feedstock because the plants are not fitted for higher quality oils. Additionally, control over

prices substantially decreased when the free-market U.S. production industry gained market

share, which was a different dynamic compared to the grip of the Organization of the Petroleum

Exporting Countries (OPEC) prior to the Shale Revolution.

Prices are relatively stable until 2004, when strong economic growth boosts world oil demand.

Oil prices peaked in 2008 when demand was at an all time high and spare production capacity in

OPEC countries was diminished, prior to collapsing as the world heads into the Great Recession.

5called ‘sweet’ for the low sulfur content and ‘light’ for the lower density, which is easier to crack into finished

products
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Figure 1: (a) Spot prices of crude oil, gasoline and heating oil from 14 Mar 1995 to 12 Mar 2021, at

a weekly frequency (6 times 1357 observations), (b) contract 1 future prices of crude oil, gasoline and

heating oil from 14 Mar 1995 to 12 Mar 2021, at a weekly frequency (6 times 1357 observations)

Prices recovered, until declining sharply in 2014, as US shale oil production growth increases

supply, while demand stayed relatively flat. Not long after, prices crash in 2020 when demand

evaporates, as the world goes into lockdown due to the COVID-19 pandemic, with daily crude

oil futures prices going negative on 20 Apr 2020. Figure 2a shows that the 3:2:1 crack spread

appears to be very volatile from 17 Mar 1995 to 12 Mar 2021. Furthermore, prices come close

to zero often, indicating low margins for refineries are common.

2.2 Interest Rates

I obtain 3-month Treasury Bill yields (rf ) and ICE BofA BBB U.S. corporate index yields (rd)

from 17 Mar 2000 to 22 Jan 2021, at a weekly frequency (2×1087 observations), from the St.

Louis Federal Reserve Economic Database6. Figure 2b shows higher volatility for rd relative

to rf . Furthermore, Federal Reserve fund rate adjustments are clearly visible in rf , when fund

rates are lowered following the 2000, 2008 and 2020 recessions, and raised from 2004 and 2016

onward. Moreover, large spikes are visible in rd, especially at the start of the 2008 and 2020

6See https://fred.stlouisfed.org/ from more information.
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Figure 2: (a) 3:2:1 crack spread from 14 Mar 1995 to 12 Mar 2021, at a weekly frequency (6×1357

observations), (b) 3-month Treasury Bill yields and ICE BofA BBB U.S. corporate index yields from 17

Mar 2000 to 22 Jan 2021, at a weekly frequency (2×1087 observations).

recession. Furthermore, the difference between rd and rf can increase substantially, when the

federal reserve lowers rates to stimulate the economy, while investors demand higher yields on

corporate debt.

3 Hedging the Crack Spread

3.1 Profit and Loss

The profit margin at a typical U.S. refinery can be replicated by selling a 3:2:1 crack spread.

That is, buying three barrels of crude oil and selling two barrels of gasoline and one barrel

of heating oil. Managers at refineries are in two markets: feedstock which they buy, and

finished products which they sell. The difference between the feedstock and finished products

determines the gross profit, and thus is of great importance. In reality, a single refinery cannot

be approximated by the 3:2:1 crack spread, as it outputs a vast range of different products,

from light gasses such as methane, to heavy speciality products such as bitumen. However,

on average, the 3:2:1 crack spread is a good approximation for the gross profit of a refining
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company, averaged over a portfolio of refining plants7 (Alexander et al., 2013; Sukcharoen &

Leatham, 2017).

Low profit margins are typically hedged by buying crack spread futures, i.e. selling crude oil

futures and buying gasoline and heating oil futures (Energy Information Administration, 2002).

Following Haigh and Holt (2002), I assume that a refinery buys the crack spread at period t− 1

and sells the position at period t, where the periods are weekly. Consequently, the refineries

hedged profit per barrel π(b) is given by,

πt(bt−n) = −SC
t +

2

3
SG
t +

1

3
SH
t + bCt−n(FC

t −FC
t−1)− 2

3
bGt−n(FG

t −FG
t−1)− 1

3
bHt−n(FH

t −FH
t−1), (3)

where C, G, H denote crude oil, gasoline and heating oil, respectively, Sit for i ∈ {C,G,H} refer

to the spot prices, F it for i ∈ {C,G,H} denote the future prices, and bt−n = (bCt−n, b
G
t−n, b

H
t−n)′

are hedging ratios determined at t − n for n ∈ N. All prices at period t are random variables,

whereas prices at period t−n are known. Furthermore, I assume all spot and future transactions

occur simultaneously.

The hedged profit per barrel in (3) can be rewritten into price changes by adding and

subtracting the spot price for crude oil, two-thirds heating oil and one-thirds gasoline. Following,

Alexander et al. (2013), the hedged portfolio profit and losses ∆πt(bt) is obtained by disregarding

one negative crude oil, and two-thirds positive gasoline and one-thirds positive heating oil spot

price at t− 1, given by,

∆πt(bt−n) = −∆SC
t +

2

3
∆SG

t +
1

3
∆SH

t + bCt−n∆FC
t −

2

3
bGt−n∆FG

t −
1

3
bHt−n∆FH

t ,

= 13
′ ·∆St + b′t−n ·∆F t

(4)

where, ∆St = (−∆SC
t , 2

3∆SG
t , 1

3∆SH
t )′, ∆F t = (∆FC

t , −2
3∆FG

t , −1
3∆FH

t )′, 13 is a [3x1] matrix

of ones, and ∆πt(bt−n) = πt(bt−n) + (SC
t−1 − 2

3S
G
t−1 − 1

3S
H
t−1).

3.2 Transaction and Margin Costs

In this section I follow Alexander et al. (2013) in incorporating margin and transaction costs,

that may be crucial for hedging effectiveness. A representative refinery will incur transaction

7See tinyurl.com/3vjmbc3k and tinyurl.com/3rhs93xs for more information.
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costs from from the bid-ask spread and the round tip commission charged by the exchange. The

bid-ask spread is defined as the difference between the bid and ask price, divided by the middle

price. Refineries cannot buy or sell the middle price. Consequently, a seller will only receive as

much as the bid, which is lower than the middle price, and a buyer will have to pay the ask,

which is higher than the middle price. This leads to neglecting costs when only the middle price

is used. A refinery will also incur margin cost that arise from the initial margin and paying

interest on the maintenance margin. Initial margin is the required amount a refinery must

deposit into its account to enter the future contract. Interest costs arise from the cost of debt

of the maintenance margin. I assume the refinery will only place market orders, disregarding

any possible hedging unrelated trading gains, only taking liquidity from the market.

Commission costs for a one-to-one hedge of the crack spread, i.e. all hedge ratios are equal

to one, at the New York Mercantile Exchange is $1.45 per 1, 000 barrel contract. To illustrate,

assume a refinery wishes to fully hedge 300, 000 barrels of crude oil to sell as finished products.

Using a 3:2:1 crack spread, this would result in purchasing 300 crude oil future contracts, and

selling 200 gasoline and 100 heating oil future contracts. The commission associated with this

trade would be 300 · $1.45 = $435. The commission cost for re-balancing λcom
t is given by,

λcom
t (∆bt−n) =

3|bCt−n − bCt−n−1|+ 2|bGt−n − bGt−n−1|+ |bHt−n − bHt−n−1|
6

· P (5)

where P is the commission per crack spread ($1.45/1000 = $0.00145), and the fraction is an

approximation for the number of 3:2:1 crack spread bundles.

The dollar value of the bid-ask spread λbid−ask
t is given by,

λbid−ask
t (∆bt−n) = FC

t |bCt−n − bCt−n−1|δC +
2

3
FG
t |bGt−n − bGt−n−1|δG +

1

3
FH
t |bHt−n − bHt−n−1|δH, (6)

where δi for i ∈ {C,G,H} is the bid-ask spread for each commodity. Following Dunis et al.

(2008), I set δi to 1 bps, 10 bps, 12 bps for crude oil, gasoline and heating oil, respectively.

The initial margin for a refinery that sells the crack spread expiring in one month, at the

New York Mercantile Exchange, is $11 for a 3:2:1 crack spread bundle. The total cost for raising

the initial margin is given by,

minitial
t (bt−n) =

3|bCt−n|+ 2|bGt−n|+ |bHt−n|
6

N(rdt − r
f
t ) (7)
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where, N is the initial margin per crack spread, rdt is the cost of raising the initial margin

and rft is the risk free rate returned from depositing in the margin account. Modelling interest

rates is out of the scope of this study. As such I assume both rdt and rft are known at t − 1.

Furthermore, the refinery will raise debt in order to finance the initial margin. The top three

U.S. refineries, i.e. Marathon Petroleum, Valero Energy and Phillips 66, are rated BBB by S&P

Global Ratings. Therefore, I use a BBB corporate yield index as a proxy for rdt . For rft , I use

the 3-month Treasury Bill yield.

As I use weekly data, the daily changes in the margin account, or mark-to-market, are

linearly approximated. The weekly interest on the margin account is given by,

mm2m
t (bt−n) =

1

2
(−3bCt−1∆FC

t + 2bGt−1∆FG
t + bHt−1∆FH

t )rft . (8)

which is negligible when interest rates go to zero. The total optimal hedged portfolio profit and

losses ∆π∗t (b
∗
t) are given by,

∆π∗t (bt−n) = ∆πt(bt−n) +mm2m
t (bt−n)−minitial

t (bt−n)− λbid−ask
t (∆bt−n)− λcommission

t (∆bt−n)

(9)

where bt−n contains the updated optimal hedging ratios.

To the best of my knowledge, this study is first to include the transaction and margin costs

directly into the optimisation process. As such, the objective of the refinery is to minimise

downside risk of ∆π∗t (bt−n) by selecting the optimal b∗t−n, or

b∗t−n = arg min
bt−n

Risk(∆π∗t (bt−n)) (10)

where Risk(∆π∗t (bt−n)) is defined as the downside risk of ∆π∗t (bt−n).

3.3 Downside Risk Measures

I consider two downside risk measures8. First, the widely used value at risk (VaR), is the

quantile of the loss distribution G, defined by,

VaRα = inf{l ∈ R : GL(l) ≥ α}, (11)

8I note that the literature uses other risk measures also, such as lower partial moment and semi-variance.

These are excluded for practical reasons as they would not change the result.
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Figure 3: Example of losses represented by normal mixture distribution with 95% VaR and ES denoted

by horizontal line and horizontal dotted line, respectively.

where, α ∈ (0, 1) is a confidence level (McNeil et al., 2015). Second, I use expected shortfall

(ES), which is closely related to the VaR, defined by,

ESα =
1

1− α

∫ 1

α
qu(GL)du, (12)

where qu(GL) = G←L (u) is the quantile function of GL (McNeil et al., 2015). For both VaRα

and ESα, I set α ∈ {0.9, 0.93, 0.95, 0.98, 0.99}.

Figure 3 gives an example of the VaR and ES under losses of a normal mixture distribution.

VaR is the loss that occurs with a probability of α, which is 5% in this case. When the data

is discontinuous it is represented by closest value below the probability α. This gives insight

into a single value on the loss distribution. One disadvantage of VaR is that it does not give

any insight into the distribution of losses above the 1− α threshold. This is not relevant when

losses are normally distributed, since the probability distribution is monotonically decreasing in

the upper tail. However, when this is not the case, such as in Figure 3, VaR gives poor insight

into the expectation of losses. This is where ES enters the field, by estimating the expectation

of losses above the 1− α threshold. The two statistics can differ substantially when very large

losses due to supply and demand shocks are probable.
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I follow McNeil et al. (2015) in estimating the VaR and ES by first ranking the losses

L1, . . . , Ln as L(1) ≤ L(2) ≤ · · · ≤ L(n), for n ∈ N. Then, the estimator of VaR is given by,

ˆVaR = L(dnαe). (13)

Furthermore, the estimator of the ES is given by,

ÊS =
dnαe − nα
n(1− α)

L(dnαe) +
1

n(1− α)

n∑
i=dnαe+1

L(i). (14)

4 Price Model

4.1 Multivariate Copula

I use a multivariate copula approach to model the joint distribution of changes in spot and

future prices, ∆St and ∆F t, respectively. This is required to solve (10), since ∆St and ∆F t

are the only unknowns and the calculation of downside risk measures depends on the entire

distribution.

A copula is a distribution function that links marginal distributions to a joint distribution

(copula is ‘link’ in Latin). Copulas allow for a bottom-up model-building approach, which is

useful in risk management, since marginal behaviour of risk factors is generally better under-

stood than their dependence structure (McNeil et al., 2015). Additionally, copulas can allow

for skewness and asymmetrical marginals. Furthermore, they allow for relatively easy sampling,

which is particularly useful in determining downside risk measures using Monte Carlo simula-

tion (McNeil et al., 2015). Copula models are based on Sklar (1957) theorem, which states that

any joint distribution function F , with marginals F1, . . . , Fd for d ∈ N, can be linked together

with a copula C : [0, 1]d → [0, 1]. Mathematically this is given by,

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (15)

where x2, . . . , xd ∈ R.

Archimedean copulas (AC) have proven particularly useful in risk management applica-

tions, for allowing asymmetry in the joint tails, i.e. upper tail may be different from lower tail
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dependence. The d−dimensional case for d ≥ 2 of this particular copula family is given by,

Cψ(u1, . . . , ud; θ) = ψθ(ψ
−1
θ (u1) + · · ·+ ψ−1

θ (ud)). (16)

where u1, . . . , ud ∈ [0, 1] are uniform random variables, θ ∈ R, the generator ψ(·) : [0,∞)→ [0, 1]

is a continuous and decreasing function that satisfies ψ(0) = 1 and limt→∞ ψ(t) = 0 and is

imposed to be completely monotonic to guarantee a proper copula (McNeil et al., 2015).

ACs have several limitations. First, most ACs are one parametric, that generally relates

the parameter to the Kendall’s tau dependence measure. This allows for efficient sampling

techniques and likelihood inference. However, the model may fit well in the body, while the fit

in the tail is poor. This is particularly relevant in likelihood inference, where the fit in body and

tail is treated equally, while tail observations occur less often. Second, symmetry in ACs can

be restrictive when modelling in large dimensions. This implies that the dependence between

all pairs of components is equal. It seems plausible that different supply and demand dynamics

between different commodities result in asymmetries. Finally, the unstructured nature of ACs

can be limiting when structure is present in the data, e.g. when supply and demand dynamics

are similar between spot and future pairs of the same commodity.

Górecki et al. (2021) proposes to alleviate these limitations by combining outer power ACs

(OPACs) and hierarchical ACs (HACs). First, outer power transformations add an additional

parameter to the generator, that allows for a good fit in body and tail. Second, HACs are

constructed by nesting several ACs within one another, allowing for a asymmetrical model, and

adding much needed structure (Joe, 1997).

Nelsen (2006) proposes that an outer power transformation of any generator of a 2-d AC

generator creates a generator again and is given by,

ψβ,θ(t) = ψθ(t
1
β ) (17)

where β ∈ [1,∞). The additional parameter β allows for fine-tuning the fit in the tail while

fixing the models Kendall’s tau, thus keeping a good fit in the body.

HACs can be constructed by replacing some arguments of ACs with other (H)ACs (Joe,
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(a) (b) (c)

Figure 4: (a) A tree-like representation of (18), (b) An undirected tree with with nodes ν = {1, 2, . . . , 5}

and ε ⊂ ν × ν, and (c) A tree-like representation with fork mapping from (20) (Górecki et al., 2021).

1997). For a 3-variate HAC, this is given by,

Cψ1,ψ2(u1, u2, u3; θ1, θ2) = Cψ1{u1, Cψ2(u2, u3; θ2); θ1}. (18)

where, Cψ1 and Cψ2 are both Archimedean copulas. It should be noted that decomposition in

(18) is not unique and the dimension is chosen for illustrative purposes only, which I will use

throughout the methodology. Figure 4a shows a tree-like representation of (18).

Following Górecki et al. (2021), (18) can be described using graph theory. An ‘undirected

tree’ with nodes ν = {1, 2, . . . ,m} for m = 2d−1 and ε ⊂ ν×ν can be derived by enumerating its

nodes. For example, Figure 4b shows that ν = {1, 2, · · · , 5} and ε = {(1, 5), (2, 4), (3, 4), (4, 5)}.

Nodes {1, 2, 3} correspond to the ‘leaves’ of the tree, while {4, 5} are ‘forks’. Leaves are given

by the variables u1, u2 and u3 in the HAC structure. The forks correspond to Cψ1 and Cψ2 ,

which are set uniquely according to the ranking of dependence measure Kendall’s tau (τ), such

that node m has the lowest τ , followed by node m − 1, etc. The highest fork is referred to as

the ‘root’.

Rewriting (18) using a labelling function Ψ, that maps the fork to the generators gives,

CΨ[5],Ψ[4](u1, u2, u3) = CΨ[5]{u1, CΨ[4](u2, u3)}, (19)

where Ψ[4] maps fork node 4 to ψθ2 and Ψ[5] maps fork node 5 to ψθ1 . Equation 19 allows

me to express Cψ1,ψ2(u1, u2, u3) in terms of (ν, ε,Ψ) which is useful in estimation and sampling.

The arguments of CΨ[4] in Equation 19, i.e. 2 and 3, correspond to the ‘children’ of fork 4, and

16



the arguments of CΨ[5], i.e. 1 and 4, correspond to the ‘children’ of fork 5. This structure allows

the HAC, with arbitrary dimension, to be written as C(ν, ε,Ψ). Figure 4c shows a graphical

representation of Equation 19.

Finally, the aforementioned OPAC and HAC example are combined to from a 3-variate

HOPAC, which is given by,

C(ν, ε,Ψ) = CΨ[5]{u1, CΨ[4](u2, u3)}, (20)

where ν = {1, 2, · · · , 5}, ε = {(1, 5), (2, 4), (3, 4), (4, 5)}, Ψ[4] = ψ(θ2, β2), and Ψ[5] = ψ(θ1, β1).

Equation 20 can be extended to a d-variate model as long as the ‘sufficient nesting conditions’

are satisfied, which they are when the first derivative of Ψ[i]−1 ◦Ψ[j], where i is the parent of j,

is continuously monotone for all parent-child pairs (McNeil, 2008). Sufficient nesting conditions

are satisfied for HOPACs (Górecki et al., 2021).

4.2 Estimation

I follow Górecki et al. (2021) in estimating HOPACs. Three steps are necessary in estimating

HOPACs, (1) determining structure, i.e. the general form of the tree, (2) deciding on the AC

family used, and (3) the estimating parameters for each fork.

Górecki et al. (2017) proposes an estimation approach to determine the structure of an HAC,

which is independent of the AC family. Consequently, this approach can directly be implemented

to estimate the structure of an HOPAC. All that is required to estimate the structure are the

pairwise Kendall’s taus.

The structure is estimated as follows. First, I estimate all pair-wise sample Kendall’s taus

τij , for i, j ∈ {1, . . . ,m}, m ∈ N, and set ν̂ := {1, . . . , 2m − 1}, ε̂ := Ø and I := {1, . . . ,m},

where m is the number of leaves. Second, I find the two nodes in I to join,

(i, j) = argmax
ĩ<j̃, ĩ∈I, j̃∈I

avg((τ˜̃i˜̃j)(̃̃i,˜̃j)∈↓(̃i)×↓(j̃)) (21)

where, ↓ (̃i) ∈ {1, . . . ,m} are the descendant leaves of fork i ∈ {m + 1, . . . , 2m − 1}. Third, I

update ε̂ := ε̂ ∪ {(i,m + k), (j,m + k)}. Fourth, I remove i and j from I and add m + k, i.e.

17



Table 3: Four popular families of completely monotone outer power transformed generators with the

range of the original parameter θ, generator function, and upper-lower tail dependence coefficients.

Lower tail dependence λl is given by lim
q↓0

C(q, q)/q and upper tail dependence λl is given by 2− lim
q↓0
{1−

C(1−q, 1−q)}/q (McNeil et al., 2015). Furthermore, β ∈ [1,∞) is the outer power transform parameter.

Generator (a) Range θa ψa,θ,β(t) λl λu

Ali-Mikhai-Haq (A) [0, 1) 1−θ
exp(t1/β)−θ 0 2− 21/β

Clayton (C) (0,∞) (1 + θt1/β)−1/θ 2−1/θβ 2− 21/β

Frank (F) (0,∞) − log{1−(1−exp(θ)) exp(−t1/β)}
θ 0 2− 21/θβ

Joe (J) [1,∞] 1− (1− exp(−t1/β))1/θ 0 2− 21/θβ

I := I ∪{m+k}\{i, j}. Finally, I repeat steps one trough five for k = {2, . . . ,m−1} to obtain

the structure of C(ν, ε,Ψ) as C(ν̂, ε̂,Ψ).

As an example, I walk through estimating the simple structure of (18). Starting at k = 1,

ν̂ := {1, . . . , 5}, ε̂ := Ø and I := {1, . . . , 3}. I estimate τij for i, j ∈ {1, 2, 3}, which results in

a 3 × 3 matrix. Next, I find (i, j) in (21). Let me assume this is the i = 3, j = 2 pair, since

avg(τ32, τ23) is the maximum. Second, I update ε̂ := {(2, 4), (3, 4)} and I := {1, 4}. Moreover,

I set k = 2, and find (i, j) = (4, 1), since avg(τ21, τ31, τ12, τ13) is the maximum. Furthermore,

I update ε̂ := {(1, 5), (2, 4), (3, 4), (4, 5)} and I := {5}. Now that the structure is estimated, I

can continue estimating Ψ̂. For this, I need to select HOPAC generators first.

I consider four popular completely monotone generator families. These are, Ali-Mikhai-Haq

(A), Clayton (C), Frank (F) and Joe (J), shown in Table 3. The well known Gumbel generator

is excluded, since the outer power transformed generator is equal to the original generator.

To estimate the parameters of the HOPAC structure, I turn to Górecki et al. (2021) top-

down estimator. The estimator requires ν̂, ε̂, and a generator family a as input, and returns

the parameter estimates of all forks Ψ̂[k] ← ψ(a,θ̂,β̂) for k ∈ {m + 1, . . . , 2m − 1}. Following

Górecki et al. (2021), to obtain a proper copula from completely monotone generators, I use

the restrictions:

• if βparent = 1, then θchild ≥ θparent and βchild ≥ βparent, or
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• if βparent > 1 then θchild = θparent and βchild ≥ βparent.

Intuitively, these restrictions enforce that the dependence increases when moving from the root

to the leaves of the three.

To estimate the parameters, I traverse the structure, i.e. starting at the root fork of the

copula, going through all of the forks. First, I find the children (i, j) of the root. Second, the

descendant leaves of the children are stored, i.e. li ← descendent leaves of i, if i is a fork, else

li ← {i}. The same is done for j. Third, I preform maximum likelihood estimation (MLE) over

all combinations of li and lj and take the average,

(θ̂, β̂)← 1

#(li) ·#(lj)

∑
ĩ∈li

∑
j̃∈lj

argmax
(θĩj̃ ,βĩj̃)∈θa×[1,∞)

n∑
m=1

log cψa,θ
ĩj̃
,β
ĩj̃

(umĩ, umj̃) (22)

where # is the number of element, c is the density of the copula, θa is the parameter range

from Table 3, and umi for m ∈ {1, . . . , n}, i ∈ {1, . . . , d} are the pseudo-observations of the

sample, e.g. d = 3 and n = 1000 from Figure 4. Fourth, I set Ψ[2d − 1] ← ψa,θ̂,β̂. Fifth, check

which of the two restrictions apply, and use it with steps one through five on the children of the

current fork, until all parameters are estimated. I use maximum likelihood estimation since it

is unbiased, naturally extends to any parameter dimension, and statistically more efficient than

Kendall’s tau inverse and distance-based estimator (Górecki et al., 2021).

As an example, I walk through estimating the parameters of the simple structure of (18).

Starting at the root, i.e. k = 5, I find the children of this fork to be (1, 4). Next, li = {1} and

lj = {2, 3}. Moreover, I perform MLE 2×1 times and take the average to obtain Ψ[5]← ψa,θ̂,β̂.

Furthermore, I use (θ̂, β̂) to set restrictions on the parameters of Ψ[4]. Finally, I preform MLE

once, since Ψ[4] only has children that are leaves, using the aforementioned restrictions. With

Ψ[4]← ψa,θ̂,β̂, I have estimated the entire distribution in (18).

4.3 Simulation

In this section I zoom in on the simulation that is required to compute optimal hedge ratios for

downside risk objectives. Below I present McNeil (2008) simulation method for hierarchical cop-

ulas, under the assumption that ψ1, . . . , ψd are Laplace-Stieltjes (LS) transformed Archimedean
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Table 4: Explicit inverse Laplace-Stieltjes transforms of Archimedean copula generators (Hofert, 2010).

Geo refers to the geometric distribution and Γ refers to the gamma distribution.

Generator(a) G1

Ali-Mikhai-Haq(A) Geo(1− θ)

Clayton(C) Γ(1/θ, 1)

Frank(F) log
(
1− e−θ

)
Joe(J)

 1/θ

k

 (−1)k−1, k ∈ N

copula generators. Solving (10) requires the entire distribution of hedged portfolio profits and

losses, that I obtain by means of Monte Carlo simulation. Sampling is based on representing

(16) as a mixture distribution with LS transforms, first derived by Joe (1997).

The mixture presentation of a d-variate HAC is given by,

Cd (u1, . . . , ud+1;ψ1, . . . , ψd)

=
∫∞

0 P v11 (u1)Cd−1

(
P v11 (u2) , . . . , P v11 (ud+1) ;ψ

(1)
2 (·; v1) , . . . , ψ

(1)
d (·; v1)

)
dG1 (v1)

=
∫∞

0 · · ·
∫∞

0 P v11 (u1) · · ·P vdd (ud)P
vd
d (ud+1) dGd (vd; vd−1) · · · dG2 (v2; v1) dG1 (v1)

(23)

where G1 is the distribution function with LS transform ψ1, Pk(u) = exp(−ψ−1
k (u)) for k ∈

{1, . . . , d} and Gk(v; vk−1) is the distribution function with LS transformations ψ
(k−1)
k (·; vk−1) =

exp
(
−vk−1ψ

−1
k−1 ◦ ψk(·)

)
for k ∈ {2, · · · , d}.

I follow the steps from McNeil (2008) to sample from (23). First, I generate variate V1 with

distribution function G1 from Table 4. Second, I follow Hofert (2011) to include the outer power

transform in sampling. I let ψβ for β ∈ [1,∞) be the outer power transformation of a continu-

ously monotone generator. Then, V̇ = SV β, where V ∼ G, S ∼ St(1/β, 1, cosβ(π/2β),1β=1; 1),

where St is the stable distribution. Third, I generate variates Vk for k ∈ {2, . . . , d} with dis-

tribution function Gk(v;Vk−1), where k − 1 is the index of the parent of k, and is given by,

Gk(v;Vk−1) = exp

(
−Vk−1

[
ψ−1
k−1

{
ψk−1

(
t

1
β2

)}]β1)
= exp

(
−Vk−1t

β1
β2

)
, (24)
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where the right-hand-side is the Gumbel generator provided that β1 ≤ β2, which is enforced by

the restrictions. I follow Hofert (2011) to sample Equation 24 with Laplace-Stieltjes transform

given by,

St

β1/β2, 1,

{
cos

(
β1

β2

π

2

)
Vk−1

}β2
β1

, Vk−11{β1/β2=1}; 1

 . (25)

Third, I generate independent uniform variate (X1, . . . , Xd+1). Finally, I return (U1, . . . , Ud+1)

where Ui = ψi (− ln (Xi) /Vi) for i ∈ {1, . . . , d} and Ud+1 = ψd (− ln (Xd+1) /Vd). These are

converted back to price changes using empirical distribution of price changes of the respective

window.

Following Sukcharoen and Leatham (2017), I estimate the HOPAC structure and parameters

in a five year (261 weeks) moving window approach on the pseudo-observations of the six

commodity price changes, for each generator in Table 3. Pseudo-observations are constructed

by determining the rank of each price change in the window and dividing by the window length

plus one. It should be noted that some studies estimate the model using GARCH filtered data,

e.g. Sukcharoen et al. (2015). However, similar to Sukcharoen and Leatham (2017) I deviate from

this method to avoid first-stage estimation errors, which have been shown to cause parameter

instability, and subsequently may void the use of HOPACs by causing under-performance when

costs are included (Alexander et al., 2013). The moving windows result in 4 × 1095 model

estimates, one for each HOPAC generator. Next, I simulate 4×6×10, 000 (4 generators, 6 price

change series) draws from each model and compute the optimal hedging ratio b∗ with the Nelder

and Mead (1965) direct search method in (10). Following Alexander et al. (2013), I compute

the portfolio profit and losses for (1) a fully hedged one-to-one strategy, i.e. all hedge-ratios are

equal to one, and (2) the optimal hedge-ratios under the HOPAC model.

Finally, I compare the hedging effectiveness and gross margin. Hedging effectiveness (HE)

is a measure to determine whether the model performs better or worse relative to a one-to-

one hedging strategy. Furthermore, mean gross margin (GM) is important for managers as it

determines the profitability of refineries. The hedging effectiveness is given by,

HEj =

(
1− Riskα(∆π∗t (b

∗
t ))

Riskα(∆π∗t (0))

)
(26)

where j ∈ {N,A, C, F, J} (Table 3), π∗t (0) is the unhedged P/L, and Riskα refers to either
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VaR or ES at confidence level 1−α (Sukcharoen & Leatham, 2017). Furthermore, when j = N

then b∗t is equal to a [3× 1] matrix of ones to replicate one-to-one hedging.

The mean gross margin of the one-to-one hedging strategy is given by,

GMN =
1

n

n∑
i=1

πi(13)

SCi
(27)

where, 13 is a [3× 1] matrix of ones, n is the total number of windows. Additionally, the mean

gross margin under the HOPAC model is given by,

GMk =
1

n

n∑
i=1

πij(bi−1)

SCi
. (28)

where k ∈ {A, C, F, J}. Finally, I compare gross margins of one-to-one versus HOPAC models

with,

∆Mk = GMk −GMN. (29)

A similar formula is used when including transaction and margin costs.

Table 5: The three different scenarios ordered by their estimation and out-of-sample method.

Out-of-sample

Estimation
No costs Costs

No costs Scenario 1 -

Costs Scenario 2 Scenario 3

To evaluate the performance of the modelling approach I consider different scenarios. Table 5

shows these scenarios. The first scenario is achieved by excluding costs in the estimation process

and out-of-sample study. The second scenario is given by excluding costs in estimation, but

including costs out-of-sample, and is used to compare the result to Alexander et al. (2013). The

third scenario is achieved by including costs in both the estimation and out-of-sample study.

5 Results

This section compares effectiveness of the HOPAC hedging strategy to a one-to-one hedging

strategy in an out-of-sample context. Several steps are required to achieve this goal. First, I
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estimate the hierarchical structure of the model over a moving window from 17 Mar 2000 to 15

Jan 2021 with a window size of 261 weeks. Second, I estimate the model parameters over the

aforementioned windows with generator functions given in Table 3 and compare the model fit.

Third, I simulate price changes and estimate hedging ratios with and without inclusion of costs in

estimation. Fourth, optimal forecast lag is discussed to circumvent first stage estimation errors

introduced by filtering. Finally, I compare hedging effectiveness of the HOPAC strategy under

different generators to one-to-one heding in an out-of-sample context. Additionally, profitability

is compared between including and excluding costs in estimation and I zoom in on transaction

and margin costs, to give insight on the importance of different costs.

5.1 Structure

Figure 5: Estimated structure from 17 Mar 2000 with a window size of 261 weeks.

Figure 5 shows the estimated structure on unfiltered price changes for 17 Mar 2000, with a

window size of 261 weeks (estimated on 24 Mar 1995 to 17 Mar 2000), which is equal for all four

generators. The estimated structures from 24 Mar 2000 to 15 Jan 2021 are mostly identical to

that of 17 Mar 2000, except for an uncommon switch between Ψ[8] and Ψ[9]. Unsurprisingly,

the spot and future pair for each commodity are linked together. Furthermore, crude oil is

linked in the first fork (Ψ[6]), followed by heating oil in the second fork (Ψ[7]). These are nested
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in the fourth fork (Ψ[9]), indicating higher dependence of crude oil and heating oil, than crude

oil/heating oil and gasoline. Gasoline is linked in the third fork (Ψ[8]), which is nested with

Ψ[9] in the root (Ψ[10]). When Ψ[8] and Ψ[9] are switched, cross-dependence between crude

oil and heating oil is slightly higher than the gasoline pair. Taken together, the stability of the

estimated structures confirms the choice for a hierarchical model.

The structure in Figure 5 can be explained by supply and demand characteristics of crude

oil, heating oil and gasoline. Historically, consumers increase demand of heating oil during cold

weather and winter storms, which generally coincides with higher crude oil prices as winter

storms interrupt delivery systems9. Furthermore, demand for gasoline increases during spring

and late summer, when consumer drive more, causing higher prices. Additionally, refineries are

required due to regulation to replace cheaper but more evaporative gasoline with more expensive

less evaporative gasoline in summer 10. These characteristics cause lower dependence for crude

with gasoline than heating oil, thus explaining the body of the structure in Figure 5.

5.2 Model Fit

In this section I provide evidence of the benefit of HOPACs using Akaike information criterion

(AIC). Figure 6 shows the AIC for the Ali-Mikhai-Haq, Clayton, Frank, and Joe generated

HOPACs averaged over the nodes (1
5

∑10
i=6 AICΨ[i]) with estimated structure from Mar 17 2000

to 15 Jan 2021 (1087 AIC averages per model). The Ali-Mikai-Haq, Clayton and Frank HOPAC

models perform relatively well. Furthermore, the Frank HOPAC shows the lowest AIC average,

followed by Ali-Mikai-Haq, Clayton and Joe HOPAC. Interestingly, the Joe model shows a

relatively poor fit, although the difference is small. Additionally, all HOPAC models show a

better fit than a Clayton HAC model, which confirms the choice for the outer-power transform.

9see https://www.eia.gov/energyexplained/heating-oil/factors-affecting-heating-oil-prices.php for more infor-

mation.
10see https://www.eia.gov/energyexplained/gasoline/price-fluctuations.php for more information.
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Figure 6: Ali-Mikhai-Haq, Clayton, Frank and Joe HOPAC, and Clayton HAC Log-likelihood averaged

over nodes from Mar 17 2000 to Jan 15 2021 (1087 observations).

5.3 Hedging Ratios Estimates

In preparation for the out-of-sample study I estimate optimal hedging ratios for the different

generators under two downside risk measures. Table 6 and Table 7 shows VaR and ES, mean

hedge ratio estimates and standard deviations, for 1− α = {0.9, 0.93, 0.95, 0.98, 0.99}, from 17

Mar 2000 to 15 Jan 2020 with and without costs in estimation, respectively. On average, hedge

ratios are between 0.75 and 1.12 when costs are excluded in estimation and between 0.60 and

1.09 when costs are included in estimation. Furthermore, mean hedge ratios appear to be higher

for heating oil, while hedge ratios of gasoline are lower when costs are excluded than crude oil.

This may be explained by the higher dependence between the long position in heating oil and

short position in crude oil compared to the long position in gasoline and short position in crude

oil, for positive hedging ratios. Interestingly, Sukcharoen and Leatham (2017) did not find a

meaningfull difference in hedging ratios between heating oil and gasoline using vine copulas and

Alexander et al. (2013) found much higher hedging ratios for OLS and autocorrelation based

models. Hedge ratios appear to be relatively flat for different confidence levels when cost are

excluded, while increasing over confidence levels when costs are included on average. Thus,

when costs are included in estimation, the model proposes a more ‘risk-off’ hedging strategy

when managers are concerned for higher confidence levels. It seem logical that this can be

explained by costs being more relevant at lower confidence level, while becoming less relevant
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as the confidence level increases. Surprisingly, hedge ratios are mostly lower for ES than VaR

ceteris paribus, while ES is a higher tail risk measure than VaR for equal confidence level.

Standard deviations appear to increase substantially when costs are included in estima-

tion, possibly due to higher variability due to interest costs. Furthermore, standard deviations

decrease over higher VaR confidence level when costs are included. It seems plausible that intro-

ducing costs in estimation adds noise, e.g. interest rate volatility, that becomes less important

when the confidence level increases and big losses become more relevant. Furthermore, ES takes

the entire tail into account in estimation and is consequently less effected by this effect. Stan-

dard deviation are substantially lower than the vine copula based hedging ratios by Sukcharoen

and Leatham (2017) and OLS and auto-correlation based hedging ratios by Alexander et al.

(2013). Alexander et al. (2013) shows that instability in parameter estimates cause unusually

high hedging ratios which may also be the culprit in Sukcharoen and Leatham (2017) method.
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Table 6: Mean optimal hedge ratios with standard deviation in parentheses for different generators (a) and risk measures excluding costs

in estimation from 17 Mar 2000 to 15 Jan 2021. Var and ES refer to value at risk and expected shortfall, respectively. Generators are

Ali-Mikai-Haq (A), Clauton (C), Frank (F) and Joe (J).

a Risk Measure

VaR ES

90% 93% 95% 98% 99% 90% 93% 95% 98% 99%

Panel A: Crude oil hedge ratios

A 0.92(0.06) 0.93(0.06) 0.94(0.06) 0.96(0.06) 0.96(0.09) 0.86(0.07) 0.86(0.08) 0.86(0.10) 0.84(0.14) 0.84(0.15)

C 0.92(0.06) 0.93(0.06) 0.93(0.06) 0.95(0.07) 0.95(0.08) 0.85(0.06) 0.85(0.07) 0.84(0.09) 0.82(0.13) 0.82(0.13)

F 0.92(0.06) 0.93(0.06) 0.94(0.06) 0.96(0.07) 0.95(0.10) 0.86(0.07) 0.86(0.08) 0.86(0.10) 0.85(0.14) 0.84(0.15)

J 0.93(0.06) 0.94(0.06) 0.95(0.06) 0.97(0.07) 0.97(0.09) 0.86(0.07) 0.86(0.08) 0.85(0.10) 0.84(0.15) 0.83(0.17)

Panel B: Heating Oil hedge ratios

A 1.12(0.11) 1.11(0.10) 1.10(0.10) 1.09(0.10) 1.09(0.11) 1.01(0.13) 1.01(0.14) 1.01(0.15) 1.02(0.19) 1.03(0.23)

C 1.12(0.10) 1.11(0.10) 1.11(0.10) 1.10(0.10) 1.09(0.10) 1.00(0.12) 1.00(0.13) 1.00(0.14) 1.01(0.20) 1.02(0.27)

F 1.12(0.10) 1.11(0.10) 1.10(0.10) 1.10(0.11) 1.10(0.11) 1.03(0.13) 1.03(0.14) 1.03(0.15) 1.05(0.20) 1.06(0.26)

J 1.12(0.11) 1.12(0.11) 1.12(0.11) 1.11(0.11) 1.10(0.11) 0.98(0.12) 0.97(0.12) 0.97(0.13) 0.97(0.16) 0.97(0.19)

Panel C: Gasoline hedge ratios

A 0.86(0.11) 0.87(0.11) 0.87(0.12) 0.89(0.12) 0.89(0.13) 0.83(0.10) 0.83(0.10) 0.83(0.11) 0.82(0.12) 0.81(0.13)

C 0.86(0.11) 0.87(0.11) 0.87(0.12) 0.88(0.12) 0.90(0.13) 0.83(0.1) 0.83(0.10) 0.83(0.11) 0.82(0.12) 0.81(0.14)

F 0.85(0.11) 0.86(0.11) 0.87(0.11) 0.88(0.11) 0.89(0.13) 0.82(0.10) 0.82(0.10) 0.82(0.11) 0.81(0.12) 0.81(0.13)

J 0.84(0.12) 0.83(0.12) 0.83(0.12) 0.83(0.13) 0.83(0.14) 0.78(0.10) 0.78(0.10) 0.77(0.11) 0.76(0.12) 0.75(0.14)
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Table 7: Mean optimal hedge ratios with standard deviation in parentheses for different generators (a) and risk measures including costs

in estimation from 17 Mar 2000 to 15 Jan 2021. VaR and ES refer to value at risk and expected shortfall, respectively. Generators are

Ali-Mikai-Haq (A), Clauton (C), Frank (F) and Joe (J).

a Risk Measure

VaR ES

90% 93% 95% 98% 99% 90% 93% 95% 98% 99%

Panel A: Crude oil hedge ratios

A 0.62(0.36) 0.70(0.26) 0.75(0.22) 0.85(0.16) 0.89(0.15) 0.64(0.22) 0.66(0.21) 0.67(0.21) 0.69(0.22) 0.70(0.21)

C 0.62(0.36) 0.70(0.26) 0.74(0.23) 0.83(0.17) 0.87(0.17) 0.62(0.22) 0.64(0.21) 0.65(0.21) 0.66(0.22) 0.68(0.20)

F 0.63(0.33) 0.69(0.26) 0.74(0.22) 0.86(0.16) 0.89(0.16) 0.64(0.21) 0.67(0.20) 0.68(0.20) 0.71(0.21) 0.72(0.20)

J 0.64(0.31) 0.72(0.24) 0.76(0.21) 0.87(0.16) 0.90(0.15) 0.66(0.20) 0.68(0.19) 0.69(0.20) 0.70(0.22) 0.71(0.22)

Panel B: Heating Oil hedge ratios

A 0.72(0.65) 0.84(0.49) 0.91(0.41) 1.04(0.25) 1.08(0.18) 0.61(0.32) 0.64(0.29) 0.66(0.27) 0.72(0.25) 0.77(0.25)

C 0.75(0.67) 0.84(0.49) 0.89(0.45) 1.04(0.25) 1.06(0.20) 0.60(0.32) 0.62(0.29) 0.64(0.27) 0.69(0.25) 0.74(0.26)

F 0.77(0.62) 0.85(0.49) 0.92(0.41) 1.04(0.23) 1.09(0.17) 0.64(0.31) 0.68(0.29) 0.7(0.27) 0.77(0.25) 0.82(0.27)

J 0.75(0.60) 0.85(0.48) 0.91(0.43) 1.05(0.27) 1.09(0.18) 0.61(0.32) 0.64(0.29) 0.66(0.27) 0.71(0.24) 0.73(0.24)

Panel C: Gasoline hedge ratios

A 0.69(0.16) 0.73(0.13) 0.75(0.13) 0.81(0.13) 0.84(0.14) 0.76(0.11) 0.77(0.11) 0.78(0.11) 0.77(0.11) 0.76(0.12)

C 0.69(0.16) 0.73(0.13) 0.75(0.12) 0.8(0.13) 0.83(0.14) 0.75(0.10) 0.76(0.10) 0.77(0.11) 0.77(0.12) 0.76(0.13)

F 0.67(0.16) 0.71(0.14) 0.74(0.13) 0.81(0.13) 0.83(0.15) 0.75(0.11) 0.76(0.10) 0.77(0.11) 0.77(0.11) 0.77(0.12)

J 0.67(0.15) 0.7(0.13) 0.71(0.12) 0.75(0.12) 0.77(0.14) 0.71(0.10) 0.72(0.10) 0.72(0.10) 0.72(0.11) 0.72(0.13)
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5.4 Optimal Forecast Window

In this section I apply a heuristic approach to circumvent the first stage estimation errors

introduced by filtering. As noted before, auto-correlation may be present in price changes and

should be taken into account. I tackle this issue by introducing a time lag between estimating

hedging ratios and the trading date. Figure 7 shows the number of positive differences between

HOPAC and one-to-one hedging strategy HE to total number of HEs under HOPAC hedging

strategy for scenario two and three (2 scenarios × 4 HOPACs × 10 risk measures = 2 × 40

HEs), for lags ranging from 1 to 261 weeks. Furthermore, HEs are computed with the entire

loss distribution from from 24 Mar 2000 to 22 Jan 2021 (1087 observations per distribution).

The fraction generally increases over the forecast window n up to roughly 20 weeks, after

which it stays flat in scenario two and decreases for scenario three. It seems plausible that

autocorrelation causes the i.i.d. assumption only to be valid when hedging ratios are estimated

up to roughly 20 weeks in advance. Additionally, when the estimation is more than 20 weeks

prior to trading, information in the data becomes decreasingly additive to hedging, especially

in scenario 3, where cost information is used in estimation.
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Figure 7: Ratio of positive differences between HOPAC and one-to-one hedging strategy HE to total

HEs under HOPAC hedging strategy for scenario two and three (2 scenarios × 4 HOPACs × 10 risk

measures = 2 × 40 HEs) for lags ranging from 1 to 261 weeks. HEs are computed with the entire loss

distribution from from 24 Mar 2000 to 22 Jan 2021 (1087 observations per distribution).
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5.5 Hedging Effectiveness

To provide evidence of the efficacy of HOPACs versus one-to-one hedging I compute hedging ef-

fectiveness in an out-of-sample study. Table 9 shows hedging effectiveness (HE) for different risk

metrics, scenarios and hedging strategies using hedging ratios estimated 20 weeks in advance.

Hedging effectiveness is computed by using risk measures on the entire weekly out-of-sample loss

distribution from Jul 28 2000 to Jan 22 2021 (5 hedging strategies × 3 scenarios × 1069 observa-

tions = 15 distributions of 1069 observations). HE is higher relative to one-to-one hedging under

the Ali-Mikhai-Haq and Clayton generated HOPACs model for each risk metric when costs are

included in trading (scenario 2 and 3). Furthermore, HE is not always greater than one-to-one

hedging under the Joe and Frank generated HOPACs when costs are included in trading, but

excluded in estimation (scenario 2). Additionally, Joe and Frank generated HOPACs always

perform better than one-to-one hedging when costs are included in trading and estimation (sce-

nario 3). Finally, when costs are excluded from trading, some HOPAC models perform worse

than one-to-one hedging, which is the most unrealistic case (scenario 1). It seems plausible

that, HE performance under different generators is similar because tail dependence are closely

related (Table 3). Unsurprisingly, HE is higher for both one-to-one hedging and hedging under

HOPAC models when costs are excluded in trading (scenario 1 versus scenario 2 and 3).

Using a sign test (Table 8), I reject the null hypothesis at 2% significance that HOPAC

HEs under Ali-Mikai-Haq, Clayton, Frank and Joe generation are equally likely to be higher

than one-to-one HE for the VaR risk objectives when costs are excluded or included in esti-

mation, while included in the out-of-sample study. I cannot formally test significance of the

null hypothesis for ES because the differences are assumed to be independent, which is not the

case for difference ES confidence levels, i.e. ES at 99% is nested in the ES at 98%. I obtain

the results by first computing the sign of HEi −HEN for i ∈ {A,C, F, J}. Then, I count the

number of positive signs in scenario 2 and 3 for VaR, and compute the p-value, which is given by

Pr(X ≥ No. positive signs) under a binomial distribution with parameter p = 0.5 and n = 10.

The p−value is equal to 0.011 under Ali-Mikai-Haq, Frank and Joe generation, and 0.001 un-

der Clayton generation for VaR. While I cannot formally test the ES out-performance, these

findings show that modelling prices with HOPACs is the more effective choice for downside risk
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management relative to one-to-one hedging.

Table 8: P-values of sign test with null hypothesis that HOPAC HEs under Ali-Mikai-Haq, Clayton,

Frank and Joe generation are equally likely to be higher than one-to-one HE for the VaR risk objectives

when costs are excluded or included in estimation, while included in the out-of-sample study. Results

are obtained by counting the number of positive signs in HEi − HEN for generators i ∈ {A,C, F, J}.

P-values are computed by Pr(X ≥ No. positive signs) under a binomial distribution with parameter

p = 0.5 and n = 10, where ∗ shows rejection of the null at 2% significance.

Ali-Mikai-Haq Clayton Frank Joe

0.011∗ 0.001∗ 0.011∗ 0.011∗
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Table 9: Hedging Effectiveness (HE) in percentage, for generators i ∈ {A, C, F, J} and one-to-one heding (N). Values are computed

for VaR and ES risk measures for significance .9, .93, .95, .98 and .99 and three difference scenarios (see Table 5). Risk measures are

computed on the entire weekly out-of-sample loss distribution from Jul 28 2000 to Jan 22 2021 (5 hedging strategies × 3 scenarios

× 1069 observations = 15 distributions of 1069 observations). VaR and ES refer to value at risk and expected shortfall, respectively.

Furthermore, generators are Ali-Mikai-Haq (A), Clauton (C), Frank (F) and Joe (J).

Risk Measure HOPAC HE with n = 20

Scenario 1 Scenario 2 Scenario 3

Type 1− α HEN HEA HEC HEF HEJ HEN HEA HEC HEF HEJ HEN HEA HEC HEF HEJ

VaR 90% 42.1 41.7 40.8 39.8 40.7 22.1 22.2 22.7 23.0 22.5 22.1 23.9 24.4 22.9 25.9

93% 40.5 41.1 42.3 41.1 38.1 23.4 24.4 24.8 22.7 21.7 23.4 25.4 26.3 25.9 24.9

95% 36.2 39.7 39.5 39.1 39.1 22.0 23.5 25.5 24.2 22.9 22.0 24.6 25.5 24.4 23.1

98% 28.9 31.9 29.6 32.2 31.7 19.6 22.3 19.7 22.2 20.5 19.6 16.8 21.6 20.0 20.4

99% 37.4 38.5 40.5 43.2 38.3 29.1 33.5 34.0 31.8 32.1 29.1 33.8 34.7 32.0 32.1

ES 90% 36.0 36.3 36.5 36.4 35.9 23.3 25.0 25.3 25.1 24.8 23.3 24.1 24.1 24.1 24.0

93% 34.7 35.6 35.7 35.3 35.0 23.5 25.4 25.5 25.1 25.1 23.5 24.2 24.1 24.3 24.1

95% 34.0 35.0 34.8 34.7 34.6 24.3 25.8 25.8 25.5 25.7 24.3 24.7 24.6 24.6 24.7

98% 33.3 34.8 34.6 34.6 34.0 25.6 28.2 27.9 27.7 27.4 25.6 26.8 26.2 26.0 26.3

99% 31.3 32.0 32.3 32.3 32.7 24.6 26.4 26.5 26.5 27.1 24.6 25.7 25.5 24.8 25.8
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Table 10: Gross margin difference with one-to-one hedging (∆Mi) in percentage, for generators i ∈

{A, C, F, J}. Values are computed for VaR and ES risk measures for significance .9, .93, .95, .98 and

.99 and three difference scenarios (see Table 5). on the entire weekly out-of-sample loss distribution from

Jul 28 2000 to Jan 22 2021 (5 hedging strategies × 3 scenarios × 1069 observations = 15 distributions of

1069 observations). VaR and ES refer to value at risk and expected shortfall, respectively. Furthermore,

generators are Ali-Mikai-Haq (A), Clauton (C), Frank (F) and Joe (J).

Risk Measure HOPAC HE with n = 20

Scenario 2 Scenario 3

Type 1− α ∆MA ∆MC ∆MF ∆MJ ∆MA ∆MC ∆MF ∆MJ

VaR 90% 8.5 10.6 12.6 7.4 45.0 43.0 46.8 41.8

93% 9.5 7.6 9.4 8.1 37.3 35.8 37.6 31.1

95% 3.9 4.6 8.3 1.6 29.1 26.2 30.1 24.2

98% 5.5 8.9 6.8 4.1 17.1 19.5 15.2 13.8

99% 2.2 3.6 3.3 5.3 11.0 10.7 13.9 12.1

ES 90% 12.9 12.6 12.7 13.2 36.6 38.0 36.5 35.8

93% 12.8 12.4 12.2 13.1 33.7 35.9 33.0 33.2

95% 12.5 13.3 11.6 13.2 32.5 34.6 30.5 31.6

98% 13.1 14.0 13.1 14.3 30.0 32.1 27.0 29.6

99% 12.4 12.6 13.2 15.7 26.9 28.9 25.0 28.3

5.6 Profitability

One of the main responsibilities of managers is to ensure the profitability of their corporation.

As such, in this section I provide insights on the effect that including costs in estimation may

have on the profitability of refineries. Table 10 shows the difference in gross margin, ∆Mi for

i ∈ {A,C, F, J} of one-to-one hedging versus HOPAC hedging for different risk metrics, sce-

narios and hedging strategies using hedging ratios estimated 20 weeks in advance. The highest

gross margin is obtained when costs are included in estimation (scenario 3). The difference
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between one-to-one and HOPAC hedging is quite substantial for a low margin industry. It

seems reasonable that higher margins are caused by the lower-than-one estimated hedging ra-

tios (Table 7). When costs are excluded from estimation, but included in trading (scenario 2),

profitability under HOPAC models is still higher than one-to-one hedging, albeit not as large a

difference than in scenario 3.

Using a sign test (Table 11), I reject the null hypothesis at 1% significance that HOPAC

gross margin difference with one-to-one hedging under Ali-Mikai-Haq, Clayton, Frank and Joe

generated HOPACs are positive for the VaR risk objectives when costs are excluded or included

in estimation, while included in the out-of-sample study. Again, I cannot formally test signif-

icance of the null hypothesis for ES because the differences are assumed to be independent,

which is not the case for difference ES confidence levels. I obtain the results by counting the

number of positive signs of gross margin differences in scenario 2 and 3 for VaR, and compute

the p-value, which is given by Pr(X ≥ No. positive signs) under a binomial distribution with

parameter p = 0.5 and n = 10. The p−value is equal to 0.001 for all generators. While I cannot

formally test the ES out-performance, these finding show that modelling prices with HOPACs

is a more profitable choice for downside risk management relative to one-to-one hedging.

Table 11: P-values of sign test with null hypothesis that HOPAC gross margin difference with one-to-one

heding under Ali-Mikai-Haq, Clayton, Frank and Joe generated HOPACs are positive for the VaR risk

objectives when costs are excluded or included in estimation, while included in the out-of-sample study.

Results are obtained by counting the number of positive signs of gross margin differences in scenario 2

and 3 for VaR, and compute the p-value, which is given by Pr(X ≥ No. positive signs) under a binomial

distribution with parameter p = 0.5 and n = 10, where ∗ shows rejection of the null at 1% significance.

Ali-Mikai-Haq Clayton Frank Joe

0.001∗ 0.001∗ 0.001∗ 0.001∗

5.7 Transaction and Margin Costs

Transaction and margin costs are of concern for managers that wish to optimise profitability.

Figure 8 shows initial margin, interest, commission and bid-ask spread costs for 99% ES down-
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side risk under (a) one-to-one and (b) Clayton generated HOPAC hedging. Initial margin costs

are substantially higher out-of-sample that other costs for ES with a confidence level of 99%

in scenario 3 from Jul 28 2000 to 22 Jan 2021. Furthermore, commission and bid-ask spread

costs are negligible relative initial margin and interest costs. Additionally, interest costs can

be positive and negative, while all other costs are positive only. Furthermore, interest costs

become negligible when interest rates are low. Moreover, initial margin costs appear to be more

volatile albeit lower for the Clayton generated HOPAC strategy than the one-to-one strategy.
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Figure 8: (a) Initial margin and interest costs per barrel for the one-to-one hedging strategy and ES

with a confidence level of 99% risk objective in scenario 3 from 17 Mar 2000 to 21 Mar 2021, (b) Initial

margin, interest costs, commission and bid-ask spread per barrel for the Clayton generated HOPAC

hedging strategy and ES with a confidence level of 99% risk objective in scenario 3 from Jul 28 2000 to

22 Jan 2021

Initial margin costs appear to increase substantially post Dot-com bubble, Great Recession

and COVID-19 pandemic in 2000, 2008 and 2020, respectively. These periods are particularly

relevant because they generally coincide with large swings in petroleum prices, when demand

undercuts the current supply. This increase in initial costs can be explained by the increase

in spread between borrowing costs for oil refineries and subsequent lowering of interest rates

by central banks to stimulate the economy. It should be noted that, future recessions may be

very different for oil refineries, as central banks have changed policies in the past, and credit
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rating of oil refineries may worsen of improve. This may increase or decrease the spike of initial

margin costs in and after future recessions.
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Figure 9: (a) Initial margin ratio for the one-to-one hedging strategy and ES with a confidence level

of 99% risk objective in scenario 2 from Jul 28 2000 to 22 Jan 2021, (b) Initial margin ratio for the

one-to-one hedging strategy and ES with a confidence level of 99% risk objective in scenario 3 fromJul

28 2000 to 22 Jan 2021. Initial margin ratio is defined as initial margin under one-to-one strategy devided

by intitial margin under Clayton generate HOPAC strategy.

Figure 9 shows initial margin ratio of one-to-one and Clayton generated HOPAC hedging

for 99% ES downside risk and scenario 2 and 3. This confirms that initial margin costs are

lower for the HOPAC strategy relative to the one-to-one strategy for both scenario 2 and 3

most of the time. Additionally, the difference increases when costs are included in estimation in

scenario 3. Thus, including costs in estimation effectively decreases costs out-of-sample. This

may explains the difference in gross margin between one-to-one and Clayton generated HOPAC

strategy in Table 10.

6 Discussion & Conclusion

Managers of refineries are confronted with risk management decisions due to their exposure

to downside risk in a multi-product petroleum market. Refineries can hedge downside risk
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exposure using crude oil, heating oil and gasoline futures contracts. This study proposes a

multi-product hedging strategy to minimise downside risk of oil refineries, measure by value at

risk and expected shortfall.

The HOPAC hedging strategy presented in this study outperforms the ‘hard-to-beat’ one-

to-one downside risk hedging of oil refineries. It seems plausible that the structured, skewed

and asymmetrical HOPACs are well suited for modelling petroleum price changes. In addition,

I show that including transaction and margin costs in estimation successfully increases gross

margins, while outperforming one-to-one hedging still. Moreover, initial margin costs are the

most important consideration for managers that wish to optimise profitability while hedging.

In an out-of-sample setting, I find that modelling price changes with Ali-Mikhai-Haq, Clay-

ton, Frank and Joe generated HOPACs outperforms one-to-one hedging in a VaR and ES

downside risk setting. This result is obtained by including transaction and margin costs di-

rectly into the estimation and trading. Additionally, I find that the optimal forecast lag is 20

weeks. Furthermore, gross margins are higher relative to one-to-one hedging and increases with

tens of basis points when transaction and margin costs are included in estimation. Finally, ini-

tial margin costs are most important for managers to consider, especially in troubling economic

times such as during the Great Recession and novel coronavirus pandemic. This is caused by

an increase in borrowing costs, as investors require a higher return when risks increase, and

decrease in risk free rate, as central banks try to support the economy.

The fact that modelling commodity price changes with HOPACs outperforms one-to-one

hedging can be explained by (i) the stability of the structure of spot and future prices, (ii)

asymmetrical marginals due to supply and demand characteristics of the underlying commodi-

ties and (iii) non-normality in price changes that are captured by the model. Additionally,

HOPACs are relatively parsimonious leading to more robust hedging ratios than other pro-

posed models in literature, e.g. Sukcharoen and Leatham (2017) and Lui et al. (2017), while

still outperforming one-to-one hedging. Higher profitability may be explained by lower hedging

ratios, that lead to lower initial margin costs, especially when costs are included in estimation.

I conclude that managers that are interested in downside risk hedging of oil refineries should

consider modelling price changes with HOPACs with inclusion of transaction and margin costs
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in the estimation process.

However, this result was obtained on weekly data form 17 Mar 1995 to 12 Mar 2021, and

may change in future periods. Moreover, including transaction and margin costs in estimation

improve profitability out-of-sample, but increase the volatility of hedging ratios. Furthermore,

seasonality in gasoline prices may drag on the model estimation. I suspect, that filtering for

this specific seasonality may improve the fit of the model.
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