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Abstract

This paper investigates the performance of a new approach to portfolio allocation. Previous liter-

ature shows that none of the existing covariance estimators consistently beat the 1/N allocation

due to estimation uncertainty regarding the covariance matrix. They find that an impractically

large estimation window is required to overcome this uncertainty. We propose quarticity shrink-

age (QS), a new method that combines the 1/N allocation with an existing covariance estimator

to beat the 1/N strategy using a practical estimation window. We compare the performance of

QS in three simulation studies and an empirical analysis with four existing methods. The 1/N

allocation from DeMiguel & Uppal (2007), linear shrinkage by Ledoit & Wolf (2003a), nonlinear

shrinkage from Ledoit & Wolf (2020a) and exponentially weighted moving average by Morgan

et al. (1996). We find that QS often outperforms the existing methods on a risk-adjusted basis.

The 1/N strategy remains unbeaten in terms of mean returns. In our simulation studies, the

existing covariance estimators yield a better performance than QS in measures that disregard

risk. However, in our empirical analysis, QS is superior to these covariance estimators in most

measures, including those that neglect risk.

The content of this thesis is the sole responsibility of the author and does not reflect the view of the
supervisor, second assessor, Erasmus School of Economics or Erasmus University.
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1 Introduction

Obtaining an estimate of the optimal portfolio allocation has been a major topic of interest

for decades. With an accurate estimated portfolio, one may profit due to (daily) changes in

the stock price, a so-called return. Investments in stocks are a vital element of the financial

market. In 2020, the Stock Market Capitalization-to-GDP ratio was roughly 150% for

the United States (Kenton (2021)). This ratio means that the value of the US stock

market is 1.5 times larger than its gross domestic product. The returns on investments

depend solely on the performance of assets and thus the portfolio allocation. One of the

most commonly used portfolios is the global minimum variance (GMV) portfolio. This

portfolio is constructed using only the inverse of the covariance matrix and a vector of

ones. Such that ex-ante covariance matrix estimates are of utmost importance.

Markowitz portfolio optimization, introduced by Markowitz (1952), is the foundation

for most of the portfolio allocation strategies. In this framework, one assumes that the

investor only cares about the mean and variance of the portfolio. The most apparent

estimates of these variables are the sample moments. Hence in the Markowitz framework,

the sample moments are used to calculate the portfolio allocation. Since the introduction

of Markowitz portfolio optimization, many different methods to estimate the optimal

allocation were developed. Maybe one of the most obvious and simplistic choices for

portfolio allocation would be the equally weighted portfolio from DeMiguel & Uppal

(2007). They show that none of the existing covariance estimation methods consistently

outperform the 1/N strategy. They conclude that a very impractically large estimation

window is required for the estimators to outperform this 1/N benchmark. When using 25

assets, this window would be around 3000 months. When the number of assets increases,

the required window becomes even larger. Thus, making it practically infeasible in the

real world with more than 25 assets.

The problem is the uncertainty regarding estimates of each element in the covariance

matrix, which leads to non-optimal allocations in practice. To overcome this uncertainty,

an impractically large estimation window must be used. This gives a stimulus to try

and combine the 1/N strategy with another covariance estimation method, such that the

uncertainty can be limited. Therefore, we will introduce a new approach to estimate

portfolio allocations by combining the characteristics of the 1/N strategy and an existing

covariance estimation method. To our best knowledge, this type of approach to portfolio

allocation has not been done before. We call this new method ’quarticity shrinkage’ (QS).

QS separates assets based on their uncertainty in the returns. We assess the un-

certainty of a stock via its realized quarticity (RQ), from Barndorff-Nielsen & Shephard

(2002). This measure is, in essence, the volatility of the volatility. Stocks with a small

RQ are deemed certain, and stocks with a large RQ are deemed uncertain. Certain stocks

follow the portfolio allocation via the existing covariance estimation method, whereas un-
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certain stocks follow the 1/N allocation. In the last step, we merge both allocations into

and portfolio and normalize it.

To fully exploit the performance of QS, it combines the equally weighted portfolio

with linear shrinkage (LS) from Ledoit & Wolf (2003a), nonlinear shrinkage (NLS) by

Ledoit & Wolf (2020a) and the exponentially weighted moving average (EWMA) from

Morgan et al. (1996).

We examine QS in several simulation studies and an empirical analysis. It will be

subject to different estimation windows and a different number of assets. For the data

generating process (DGP), we combine the Monte Carlo method with bootstrapping. The

underlying structure in the data will be based on a GARCH(1,1) model with Student’s

t-distributed noise. The procedure of generating returns will follow the principles of

Jegadeesh et al. (2019), where we extend the DGP to account for time-varying volatility.

We evaluate the out-of-sample performance with the industry-standard performance

measures: the mean return, the Sharpe ratio from Sharpe (1966), the certainty equivalent

(CEQ), the turnover and the transaction costs adjusted mean return. These measures are

all out-of-sample as the portfolios are created only with historical returns. We evaluate

the robustness of the methods via the standard deviation of the performance measures

over the replication runs in the simulation studies.

With the introduction of QS, the main question is: Does quarticity shrinkage beat

the 1/N benchmark using a practical estimation window?

To support this main question, we propose the following research questions:

• Is there an optimal division between certain and uncertain stocks for quarticity

shrinkage?

• Does quarticity shrinkage outperform the existing allocation estimators?

• How does the performance of quarticity shrinkage change when using various existing

covariance estimation methods?

• Is quarticity shrinkage more robust than existing methods?

Our main findings are as follows. In the simulation studies, we do not find an optimal

partition ratio of certain/uncertain stocks. Further, we find statistically significant dif-

ferences in the performance of QS against the existing estimators. QS outperforms on a

risk-adjusted basis but is beaten in terms of measures that neglect risk. From the empiri-

cal analysis, we again find that QS outperforms on a risk-adjusted basis but never attains

the largest mean return. We do not find a superior combination for QS. Lastly, we find

that QS is more reliable than the existing methods.

The paper proceeds as follows; in Section 2, we provide an overview of the relevant

literature. Section 3 describes the data. Section 4 formalizes the methods that we use

to estimate the portfolio allocation and describes the performance evaluation of these

methods. Section 5 introduces the simulation study with the data generating process and

presents the results of said studies. Section 6 shows the results of the estimation methods
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applied to the empirical stock data. Section 7 discusses the limitations of the paper and

gives recommendations for further research. At last, Section 8 concludes the report.

2 Literature Study

One calculates the optimal portfolio in the Markowitz framework with the sample covari-

ance matrix. This matrix is the classic maximum likelihood estimator when the number

of observations goes to infinity as derived by Anderson (1973). However, Ledoit & Wolf

(2003a) state that nobody should be using the sample covariance matrix. This estima-

tor suffers heavily from estimation uncertainty, as every element is estimated. It is also

ill-conditioned when the number of observations is close to the number of assets.

To overcome the issues regarding the sample covariance, numerous methods were

developed to estimate the covariance matrix. A widely known and popular approach

from statistics is shrinkage; a technique introduced by Stein (1956) to reduce the mean

squared error of an estimation. This method shrinks estimates of the mean towards the

grand average of all means. Values of the mean greater than the grand average are made

smaller, and values smaller than the grand average are made greater. James & Stein

(1961) prove that this method dominates the maximum likelihood estimator in terms of

total squared error.

Later, Ledoit & Wolf (2003b) apply the principles of shrinkage to covariance estima-

tion: linear shrinkage (LS). Their paper shrinks the sample covariance matrix towards a

single factor covariance matrix with a constant shrinkage intensity. LS shrinks the un-

biased but variable sample covariance matrix towards the biased but less variable target

matrix. This makes sense, as the target matrix adds much structure: the more the sam-

ple covariance shrinks towards the target, the fewer parameters have to be estimated.

In addition, the resulting estimator is invertible and well-conditioned. In the same year,

they propose another shrinkage target: the constant correlation matrix in Ledoit & Wolf

(2003a). They find that this target gives a similar performance to the single factor co-

variance matrix, while it is easier to implement.

Ledoit & Wolf (2012) extend the idea of shrinkage further, which leads to the non-

linear shrinkage (NLS) estimator. The core difference with LS is that NLS uses a varying

shrinkage intensity for each element in the covariance matrix, whereas LS uses the same

intensity for all elements. Later, Ledoit & Wolf (2020a) propose an analytical nonlinear

eigenvalue shrinkage estimator. This method yields the same accuracy and is way faster

in estimating the covariance matrix than the previous NLS method. Another benefit of

this analytical method is that it uses the eigenvalues of the matrix, such that is does not

require any judicious choice for a target matrix.

Stock return data often exhibits volatility clustering, meaning that the volatility

changes over time and shows a persistent behaviour. A simplistic yet effective covariance
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estimator that integrates this dynamic behaviour is the Exponentially Weighted Moving

Average (EWMA). Morgan et al. (1996) provide a detailed description of the RiskMetrics

methodology that led to the EWMA method.

A widely known method to infer stock return variation and the presence of jumps is

the integrated quarticity. Barndorff-Nielsen & Shephard (2002) show that this measure

can be estimated consistently via realized quarticity (RQ). RQ is now one of the most used

proxies for the uncertainty of intraday stock returns; it is used in Bollerslev et al. (2016),

Andersen et al. (2014) and Corsi et al. (2008) among others. In essence, RQ calculates

the volatility over the volatility. We estimate RQ in the new method using daily stock

returns instead of intraday stock returns. Therefore, we shift from approximating the

daily uncertainty of stocks to uncertainty over a longer estimation window.

Within the mean-variance framework, the tangency point is the optimal portfolio of

risky assets as it gives the best trade-off between expected return and variance. However,

Jagannathan & Ma (2003) find that the tangency portfolio performs worse than the

Global Minimum Variance (GMV) portfolio in terms of the out-of-sample Sharpe ratio.

This is explained via the noise corresponding to the mean estimates. The GMV portfolio

depends solely on the estimation of the covariance matrix, such that it does not rely on

mean estimates and can circumvent the corresponding estimation noise.

As mentioned earlier, DeMiguel & Uppal (2007) show that a large estimation window

is required to beat the 1/N portfolio. Our paper aims to overcome the need for a large

estimation window by introducing quarticity shrinkage. Such that it is of interest to

analyze the performance using smaller windows. We will be using one year and three

years.

Intuitively, one could argue that recent information is more critical than information

from a long time ago. The underlying structure of the returns changes over time; what

might have been an expansion a year ago or three years could be a recession right now.

Therefore, we will also be using three months and six months as estimation windows.

In the simulation study, the data generating process (DGP) must resemble the real

world as accurate as possible. However, it is often unclear which distribution to use for

the DGP, which leads to a DGP uncertainty. Tu & Zhou (2004) find that the DGP

uncertainty is a major issue, as the different distributions lead to substantial differences

in the estimates of the parameters.

A commonly used distribution is the normal distribution, even though daily stock

returns often contain heavier tails than the normal distribution can account for. Therefore,

one should opt for a distribution with fatter tails as suggested by Officer (1972), Hu &

Kercheval (2010) and Peiró (1994) among others.

Hu & Kercheval (2010) find that a Student’s t-distribution with roughly 6 degrees of

freedom (DOF) fits the underlying structure of the true returns quite well. Peiró (1994)

also find in their empirical analysis that one should consider a Student’s t-distribution
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with 2.5 - 6 DOF.

3 Data

The dataset consists of daily excess holding-period returns of actively traded stocks on

the S&P500 obtained via Wharton Research Data Services1 from the vendor Center for

Research in Security Prices (CRSP). To ensure that enough observations are available

and all stocks have the same data range, we remove stocks that do not have the full data

throughout 03/01/2007 – 31/12/2020. The reason for missing data of certain companies

is simple; new companies are founded and added to the market, whereas companies go

bankrupt and are removed from the market. After this filter of the data, we are left with

a dataset of T = 3525 observations and N = 327 stocks. We display the names of the

included stocks in a table in the appendix, Section A. We further use the value-weighted

market index from the CRSP, and the risk-free rate; both are available at the Kenneth

French data library2.

Table 1 displays the summary statistics of the annualized excess stock return dataset

when we use no rolling window. We note that the mean return across the assets and over

time is 16.5%, this is way larger than the average annual return of the S&P500 which is

13.6% according to Business Insider3. Other sources state that an average annual return

of roughly 10% should be expected, which is even lower. We observe that the annual

mean return of the excess market index is close to this value but still fairly high. Figure 1

displays the cumulative returns and cumulative market index. We observe an increasing

upward trend for both the market and the average stocks. The average stock return has

a higher sensitivity to shocks than the market return. In combination with the increasing

upward trend, we argue that it makes sense that the average mean return of the stocks is

larger than that of the market index. There are a few exceptions to the upward trend, such

as the period 2008 – 2009 and 2019 – 2020. Plausible explanations for these downward

slopes are the financial banking crisis and the COVID-19 pandemic.

As is quite common for stock returns, we observe that the data exhibits excess kurtosis

and a slight skewness. The skewness and kurtosis are different from those expected for

a normal distribution, 0 and 3, respectively. Therefore, the returns do not contain an

underlying normal distribution but rather a distribution that can capture high peaks and

heavier tails. We observe a similar phenomenon for the market index, which contains a

typical negative skewness.

Another interesting finding is the volatility clustering for the average stock returns

and the market index. Figure 2 displays that the average volatility is time-varying for a

1https://wrds-www-wharton-upenn-edu.eur.idm.oclc.org/
2https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
3https://www.businessinsider.com/personal-finance/average-stock-market-return
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rolling window of a year. We observe for both the stock returns and the market index

that the highest obtained volatility, around 2008 – 2009, is roughly three times as large

as the lowest one, around 2017 – 2018.

At last, we find significant autocorrelation within both the stock data and the value-

weighted market index. Section B of the appendix contains the autocorrelation function

and the partial autocorrelation function for both datasets. The functions display a sig-

nificant autocorrelation at a level of 5% for all included laggs. We verify these findings

with the Ljung-Box test.

Return Volatility Skewness Kurtosis

Min 0.008 0.179 -1.291 7.279
Mean 0.165 0.351 0.231 17.749
Max 0.492 0.891 4.661 140.040
Mkt 0.109 0.209 -0.343 14.545

Table 1: This table shows the descriptive statistics of the annualized excess holding-period returns. We
display the annual minimum, mean, maximum and market (Mkt) return and volatility of the stocks over
03/01/2007 – 31/12/2020. By annual, we mean that we compute the metric and multiply it by a scale
of 252. We multiply the return by 252 and the volatility by

√
252. It further shows the skewness and

kurtosis that we calculate over the entire period for each stock.

Figure 1: A plot of the cumulative returns of the average stocks and market index with a starting value
of 1.

4 Methodology

The methodology will formalize quarticity shrinkage in its approach to estimate the port-

folio allocation. It will also cover the 1/N strategy from DeMiguel & Uppal (2007), linear
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Figure 2: A plot showing the volatility clustering of the average stocks and market index for a one-year
(assumption: 252 days) rolling window.

shrinkage from Ledoit & Wolf (2003a), nonlinear shrinkage from Ledoit & Wolf (2020a)

and the Exponentially Weighted Moving Average from Morgan et al. (1996).

We also elaborate on the performance evaluation of the methods. We use the follow-

ing performance measures: the mean return, the Sharpe ratio from Sharpe (1966), the

certainty equivalent, the turnover and the transaction costs adjusted mean return. We

further introduce testing for significance and portfolio composition.

4.1 Linear Shrinkage

The linear shrinkage method from Ledoit and Wolf is frequently used as it is very effi-

cient in estimating the covariance matrix. LS shrinks the unbiased but variable sample

covariance matrix towards a biased but less variable target matrix. One of such targets is

the constant correlation matrix from Ledoit & Wolf (2003a). We estimate the covariance

matrix as follows:

Σ̂LS = (1− δ̂∗)S + δ̂∗F , (1)

where δ̂∗ denotes the estimated optimal shrinkage intensity. S is the sample covariance

matrix and F denotes the shrinkage target matrix. The optimal shrinkage intensity δ̂∗ is

mathematically derived in Ledoit & Wolf (2003a). This paper also provides the code4 for

our implementation of linear shrinkage.

The optimal shrinkage intensity δ̂∗ asymptotically behaves like a constant over the

number of observations (T ), as proven by Ledoit & Wolf (2003a). We calculate it as

4This code is available at: https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html

7



follows:

δ̂∗ = max
{

0,min
{ κ̂
T
, 1
}}
,

κ̂ =
π̂ − ψ̂
γ̂

,

(2)

where
κ̂

T
denotes the estimated shrinkage intensity in practise. π̂ is the estimated sum of

asymptotic variances of the sample covariance matrix, ψ̂ is the estimated sum of asymp-

totic covariances of the shrinkage target with the covariances of the sample covariance

matrix and γ̂ estimates the offset of the shrinkage target.

We compute these three estimators in the following way:

π̂ =
N∑
i=1

N∑
j=1

π̂ij where π̂ij =
1

T

T∑
t=1

{
(rit − r̄i)(rjt − r̄j)− sij

}2

,

ψ̂ =
N∑
i=1

π̂ii +
N∑
i=1

N∑
j=1,j 6=i

ρ̄

2

(√sjj
sii
θii,ij +

√
sii
sjj
θjj,ij

)
,

θii,ij =
1

T

T∑
t=1

{
(rjt − r̄j)2 − sjj

}{
(rit − r̄i)(rjt − r̄j)− sij

}
,

γ̂ =
N∑
i=1

N∑
j=1

(fij − sij)2,

(3)

note that this is a brief overview of the important equations from the mathematical

derivation of the optimal shrinkage intensity. The full derivation can be observed in

Ledoit & Wolf (2003a).

The shrinkage target matrix, F , consists of diagonal elements equal to the sample

variances and off-diagonal elements, which are all equal to the average of the off-diagonal

elements of the sample correlation matrix. We estimate this matrix via:

fii = sii ∀i = 1, . . . , N,

fij = ρ̄
√
siisjj ∀i, j = 1, . . . , N, i 6= j,

(4)

where sii, sjj denotes a diagonal element of the sample covariance matrix. And where in

the latter formula ρ denotes the average sample correlation, which we calculate as:

ρ̄ =
2

(N − 1)N

N−1∑
i=1

N∑
j=i+1

ρij,

ρij =
sij
√
siisjj

.

(5)
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4.2 Nonlinear Shrinkage

Nonlinear shrinkage is an extension to the linear shrinkage methods. The core difference

between these methods is that LS uses the same shrinkage intensity for all elements,

whereas NLS uses a custom-fit intensity for each element. We use the analytical nonlinear

eigenvalue shrinkage from Ledoit & Wolf (2020a).

The first step of this NLS approach is to compute the spectral decomposition of the

sample covariance matrix in the following way:

S =
N∑
i=1

λiuiu
′
i, (6)

where λi denotes an eigenvalue of the sample covariance matrix, sorted in increasing order,

and where ui is the corresponding eigenvector.

In the second step, we estimate the sample eigenvalues via the unobservable quantity

d̂i in the following way:

d̂i =
λi

[πN
T
λif̂(λi)]2 + [1− N

T
− πN

T
λiHf̂ (λi)]2

∀i = 1, ..., N, (7)

where we observe two mathematical tools, f̂(λi) denotes the Epanechnikov kernel and

Hf̂ (λi) is its Hilbert transform.

The density of the spectral decomposition is required as d̂i is unobserved. This

unobserved quantity can be estimated with the Epanechnikov kernel by Epanechnikov

(1969). We calculate this as follows:

f̂(λi) =
1

N

N∑
j=1

3

4
√

5λjT−1/3
[1−

1

5
(
λi − λj
λjT−1/3

)2]+, (8)

Next, the other mathematical tool is the Hilbert transform. This tool operates like

a local attraction force. Eigenvalues that are further from others are adjusted more than

eigenvalues that are close to other eigenvalues. Therefore, local shrinkage intensities are

imposed. We apply the Hilbert transform in the following way:

Hf̂ (λi) =
1

N

N∑
j=1

{
−

3(λi − λj)
10πλ2jT

−2/3+
3

4
√

5λjT−1/3
[1−

1

5
(
λi − λj
λjT−1/3

)2]×log
∣∣∣√5λjT

−1/3 − λi + λj√
5λjT−1/3 + λi − λj

∣∣∣}.
(9)

The estimation of the sample eigenvalues might be tough to understand based on

equation 7, mainly because this formula also contains the two mathematical tools. In

their paper, Ledoit and Wolf provide a more intuitive explanation. When the number

of observations goes to infinity, N/T becomes very small. As a result, the denominator

in the equation tends to 1. Such that the estimated eigenvalues are very similar to the
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sample eigenvalues. This corresponds to using the the ML estimator as an estimate of

the sample covariance matrix, which is optimal for a large T .

When this ratio is not small, shrinkage should be applied to the eigenvalues. We

focus on one eigenvalue λi. If its value is smaller than the ones in the neighbourhood,

then Hf̂ (λi) will be positive, and the eigenvalue will be pushed upwards towards the

neighbours. When an eigenvalue is larger than the ones in the neighbourhood, it will be

pulled downwards. The last property of this Hilbert transformation is that eigenvalues

that are further apart from the group are pushed or pulled more heavily.

In the third and final step, we recompose the covariance matrix estimator:

Σ̂NLS =
N∑
i=1

d̂iuiu
′
i. (10)

For our implementation of this analytical nonlinear shrinkage method, we use the

code5 provided by Ledoit & Wolf (2020a).

4.3 Exponentially Weighted Moving Average

The exponentially weighted moving average (EWMA) method is a very simple covariance

estimator that incorporates dynamic characteristics in the data. In essence, the method

uses all previous estimates of the covariance matrix to estimate the next one at time t.

The ones closer to t are valued more heavily, whereas the ones further away from t only

give a small influence on tomorrows prediction. We calculate each covariance matrix as

follows:

Σ̂EWMA,t = φΣ̂EWMA,t−1 + (1− φ)(rt−1 − µr)
′(rt−1 − µr), (11)

where rt−1 denotes the vector of returns at time t − 1 and µr is the mean vector of

the historical dataset. Further, φ denotes the decay factor and will be fixed at 0.94 as

Morgan et al. (1996) find that this value is optimal in the RiskMetrics approach. We

start this method with the unconditional covariance matrix of the historical dataset. Our

implementation of the method will slightly differ from the literature because we use the

previous W returns instead of all previous observations, where W corresponds to the size

of the moving window. As a result, we obtain estimates of covariance matrices from time

t−W to t. We use the estimate of the covariance matrix at time t to compute the portfolio

allocation.

To increase the computation time in the simulation and empirical analysis, one could

look at the effective number of days used for the EWMA method. Morgan et al. (1996)

derive the following formula to determine this number:

5This code is available at: https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html
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K =
ln(ζ)

ln(φ)
, (12)

where K is the effective number of days, ζ is the tolerance level which we fix at 0.001%

and where φ is the decay factor. The resulting number of effective days is 186. Therefore,

we will be using the previous 186 days in the moving windows that exceed this number.

For our implementation of the exponentially weighted moving average we use the

RiskMetrics function in the MFE toolbox from Kevin Sheppard6.

4.4 Quarticity Shrinkage

Quarticity shrinkage (QS) combines the 1/N allocation with an existing covariance esti-

mator to overcome the uncertainty with regards to estimating the covariance matrix. We

obtain estimates of QS via the following three-step approach:

The first step is to assess the uncertainty of the individual stocks via the RQ of the

daily excess returns. This computation is done as follows:

RQi
t+W =

W

3

t+W∑
t

r4i,t ∀i = 1, ..., N, (13)

where RQi
t+W and ri,t denote the Realized Quarticity of stock i over the estimation period

and the excess stock return at time t. Further, W is the size of the rolling window. There

is no clear value to determine when RQ is considered high or low. So, we will try to find

the optimal partition ratio in a simulation study. We elaborate further on this approach

in Section 4.4.1. This step leads to two sets of stocks: the first set of certain stocks and

the second set of uncertain stocks.

In the second step, we use one of the existing covariance estimators and the global

minimum variance portfolio allocation for the certain stocks. This leads to the first set of

allocated stocks. We use the equally weighted portfolio for the uncertain stocks to obtain

the second set of allocated stocks. When we consider half of the stocks as certain and the

other half as uncertain, we obtain the following two portfolios:

ω1 =
Σ̂
−1

1,tι

ι′Σ̂
−1

1,tι
,

ω2,i = 1/N ∀i = 1, ..., N/2,

(14)

where ω1 denote the portfolios of certain and ω2 the portfolio of uncertain stocks. Further,

Σ̂
−1
1,t denotes the estimated covariance matrix via the existing estimators using the certain

stocks. N and ι are the number of stocks and a vector of ones, respectively.

In the final step, we simply merge the two sets to obtain one portfolio allocation of

6This code is available at: https://www.kevinsheppard.com/code/matlab/mfe-toolbox/
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this new method. Which is then normalized such that the weights sum up to one, this is

done in the following way:

wallocation =
wcombined

ι′wcombined

, (15)

where wallocation denotes the portfolio allocation estimated via RQ. wcombined is the weight

allocation obtained by merging the two sets of allocated stocks.

4.4.1 Optimal Partition

We use our simulation to try and find an optimal structure because there is no explicit

value when RQ is considered high or low. In each simulation study, we vary the number

of stocks that follow the covariance estimator or 1/N allocation by fractions of 0.20. For

the simulation with 25 stocks, we have the following partition ratios of certain/uncertain

stocks:

• Pf1 consists of 5 certain and 20 uncertain stocks

• Pf2 consists of 10 certain and 15 uncertain stocks

• Pf3 consists of 15 certain and 10 uncertain stocks

• Pf4 consists of 20 certain and 5 uncertain stocks

where Pfj denotes the jth portfolio from the new method. We evaluate these portfolios

against one other. If a consistent pattern of outperformance is found, then we implement

this structure in the new method for the corresponding study. If we find no consistent

partition ratio, then we will try to find a middle ground. Say that either the ratio 5/20

or 15/10 yields the best performance in most of the measures, then we will implement

the structure of 10/15. As it is likely that this ratio will be the runner up in all of the

measures, such that in general it performs well. Now if we also cannot find a middle

ground, then we simply use the first half of the stocks as certain, and deem the second

half as uncertain.

We note that this approach looks very simplistic, yet it is an effective way. One could

argue to program a grid search at each observation and pick the partition that gives the

best result on that day. However, it is rather unlikely that a partition will outperform the

others in all measures. Further, as no clear ranking exists for the performance measures,

it is impossible to use a points system to determine which partition receives the most

points.

4.5 Performance Evaluation

We present the performance measures on an annual basis, such that we scale the measures

with a factor of the number of days. We assume that one year consists of 252 trading

days.
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4.5.1 Mean Return

A very simplistic but effective measure is the mean return of the portfolio. From a

portfolio optimization perspective, maximizing the mean return is one of the main goals.

We calculate it as follows:

µp =

∑T
t=1

∑N
i=1 r

i
t

TN
(16)

where µp is the mean return of the portfolio and rit is the return of stock i at day t. To

annualize this measure, we multiply it with 252.

4.5.2 Sharpe Ratio

The Sharpe ratio from Sharpe (1966) yields the average return per unit of volatility, which

we calculate as follows:

Sh =
µp

σp
, (17)

where Sh is the Sharpe ratio, µp is the mean excess return of the portfolio (note that

this quantity is the average of the portfolio returns throughout time), and σp is the

corresponding mean volatility of the portfolio returns. We annualize this measure by

multiplying it with the square root of 252.

4.5.3 Certainty Equivalent

The certainty equivalent (CEQ) return can be interpreted as the lowest risk-free rate that

an investor is willing to accept instead of the risky return of the portfolio. We calculate

this measures via:

CEQ = µp −
γ

2
σ2
p, (18)

where CEQ denotes the certainty equivalent measure. The parameter γ is the coefficient

of risk aversion, which we fix to a value of γ = 1 and γ = 5. The first value corresponds

to an investor who neglects risk, whereas the latter corresponds to an investor who takes

risk into account. We annualize this measure by multiplying it by 252.

4.5.4 Transaction Costs Adjusted Mean Return

From another practical perspective, we evaluate the methods in terms of the transaction

costs adjusted mean return. We obtain this measure by making an assumption about the

costs and calculating the turnover of the portfolio. The turnover quantifies the fraction

of wealth that is re-allocated at each rebalancing moment. We compute is as follows:
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TO =
1

T −W
ΣT

t=W+1Σ
N
j=1(|ωk,j,t+1 − ωk,j,t+|), (19)

where TO denotes the turnover value, ωk,j,t+1 the desired weights and ωk,j,t+ the real

weights right before rebalancing in t+ 1. T refers to the total number of observations and

W is the size of the rolling window.

We assume that the transaction costs are a fixed fraction of the turnover with a value

of either 4 or 8.6 basis points, as done in Marshall et al. (2011). Such that we calculate

the transaction costs via:

TC = c · TO, (20)

where TC and c denote the transaction costs of the method and the fraction of costs,

respectively. Here, c is either 0.00086 or 0.00040. We annualize this measure by multiply-

ing it with 252. Then we simply subtract this number from the mean return to get the

transaction costs adjusted mean return (TCAR).

4.5.5 Testing for Significance

We will test whether the performance of the new method differs significantly from the

two given inputs. In the sense that for the new method with input LS (QS-LS), we

will conduct two tests. One whether the performance differs significantly from the 1/N

strategy and another independent test for the difference with the LS estimator.

To test whether the mean returns are significantly different from one other, we will

be using the t-test. The null hypothesis is a pairwise difference between the means,

which is equal to zero. Or in other words, we will conduct the two following tests:

H0 : µ1/N = µQS-LS and H0 : µLS = µQS-LS. Where QS-LS is the new method with LS as

input. The data contains autocorrelation and heteroskedasticity such that we adjust the

standard errors to follow the Newey-West estimates. It is slightly unconventional to use

these estimates on a series of returns instead of a regression. However, we solve this by

regressing the series of returns on the constant. The constant depicts the mean, and we

can obtain the Newey-West standard errors via the standard procedure.

To evaluate the significance for the Sharpe ratios, we use the Sharpe Ratio test from

Ledoit & Wolf (2008)7. We use the Quadratic Spectral kernel, and we base the p-values on

the pre-Whitened HAC standard errors. We test the null hypothesis in a similar fashion

to the tests for the means.

We conduct all tests at significance levels of α = 1%, α = 5% and α = 10%.

7This code is available at: https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html
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4.5.6 Portfolio Composition

We evaluate the performance of the existing covariance estimators via the global minimum

variance (GMV) portfolio. This portfolio achieves the lowest risk of the portfolios based

on the mean-variance framework from Markowitz (1952). We obtain the allocation by

solving the following optimization problem:

min ω̂t
′Σ̂tω̂,

s.t. ω̂t
′ι = 1,

(21)

where ω̂t contains the estimated portfolio weights via the covariance estimator and Σ̂t

is the corresponding covariance matrix. The parameter ι denotes a vector of ones. The

solution to this optimisation problem is the GMV portfolio, which can be estimated as:

ωgmv =
Σ̂−1

t ι

ι′Σ̂−1
t ι

. (22)

with the obtained weights we can get the portfolio return as follows:

rp,t = w′gmvrt, (23)

where rp,t is the expected portfolio return at time t and rt is the estimated vector of stock

returns at time t.

5 Simulation

Using a simulation enables us to compute standard deviations of the performance mea-

sures to evaluate the robustness of the methods. We use the Monte Carlo (MC) method

in combination with bootstrapping to simulate 1000 replications of N = {25, 100, 250}
stock returns. The MC method is straightforward and generates possible returns from

an underlying theoretical distribution. We assume noise with an underlying Student’s

t-distribution with 6 degrees of freedom. The bootstrapping is useful as resampling with

replacement maintains the structure of the dataset. We will further apply a burn-in pe-

riod of one year to try and overcome imperfections at the start of the generated returns.

So, we will generate an additional year of daily excess stock returns.

5.1 Data Generating Process

To resemble daily stock returns, we use a data generating process (DGP) similar to the

principle used by Jegadeesh et al. (2019). Our paper extends their idea to resemble daily

returns by introducing time-varying volatility, whereas their volatility is static. We draw

a factor, a corresponding sensitivity and an idiosyncratic return and combine these to
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obtain the stock return.

We use the daily excess holding-period returns and the excess value-weighted market

index from the Fama-French library. We then regress the data without using a rolling

window on the factor and a constant to obtain estimates for the alpha, beta and idiosyn-

cratic returns. We conduct this regression according to the single-factor model or CAPM

from Sharpe (1964) and Lintner (1965):

rit = αi + βi
MKTrMKT,t + εit (24)

where ri denotes a vector with excess returns of stock i. The parameters αi and βi
MKT

denote the mispricing and the sensitivity to the market factor, respectively. Further,

rMKT,t denotes the market index at time t. And εit denotes the regression residual of

stock i at time t, this value can be interpreted as the idiosyncratic return.

Next, we use the bootstrapping method for each simulation study to draw N stock

indices with replacement. We gather the corresponding regression parameters with these

obtained indices: α and βj. We further collect the vectors of idiosyncratic returns that

correspond to these stocks.

We fit a GARCH(1,1) model to the idiosyncratic returns and the market, as the real

datasets contain significant autocorrelation. Then we generate idiosyncratic returns for

stock i according to the fitted model, where we start with the unconditional variance:

ε̂it = µi +
√
hitzt, where zt ∼ t(6),

hit = ωi + αihit−1z
2
t−1 + βihit−1,

(25)

where µi, ωi, αi and βi are parameters from the fitted GARCH(1,1) model for stock

i, denoting the offset, constant, ARCH and GARCH parameter, respectively. Further,

εit is the generated daily idiosyncratic return for stock i and hit denotes the conditional

variance. We obtain a series of generated idiosyncratic returns by computing these equa-

tions recursively. The procedure to generate the market index is very similar, but uses

a different fitted GARCH(1,1) model and unconditional variance of the historical market

index.

In the last step, we compute the generated daily excess return of stock i as follows:

rit = α̂i + β̂i
MKTr̂MKT,t + ε̂it, (26)

where α̂i and β̂i
MKT are the estimated regression parameters for stock i from Equation

24. Further, r̂MKT,t and ε̂it are the generated market index and idiosyncratic return via

Equation 25.

Note that we incorporate the correlation between stocks explicitly via the generated

market index.
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5.2 Generated Data

Following the procedure for the DGP, we obtain three sets of generated data, each with a

different number of stocks. We display the tables with descriptive statistics and plots with

autocorrelation functions in the appendix, Section C. We briefly go over the characteristics

of the generated dataset and how those are related to the empirical dataset.

We find that the generated datasets’ minimum, mean, and maximum return are

all way higher than that of the empirical set. This phenomenon makes sense as the

estimated α in Equation 24 and market return are often positive, such that the generated

return becomes even larger. From Figure 3 we observe that the cumulative generated

returns increase more rapidly than the empirical set, while they do not seem to contain

any crashes. The cumulative returns further support the large (mean) returns in the

generated datasets.

Figure 4 displays that the volatility of the average generated returns seems to fluc-

tuate barely. However, the average volatility of the set with 250 generated stocks is of a

larger order than those from the other simulated sets. Therefore, it causes a slight fluctu-

ation in the graph due to the scaling of the vertical axis. Once we look into the average

moving volatility of each generated dataset separately, the volatility clustering becomes

directly visible. Figure 5 shows the fluctuation of the average moving volatility for the

generated dataset with 25 stocks. We display the plots showing the volatility clustering

for the other two generated datasets in the appendix, Section C.

Figure 3: A plot showing the cumulative returns of the average generated datasets with a starting value
of 1.
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Figure 4: A plot displaying the volatility clustering of the average generated datasets for a one-year
(assumption: 252 days) rolling window.

Figure 5: A plot showing the volatility clustering of the average 25 generated returns for a one-year
(assumption: 252 days) rolling window.

5.3 Calibrating Quarticity Shrinkage

We start by evaluating the performance of quarticity shrinkage with different ratios of the

number of stocks that should follow a certain/uncertain method. We use the generated

stock data of N = {25, 100, 250} stocks, T = 3777 (minus 252 burn-in) days.

We first take a look at the optimal partition of 25 stocks. Table 2 displays the

average annualized performance measures for each partition ratio with LS as input, where

we average all values over the replications. From this table, it becomes clear that no
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partition will yield the best performance in all measures for QS regardless of the size

of the estimation window or input method. Therefore, in the simulation study with

25 generated stocks, we use a ratio of 12 certain stocks and 13 uncertain stocks. We

observe that the two extreme partitions yield the best results. When an investor is purely

interested in maximizing the return, the ratio of 5/20 (certain/uncertain) stocks suits best.

This ratio yields the largest mean return, certainty equivalent with a small coefficient of

risk aversion and largest transaction costs adjusted mean return. When an investor takes

risk into account, the ratio of 20/5 (certain/uncertain) stocks fits best. This ratio attains

the highest Sharpe ratio and certainty equivalent with a large coefficient of risk aversion.

Surprisingly, the performance in terms of the mean return, Sharpe ratio, and certainty

equivalences for both QS-LS and QS-NLS methods worsen once the estimation window

increases. Especially for QS-NLS, one would expect that a larger window increases the

performance as NLS uses more observations to determine the nonlinear structure in the

data. The generated returns change a lot over time. Therefore, only recent returns contain

relevant information on tomorrows prediction. So, the estimates will not be accurate when

the method uses older observations. As both LS and NLS value past observations equally,

they are affected heavily by this phenomenon. For QS-EWMA, the mean return stays

relatively flat over the windows. The Sharpe ratio drops for bigger estimation windows.

This drop is much smaller than the performance drops in LS and NLS, as the dynamic

EWMA method uses an exponential weighting function. In the sense that observations

far in the past already have a negligible influence, whereas the most recent observation

has the most influence.

The transaction costs adjusted mean returns of all methods improves upon using

a larger window. This improvement is directly linked to the turnover, which declines

rapidly once the window increases. We explain this decline by the influence of new

observations for the estimation of the ex-ante covariance matrix. Using more observations

to estimate this matrix implies that the most recent observation has less influence on the

estimated covariance matrix. This statement is particularly true for LS and NLS, as

each past observation has an equal influence. Again, EWMA is affected less heavily by

larger windows, as this method can account for the underlying structure in the generated

dataset.

Next, we look into the optimal partition of 100 stocks. In general, we observe a very

similar pattern to the partition with 25 stocks. So, we will consider half of the stocks as

certain and the other half as uncertain when using QS-LS and QS-NLS. Table 3 displays

the average annualized performance measures for each partition ratio with EWMA as

input; again, we average the values over the replications. We find that QS-EWMA and

the 20/80 certain/uncertain stocks ratio sometimes yields the best performance in terms

of the certainty equivalent with a large coefficient of risk aversion. So, an investor who is

purely interested in getting a high return will always go for the 20/80 ratio. An investor
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who takes risk into account might also go for this ratio, especially in the largest window

where the difference in Sharpe ratio is small compared to the 80/20 ratio. Consequently,

we will use the 20/80 ratio for EWMA in the windows from 126 days and up. For the

window of 63 days, we still follow the approach where half of the stocks is considered

certain/uncertain.

We explain the outperformance of the 20/80 ratio as follows. We observe that the

return stays relatively flat while the Sharpe ratio declines, meaning that a larger volatility

comes into place in the windows from 126 days. EWMA with a smaller moving window

can adapt quicker to dynamic data than the same method with a longer moving window.

Using more past irrelevant observations causes a disturbance in the estimation process.

Once the window increases even further to 252 days and 756 days, we note that the

volatility increases slightly. This slight increase also makes sense, as the effective number

of days is 186. So, the longer windows do add more observations in the estimation, but

their influence is negligible.

So, we argue that the volatility of the EWMA method increases with longer estima-

tion windows, whereas the volatility of 1/N stays relatively flat. As the 80/20 ratio has

more stocks that follow EWMA, its volatility increases more than the 20/80 ratio. Mean-

while, its mean stays roughly the same. Consequently, the 80/20 ratio loses its advantage,

and the certainty equivalent with a small risk aversion coefficient is in favour of the 20/80

ratio for a larger moving window.

Further, we find a peculiar result for QS-NLS, a window of 63 days and a ratio

of 60/40 certain/uncertain stocks. Table 4 shows the average annualized performance

measures of 100 generated stocks for all ratios with NLS as input. We observe that the

turnover suddenly spikes to a large value, and the return is larger than both surrounding

ratios. Further, the Sharpe ratio and certainty equivalents attain the lowest values for

this ratio. We do not find a similar discrepancy in any of the longer windows or other

simulation studies. We find that the weight allocation differs from the surrounding ratios

at particular points in time. The minimum (maximum) weights assigned by the 60/40

ratio are roughly three (1.5) times smaller (larger). The minimum (maximum) of the

realized weights are four (three) times more negative (more positive). Furthermore, we

find that the mean of the weights and realized weights are more moderate than the

surrounding ratios. These findings imply that the turnover of 60/40 is way larger than

the surrounding ratios in certain replications. The 20 additional stocks greatly influence

the weight allocation when the method only uses 63 days. Upon adding another 20 stocks,

this strange performance disappears. This sudden outlier is remarkable, but we have seen

the major influence of a small number of stocks in the optimal partition with 25 stocks.

Succeeding, we investigate the partition with 250 stocks. We do not observe many

differences for QS-LS, such that we use the ratio of 125/125 certain/uncertain stocks.

Table 5 shows the average annualized performance measures for each partition ratio of
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250 stocks with NLS as input. We observe that the 200/50 ratio seems to outperform

in the window with 63 days. This outperformance might not come as a surprise as

we know from Ledoit & Wolf (2020a) that the analytical nonlinear shrinkage estimator

performs optimally when the number of assets is larger than the number of observations.

We note that this outperformance tends to fade away the longer the estimation window,

which the increased number of observations might cause. Another explanation for the

outperformance might be the underlying dynamic character of the generated data. Longer

windows suffer more severely from volatility clustering. The estimates of NLS will be more

inaccurate, so the ratio of 200/50 obtains worse estimates as this ratio considers many

stocks as certain.

The values for the turnover of QS-NLS are somewhat surprising. We observe that the

ratio of 50/200 yields the largest turnover, while 200/50 attains the smallest turnover in

the window of 63 days. We expect it the other way around, as the 1/N allocation contains

no turnover. We find differences in the minimum and maximum allocated weights over

time. The mean allocated weights are similar for both ratios and the average minimum

realized weight is slightly smaller for 200/50. However, the average maximum realized

weight is almost two times as large for 50/200. We note a huge difference when we look

into the minimum and maximum realized weights across all replications. The minimum

(maximum) realized weight of ratio of 50/200 is five (six) times more negative (positive)

compared to the ratio of 200/50. These findings explain the increased turnover for the

ratio of 50/200 in comparison to 200/50. We conclude that 50 stocks cause a large

turnover in order to obtain the lowest volatility possible with the GMV allocation. For

this method, we use a ratio of 200/50 certain/uncertain stocks for the window of 63 days.

The other estimation windows will follow the 125/125 ratio.

Last, we investigate the new method with EWMA in the study with 250 stocks. We

find an increasing turnover with an increasing estimation window, which we explain via the

rapidly increasing volatility when more stocks follow the EWMA approach. We conclude

from the large volatilities that EWMA gives inaccurate estimates of the covariance matrix

in this study. We use the 125/125 ratio for QS-EWMA in the moving windows of 63 and

126 days. We use a ratio of 50/200 for the windows of 252 and 756 days as we find that

this ratio dominates in the larger moving windows.
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W = 63 W = 126

5/20 10/15 15/10 20/5 5/20 10/15 15/10 20/5

Mean Return 0.257 0.250 0.242 0.233 0.256 0.249 0.240 0.230

Sh 1.347 1.414 1.514 1.696 1.324 1.380 1.474 1.656

CEQ (γ = 1) 0.239 0.235 0.229 0.224 0.237 0.232 0.227 0.220

CEQ (γ = 5) 0.166 0.172 0.178 0.186 0.163 0.167 0.174 0.182

TO 0.053 0.085 0.116 0.134 0.028 0.047 0.065 0.076

TCAR (4 bps) 0.251 0.242 0.230 0.220 0.253 0.244 0.233 0.222

TCAR (8.6 bps) 0.245 0.232 0.217 0.204 0.250 0.238 0.226 0.213

W = 252 W = 756

Mean Return 0.254 0.246 0.236 0.226 0.252 0.242 0.232 0.221

Sh 1.297 1.337 1.421 1.600 1.265 1.285 1.356 1.521

CEQ (γ = 1) 0.235 0.229 0.222 0.216 0.232 0.224 0.217 0.211

CEQ (γ = 5) 0.158 0.161 0.167 0.176 0.153 0.153 0.159 0.168

TO 0.014 0.025 0.035 0.043 0.005 0.009 0.013 0.016

TCAR (4 bps) 0.253 0.243 0.232 0.222 0.251 0.241 0.230 0.220

TCAR (8.6 bps) 0.251 0.240 0.228 0.217 0.251 0.240 0.229 0.218

Table 2: This table shows the performance measures for the optimal partition of QS-LS with 25 generated
stocks. We display the ratio of the number of certain/uncertain stocks under the respective moving
window of size W days. Within each row, we display the ratio that gives the best performance in the
respective measure in bold. Further, note that we annualize all the measures by means of a scaling factor
of 252 or its square root. We do not annualize the turnover (TO).
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W = 63 W = 126

20/80 40/60 60/40 80/20 20/80 40/60 60/40 80/20

Mean Return 0.230 0.218 0.211 0.205 0.232 0.220 0.213 0.207

Sh 1.433 1.475 1.610 1.943 1.435 1.451 1.489 1.544

CEQ (γ = 1) 0.217 0.207 0.203 0.199 0.219 0.208 0.203 0.198

CEQ (γ = 5) 0.166 0.163 0.168 0.177 0.167 0.162 0.162 0.162

TO 0.452 0.772 0.884 0.778 0.389 0.711 0.989 1.191

TCAR (4 bps) 0.185 0.140 0.122 0.126 0.193 0.148 0.113 0.087

TCAR (8.6 bps) 0.132 0.051 0.020 0.036 0.174 0.066 -0.001 -0.051

W = 252 W = 756

Mean Return 0.230 0.219 0.212 0.206 0.231 0.219 0.210 0.205

Sh 1.416 1.425 1.457 1.509 1.452 1.441 1.452 1.495

CEQ (γ = 1) 0.217 0.207 0.202 0.197 0.218 0.207 0.200 0.196

CEQ (γ = 5) 0.164 0.160 0.159 0.160 0.168 0.161 0.158 0.158

TO 0.344 0.634 0.897 1.123 0.303 0.570 0.822 1.056

TCAR (4 bps) 0.196 0.155 0.122 0.093 0.200 0.161 0.127 0.098

TCAR (8.6 bps) 0.156 0.082 0.018 -0.069 0.165 0.095 0.032 -0.024

Table 3: This table shows the performance measures for the optimal partition of QS-EWMA with 100
generated stocks. We display the ratio of the number of certain/uncertain stocks under the respective
moving window of size W days. Within each row, we display the ratio that gives the best performance
in the respective measure in bold. Further, note that we annualize all the measures by means of a scaling
factor of 252 or its square root. We do not annualize the turnover (TO).
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W = 63 W = 126

20/80 40/60 60/40 80/20 20/80 40/60 60/40 80/20

Mean Return 0.237 0.231 0.233 0.226 0.235 0.225 0.222 0.219

Sh 1.457 1.539 1.273 2.017 1.423 1.534 1.723 2.077

CEQ (γ = 1) 0.225 0.220 0.216 0.220 0.221 0.215 0.213 0.213

CEQ (γ = 5) 0.172 0.175 0.149 0.195 0.167 0.171 0.180 0.191

TO 0.175 0.296 1.476 0.367 0.091 0.129 0.161 0.207

TCAR (4 bps) 0.221 0.201 0.084 0.189 0.226 0.212 0.205 0.198

TCAR (8.6 bps) 0.201 0.166 -0.087 0.147 0.215 0.197 0.187 0.148

W = 252 W = 756

Mean Return 0.232 0.221 0.216 0.213 0.227 0.212 0.207 0.202

Sh 1.388 1.493 1.693 2.164 1.358 1.443 1.655 2.114

CEQ (γ = 1) 0.218 0.210 0.208 0.208 0.213 0.201 0.199 0.198

CEQ (γ = 5) 0.162 0.166 0.175 0.189 0.157 0.158 0.168 0.180

TO 0.048 0.068 0.080 0.089 0.017 0.025 0.030 0.034

TCAR (4 bps) 0.227 0.214 0.208 0.204 0.225 0.210 0.204 0.199

TCAR (8.6 bps) 0.221 0.206 0.198 0.194 0.223 0.207 0.201 0.195

Table 4: This table shows the performance measures for the optimal partition of QS-NLS with 100
generated stocks. We display the ratio of the number of certain/uncertain stocks under the respective
moving window of size W days. Within each row, we display the ratio that gives the best performance
in the respective measure in bold. Further, note that we annualize all the measures by means of a scaling
factor of 252 or its square root. We do not annualize the turnover (TO). Furthermore, we ran the window
of 756 days for 500 replications instead of 1000 due to computation issues.
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W = 63 W = 126

50/200 100/150 150/100 200/50 50/200 100/150 150/100 200/50

Mean Return 0.226 0.221 0.222 0.222 0.219 0.213 0.214 0.214

Sh 1.490 1.623 1.890 2.480 1.447 1.566 1.790 2.548

CEQ (γ = 1) 0.215 0.212 0.215 0.218 0.207 0.203 0.207 0.211

CEQ (γ = 5) 0.169 0.175 0.188 0.202 0.162 0.167 0.178 0.197

TO 0.413 0.272 0.229 0.214 0.149 0.282 0.285 0.170

TCAR (4 bps) 0.184 0.194 0.199 0.201 0.204 0.184 0.186 0.197

TCAR (8.6 bps) 0.137 0.162 0.172 0.176 0.186 0.151 0.153 0.177

W = 252 W = 756

Mean Return 0.215 0.207 0.207 0.207 0.210 0.197 0.196 0.196

Sh 1.409 1.548 1.839 2.368 1.340 1.449 1.735 2.435

CEQ (γ = 1) 0.203 0.198 0.201 0.203 0.197 0.187 0.190 0.193

CEQ (γ = 5) 0.157 0.162 0.175 0.188 0.149 0.151 0.164 0.180

TO 0.077 0.094 0.118 0.183 0.028 0.035 0.040 0.043

TCAR (4 bps) 0.207 0.198 0.195 0.189 0.207 0.193 0.192 0.192

TCAR (8.6 bps) 0.198 0.187 0.181 0.134 0.204 0.189 0.187 0.148

Table 5: This table shows the performance measures for the optimal partition of QS-NLS with 250
generated stocks. We display the ratio of the number of certain/uncertain stocks under the respective
moving window of size W days. Within each row, we display the ratio that gives the best performance
in the respective measure in bold. Further, note that we annualize all the measures by means of a scaling
factor of 252 or its square root. We do not annualize the turnover (TO). Furthermore, we only ran the
simulations with 250 generated stocks for 100 replications due to computation issues.

5.4 Performance of the Methods in the Simulation Studies

Table 6 and Table 7 display the average annualized performance measures of each method

for 25 and 250 stocks, respectively. We average the measures over the replications. We

show the results for the simulation with 100 stocks in the appendix, Section E.

We start by observing from the tables that no method seems to be superior. In

general, quarticity shrinkage yields the highest Sharpe ratio and certainty equivalent with

a large coefficient of risk aversion because this method attains the lowest volatility. All

differences between the Sharpe ratio of QS with its corresponding counterparts are sig-

nificant at every level. Further, QS generally yields the lowest mean return and certainty

equivalent with a small risk aversion coefficient. This difference is also statistically signif-

icant at all levels.

Surprisingly, the mean return and Sharpe ratio obtained by QS do not fall neatly in

between the ones attained by the 1/N allocation and the existing covariance estimator.

In essence, the new method uses some form of shrinkage between the 1/N allocation and

an existing covariance estimator. This phenomenon is especially remarkable giving the

findings in the optimal partition earlier, Section 5.3. For instance, in the optimal partition

study with 25 stocks, we do not find that both ratios of 20/5 and 5/20 certain/uncertain
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stocks give higher mean returns than the ratios in the middle.

This discrepancy gets even more complex once we take a closer look into the GMV

allocation. When we use LS, all stocks follow the GMV allocation. When we use QS-LS,

only a certain fraction of the stocks follow this allocation. The stocks that follow the

GMV allocation for QS-LS are nested in those that use the GMV allocation for LS. Thus,

we would expect that the existing method yields the lowest volatility. LS does attain

the lowest volatility in a single replication. However, QS-LS yields the lowest volatility

once we average over the replications. We further find the highest volatility in a single

replication for LS. This finding implies that the estimation of the covariance matrix with

LS, NLS and EWMA is not accurate in all replications. Therefore, the GMV portfolio

does not give the lowest volatility possible. Instead, it gives large volatilities in these

replications. On the contrary, 1/N always gives a moderate volatility. We conclude that

the new method benefits from both characteristics in all replications, such that it yields

the lowest volatility overall.

Next, we evaluate the performance of quarticity shrinkage in the simulation with 25

stocks. We find that the performance of QS differs depending on the input and estimation

window. We observe that QS-NLS seems to dominate in the window of 63 days when

we neglect transaction costs. QS-LS yields the highest transaction costs adjusted mean

return in all windows as this approach yields the lowest turnover. Once the window

increases, QS-EWMA starts to dominate in terms of mean return, Sharpe ratio and

certainty equivalents. We note that the performance of LS and NLS drops due to the

increased volatility, while the performance of EWMA stays relatively flat.

Succeeding, we look at the new method in the simulation with 100 stocks. We

generally observe a shift in the dominating method compared to the study with a smaller

number of stocks. QS-NLS seems to outperform when taking risk and transaction costs

into account. The new method with LS seems to perform subpar, as it no longer gives

the largest transaction costs adjusted mean return. Only in the smallest moving window

does it give a decent result. QS-EWMA is of interest when risk is not of interest, as it

yields the highest mean return and largest certainty equivalent with a small coefficient of

risk aversion in the larger moving windows.

Once we look at the simulation with 250 stocks, QS-NLS seems to outperform in

all measures across most of the estimation windows. However, we find very peculiar

results for the estimation window of 126 days. QS-NLS and a partition ratio of 125/125

certain/uncertain stocks suddenly yields a high mean return at the cost of a large volatility

and a huge turnover. We saw a similar phenomenon for the new method with NLS in

the optimal partition with 100 stocks. Once again, we investigate the weights of the

surrounding partition ratios of 100/150 and 150/100 stocks. We note that the minimum

and maximum weights over the replications are similar for the 100/150 and 150/100

ratios. The 125/125 ratio obtains a minimum (maximum) weight of 150 (79) times smaller
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(larger) than both surrounding ratios. Even when we investigate the ratios of 130/120

and 120/130, we still find that the minimum and maximum weights obtained by 125/125

are much more extreme. So, we again conclude that shifting a small number of stocks

between the 1/N allocation and an existing covariance estimator causes severe changes in

the performance when using the GMV portfolio.

27



Existing Methods Quarticity Shrinkage

1/N LS NLS EWMA LS NLS EWMA

W = 63

Mean Return 0.278 0.278 0.278 0.277 0.247⊗ 0.247⊗ 0.242⊗
Sh 1.123 0.985 1.022 0.892 1.447⊗ 1.461⊗ 1.451⊗
CEQ (γ = 1) 0.247 0.238 0.241 0.229 0.232 0.233 0.228

CEQ (γ = 5) 0.125 0.079 0.093 0.036 0.174 0.176 0.172

TO - 0.142 0.201 0.522 0.099 0.128 0.296

TCAR (4 bps) 0.278 0.264 0.258 0.225 0.237 0.235 0.212

TCAR (8.6 bps) 0.278 0.248 0.235 0.164 0.226 0.220 0.178

W = 126

Mean Return 0.278 0.278 0.278 0.277 0.245⊗ 0.245⊗ 0.244⊗
Sh 1.124 0.983 1.011 0.896 1.411⊗ 1.427⊗ 1.455⊗
CEQ (γ = 1) 0.247 0.238 0.240 0.229 0.230 0.231 0.230

CEQ (γ = 5) 0.125 0.078 0.089 0.038 0.170 0.171 0.174

TO - 0.082 0.099 0.528 0.055 0.067 0.270

TCAR (4 bps) 0.278 0.270 0.268 0.224 0.240 0.239 0.216

TCAR (8.6 bps) 0.278 0.260 0.257 0.163 0.233 0.231 0.185

W = 252

Mean Return 0.278 0.278 0.278 0.277 0.242⊗ 0.242⊗ 0.243⊗
Sh 1.121 0.981 1.002 0.893 1.363⊗ 1.375⊗ 1.448⊗
CEQ (γ = 1) 0.247 0.238 0.240 0.229 0.226 0.226 0.229

CEQ (γ = 5) 0.124 0.077 0.085 0.037 0.163 0.165 0.173

TO - 0.046 0.052 0.528 0.030 0.035 0.252

TCAR (4 bps) 0.278 0.273 0.273 0.224 0.239 0.238 0.218

TCAR (8.6 bps) 0.278 0.268 0.267 0.162 0.235 0.234 0.189

W = 756

Mean Return 0.277 0.277 0.277 0.276 0.238⊗ 0.238⊗ 0.243⊗
Sh 1.119 0.972 0.983 0.889 1.305⊗ 1.312⊗ 1.439⊗
CEQ (γ = 1) 0.246 0.236 0.237 0.228 0.221 0.222 0.229

CEQ (γ = 5) 0.124 0.074 0.079 0.035 0.155 0.156 0.172

TO - 0.017 0.018 0.528 0.011 0.012 0.237

TCAR (4 bps) 0.277 0.275 0.275 0.223 0.237 0.237 0.219

TCAR (8.6 bps) 0.277 0.273 0.273 0.162 0.236 0.235 0.192

Table 6: This table displays the performance measures of all methods in the simulation study with
25 generated stocks. We display the existing method that we use as input for quarticity shrinkage
underneath ’Quarticity Shrinkage’. QS combined with LS, NLS and EWMA follows the ratio of 12/13
certain/uncertain stocks for all moving windows. Within each row, we display the method that gives the
best performance in the respective measure in bold. Note that QS obtains mean returns and Sharpe ratios
which are always significantly different from the 1/N allocation and the existing method. The differences
are significant at all levels following the tests described in Section 4.5.5. We display this phenomenon
by ⊗ in the table. We annualize all measures by means of a scaling factor of 252 or its square root. We
do not annualize the turnover (TO). Furthermore, for both EWMA and QS-EWMA we use the previous
186 days. This value corresponds to the number of effective days.
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Existing Methods Quarticity Shrinkage

1/N LS NLS EWMA LS NLS EWMA

W = 63

Mean Return 0.281 0.281 0.282 0.283 0.203⊗ 0.222⊗ 0.200⊗
Sh 1.115 1.086 1.112 1.090 1.691⊗ 2.480⊗ 1.711⊗
CEQ (γ = 1) 0.249 0.247 0.250 0.249 0.196 0.218 0.193

CEQ (γ = 5) 0.122 0.114 0.121 0.114 0.167 0.202 0.166

TO - 0.269 0.190 0.272 0.308 0.214 0.610

TCAR (4 bps) 0.281 0.254 0.263 0.255 0.172 0.201 0.139

TCAR (8.6 bps) 0.281 0.223 0.241 0.224 0.136 0.176 0.068

W = 126

Mean Return 0.280 0.279 0.281 0.281 0.197⊗ 0.276⊗ 0.198⊗
Sh 1.109 1.070 1.104 1.070 1.661⊗ 0.724⊗ 1.436⊗
CEQ (γ = 1) 0.248 0.245 0.249 0.247 0.190 0.203 0.188

CEQ (γ = 5) 0.121 0.109 0.119 0.108 0.162 -0.088 0.150

TO - 0.241 0.134 0.401 0.218 1.104 1.454

TCAR (4 bps) 0.280 0.254 0.268 0.241 0.175 0.165 0.051

TCAR (8.6 bps) 0.280 0.226 0.252 0.194 0.150 0.037 -0.117

W = 252

Mean Return 0.280 0.279 0.280 0.282 0.193⊗ 0.207⊗ 0.211⊗
Sh 1.105 1.063 1.104 1.038 1.626⊗ 1.669⊗ 1.352⊗
CEQ (γ = 1) 0.248 0.244 0.248 0.245 0.186 0.199 0.199

CEQ (γ = 5) 0.119 0.107 0.119 0.097 0.158 0.168 0.150

TO - 0.209 0.100 0.694 0.141 0.104 0.758

TCAR (4 bps) 0.280 0.258 0.270 0.212 0.179 0.196 0.134

TCAR (8.6 bps) 0.280 0.234 0.259 0.132 0.162 0.184 0.047

W = 756

Mean Return 0.277 0.278 0.278 0.277 0.188⊗ 0.196⊗ 0.208⊗
Sh 1.079 1.053 1.071 1.013 1.552⊗ 1.564⊗ 1.306⊗
CEQ (γ = 1) 0.244 0.243 0.244 0.240 0.181 0.188 0.195

CEQ (γ = 5) 0.112 0.104 0.109 0.090 0.151 0.157 0.145

TO - 0.076 0.043 0.694 0.051 0.037 0.637

TCAR (4 bps) 0.277 0.270 0.274 0.207 0.183 0.192 0.144

TCAR (8.6 bps) 0.277 0.261 0.269 0.127 0.177 0.188 0.070

Table 7: This table displays the performance measures of all methods in the simulation study with
250 generated stocks. We display the existing method that we use as input for quarticity shrinkage
underneath ’Quarticity Shrinkage’. QS-LS follows the ratio of 125/125 certain/uncertain stocks for all
moving windows. QS-NLS follows a ratio of 200/50 for W = 63, and also follows the 125/125 ratio for
the other windows. QS-EWMA follows the ratio of 125/125 certain/uncertain stocks for W = {63, 126},
and a ratio of 50/200 for W = {252, 756}. Within each row, we display the method that gives the best
performance in the respective measure in bold. Note that QS obtains mean returns and Sharpe ratios
which are always significantly different from the 1/N allocation and the existing method. The differences
are significant at all levels following the tests described in Section 4.5.5. We display this phenomenon
by ⊗ in the table. We annualize all measures by means of a scaling factor of 252 or its square root. We
do not annualize the turnover (TO). Furthermore, for both EWMA and QS-EWMA we use the previous
186 days. This value corresponds to the number of effective days.
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5.5 Robustness

To assess the robustness of the methods, we look into the annualized standard deviations

of the performance measures. We calculate the measures for each replication and take

the standard deviation over the replications. We multiply the obtained value by 252 or

the square root of 252, which corresponds to the assumption of one year. The turnover

is in percentage, such that we do not multiply its standard deviation by any factor. We

display the tables with standard deviations of the measures in the appendix, Section E.

We generally find that quarticity shrinkage is the most consistent as it yields the

lowest standard deviation in the mean return, certainty equivalents, turnover and transac-

tion costs adjusted mean returns. However, the existing covariance estimators, especially

EWMA, give the lowest standard deviations for the Sharpe ratio. The 1/N allocation

generally does not give the lowest standard deviation in any measure or simulation study.

Earlier in the simulation study, we have seen that the average volatility is way larger

for the existing methods. The accuracy of the existing covariance estimators thus varies

depending on the characteristics of the dataset. The existing method either perform well,

or it does a poor job. This dependency leads to a loss in precision, which we observe in the

larger standard deviations. The 1/N allocation always yields a moderate performance,

it is never very accurate, but it is neither far off. We also note this for 1/N that rarely

has the largest standard deviations. The new method benefits from both these properties

such that it attains the lowest standard deviations in most measures.

Next, we evaluate the robustness of quarticity shrinkage with its different inputs. We

observe that QS-LS gives precise estimates in the simulation studies with 100 and 250

stocks. QS-EWMA yields more robust estimates in the simulation study with 25 stocks.

Although the new method with NLS gives robust estimates in the windows of 63, it never

attains the lowest standard deviation in other studies.

6 Empirical Results

Before we evaluate the empirical backtesting, we briefly address the calibration of quar-

ticity shrinkage with its inputs. We did not find a partition ratio of certain and uncertain

stocks that outperforms the others consistently. It depends on the number of stocks, the

size of the estimation window and the method used as an input. Consequently, we resort

to using half of the stocks as certain and the other half as uncertain.

Looking at the results from the empirical backtesting in Table 8, we first notice that

the values all seem to be of a different order compared to the simulation results. The

highest mean return in the empirical analysis has a value of 0.181, whereas the largest

mean return in the simulation study is 0.283. For the Sharpe ratio we find a maximum

value of 1.202 in the empirical results against a top value of 2.480 in the simulation results.
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We find a similar discrepancy for both certainty equivalents and the turnover, where the

larger values are obtained in the simulation run.

Unsurprisingly, the performance measures in the empirical analysis attain lower val-

ues than those in the simulation studies. We found that the underlying structure in the

generated data is more moderate in terms of volatility such that we did not observe se-

vere regime switches in the stock returns. These findings led to large returns with low

volatilities, such that all methods were able to perform well. The real data contains more

severe volatility clustering and has a lower mean return. These characteristics directly

lead to worse performances of the estimators.

The empirical results show that the highest mean return is always obtained by 1/N .

However, the difference with the new method is never significant at the respective levels.

The highest Sharpe ratio is obtained for EWMA in the smallest window and yielded

by QS in longer moving windows. The difference in Sharpe ratios between QS and the

1/N allocation is often significant. We further observe the largest certainty equivalent

with a small coefficient of risk aversion for either 1/N or the QS-NLS. We often find the

highest certainty equivalent with a bigger coefficient of risk aversion for QS-NLS. The

1/N allocation always yields the largest transaction costs adjusted mean return.

We continue by observing the estimation window of 63 days. It becomes clear that

the existing covariance estimators perform subpar, except for the Sharpe ratio of EWMA.

An investor who neglects risk will prefer the 1/N allocation, due to its high mean return,

certainty equivalent with a small coefficient of risk aversion and large transaction costs

adjusted mean return. When an investor considers risk, quarticity shrinkage is of interest.

QS generally yields a larger Sharpe ratio and certainty equivalent with a large risk aversion

coefficient than the 1/N allocation and the existing covariance estimators.

The trade-off between a large mean return and a small volatility is optimal for the

new method in the window of 126 days. We observe that QS yields the largest Sharpe ratio

and certainty equivalent with both coefficients. We find a similar result in the window

with 252 days, where QS-NLS outperforms in Sharpe ratio, both certainty equivalents

and turnover. This outperformance of QS-NLS might not come as a surprise, given that

Ledoit & Wolf (2020b) state that NLS generally outperforms LS. Using 252 observations

ensures that NLS uses enough observations to fit the nonlinear function to the data. In the

smaller windows QS-NLS did not outperform QS-LS. The existing covariance estimators

show a similar pattern, such that they emphasize this finding in the new method.

In the largest moving window, we find that the 1/N allocation seems to benefit most

from its increased mean return while its volatility decreases. Therefore, this strategy

obtains the largest certainty equivalent with a small coefficient of risk aversion again.

QS-EWMA gives a poor performance when compared to the EWMA estimator.

The turnovers are generally surprising because the new method does not always yield

lower values than the covariance estimators. We expect that the new method gives lower
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turnovers, considering that it applies an equally weighted approach to half of the stocks.

We highlight that the turnover in the smallest window of the new method with EWMA is

ten times larger than that of EWMA. Upon analyzing the weights and realized weights,

we observe that the new method yields extreme values. The minimum allocated weight

by the new method is roughly 1.5 times more negative, while the maximum weight is

slightly more positive. We find a considerable difference for the realized weights. The

minimum (maximum) allocated realized weight of the new method is roughly 1000 (400)

times more negative (positive). The mean allocated weights between the two methods are

very similar. We conclude that the turnover for the new method with EWMA is affected

severely by noise, such that it gives absurd values.

We find the same phenomenon for the estimation window of 126 days, comparing

QS-NLS and NLS. The minimum (maximum) realized weight allocated by QS is roughly

ten times (four times) more negative (more positive). The mean of the realized weight

is of a similar value. The differences in estimated weights are not as large, where the

maximum is 1.3 times larger for the new method with NLS. In this setting, QS-NLS

apparently suffers from noise such that the GMV allocation assigns more extreme weights

the uncertain stocks.

Next, we evaluate quarticity shrinkage with the different inputs against one other.

QS-EWMA seems to perform subpar in most measures, except for the smallest moving

window. We observe that the volatility of QS-EWMA increases while the volatility of

QS-LS and QS-NLS remains flat. Although the volatility for QS-EWMA between the

window of 252 and 756 days stays flat, it is 1.5 times larger than the ones obtained for

QS-LS and QS-NLS. We explain this increased volatility by looking at the characteristics

of the models. LS and NLS are static models; hence they are less responsive to changes

in the stock market. Each observation within the window has the same influence on the

estimation of the covariance matrix, such that changes in the matrix occur slowly. EWMA

is a dynamic method, which yields more value to recent information. This dynamic

characteristic leads to larger and more frequent changes in the covariance matrix, leading

to a larger volatility.

We further observe that the performance of QS-LS and QS-NLS seems to be very

similar in the windows of 63 and 126 days. In fact, QS-LS outperforms QS-NLS slightly

in the smallest moving window. We do not find a similar pattern for LS and NLS. So, we

argue that LS with the 163 certain stocks is optimal in the smallest window. Fitting a

nonlinear relation to the data while it contains a linear relation can never be as good as

fitting a linear relation. This argument is invalid once the estimation window gets longer

or the number of stocks gets larger as the outperformance no longer holds.
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Existing Methods Quarticity Shrinkage

1/N LS NLS EWMA LS NLS EWMA

W = 63

Mean Return 0.164 0.096 0.106 0.115 0.139⊕ 0.138 0.144

Sh 0.716 0.813 0.890 1.096 0.988 0.939∗ 1.016∗∗
CEQ (gamma = 1) 0.138 0.089 0.099 0.109 0.129 0.127 0.134

CEQ (gamma = 5) 0.033 0.061 0.070 0.087 0.090 0.084 0.094

TO - 0.039 0.072 0.030 0.050 0.040 0.298

TCAR (4 bps) 0.164 -0.894 -1.718 -0.650 -1.141 -0.869 -7.419

TCAR (8.6 bps) 0.164 -2.034 -3.814 -1.529 -2.612 -2.026 -16.117

W = 126

Mean Return 0.162 0.106 0.103 0.099 0.148 0.150 0.134

Sh 0.705 0.864 0.872 0.819 1.036∗ 1.034∗∗ 0.800

CEQ (gamma = 1) 0.136 0.099 0.096 0.092 0.137 0.139 0.120

CEQ (gamma = 5) 0.030 0.069 0.068 0.063 0.097 0.097 0.064

TO - 0.029 0.044 0.052 0.050 0.085 0.069

TCAR (4 bps) 0.162 -0.622 -1.024 -1.226 -1.118 -2.004 -1.627

TCAR (8.6 bps) 0.162 -1.460 -2.320 -2.750 -2.572 -4.481 -3.652

W = 252

Mean Return 0.170 0.083 0.101 0.118 0.145⊕⊕ 0.162⊕ 0.162

Sh 0.733 0.658 0.859 0.827 1.008 1.119∗ ∗ ∗ 0.687

CEQ (gamma = 1) 0.143 0.075 0.095 0.107 0.134 0.151 0.134

CEQ (gamma = 5) 0.036 0.043 0.067 0.067 0.093 0.110 0.023

TO - 0.056 0.042 0.059 0.119 0.024 0.068

TCAR (4 bps) 0.170 -1.345 -0.971 -1.392 -2.873 -0.460 -1.553

TCAR (8.6 bps) 0.170 -2.987 -2.204 -3.129 -6.342 -1.174 -3.524

W = 756

Mean Return 0.181 0.096 0.126 0.154 0.148⊕ 0.157 0.118

Sh 0.958 0.832 1.152 1.153 1.128 1.202 0.575⊕
CEQ (gamma = 1) 0.163 0.089 0.120 0.145 0.139 0.148 0.097

CEQ (gamma = 5) 0.092 0.063 0.096 0.109 0.105 0.114 0.013

TO - 0.051 0.054 0.060 0.027 0.039 0.060

TCAR (4 bps) 0.181 -1.202 -1.238 -1.381 -0.535 -0.830 -1.417

TCAR (8.6 bps) 0.181 -2.695 -2.806 -3.147 -1.320 -1.966 -3.182

Table 8: This table displays the performance measures of all methods in the empirical analysis with real-
world excess holding-period returns. We display the existing method that we use as input for quarticity
shrinkage underneath ’Quarticity Shrinkage’. QS always follows the ratio of 163/164 certain/uncertain
stocks for all moving windows. Within each row, we display the method that gives the best performance
in the respective measure in bold. An asterisk, ∗, indicates that QS is significantly different from the 1/N
allocation at a level of 10% following the tests described in section 4.5.5. A double asterisk, ∗∗, indicates
that QS is significantly different from the 1/N allocation at a level of 5%. And a triple asterisk, ∗ ∗ ∗,
indicates a significant difference at a level of 1%. Further, a ⊕ indicates that QS is significantly different
from the input method alone at a 10% level. A double ⊕⊕ indicates this for 5% and a triple ⊕⊕⊕ for
1%. We annualize all measures by means of a scaling factor of 252 or its square root. We do not annualize
the turnover (TO). Furthermore, for both EWMA and QS-EWMA we use the previous 186 days. This
value corresponds to be the number of effective days.
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7 Discussion

From the results of our simulation studies and empirical analysis, we draw relevant and

valuable conclusions. However, we have to acknowledge that our research has its limita-

tions.

We find that a slight change in the number of stocks that follow the certain/uncertain

approach in quarticity shrinkage is of extraordinary importance. Although we argue that

it might be infeasible to implement a specific grid search, expanding the current calibration

might be an option. Another possibility would be to investigate the calibration via a grid

search, taking into account the investor’s preferences.

For the EWMA approach, we used a constant decay value of 0.94. However, Bollen

(2015) found that this particular choice is not always optimal. Their finding imply that

the results for the EWMA method might improve when using another value or varying the

decay factor depending on the setting. One might find optimal values via cross-validation

by assessing the performance of EWMA with different decay factors over time. However,

this approach can be very cumbersome, and it is unclear whether the performance of

EWMA will improve significantly.

The data generating process produces the returns according to the CAPM model.

One can extend this model to try and resemble the real-world data more closely by using,

for instance, the Fama-French Three Factor model from Fama & French (1993). Using this

model would mean that one fits a multivariate GARCH model to the factors. As a result,

one draws the factors while containing autocorrelation and cross-correlation between those

factors. Another improvement is to incorporate various states of the world such that the

generated returns exhibit crashes, as is the case in the empirical dataset. Including various

states might be possible via, for instance, the Markov-Switching GARCH model.

We use the global minimum variance portfolio for the portfolio allocation of the

covariance estimators and certain returns. Although this portfolio circumvents the uncer-

tainty in the returns, it might not be the most relevant portfolio for an asset manager. In

our results, we find some extreme weights, such that one might consider adding (short-

selling) restrictions.

8 Conclusion

This paper investigates the performance of a new approach to portfolio allocation that

combines the 1/N strategy with linear shrinkage, nonlinear shrinkage and exponentially

weighted moving average. DeMiguel & Uppal (2007) show that none of the existing

covariance estimators consistently beat the 1/N allocation due to uncertainty regarding

estimates of the covariance matrix. To overcome this inconsistency, they find that one

should use an impractically large estimation window of at least 3000 months. We introduce

34



quarticity shrinkage (QS), a new method to try and beat the 1/N allocation consistently

without an impractically large estimation window.

Quarticity shrinkage separates stocks into two sets based on their uncertainty, which

we proxy with realized quarticity (RQ). Stocks with with a small RQ are regarded certain,

and stocks with a large RQ are deemed uncertain. The set of certain stocks follow an

existing covariance estimator with the global minimum variance allocation. The set of

uncertain stocks follow the 1/N allocation. We merge the two sets and normalize the

newly obtained portfolio. Further, we investigate the performance of QS with a different

number of stocks that follow the certain/uncertain approach.

To assess the performance of QS, we use daily excess holding-period returns of 327

stocks from the S&P500, a value-weighted market index and a risk-free rate. We generate

returns via a combination of a Monte Carlo simulation with bootstrapping, where we base

the underlying structure of the generated data on a GARCH(1,1) model.

In our simulation studies, we do not find any optimal partition ratio of certain/uncertain

stocks. An investor who is only interested in a high return will favour the ratio which

uses most stocks as uncertain. A risk averse investor will opt for the ratio that uses most

stocks as certain. Further, we find statistically significant differences in the performance

between QS and the existing methods. QS generally outperforms on a risk-adjusted basis.

An existing estimator will be favoured when the investor neglects risk. Furthermore, we

do not find any combination for QS that dominates the other inputs. None of the com-

binations outperform the others in most measures over all studies. Our last finding from

the simulation is that QS yields smaller standard deviations than the existing methods

in all measures except the Sharpe ratio. This robustness implies that QS gives the most

reliable estimates.

From the empirical analysis, we find that the 1/N allocation always attains the largest

mean return. However, the difference with quarticity shrinkage is never significant at the

respective levels. QS again outperforms on a risk-adjusted basis, where the difference in

Sharpe ratio is occasionally significant. QS is superior to the existing covariance estimators

in all measures, except the turnover. Furthermore, we find that QS-NLS dominates across

the inputs for the new method.

Although the new method seems to outperform the existing covariance estimators, it

does not consistently beat the 1/N allocation in all measures using a practical estimation

window. The performance of quarticity shrinkage varies with the preferences of the in-

vestor, input method, number of stocks, size of the estimation window and characteristics

in the dataset.
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Appendices

A Names of the Included Stocks

3M CO CONSOLIDATED EDISON INC INCYTE CORP
A T & T INC CONSTELLATION BRANDS INC INTEL CORP
ABBOTT LABORATORIES COOPER COMPANIES INC INTERNATIONAL BUSINESS MACHS COR
ABIOMED INC COPART INC INTERNATIONAL FLAVORS & FRAG INC
ADVANCE AUTO PARTS INC CORE MOLDING TECHNOLOGIES INC INTERNATIONAL PAPER CO
ADVANCED MICRO DEVICES INC CORNING INC INTERPUBLIC GROUP COS INC
AFLAC INC COSTCO WHOLESALE CORP NEW INTUIT INC
AGILENT TECHNOLOGIES INC CUMMINS INC INTUITIVE SURGICAL INC
AIR PRODUCTS & CHEMICALS INC D R HORTON INC ITERIS INC
AKAMAI TECHNOLOGIES INC D T E ENERGY CO JACOBS ENGINEERING GROUP INC
ALASKA AIRGROUP INC DANAHER CORP JOHNSON & JOHNSON
ALBEMARLE CORP DARDEN RESTAURANTS INC JPMORGAN CHASE & CO
ALEXANDRIA REAL EST EQUITIES INC DEERE & CO JUNIPER NETWORKS INC
ALEXION PHARMACEUTICALS INC DEVON ENERGY CORP NEW KANSAS CITY SOUTHERN
ALIGN TECHNOLOGY INC DEXCOM INC KELLOGG CO
ALLEGHENY TECHNOLOGIES DIGITAL REALTY TRUST INC KEYCORP NEW
ALLSTATE CORP DISNEY WALT CO KIMBERLY CLARK CORP
ALTRIA GROUP INC DOMINOS PIZZA INC KIMCO REALTY CORP
AMAZON COM INC DOVER CORP KROGER COMPANY
AMEREN CORP DUKE ENERGY CORP NEW L K Q CORP
AMERICAN ELECTRIC POWER CO INC DUKE REALTY CORP LABORATORY CORP AMERICA HLDGS
AMERICAN EXPRESS CO EASTMAN CHEMICAL CO LAM RESH CORP
AMERICAN INTERNATIONAL GROUP INC EBAY INC LAS VEGAS SANDS CORP
AMERIPRISE FINANCIAL INC ECOLAB INC LAUDER ESTEE COS INC
AMERISOURCEBERGEN CORP EDWARDS LIFESCIENCES CORP LEE ENTERPRISES INC
AMETEK INC NEW ELECTRONIC ARTS INC LEGGETT & PLATT INC
AMGEN INC EMERSON ELECTRIC CO LENNAR CORP
AMPHENOL CORP NEW ENTERGY CORP NEW LILLY ELI & CO
ANALOG DEVICES INC EOG RESOURCES INC LINCOLN NATIONAL CORP
ANSYS INC EQUIFAX INC LOEWS CORP
APACHE CORP EQUINIX INC M & T BANK CORP
APPLIED MATERIALS INC EQUITY RESIDENTIAL MARATHON OIL CORP
ARCHER DANIELS MIDLAND CO ESSEX PROPERTY TRUST INC MARKETAXESS HLDGS INC
ASSURANT INC EVEREST RE GROUP LTD MARRIOTT INTERNATIONAL INC NEW
ATMOS ENERGY CORP EXELON CORP MARSH & MCLENNAN COS INC
AUTODESK INC EXPEDITORS INTERNATIONAL WA INC MARTIN MARIETTA MATERIALS INC
AUTOMATIC DATA PROCESSING INC EXTRA SPACE STORAGE INC MASCO CORP
AVALONBAY COMMUNITIES INC F 5 NETWORKS INC MASTERCARD INC
AVERY DENNISON CORP F M C CORP MAXIM INTEGRATED PRODUCTS INC
BALL CORP FASTENAL COMPANY MCCORMICK & CO INC
BANK OF AMERICA CORP FEDERAL REALTY INVESTMENT TRUST MCDONALDS CORP
BAXTER INTERNATIONAL INC FEDEX CORP MCKESSON H B O C INC
BECTON DICKINSON & CO FIDELITY NATIONAL INFO SVCS INC METLIFE INC
BERKLEY W R CORP FIFTH THIRD BANCORP METTLER TOLEDO INTERNATIONAL INC
BEST BUY COMPANY INC FIRSTENERGY CORP MICROCHIP TECHNOLOGY INC
BIO RAD LABORATORIES INC FISERV INC MICRON TECHNOLOGY INC
BLACKROCK INC FLIR SYSTEMS INC MICROSOFT CORP
BOEING CO FLOWSERVE CORP MID AMERICA APT COMMUNITIES INC
BORGWARNER INC FORD MOTOR CO DEL MILESTONE SCIENTIFIC INC
BOSTON PROPERTIES INC FRANKLIN RESOURCES INC MOHAWK INDUSTRIES INC
BOSTON SCIENTIFIC CORP GALLAGHER ARTHUR J & CO MONOLITHIC PWR SYS INC
BRISTOL MYERS SQUIBB CO GAP INC MOODYS CORP
C F INDUSTRIES HOLDINGS INC GARMIN LTD N R G ENERGY INC
C M S ENERGY CORP GARTNER INC N V R INC
C S X CORP GENERAL DYNAMICS CORP NATIONAL OILWELL VARCO INC
CABOT OIL & GAS CORP GENERAL ELECTRIC CO NETFLIX INC
CADENCE DESIGN SYSTEMS INC GENERAL MILLS INC NIKE INC
CAMPBELL SOUP CO GENUINE PARTS CO NORFOLK SOUTHERN CORP
CAPITAL ONE FINANCIAL CORP GILEAD SCIENCES INC NORTHERN TRUST CORP
CARDINAL HEALTH INC GLOBAL PAYMENTS INC NORTHROP GRUMMAN CORP
CARMAX INC GOLDMAN SACHS GROUP INC NUCOR CORP
CARNIVAL CORP GRAINGER W W INC NVIDIA CORP
CATERPILLAR INC HALLIBURTON COMPANY OCCIDENTAL PETROLEUM CORP
CENTENE CORP DEL HANESBRANDS INC OLD DOMINION FREIGHT LINE INC
CENTERPOINT ENERGY INC HARTFORD FINANCIAL SVCS GRP INC OMNICOM GROUP INC
CERNER CORP HASBRO INC ONEOK INC NEW
CH ROBINSON WORLDWIDE INC HENRY JACK & ASSOC INC ORACLE CORP
CHEVRON CORP NEW HERSHEY CO P N C FINANCIAL SERVICES GRP INC
CHIPOTLE MEXICAN GRILL INC HESS CORP P P G INDUSTRIES INC
CHURCH & DWIGHT INC HOLOGIC INC P P L CORP
CINCINNATI FINANCIAL CORP HOME DEPOT INC PACCAR INC
CINTAS CORP HONEYWELL INTERNATIONAL INC PACKAGING CORP AMERICA
CISCO SYSTEMS INC HORMEL FOODS CORP PARKER HANNIFIN CORP
CITIGROUP INC HOST HOTELS & RESORTS INC PAYCHEX INC
CITRIX SYSTEMS INC HUMANA INC PEPSICO INC
CLOROX CO HUNT J B TRANSPORT SERVICES INC PERKINELMER INC
COCA COLA CO HUNTINGTON BANCSHARES INC PFIZER INC
COGNIZANT TECHNOLOGY SOLS CORP I D E X X LABORATORIES INC PINNACLE WEST CAPITAL CORP
COLGATE PALMOLIVE CO I P G PHOTONICS CORP PIONEER NATURAL RESOURCES CO
COMCAST CORP NEW IDEX CORP POOL CORP
COMERICA INC ILLINOIS TOOL WORKS INC PRINCIPAL FINANCIAL GROUP INC
CONOCOPHILLIPS ILLUMINA INC PROCTER & GAMBLE CO
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PRUDENTIAL FINANCIAL INC SMUCKER J M CO UNITEDHEALTH GROUP INC
PUBLIC SERVICE ENTERPRISE GP INC SNAP ON INC UNIVERSAL HEALTH SERVICES INC
QUALCOMM INC SOUTHERN CO V F CORP
QUANTA SERVICES INC SOUTHWEST AIRLINES CO VALERO ENERGY CORP NEW
QUEST DIAGNOSTICS INC STARBUCKS CORP VARIAN MEDICAL SYSTEMS INC
RAYMOND JAMES FINANCIAL INC STATE STREET CORP VENTAS INC
REALTY INCOME CORP SYNOPSYS INC VERISIGN INC
REGENCY CENTERS CORP SYSCO CORP VERIZON COMMUNICATIONS INC
REGENERON PHARMACEUTICALS INC T J X COMPANIES INC NEW VERTEX PHARMACEUTICALS INC
REGIONS FINANCIAL CORP NEW T ROWE PRICE GROUP INC VORNADO REALTY TRUST
REPUBLIC SERVICES INC TAKE TWO INTERACTIVE SOFTWR INC VULCAN MATERIALS CO
RESMED INC TARGET CORP WABTEC CORP
ROBERT HALF INTERNATIONAL INC TELEDYNE TECHNOLOGIES WASTE MANAGEMENT INC DEL
ROCKWELL AUTOMATION INC TELEFLEX INC WATERS CORP
ROLLINS INC TERADYNE INC WELLS FARGO & CO NEW
ROSS STORES INC TEXTRON INC WEST PHARMACEUTICAL SERVICES INC
ROYAL CARIBBEAN CRUISES LTD THERMO FISHER SCIENTIFIC INC WESTAMERICA BANCORPORATION
S L GREEN REALTY CORP TRACTOR SUPPLY CO NEW WESTERN DIGITAL CORP
S V B FINANCIAL GROUP TRANSDIGM GROUP INC WESTERN UNION CO
SALESFORCE COM INC TUCOWS INC WEYERHAEUSER CO
SCHLUMBERGER LTD TYLER TECHNOLOGIES INC WHIRLPOOL CORP
SCHWAB CHARLES CORP NEW TYSON FOODS INC WILLIAMS COS
SEALED AIR CORP NEW U S BANCORP DEL WYNN RESORTS LTD
SEMPRA ENERGY UNDER ARMOUR INC X C E L ENERGY INC
SHERWIN WILLIAMS CO UNION PACIFIC CORP XILINX INC
SIMON PROPERTY GROUP INC NEW UNITED PARCEL SERVICE INC YUM BRANDS INC
SKYWORKS SOLUTIONS INC UNITED RENTALS INC ZEBRA TECHNOLOGIES CORP

Table 9: This table shows name of the stocks that we include in our dataset after filtering. We filter
the data such that all stocks contains the relevant information over the whole period.

B Autocorrelation of the Empirical Data

Figure 6: Plots showing the autocorrelation function and partial autocorrelation function of the average
excess holding-period returns.
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Figure 7: Plots showing the autocorrelation function and partial autocorrelation function of the value-
weighted market index.

C Descriptive Statistics of the Generated Data

Return Volatility Skewness Kurtosis

Min 0.271 0.011 -0.064 3.028
Mean 0.277 0.011 0.005 3.284
Max 0.283 0.011 0.086 4.063

Table 10: This table shows the descriptive statistics of the 25 generated stock returns. We display the
annual minimum, mean, maximum and market (Mkt) return and volatility of the stocks over the entire
period without the use of any estimation window. By annual, we mean that we compute the metric and
multiply it by a scale of 252. We multiply the return by 252 and the volatility by

√
252. It further shows

the skewness and kurtosis that we calculate over the entire period for each stock.
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Return Volatility Skewness Kurtosis

Min 0.276 0.011 -0.417 3.129
Mean 0.282 0.012 -0.049 4.288
Max 0.291 0.015 0.364 9.179

Table 11: This table shows the descriptive statistics of the 100 generated stock returns. We display the
annual minimum, mean, maximum and market (Mkt) return and volatility of the stocks over the entire
period without the use of any estimation window. By annual, we mean that we compute the metric and
multiply it by a scale of 252. We multiply the return by 252 and the volatility by

√
252. It further shows

the skewness and kurtosis that we calculate over the entire period for each stock.

Return Volatility Skewness Kurtosis

Min 0.252 0.032 -0.161 3.175
Mean 0.279 0.035 0.028 3.684
Max 0.298 0.039 0.214 5.279

Table 12: This table shows the descriptive statistics of the 250 generated stock returns. We display the
annual minimum, mean, maximum and market (Mkt) return and volatility of the stocks over the entire
period without the use of any estimation window. By annual, we mean that we compute the metric and
multiply it by a scale of 252. We multiply the return by 252 and the volatility by

√
252. It further shows

the skewness and kurtosis that we calculate over the entire period for each stock.

Figure 8: A plot showing the volatility clustering of the average 100 generated returns fora one-year
(assumption: 252 days) rolling window.
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Figure 9: A plot showing the volatility clustering of the average 250 generated returns fora one-year
(assumption: 252 days) rolling window.

Figure 10: Plots with autocorrelation function and partial autocorrelation function of the 25 generated
stocks.
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Figure 11: Plots with autocorrelation function and partial autocorrelation function of the 100 generated
stocks.
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Figure 12: Plots with autocorrelation function and partial autocorrelation function of the 250 generated
stocks.
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D Results from Calibrating Quarticity Shrinkage

W = 63 W = 126

5/20 10/15 15/10 20/5 5/20 10/15 15/10 20/5

Mean Return 0.256 0.250 0.245 0.241 0.255 0.248 0.242 0.236

Sh 1.352 1.423 1.536 1.749 1.328 1.389 1.498 1.707

CEQ (γ = 1) 0.238 0.234 0.232 0.231 0.236 0.232 0.229 0.226

CEQ (γ = 5) 0.166 0.173 0.181 0.193 0.163 0.168 0.177 0.188

TO 0.065 0.111 0.151 0.183 0.033 0.058 0.079 0.094

TCAR (4 bps) 0.249 0.238 0.230 0.222 0.251 0.242 0.234 0.226

TCAR (8.6 bps) 0.242 0.225 0.212 0.201 0.248 0.235 0.225 0.216

W = 252 W = 756

Mean Return 0.253 0.245 0.238 0.231 0.251 0.242 0.233 0.224

Sh 1.301 1.346 1.441 1.639 1.267 1.290 1.367 1.541

CEQ (γ = 1) 0.234 0.228 0.224 0.221 0.232 0.224 0.218 0.214

CEQ (γ = 5) 0.158 0.162 0.170 0.181 0.153 0.154 0.160 0.171

TO 0.017 0.030 0.041 0.050 0.005 0.010 0.014 0.018

TCAR (4 bps) 0.252 0.2419 0.2334 0.2257 0.251 0.241 0.231 0.222

TCAR (8.6 bps) 0.250 0.238 0.229 0.220 0.250 0.240 0.230 0.220

Table 13: This table shows the performance measures for the optimal partition of QS-NLS with 25
generated stocks. We display the ratio of the number of certain/uncertain stocks under the respective
moving window of size W days. Within each row, we display the ratio that gives the best performance
in the respective measure in bold. Further, note that we annualize all the measures by means of a scaling
factor of 252 or its square root. We do not annualize the turnover (TO).
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W = 63 W = 126

5/20 10/15 15/10 20/5 5/20 10/15 15/10 20/5

Mean Return 0.254 0.245 0.237 0.230 0.254 0.246 0.239 0.231

Sh 1.364 1.425 1.500 1.611 1.365 1.427 1.499 1.604

CEQ (γ = 1) 0.237 0.230 0.225 0.220 0.237 0.231 0.226 0.221

CEQ (γ = 5) 0.167 0.171 0.175 0.179 0.167 0.172 0.175 0.179

TO 0.131 0.250 0.362 0.459 0.116 0.226 0.335 0.440

TCAR (4 bps) 0.241 0.220 0.201 0.184 0.242 0.223 0.205 0.187

TCAR (8.6 bps) 0.226 0.191 0.159 0.130 0.229 0.197 0.166 0.136

W = 252 W = 756

Mean Return 0.253 0.246 0.239 0.231 0.252 0.246 0.238 0.230

Sh 1.364 1.423 1.493 1.594 1.362 1.419 1.478 1.570

CEQ (γ = 1) 0.236 0.231 0.226 0.2205 0.235 0.231 0.225 0.2192

CEQ (γ = 5) 0.167 0.171 0.175 0.179 0.166 0.171 0.173 0.176

TO 0.105 0.210 0.316 0.425 0.095 0.195 0.302 0.414

TCAR (4 bps) 0.243 0.225 0.207 0.188 0.243 0.226 0.208 0.188

TCAR (8.6 bps) 0.231 0.200 0.170 0.139 0.231 0.204 0.173 0.140

Table 14: This table shows the performance measures for the optimal partition of QS-EWMA with 25
generated stocks. We display the ratio of the number of certain/uncertain stocks under the respective
moving window of size W days. Within each row, we display the ratio that gives the best performance
in the respective measure in bold. Further, note that we annualize all the measures by means of a scaling
factor of 252 or its square root. We do not annualize the turnover (TO).
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W = 63 W = 126

20/80 40/60 60/40 80/20 20/80 40/60 60/40 80/20

Mean Return 0.241 0.225 0.215 0.207 0.237 0.220 0.210 0.201

Sh 1.450 1.551 1.745 2.142 1.415 1.512 1.714 2.130

CEQ (γ = 1) 0.227 0.214 0.208 0.202 0.223 0.209 0.203 0.197

CEQ (γ = 5) 0.172 0.172 0.177 0.183 0.167 0.167 0.173 0.179

TO 0.130 0.195 0.229 0.239 0.075 0.118 0.146 0.160

TCAR (4 bps) 0.228 0.205 0.192 0.183 0.229 0.208 0.196 0.185

TCAR (8.6 bps) 0.213 0.183 0.166 0.155 0.221 0.194 0.179 0.167

W = 252 W = 756

Mean Return 0.233 0.216 0.206 0.199 0.228 0.209 0.201 0.194

Sh 1.379 1.474 1.664 2.123 1.351 1.434 1.644 2.093

CEQ (γ = 1) 0.219 0.205 0.198 0.194 0.213 0.199 0.193 0.190

CEQ (γ = 5) 0.162 0.162 0.168 0.177 0.157 0.156 0.164 0.172

TO 0.042 0.068 0.086 0.098 0.015 0.025 0.032 0.037

TCAR (4 bps) 0.229 0.209 0.197 0.189 0.226 0.207 0.198 0.190

TCAR (8.6 bps) 0.224 0.201 0.187 0.178 0.224 0.204 0.194 0.186

Table 15: This table shows the performance measures for the optimal partition of QS-LS with 100
generated stocks. We display the ratio of the number of certain/uncertain stocks under the respective
moving window of size W days. Within each row, we display the ratio that gives the best performance
in the respective measure in bold. Further, note that we annualize all the measures by means of a
scaling factor of 252 or its square root. We do not annualize the turnover (TO). Furthermore, due to
computational issues, the window of 756 days has been run for 500 replications instead of 1000.
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W = 63 W = 126

50/200 100/150 150/100 200/50 50/200 100/150 150/100 200/50

Mean Return 0.222 0.206 0.200 0.196 0.215 0.201 0.196 0.190

Sh 1.467 1.583 1.842 2.434 1.425 1.552 1.824 2.440

CEQ (γ = 1) 0.210 0.197 0.195 0.192 0.204 0.192 0.190 0.187

CEQ (γ = 5) 0.165 0.164 0.171 0.180 0.158 0.159 0.167 0.175

TO 0.231 0.297 0.309 0.291 0.144 0.202 0.228 0.230

TCAR (4 bps) 0.198 0.176 0.169 0.166 0.201 0.180 0.173 0.167

TCAR (8.6 bps) 0.171 0.142 0.133 0.133 0.184 0.157 0.146 0.140

W = 252 W = 756

Mean Return 0.212 0.196 0.191 0.187 0.208 0.190 0.187 0.184

Sh 1.387 1.514 1.787 2.434 1.324 1.436 1.726 2.410

CEQ (γ = 1) 0.200 0.188 0.185 0.184 0.195 0.182 0.181 0.182

CEQ (γ = 5) 0.154 0.154 0.162 0.172 0.146 0.146 0.158 0.170

TO 0.084 0.125 0.154 0.169 0.030 0.045 0.058 0.067

TCAR (4 bps) 0.204 0.184 0.175 0.170 0.205 0.186 0.181 0.178

TCAR (8.6 bps) 0.194 0.169 0.157 0.151 0.201 0.181 0.174 0.170

Table 16: This table shows the performance measures for the optimal partition of QS-LS with 250
generated stocks. We display the ratio of the number of certain/uncertain stocks under the respective
moving window of size W days. Within each row, we display the ratio that gives the best performance
in the respective measure in bold. Further, note that we annualize all the measures by means of a scaling
factor of 252 or its square root. We do not annualize the turnover (TO). Furthermore, we only ran the
simulations with 250 generated stocks for 100 replications due to computation issues.
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W = 63 W = 126

50/200 100/150 150/100 200/50 50/200 100/150 150/100 200/50

Mean Return 0.211 0.201 0.200 0.195 0.210 0.201 0.199 0.196

Sh 1.408 1.568 1.901 2.621 1.356 1.353 1.655 2.331

CEQ (γ = 1) 0.199 0.192 0.194 0.192 0.198 0.190 0.192 0.192

CEQ (γ = 5) 0.155 0.160 0.172 0.181 0.150 0.146 0.163 0.178

TO 0.928 0.741 0.517 0.393 0.899 1.532 1.083 0.631

TCAR (4 bps) 0.117 0.126 0.148 0.155 0.119 0.047 0.090 0.132

TCAR (8.6 bps) 0.009 0.040 0.088 0.110 0.015 -0.131 -0.036 0.059

W = 252 W = 756

Mean Return 0.211 0.202 0.196 0.197 0.208 0.196 0.186 0.191

Sh 1.352 1.320 1.319 1.384 1.306 1.247 1.219 1.304

CEQ (γ = 1) 0.199 0.190 0.185 0.187 0.195 0.184 0.174 0.180

CEQ (γ = 5) 0.150 0.143 0.141 0.146 0.145 0.134 0.128 0.137

TO 0.758 1.358 1.841 2.163 0.637 1.139 1.561 1.913

TCAR (4 bps) 0.135 0.065 0.011 -0.021 0.144 0.081 0.029 -0.002

TCAR (8.6 bps) 0.047 -0.093 -0.203 -0.272 0.070 -0.051 -0.153 -0.224

Table 17: This table shows the performance measures for the optimal partition of QS-EWMA with 250
generated stocks. We display the ratio of the number of certain/uncertain stocks under the respective
moving window of size W days. Within each row, we display the ratio that gives the best performance
in the respective measure in bold. Further, note that we annualize all the measures by means of a scaling
factor of 252 or its square root. We do not annualize the turnover (TO). Furthermore, we only ran the
simulations with 250 generated stocks for 100 replications due to computation issues.
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E Simulation Results & Robustness Results

Existing Methods Quarticity Shrinkage

1/N LS NLS EWMA LS NLS EWMA

W = 63

Mean Return 0.073 0.088 0.084 0.097 0.051 0.051 0.051

Sh 0.426 0.396 0.399 0.366 0.393 0.395 0.394

CEQ (γ = 1) 0.114 0.111 0.105 0.116 0.054 0.054 0.055

CEQ (γ = 5) 0.411 0.330 0.313 0.324 0.092 0.092 0.092

TO - 0.020 0.019 0.057 0.011 0.016 0.038

TCAR (4 bps) - 0.088 0.083 0.097 0.051 0.051 0.051

TCAR (8.6 bps) - 0.088 0.083 0.097 0.051 0.050 0.051

W = 126

Mean Return 0.074 0.090 0.086 0.097 0.054 0.054 0.052

Sh 0.430 0.405 0.406 0.368 0.401 0.404 0.397

CEQ (γ = 1) 0.116 0.118 0.110 0.117 0.057 0.057 0.055

CEQ (γ = 5) 0.419 0.367 0.333 0.333 0.096 0.096 0.092

TO - 0.012 0.011 0.057 0.006 0.009 0.033

TCAR (4 bps) - 0.090 0.086 0.097 0.054 0.053 0.052

TCAR (8.6 bps) - 0.090 0.086 0.097 0.054 0.053 0.051

W = 252

Mean Return 0.076 0.094 0.091 0.099 0.057 0.056 0.052

Sh 0.437 0.419 0.419 0.374 0.415 0.417 0.400

CEQ (γ = 1) 0.120 0.120 0.116 0.121 0.061 0.060 0.056

CEQ (γ = 5) 0.435 0.366 0.349 0.345 0.103 0.103 0.095

TO - 0.006 0.006 0.057 0.004 0.005 0.032

TCAR (4 bps) - 0.094 0.091 0.099 0.057 0.056 0.052

TCAR (8.6 bps) - 0.094 0.091 0.099 0.057 0.056 0.052

W = 756

Mean Return 0.083 0.104 0.102 0.108 0.065 0.064 0.057

Sh 0.463 0.442 0.442 0.398 0.463 0.462 0.430

CEQ (γ = 1) 0.136 0.131 0.127 0.133 0.071 0.071 0.061

CEQ (γ = 5) 0.498 0.389 0.376 0.385 0.131 0.131 0.108

TO - 0.002 0.002 0.057 0.002 0.002 0.030

TCAR (4 bps) - 0.104 0.102 0.108 0.065 0.064 0.057

TCAR (8.6 bps) - 0.104 0.102 0.108 0.065 0.064 0.056

Table 19: This table displays the standard deviations of the performance measures from all methods
in the simulation with 25 generated stocks. We display the existing method that we use as input for
quarticity shrinkage underneath ’Quarticity Shrinkage’. QS combined with LS, NLS and EWMA follows
the ratio of 12/13 certain/uncertain stocks for all moving windows. Within each row, we display the
method that gives the best performance in the respective measure in bold. We annualize all standard
deviations of the measures by means of a scaling factor of 252 or its square root. We do not annualize
the turnover (TO). Furthermore, for both EWMA and QS-EWMA we use the previous 186 days. This
value corresponds to the number of effective days.
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Existing Methods Quarticity Shrinkage

1/N LS NLS EWMA LS NLS EWMA

W = 63

Mean Return 0.095 0.107 0.102 0.109 0.047 0.072 0.048

Sh 0.424 0.404 0.419 0.395 0.427 0.443 0.405

CEQ (γ = 1) 0.250 0.292 0.282 0.299 0.065 0.212 0.067

CEQ (γ = 5) 1.020 1.195 1.162 1.208 0.182 0.855 0.183

TO - 0.028 0.015 0.039 0.016 0.031 0.073

TCAR (4 bps) - 0.107 0.102 0.109 0.047 0.072 0.049

TCAR (8.6 bps) - 0.107 0.102 0.110 0.047 0.072 0.050

W = 126

Mean Return 0.096 0.108 0.105 0.112 0.048 0.054 0.057

Sh 0.428 0.404 0.421 0.348 0.436 0.446 0.418

CEQ (γ = 1) 0.254 0.297 0.297 0.263 0.066 0.107 0.086

CEQ (γ = 5) 1.038 1.221 1.227 1.035 0.185 0.372 0.264

TO - 0.026 0.017 0.080 0.010 0.012 0.032

TCAR (4 bps) - 0.108 0.105 0.113 0.048 0.054 0.057

TCAR (8.6 bps) - 0.108 0.105 0.114 0.048 0.054 0.057

W = 252

Mean Return 0.100 0.112 0.109 0.116 0.050 0.050 0.058

Sh 0.433 0.416 0.428 0.353 0.451 0.459 0.426

CEQ (γ = 1) 0.264 0.312 0.307 0.269 0.069 0.070 0.089

CEQ (γ = 5) 1.077 1.276 1.264 1.052 0.192 0.195 0.273

TO - 0.013 0.006 0.081 0.007 0.007 0.029

TCAR (4 bps) - 0.112 0.109 0.117 0.050 0.050 0.059

TCAR (8.6 bps) - 0.112 0.109 0.118 0.050 0.050 0.059

W = 756

Mean Return 0.081 0.090 0.088 0.101 0.047 0.047 0.051

Sh 0.465 0.453 0.459 0.376 0.498 0.503 0.446

CEQ (γ = 1) 0.121 0.114 0.115 0.122 0.049 0.050 0.055

CEQ (γ = 5) 0.491 0.384 0.404 0.374 0.092 0.095 0.129

TO - 0.005 0.003 0.083 0.003 0.003 0.027

TCAR (4 bps) - 0.090 0.088 0.102 0.047 0.047 0.051

TCAR (8.6 bps) - 0.090 0.088 0.104 0.047 0.0477 0.051

Table 20: This table displays the standard deviations of the performance measures from all methods
in the simulation with 100 generated stocks. We display the existing method that we use as input for
quarticity shrinkage underneath ’Quarticity Shrinkage’. QS-LS and QS-NLS follow the ratio of 50/50
certain/uncertain stocks for all moving windows. QS-EWMA follows the ratio of 50/50 certain/uncertain
stocks for W = 63, and a ratio of 20/80 for W = 126 and up. Within each row, we display the method that
gives the best performance in the respective measure in bold. We annualize the standard deviations of all
measures by means of a scaling factor of 252 or its square root. We do not annualize the turnover (TO).
Furthermore, for both EWMA and QS-EWMA we use the previous 186 days. This value corresponds to
the number of effective days.

52



Existing Methods Quarticity Shrinkage

1/N LS NLS EWMA LS NLS EWMA

W = 63

Mean Return 0.062 0.067 0.063 0.068 0.031 0.024 0.032

Sh 0.372 0.429 0.455 0.463 0.427 0.451 0.474

CEQ (γ = 1) 0.065 0.071 0.068 0.073 0.031 0.024 0.032

CEQ (γ = 5) 0.170 0.178 0.175 0.179 0.039 0.025 0.042

TO - 0.016 0.012 0.014 0.018 0.013 0.038

TCAR (4 bps) - 0.067 0.063 0.068 0.031 0.024 0.032

TCAR (8.6 bps) - 0.067 0.063 0.068 0.030 0.023 0.033

W = 126

Mean Return 0.062 0.069 0.064 0.070 0.032 0.206 0.037

Sh 0.379 0.429 0.480 0.430 0.456 0.431 0.379

CEQ (γ = 1) 0.066 0.074 0.070 0.076 0.032 2.008 0.037

CEQ (γ = 5) 0.174 0.180 0.178 0.178 0.041 9.442 0.046

TO - 0.020 0.009 0.022 0.015 2.010 0.093

TCAR (4 bps) - 0.068 0.064 0.070 0.032 0.373 0.037

TCAR (8.6 bps) - 0.068 0.064 0.070 0.031 0.594 0.040

W = 252

Mean Return 0.065 0.071 0.064 0.072 0.033 0.033 0.041

Sh 0.380 0.411 0.380 0.366 0.458 0.467 0.377

CEQ (γ = 1) 0.069 0.077 0.069 0.079 0.033 0.033 0.041

CEQ (γ = 5) 0.181 0.178 0.179 0.177 0.042 0.045 0.057

TO - 0.024 0.239 0.039 0.012 0.008 0.050

TCAR (4 bps) - 0.070 0.070 0.072 0.032 0.033 0.041

TCAR (8.6 bps) - 0.070 0.085 0.072 0.032 0.033 0.042

W = 756

Mean Return 0.079 0.083 0.080 0.083 0.040 0.040 0.047

Sh 0.423 0.494 0.527 0.396 0.502 0.511 0.403

CEQ (γ = 1) 0.084 0.091 0.088 0.092 0.040 0.041 0.047

CEQ (γ = 5) 0.215 0.226 0.220 0.207 0.052 0.056 0.064

TO - 2.400 0.760 10.149 1.340 0.913 11.306

TCAR (4 bps) - 0.083 0.080 0.083 0.040 0.040 0.048

TCAR (8.6 bps) - 0.083 0.080 0.083 0.040 0.040 0.048

Table 21: This table displays the standard deviations of the performance measures from all methods in
the simulation with 250 generated stocks. We display the existing method that we use as input for quar-
ticity shrinkage underneath ’Quarticity Shrinkage’. QS-LS follows the ratio of 125/125 certain/uncertain
stocks for all moving windows. QS-NLS follows a ratio of 200/50 for W = 63, and also follows the 125/125
ratio for the other windows. QS-EWMA follows the ratio of 125/125 certain/uncertain stocks for W =
{63, 126}, and a ratio of 50/200 for W = {252, 756}. Within each row, we display the method that
gives the best performance in the respective measure in bold. We annualize the standard deviations of all
measures by means of a scaling factor of 252 or its square root. We do not annualize the turnover (TO).
Furthermore, for both EWMA and QS-EWMA we use the previous 186 days. This value corresponds to
the number of effective days.

53



F Significance Testing Empirical Analysis

QS-LS QS-NLS QS-EWMA

1/N LS 1/N NLS 1/N EWMA

W = 63

p-value 0.520 0.065 0.374 0.247 0.556 0.347

W = 126

p-value 0.700 0.131 0.684 0.117 0.488 0.385

W = 252

p-value 0.495 0.049 0.808 0.058 0.898 0.484

W = 756

p-value 0.233 0.057 0.371 0.216 0.250 0.526

Table 22: This table displays the p-values from the t-test in the empirical analysis. We display the
existing method used as input for the new method above the separation line. Underneath this line is
the name of the estimator with which we compare the mean return. The tests are independent from one
other. The null hypothesis is that of an equal mean return.

NM with LS NM with NLS NM with EWMA

1/N LS 1/N NLS 1/N EWMA

W = 63

p-value 0.117 0.326 0.074 0.814 0.035 0.743

W = 126

p-value 0.065 0.413 0.016 0.479 0.634 0.941

W = 252

p-value 0.109 0.140 0.006 0.276 0.857 0.639

W = 756

p-value 0.285 0.175 0.107 0.805 0.177 0.085

Table 23: This table displays the p-values from the Sh-test in the empirical analysis. We display the
existing method used as input for the new method above the separation line. Underneath this line is
the name of the estimator with which we compare the Sharpe ratio. The tests are independent from one
other. The null hypothesis is that of an equal Sharpe ratio.
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Existing Methods Quarticity Shrinkage

1/N LS NLS EWMA LS NLS EWMA

W = 63

Mean Return 0.281 0.281 0.281 0.281 0.220⊗ 0.229⊗ 0.214⊗
Sh 1.126 1.051 1.093 1.026 1.633⊗ 1.576⊗ 1.522⊗
CEQ (γ = 1) 0.250 0.245 0.248 0.244 0.211 0.218 0.204

CEQ (γ = 5) 0.125 0.102 0.116 0.093 0.175 0.176 0.165

TO - 0.263 0.252 0.585 0.216 0.433 0.862

TCAR (4 bps) 0.281 0.254 0.255 0.222 0.198 0.185 0.127

TCAR (8.6 bps) 0.281 0.224 0.226 0.154 0.173 0.135 0.027

W = 126

Mean Return 0.281 0.281 0.281 0.283 0.215⊗ 0.223⊗ 0.232⊗
Sh 1.125 1.044 1.085 0.919 1.596⊗ 1.617⊗ 1.435⊗
CEQ (γ = 1) 0.250 0.245 0.247 0.236 0.206 0.214 0.219

CEQ (γ = 5) 0.125 0.100 0.113 0.046 0.169 0.176 0.167

TO - 0.193 0.301 30.029 0.133 0.144 0.389

TCAR (4 bps) 0.281 0.262 0.250 0.160 0.201 0.209 0.193

TCAR (8.6 bps) 0.281 0.239 0.215 0.019 0.186 0.192 0.148

W = 252

Mean Return 0.281 0.282 0.281 0.283 0.211⊗ 0.218⊗ 0.232⊗
Sh 1.126 1.057 1.085 0.911 1.560⊗ 1.584⊗ 1.434⊗
CEQ (γ = 1) 0.250 0.246 0.248 0.235 0.202 0.209 0.219

CEQ (γ = 5) 0.125 0.104 0.113 0.042 0.165 0.171 0.166

TO - 0.115 0.090 1.245 0.078 0.074 0.342

TCAR (4 bps) 0.281 0.270 0.272 0.157 0.203 0.211 0.197

TCAR (8.6 bps) 0.281 0.257 0.261 0.013 0.194 0.202 0.157

W = 756

Mean Return 0.278 0.278 0.278 0.278 0.205⊗ 0.210⊗ 0.231⊗
Sh 1.151 1.087 1.100 0.917 1.523⊗ 1.533⊗ 1.452⊗
CEQ (γ = 1) 0.249 0.246 0.246 0.232 0.196 0.200 0.218

CEQ (γ = 5) 0.132 0.115 0.118 0.048 0.160 0.163 0.168

TO - 0.040 0.034 1.245 0.028 0.027 0.303

TCAR (4 bps) 0.278 0.274 0.275 0.152 0.202 0.207 0.200

TCAR (8.6 bps) 0.278 0.270 0.271 0.008 0.199 0.204 0.165

Table 18: This table displays the performance measures of all methods in the simulation study with
100 generated stocks. We display the existing method that we use as input for quarticity shrinkage
underneath ’Quarticity Shrinkage’. QS-LS and QS-NLS follow the ratio of 50/50 certain/uncertain stocks
for all moving windows. QS-EWMA follows the ratio of 50/50 certain/uncertain stocks for W = 63, and
a ratio of 20/80 for W = 126 and up. Within each row, we display the method that gives the best
performance in the respective measure in bold. Note that QS obtains mean returns and Sharpe ratios
which are always significantly different from the 1/N allocation and the existing method. The differences
are significant at all levels following the tests described in Section 4.5.5. We display this phenomenon
by ⊗ in the table. We annualize all measures by means of a scaling factor of 252 or its square root. We
do not annualize the turnover (TO). Furthermore, for both EWMA and QS-EWMA we use the previous
186 days. This value corresponds to the number of effective days.
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