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Abstract

Clustering analysis is an unsupervised learning technique widely used for information extraction.

Current clustering algorithms often face instabilities due to the non-convex nature of their ob-

jective function. The class of convex clustering methods does not suffer from such instabilities

and finds a global optimum to the clustering objective. Whereas convex clustering has previ-

ously been established for single-type data, real-life data sets usually comprise both numerical

and categorical, or mixed, data. In this research, therefore, we introduce the mixed data con-

vex clustering (MIDACC) framework. We implement this framework by developing a dedicated

subgradient descent algorithm. Through numerical experiments, we show that, in contrast to

baseline methods, MIDACC achieves near perfect recovery of both spherical and non-spherical

clusters, is able to capture information from mixed data while distinguishing signal from noise,

and has the ability to recover the true number of clusters present in the data. Furthermore,

MIDACC outperforms all baseline methods on a real-life data set.
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1 Introduction

The goal of data mining is to extract information from data. One of the most common techniques

of information extraction is clustering analysis. Clustering analysis is an unsupervised learning

technique used to segment observations in clusters, where observations within clusters should be

as similar as possible and observations across clusters should be as dissimilar as possible (Jain and

Dubes, 1988). As clustering analysis allows users to describe observations and uncover group patterns

in data, it has applications in a wide variety of domains (Xu and Wunsch, 2005). Examples include

marketing (Punj and Stewart, 1983), biology (Alon et al., 1999), and image segmentation (Pappas

and Jayant, 1989). In marketing, for instance, an online supermarket might be interested to cluster

(potential) customers in order to design targeted advertisements for specific market segments.

To perform clustering analysis, various algorithms are available. Prominent examples of such

algorithms include K-means (Lloyd, 1982; MacQueen, 1967), K-modes (Huang, 1998), Hierarchical

Agglomerative Clustering (HAC), see e.g., Ward (1963), and DBSCAN (Ester et al., 1996). Most of

such algorithms are confined to clustering data of a single type, i.e., either numerical or categorical

data. For instance, K-means is specifically designed for numerical data, while K-modes can be

applied to categorical data only. However, in practice, data often comprises both types of data. This

is often referred to as mixed data. For instance, when clustering customers of an online supermarket,

we might have data on customers’ number of purchases, the number of products bought, and total

spend (numerical features), as well as gender, household type, and city of origin (categorical features).

Simply focusing on a single data type incurs information loss. Thus, in order to utilize all available

information, being able to cluster observations in mixed data sets is a highly relevant problem.

To solve this problem, several mixed data clustering methods have been developed. For a compre-

hensive overview, we refer the reader to Ahmad and Khan (2019). A common approach is converting

data from one type to the other and applying an existing algorithm to the resulting single-type data

set, see e.g., Wei et al. (2015). However, the translation of categorical to numerical data is not

straightforward, while discretizing numerical features results in information loss. Therefore, algo-

rithms that directly deal with mixed data, particularly partitional methods, have been of much

interest. Examples of such methods include K-prototypes (Huang, 1997, 1998), Partitioning Around

Medoids (PAM) with Gower’s distance (Gower, 1971), and the feature-weighted K-means algorithm

of Modha and Spangler (2003). In addition to partitional methods, hierarchical clustering (Hsu et

al., 2007) and model-based methods such as KAMILA (Foss et al., 2016) have been proposed.

1



Although these types of algorithms are inherently able to deal with mixed data, several complica-

tions arise. Namely, due to their non-convex nature, these algorithms fail to guarantee convergence

to a global optimum, which limits their applicability and performance. In hierarchical clustering, this

issue arises from the heuristic that underlies the formation of clusters. For partitional and model-

based clustering methods, such instability originates from the dependence on cluster initializations,

which means that different runs of the algorithm can yield completely different results. Furthermore,

partitional and model-based methods require the user to preselect the number of clusters that should

be formed. However, in practice, users usually do not know what the optimal number of clusters

should be. In addition, existing algorithms face issues with combining numerical and categorical

features in order to measure the (dis)similarity between observations. Namely, combining features

often leads to either favouring a single type of data (Hennig and Liao, 2010) or balancing both

types while, given the data, different weights per type are more appropriate (Foss et al., 2016). Fur-

thermore, in common mixed data clustering methods, it can be shown that the shapes of retrieved

clusters are limited to spherical and elliptical forms (Foss et al., 2016).

To address the above problems, this research focuses on the technique of convex clustering.

This technique, independently introduced by Pelckmans et al. (2005), Hocking et al. (2011), and

Lindsten et al. (2011), reformulates the clustering problem as a convex optimization problem. Solving

this optimization guarantees convergence to a global optimum, thus removing the issue of cluster

instability. In addition, convex clustering allows the user, similar to hierarchical clustering, to assess

the stepwise manner in which clusters are formed and select the number of clusters the user is most

confident about to represent the ‘true’ number of clusters. Furthermore, convex clustering is not

limited to retrieving spherical or elliptical clusters. Instead, more complex shapes can be retrieved.

Initially, convex clustering was designed for numerical data only. Afterwards, extensions to binary

(Choi and Lee, 2019) and exponential-family (Kieskamp, 2019) data were introduced. Only recently,

Wang and Allen (2021) proposed an approach to handling different types of data simultaneously.

However, they do not demonstrate the workings of their integrative algorithm for mixed numerical

and categorical data. In addition, their approach is based on multi-view data, where multiple data

sources are integrated to form a single clustering outcome. Per view, the best fitting type of data

is chosen. In this paper, however, we focus on directly handling mixed data sets and appropriately

combining numerical and categorical features. This leads to the following research question:

• How can we design a convex clustering method for mixed data that captures the intrinsic struc-

ture of numerical and categorical features?
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In answering this question, this paper tries to overcome the issues present in other mixed data clus-

tering algorithms. We do so by introducing the mixed data convex clustering (MIDACC) framework.

By means of convexifying the clustering objective, MIDACC can establish convergence to a global

instead of a local optimum, while being able to recover non-spherical cluster shapes. In addition,

MIDACC allows us to select the most likely number of clusters present in the data set. Furthermore,

by flexibly combining numerical and categorical data, MIDACC finds a balance between the two

data types that is most sensible given the data set at hand. This way, the method is not sensitive to

highly noisy data. We implement MIDACC by developing a dedicated subgradient descent algorithm

that efficiently clusters mixed data. Applying our methods using synthetic as well as real-life data,

we find that MIDACC is able to outperform state-of-the-art and commonly used baseline methods.

This paper is structured as follows. In Section 2, we present an extensive literature review, after

which we propose our methods in Section 3. In Section 4, we explain the set-up of our simulation

study and real-life data application. Section 5 contains the results of our research, after which we

provide conclusions and suggestions for future work in Section 6.

2 Literature Review

In clustering literature, a prominent class of methods is that of partitional algorithms such as K-

means (Lloyd, 1982; MacQueen, 1967). Although often straightforward to implement, these methods

suffer from several drawbacks, most notably that of potentially getting stuck in a local optimum

(Berkhin, 2006). This drawback is due to the non-convex optimization problem underlying such

methods and leads to different initializations yielding different results (Steinley, 2003). Furthermore,

K-means-type algorithms are confined to retrieving spherical clusters. This often leads to poor

performance when more complex structures are present in the data (Drineas et al., 2004).

Another group of popular methods includes hierarchical clustering, where observations are merged

(agglomerative) or split (divisive), one step at a time, to form clusters (Murtagh and Contreras,

2012). Due to its stepwise nature, hierarchical clustering is inherently greedy. That is, merges or

splits made during previous steps of the algorithm cannot be undone. As Zhao and Karypis (2002)

note, this leads to hierarchical clustering also not necessarily converging to a global optimum. Thus,

just like partitional clustering, hierarchical clustering suffers from instabilities. Furthermore, Fraley

(1998) notes that hierarchical clustering, especially in divisive algorithms, may face computational

problems due to the combinatorial complexity of the corresponding algorithms.

3



A family of methods that does not suffer from the problem of instability is that of convex

clustering. This type of method formulates the clustering task as a convex optimization problem and

finds the ‘optimal’ clustering by minimizing the corresponding optimization objective. This idea was

first proposed by Pelckmans et al. (2005), who minimize the Euclidean loss between observations and

cluster centers, where they apply shrinkage with a regularization parameter to merge observations

into clusters. By varying the value of the regularization parameter, the number of clusters can be

adapted. The idea of convex clustering was, independently, reintroduced by Lindsten et al. (2011)

and Hocking et al. (2011). The former applies convex relaxation to K-means in order to obtain an

optimization problem, whereas the latter starts from an hierarchical agglomerative clustering set-up

and hereafter applies convex relaxation. Hocking et al. (2011) show that convex clustering achieves

promising results, being able to outperform methods such as K-means and HAC.

The optimization problem in convex clustering consists of a loss function and a penalty term

controlled by a regularization parameter. As Lindsten et al. (2011) state, this regularization pa-

rameter controls the trade-off between model fit and the number of clusters. The path of resulting

clusters obtained from solving the convex optimization problem for different values of the regular-

ization parameter is often referred to as the clusterpath (Hocking et al., 2011). This clusterpath is

similar to HAC in that clusters are formed iteratively. However, the important difference is that, in

convex clustering, these stepwise merges are based on a new optimization for a different value of the

regularization parameter, while merges in hierarchical clustering are based on the previous iteration

(Lindsten et al., 2011). This leads to the desirable property that convex clustering is not inherently

greedy. Within a specific optimization, the objective function is formulated so as to make sure that

clusters merge when their centroids (almost) coincide. This means that, naturally, we only merge

clusters when the convex problem draws centroids to each other.

Recently, much attention has been paid to convex clustering and some advantageous properties

have been put forward. Most importantly, Hocking et al. (2011) show that convex clustering, in

contrast to partitional and hierarchical methods, is able to retrieve non-spherical clusters. Touw et

al. (2020) further establish this property by applying convex clustering to a variety of complex cluster

shapes. In addition, Kieskamp (2019) uses model selection to demonstrate the ability of convex

clustering to retrieve the ‘true’ number of clusters in the data. This is in contrast to partitional and

model-based methods, which require preselecting the number of clusters to be formed.

Furthermore, Tan and Witten (2015) present properties on the prediction error of the method,

formalize the link between convex clustering, K-means and hierarchical clustering, and pose a range
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of values for the regularization parameter that yields non-trivial cluster solutions. Panahi et al.

(2017) use the K-means-based formulation provided by Lindsten et al. (2011) to establish perfect

cluster recovery properties. In addition, Sun et al. (2021) extend these perfect recovery properties

to a weighted convex clustering model where regularization is only applied to observations with

a positive pairwise weight. This weighted convex clustering model is introduced as an extension

in both Lindsten et al. (2011), using a local kernel function, and Hocking et al. (2011), using

exponentially decaying weights. Furthermore, Radchenko and Mukherjee (2014) prove consistency

of convex clustering and derive the convergence rates of this method.

Although the performance of convex clustering methods is promising (Hocking et al., 2011;

Chen et al., 2015), its implementation can be computationally cumbersome. Various optimization

schemes, such as Newton’s method (Kieskamp, 2019) and the off-the-shelf solver CVX (Lindsten et

al., 2011) have been applied, while Hocking et al. (2011) propose dedicated algorithms to solve the

clusterpath. However, these algorithms do not scale well beyond small data sets. In contrast, Chi and

Lange (2015) propose the more efficient Alternating Direction Method of Multipliers (ADMM) and

Alternation Minimization Algorithm (AMA) formulations for convex clustering. Both algorithms

are widely applicable, though AMA proves to be more efficient. Still, Sun et al. (2021) note that

solving large-scale problems is computationally expensive and therefore introduce a semismooth

Newton-based augmented Lagrangian method suitable for large-scale problems. Recently, Touw et

al. (2020) propose to use diagonal majorization to solve the convex clustering problem, which is, to

the best of our knowledge, the fastest technique to date.

Over the past few years, much research has been conducted on applications of convex clustering

(Tachikawa et al., 2018; Hiruma et al., 2018; Chi et al., 2020). However, these applications focus

mostly on continuous data. Recently, Choi and Lee (2019) proposed to apply convex clustering

to binary-valued data by modeling a loss function via the Bernoulli distribution. Kieskamp (2019)

extend this idea by presenting a framework to apply convex clustering to distributions from the

exponential family. However, these two papers focus solely on a data from a single type.

In contrast, Wang and Allen (2021) proposed the so-called method of Integrative Generalized

Convex Clustering Optimization (iGecco) to perform convex clustering on mixed multi-view data.

Although this method applies convex clustering to mixed types of data, it does so via integration of

multiple data views. This means that multiple data sources (views) are selected, a type of data is

selected for each view, and these views are consequently integrated. This approach requires the user

to select a single type per data view and computes the corresponding loss function of the multi-view
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data in additive fashion. However, single data sets with mixed types of features are not intrinsically

analyzed. In addition, no application to combined continuous and categorical data is provided. This

paves the way for our research to fill this gap of applying convex clustering to mixed numerical and

categorical data in a single data set.

The problem of balancing numerical and categorical data in mixed data clustering is not straight-

forward. Most partitional methods, e.g., Ahmad and Dey (2007), use dissimilarity measures for both

data types, such as Euclidean distance for numerical and Hamming distance for categorical data.

Whereas this ensures comparable measurement across features of the same type, given the features

are scaled, the relationship between such measures across data types remains unclear (Ahmad and

Khan, 2019). For this reason, some methods, such as K-prototypes (Huang, 1997) and the K-means-

type clustering of Modha and Spangler (2003), incorporate a type-specific weight. Although this

allows the user to control the effect of different data types on the clustering outcome, it does not

change the fact that the corresponding similarity measures may be incomparable.

Another option is that of modeling type-specific losses through a likelihood perspective, as in

model-based clustering (Hunt and Jorgensen, 2011). This makes sure that the dissimilarity measures

for both numerical and categorical data are comparable, or, as Foss et al. (2016) argue, allows us to

equitably balance the effect of numerical and categorical data on the clustering outcome. However,

we may not always want to equitably balance the influence of both data types, but rather wish to

adjust this influence based on the data at hand and thus capture the structure of numerical and

categorical data appropriately. To this end, our method combines the partitional and model-based

approaches by constructing likelihood-based losses with type-specific weights to control the influence

of both data types on the clustering outcome.

3 Methodology

In this section, we discuss our approach to convex clustering of mixed numerical and categorical data.

First, we provide an introduction into convex clustering. Then, we present MIDACC and its main

components, as well as its approach to combining numerical and categorical features. Consequently,

we discuss the implementation of MIDACC by providing a subgradient descent algorithm, called

MIDACC-SGD, elaborating on parameter selection, and presenting evaluation criteria to assess the

clustering performance. Next, we discuss baseline methods and a variable-specific weighted version

of MIDACC, or W-MIDACC, after which we briefly mention the software used for this research.
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3.1 Introduction to Convex Clustering

Let X be an (n× p) data matrix, containing n observations xi, with i = 1, . . . , n, as rows, and

p features as columns. Our goal is to cluster the observations such that when xi and xs, i 6= s,

are similar, they are assigned to the same cluster. Furthermore, let M be an (n× p) matrix of

centroids, thus containing a p-dimensional centroid mi for each observation i = 1, . . . , n. We state

that observations belong to the same cluster when their centroids merge. In other words, xi and xs

belong to the same cluster iff mi = ms. Convex clustering enforces this type of clustering by means

of a convex optimization problem on M. In the (base) case of purely numerical data, as introduced

by Hocking et al. (2011) and Lindsten et al. (2011), this problem is defined as follows:

min
M

1

2

n∑
i=1

||xi −mi||22 + λ
∑
i<s

||mi −ms||q, (1)

where
∑

i<s =
∑n−1

i=1

∑n
s=i+1, λ ≥ 0 is the regularization parameter, and ||·||q is the penalty norm

with order q (Hocking et al., 2011). Common choices for q are 1, 2, and∞, which correspond to the

Manhattan, Euclidean, and infinity norm, respectively. In (1), the first term, 1
2

∑n
i=1 ||xi −mi||22, is

referred to as the loss function, while λ
∑

i<s ||mi −ms||q is called the penalty term.

As previously noted, this formulation works for numerical data only, which is due to the Euclidean

loss function. To be able to work with different data types, we can generalize this problem to

min
M

n∑
i=1

`(xi,mi) + λ
∑
i<s

||mi −ms||q, (2)

where `(xi,mi) represents the loss function for observation i, which can take multiple forms based

on the type of data encountered (Wang and Allen, 2021).

In selecting a loss function, we bear in mind that a convex function should be chosen in order to

ensure convexity of (2) in M. This in turn ensures that the objective has a global minimum that we

can attain to obtain the ‘optimal’ clustering. As the name already indicates, this convexity is the

main asset of convex clustering over other methods such as K-means and finite mixture models.

Problem (2) bears some similarity with the fused lasso of Tibshirani et al. (2005). Namely,

through the regularization parameter, it forces vectors of parameters to merge. When λ = 0, no

regularization takes place and the minimization depends solely on the loss function. This way, we

can break down the problem into n piecewise optimization problems: minmi `(xi,mi), i = 1, . . . , n,

which, in case we apply the loss function from (1), leads to optimal centroids m̂i = xi.
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When we increase λ, the penalty on unequal centroids increases, such that these centroids are

drawn to each other more heavily and may, eventually, merge. Thus, by varying the regularization

parameter, we can control the extent to which clusters are formed. Generally speaking, when we

increase λ, more centroids merge, such that the number of clusters decreases. At some point, if λ

is large enough, all centroids coincide and form a single cluster. This corresponds to the outcome

m̂i = m̂s, ∀i, s. Note that, in contrast to common clustering methods such as K-means and finite

mixture models, we do not specify the number of clusters before optimizing the objective. Instead,

we control the number of clusters through λ.

The way in which fusion occurs over λ varies with q. Although Hocking et al. (2011) propose

algorithms to employ convex clustering for q = 1, 2, and ∞, the first two choices are most common.

Choi and Lee (2019) establish that q = 1 is not suitable for clustering of binary data, which arises

from the fact that the penalty norm ||mi − ms||1 is separable across dimensions. This leads to

only two possible outcomes; either n∗ (the number of unique observations) or 1 clusters. As this

undesirable property naturally also holds for categorical data, we set q = 2.

3.2 Mixed Data Convex Clustering (MIDACC)

In this section, we introduce the concept of mixed data convex clustering. Firstly, we provide some

general notation, after which we discuss, per component, the MIDACC formulation and elaborate

on its approach to balancing numerical and categorical data.

3.2.1 Notation

As before, let X and M be (n× p) data and centroid matrices, respectively. X now consists of

both numerical and categorical features, such that we can write: X =
[
Xnum Xcat

]
. Here, Xnum

represents the numerical and, similarly, Xcat the categorical part of the data. Note that, by default,

we order the data according to the type of features. However, this choice is without loss of generality.

We define the sets N and C to contain the numerical and categorical features, respectively. Thus,

if j ∈ N , feature j is said to be numerical, while, if j ∈ C, feature j is categorical. Zooming in on

the categorical variables, we note that different variables may have different numbers of classes. We

denote the number of classes for feature j ∈ C to be Kj .

Since the Kj classes are not naturally ordered, we do not apply clustering directly to the cate-

gorical data. Instead, we apply dummy-coding. As each observation belongs to a single class, Kj−1

dummies suffice to describe the entire j-th variable. This way, we can denote the entry of observation
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i corresponding to the k-th class of variable j by xkij , which takes on value 1 if observation i belongs

to class k of feature j and 0 otherwise. In similar fashion, we denote the centroid of observation i

corresponding with the k-th class of attribute j as mk
ij . Note that, as opposed to the data xkij , these

centroids mk
ij are not restricted to values 0 and 1.

We denote the number of numerical and categorical features by pnum and pcat, respectively, such

that p = pnum +
∑pcat

j=1 (Kj − 1). Thus, Xnum and Xcat are (n× pnum) and
(
n×

∑pcat

j=1 (Kj − 1)
)

matrices, respectively. In similar fashion, we define matrices Mnum and Mcat.

3.2.2 Objective Function

To construct the MIDACC objective function, we combine the ideas of model-based clustering and

K-prototypes. Namely, as in mixture models (Hunt and Jorgensen, 2011) and the integrative model

of Wang and Allen (2021), we add (log-)likelihood-based loss functions to balance the data types.

Similar to K-prototypes (Huang, 1997), we control the influence of both data types using a type-

specific weight factor. This yields the following formulation:

min
M

(1− γ)
n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i ) + λ

∑
i<s

ωis||mi −ms||2, (3)

where `num(xnumi ,mnum
i ) and `cat(xcati ,mcat

i ) represent convex loss functions for numerical and cat-

egorical data, respectively, and 0 ≤ γ ≤ 1 is a parameter controlling the relative contribution of

numerical and categorical attributes on the clustering task. Furthermore, λ
∑

i<s ωis||mi −ms||2

is the penalty term with regularization parameter λ ≥ 0 and pairwise weights ωis ≥ 0 between

observations i and s. Provided the pairwise weights are independent of M, this objective function

is (additively) convex in M and can thus be minimized to ensure a global optimum is found.

3.2.3 Loss Functions

In the MIDACC objective function (3), we use two loss functions for the two data types. The loss

function for numerical data, or `num(xnumi ,mnum
i ), is as in (1) and thus given by

`num(xnumi ,mnum
i ) =

1

2
||xnumi −mnum

i ||22, i = 1, . . . , n. (4)

It is worth observing that this loss function is proportional to the negative log-likelihood of a multi-

variate normally distributed variable with location parameter mnum
i and identity covariance matrix
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(Σ = Ipnum). We prove this property in Appendix A.1.

Following this idea, we take the loss function for categorical data to follow from a multinomial

distribution for each, independent, feature. To ensure that the categorical centroids are continuous

and unconstrained, which, optimization-wise, is a desirable property, we perform a logit transform

on the parameters (i.e., probabilities) of these distributions. Similar to Kieskamp (2019), we can

then define the loss function for categorical data, or `cat(xcati ,mcat
i ), as

`cat(xcati ,mcat
i ) =

∑
j∈C

Kj−1∑
k=1

−xkijmk
ij + log

1 +

Kj−1∑
k=1

exp
(
mk
ij

) , i = 1, . . . , n, (5)

for which we provide a derivation in Appendix A.2. It is interesting to draw similarities between our

loss functions and model-based clustering methods. Namely, by combining Gaussian mixtures with

latent class analysis, these methods typically use similar normal and multinomial likelihood-based

loss functions (Hunt and Jorgensen, 2011, Foss et al., 2019).

3.2.4 Penalty Term

Whereas model-based clustering rests upon the selection of a predefined number of clusters, convex

clustering uses a regularized penalty term to control the fusion of centroids. In MIDACC, the penalty

term is λ
∑

i<s ωis||mi−ms||2. This term consists of three parts; i) the Euclidean distance between

centroids, or ||mi −ms||2, ii) the pairwise weights ωis, and iii) the regularization parameter λ.

Firstly, as previously discussed, the penalty term functions as a regularization term that penal-

izes differences between centroids, which we compute using the Euclidean distance. Although the

Euclidean distance is not suitable as a loss function for categorical data, the categorical centroids

are unconstrained and continuous due to the previously discussed logit transform. This makes the

Euclidean distance suitable to compute differences between centroids.

Secondly, instead of putting a similar penalty on each pair of observations, we apply pairwise

weights ωis ≥ 0 based on the distance between xi and xs that make sure we cluster based on

local density. The intuition behind this is that observations that are highly dissimilar should, any

way, not be clustered together. Therefore, their centroid difference should not affect the clustering

objective function and possibly distort the clustering outcome. To provide larger weights to ‘closer’

observations, we use exponentially decaying weights, which can drastically improve performance

(Hocking et al., 2011). In addition, we enforce sparsity in the weights, therewith reducing runtime

and potentially improving performance, by applying K-Nearest Neighbor (KNN) weights (Lindsten
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et al., 2011). In combination, this leads to the following weight specification (Chi and Lange, 2015):

ωis = Ik,is exp (−φd (xi,xs)), i, s = 1, . . . , n, (6)

where φ ≥ 0 represents the order of exponential decay and Ik,is is an indicator function that takes

on value 1 when i belongs to the K-nearest neighbors of s or vice versa, and 0 otherwise. This makes

sure our pairwise weights are symmetric in i and s, i.e., Ik,is = Ik,si, which means that reshuffling

the data does not lead to different weights. This attributes to our method being insensitive to

initialization. In other words,

Ik,is =


1, if i ∈ KNN(s) or s ∈ KNN(i)

0, otherwise.
(7)

The K-nearest neighbors of observation i, or KNN(i), are defined as the K observations xs with the

smallest distance d(xi,xs), where tied observations are all included in KNN(i). As in (6), d(xi,xs)

stands for the distance between observations i and s, for which Gower’s distance is suitable (Wang

and Allen, 2021) as this measure makes sure distances for all features are of similar magnitude. In

our case, we propose to use a weighted version of Gower’s distance metric (Gower, 1971), given by

d(xi,xs) =
1− γ
pnum

∑
j∈N

|xij − xsj |
maxr xrj −minr xrj

+
γ

pcat

∑
j∈C

I(xij 6= xsj), i, s = 1, . . . , n, (8)

where we apply scaling to numerical and categorical distances through γ. Note that the categorical

part (Hamming distance) in the above expression is not calculated on dummy-coded data, but rather

on the original data. Although seemingly a minor feat, this is important.

Namely, were we to compute the Hamming distance on dummy-coded data, the range of cate-

gorical distances would be 0 − 2 instead of the 0 − 1 range on the numerical distance part of (8).

This would lead to, naturally, incomparable weights being put on the two data types. In addition,

since our dummy-coded data omits the Kj-th category of feature j, we would enforce an asymmetry

in the distances across observations. That is, if feature j of observation i belongs to the Kj-th

class and feature j of observation s does not, this difference would not be fully captured using the

dummy-coded data. In contrast, if observations i and s belong to different classes but not to the

Kj-th class of feature j, these differences would be fully captured. By working with the original

categorical data, we do not encounter this issue.
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Note that the asymmetry issue also does not occur in the categorical loss function and the

penalty term. Due to the restrictions on multinomial parameters, the loss function requires only

Kj − 1 parameters in order to capture all information in feature j. As for the penalty term, the

logit transform mk
ij = log

(
pkij

1−
∑Kj−1

l=1 plij

)
= log

(
pkij

p
Kj
ij

)
theoretically assures that mKj

ij = 0 for all

observations i = 1, . . . , n, such that the penalty contribution of the Kj-th class is, by definition, zero.

Here, pkij is the multinomial probability of class k of feature j for observation i and pKjij denotes the

probability of the Kj-th class of feature j in observation i.

Thirdly, in the penalty term, λ functions as regularization parameter. When λ = 0, no regular-

ization on centroids takes place. If we increase λ, locally different centroids are penalized and forced

to merge. At some point, if λ is large enough, the penalty term dominates the clustering, which may

lead to all centroids fusing and, therewith, the formation of a single cluster. This does not always

occur, however, as the set of feasible outcomes may be restricted by the weights ωis. That is, due

to the sparse (KNN) weights, the graph with observations as nodes and weights as edges may not

be connected. Generally speaking, such restrictions are undesirable, especially in light of clusterpath

comparisons with hierarchical clustering (Hocking et al., 2011). However, as this research is not

concerned with plotting out the clusterpath but rather focuses on finding the ‘optimal’ clustering

given a data set, this phenomenon is outside the scope of this work. Furthermore, we find that

sensible choices for K almost always lead to connected weight graphs.

For the no-clustering (λ = 0) and single-cluster (large λ) cases, analytic MIDACC solutions of

(3) can be derived. We provide derivations of these extreme cases in Appendix B.

3.2.5 Balancing Numerical and Categorical Data

An important problem in mixed data clustering is combining numerical and categorical data in such

a way that the influence of both types can be controlled. For reference, see e.g., Foss et al. (2016) and

Hennig and Liao (2010). The first step in doing so is making sure that the clustering contributions

from features of the same type are on the same scale.

Within categorical features, the feature-specific clustering contribution in MIDACC, see (3),

consists of a multinomial loss function, the difference between centroids captured via the penalty

term, and pairwise weights. We note that the centroids are constructed based on the probability mass

function of a multinomial distribution with a single trial. This ensures that the loss contributions of

all categorical variables behave in similar fashion; like a distributional likelihood. In addition, the

magnitude of and difference between centroids is controlled by a logit transform of probabilities (i.e.,
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the parameters in the multinomial distribution). Again, this type of calculation makes sure that the

centroids of different categorical variables are on the same scale. Furthermore, the Hamming distance

used for the categorical distance in the pairwise weights ensures that all categorical variables have

distance 0 or 1. Of course, the actual contribution of the categorical variables is dependent on the

rate of occurrence of variable-specific classes and the number of classes Kj per variable, but these

are natural factors that contain valuable information and should, therewith, affect the clustering

outcome in variable- or class-specific fashion.

As for numerical data, the feature-specific clustering contribution from MIDACC problem (3)

consists of the Euclidean loss function, the difference between centroids in the penalty term, and

pairwise weights. Firstly, we have shown that the Euclidean loss corresponds with the likelihood

contribution from a multivariate normal distribution with identity covariance. However, this assump-

tion implies that the loss is dependent on the scale of measurement and therefore does not equitably

balance numerical features. Thus, we choose to scale the numerical features prior to performing the

clustering task. Various methods to do so exist, such as min-max normalization and standardization.

Since min-max normalization relies on the two most extreme observations (Hennig and Liao, 2010),

this method is extremely sensitive to outliers. Therefore, we choose to apply standardization to unit

variance, which is given by

x̃ij =
xij
s(xj)

, i = 1, . . . , n, j ∈ N , (9)

where s(·) is the sample standard deviation and xj is the vector containing xij , ∀i = 1, . . . , n. This

standardization scheme ensures that all numerical features are on the same scale and, thus, that

their Euclidean loss is comparable. Note that we do not apply mean-standardization; the mean of

numerical features should, namely, already be captured through mi. As we apply scaling throughout

the entirety of this research, we do not adopt the x̃ij notation but rather employ standardization

directly when referring to xij . Secondly, as for the penalty term, standardization ensures that the

centroid differences are on the same scale. Thirdly, just as with the categorical data, the Gower

distance used in (8) ensures that all numerical features have range 0−1 in the distance metric. This

way, all numerical features contribute similarly to the pairwise weights.

Besides controlling the influence of features of the same type, balancing numerical and categorical

data is an important task. In MIDACC, we control the interplay between these two types of data by

means of γ. Remember that the MIDACC objective function is given by (3) where ωis is formed using
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(6-8). Also, by setting 0 ≤ γ ≤ 1 and using weights (1−γ) and γ for numerical and categorical data,

respectively, which is similar to the approach taken by Modha and Spangler (2003), the influence of

numerical and categorical features on the clustering process becomes simple and intuitive.

Through γ, we can control the effect the two types of data have on the clustering outcome. If

γ is large, i.e., close to 1, categorical features are given a large influence on the clustering outcome

as the losses and pairwise weights are scaled towards the categorical data. On the other hand, if

γ is close to 0, numerical features dominate the clustering process. The two extremes γ = 0 and

γ = 1 clearly represent the cases in which the clustering depends solely on numerical and categorical

data, respectively. In terms of interpretability, this is simpler than the K-prototypes formulation of

Huang (1997), which uses weight γ for categorical and weight 1 for numerical attributes. Note that,

besides through the loss function, γ is also present in the distance function (8) used to compute

pairwise weights. This ensures that the clustering outcome is not unknowingly largely influenced by

the categorical c.q. numerical data through large weight contributions even if γ c.q. (1− γ) is low.

In case γ = 0.5, the current formulation assigns equal weights to numerical and categorical

features. However, we note that, in contrast to what Foss et al. (2016) pose, simply adding normal

and multinomial likelihoods with equal weights does not necessarily equitably balance the influence

of numerical and categorical attributes. Instead, by using weights (1 − γ) and γ in conjunction

with normal and multinomial likelihoods, we get an interpretable and flexible objective function

that is able to equitably balance numerical and categorical attributes. Besides our current MIDACC

formulation, we considered a different form where type-specific weights were added in the penalty

term. We provide both formulations and a comparison of their workings in Appendix C.

3.3 Implementation

In previous literature, several algorithms have been proposed for convex clustering, the most notable

methods including ADMM (Chi and Lange, 2015) and gradient-based methods such as clusterpath

(Hocking et al., 2011). Other methods exist, among which the semismooth Newton-based augmented

Lagrangian (SSNAL) method of Sun et al. (2021), but these methods tend to purely focus on reducing

computation time, at the expense of flexibility and interpretability. As this research is not so much

concerned with designing computationally efficient algorithms but rather focuses on interpretably

implementing mixed data convex clustering, we focus on ADMM and gradient-based methods.

The main advantage of gradient-based methods is their simplicity and interpretability, while

ADMM is the most commonly used type of algorithm for convex clustering and has been shown
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to perform well (Chi and Lange, 2015). In spite of their convergence generally being slower than

ADMM, we decide to focus on gradient-based methods and their favorable interpretability. There-

fore, we present a subgradient descent algorithm based on that of Hocking et al. (2011) in order to

solve the MIDACC problem. As this method is relatively simple and easily interpretable, subgradient

descent is perfectly suitable for this research. Still, due to its surge in popularity and computational

benefits, we provide an ADMM-type method for MIDACC in Appendix D.

This section provides details on the implementation of MIDACC. We first provide and explain

our mixed data convex clustering using subgradient descent, or MIDACC-SGD, algorithm. Next,

we discuss parameter selection in MIDACC. Last, we present evaluation criteria to analyze the

performance of MIDACC.

3.3.1 MIDACC-SGD

The idea of subgradient descent is similar to that of gradient descent; iteratively, we update the to-

be-optimized variables based on the gradient of the objective function with respect to those variables.

Whereas gradient descent relies on the objective function being differentiable on the complete domain

of the variables, subgradient descent can be applied to non-differentiable functions as well.

In MIDACC, we optimize the cluster centroids captured in mi, i = 1, . . . , n, by minimizing

objective function (3), which we denote by f(M). In order to apply gradient-based methods, we

require the derivative of this objective function to mi, or
∂f(M)
∂mi

. Since f(M) is the sum of three

functions, this derivative can be computed as the sum of three separate derivatives, or,

∂f(M)

∂mi
= (1− γ)

∂`num(xnumi ,mnum
i )

∂mi
+ γ

∂`cat(xcati ,mcat
i )

∂mi
+ λ

∂
(∑

r<s ωrs||mr −ms||2
)

∂mi
, (10)

where we use the fact that loss functions `num(·) and `cat(·) are separable across observations, and

adopt the notation of observations r and s in the penalty so as to prevent confusing these observations

with i. To further simplify this expression, we note that ∂f(M)
∂mi

=
[(

∂f(M)
∂mnum

i

)(
∂f(M)
∂mcat

i

)]
, where

∂f(M)

∂mnum
i

= (1− γ)
∂`num(xnumi ,mnum

i )

∂mnum
i

+ λ
∂
(∑

r<s ωrs||mr −ms||2
)

∂mnum
i

, (11a)

∂f(M)

∂mcat
i

= γ
∂`cat(xcati ,mcat

i )

∂mcat
i

+ λ
∂
(∑

r<s ωrs||mr −ms||2
)

∂mcat
i

. (11b)
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Computing these gradients, we obtain the following expressions:

∂`num(xnumi ,mnum
i )

∂mnum
i

= −(xnumi −mnum
i ), (12a)

∂`cat(xcati ,mcat
i )

∂mk
ij

= −xkij +
exp (mk

ij)

1 +
∑Kj−1

l=1 exp (ml
ij)
, j ∈ C, k = 1, . . . ,Kj − 1, (12b)

∂
(∑

r<s ωrs||mr −ms||2
)

∂mi
=
∑
s 6=i

ωis
mi −ms

||mi −ms||2
, (12c)

for i = 1, . . . , n, where we represent the gradient of the categorical loss function in elementwise

fashion. We provide full derivations of these expressions in Appendix E.

From (12c), it is straighforward to notice that the partial derivative of the penalty function is

undefined in case mi = ms for some pair of centroids i and s (with i 6= s). This prohibits us from

using gradient-based methods such as simple gradient descent and Newton’s method. Therefore, we

adopt a different approach and rather work with the subgradient of the penalty function, which, for

observation i = 1, . . . , n, is given by gi
(∑

i<s ωis||mi −ms||2
)
and has the form

gi

(∑
i<s

ωis||mi −ms||2

)
=

∑
s 6=i, ms 6=mi

ωis
mi −ms

||mi −ms||2
+

∑
s 6=i, ms=mi

ωisβis, (13)

where βis = −βsi and ||βis|| ≤ 1. This is similar to the approach of Hocking et al. (2011). We

provide a derivation of this subgradient in Appendix F. In order to implement the above subgradient,

we combine all subgradients for observations belonging to the same cluster. Although Hocking et

al. (2011) note that they compute this subgradient per cluster c by summing up the subgradients

for all i ∈ c, they in fact calculate the average subgradient. This is the same approach we take, such

that the subgradient of the penalty for cluster c is

gc

(∑
i<s

ωis||mi −ms||2

)
=

1

|c|
∑
i∈c

 ∑
s 6=i, ms 6=mi

ωis
mi −ms

||mi −ms||2

 , (14)

as the βis terms cancel out due to their symmetry. Here, |c| denotes the cardinality of c, i.e., the

number of observations in cluster c. We can now write the complete subgradient for cluster c,

16



Algorithm 1: MIDACC-SGD
Data: Data matrix X

(n×p)
; φ; number of neighbors K; γ; λ; minimum fusion distance δ

Result: Optimal centroids M∗
(n×p)

; optimal set of clusters C∗

1 Compute weights ωis = Ik,is exp(−φd(xi,xs)), ∀i, s = 1, . . . , n

2 Initialize t ← 1; M0 ← X; G0 ← SubGradient(X,M0); C ← {{1}, {2}, . . . , {n}}
3 while convergence criteria not met do

4 α← LineSearch(Mt−1,Gt−1, t)

5 Mt ←Mt−1 − αGt−1

6 d∗ ← min
i,s
||mi −ms||2, mi 6= ms

7 i∗, s∗ ← argmin
i,s
||mi −ms||2, mi 6= ms

8 while d∗ < δ do

9 Mt, C ← Fuse(mi∗ ,ms∗)

10 if |C| = 1 then

11 break

12 d∗ ← min
i,s
||mi −ms||2, mi 6= ms

13 i∗, s∗ ← argmin
i,s
||mi −ms||2, mi 6= ms

14 Gt ← SubGradient(X,Mt)

15 t := t+ 1

16 M∗ ←Mt−1

17 C∗ ← C

denoted by gc(f(M)), as

gc(f(M)) =
1

|c|
∑
i∈c

(
(1− γ)

∂`num(xnumi ,mnum
i )

∂mi
+ γ

∂`cat(xcati ,mcat
i )

∂mi

)

+ λgc

(∑
i<s

ωis||mi −ms||2

)
,

(15)

where we can fill in the expressions from (12a-12b) and (14) for the loss function gradients and

penalty subgradient, respectively. Using the subgradients gc(·) for all clusters c ∈ C, where |C|

denotes the number of clusters, we can perform subgradient descent in MIDACC. The corresponding

MIDACC-SGD algorithm, which is similar to that in Hocking et al. (2011), is given in Algorithm 1.

The brief idea is as follows: we initialize the centroid matrix M to be equal to data matrix X

and C to be the set of n clusters, one for each observation. Then, until a convergence criterion is
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Algorithm 2: LineSearch
Data: M

(n×p)
; G
(n×p)

; t

Result: Stepsize α

1 Initialize α← 1; set η ← 0.5; calculate costpre = f(M); initialize costpost ← costpre

2 if t(mod 10) = 0 then

3 α = 1
t

4 else

5 while costpost ≥ costpre do

6 α = α× η
7 Mα ←M− αG

8 costpost := f(Mα)

met, we iteratively update M in order to find the optimal centroids M∗ and the corresponding set

of clusters C∗. Note that any other initialization of M could be used; convex clustering should be

independent of initialization and always converge to the global optimum. As input to the algorithm,

besides data matrix X, we provide parameters φ, K, γ, λ, and δ. Thus, Algorithm 1 is run for fixed

values of these parameters. This is in contrast to Hocking et al. (2011), who perform subgradient

descent for a path of values for λ in order to retrieve an entire clusterpath.

Within the algorithm, we use the function SubGradient(X,M) to obtain subgradients gc (f(M))

calculated using (15) for each c ∈ C and stack these subgradients in the (n× p) matrix G. Here, we

fill in the i-th row of G, or gi, by using gi = gc(f(M)), ∀i ∈ c.

The function LineSearch(M,G, t) calculates the stepsize α > 0 of the centroid update along G.

We provide pseudocode for this function in Algorithm 2. In short, we use simple backtracking line

search alongside random stepsizes each 10th iteration, which we find improves flexibility and speed

of the centroid updates. In backtracking line search, we multiply the stepsize by a constant until

the corresponding centroid update leads to a decrease in the MIDACC objective function (3).

The fusion process makes sure that we merge similar centroids into the same cluster. In order

to fuse observations, we check whether the minimum distance between unequal centroids, or d∗, lies

below a certain threshold δ. We define δ to be a fraction, in our case 1
2 , of the smallest distance

between data points, such that

δ =
1

2
min
i,s

(1− γ)||xnumi − xnums ||2 + γ
∑
j∈C

I(xij 6= xsj)

 . (16)
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Note that this equation is, as opposed to (8), not scaled to range 0− 1. This is because δ should be

in the order of magnitude of the centroid differences themselves. In addition, note that we calculate

the distance part of categorical features using the original, non-dummy-coded, data xij . Were we to

use dummy-coded data, this would enforce asymmetry in distances.

In case d∗ < δ, we fuse the centroids i∗ and s∗ with distance d∗. We do so by means of the

Fuse(mi∗ ,ms∗) function, which performs two actions. First of all, this function merges mi∗ and

ms∗ . Secondly, it updates C. Let i∗ ∈ c1 and s∗ ∈ c2, state that mi∗ and ms∗ fuse to form centroid

mr, and clusters c1 and c2 join to form cluster c. The two actions Fuse(mi∗ ,ms∗) performs are

then represented by

mr =
|c1|mi∗ + |c2|ms∗

|c1|+ |c2|
, ∀r ∈ c1, c2, (17a)

C = (C\(c1 ∪ c2)) ∪ c, (17b)

such that we take a weighted average of merging centroids to find the fused centroid. This is

sensible and possible due to the continuity we ensure in both the numerical and categorical parts of

the centroids. As for the cluster set C, we simply remove c1 and c2 while adding c.

Note that, in contrast to Hocking et al. (2011), MIDACC-SGD allows multiple centroids to be

merged in a single iteration. We find this barely affects the outcomes of the algorithm and comes

with stark computational benefits. Also, logically, we do not run the Fuse(·) function in case the

number of clusters is 1. Furthermore, it is apparent that we run MIDACC-SGD for a single value of

λ. This is in contrast to Hocking et al. (2011), who are interested of the behavior of the clustering

outcome with varying values of λ. As their algorithm uses the solutions for past values of λ for a

new run with a larger value of λ, cluster splits are not taken into account, such that there is no

security a global optimum is reached. In our case, we do not face this issue, since we start from

scratch with each value of λ we put into MIDACC-SGD.

As for convergence, we use two criteria to determine whether to terminate MIDACC-SGD. Firstly,

we use a criterion on the number of iterations. Specifically, we terminate MIDACC-SGD when

t = 1000. As, in this case, termination does not ensure convergence, this criterion is undesirable.

In none of our experiments, we have observed this criterion to be reached. Secondly, we use a

criterion on the squared Frobenius norm of the subgradient matrix, or, ||G||
2
F

np < ε. Since G has

n × p elements, we scale the norm by means of this factor to ensure scalability to any data set.

We define ε to be a user-specific threshold. Hocking et al. (2011) use an absolute threshold, e.g.,
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ε = 0.001. However, we find that scale is quite influential on the algorithm and rather recommend

using a relative threshold. As taking a percentage of the initial gradient would make convergence

still highly dependent on initializations and on the data set at hand, we use a different approach to

making MIDACC’s convergence relative to the data. Namely, we scale our loss functions by a loss

factor. More specifically, we calculate the loss for both data types in case we would end up with a

single cluster, take the mean of those losses, and divide both loss functions by this loss factor.

Note that the above choice does not affect the workings of MIDACC at all. To be precise,

applying such a loss factor only affects MIDACC through the magnitude of the losses and gradients.

The effect on the magnitude of the loss function affects the interplay with the penalty term, but

this effect disappears due to our freedom in choosing λ. As for the gradient, the loss factor has

effect on convergence and on the line search parameter α. Since we use backtracking line search,

which is not dependent on scale (α can take on any kind of value), the line search is unaffected. As

for convergence, we find that applying the loss factor yields desirable convergence properties with

ε = 0.00001. Therefore, we use this setting for the remainder of this research.

3.3.2 Parameter Selection

To apply the proposed methods, we need to define several parameters. The previous section already

elaborated on setting δ and ε. This section discusses the parameters φ, K, γ, and λ.

Choosing φ andK. The parameters φ and K form the exponential decay and sparsity parame-

ters in the pairwise penalty weights ωis, ∀i, s = 1, . . . , n. For φ = 0, we obtain uniform weights (over

all K nearest neighbors), while increasing φ leads to increasingly smaller weights between distant

pairs of observations. In this research, we use φ = 2, which means that weights decrease quadrati-

cally with increasing distance. Note that there is no ‘true’ guideline on which value of φ to choose;

across literature, many different values are used. We find changing the value of φ does not affect

the clustering outcome much. The number of nearest neighbors K controls the degree of sparsity

in the weights. Since a small value of K can drastically improve computation time and clustering

performance, and since this research does not focus on retrieving a full clusterpath, we choose K

relatively low. More specifically, we opt for using K = n
10 , such that we apply 90% sparsity. From

our experiments, we do not observe this choice to ever lead to an unconnected weight graph.

Selecting γ. As previously discussed, the parameter γ controls the relative impact of numerical

and categorical features on the clustering outcome. When γ is small (close to 0), numerical features

dominate, while categorical features are given more importance in case γ is high (close to 1). By
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varying γ, we can obtain largely different clustering results. Therefore, it is important to sensibly

set this parameter. Below, we provide various choices, for which we provide results in Section 5.1.4

and, more extensively, in Appendix G.

An easy start would be to use γ = 0.5, which leads to equal weights on the two data types.

However, we find that equal weights do not necessarily imply equal contributions to the clustering

outcome, as opposed to what Foss et al. (2016) state. Even so, such a property would not be desirable

as, depending on the data, either one of the data types could be more important than the other.

Therefore, we wish to adaptively set γ based on the data set at hand. To do so, we follow the line

of reasoning of Szepannek (2018), who implements several heuristics to compute a similar parameter

in K-prototypes. Such heuristics compute this parameter using γ = hnum

hnum+hcat , where h
num and

hcat are measures of dispersion for the numerical and categorical attributes, respectively. Within

K-prototypes, Szepannek (2018) uses

hnum =
1

pnum

∑
j∈N

s(xj), or hnum =
1

pnum

∑
j∈N

s2(xj), (18a)

hcat =
1

pcat

∑
j∈C

1−
Kj∑
k=1

(
p̂kj

)2 , or hcat =
1

pcat

∑
j∈C

(
1−max

k
p̂kj

)
. (18b)

However, since our concern with γ evolves around the loss functions and the Gower distance that

governs the pairwise penalty weights instead of dissimilarity measures as in K-prototypes, the above

settings may not be appropriate. Still, we include results for these settings in Appendix G. Please

note that, since we scale numerical data to unit variance, we have s(xj) = s2(xj) = 1, ∀j ∈ N , such

that we consider two (instead of four) combinations of dispersion measures.

Instead of using K-prototypes-type measures, we could use dispersion measures linked to our

loss functions. For this cause, we apply the set-up of Wang and Allen (2021), who propose to scale

data types based on the loss achieved in case a single cluster would be formed. We can find the

corresponding hnum and hcat by calculating (4) and (5) using centroids mnum and mcat, respectively,

from Appendix B.2. We note that our loss functions scale linearly in the number of features, such

that a for-variable-adjusted dispersion measure would be more appropriate. Therefore, we compute

the corrected h(num)∗ and h(cat)∗ as hnum

pnum and hcat

pcat , respectively, and compute γ = hnum

hnum+hcat . As this

seems to generally work well, we implement this method as our standard approach. Similarly, we

can calculate hnum and hcat as the total Gower distance per data type across all observations, again

correct these measures for the number of features per data type, and calculate γ = h(num)∗

h(num)∗+h(cat)∗
.
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The advantage of the above heuristic methods is that we compute γ prior to running MIDACC,

which makes their implementation efficient. However, due to their heuristic nature, these options

may not lead to an optimal or even desirable value of γ. Therefore, we also consider optimizing γ.

Note that we cannot simply minimize the MIDACC objective function across γ, as the interplay

between loss and penalty is different for every value of γ. However, we do propose two other methods.

Firstly, we could use a model selection approach inspired by the Bayesian Information Criterion

(BIC) of Schwarz et al. (1978). The BIC originally is given by

BIC = −2`(X,θ) + k log(n), (19)

where θ is a vector (or matrix) of parameters, N is the total number of observations, `(·) is a log-

likelihood function, and k denotes the number of parameters the model estimates. Minimizing this

criterion yields the ‘best’ model. In our case, we apply model selection with γ using data sets for

which the number of clusters is fixed beforehand, such that the second term in the above equation

is constant. Thus, we simply consider minimizing the model selection criterion modγ given by

modγ = −`(X,θ) = `num(Xnum,Mnum) + `cat(Xcat,Mcat), (20)

where we use the fact that our loss functions represent a negative log-likelihood. Please note that

we omit (1 − γ) and γ as factors for the loss functions, which we do so as to make the criterion

comparable across γ. We observe this criterion to generally work relatively well. Still, we note

that this approach requires multiple evaluations for various values of γ on a single data set in order

to select γ. In addition, we would need to further establish the properties of this model selection

criterion in order to formally justify using this procedure. Therefore, we decide against using this

method. However, we do provide results for this method in Section 5.1.4 and Appendix G.

Secondly, we could try to optimize γ together with M, either simultaneously or sequentially. Were

we to perform simultaneous optimization, then we would perform MIDACC-SGD with parameter

vector θ
(1×(np+1))

= [vec(M) γ] instead of the original set-up where θ = M. Further research is

needed in order to establish whether the objective function (3) is convex in the combined parameter

vector θ. However, were we to use dense pairwise weights ωis = exp(−φd(xi,xs)), we know that the

objective function is separately convex in both M and γ, the latter of which we prove in Appendix H.

This means we could sequentially optimize both parameter groups. In short, after each optimization

step of M, we update γ such that the objective function is decreased most. Since we have restricted
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0 ≤ γ ≤ 1, we could sequentially optimize γ for instance by applying a Golden Section search on

this fixed interval. However, more research is needed to inspect the properties of such a two-step

method; namely, this method should converge in both M and γ, which again depends on convexity

of the total objective function f(M, γ). Furthermore, we do not use dense weights but rather apply

sparsity in the weights, which both increases performance and reduces runtime (Chi and Lange,

2015). Therefore, for now, we decide against using the above optimization methods but rather stick

with the heuristic methods and leave optimization of γ for future research.

Selecting λ. Lastly, we need to specify the parameter λ, which is the regularization parameter

in MIDACC. This parameter controls the trade-off between model fit and the number of clusters

in the convex clustering outcome. Some papers use this parameter to form a clusterpath, i.e., the

solution path for different values of λ is presented as an altogether hierarchically structured outcome

of the clustering model. Other papers select λ based on some criterion. In this research, we are

not so much interested in investigating an entire solution path, but rather wish to evaluate the

performance of the ‘best’ model. We do so in two settings.

Firstly, in most experiments presented in this paper, we compare MIDACC with baseline methods

on data sets for which we know the true number of clusters before running the clustering. To ensure

fair comparison between MIDACC and the other methods, the latter of which require selecting |C|

prior to running the clustering algorithm, we set λ such that we obtain this true number of clusters.

In this case, we use a ‘smart’ searching heuristic that uses the structure in λ to run MIDACC as

efficiently as possible. That is, for larger values of λ, more centroids will merge, such that the

number of clusters will be smaller. We make use of this property to start our search with a certain

value of λ and increase c.q. decrease this value in case the retrieved number of clusters is larger c.q.

smaller than the true number of clusters. Based on previous iterations, we can start our search using

a value of λ that is in the approximate range of values of λ that yield the desired outcome. Please

note that multiple values of λ can correspond with retrieving the same number of clusters. We

have experienced only minuscule differences between the models corresponding with these values, in

terms of the merged observations, to exist, which confirms the suitability of our simple search for a

single value of λ yielding the desired number of clusters.

Secondly, we consider the case in which we let MIDACC adaptively select the ‘optimal’ number

of clusters given a data set. That is, we perform model selection to choose a value of λ that

corresponds with the ‘optimal’ trade-off between model fit and the number of clusters retrieved. For

such a model selection problem, multiple methods exists, such as stability selection (Meinshausen
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and Bühlmann, 2010) and information criterion approaches (Tan and Witten, 2015). As stability

selection approaches are known to be computationally expensive, we decide to focus on information

criteria. Following Choi and Lee (2019) and Tan and Witten (2015), we employ the BIC in order to

find the optimal λ (Schwarz et al., 1978). Originally, we can write this criterion as (19). We note

that, in our case, the log-likelihood, where θ =
[
Mnum Mcat

]
, is given by

`(X,θ) = −
(
(1− γ)`num(Xnum,Mnum) + γ`cat(Xcat,Mcat)

)
. (21)

Since the sum of parameters (1 − γ) and γ equals 1 instead of 2 (which is the case in regular

likelihood-based models), we multiply the above loss by a factor 2 in order to retrieve a likelihood

that is on the appropriate scale. Furthermore, the number of observations is n, while the number

of parameters that we estimate equals the number of clusters times the number of parameters, or,

equivalently, |C| × p. Thus, we calculate the BIC using

BIC = 4
(
(1− γ)`num (Xnum,Mnum) + γ`cat

(
Xcat,Mcat

))
+ |C| × p× log(n). (22)

This equation resembles that of Kieskamp (2019), who uses BIC = −2`(X,M) + |C| × p× log(n).

Our criterion differs through the weights based on γ. Please note that other approaches with different

expressions exist. Wang and Allen (2021) use BIC = −n × `(X,M) + |C| × log(np), and Park et

al. (2019) use BIC = −`(X,M) + |C| × p× log(n)
n . By running MIDACC for various values of λ and

selecting that model yielding the lowest BIC, we select our ‘best’ model given a data set.

3.3.3 Evaluation

To evaluate the performance of MIDACC against that of baseline approaches, we consider various

evaluation criteria. As real-life data usually does not come with a ‘true’ clustering outcome, eval-

uating the results of clustering algorithms is not as straightforward a task as supervised learning

techniques. However, to validate results, two types of criteria exist: internal and external validation

criteria (Ahmad and Khan, 2019). Internal validation criteria are based solely on the clustering

itself, while external validation makes use of previous knowledge on the data.

In our research, we apply our methods to simulated clusters and data sets for which a classification

is known a priori. Therefore, we can apply external validation criteria and test the outcomes of our

methods against the ‘ground truth’. In order to do so, we evaluate two metrics: clustering accuracy

and adjusted Rand index (Hubert and Arabie, 1985).
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The clustering accuracy Acc is given by

Acc =

∑n
i=1 I(ci = yi)

n
, (23)

where ci is the predicted class (the obtained cluster) of observation i, yi is its true class, and

I(ci = yi) = 1 if the predicted class equals the true class (with value 0 otherwise). Note that there is

no predefined agreement between the found clusters and true classes. Instead, we artificially match

classes by choosing the ‘best’ matches between prediction and truth.

The adjusted Rand index (ARI), which is the corrected-for-chance version of the Rand index

(Rand, 1971), compares two partitions of observations i = 1, . . . , n in terms of a contingency analysis.

In our case, the predicted partition is C with |C| classes C1, . . . , C|C|, while the true partition is

given by Y , with |Y | classes Y1, . . . , Y|Y |. We denote the number of elements in a specific class Cv

or Yz by |Cv| and |Yz|, for v = 1, . . . , |C| and z = 1, . . . , |Y |, respectively. Also, let nvz = |Cv ∩ Yz|.

Then the ARI is given by

ARI =

∑
v,z

(
nv,z
2

)
−
(∑

v

(|Cv |
2

)∑
z

(|Yz |
2

))
/
(
n
2

)
1
2

(∑
v

(|Cv |
2

)
+
∑

z

(|Yz |
2

))
−
(∑

v

(|Cv |
2

)∑
z

(|Yz |
2

))
/
(
n
2

) . (24)

In case ARI = 1, the predicted classes are exactly in line with the true classes. In other words, the

clustering is ‘perfect’ with respect to the classification. In case ARI = 0, the clustering performs

as well as one would expect it to do purely based on chance. Note that, as opposed to the regular

Rand index, the ARI can be lower than 0. This case corresponds with a clustering that performs

worse than one would expect it to do purely based on chance.

3.4 Baseline Methods

As in other clustering papers, we compare the workings of our method with that of prominent and

popular other approaches. In this research, we focus on two commonly used mixed data clustering

methods and a third method that has recently gained popularity. The first two methods include

K-prototypes (Huang, 1997) and HAC (Murtagh and Contreras, 2012) with the Gower coefficient

as distance metric (Gower, 1971). For HAC, we apply Ward linkage (Ward, 1963), which, from

observing results of various linkage methods, we find yields the best results. The third method is a

model-based clustering method called KAMILA (Foss et al., 2016). This more recent approach for

clustering mixed data has gained popularity and is interesting to compare our results with.
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Firstly, K-prototypes (Huang, 1997) combines distance metrics for numerical and categorical data

in the objective function, where a parameter, which we set based on the heuristics of Szepannek

(2018), is used to control the relative weight of categorical attributes. In this objective function, the

number of clusters is predefined. Secondly, in contrast, HAC (Murtagh and Contreras, 2012) builds

up the cluster structure in tree-wise fashion. That is, in every HAC-step, two clusters are merged.

Cutting the tree of clusters at a certain point gives us a partition of a certain number of clusters.

Lastly, KAMILA (Foss et al., 2016) combines a kernel-based loss for numerical and a multinomial

loss for categorical attributes in a mixture model with a pre-specified number of clusters (or mixture

components). Using the idea of latent variables governing the cluster assignment of observations,

KAMILA finds a partition of clusters using an EM algorithm. Through the combination of loss

functions, Foss et al. (2016) aim to equitably balance the influence of numerical and categorical

features on the clustering outcome.

3.5 W-MIDACC

Although MIDACC allows for combining numerical and categorical features, different features may

prove to be more informative than others. To capture this difference, Huang et al. (2005) apply

variable-specific weights to the K-means formulation, which they find can drastically improve clus-

tering results. This concept has, however, not yet been applied to convex clustering. Therefore,

we also provide a variable-specific weighted version, called W-MIDACC, of mixed data convex clus-

tering. This version contributes to MIDACC’s flexibility by allowing the clustering outcome to be

constructed based on specific feature weights. We note that we require the user to input weights

prior to running W-MIDACC. Adaptive optimization of the weights given the data set at hand is

outside the scope of this paper. We provide details on W-MIDACC as well as some illustrations of

its potential in Appendix I.

3.6 Software

This research makes use of the R software, version 4.0.5 (R Core Team, 2021). Our code is available

on GitHub. We make use of the packages clustMixType for K-prototypes (Szepannek, 2018), kamila

for KAMILA (Foss and Markatou, 2016), and the hclust and cutree functions for HAC (R Core

Team, 2021). To generate non-spherical data, we apply the halfmoons data generating function

(van den Berg et al., 2018).
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4 Data

We apply the proposed methods using a simulation study and an analysis of a real-life data set. In

this section, we explain the set-up of both applications.

4.1 Simulation Study

As previously discussed, besides finding a global optimum to the clustering objective, MIDACC’s

main assets should be the abilities to recover both spherical and non-spherical cluster shapes, handle

mixed data by capturing and combining the information in both numerical and categorical data,

and retrieve the true number of clusters present in the data. To this end, we divide our numerical

experiments in three parts that cover these assets.

Furthermore, as the manner in which we combine numerical and categorical data depends on the

choice of γ, we perform a sensitivity analysis on this control parameter. Unless mentioned otherwise,

we generate r = 200 replications of data sets containing n = 100 observations. Furthermore, as

previously discussed, we have δ = 0.5, φ = 2, K = 10, and γ loss-based.

Note that, except from the part covering the retrieval of the true number of clusters, we assume

that the number of clusters is known a priori. We do so as to ensure fair comparison between

MIDACC and the baseline methods, the latter of which require selecting the number of clusters

prior to the clustering. As previously discussed, we search across values of λ to retrieve MIDACC

models yielding the desired number of clusters.

4.1.1 Recovering Cluster Shapes

In this case, we investigate the ability to recover both spherical and non-spherical cluster shapes

in mixed data. In doing so, we compare the performance of MIDACC with that of the baseline

methods in two experiments; one with spherical and one with non-spherical clusters.

Spherical clusters. We generate numerical data from multivariate normal distributions and

implement multinomial distributions for each categorical feature. More specifically, we create |C| = 2

clusters with n1 = n2 = 50 observations each and pnum = pcat = 4. For the numerical data, we

apply two multivariate normal distributions with covariance 2 · I4 and location parameters 14 and

−14 for the two clusters. We generate categorical data, where Kj = 4, ∀j ∈ C, from two feature-

specific multinomial distributions for the two clusters. Both clusters have a different majority class

per feature, which we assign probability 0.75. We set the probabilities of the other three classes to
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be equal and sum up to 0.25. Since clear cluster structure is present in both data types, we expect

all clustering methods to be able to detect this information and partition the data appropriately.

Non-spherical clusters. Again, we have |C| = 2 clusters with n1 = n2 = 50 observations

each, where pnum = pcat = 4. In this case, however, we generate non-spherical shapes for numerical

attributes. We do so by creating two pairwise interlocking halfmoons, with 30% noise, within the first

and last two numerical features. As for the categorical data, we use Kj = 4, ∀j ∈ C, and implement

multinomial distributions with a different majority class per cluster. We assign probability 0.5 to this

class and equal probabilities, summing up to 0.5, to the other three classes. Thus, each categorical

feature contains 50% noise. This set-up tests the ability to detect non-spherical signal in the data,

while there is some structure in both data types. We expect spherical baseline methods, such as

KAMILA and K-prototypes, to obtain reasonable results, using the signal in categorical data and

spherically clustering the numerical data. However, we expect MIDACC to be able to outperform

these methods through its ability to capture the non-spherical part of the data.

4.1.2 Capturing Information in Mixed Data Sets

Next, we investigate MIDACC’s ability to detect information in mixed data sets where different

numerical and categorical structures occur. More specifically, we consider three experiments; i) both

data types consist of features which exhibit cluster structure (signal) and features that do not (noise),

ii) the categorical data has signal, while the numerical data contains noise, and iii) the numerical

data contains signal, but the categorical data is noisy.

Signal and noise in both data types. We create data from |C| = 2 clusters with n1 = n2 = 50

observations each, where pnum = pcat = 8. For both data types, half of the features contain cluster

signal, while the other half consists of noise features. For numerical data, we generate informative

features from two multivariate normal distributions with covariance I4 and location parameters

14 and −14 for the two clusters. We generate noisy features from a single multivariate normal

distribution with I4 covariance and location 04. We generate categorical data, where Kj = 4,

∀j ∈ C, in similar fashion. The informative features follow multinomial distributions with majority

class probability 0.7 and probability 0.1 for the other three classes, while the noise features follow

multinomial distributions with equal probabilities, i.e., 0.25, assigned to all classes. This set-up tests

the ability of detecting signal in mixed data when such signal is not present in all features.

Signal in categorical, noise in numerical data. We create data from |C| = 2 clusters

with n1 = n2 = 50 observations each and pnum = pcat = 4, where the categorical data exhibits
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cluster structure but the numerical data does not. That is, we generate numerical data from a single

multivariate normal distribution with location 14 and covariance I4. For the categorical data, we

have Kj = 4, ∀j ∈ C, and use multinomial distributions with a different majority class per cluster.

We assign probability 0.75 to this class and equal probabilities summing up to 0.25 for the other

three classes. A clustering algorithm that can capture the structure of mixed data appropriately

should be able to detect signal and distinguish it from noise, which makes this set-up interesting.

Signal in numerical, noise in categorical data. Again, we have |C| = 2 clusters with

n1 = n2 = 50 observations each and pnum = pcat = 4. In this case, the numerical data contains signal,

whereas the categorical data does not. That is, we generate numerical data from two multivariate

normal distributions with I4 covariance and location parameters 14 and −14 for the two clusters.

For the categorical data, where Kj = 4, ∀j ∈ C, all classes have probability 0.25 across all features.

Again, this set-up tests clustering algorithms’ ability to capture information in mixed data.

4.1.3 Retrieving the Number of Clusters

The third important property that we test is MIDACC’s ability to recover the true number of

clusters. To do so, we apply the BIC criterion (22) to select the best fitting number of clusters given

a data set. As before, we use n = 100 observations, while we now perform r = 100 replications. We

perform two experiments; one where the true number of clusters |C| = 2, and one where |C| = 4.

For both experiments, we consider the number of clusters to range between 1 and 10.

2 clusters. We have two clusters with n1 = n2 = 50 observations each, where pnum = pcat =

4. Furthermore, we generate numerical data from two multivariate normal distributions with I4

covariance and location 14 and −14 for the two clusters, respectively. We set Kj = 4, ∀j ∈ C and

implement multinomial distributions with majority class probability 0.7 and probability 0.1 assigned

to the other classes for all features. The majority class differs across the two clusters.

4 clusters. Here, we have four clusters, now with n1 = n2 = n3 = n4 = 25 observations each.

Furthermore, we set pnum = pcat = 4. We generate numerical data from four multivariate normal

distributions with identity covariance and location parameters 34, 14, −14, and −34. For categorical

data, we use the same settings as in the previous experiment, such that we obtain four multinomial

distributions for each feature, each having a different majority class with probability 0.7 and three

other classes with probability 0.1. Although naturally subject to variability, being able to select the

true number of clusters would be a strong asset of MIDACC.
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4.1.4 Sensitivity Analysis on γ

Besides assessing three of the main potential assets of MIDACC, we investigate the influence of the

parameter γ on MIDACC’s clustering outcome. Recall that this parameter controls the relative

importance of the two data types in the clustering task. Different settings of this parameter may, for

the very same data set, yield completely different outcomes. Therefore, it is relevant to investigate

the behavior of this parameter. In this case, we use r = 50 replications, as evaluating MIDACC for

a wide range of values for γ is computationally costly.

We start off by plotting out the performance of MIDACC for a grid of values of γ. More

specifically, we let γ range between 0 and 1 with stepsize 0.1. We plot the corresponding behavior

using the same experiments we applied to assess MIDACC’s ability to capture the information in

mixed data sets. Thus, we consider three data sets; i) signal and noise in both data types, ii) signal in

categorical, noise in numerical attributes, and iii) signal in numerical, noise in categorical attributes.

After plotting the behavior of MIDACC over γ, we assess its performance using the various

specifications of γ from Section 3.3.2. We do so using the same data sets as those used for evaluating

MIDACC’s assets of recovering cluster shapes and capturing information in mixed data sets.

4.2 Real-Life Data

In order to demonstrate the applicability of our methods in real-life, we apply our methods to a

mixed data set retrieved from the UCI Machine Learning Repository (Blake and Merz, 1998). More

specifically, we use the Cleveland Heart Disease data set. This is a frequently used data set in mixed

data clustering research, see e.g., Huang et al. (2005) and Modha and Spangler (2003).

The Cleveland Heart Disease data set contains 303 observations, of which 6 observations have

missing values in some of the attributes. We remove these observations and thus end up with

n = 297 observations. The data set contains 13 features, of which pnum = 5 features are numerical

and pcat = 8 features are categorical, with varying numbers of classes Kj , j ∈ C. Furthermore, a

‘true’ classification exists that defines whether or not an observation belongs to a person with a

heart disease. We use this classification to evaluate MIDACC and the baseline methods. That is,

we search for a value of λ that yields |C| = 2 clusters to ensure fair comparison with the baseline

methods, which require preselecting |C|. As in the simulation study, we set δ = 0.5, φ = 2, and

choose γ loss-based. Furthermore, we set K = 30, which, similar to the simulation study, implies

that we apply around 90% sparsity in pairwise weights.
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5 Results

In this section, we present the results of our methods by discussing the simulation study and real-life

data application that we previously introduced.

5.1 Simulation Study

We start off by assessing MIDACC’s recovery of both spherical and non-spherical cluster shapes,

after which we test its capability to capture information in mixed data sets. In doing so, we compare

MIDACC with the previously discussed baseline methods. Then, we investigate MIDACC’s ability

to retrieve the true number of clusters and, last, analyze its sensitivity over γ. As previously

noted, we perform r = 200 replications with n = 100 observations, unless mentioned otherwise. For

KAMILA and K-prototypes, baseline methods dependent on initialization, we use 100 random starts

per replication and select the partition yielding the lowest objective value.

5.1.1 Recovering Cluster Shapes

Here, we assess the performance of MIDACC and the baseline methods in the cases of spherical and

non-spherical clusters in mixed data sets using the two experiments discussed in Section 4.1.1. In

Table 1, we provide results for the spherical case, where we present the mean and standard deviation

of the accuracy and ARI for all methods. We compute the standard deviation across replications,

such that this measure provides an indication of the stability of the applied methods but does not

allow for comparing whether two methods have significantly different mean performances. Also, we

note that we use multiple random starts per replication for KAMILA and K-prototypes, such that

the standard deviation shows the stability of the ‘best’ partitions and thus does not indicate the

sensitivity of these methods to different initializations.

Table 1: Mean and standard deviation of the perfor-
mance of MIDACC and the baseline methods in the case
of spherical cluster shapes.

Acc ARI

Mean St. Dev. Mean St. Dev.

MIDACC 0.988 0.011 0.951 0.044
KAMILA 0.986 0.013 0.947 0.051
K-prototypes 0.988 0.012 0.951 0.045
HAC 0.965 0.022 0.867 0.081
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As expected, we find that both MIDACC and the spherical baselines, i.e., KAMILA and K-

prototypes, are well able to achieve near perfect recovery of spherical clusters. Namely, we find that

these three methods all reach an average accuracy and ARI of around 0.990 and 0.950, respectively.

In contrast, HAC performs slightly worse, obtaining an accuracy and ARI of 0.965 and 0.867,

respectively. This also shows in the standard deviation of HAC’s accuracy, which, at a value of

0.022, is around twice as high as that of MIDACC. Although K-prototypes exhibits similar standard

deviations to MIDACC, KAMILA seems to be slightly less stable.

Turning to the non-spherical case, where we generate numerical data from interlocking halfmoons,

we obtain the results as given in Table 2. From this table, we observe that MIDACC outperforms all

baseline methods. More specifically, MIDACC’s performance is near perfect with mean accuracies

and ARIs of 0.983 and 0.932, respectively. KAMILA and K-prototypes perform slightly worse,

reaching accuracies and ARIs of around 0.970 and 0.890, respectively. The HAC baseline performs

poorest, achieving a mean accuracy and ARI of 0.886 and 0.600, respectively.

Table 2: Mean and standard deviation of the perfor-
mance of MIDACC and the baseline methods in the case
of non-spherical cluster shapes.

Acc ARI

Mean St. Dev. Mean St. Dev.

MIDACC 0.983 0.014 0.932 0.055
KAMILA 0.971 0.018 0.887 0.068
K-prototypes 0.974 0.015 0.899 0.058
HAC 0.886 0.046 0.600 0.141

Compared to the spherical case, we find that, as expected, all baseline methods have decreasing

performance, as their ability to recover non-spherical cluster shapes is limited. In contrast, MIDACC

is able to capture complex cluster shapes in the data. Furthermore, MIDACC and K-prototypes

seem to be most stable, while KAMILA and especially HAC possess larger standard deviations.

5.1.2 Capturing Information in Mixed Data Sets

In this section, we investigate the manner in which MIDACC and the baseline methods detect signal

in mixed data sets and are able to distinguish such signal from noise. We do so by conducting the

three experiments presented in Section 4.1.2.

First, Table 3 contains results for the experiment where we have pnum = pcat = 8 features per data

type, half of which contain signal and half of which do not. We find that MIDACC, KAMILA, and K-
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prototypes all adequately distinguish signal from noise within data types, obtaining mean accuracies

and ARIs of around 0.990 and 0.960, respectively. Although the differences are small, KAMILA

seems to perform best, which may be due to the fact that the generated data sets are symmetric;

both data types contain an equal number of informative and non-informative features. This is

in accordance with KAMILA’s aim of being able to equitably balance numerical and categorical

data (Foss et al., 2016). In turn, MIDACC has a slightly higher average accuracy and ARI than

K-prototypes. Again, HAC performs worst, reaching an average accuracy and ARI of 0.944 and

0.791, respectively. This indicates that, as opposed to MIDACC and the spherical baselines, HAC

may not be well-suited for balancing signal and noise in mixed data sets. In terms of stability, we

find that MIDACC and KAMILA have similarly low standard deviations, while the variability in

K-prototypes and, especially, HAC is larger.

Table 3: Mean and standard deviation of the perfor-
mance of MIDACC and the baseline methods in the case
of 50%-50% signal-noise features in both data types.

Acc ARI

Mean St. Dev. Mean St. Dev.

MIDACC 0.989 0.010 0.956 0.038
KAMILA 0.992 0.009 0.968 0.035
K-prototypes 0.987 0.012 0.950 0.046
HAC 0.944 0.026 0.791 0.092

Second, we conduct an experiment in which the categorical data contains signal but the numerical

data does not. Whereas the previous experiment tests the capacity of clustering algorithms to

distinguish signal from noise within data types, this experiment tests the ability to do so across

data types. We report results for MIDACC and the three baseline methods in Table 4.

Table 4: Mean and standard deviation of the perfor-
mance of MIDACC and the baseline methods in the case
of signal in categorical and noise in numerical data.

Acc ARI

Mean St. Dev. Mean St. Dev.

MIDACC 0.961 0.022 0.849 0.079
KAMILA 0.624 0.141 0.158 0.272
K-prototypes 0.953 0.024 0.820 0.088
HAC 0.942 0.027 0.781 0.097
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From Table 4, we find that MIDACC is the best performing method, reaching an average accuracy

and ARI of 0.961 and 0.849, respectively. K-prototypes and HAC perform slightly worse with average

accuracies of 0.953 and 0.942 and ARIs of 0.820 and 0.781, respectively. However, most striking is

the poor performance of KAMILA, which achieves a mean accuracy and ARI of only 0.624 and

0.158, respectively. This indicates that, while MIDACC is the top method in detecting signal in

categorical and noise in numerical data, KAMILA is not suitable for such data sets. This may be due

to KAMILA’s focus on equitably balancing numerical and categorical data, which is not appropriate

in this setting. Considering standard deviations, we find that MIDACC is the most stable method,

while KAMILA has the highest variability in performance across replications.

Third, we consider the case in which the numerical data exhibits signal but the categorical data

does not. In this case, we obtain performances as given in Table 5. From this table, we find that

KAMILA is the top performer with an average accuracy and ARI of 0.974 and 0.899, respectively.

Thus, apparently, KAMILA puts relatively large weights on numerical data in this case, which may

also be the reason why its performance in the previous experiment is poor. Still, MIDACC and

K-prototypes achieve strong results, reaching accuracies of 0.957 and 0.965 and ARIs of 0.834 and

0.864, respectively. In contrast, HAC performs poorly, reaching similarly low values as KAMILA did

in the previous experiment. Considering standard deviations, we observe a similar pattern, where

KAMILA is most stable and HAC is subject to the highest variability.

Table 5: Mean and standard deviation of the perfor-
mance of MIDACC and the baseline methods in the case
of signal in numerical and noise in categorical data.

Acc ARI

Mean St. Dev. Mean St. Dev.

MIDACC 0.957 0.022 0.834 0.080
KAMILA 0.974 0.017 0.899 0.063
K-prototypes 0.965 0.019 0.864 0.069
HAC 0.651 0.092 0.113 0.120

Considering all three experiments in this section, we may state that HAC and KAMILA are

unable to appropriately capture information in mixed data sets in the presence of noise. Namely,

KAMILA breaks down when the numerical data is noisy, while HAC fails in the case of noisy cat-

egorical features. MIDACC and K-prototypes seem to be the most appropriate methods, achieving

strong performances in all three experiments.
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5.1.3 Retrieving the Number of Clusters

In this section, we investigate MIDACC’s ability to retrieve the true number of clusters in mixed

data sets. Whereas baseline methods require preselecting the number of clusters, MIDACC can

control for the number of clusters through λ. Selecting the most suitable value of λ allows us to

retrieve the ‘optimal’ number of clusters given the data set at hand. As discussed in Section 3.3.2,

we do so using the BIC criterion (22). We use r = 100 replications and set n = 100.

Computing the BIC for values of λ that yield different numbers of clusters and selecting the

number of clusters corresponding with the lowest BIC, we retrieve MIDACC’s ‘optimal’ number of

clusters given a data set. In Table 6, we compare this optimal number of retrieved clusters with the

true number of clusters |C| when |C| is either 2 or 4. The table entries corresponding with correct

retrievals of the true number of clusters are given in bold.

Table 6: Frequencies of MIDACC’s retrieved optimal
number of clusters for r = 100 replications of data sets
where the true number of clusters |C| is either 2 or 4.

Retrieved optimal number of clusters

1 2 3 4 5 6 7 8 9 10

|C| = 2 0 72 27 1 0 0 0 0 0 0
|C| = 4 0 23 22 39 15 1 0 0 0 0

From Table 6, it is apparent that MIDACC tends to select the true number of clusters in both

cases. When |C| = 2, MIDACC retrieves the correct number of clusters in 72 out of 100 cases, while

it does so in 39 out of 100 times when |C| = 4. For both cases, the true number of clusters is the

number that is retrieved most often, which is a promising result that indicates MIDACC’s ability to

retrieve the true number of clusters in a data set. This ability is highly valuable in practice, where

the true number of clusters is usually unknown. Furthermore, we observe that MIDACC always

selects the number of clusters to be higher than 1, where the variation tends to be larger when the

true number of clusters is higher. This is a common property of the BIC (Schwarz et al., 1978).

5.1.4 Sensitivity Analysis on γ

Now that we have established three of MIDACC’s main assets, we turn to investigating the sensitivity

of our mixed data convex clustering framework to the control parameter γ. Recall that this parameter

controls the contribution of numerical and categorical data on the clustering outcome, where a larger
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value of γ corresponds with a relatively larger influence of categorical attributes and 0 ≤ γ ≤ 1.

We start off by investigating MIDACC’s performance over a grid of values for γ. More specifically,

we let γ range between 0 and 1 with stepsize 0.1 and run r = 50 replications of the experiments

from Section 4.1.2. In Figure 1, we plot the ARI of the corresponding experiments.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.25

0.5

0.75

1

γ

A
R
I

Mixed signal-noise Categorical signal, numerical noise Numerical signal, categorical noise

Figure 1: ARI of MIDACC plotted over a grid of values for γ, ranging between 0 and 1 with stepsize 0.1, for
the three experiments from Section 4.1.2. ‘Mixed signal-noise’ refers to the experiment with 50%-50% signal-
noise features in both data types, ‘Categorical signal, numerical noise’ refers to the experiment with signal
in categorical and noise in numerical data, and ‘Numerical signal, categorical noise’ refers to the experiment
with signal in numerical and noise in categorical data.

Let us first consider the case in which the categorical data exhibits signal but the numerical data

does not (‘Categorical signal, numerical noise’). In this case, we expect a larger value of γ to result

in better performance, which is in line with what we observe; the larger γ, the higher the ARI tends

to be. Also, the ARI is 0 when γ = 0. Namely, when we do not consider categorical data, we are

clustering purely based on noisy data, which, inherently, corresponds with clustering by chance.

In case the numerical data has signal but the categorical data does not (‘Numerical signal,

categorical noise’), we observe, as expected, the opposite pattern. For a smaller value of γ, we

put a larger weight on the (informative) numerical data, which leads to MIDACC obtaining better

performance. Again, at the boundary of γ which corresponds with ignoring the signal (in this case,

this occurs when γ = 1), we obtain an ARI of 0.

In the third case, we have signal and noise in both data types (‘Mixed signal-noise’). In this

case, purely focusing on one of the data types yields reasonable performance, but combining the data

allows us to almost perfectly recover the true cluster structure. From Figure 1, we find that the ARI

increases away from the boundaries γ = 0 and γ = 1, reaching a maximum ARI around γ = 0.2.

Apparently, at this point, the combination between numerical and categorical data is optimal.
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Note that the boundaries in the third case coincide with the optimal outcomes of the first two

cases. Thus, when we focus on a single data type that contains both signal and noise, we can achieve

the same performance as we would in case this type solely bears signal. This even further establishes

MIDACC’s ability to distinguish signal from noise, both between and within data types.

Besides investigating MIDACC’s performance over a grid of values for γ, we compare our various

proposed approaches to estimating γ as discussed in Section 3.3.2. In this section, we present results

of four approaches; i) γ = 0.5, ii) γ is loss-based (γ - loss), iii) γ is distance-based (γ - dist), and iv)

γ is based on model selection (γ - mod). Note that we proposed other choices for γ as well, but we

decide to omit these in this section due to their weaker performance. For an extensive overview of

all proposed methods, we refer the reader to Appendix G. Besides evaluating MIDACC for various

choices of γ, we include the three baseline methods.

In Table 7, we provide accuracies and ARIs for the above methods using r = 50 replications

of data sets simulated using the five experiments in Sections 4.1.1 and 4.1.2. Experiments I and II

correspond with the spherical and non-spherical cases, respectively, while experiments III, IV, and

V refer to the experiments with signal-noise in both data types, signal in categorical but not in

numerical data, and signal in numerical but not in categorical data, respectively.

Table 7: Mean performance of MIDACC for various choices of γ. Experiments I and II refer to the
spherical and non-spherical experiments from Section 4.1.1, respectively. Experiments III, IV, and V
refer to the experiments from Section 4.1.2 with noise and signal in both data types, signal in categorical
but noise in numerical data, and signal in numerical but noise in categorical data, respectively.

Experiment I Experiment II Experiment III Experiment IV Experiment V

Acc ARI Acc ARI Acc ARI Acc ARI Acc ARI

γ - 0.5 0.976 0.908 0.943 0.785 0.976 0.908 0.957 0.836 0.899 0.655
γ - loss 0.986 0.944 0.981 0.925 0.991 0.964 0.956 0.831 0.962 0.856
γ - dist 0.984 0.938 0.973 0.895 0.991 0.964 0.955 0.826 0.961 0.850
γ - mod 0.986 0.944 0.984 0.937 0.991 0.963 0.956 0.830 0.967 0.873
KAMILA 0.986 0.944 0.967 0.872 0.993 0.974 0.652 0.200 0.971 0.887
K-prototypes 0.986 0.946 0.973 0.894 0.990 0.961 0.952 0.817 0.962 0.852
HAC 0.960 0.846 0.886 0.600 0.944 0.789 0.940 0.775 0.649 0.120

From Table 7, we observe that the model selection method upper bounds the other three choices

of γ for all five experiments. However, the differences between this choice and the loss- and distance-

based methods are relatively small. Since the latter two methods, in contrast to the model selection

approach, require only a single MIDACC run per data set, we prefer to use these methods for now.

However, the model selection method seems promising for future work. Please note that γ = 0.5 does
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not perform as well as the other methods, such that we advise against using this setting. Although

the loss- and distance-based methods result in strong and similar performances for all experiments,

the loss-based method clearly outperforms the distance-based method in the second experiment.

Thus, we prefer the loss-based method over the distance-based method.

5.2 Real-Life Data

In this section, we present the results of MIDACC and the baseline methods for the Cleveland Heart

Disease data set. As previously discussed, a true classification of this data set into two clusters is

known. To ensure fair comparison of our method with the baseline methods that require specifying

|C| prior to running the algorithm, we run MIDACC with λ such that we retrieve |C| = 2 clusters.

Furthermore, just as in the simulation study, we use the loss-based γ measure.

Table 8 presents the accuracy and ARI of MIDACC and the three baseline methods for the Heart

data. It is apparent that MIDACC outperforms all three baseline methods, reaching an accuracy

of 0.815 and an ARI of 0.394. Out of the three baseline methods, KAMILA performs best with an

accuracy of 0.805 and an ARI of 0.369, while K-prototypes performs worst, reaching an accuracy and

ARI of 0.785 and 0.322, respectively. Although MIDACC clearly outperforms the baseline methods

and reaches reasonable accuracy, one may note that the ARI seems to be a bit low just below 0.4.

However, this result is highly competitive with the strongest results across literature. To the best of

our knowledge, the highest reported ARI is 0.41 (van de Velden et al., 2019), while most reported

ARIs reach around or below 0.35. Therefore, we consider MIDACC’s performance highly promising.

Table 8: Performance of MIDACC and the base-
line methods on the Heart data set.

Acc ARI

MIDACC 0.815 0.394
KAMILA 0.805 0.369
K-prototypes 0.785 0.322
HAC 0.798 0.353

Within MIDACC, different values of γ can result in completely different clustering performances.

Although we currently implement the loss-based heuristic, which seems to generally achieve satis-

factory results, it is interesting to evaluate MIDACC’s performance over a grid of values for γ. We

set γ to range between 0 and 1 with stepsize 0.05 and evaluate MIDACC for values of λ such that

we retrieve |C| = 2 clusters. In Figure 2, we depict the corresponding results.

38



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

γ

A
R
I

MIDACC performance

Figure 2: ARI of MIDACC plotted over a grid of values for γ, ranging between 0 and 1 with stepsize 0.05,
evaluated on the Heart data set.

From Figure 2, we observe that the performance of MIDACC varies strongly with γ. MIDACC’s

performance is poorest at the boundaries γ = 0 and γ = 1, where the clustering is purely based on

a single data type. More specifically, we find that focusing on a single data type yields an outcome

that can be considered ‘clustering by chance’. Moving away from the boundaries and thus combining

the two data types, MIDACC’s performance improves. We reach an optimum when γ = 0.35, which

corresponds with an ARI of 0.419. To the best of our knowledge, this is higher than any ARI

reported in literature for this data set. This once again stresses the high benefit of MIDACC.

6 Conclusions and Future Work

In this research, we introduced the mixed data convex clustering, or MIDACC, framework. MIDACC

adds to the current literature by providing a mixed data clustering method that does not suffer from

instabilities. In MIDACC, we combine likelihood-based loss functions for numerical and categorical

data, weighted by parameters controlling the importance of both data types on the clustering out-

come, with a penalty term that fuses centroids and thus allows for clustering of observations. We

implement MIDACC by developing an efficient subgradient descent algorithm.

To evaluate the workings of MIDACC, we apply our method using numerical experiments. First,

we find that, as opposed to all baseline methods, MIDACC achieves near perfect recovery of both

spherical and non-spherical clusters. Second, we show that MIDACC, as opposed to the HAC and

KAMILA baselines, has the capacity to capture information from mixed data whilst effectively

distinguishing signal from noise within and across data types. Third, through model selection, we
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illustrate MIDACC’s ability to recover the true number of clusters present in mixed data sets. Based

on a real-life data example, we show that MIDACC outperforms all baseline methods, which further

highlights the practical relevance of our method.

There are four main contributions of MIDACC. First, due to its convex clustering objective,

MIDACC guarantees convergence to a global optimum. This enhances its applicability and perfor-

mance compared to other mixed data clustering algorithms. Second, MIDACC is not limited to

retrieving spherical clusters but can recover rather complex shapes, which makes our method more

flexible than other, spherical, methods. Third, MIDACC can retrieve the true number of clusters in

mixed data sets. As the number of clusters is usually unknown prior to clustering, this is a valu-

able asset in practice. Fourth, MIDACC is able to capture the information present in mixed data

sets and appropriately balance numerical and categorical data. Through simulations and a real-life

application, these assets prove significantly beneficial compared to state-of-the-art baseline methods.

In the future, we recommend four primary areas for future work. First, we note that, although

MIDACC-SGD is relatively efficient, we could focus more on the computational aspect of MIDACC.

In Appendix D, we provide an ADMM-type algorithm which, in future work, could be further

developed in order to enhance scalability. Another option would be to apply a diagonal majorization

technique similar to that of Touw et al. (2020).

Second, we currently compute the control parameter γ prior to running the algorithm. In the

future, we may focus on strictly optimizing this parameter, either simultaneously or sequentially

with respect to the centroids. Such optimization could benefit strongly from the previously described

computational improvements and could yield valuable results, the potential of which we have shown

for the Heart data set. In similar fashion, we could optimize variable-specific weights in W-MIDACC.

Third, we currently remove entries with missing data from our analysis. However, such data may

contain valuable information. Therefore, we could extend MIDACC in order to capture information

from observations with missing data. In order to do so, we could consider either using imputation

techniques or a model-based approach that directly handles missing values.

Fourth, we note that MIDACC and, to the best of our knowledge, any other existing convex

clustering method, assumes conditional independence across attributes, which, in practice, usually

does not hold (Hunt and Jorgensen, 2011). Therefore, we could design a convex clustering method

that incorporates dependencies between attributes. For categorical data, we could construct new

variables with categories representing the ‘co-occurrence’ of classes, while, for numerical data, we

could capture dependencies between variables by relieving the restriction of identity covariance.
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A Loss Functions

In this section, we provide derivations for the loss functions presented in Section 3.2.3.

A.1 Numerical Loss

Below, we show that, similar to Kieskamp (2019), the numerical loss function `num(xnumi ,mnum
i ) =

1
2 ||x

num
i −mnum

i ||22 originates from a multivariate normal distribution with location parameter mi

and identity covariance Σ = Ipnum .

The pdf of p-dimensional multivariate normally distributed xi with location parameter µ and

covariance matrix Σ is given by

f(xi;µ,Σ) = (2π)−
p
2 det(Σ)−

1
2 exp

(
−1

2
(xi − µ)TΣ−1(xi − µ)

)
, (25)

which, when we fill in µ = mi and Σ = I, evaluates to

f(xi; mi, I) = (2π)−
p
2 exp

(
−1

2
(xi −mi)

T (xi −mi)

)
∝ exp

(
−1

2
(xi −mi)

T (xi −mi)

)
.

(26)

Taking the logarithm of this pdf gives us the log-likelihood `(xi; mi, I), for which thus holds that

`(xi; mi, I) ∝ −
1

2
(xi −mi)

T (xi −mi)

= −1

2
||xi −mi||22.

(27)

Since the loss is minimized when the log-likelihood is maximized, we have `num(xnumi ,mnum
i ) =

−`(xi; mi, I), such that we arrive at the formulation

`num(xnumi ,mnum
i ) =

1

2
||xnumi −mnum

i ||22. (28)

This is the exact loss function specified in (4), such that we conclude this proof.
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A.2 Categorical Loss

In the following, we derive the categorical loss function from multinomial distributions with a single

trial for each, independent, feature. We use a distribution with a single trial as our formulation

defines parameters for every single observation. The corresponding distribution is sometimes also

called the categorical distribution. For feature j ∈ C and observation i, where i = 1, ..., n, the

probability mass function of this distribution is given by

f
(
x1ij , x

2
ij , . . . , x

Kj
ij ; p1ij , p

2
ij , . . . , p

Kj
ij

)
=

Kj∏
k=1

(
pkij

)xkij
, (29)

where pkij denotes the probability that feature j of observation i belongs to class k, such that∑Kj
k=1 p

k
ij = 1 and pkij ≥ 0, ∀k. Furthermore, xkij ∈ {0, 1} is a dummy denoting whether or not

feature j of observation i belongs to class k. Since an observation can belong to only a single class,

i.e.,
∑Kj

k=1 x
k
ij = 1, and due to the class probabilities adding up to 1, we can rewrite this pmf to

f
(
x1ij , x

2
ij , . . . , x

Kj−1
ij ; p1ij , p

2
ij , . . . , p

Kj−1
ij

)
=

Kj−1∏
k=1

(
pkij

)xkij1−
Kj−1∑
k=1

pkij

1−
∑Kj−1

k=1 xkij

. (30)

For simplicity, we denote the vector of Kj − 1 dummies xkij and parameters pkij by xij and pij ,

respectively. Taking the logarithm of the above expression gives us the log-likelihood `(xij ; pij),

given by

`(xij ; pij) =

Kj−1∑
k=1

xkij log
(
pkij

)
+

1−
Kj−1∑
k=1

xkij

 log

1−
Kj−1∑
k=1

pkij

 . (31)
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Next, we show that, using the logit transform mk
ij = log

(
pkij

1−
∑Kj−1

k=1 pkij

)
, we can rewrite `(xij ; pij)

to obtain the categorical loss function in (5).

`(xij ; pij) =

Kj−1∑
k=1

xkij log
(
pkij

)
+

1−
Kj−1∑
k=1

xkij

 log

1−
Kj−1∑
k=1

pkij


=

Kj−1∑
k=1

xkij

log
(
pkij

)
− log

1−
Kj−1∑
k=1

pkij

+ log

1−
Kj−1∑
k=1

pkij


=

Kj−1∑
k=1

xkij log

(
pkij

1−
∑Kj−1

k=1 pkij

)
− log

(
1

1−
∑Kj−1

k=1 pkij

)

=

Kj−1∑
k=1

xkij log

(
pkij

1−
∑Kj−1

k=1 pkij

)
− log

1 +

Kj−1∑
k=1

pkij

1−
∑Kj−1

k=1 pkij

 ,

(32)

which can be written in terms of mk
ij to obtain

`(xij ,mij) =

Kj−1∑
k=1

xkijm
k
ij − log

1 +

Kj−1∑
k=1

exp
(
mk
ij

) . (33)

Independence of features j ∈ C implies that the log-likelihood `(xi,mi) is simply the sum of the

separate log-likelihoods `(xij ,mij), or, equivalently,

`(xi,mi) =
∑
j∈C

Kj−1∑
k=1

xkijm
k
ij − log

1 +

Kj−1∑
k=1

exp
(
mk
ij

) . (34)

As minimizing a loss function corresponds with maximizing the log-likelihood, we have `cat(xcati ,mcat
i ) =

−`(xi,mi), such that we arrive at the formulation

`cat(xcati ,mcat
i ) =

∑
j∈C

Kj−1∑
k=1

−xkijmk
ij + log

1 +

Kj−1∑
k=1

exp
(
mk
ij

) . (35)

This is the exact same expression as in (5) and thus concludes this derivation.
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B Convex Clustering Boundaries

This section derives the boundary outcomes of the convex clustering problem (3), given by

min
M

fλ(M) = (1− γ)
n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i ) + λ

∑
i<s

ωis||mi −ms||2, (36)

where the boundaries are defined in terms of λ. More specifically, we consider the cases i) where

λ = 0, and ii) where λ is so large that a single cluster is formed. The minimum value of λ leading

to the latter outcome of ‘total’ clustering is defined as λtot.

B.1 Case I: λ = 0

When λ = 0, we can write (36) as

min
M

f0(M) = (1− γ)
n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i ) (37)

=
(1− γ)

2

n∑
i=1

||xnumi −mnum
i ||22 + γ

n∑
i=1

∑
j∈C

Kj−1∑
k=1

−xkijmk
ij + log

1 +

Kj−1∑
k=1

exp
(
mk
ij

) .

Note that the above expression is separable across variables as well as observations and can thus be

minimized piecewise. For numerical data, we derive the optimal m̂num
i , i = 1, . . . , n, as

∂f0(M)

∂mnum
i

= 0⇒

−(1− γ)(xnumi −mnum
i ) = 0⇒

m̂num
i = xnumi ,

(38)

where we have assumed γ 6= 1. In case γ = 1, the optimal centroids m̂num
i can take on any value. For

categorical data, due to its more involved loss function, we derive the optimal mk
ij in element-wise
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fashion, or, equivalently,

∂f0(M)

∂mk
ij

= 0⇒

γ

−xkij +
exp

(
mk
ij

)
1 +

∑Kj−1
l=1 exp

(
ml
ij

)
 = 0⇒

m̂k
ij = log

(
xkij

1−
∑Kj−1

l=1 xlij

)
,

(39)

for i = 1, . . . , n, j ∈ C, and k = 1, . . . ,Kj − 1. Here, we have assumed γ 6= 0. In case γ = 0,

m̂k
ij can take on any value. Note that the above expression for m̂k

ij purely gives a theoretically

optimal outcome to the clustering objective. In practice, however, this expression can never be

evaluated. This is due to the dummy-coded nature of xkij leading to either taking the logarithm of

0 or evaluating a fraction with a denominator equal to 0. This is no problem for us, since we do not

run our algorithm for λ = 0 and, if we did, would converge before getting in trouble.

B.2 Case II: λ = λtot

In case λ = λtot, we have mi = ms, ∀i, s, such that the penalty term is 0. We denote the single

centroid by m, with its numerical part denoted mnum and its categorical part mcat. This way, (36)

is given by

min
M

fλtot(M) = (1− γ)
n∑
i=1

`num(xnumi ,mnum) + γ
n∑
i=1

`cat(xcati ,mcat) (40)

=
(1− γ)

2

n∑
i=1

||xnumi −mnum||22 + γ

n∑
i=1

∑
j∈C

Kj−1∑
k=1

−xkijmk
j + log

1 +

Kj−1∑
k=1

exp
(
mk
j

) .

Note that the above problem is separable across variables j but not across observations. For numer-

ical data, we can find the optimal m̂num by solving

∂fλtot(M)

∂mnum
= 0⇒

−(1− γ)

n∑
i=1

(xnumi −mnum) = 0⇒

m̂num =

∑n
i=1 xnumi

n
,

(41)
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which simply yields the sample average x̄num as optimal centroid. Note that, similar to Case I, we

have implicitly made the assumption that γ 6= 1. In case γ = 1, m̂num is unconstrained.

For categorical data, we derive the optimal centroids in piecewise fashion, i.e., we perform

variable-specific optimization to find m̂k
j . We find this optimal centroid parameter by solving

∂fλtot(M)

∂mk
j

= 0⇒

γ

n∑
i=1

−xkij +
exp

(
mk
j

)
1 +

∑Kj−1
l=1 exp

(
ml
j

)
 = 0⇒

−
∑n

i=1 x
k
ij

n
+

exp
(
mk
j

)
1 +

∑Kj−1
l=1 exp

(
ml
j

) = 0⇒

m̂k
j = log

(
x̄kj

1−
∑Kj−1

l=1 x̄lj

)
,

(42)

where x̄kj =
∑n
i=1 x

k
ij

n , j ∈ C, and k = 1, . . . ,Kj − 1. Here, we have made the assumption that γ 6= 0.

If γ = 0, m̂k
j can take on any value. Note that the above expression for m̂k

j is evaluable in case each

class k = 1, . . . ,Kj occurs at least once in the data. Furthermore, inspecting the above expression,

it is easy to see that the optimal centroid m̂k
j is nothing else than a logit transform of the maximum

likelihood estimates of the parameters (i.e., probabilities) from a multinomial distribution.
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C Clustering Formulations

Below, we provide two of the objective functions that we considered as formulations for the mixed

data convex clustering task.

C.1 Formulation I

The formulation we apply in this research is as in (3) and thus given by

min
M

(1− γ)
n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i ) + λ

∑
i<s

ωis||mi −ms||2,

where 0 ≤ γ ≤ 1 controls the relative influence of numerical and categorical attributes on the

clustering task. The interplay between loss functions and penalty term works as follows. In case γ

is low, the categorical loss function will have a small contribution on the objective function. This

leads to categorical centroids being able to freely move without affecting the categorical loss much.

As the categorical centroids do have a relatively strong influence on the penalty term contribution,

these centroids will be incentivized to move towards each other. This way, the total contribution of

the categorical features on the clustering, which is a combination of loss and penalty term, will be

limited. Therefore, the clustering will be mostly based on numerical attributes. In similar fashion,

a large value of γ leads to the numerical centroids being incentivized to move towards each other

and the clustering being mostly dependent on the categorical attributes. This is the exact behavior

we aim to achieve, such that this formulation is appropriate for the task at hand.

C.2 Formulation II

We also considered an objective function where γ appears in the penalty term, or, equivalently,

min
M

(1− γ)
n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i ) +

λ
∑
i<s

ωis

∣∣∣∣∣∣
∣∣∣∣∣∣
(1− γ)(mnum

i −mnum
s )

γ(mcat
i −mcat

s )

∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

(43)

Besides the (1− γ) and γ terms appearing in the penalty term, this formulation is exactly the same

as (3). Due to the adjusted penalty term, the interplay between loss functions and penalty is slightly

different. Namely, when γ is small, the contributions from both the categorical loss function and
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the categorical part of the penalty term are small. This way, regardless of the centroids in Mcat, the

categorical contribution to the objective function is small. Therefore, the categorical centroids can

move rather freely and are hardly incentivized to move in a specific direction.

Besides potentially leading to insensible centroids, this way clustering of categorical centroids

will not be enforced. This is contrary to our aim, as, when γ is low, i.e., close to 0, the categorical

centroids are inherently considered not to be highly informative and should thus move towards each

other. In similar fashion, when γ is high, i.e., close to 1, we will not directly enforce clustering in

numerical attributes. Therefore, we find this formulation less desirable than Formulation I.
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D MIDACC-ADMM

Instead of subgradient descent, we could solve the MIDACC problem using other, potentially more

computationally efficient, convex optimization algorithms. One of the most common type of methods

is ADMM, which uses variable splitting; the optimization problem is split into different pieces, all of

which are optimized sequentially given the values of the other pieces. Chi and Lange (2015) derive

ADMM for convex clustering with purely numerical data, which forms the cornerstone on which

MIDACC-ADMM is built.

Remember that the MIDACC objective function is given by (3), or,

min
M

(1− γ)
n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i ) + λ

∑
i<s

ωis||mi −ms||2.

In order to separate the loss functions and the penalty term, Chi and Lange (2015) propose to recast

this problem as the constrained optimization problem

min
M,V

(1− γ)

n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i ) + λ

∑
l∈E

ωl||vl||2

s.t. ml1 −ml2 − vl = 0, ∀l ∈ E ,

(44)

where we have introduced the new variables vl = ml1 −ml2 and the set E = {l = (l1, l2) : l1 <

l2 and ωl1l2 > 0}. Furthermore, we adopt the notation V to denote the stacked matrix of vl, ∀l ∈ E .

Chi and Lange (2015) propose to solve an equality-constrained problem like the one above by using

the so-called augmented Lagrangian Lν(M,V,Z), which is given by

Lν(M,V,Z) = (1− γ)

n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i ) + λ

∑
l∈E

ωl||vl||2

+
∑
l∈E
〈ζl,vl −ml1 + ml2〉+

ν

2

∑
l∈E
||vl −ml1 + ml2 ||22.

(45)

Here, ζl, ∀l ∈ E , is a vector of Lagrange multipliers or dual variables, which, in stacked form, is

contained in Z. Also, ν is a nonnegative tuning parameter and 〈a,b〉 = aTb. The idea of ADMM is

to optimize the augmented Lagrangian by means of sequential stepwise updates across the separate
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variables. These updates are represented as follows:

Mt+1 := argmin
M

Lν(M,Vt,Zt), (46a)

Vt+1 := argmin
V

Lν(Mt+1,V,Zt), (46b)

ζt+1
l := ζtl + ν(vt+1

l −mt+1
l1

+ mt+1
l2

), ∀l ∈ E . (46c)

Note that the first two updates (46a-46b) are sub-optimization problems, while the update of

dual variables is exact. The optimization problem for V is exactly the same as in Chi and Lange

(2015), since this variable term does not appear in the loss functions. Therefore, we have

vt+1
l := proxλ

ν
ωl||·||2(mt+1

l1
−mt+1

l2
− 1

ν
ζtl ), ∀l ∈ E , (47)

where

proxaf(·)(x) = argmin
v

(
af(v) +

1

2
||x− v||22

)
, (48)

is the proximal map function. In our case, we have a = λ
νωl and f(·) = || · ||2. The exact solution of

(47) can, as Chi and Lange (2015) show, be written as

vt+1
l :=

(
1−

λ
νωl

||mt+1
l1
−mt+1

l2
− 1

ν ζ
t||2

)
+

||mt+1
l1
−mt+1

l2
− 1

ν
ζt||2, ∀l ∈ E , (49)

with (c)+ = max{0, c}.
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As for the sub-problem of M, we can rewrite this problem to

Mt+1 := argmin
M

(1− γ)

n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i ) + λ

∑
l∈E

ωl||vtl ||2

+
∑
l∈E
〈ζtl ,vtl −ml1 + ml2〉+

ν

2

∑
l∈E
||vtl −ml1 + ml2 ||22

= argmin
M

(1− γ)
n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i )

+
∑
l∈E
〈ζtl ,vtl −ml1 + ml2〉+

ν

2

∑
l∈E
||vtl −ml1 + ml2 ||22

= argmin
M

(1− γ)
n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i )

+
ν

2

∑
l∈E
||vtl +

1

ν
ζtl −ml1 + ml2 ||22,

(50)

which, in contrast to the purely numerical problem of Chi and Lange (2015), does not yield a closed-

form expression. Wang and Allen (2021) encounter a similar issue in their ADMM implementation.

Based on non-differentiability of the sub-problem objective, they propose to use proximal gradient

descent or nested ADMM to update M. However, we note that, in our case, (50) does yield a

differentiable expression. This way, we can apply a simple gradient-based optimization scheme to

solve the M-update problem. We propose to use Newton’s method, since this method is known to

generally converge relatively quickly.

We refer to the above optimization problem as Mt+1 := argmin
M

ht+1(M), such that

ht+1(M) = (1− γ)
n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i )

+
ν

2

∑
l∈E
||vtl +

1

ν
ζtl −ml1 + ml2 ||22.

(51)

Newton’s method seeks to optimize Mt+1 by means of iterative updates

mi := mi −

(
∂2
(
ht+1(M)

)
∂mi∂mT

i

)−1
∂
(
ht+1(M)

)
∂mi

, i = 1, . . . , n, (52)

such that we update mi by subtracting its inverse Hessian times the gradient. When some conver-

gence criterion is reached, we set Mt+1 = M and complete our M-update. Below, we continue our

derivation for updating a single mi. Note, however, that this derivation applies to all i = 1, . . . , n.
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In order to implement Newton’s method, we need the gradient and Hessian of ht+1(M) to mi.

First of all, we can write the gradient as

∂
(
ht+1(M)

)
∂mi

= (1− γ)
∂ (
∑n

s=1 `
num(xnums ,mnum

s ))

∂mi
+ γ

∂
(∑n

s=1 `
cat(xcats ,mcat

s )
)

∂mi

+
ν

2

∂
(∑

l∈E ||vtl + 1
ν ζ

t
l −ml1 + ml2 ||22

)
∂mi

.

(53)

We know, from (12a-12b), that

∂ (
∑n

s=1 `
num(xnums ,mnum

s ))

∂mi
= −(xnumi −mnum

i ), (54a)

∂
(∑n

s=1 `
cat(xcats ,mcat

s )
)

∂mk
ij

= −xkij +
exp

(
mk
ij

)
1 +

∑Kj−1
l=1 exp

(
ml
ij

) , j ∈ C, k = 1, . . . ,Kj − 1, (54b)

which we derive in Appendix E. Furthermore, we can derive

∂
(∑

l∈E ||vtl + 1
ν ζ

t
l −ml1 + ml2 ||22

)
∂mi

=
∑
l∈E

∂
(
||vtl + 1

ν ζ
t
l −ml1 + ml2 ||22

)
∂mi

=
∑

l∈E, l1=i

∂
(
||vtl + 1

ν ζ
t
l −ml1 + ml2 ||22

)
∂mi

+
∑

l∈E, l2=i

∂
(
||vtl + 1

ν ζ
t
l −ml1 + ml2 ||22

)
∂mi

= −2
∑

l∈E, l1=i

(
vtl +

1

ν
ζtl −ml1 + ml2

)
+ 2

∑
l∈E, l2=i

(
vtl +

1

ν
ζtl −ml1 + ml2

)

= 2

 ∑
l∈E, l2=i

(
vtl +

1

ν
ζtl −ml1 + ml2

)
−

∑
l∈E, l1=i

(
vtl +

1

ν
ζtl −ml1 + ml2

) .

(55)

Plugging in the gradient expressions from (54-55) into (53), we obtain the gradient of ht+1(M)

to mi. In order to find the Hessian, we use this gradient alongside the fact that ∂2(ht+1(M))
∂mi∂mT

i
=

∂
∂mT

i

(
∂(ht+1(M))

∂mi

)
, such that we have
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∂2
(
ht+1(M)

)
∂mi∂mT

i

=
∂

∂mT
i

(
(1− γ)

∂ (
∑n

s=1 `
num(xnums ,mnum

s ))

∂mi
+ γ

∂
(∑n

s=1 `
cat(xcats ,mcat

s )
)

∂mi

+
ν

2

∂
(∑

l∈E ||vtl + 1
ν ζ

t
l −ml1 + ml2 ||22

)
∂mi

)

= (1− γ)
∂

∂mT
i

(
∂ (
∑n

s=1 `
num(xnums ,mnum

s ))

∂mi

)
+ γ

∂

∂mT
i

(
∂
(∑n

s=1 `
cat(xcats ,mcat

s )
)

∂mi

)

+
ν

2

∂

∂mT
i

(
∂
(∑

l∈E ||vtl + 1
ν ζ

t
l −ml1 + ml2 ||22

)
∂mi

)
.

(56)

Using the above expression, we can, in parts, derive the Hessian. For the first part (the numerical

loss), we use the fact that this part is purely dependent on the numerical part of the centroid

matrix, or Mnum. This means that the categorical centroids have contribution 0 to the Hessian

of the numerical loss, such that the Hessian is a block matrix with nonzero entries only in the

(pnum × pnum) block formed by the numerical part of the centroids. We derive this block as

∂

∂(mnum
i )T

(
∂ (
∑n

s=1 `
num(xnums ,mnum

s ))

∂mnum
i

)
=
∂ (−(xnumi −mnum

i ))

∂(mnum
i )T

= Ipnum . (57)

In computing the second part of the Hessian (the categorical loss), we use a similar dependence.

That is, the Hessian of the categorical loss is a block matrix with nonzero contribution only for

the categorical part of the centroids. To find an expression for this contribution, we perform an

element-wise derivation, such that we seek to find

∂

∂mb
iq

(
∂
(∑n

s=1 `
cat(xcats ,mcat

s )
)

∂mk
ij

)
=

∂

∂mb
iq

−xkij +
exp

(
mk
ij

)
1 +

∑Kj−1
l=1 exp

(
ml
ij

)
 , (58)

with j, q ∈ C and k, b = 1, . . . ,Kj − 1. For this expression, the partial derivative depends on the

nature of q and b. More specifically, there are three cases: i) j 6= q, ii) j = q and k = b, and iii)

j = q and k 6= b.

In the first case, we have

∂

∂mb
iq

−xkij +
exp

(
mk
ij

)
1 +

∑Kj−1
l=1 exp

(
ml
ij

)
 = 0, j 6= q, (59)
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since none of the terms are dependent on q and b when j 6= q.

In the second case, we derive

∂

∂mk
ij

−xkij +
exp

(
mk
ij

)
1 +

∑Kj−1
l=1 exp

(
ml
ij

)
 =

exp
(
mk
ij

)(
1 +

∑Kj−1
l=1 exp

(
ml
ij

))
− exp

(
mk
ij

)2
(

1 +
∑Kj−1

l=1 exp
(
ml
ij

))2 (60)

=
exp

(
mk
ij

)
1 +

∑Kj−1
l=1 exp

(
ml
ij

) − exp
(
mk
ij

)2
(

1 +
∑Kj−1

l=1 exp
(
ml
ij

))2 .
For the third case, we can write

∂

∂mb
ij

−xkij +
exp

(
mk
ij

)
1 +

∑Kj−1
l=1 exp

(
ml
ij

)
 =

− exp
(
mk
ij

)
exp

(
mb
ij

)
(

1 +
∑Kj−1

l=1 exp
(
ml
ij

))2 , k 6= b. (61)

Putting together the three cases, we get the complete second part of the Hessian, which is the part

based on the categorical loss.

The third part of the Hessian yields

∂

∂mT
i

(
∂
(∑

l∈E ||vtl + 1
ν ζ

t
l −ml1 + ml2 ||22

)
∂mi
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= . . .

. . . =
∂
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= 2
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ζtl −ml1 + ml2

)
− 2
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∂

∂mT
i

(
vtl +
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ν
ζtl −ml1 + ml2

)
= 2

∑
l∈E, l2=i

∂

∂mT
i

(−ml1 + ml2)− 2
∑

l∈E, l1=i

∂

∂mT
i

(−ml1 + ml2)

= 2
∑
l∈Ei

Ip,

(62)

where Ei = {l = (l1, l2) : l1 < l2 and (l1 = i or l2 = i)}.

Plugging in the expressions from (57), (59-61), and (62) into (56), we obtain the Hessian of

ht+1(M) to mi. Using this Hessian alongside the gradient from (53), we can iteratively update mi

following (52). Doing so for all i = 1, . . . , n until convergence, we solve the M-update step of the

ADMM algorithm. To put ADMM in MIDACC into perspective, we provide Algorithm 3.

In Algorithm 3, we use the convergence criteria on primal and dual residuals as specified by

Boyd et al. (2011) and worked out by Chi and Lange (2015). Furthermore, the Newton(·) function
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Algorithm 3: MIDACC-ADMM
Data: Data matrix X

(n×p)
; φ; K; γ; λ; δ; ν

Result: Optimal centroids M∗; optimal V∗; optimal Z∗

1 Compute pairwise weights ωis = Ik,is exp(−φd(xi,xs)), ∀i, s = 1, . . . , n

2 Initialize V0 and Z0; set t ← 0; M0 ← X

3 while convergence criteria not met do

4 Mt+1 := Newton(Mt,Vt,Zt)

5 for ∀l ∈ E do

6 vt+1
l :=

(
1−

λ
ν
ωl

||mt+1
l1
−mt+1

l2
− 1
ν
ζt||2

)
+

||mt+1
l1
−mt+1

l2
− 1

ν ζ
t||2

7 ζt+1
l := ζtl + ν(vt+1

l −mt+1
l1

+ mt+1
l2

)

8 t := t+ 1

9 M∗ ←Mt

10 V∗ ← Vt

11 Z∗ ← Zt

Algorithm 4: Newton
Data: Mt; Vt; Zt

Result: Updated centroids Mt+1

1 Initialize M←Mt

2 while convergence criteria not met do

3 for ∀i = 1, . . . , n do

4 Compute gradient ∂(ht(M))
∂mi

using equation (53)

5 Compute Hessian ∂2(ht+1(M))
∂mi∂mT

i
using equation (56)

6 mi := mi −
(
∂2(ht+1(M))
∂mi∂mT

i

)−1
∂(ht+1(M))

∂mi

7 Mt+1 ←M

performs Newton’s method for the M-update step, as explicitly presented in Algorithm 4.

In Algorithm 4, we simply calculate the gradient and Hessian for all separate observation cen-

troids and update these until some convergence criterion is reached. Similar to MIDACC-SGD,

we choose to terminate the algorithm when either the Frobenius norm of the stacked gradients
∂(ht+1(M))

∂mi
over i is smaller than a certain relative threshold ε, or when the iteration count exceeds

a threshold, e.g., 1000.

Note that, in general, ADMM is a faster optimization method than subgradient descent. This
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way, computation-wise, MIDACC-ADMM may be preferred over MIDACC-SGD. However, as we

previously noted, this research emphasizes interpretability over computational benefits, such that we

implement MIDACC-SGD as our main method. In addition, we should note that although ADMM

itself generally requires few iterations, a single M-update requires a full run of Algorithm 4. This may

be computationally costly and could thus lead to diminishing computational benefits of MIDACC-

ADMM over MIDACC-SGD. However, remedies for this issue have recently been proposed; namely,

instead of running Newton’s method until convergence, Weylandt et al. (2020) and Wang and Allen

(2021) advise to perform a single iteration before moving on to the V- and Z-updates. This is an

interesting proposition for future research.
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E Gradient Derivations

Below, we derive the gradients of the numerical and categorical loss functions as well as the penalty

term with respect to M.

E.1 Numerical Loss

The gradient of the numerical loss function `num(xnumi ,mnum
i ) with respect to mnum

i , i = 1, . . . , n,

is given by

∂`num(xnumi ,mnum
i )

∂mnum
i

=
∂
(
1
2 ||x

num
i −mnum

i ||22
)

∂mnum
i

= −(xnumi −mnum
i ).

(63)

E.2 Categorical Loss

The gradient of the categorical loss function `cat(xcati ,mcat
i ) with respect to mcat

i , i = 1, . . . , n is

easily derived element-wise. Thus, we calculate the derivative with respect to mk
ij , or,

∂`cat(xcati ,mcat
i )

∂mk
ij

=
∂
(∑

j∈C

(∑Kj−1
l=1 −xlijml

ij + log
(

1 +
∑Kj−1

l=1 exp
(
ml
ij

))))
∂mk

ij

=
∂
(
−xkijmk

ij + log
(

1 +
∑Kj−1

l=1 exp
(
ml
ij

)))
∂mk

ij

= −xkij +
exp

(
mk
ij

)
1 +

∑Kj−1
l=1 exp

(
ml
ij

) ,
(64)

for j ∈ C and k = 1, . . . ,Kj − 1.
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E.3 Penalty Term

We compute the gradient of the penalty term λ
∑

i<s ωis||mi−ms||2 with respect to mi, i = 1, . . . , n,

as follows:

∂
(∑

r<s ωrs||mr −ms||2
)

∂mi
= λ

(∑
s>i

ωis
∂ (||mi −ms||2)

∂mi
+
∑
s<i

ωsi
∂ (||ms −mi||2)

∂mi

)

= λ
∑
s6=i

ωis
∂ (||mi −ms||2)

∂mi

= λ
∑
s 6=i

ωis
∂
((

(mi −ms)
T (mi −ms)

) 1
2

)
∂mi

= λ
∑
s6=i

ωis
mi −ms

||mi −ms||2
,

(65)

where the second line follows from symmetry in the pairwise weights and Euclidean distance, i.e.,

ωis = ωsi and ||mi −ms||2 = ||ms −mi||2.
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F Penalty Subgradient Derivation

In this section, we derive the subgradient of the penalty term
∑

i<s ωis||mi−ms||2 that we provided

in (13). Note that, for simplicity reasons, we exclude the constant λ from this derivation. Since we

know that the gradient of a sum is equal to the sum of gradients, we can rewrite this subgradient to

gi

(∑
i<s

ωis||mi −ms||2

)
=
∑
i<s

ωisgis (||mi −ms||2) , (66)

where gis (||mi −ms||2) is the subgradient belonging to the pair of observations i, s = 1, . . . , n. For

simplicity, we use βis = gis (||mi −ms||2). Before deriving the form of βis, let us take a look at the

definition of a subgradient. We say that g is a subgradient of function f : D → R if

f(x + a) ≥ f(x) + 〈g, a〉, for all a ∈ D, (67)

where 〈g,a〉 = gTa. In our case, let f(·) be the Euclidean distance, that is, f(x) = ||x||2. Further-

more, g = βis, and let x = 0 and a = mi −ms, such that (67) resolves to

||mi −ms||2 ≥ 〈βis, (mi −ms)〉, ∀mi,ms ∈ Rp. (68)

In case mi−ms 6= 0, we can analytically solve for βis (see Appendix E.3), which leads to the solution

βis =
mi −ms

||mi −ms||2
, mi 6= ms. (69)

In case mi −ms = 0, we cannot evaluate this expression. However, using (68), we can specify the

form of βis even in this case. Firstly, let us compare βis with βsi. For the latter subgradient, we get

||ms −mi||2 ≥ 〈βsi, (ms −mi)〉 ⇔ ||mi −ms||2 ≥ 〈βsi,−(mi −ms)〉, (70)

which, in case βsi = −βis, gives us the exact same expression as (68). Thus, if βis is a valid

subgradient, we take the negative of this subgradient to obtain a valid subgradient βsi. This is also

established from (69), where βis = −βsi. Therefore, from now on, we use βis = −βsi.
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To extract information on the size of the subgradient βis, we use

〈βis, (mi −ms)〉 = ||〈βis, (mi −ms)〉||2

≤ ||βTis||2||mi −ms||2

= ||βis||2||mi −ms||2

≤ ||mi −ms||2, if ||βis||2 ≤ 1,

(71)

where we have used the Cauchy-Schwarz inequality ||ab||2 ≤ ||a||2||b||2. This derivation implies that

||βis||2 ≤ 1 is a sufficient condition on the magnitude of the subgradient. Furthermore, Hoefling

(2010) derives that ||β||2 > 1 does not satisfy (68).

Thus, we have established that

βis =


mi−ms

||mi−ms||2 , if mi 6= ms

{βis : βis = −βsi and ||βis||2 ≤ 1}, if mi = ms.

(72)

Therefore, we can rewrite (66) to

gi

(∑
i<s

ωis||mi −ms||2

)
=
∑
i<s

ωisβis

=
∑

s 6=i, ms 6=mi

ωis
mi −ms

||mi −ms||2
+

∑
s 6=i, ms=mi

ωisβis,

(73)

with βis = −βsi and ||βis||2 ≤ 1. This concludes the derivation of (13).
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G Extended Sensitivity Analysis on γ

Here, we present extended results for the sensitivity analysis on γ as given in Section 5.1.4, thus

providing results for all five experiments from Sections 4.1.1 and 4.1.2. We do so using all pro-

posed γ measures as well as values of γ ranging between 0 and 1 with stepsize 0.1. Here, we

use notation proto1 and proto2 for γ = hnum

hnum+hcat where we calculate hnum and hcat using (18a-

18b). More specifically, proto1 uses hcat = 1
pcat

∑
j∈C

(
1−

∑Kj
k=1

(
p̂kj

)2)
, while proto2 has hcat =

1
pcat

∑
j∈C

(
1−maxk p̂

k
j

)
. For reference, we also provide baseline results.

Table 9: Mean performance of MIDACC for various choices of γ. Experiments I and II refer to the
spherical and non-spherical experiments from Section 4.1.1, respectively. Experiments III, IV, and V
refer to the experiments from Section 4.1.2 with noise and signal in both data types, signal in categorical
but noise in numerical data, and signal in numerical but noise in categorical data, respectively.

Experiment I Experiment II Experiment III Experiment IV Experiment V

Acc ARI Acc ARI Acc ARI Acc ARI Acc ARI

γ - 0 0.890 0.614 0.981 0.926 0.969 0.879 0.535 0.001 0.969 0.880
γ - 0.1 0.972 0.893 0.986 0.946 0.989 0.955 0.637 0.162 0.968 0.877
γ - 0.2 0.986 0.945 0.984 0.937 0.992 0.968 0.954 0.823 0.966 0.870
γ - 0.3 0.983 0.932 0.975 0.903 0.990 0.960 0.957 0.836 0.960 0.845
γ - 0.4 0.981 0.924 0.962 0.852 0.983 0.935 0.958 0.840 0.942 0.784
γ - 0.5 0.976 0.908 0.943 0.785 0.976 0.908 0.957 0.836 0.899 0.655
γ - 0.6 0.972 0.892 0.910 0.676 0.966 0.869 0.958 0.838 0.793 0.403
γ - 0.7 0.970 0.885 0.892 0.616 0.963 0.858 0.958 0.839 0.743 0.299
γ - 0.8 0.970 0.885 0.879 0.578 0.961 0.852 0.957 0.836 0.688 0.202
γ - 0.9 0.969 0.882 0.864 0.534 0.959 0.844 0.957 0.837 0.644 0.113
γ - 1.0 0.964 0.860 0.576 0.097 0.949 0.807 0.941 0.808 0.515 0.001
γ - loss 0.986 0.944 0.981 0.925 0.991 0.964 0.956 0.831 0.962 0.856
γ - dist 0.984 0.938 0.973 0.895 0.991 0.964 0.955 0.826 0.961 0.850
γ - proto1 0.972 0.892 0.920 0.707 0.969 0.881 0.958 0.837 0.847 0.531
γ - proto2 0.971 0.888 0.908 0.666 0.967 0.871 0.958 0.837 0.804 0.429
γ - mod 0.986 0.944 0.984 0.937 0.991 0.963 0.956 0.830 0.967 0.873
KAMILA 0.986 0.944 0.967 0.872 0.993 0.974 0.652 0.200 0.971 0.887
K-prototypes 0.986 0.946 0.973 0.894 0.990 0.961 0.952 0.817 0.962 0.852
HAC 0.960 0.846 0.886 0.600 0.944 0.789 0.940 0.775 0.649 0.120
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H MIDACC Convexity in γ

In this section, we prove that, given M, the MIDACC objective function is convex in γ. Remember

that the MIDACC objective function is given by

min
M

(1− γ)
n∑
i=1

`num(xnumi ,mnum
i ) + γ

n∑
i=1

`cat(xcati ,mcat
i ) + λ

∑
i<s

ωis||mi −ms||2,

which, given M, we consequently denote by f(γ|X,M). This proof relies on the pairwise weights

being dense, i.e., ωis = exp(−φd(xi,xs)). Thus, we do not use sparse, KNN, weights. Invoking

sparsity namely leads to non-differentiability of the weights to γ. Furthermore, we use

d(xi,xs) =
1− γ
pnum

∑
j∈N

|xij − xsj |
maxi xij −mini xij

+
γ

pcat

∑
j∈C

I(xij 6= xsj)

= (1− γ)dnum(xi,xs) + γdcat(xi,xs),

(74)

for i, s = 1, . . . , n. In order to prove convexity in γ, it suffices to show that ∂2f(γ|X,M)
∂γ2

> 0 ⇔
∂
∂γ

(
∂f(γ|X,M)

∂γ

)
> 0. We derive

∂f(γ|X,M)

∂γ
= −

n∑
i=1

`num(xnumi ,mnum
i ) +

n∑
i=1

`cat(xcati ,mcat
i )

+ λφ
∑
i<s

(
dnum(xi,xs)− dcat(xi,xs)

)
ωis||mi −ms||2.

(75)

Thus,

∂2f(γ|X,M)

∂γ2
=

∂

∂γ

(
−

n∑
i=1

`num(xnumi ,mnum
i ) +

n∑
i=1

`cat(xcati ,mcat
i )

+ λφ
∑
i<s

(
dnum(xi,xs)− dcat(xi,xs)

)
ωis||mi −ms||2

)

= λφ
∑
i<s

(
dnum(xi,xs)− dcat(xi,xs)

)
||mi −ms||2

∂ωis
∂γ

= λφ2
∑
i<s

(
dnum(xi,xs)− dcat(xi,xs)

)2
ωis||mi −ms||2

> 0, if |C| > 1,

(76)
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which concludes this proof. The inequality follows from λ > 0, φ2 > 0,
(
dnum(xi,xs)− dcat(xi,xs)

)2
>

0 and ωis > 0 for some pair {i, s}, and ||mi = ms||2 > 0 for some i, s with mi 6= ms. The lat-

ter property holds iff |C| > 1. This makes sense, as the second partial derivative of the objective

function to γ purely originates from the penalty term, which is 0 in case |C| = 1. Note that we

assume that λ > 0, which is logical given the fact that, when λ = 0, no regularization takes place. In

this case, we can analytically solve the MIDACC objective function, for which we provide solutions,

which are independent of γ, in Appendix B.1.
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I W-MIDACC

In this appendix, we present, in detailed fashion, W-MIDACC, the corresponding W-MIDACC-SGD

algorithm, and some rationale on its potential through illustrative experiments.

In MIDACC, we apply standardization to unit variance for numerical and dummy-coding for

categorical attributes. This scheme makes sure that all attributes are processed on the same scale,

such that undesirably and unnecessarily disproportional variable contributions are corrected for.

In addition, through the MIDACC parameter γ, we allow the user to control the relative weight

placed on numerical and categorical features when employing mixed data clustering. Thus, within

the two data types, we unify the scale of measurement, and across data types, we allow for user-

specific control on the clustering contribution. However, this formulation does not allow for specific

variables being up- or downweighted in the clustering process. Since it is realistic that we may want

to weight some variables more strongly than others, below we introduce a feature-specific weighted

formulation of MIDACC, or W-MIDACC.

The idea of W-MIDACC is simple; we employ variable-specific weights in the objective func-

tion (3) in similar fashion to incorporating γ. This set-up, which is inspired by the W-K-means

formulation of Huang et al. (2005), allows variables to differently contribute to the clustering task.

As previously noted, the MIDACC loss functions are based on the assumption of conditional

independence across attributes. This way, we can write the combined loss function across attributes

as the sum of loss functions per attribute, or

`(X,M) =
∑
j

`(xj ,mj). (77)

In similar fashion, this means that we can write the variable-weighted loss function `w(X,M) as the

weighted sum of attribute-specific losses, or,

`w(X,M) =
∑
j

wj`w(xj ,mj). (78)
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Using the regular loss functions (4-5), we can write the W-MIDACC loss functions as

`numw (xnumi ,mnum
i ) =

1

2
||(wnum)T (xnumi −mnum

i )||22, i = 1, . . . , n, (79a)

`catw (xcati ,mcat
i ) =

∑
j∈C

wj

Kj−1∑
k=1

−xkijmk
ij + log

1 +

Kj−1∑
k=1

exp
(
mk
ij

) , i = 1, . . . , n, (79b)

where (wnum)T = [w1 w2 . . . wpnum ]. The objective function can now be written as

min
M

n∑
i=1

`numw (xnumi ,mnum
i ) +

n∑
i=1

`catw (xcati ,mcat
i ) + λ

∑
i<s

ωis||mi −ms||2, (80)

where wj ≥ 0, j = 1, . . . , p, and
∑p

j=1wj = 1. For notation purposes, the complete weight vector can

be written as w =
[
wnum wcat

]
with wcat =

[
w1 w2 . . . wpcat

]
and wnum as before. Note that

we do not specify parameter γ in the objective anymore; via the variable-specific weights, the relative

effect of categorical variables can now be directly accounted for. As with γ, we also incorporate the

variable-specific weights in the distance function d(xi,xs) used for computing pairwise weights ωis.

We can write this distance function as

ωis = Ik,is exp (−φd(xi,xs))

= Ik,is exp

−φ
 1

pnum

∑
j∈N

wj
|xij − xsj |

maxi xij −mini xij
+

1

pcat

∑
j∈C

wjI(xij 6= xsj)

 .
(81)

In terms of interpretation, W-MIDACC works as follows. A larger value of wj causes feature j to

be more important in the clustering task. When wj = 0, the variable is considered negligible. In

case all variables are considered equally important prior to running W-MIDACC, we can use weights

wj = 1
p , ∀j = 1, . . . , p. In case we wish to use type-specific weights, we can set wj = (1−γ)

p , j ∈ N and

wj = γ
p , j ∈ C. Thus, the weighted formulation encaptures regular MIDACC, albeit with weights

scaled by the number of features p. Since the weights wj are simple constants independent of M,

the (sub)gradient calculations do not change apart from a variable-specific multiplicative factor. In

addition, due to the nonnegative weights and piecewise convexity across features, the W-MIDACC

formulation is additionally convex. Using this fact, we can run W-MIDACC with only some minor

adjustments to Algorithm 1.

Note that, similar to regular MIDACC, the variable-specific weights do not appear in the penalty

term itself. In line with the reasoning provided in Appendix C, this is due to the behavior that smaller
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variable-specific weights inherently lead to relatively larger weights for that variable being put on the

penalty term, driving cluster centroids on that variable towards each other without bearing (much)

costs. This means that the clustering is then driven by the other variables for which the objective

function remains a trade-off between loss and penalty. This is the exact behavior we wish to achieve.

Were we to put the variable-specific weights in the penalty term, this would mean that, in case

wj is small, the centroids of feature j are hardly incentivized to take on specific values. This way, we

do not achieve clustering on these variables, but rather average their ‘random’ values when merging

centroids based on the other features (that have larger weight). This is not the behavior we aim for,

such that we choose not to apply variable-specific weights in the penalty term.

In terms of parameter selection, we need to specify the variable weights in w. To do so, we

propose to use pre-specified weights. Besides saving computation time, we do so as we view these

variable-specific weights more as a ‘user flexibility’ feat of the algorithm than an optimization task.

Thus, we recommend the user to input weights based on domain knowledge or context-specific

wishes. Optimization of the weights given the data is outside the scope of this paper.

I.1 W-MIDACC-SGD

In similar fashion to regular MIDACC, we can solve the W-MIDACC convex optimization problem

(80) by means of a subgradient descent (SGD) algorithm, which we dub W-MIDACC-SGD. This

algorithm is highly similar to Algorithm 1, although there are some small differences.

Due to the variable-specific weights, the (sub)gradients of W-MIDACC differ from those derived

for MIDACC. We can write the partial derivatives of the loss functions `numw (xnumi ,mnum
i ) and

`catw (xcati ,mcat
i ), and the penalty term

∑
i<s ωrs||mi −ms||2, respectively, as

∂`numw (xnumi ,mnum
i )

∂mnum
i

= −wnum ◦ (xnumi −mnum
i ), (82a)

∂`cat(xcati ,mcat
i )

∂mk
ij

= −wjxkij +
wj exp

(
mk
ij

)
1 +

∑Kj−1
l=1 exp

(
ml
ij

) , j ∈ C, k = 1, . . . ,Kj − 1, (82b)

∂
(∑

r<s ωrs||mr −ms||2
)

∂mi
=
∑
s 6=i

ωis
mi −ms

||mi −ms||2
, (82c)

where ◦ denotes the Hadamard (entrywise) vector product and i = 1, . . . , n. Note that the above

partial derivatives differ from those of MIDACC only through the variable-specific weight factor in

the loss functions. The form of the penalty term partial derivative (82c) is exactly the same as that
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in (12c), although we now apply the pairwise weights from (81). This way, the subgradient of the

penalty term for observation i has the same form as in (13) and is given by

gi

(∑
i<s

ωis||mi −ms||2

)
=

∑
s 6=i, ms 6=mi

ωis
mi −ms

||mi −ms||2
+

∑
s 6=i, ms=mi

ωisβis, (83)

with βis = −βsi and ||βis||2 ≤ 1. The subgradient of the penalty term for cluster c is as in (14), or,

gc

(∑
i<s

ωis||mi −ms||2

)
=

1

|c|
∑
i∈c

 ∑
s 6=i, ms 6=mi

ωis
mi −ms

||mi −ms||2

 , i ∈ c. (84)

We can now write the subgradient of the W-MIDACC objective function as

gc(f(M)) =
1

|c|
∑
i∈c

(
∂`numw (xnumi ,mnum

i )

∂mi
+
∂`catw (xcati ,mcat

i )

∂mi

)

+ λgc

(∑
i<s

ωis||mi −ms||2

)
,

(85)

where we can fill in the expressions (82a-82b) and (84) for the loss functions and the penalty term,

respectively. Using these expressions, we can solve the W-MIDACC convex optimization problem

using subgradient descent, for which we provide Algorithm 5.

In Algorithm 5, the function W − SubGradient(X,M,w) computes the cluster subgradients

based on (85). We compute the minimum fusion distance δ slightly differently from the computation

(16) used in MIDACC. Namely, we use

δ =
1

2
min
i,s

||(wnum)T (xnumi − xnums )||2 +
∑
j∈C

wjI(xij 6= xsj)

 . (86)

Note that the rest of the algorithm is the same as in MIDACC-SGD, i.e., we use the same procedures

for line search, fusion, and convergence. In similar fashion to Appendix D, we can also extend W-

MIDACC to apply an ADMM-type algorithm.
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Algorithm 5: W-MIDACC-SGD
Data: Data matrix X

(n×p)
; φ; K; variable weights w

(p×1)
; λ; minimum fusion distance δ

Result: Optimal centroids M∗
(n×p)

; optimal set of clusters C∗

1 Compute pairwise weights ωis = Ik,is exp(−φd(xi,xs)), ∀i, s = 1, . . . , n

2 Initialize t ← 1; M0 ← X; G0 ←W − SubGradient(X,M0,w); C ← {{1}, {2}, . . . , {n}}
3 while convergence criteria not met do

4 α← LineSearch(Mt−1,Gt−1, t)

5 Mt ←Mt−1 − αGt−1

6 d∗ ← min
i,s
||mi −ms||2, mi 6= ms

7 i∗, s∗ ← argmin
i,s
||mi −ms||2, mi 6= ms

8 while d∗ < δ do

9 Mt, C ← Fuse(mi∗ ,ms∗)

10 if |C| = 1 then

11 break

12 d∗ ← min
i,s
||mi −ms||2, mi 6= ms

13 i∗, s∗ ← argmin
i,s
||mi −ms||2, mi 6= ms

14 Gt ←W − SubGradient(X,Mt,w)

15 t := t+ 1

16 M∗ ←Mt−1

17 C∗ ← C

I.2 Usage

In our opinion, W-MIDACC could be used for two ends. Firstly, we note that W-MIDACC increases

flexibility of the MIDACC framework. That is, if the user aims to cluster a data set from an online

webshop and is more interested in clustering based on product data compared to user data, this

user can assign larger weight to the product attributes compared to user features without having to

remove entire user features from the analysis. This behavior makes for a convenient situation that

can potentially be extremely valuable.

Secondly, given a data set where some features prove to be more important for the clustering

than others, W-MIDACC can improve performance. We show some numerical examples in Table

10 using the three signal-noise experiments from Section 4.1.2, where we use r = 200 replications.

We assume prior knowledge on the signal and noise features is available and assign 8 times as large
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weights to signal features compared to noise features.

In Table 10, experiments I, II, and III refer to the experiments with signal and noise in both

data types, signal in categorical but noise in numerical data, and signal in numerical but noise

in categorical data, respectively. For completeness, we have also included MIDACC and baseline

results. Although MIDACC already exhibits strong performance for all three experiments, we show

that W-MIDACC is able to increase this performance. This is a promising result, which underlines

the value that lies in further exploring W-MIDACC.

Table 10: Mean performance of (W-)MIDACC and the baseline
methods for the three experiments from Section 4.1.2. Experiments
I, II, and III refer to the cases with noise and signal in both data
types, signal in categorical but noise in numerical data, and signal
in numerical but noise in categorical data, respectively.

Experiment I Experiment II Experiment III

Acc ARI Acc ARI Acc ARI

W-MIDACC 0.992 0.968 0.961 0.849 0.970 0.880
MIDACC 0.989 0.956 0.961 0.849 0.957 0.834
KAMILA 0.992 0.968 0.624 0.158 0.974 0.899
K-prototypes 0.987 0.950 0.953 0.820 0.965 0.864
HAC 0.944 0.791 0.942 0.781 0.651 0.113
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