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Abstract

In this paper I investigate an application of Hierarchical Outer Power transformed Archim-

edean Copulas (HOPACs) recently proposed by Górecki et al. (2021). I use HOPACs for

modelling the price-risk exposure of an oil refinery. I use Monte-Carlo simulations from said

HOPACs to determine optimal hedging ratios for reducing the Value-at-Risk (VaR) and

Expected-Shortfall (ES). This research extends the methods from Alexander et al. (2013),

by targeting VaR and ES rather than variance, and extends the research by considering the

HOPAC models. I find that some HOPAC implementations lead to a substantial reduc-

tion in ES. I also find that disregarding volatility clustering in favor of model parsimony,

leads to increased performance in this context. However, a naive method reduces moderate

losses more effectively than the HOPAC counterparts. A refinery concerned with reducing

moderate losses should therefore consider targeting a different risk measure instead.
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1 Introduction

Energy from oil commodities enable essential services, from providing heat to providing energy

for manufacturing and transportation. Downey (2009) states that refineries face high capital

investments, and until recently, low profit margins. A refinery may increase their financial

attractiveness to investors by mitigating the risk of substantial losses. Refinery profit margins

are closely related to the crack spread, which is the price difference between crude oil and refined

commodities (EIA, 2002). Haigh and Holt (2002) propose a two period framework to determine

an appropriate hedging strategy. The hedging strategy mainly concerns the appropriate amount

of hedging per commodity, expressed in hedging ratios. Ji and Fan (2011) use GARCH models

to determine time varying minimum-variance hedging ratios, and find that the GARCH models

significantly outperform a naive implementation. However, Alexander et al. (2013) find that

GARCH models incur high hedging costs due to considerable parameter uncertainty. Moreover,

Alexander et al. (2013) find that the hedging costs cause a naive strategy to outperform all

GARCH implementations. Next, Sukcharoen and Leatham (2017) argue that refineries should

only mitigate the risk of adverse price movements, rather than reduce variance, they consider the

SV, LPM, VaR, and ES risk measures instead. Furthermore, Sukcharoen and Leatham (2017)

use a Gaussian copula, Student’s t copula, Clayton copula, C- and D-vine copulas to model the

complete joint distribution of commodity spots, and futures prices. The dependence between

spots and futures prices is important due to the risk eminating from the mismatch between

commodity delivery and the futures expiry. Sukcharoen and Leatham (2017) find that the D-vine

copula enables the highest risk reduction for each respective measure. Sukcharoen and Leatham

(2017) state that the D-vine copula performance is likely linked to its versatility in modelling

the asymetric (tail) dependence between the respective financial instruments. However, despite

the findings of Alexander et al. (2013), Sukcharoen and Leatham (2017) do not consider trading

costs. Furthermore, Sukcharoen and Leatham (2017) only compare the D-vine copula against

alternatives that lack the ability to capture asymetric (tail) dependence structures.

I investigate an application of Hierarchical Outer Power transformed Archimedean Cop-

ulas (HOPACs) recently proposed by Górecki et al. (2021), and use them for modelling the
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price-risk exposure of an oil refinery. Górecki et al. (2021) introduce HOPACs as a combi-

nation between Archimedean Copulas (ACs) with an outer power (OP) transformation, and

Hierarchical ACs (HACs). The OP transformation allows for a better fit in both body- and

tail-dependence compared to a regular HAC (Górecki et al., 2021). Like HACs, HOPACs also

allow for modelling asymetric dependence between marginals. The extra flexibility in both

body- and tail-dependence enables HOPACs to compete with the D-vine copulas. Furthermore,

HOPACs benefit from a more intuitive and parsimonious dependence structure compared to vine

copulas (Okhrin et al., 2013). Model parsimony might offer a distinct advantage with respect

to parameter uncertainty in the volatile oil markets (Alexander et al., 2013). To my knowledge,

no article yet exists that applies HOPACs to data outside of a simulation. Furthermore, I also

consider hedging costs since Alexander et al. (2013) find them to be a practical limitation for

most proposed models. Besides, I investigate the parsimony trade-off in the context of modelling

volatility clustering, by using a GARCH(1, 1) model to filter each marginal.

I investigate HOPAC effectiveness in the oil refinery hedging framework from Haigh and

Holt (2002), using historical data from Jun 1986 through Mar 2021. I estimate two HOPAC

implementations from four families on historical observations from a five-year backward-looking

moving window. The two HOPAC implementations are; with accounting for volatility cluster-

ing (HOPAC-GARCH), and without (HOPAC-i.i.d.). Disregarding the presence of volatility

clustering leads to a more parsimonious model, which might increase hedging performance due

to lower estimation uncertainty. I account for volatility clustering by using a GARCH(1, 1)

model to filter observations from each marginal. I use four generating functions in each imple-

mentation; Ali–Mikhail–Haq, Clayton, Frank, and Joe. Next, I use Monte-Carlo simulations

from said HOPACs to obtain hypothetical price changes for the estimation of optimal hedging

ratios based on two risk measures; VaR, and ES. Next, I evaluate the efficacy of this hedging

strategy on an ex post basis, and test for first order stochastic dominance using a one-sided

Kolmogorov-Smirnov test.

The primary crack spread commodities are; crude oil, gasoline, and heating oil. Specifically,

I consider WTI crude at Cushing Oklahoma, conventional gasoline at New York Harbor, and

No.2 heating-oil at New York Harbor. For each commodity, I obtain weekly Wednesdays spots
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and futures prices from the Energy Information Administration (EIA). The resulting sample

spans from Jun 10, 1986 through Mar 10, 2021.

The HOPAC-i.i.d. implementations lead to a substantial reduction of the ES. However,

regardless of the time dependence assumption, HOPAC implementations do not substantially

reduce the VaR. A refinery concerned with ES can therefore definitely reduce its risk using

HOPACs to estimate optimal hedging ratios. A reduction of risk might lower the capital

requirement and increase the attractiveness to investors. However, HOPACs perform worse

when considering typical losses when targeting the VaR- and ES-metric. Targeting a different

risk-metric which measures the severity of typical losses might enable HOPACs to outperform

instead.

Accounting for volatility-clustering adds 18 parameters to the existing 10, thus substantially

increasing the amount of estimates. The extra parameters harm the model’s performance in

practice. Therefore, it is desirable to disregard volatility-clustering in favor of model parsimony

in this particular setting, over this risk management horizon.

2 Data

2.1 Data Description

I obtain spots and futures prices for crude, gasoline, and heating-oil from the EIA (Energy In-

formation Administration, 2021b, and Energy Information Administration, 2021a). I consider

WTI crude at Cushing Oklahoma, conventional and regular RBOB gasoline at New York Har-

bor, and Number 2 heating oil at New York Harbor. I adjust the daily spot and future series

to weekly Wednesdays closing prices. In the occasion that trading is closed on Wednesday,

Tuesday or Monday prices are taken instead. Conventional gasoline futures are discontinued

in Dec 2006, therefore I transition linearly into RBOB futures starting from Oct 2005. The

linear transition prevents any artificial jumps caused by rolling over. Gasoline and heating-oil

futures expire on the last business day of the calendar month, succeeding the trade date. The

expiry of crude futures deviates slightly from this convention, which I disregard in my analysis.

Hurricane Katrina caused many US oil refineries to suspend operations, thus leaving no price
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risk to hedge. Therefore, I discard observations on 31 Aug 2005, and 7 Sept 2005. The resulting

data span from Jun 4, 1986 until Mar 10, 2021, excluding 31 Aug 2005, and 7 Sept, leading to

1802 observations for each series.

2.2 Data Adjustments

For (tail) risk management purposes, I make all profits negative, and all losses positive. Next,

I construct profit and loss (P&L) series for spots by taking the first order backward difference.

The P&L spots series are denoted by ∆SC , ∆SG, and ∆SHO for crude, gasoline, and heating-oil

respectively.

Alexander et al. (2013) discuss two methods for creating P&L futures series. First being

the standard rollover method, which uses fixed maturity future contracts. Second being the

constant-maturity method, where we construct a dynamic portfolio consisting of two futures

contracts with different maturities. Therefore, the constant-maturity method results in futures

with a longer time-to-maturity compared to the rollover method. Alexander et al. (2013) argue

in favor of the constant-maturity method, since the rollover method lead to jumps caused by

the rolling over between contracts. Alexander et al. (2013) also state that the rollover jumps

may harm the performance of certain models. I apply both methods, and find that the rollover

method leads to slightly higher risk reductions. The higher risk reduction is likely linked to

the stronger relation between the spots and corresponding futures, as a result of the shorter

time-to-maturity. I continue with the rollover method, and provide results from the constant

maturity method in appendix A. The P&L future series constructed with the first method, are

denoted by ∆FC , ∆FG, and ∆FHO for crude, gasoline, and heating-oil respectively. Both spot

and future P&L series span from Jun 10, 1986 until Mar 10, 2021, leading to 1801 observations.

Next, Table 1 shows summary statistics of the P&L series over the entire sample using

conventional moment estimators. Here we see that the mean, denoted by µ̂, of each series

is slightly negative, indicating that the commodity prices tend to rise. The weekly standard-

deviation and kurtosis, denoted by σ̂ and κ̂ respectively, decrease in the order of gasoline,

heating-oil, and crude. This means that gasoline facing market participants incur more price
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Table 1: Summary statistics for the constructed P&L series over the entire sample period (Jun 1986 through

Mar 2021), where µ̂, σ̂, ν̂, κ̂ denote the estimated mean, st.dev, skewness, and kurtosis respectively. Augmented

Dickey-Fuller and Ljung-Box tests are performed on the P&L series, the test statistics are denoted by ADF and

JB-Q respectively. I denote the Ljung-Box test statistic on the squared P&L series with LB-Q2.

statistic µ̂ σ̂ ν̂ κ̂ ADF LB-Q LB-Q2

∆SC -0.028 2.432 0.293 5.140 -10.62* 64.12* 1124.34*

∆SG -0.038 3.167 0.470 3.606 -14.20* 54.08* 691.37*

∆SHO -0.032 2.863 -0.031 5.609 -12.83* 38.51* 925.77*

∆FC -0.029 2.385 0.334 5.265 -10.55* 75.25* 1109.28*

∆FG -0.039 3.147 0.441 4.123 -11.15* 44.38* 604.30*

∆FHO -0.036 2.774 0.075 4.902 -12.49* 48.91* 1272.13*

Rejection of the null-hypothesis at 1% significance level is denoted with a *.

uncertainty. Also, Downey (2009) states that gasoline is the most profitable commodity for

refineries, the combination between extra profitability and uncertainty reinforces the need for

risk management. Table 1 shows that all futures contracts exhibit slightly lower skewness than

their spots counterparts. Alexander et al. (2013) state that this might be the result of more

unexpected shocks in short term consumption behavior. The skewness, denoted by ν̂, is positive

for all spots, and futures, except heating-oil spots. The ADF test in Table 1 shows that all P&L

series are stationary. A Ljung-Box test shows that all P&L loss series exhibit autocorrelation

at a 1% significance level. Furthermore, a Ljung-Box test on the squared P&L series shows

presence of volatility clustering at a 1% significance level.

Table 2 shows the estimated Kendall’s τ matrix. The spot-future pairs for each commodity

exhibit the highest dependence. The dependence decreases in the order of crude, heating-oil,

and gasoline. Across the commodities, we also see high dependence in the range of 0.5− 0.6.
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Table 2: Estimated Kendall’s τ dependence matrix based on entire sample (Jun 1986 through Mar 2021).

∆SC ∆SG ∆SHO ∆FC ∆FG ∆FHO

∆SC 1 0.50 0.59 0.89 0.53 0.62

∆SG - 1 0.50 0.51 0.76 0.51

∆SHO - - 1 0.59 0.52 0.85

∆FC - - - 1 0.54 0.62

∆FG - - - - 1 0.55

∆FHO - - - - - 1

3 Multi-Commodity Hedging Problem

3.1 Refinery Portfolio Profit and Loss

Haigh and Holt (2002) propose an oil refinery hedging framework, they focus on gasoline and

heating-oil as primary refined products from crude. A general oil refinery roughly cracks three

units of crude oil into two units gasoline and one unit heating-oil (Energy Information Admin-

istration, 2002). This refining ratio is known as the 3 : 2 : 1 crack spread, and can be used as

proxy for refinery profit margins. Due to crack spread importance, the NYMEX introduced a

3 : 2 : 1 crack spread contract (CME Group, 2017). Thus, A refinery might hedge their price

risk by using said NYMEX contract, or any custom ratio of futures contracts. Consistent with

Haigh and Holt (2002), I assume the refinery determines appropriate hedging ratios in week

t−1. One week later, in week t, the refined products are sold to the market at the corresponding

spot rates, where any loss might be offset by closing futures positions. The refinery’s hedging

problem stems from the required refining time, and the maturity mismatch between refining

completion and the futures expiry. (1) Shows the per unit operational Profit and Loss (P&L)

as function of time

πt(βt) = −SCt +
2

3
SGt +

1

3
SHOt︸ ︷︷ ︸

time t unhedged profit

+ β′t∆F
CS
t︸ ︷︷ ︸

hedging effect

, (1)
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where Skt with k ∈ {C,G,HO} denotes crude, gasoline, and heating-oil spot rates respectively,

and where βt = (βCt , β
G
t , β

HO
t )′ denote the hedging ratios determined at time t−1. Furthermore,

the vector ∆FCS
t = (∆FCt , −2

3∆FGt , −1
3∆FHOt )′ in (1), denotes the futures P&L (with ∆F kt =

F kt − F kt−1). Thus, the hedging effect in (1) is given by the futures positions β′t∆F
CS
t . The,

unhedged profit at time t is made by selling the gasoline and heating oil. To sustain operations,

the refinery has to buy new crude oil at time t, resulting in a loss of SCt . Consistent with

Sukcharoen and Leatham (2017) I rewrite (1) as a function of the spots P&L

πt(βt) = −∆SCt +
2

3
∆SGt +

1

3
∆SHOt + β′t∆F

CS
t − SCSt−1, (2)

where ∆Skt = Skt − Skt−1 is the marginal spot price change with k ∈ {C,G,HO}, for crude,

gasoline, and heating oil spots respectively. Furthermore, the time t − 1 crack spread profit

SCSt−1 = −SCt−1 + 2
3S

G
t−1 + 1

3S
HO
t−1 is known at t−1, and does therefore not impact optimal hedging

ratios. Similar to Alexander et al. (2013) and Sukcharoen and Leatham (2017), I disregard SCSt−1

from (2) to obtain the profit equation in (3)

πt(βt) = −(∆SCt − βCt ∆FCt ) +
2

3
(∆SGt − βGt ∆FGt ) +

1

3
(∆SHOt − βHOt ∆FHOt ), (3)

where ∆Skt , and ∆F kt with k ∈ {C,G,HO}, for crude, gasoline, and heating-oil spot and futures

P&L respectively.

3.2 Hedging Cost

Costs of hedging are an important aspect of the hedging strategy. Alexander et al. (2013)

find that the hedging costs can cause a naive implementation to outperform complex models.

The hedging cost consists of three aspects; 1) being the transaction cost, 2) being the bid-

ask spread, 3) being the margin requirement for positions futures contracts.1 First, consistent

with Alexander et al. (2013), I assume that transaction costs per futures contract amount to

C TC
t−1 = $1.45. Second, (4) formulates the time t− 1 incurred cost due to the bid-ask spread

CBAt−1(βt) = γCβ
C
t F

C
t−1 +

2

3
γGβ

G
t F

G
t−1 +

1

3
γHOβ

HO
t FHOt−1 , (4)

1A future contract concerns 1000 barrels or the volumetric equivalent, usually market quotes are per unit. For

analysis, I consider fictive single barrel contracts that, when aggregated, are consistent with their real counterpart.
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where γk for k ∈ {C,G,HO}, are the bid-ask spreads for each respective commodity. Dunis

et al. (2008) find that the NYMEX bid-ask spreads are approximately 1 bps for crude, 10 bps

for gasoline, and 12 bps for heating-oil. Third, the cost of the margin deposit is

C M
t−1(βt) = FMrd(βCt FCt−1 +

2

3
βGt F

G
t−1 +

1

3
βHOt FHOt−1 ), (5)

where FM is the required margin deposit as fraction of the contract value. Some simple anal-

ysis over the span of Jan 2020-Mar 2021, reveals that the fractional margin requirements are

approximately equal for each of the three futures. I therefore take the margin requirement to

be a constant fraction of FM = 6% for all contracts. Consistent with Alexander et al. (2013),

I assume that the refinery finances the margin requirement using commercial debt. The three

largest U.S. refineries (Energy Information Administration, 2020), without vertical integration,

currently have BBB credit ratings from Standard & Poors. I therefore take the Standard &

Poors Investment Grade Corporate Bond Index as proxy for the cost of debt, whose yield is

approximately rd = 2.2% as of April 2021. I disregard marking to market costs due to their

relatively small impact, which can both be positive or negative. Moreover, the aforementioned

refineries also do not report these costs.

The P&L equation for one business cycle of two weeks, including hedging costs, is therefore

given by

π∗t (βt) = πt(βt) + CBAt−1(βt − βt−1) + C M
t−1(βt) + C TC

t−1 , (6)

where πt(·) is the hedged P&L from (3), tm denotes the start of the month, C BA
t−1 (·) is the

bid-ask spread cost, CM
t−1(·) is the margin requirement cost, and C TC

t−1 is the transaction cost.

3.3 Empirical Methodology

Hedging ratios βt should minimize risk such that

β∗t = arg min
βt
{ρ(π∗t (βt))} , (7)

where ρ(·) denotes a risk measure, and π∗t (βt) is the portfolio P&L from (6). I consider two

risk measures: value-at-risk denoted by ρVaR(·), and expected shortfall denoted by ρES(·).
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Furthermore, I consider three probability levels p ∈ {0.10, 0.05, 0.01}. McNeil et al. (2015)

provides empirical estimators

ρ̂VaR(π∗t ) = F←n (1− p) = L(dn(1−p)e), (8a)

ρ̂ES(π∗t ) =
1

np

{dn(1− p)e − n(1− p)}L(dn(1−p)e) +

 n∑
i=dn(1−p)e+1

L(i)

 , (8b)

where F←n is generalized inverse of the empirical CDF of π∗t , and L(n) denotes the n-th ordered

statistic of observed losses.

Table 1 shows the presence of volatility clustering in each marginal P&L series, and might

be crucial for risk management. However, modelling volatility clustering also adds parameter

uncertainty. I investigate the potential parsimony benefit from assuming independence by com-

paring two HOPAC implementations. In the first implementation (HOPAC-i.i.d.), I assume

i.i.d. observations from each marginal. In the second implementation (HOPAC-GARCH) I

account for volatility clustering with a GARCH(1,1) model in each marginal. Therefore, this

is in essence a multivariate-GARCH model where all cross-correlations are 0. In both cases

I use a five-year backward looking window (n=260) to estimate the models.2 I estimate the

models spanning the entire sample leading to 1541 separate windows. Next, I simulate 10,000

values from each model, and transform them to hypothetical P&L observations to determine

hedging ratios βt from (7). Furthermore, I compare the HOPAC-i.i.d. and HOPAC-GARCH

implementations to a naive hedging strategy which assumes complete delta hedging, such that

βnaivet = (1, 1, 1)′ regardless of market conditions.

To fit the copula models, we need to construct pseudo observations. In accordance with

Sklar’s theorem (Sklar, 1959), I apply a quantile transformation to each marginal, in each

window separately by using the empirical distribution function. I subsequently use the pseudo-

observations from (9) to perform model estimation.

uj =
n

n+ 1
F̂n,j (xj) =

Rank (xj)

n+ 1
, (9)

2The five-year backward looking window is consistent with Ji and Fan (2011), Alexander et al. (2013), and

Sukcharoen and Leatham (2017) to name a few.
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where xj denotes the vector of observations with corresponding variables uj from marginal j,

and where F̂n,j(·) denotes the respective empirical cdf. Let j ∈ {1, 2, . . . , 6} denote the corre-

sponding margins of {SC , SG, . . . , FHO}. For the HOPAC-i.i.d. implementation, the original

marginal P&L series xj ∈ {∆SC , ∆SG, . . . ,∆FHO} are used. Let ẑt := (ẑ1,t, ẑ2,t . . . , ẑ6,t)

denote a 260 × 6 matrix with GARCH residuals from window t. In the HOPAC-GARCH im-

plementation, the marginal GARCH residuals are used instead xj ∈ {ẑ1,t, ẑ2,t . . . , ẑ6,t}. Then,

let the 260× 1 vectors {u1,u2 . . . ,u6} denote the set of marginal pseudo-observations obtained

from (9). P&L observations can be reconstructed from {F←n,1(u1), F←n,2(u2) . . . , F←n,6(u6)}, after

which applying the respective GARCH model if applicable. I evaluate the risk reduction using

(10), which represents the risk reduction

RR =

(
1− ρ (π∗t (βt))

ρ (π∗t (0))

)
× 100, (10)

where ρ (π∗t (0)) is the unhedged risk from (6), and RR measures the % risk reduction achieved

by the hedging approach.

4 Hierarchical Outer Power transformed Archimedian Copulas

4.1 Background Theory

I briefly review the three main HOPAC ingredients; Archimedean copulas (AC), Outer Power

transforms (OP), and hierarchical copulas. First, a regular bivariate AC can be used to model

dependence between two random variables, say between the univariate P&L of the crude oil

spot u1, and future u4 from Table 2, which gives

Cψ (u1, u4) = ψ
{
ψ−1 (u1) + ψ−1 (u4)

}
, (11)

where Cψ : [0, 1]2 → [0, 1] is a bivariate copula, with Archimedean generator ψ(·), and its inverse

ψ−1(·). Some restrictions apply to Archimedean generators such that the copula is a proper

CDF. Specifically, ψ(·) is a strictly decreasing continuous convex function ψ : [0,∞) → [0, 1]

with ψ(0) = 1 and lim
t→∞

ψ(t) = 0. Additionally, if (−1)kψ(k)(t) ≥ 0, ∀k ∈ N+, t ∈ R, then

ψ(·) is called completely monotone (c.m.) (McNeil et al., 2015). Crucially, a Laplace-Stieltjes
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transform can be applied to c.m. generators, which enable efficient sampling (McNeil, 2008).

We investigate the sampling details at a later stage.

Next, Nelsen (2007) introduces the outer power (OP) transformation as modification to a

regular AC. The OP transform enables a better fit in both body and tail dependence (Górecki

et al., 2021). Let

ψ̊(u) = ψ(u1/β), with β ∈ [1,∞), (12)

where ψ̊(·) denotes the OP transformed generator with parameter β. The OP parameter β is

restricted to [1,∞) such that the generator stays c.m. and creates a proper copula. If β = 1,

the original AC generator is obtained. Then, let ψ(a,θ,β) denote a generator from Archimedean

family a, with parameter θ, and OP transform β. Also, let Cψk denote a copula with generator

ψ(a,θk,βk). I consider four families; Ali–Mikhail–Haq (A), Clayton (C), Frank (F), and Joe

(J). Table 3 shows the original generators ψ(a,θ,1), upper-tail dependence λu, and parameter

space Θa. Clearly, the extra OP transform increases the ability to capture tail dependence.

Table 3: Archimedean family with generator ψ(a,θ,1), upper tail dependence λu, and parameter space Θa.

Family a ψ(a,θ,1)(u) λu Θa

Ali–Mikhail–Haq (A) (1− θ)/ (exp(u)− θ) 2− 21/β [0, 1)

Clayton (C) (1 + θu)−1/θ 2− 21/β (0,∞)

Frank (F) −θ−1 log {1− (1− exp(−θ)) exp(−u)} 2− 21/β (0,∞)

Joe (J) 1− (1− exp(−u))1/θ 2− 21/(θβ) [1,∞)

Flexibility in (tail) dependence modelling is of particular importance to the oil refinery problem

(Sukcharoen and Leatham, 2017).

Next, A single multivariate AC restricts the dependence among all combinations of margins

to be identical (Hofert, 2010). Asymmetric dependence structures can be modelled by construct-

ing a hierarchy of ACs (HAC). One can construct a HAC by replacing some marginal arguments

in (11) with other copulas, Figure 1 shows such hierarchy of copulas. Mathematically;

C(u) = Cψ5 (Cψ4 (Cψ2 (u3, u6) , Cψ1 (u1, u4)) , Cψ3 (u2, u5)) (13)
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Figure 1: Hierarchical copula structure from (13). Descendant leaves of node k are denoted with ↓ (k). For

example, node 7 corresponds to copula 1, such that ↓(7) = {1, 4}.

where Cψk(·) denotes a copula C with generator ψ(a,θk,1). Figure 1 illustrates the HAC example

from (13). One can construct a HOPAC by using OP transformed generators in (13), instead

of regular generators. Restrictions apply leading Górecki et al. (2021) to derive parameter

bounds, using the sufficient nesting condition from Joe (1997). These parameter bounds are

used in estimation, and the technical details are deemed beyond the scope of this research.

4.2 HOPAC Estimation

First is hierarchy estimation, for which I use algorithm 1 from Górecki et al. (2021). I start

with definitions; ν := {1, . . . , 2d − 1} denotes the set of nodes, and ϑ denotes the set of arcs.

We have d = 6 price series called leaves, the d− 1 remaining nodes are called forks. The forks

form the hierarchy of copulas, which model the leaves’ dependence structure. For example

consider the hierarchy from Figure 1, here the copula margins are nodes {1, . . . , 6}. The forks

correspond to nodes {7, . . . , 11}. Górecki et al. (2021) numerate forks uniquely by assigning

the first fork (node d + 1) with the highest dependence, and decreasing from there-on. The

descendant leaves of node k are denoted with ↓(k). In Figure 1 for example, ↓(7) = {1, 4} and

↓(10) = {{1, 4}, {3, 6}}.

Algorithm 1 works by iterating until all forks are identified. We start with node d+ k (fork

k), and search for its location in the hierarchy. In line 2, we calculate the average dependence

between all descendant leaves of the remaining nodes in ξ. In the first iteration ξ contains all

d leaves, such that all descendant leaves are the leaves themselves. Next, in line 3 let nodes i

12



Algorithm 1 Pseudo code for hierarchy estimation from Górecki et al. (2021)

Definitions

— τ̂ (U): estimated Kendall’s τ matrix using pseudo-observations U from (9).

— ξ : set of nodes to be coupled.

— η : vector containing the children from node k

Initial 1. τ̂ (U), ξ := {1, ..., 6}, ϑ := ∅, η := ∅

for k = 1, ..., d− 1 do

— 2. For nodes (i, j) ∈ ξ , let τ̂(i,j) := mean(τ̂↓(i)×↓(j)), where ↓ (i)×↓ (j) is the

set of all cross combinations between ↓ (i) and ↓ (j).

— 3. Set (i, j) := arg max
i≤ j
{τ̂(i,j)}, with i, j ∈ ξ.

— 4. Set ξ := ξ∪{d+k}\{i, j}, where ξ is the set of nodes under consideration.

— 5. Set τ̂d+k := τ̂(i,j).

— 6. Set ϑ := ϑ ∪ {{i, d+ k}, {j, d+ k}}, where ϑ is the set of arcs.

— 7. Set ηk := (i, j), which are the children of node k

end for

return { ϑ, η1:d−1, τ̂ d+1:2d−1 }

and j maximize τ̂i,j . For example, consider node d + k = 10 with ↓ (10) = {↓ (7), ↓ (8)} from

Figure 1, which means that τ̂7,8 = 1
4(τ̂1,3 + τ̂1,6 + τ̂3,4 + τ̂4,6) is the combination which exhibits

the strongest dependence. Therefore algorithm 1 assigns nodes {7, 8} to be the margins of fork

10. In line 4, we remove nodes i and j from the set of nodes under consideration in ξ, and add

node d+k to ξ. Line 4 ensures we only model dependence between leaves of which we have not

modelled dependence yet. In line 5 through 7, we set the dependence τ̂d+k, the arcs ϑd+k, and

the children ηd+k for node d+ k.

Next is HOPAC parameter estimation, for which Górecki et al. (2021) propose Algorithm

2. I start with an overview and provide an example afterwards. Consistent with Górecki et al.

(2021), I let each copula be from the same family a for simplicity. The algorithm starts at the

root (node 2d− 1) of the hierarchy, and traverses sequentially through all forks. Consider fork
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Algorithm 2 Pseudo code for HOPAC estimation from Górecki et al. (2021)

Definitions

— ψk(a, θ, β) : node k copula from family a with parameter θ and OP-transform β.

— Θ : the allowed parameter space for θ, initially determined by the copula family Θa.

— B : the allowed parameter space for β

— ↓(i)×↓(j) : is the set of all combinations between ↓ (i) and ↓ (j).

Initial 1. U , η, Θ := Θa, B := [1,∞)

for node k = (2d− 1), ..., (d+ 1) do

— 2. Let (i, j) := ηk, be the children of node k (from algorithm 1).

— 3. Let ĩ and j̃ be leaves, where ĩ ∈↓ (i) and j̃ ∈↓ (j). Then obtain copula

parameters (θ̃ ĩ,j̃ , β̃ ĩ,j̃) by MLE, for all combinations between ĩ and j̃.

(θ̃ ĩ,j̃ , β̃ ĩ,j̃) := arg max
{∑n

m=1 log cψ(a, θĩ, j̃ ,βĩ,j̃)

(
um,̃i , um,j̃

)}
Subject to: θ̃ ĩ,j̃ ∈ Θ and β̃ ĩ,j̃ ∈ B

— 4. ψ̂k

(
a, θ̂, β̂

)
:= (mean(θ̃ ↓(i)×↓(j)),mean(β̃ ↓(i)×↓(j)))

if β̂ ∈ [1, βR] do

— 5. Set Θ := Θ ∩ [θ̂,∞) and B remains unchanged.

else do

— 6. Set Θ := [θ̂, θ̂] and B := [β̂,∞).

end for

return { Ψ̂
(
a, θ̂, β̂

)
}

k, and let i and j be its children. Then, the copula parameter θ̂, and OP parameter β̂, a t fork

k, are estimated by averaging the ML estimates (θ̃, β̃) from all cross combinations of descendant

leaves between ↓(i) and ↓(j). Two restrictions apply to each ML estimate, such that θ̃ ∈ Θ and

β̃ ∈ B. The parameter bounds Θ and B follow from the sufficient nesting conditions derived by

Górecki et al. (2021) for HOPACs. Initially Θ is defined by the generator family a such that

Θ = Θa, whereas B = [1,∞). Next, the parameters of the succeeding fork k − 1 are subject

to new bounds, determined by one of the two restrictions applied in line 5 or 6 of the pseudo
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code. Whichever restriction applies depends on, if the estimated OP parameter β̂, is within the

interval [1,BR], where I let BR = 1.05 consistent with Górecki et al. (2021).

For example, let fork k be the fourth copula (node 10) from Figure 1; such that its children

{i, j} are nodes {7, 8}, and its descendant leaves are ↓ (10) = {{1, 4}, {3, 6}}. Furthermore, let(
θ̃ i,j , β̃ i,j

)
maximize the likelihood for a copula with marginals i, j subject to the aforemen-

tioned constraints. Then, for the copula at node 10, the estimate θ̂ = 1
4(θ̃ 1,3 + θ̃ 1,6 + θ̃ 4,3 + θ̃ 4,6),

and the estimate β̂ = 1
4(β̃ 1,3 + β̃ 1,6 + β̃ 4,3 + β̃ 4,6).

4.3 Sampling

The HOPAC sampling algorithm can be inferred from the work of Górecki et al. (2021), and is

closely related to the algorithm from McNeil (2008). Specifically, Górecki et al. (2021) prove two

adjustments such that the algorithm from McNeil (2008) can be used for HOPACs. I discuss

some important principles of the algorithm from McNeil (2008), and provide a simple example

along with pseudo code intended to aid the reader. Besides, I provide a detailed account of the

sampling method in algorithm 3.

The algorithm from McNeil (2008) is based on sampling from the equivalent Laplace-Stieltjes

(LS) distribution of the generating function ψ(·) from (11). I closely follow the work of Joe (1997)

to illustrate the equivalence. Specifically, let generator ψ(·) be the LS-transform of distribution

function (df) F (·) on [0,∞) with F (0) = 0

ψ(t) =

∫ ∞
0

e−tα dF (α), t ≥ 0, (14)

where ψ(0) = 1. Next, Joe (1997) states that a unique cdf G(·) exists for a univariate cdf M(·)

such that

M(x) =

∫ ∞
0

Gα(x)dF (α) = ψ(− logG(x)). (15)

Naturally, (15) implies that G(·) = exp{−ψ−1 ◦M(·)}. Consider a simple bivariate case where

M1(·), M2(·) are standard uniform (marginals), with the corresponding G1(·), G2(·) from (15).

Then a bivariate copula can be constructed

C(u1, u2) =

∫ ∞
0

Gα1G
α
2 dM(α) = ψ (− logG1 − logG2) = ψ

(
ψ−1 ◦M1(u1) + ψ−1 ◦M2(u2)

)
,

(16)
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where u1, u2 are rvs from the standard uniform marginals M1(·), M2(·). Clearly (16) is equiva-

lent to the bivariate AC class in (11). Joe (1997) also provides the multivariate generalization,

which I omit for brevity. Moreover, I stick to the bivariate copula case to illustrate the sampling

algorithm from McNeil (2008) in its most intuitive form.

Bivariate AC Sampling Example

The algorithm from McNeil (2008) is essentially based on that of Marshall and Olkin (1988),

who recognize that the LS representation provides a convenient basis for a sampling algorithm.

I follow the formulation from McNeil (2008), which I restate for the bivariate example;

1. Generate a variate V ∼ F (·) with F = LS−1[ψ(·)].

2. Generate two i.i.d. uniform variates (x1, x2).

3. Return ui = G−1(x
1/V
i ) for i = 1, 2.

Marshall and Olkin (1988) show that a variate from marginal df Mi (step 3) can be gener-

ated from G−1(x
1/V
i ), which McNeil (2008) simply rewrite using the implication from (15) as

ψ(− log(xi) /V ). I illustrate the algorithm with a simple bivariate AC. Figure 2 shows a simple

Figure 2: Example of a bivariate AC, with generator ψ and marginals u1, u2.

bivariate AC with generator ψ(·). Step 1 in the algorithm is generating variate V from the LS

df F (·) corresponding to the generator ψ(·). Next, in step 2 we generate two i.i.d. uniformly

distributed variates x1, x2. In step 3 we use the result from Marshall and Olkin (1988) to obtain

variates u1, u2 which follow the marginal distributions M1,M2. Clearly this algorithm provides

a convenient way of simulating variates from the margins of the AC C(u1, u2).

The more general algorithm from McNeil (2008) for sampling from hierarchical copula struc-

tures, can be obtained by generalizing the bivarate case through including a recursive argument
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between step 1 and step 2, say step 1.5. In step step 1.5, one samples from a LS distribution

that corresponds to that of the nested generator family.3 The OP-transform requires two in-

termediate, but straightforward modifications proposed by Górecki et al. (2021). Rather than

repeating each adjustment separately, I provide the overview in algorithm 3.

Similar to algorithm 2, the HOPAC sampling algorithm starts at the root of the hierarchy,

and traverses sequentially through all forks, introducing dependence on the way. The HOPAC

Algorithm 3 Sampling algorithm inferred from McNeil (2008) and Górecki et al. (2021)

Notation

— Let {θk, βk} be parameters from the generator at fork k: ψk(a, θ, β).

— Let S {·, ·, γ, δ} denote the stable distribution with scale γ, and location δ

Initial 1. Sample Vd−1 ∼ F with F = LS−1[ψd−1] from Table 4

— 2. Independently sample S ∼ S
{

1/βd−1, 1, cosβd−1(π/(2βd−1)),1{βd−1=1}
}

— 3. Set V̊d−1 := S (Vd−1)βd−1

for fork k = (d− 2), . . . , 1 do

— 4. Let p be the parent fork of k with generated random variate V̊p

— 5. Sample V̊k ∼ S

(
βp/βk, 1,

{
cos
(
βp
βk

π
2

)
Vp

}βp/βk
, V̊p1{βp/βk=1}

)
if fork k has children, repeat for each child i do

— 6. Independently sample Xi ∼ U (0, 1)

— 7. ui := ψk

(
− ln(Xi)/V̊p

)
end for

return {u1, u2, . . . , u6}

sampling algorithm, inferred from the work of Górecki et al. (2021) and McNeil (2008), starts

in line 1 at the root where variate Vd−1 is sampled from F (·). An adjustment from Górecki

et al. (2021) in line 2 and 3, makes sure that we sample from the OP-transformed generator.

We continue on line 4, where we consider node k with parent fork p. In line 5 we introduce

3Hofert (2010) provides a comprehensive overview of the LS-transforms for some well known single parameter

copula families. Joe (1997) provides a comprehensive overview of the mathematical derivations.
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dependence of fork k by generating a new variate Vk, which depends on the parent variate Vp.

A regular HAC is sampled using the LS transformed distribution, which depends on the nested

generators. However, Górecki et al. (2021) prove that the LS transform of nested OP generators

always correspond to a stable distribution. Last in line 6 and 7, if fork k has children, we apply

the transformation from Marshall and Olkin (1988) to i.i.d. uniformly distributed variates to

get the pseudo-observations from the corresponding marginals. These last two steps are step

2 and 3 from the original algorithm proposed by Marshall and Olkin (1988). Naturally, we

repeat line 4 through 7 until a pseudo-observation is generated for each dependent leaf in the

structure.

Table 4: Archimedean family with corresponding Laplace-Stieltjes (LS) distribution F (·) from Hofert (2010).

Where Geo(·) denotes the geometric distribution, Gam(·) denotes the gamma distribution, and Logser(·) denotes

the log-series distribution. The Joe LS-df follows a non-standard discrete distribution (Hofert, 2010).

Family A C F J

LS−1[ψ(·)] Geo(1− θ) Gam(1/θ, 1) Logser
(
1− e−θ

)  1/θ

k

 (−1)k−1, k ∈ N

Table 4 shows the LS transforms corresponding to each copula family I use, and is adopted

from Hofert (2010). Here, Geo(p) denotes the geometric distribution with success-probability

π ∈ (0, 1], and density pk = π(1− π)k−1 on k ∈ N. Gam(α, β) denotes the gamma distribution,

with shape and scale α, β ∈ (0,∞), and df f(x) = βαxα−1 exp{−βx}/Γ(α) on x ∈ (0,∞).

Logser(π) denotes the log-series distribution with π ∈ (0, 1), and density pk = πk/(−k log(1−π))

on k ∈ N. For Joe θ ∈ [1,∞) such that 1/θ ∈ (0, 1], I therefore generalize the density provided

by Hofert (2010) using gamma functions, such that pk = Γ(1/θ+1)
Γ(1/θ+1−k) k! on k ∈ N.

5 Results

I compare effectiveness of a naive strategy, and two HOPAC implementations. The naive hedg-

ing strategy corresponds to a complete delta hedge, where all hedging ratios are 1 regardless

of market conditions. Instead, HOPACs can model the complete dependence structure of com-
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modity spots and futures for determining risk minimizing hedging ratios. I implement HOPACs

from four distinct Archimedean families; Ali–Mikhail–Haq (A), Clayton (C), Frank (F), and

Joe (J). Furthermore, I also investigate whether GARCH(1, 1) models should be used to ac-

count for the presence of volatility clustering. Thus granting two distinct HOPAC implementa-

tions, HOPAC-i.i.d. wherein volatility clustering is disregarded, and HOPAC-GARCH wherein

volatility clustering is accounted for. The four Archimedean families combined with two time

dependence assumptions lead to eight implementations. Each model is estimated on a 5 year

backward looking window (n = 260 weeks) in 1541 windows (12 Jun 1991 - 3 Mar 2021), and is

used to determine optimal hedging ratios. I evaluate the realised risk across the 1541 windows

in an ex-post analysis. Furthermore, I also use an adjusted Kolmolgorov-Smirnov (K-S) test,

to test the stochastic properties of the realised loss distributions.

5.1 Performance

Table 5: Realised risk reduction (RR) in % for probabilities p ∈ {90%, 95%, 99%}, using a naive and various

HOPAC implementations, where A corresponds to Ali–Mikhail–Haq, C for Clayton, F for Frank, J for Joe. The

risk reduction from (10) is the risk measure reduction with respect to no hedging.

Dependence i.i.d. GARCH(1, 1)

Model Naive A C F J AG CG FG JG

VaR90% 42.68 37.43 38.11 39.12 37.7 34.17 36.59 35.48 35.31

VaR95% 37.24 38.47 37.25 38.31 38.89 34.72 34.62 33.91 31.80

VaR99% 23.95 22.95 24.43 23.63 24.34 16.79 20.85 21.06 17.72

ES90% 32.62 34.10 34.21 33.90 33.83 31.23 31.48 31.07 31.94

ES95% 28.54 30.99 30.63 31.47 31.90 29.51 28.73 29.31 29.29

ES99% 11.48 18.37 19.96 19.36 23.37 18.61 20.02 19.35 20.53

The highest risk reduction within each model category is denoted in bold.

Table 5 shows the ex post realised risk reduction (RR) including hedging cost for three

probability levels p ∈ {90%, 95%, 99%}, each risk measure, and each hedging approach. Over-
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all, the HOPAC-i.i.d. methods attain the highest RR. The HOPAC-GARCH implementations

underperform their HOPAC-i.i.d. counterparts in almost all instances. Besides, no copula fam-

ily consistently outperforms, which is likely linked to the extra degrees of freedom from the

OP-transform. Any differences are likely linked to the implied body dependence, which causes

a different fit. The realised Value-at-Risk (VaR) for all HOPAC-i.i.d. models, is close to the

naive method. The realised VaR is essentially based on one observation, which makes the metric

more suseptible to noise. The realised Expected-Shortfall (ES) reduction for all HOPAC-i.i.d.

models is higher than for the naive method. The HOPAC-GARCH models seem to outperform

the naive method only when considering higher probability levels, however fail to outperform

the HOPAC-i.i.d. models consistently. Unfortunately, expected shortfall is not elicitable such

that there is no natural scoring function for comparing the realised risk (McNeil et al., 2015).

Rather than testing the RR with one measure, I resort to testing the realised loss distribution

with a Kolmogorov-Smirnov (K-S) test. An advantage of the K-S test is, that it tests the com-

plete loss distribution rather than the (tail risk) measure exclusively. Furthermore, the K-S test

can be used for both targetted risk measures.

Loss Distribution

Preferably, a model reduces the risk of high losses, whilst not increasing the severity of more com-

mon loss events. To establish which hedging implementation is preferred, I employ a one-sided

two-sample Kolmolgorov-Smirnov (K-S) test (Smirnov (1939)) on the observed loss distribu-

tions. The one-sided K-S test can be used to establish the presence of first order stochastic

dominance, which means that one model implementation is preferred regardless of the individu-

als risk aversion, provided some weak conditions (Massachusetts Institute of Technology [MIT],

2015). I formulate the null and alternative hypothesis as H0 : F̂naive(P&L) ≤ F̂model(P&L) and

H1 : F̂naive(P&L) > F̂model(P&L), where F̂model(·) denotes the empirical cdf from the model,

given that a loss occurs in an unhedged scenario. A total of 746 unhedged losses occur, with

which the cdfs are constructed. The K-S test is sensitive to autocorrelation in the observations.
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Table 6: Kolmogorov–Smirnov one sided p-values with H0 : F̂naive(P&L) ≤ F̂model(P&L) and H1 :

F̂naive(P&L) > F̂model(P&L). I calculate p-values with the formula of Hodges (1958) using the effective sample-

size adjustment from Xu (2013).

Dependence i.i.d. GARCH(1, 1)

Model A C F J AG CG FG JG

VaR90% 0.02* 0.01* 0.01* 0.01* 0.04* 0.04* 0.06 0.02*

VaR95% 0.06 0.03* 0.02* 0.01* 0.01* 0.01* 0.01* 0.00*

VaR99% 0.08 0.06 0.03* 0.01* 0.01* 0.01* 0.00* 0.00*

ES90% 0.02* 0.01* 0.01* 0.01* 0.04* 0.04* 0.06 0.02*

ES95% 0.06 0.03* 0.02* 0.01* 0.01* 0.01* 0.01* 0.00*

ES99% 0.08 0.06 0.03* 0.01* 0.01* 0.01* 0.00* 0.00*

Rejection of the null-hypothesis is denoted with an asterisk *.

Xu (2013) proposes a straight forward, and intuitive, effective sample size adjustment.4 I use

the adjustment from Xu (2013) and subsequently apply the formula from Hodges (1958) to

obtain p-values. Table 6 shows the resulting p-values. The p-values from Table 6 show that

the naive P&L cdf tends to lie above almost all model implementations at a 5% significance

level (and sometimes at 1%). A higher model cdf means that, at a fixed probability level, the

P&L is higher than of the naive cdf. For example, if F̂naive(P&L) > F̂model(P&L), consider a

probability level α. Then, F̂ ←naive(α) < F̂ ←model(α) such that an α probability loss is lower for

the naive approach. The naive implementation thus, at a fixed probability level, tends to incur

lower losses than most HOPAC implementations. The naive implementation therefore exhibits

first order stochastic dominance over most HOPAC models. The HOPAC-i.i.d. ES-performance

is therefore linked to some low probability losses, which are successfully mitigated at the cost

of more commonly occurring loss events.

4The adjustment from Xu (2013) can only be used in the case of AR(1) auto-correlation. In this case, an

AR(1) model captures all auto-correlation.
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5.2 Hedging Ratios

Table 7: Average hedging ratios with standard deviation in parentheses, before a 10% loss event is observed

without hedging.

A C F J AG CG FG JG

Panel A: Crude hedging ratios β̄C10% (S.D.)

VaR90% 0.93 (0.04) 0.93 (0.04) 0.93 (0.05) 0.93 (0.05) 0.90 (0.09) 0.90 (0.09) 0.90 (0.09) 0.90 (0.08)

VaR95% 0.94 (0.05) 0.94 (0.05) 0.95 (0.06) 0.94 (0.06) 0.91 (0.09) 0.91 (0.10) 0.90 (0.09) 0.92 (0.09)

VaR99% 0.98 (0.09) 0.98 (0.08) 0.98 (0.09) 0.98 (0.09) 0.94 (0.12) 0.94 (0.11) 0.94 (0.12) 0.95 (0.13)

ES90% 0.93 (0.04) 0.93 (0.04) 0.93 (0.05) 0.93 (0.05) 0.90 (0.09) 0.90 (0.09) 0.90 (0.09) 0.90 (0.08)

ES95% 0.94 (0.05) 0.94 (0.05) 0.95 (0.06) 0.94 (0.06) 0.91 (0.09) 0.91 (0.10) 0.90 (0.09) 0.92 (0.09)

ES99% 0.98 (0.09) 0.98 (0.08) 0.98 (0.09) 0.98 (0.09) 0.94 (0.12) 0.94 (0.11) 0.94 (0.12) 0.95 (0.13)

Panel B: Gasoline hedging ratios β̄G10% (S.D.)

VaR90% 0.84 (0.08) 0.83 (0.07) 0.84 (0.08) 0.81 (0.08) 0.84 (0.13) 0.82 (0.13) 0.83 (0.13) 0.81 (0.14)

VaR95% 0.84 (0.08) 0.84 (0.08) 0.84 (0.08) 0.79 (0.08) 0.82 (0.13) 0.81 (0.13) 0.81 (0.13) 0.77 (0.13)

VaR99% 0.84 (0.08) 0.85 (0.08) 0.83 (0.08) 0.77 (0.08) 0.80 (0.13) 0.81 (0.14) 0.80 (0.13) 0.74 (0.14)

ES90% 0.84 (0.08) 0.83 (0.07) 0.84 (0.08) 0.81 (0.08) 0.84 (0.13) 0.82 (0.13) 0.83 (0.13) 0.81 (0.14)

ES95% 0.84 (0.08) 0.84 (0.08) 0.84 (0.08) 0.79 (0.08) 0.82 (0.13) 0.81 (0.13) 0.81 (0.13) 0.77 (0.13)

ES99% 0.84 (0.08) 0.85 (0.08) 0.83 (0.08) 0.77 (0.08) 0.80 (0.13) 0.81 (0.14) 0.80 (0.13) 0.74 (0.14)

Panel C: Heating-oil hedging ratios β̄HO10% (S.D.)

VaR90% 1.11 (0.08) 1.10 (0.08) 1.09 (0.09) 1.11 (0.08) 1.11 (0.21) 1.13 (0.21) 1.12 (0.20) 1.13 (0.19)

VaR95% 1.10 (0.08) 1.10 (0.09) 1.10 (0.08) 1.11 (0.09) 1.11 (0.19) 1.13 (0.17) 1.11 (0.21) 1.13 (0.21)

VaR99% 1.09 (0.10) 1.09 (0.08) 1.10 (0.10) 1.14 (0.11) 1.11 (0.20) 1.10 (0.20) 1.12 (0.19) 1.11 (0.17)

ES90% 1.11 (0.08) 1.10 (0.08) 1.09 (0.09) 1.11 (0.08) 1.11 (0.21) 1.13 (0.21) 1.12 (0.20) 1.13 (0.19)

ES95% 1.10 (0.08) 1.10 (0.09) 1.10 (0.08) 1.11 (0.09) 1.11 (0.19) 1.13 (0.17) 1.11 (0.21) 1.13 (0.21)

ES99% 1.09 (0.10) 1.09 (0.08) 1.10 (0.10) 1.14 (0.11) 1.11 (0.20) 1.10 (0.20) 1.12 (0.19) 1.11 (0.17)

Table 7 shows hedging ratios, before at least a 10% unhedged loss event occurs. Hedging

ratios before a significant loss occurs, grant some insight in model characteristics. The naive

method always assumes full delta hedging, thus a hedging ratio of 1 in all futures. Notably

the HOPAC implied mean hedging ratios are similar across risk measures, and across different

probability levels. Furthermore, hedging ratios are nearly identical across the various HOPAC

implementations. However, the HOPAC-GARCH ratios exhibit a higher standard deviation.
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This higher standard deviation can have two sources; 1) parameter uncertainty, or 2) a deliberate

adjustment due to increased risk as implied by the GARCH models. However, a two-sided

K-S fails to reject difference between the loss distributions of the HOPAC-i.i.d. and HOPAC-

GARCH implementations. Furthermore, Table 5 shows that the HOPAC-GARCH models fail to

reduce risk more effectively than the more parsimonious models. Therefore, the higher standard

deviation likely originates disproportionately from parameter uncertainty.

All models take hedging ratios close to 1 for crude (β̄C10%), lower than 1 for gasoline (β̄G10%),

and higher than 1 for heating-oil (β̄HO10%). Therefore, it seems that the some of the gasoline price

risk is hedged using heating-oil futures. The smaller gas (higher heating-oil) positions are likely

linked to the higher (lower) volatility, and higher (lower) skewness as seen in Table 1. Lower

volatility is desirable, because it represents more price certainty in the future. Lower (positive)

skewness means that the probability of prices rising (causing losses for the refinery who is short)

is slightly lower. The higher gasoline volatility is partially driven by consumer behaviour, which

causes distortions like the summer driving season for instance (Downey, 2009). This additional

price uncertainty means that gasoline exposure can, to some extent, be hedged more efficiently

by using heating-oil futures, despite the lower cross dependence between gasoline spots and

heating-oil futures (see Table 2).

5.3 Model Fit

Table 8: AIC and BIC model selection criteria, with parameter count k. The HOPAC-i.i.d. models {A, C, F,

J} are nested in the HOPAC-GARCH {AG, CG, FG, JG} models. The reported statistics are averaged results

across the 1541 estimation windows.

Model A C F J AG CG FG JG

k 10 10 10 5 28 28 28 23

AIC -2337 -2329 -2334 -2258 -2229 -2210 -2241 -2155

BIC -2301 -2294 -2298 -2241 -2130 -2110 -2142 -2073

The J and JG specifications collapse to Gumbel family models which have 5 parameters less.
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I use the Akaike Information Critereon (AIC) and Bayesian Information Critereon (BIC) to

evaluate the model fit. The HOPAC-i.i.d. implementations are nested in the HOPAC-GARCH

models, which is easily verified through applying straight forward restrictions on the GARCH

parameters. Table 8 shows the averaged AIC and BIC values across the 1541 windows. Both

selection criterea always prefer the i.i.d. implementation within each family, indicating that

the additional GARCH specification is unfavourable. The Joe family seems to lag behind the

other three families in terms of model fit. Notably, the Joe parameter θ̂ consistently attains its

lower bound of 1 across the entire sample for both i.i.d. and GARCH specifications. The OP-

transformed Joe generator then collapses to a regular Gumbel generator. The parameter count

k is therefore 5 for the HOPAC-i.i.d. or 23 for HOPAC-GARCH respectively. The Gumbel

family apparently has a favorable body dependence compared to the Joe family, since the tail

dependence characteristics are identical. Notably, the Gumbel family is the only Archimedean

extreme-value copula (Hofert, 2010). Extreme-value copulas should theoretically be well suited

to this hedging problem due to the positive dependence structure amongst the marginals, and

interest in rare events. The extreme-value property might explain the attractive hedging perfor-

mance shown in Table 5, however it comes at the cost more moderate losses shown in Table 6,

and leads to a slightly worse fit compared to the other copula models as shown in Table 8.

6 Discussion and Conclusion

My findings show that HOPAC implementations can lead to a substantial reduction of the

Expected-Shortfall (ES). However, the HOPAC implementations do not substantially reduce

the Value-at-Risk (VaR). I also find that the assumption of independent observations, in favor

of model parsimony ultimately enhance model performance in this setting. I also find that

the HOPAC models imply stable hedging ratios, which many implementations fail to attain

(Alexander et al., 2013).

I perform an ex-post evaluation on eight model-based hedging approaches using two different

risk measures; VaR and ES. I find that the realised ES is superior to the naive approach for

all HOPAC-i.i.d. implementations. However, both HOPAC-i.i.d. and HOPAC-GARCH imple-
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mentations fail to consistently outperform the naive approach with respect to the VaR-measure.

Besides, I find that the additional GARCH specification increases parameter uncertainty and

harms out-of-sample performance. Furthermore, I show that the naive approach exhibits first

order stochastic dominance, such that a refinery might still prefer the naive method for miti-

gating losses.

HOPAC-i.i.d. models outperform under the ES-metric, whilst they do not consistently

outperform under the VaR-metric. This diverging finding is likely linked to the fact that the

VaR-metric only considers one quantile observation of the (loss)distribution, whereas the ES-

metric measures a wider segment of the tail. The HOPAC-i.i.d. models effectively mitigate

some extreme losses, which substantially reduce the ES. Therefore, A refinery concerned with

ES can reduce its risk using HOPACs, which might increase the attractiveness to investors. I

conclude that HOPACs can be used effectively for modelling the complete joint distribution,

and used it to mitigate extreme losses.

However, the naive implementation dominates both HOPAC implementations in the first-

order stochastic sense. The stochastic domination is a result of the naive-method’s ability to

reduce moderate losses more effectively than the HOPAC counterparts. The HOPACs therefore

might perform more favorably when targeting a different risk measure that captures moderate

losses instead. Besides, I only consider HOPACs for estimating ideal next week hedging ra-

tios. McNeil et al. (2015) states that the risk-management horizon should reflect the market

conditions in which its core business activities lie. A horizon of one week is not necessarily

appropriate, and could therefore be a subject for further research. Besides, an alternative risk

management horizon can also benefit the i.i.d. assumption, since the conditional (significant

autocorrelation) and unconditional (stationarity) distributions for all prices series differ.

The assumption of i.i.d. observations is invalid due to the presence of volatility clustering.

However, despite the presence of volatility-clustering, the HOPAC-GARCH implementations

perform unfavorably compared to the naive and HOPAC-i.i.d. approaches. Thus, assuming

i.i.d. observations in favor of parsimony leads to a better performing model in this particular

context.

Poor performance of the HOPAC-GARCH implementations might be exaggerated by the
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two-stage estimation, which results in an efficiency loss. A unified estimation technique might

reduce parameter uncertainty, and thus increase model performance. Besides, one might disre-

gard GARCH models in favor of directly incorporating the time-dependence modelling into the

HOPAC structure. Therefore, research into a different estimation technique, or an extension

for HOPACs to capture time dependence, might lead to improved results.
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Appendix A Constant Maturity Futures Results

Here, I briefly discuss the hedging results obtained when using the constant-maturity futures

construction method suggested by Alexander et al. (2013). Furthermore, Alexander et al.

(2013) provide a comprehensive review of the method. I use contract 3 futures from the Energy

Information Administration (2021a) due to the limited time-span availability for contract 2

futures. The contract 3 futures expire two months after contract 1 futures. Therefore, I use a

slightly different expiry time than Alexander et al. (2013); T = 60 instead of T = 44. Next, I

apply the same data adjustments as with the rollover method.

Table 9: Realised risk reduction (RR) in % for probabilities p ∈ {90%, 95%, 99%}, using a naive and various

HOPAC implementations using constant-maturity futures, where A corresponds to Ali–Mikhail–Haq, C for Clay-

ton, F for Frank, J for Joe. The risk reduction from (10) is the risk measure reduction with respect to no

hedging.

Dependence i.i.d. GARCH(1, 1)

Model Naive A C F J AG CG FG JG

VaR90% 25.20 21.72 23.51 21.54 24.41 26.66 24.55 25.57 23.66

VaR95% 24.76 24.43 23.71 23.35 26.78 26.17 27.57 25.09 26.63

VaR99% 28.91 24.88 28.71 24.91 25.20 25.56 24.41 23.49 20.80

ES90% 26.91 26.94 27.27 27.17 27.48 27.32 27.16 27.44 27.09

ES95% 27.62 28.11 27.53 27.35 28.19 26.67 28.15 27.51 27.99

ES99% 23.86 23.55 23.97 22.79 22.51 23.01 21.52 21.76 22.92

The highest risk reduction within each model category is denoted in bold.

Table 9 shows the resulting RR in % compared to no hedging. The RR using the constant-

maturity futures is lower, but appears more consistent across probability levels compared to

Table 5. The HOPAC-GARCH implementations seem to perform slightly better with the

constant-maturity futures, although no single implementation consistently outperforms the

naive or HOPAC-i.i.d. approaches across measures and probability levels. However, instead

of outperforming, the HOPAC-i.i.d. models realize comparable RR compared to the naive
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method. The HOPAC-GARCH models seem to perform slightly better, but fail to significantly

outperform the naive and HOPAC-i.i.d. models.

A.1 Stochastic Dominance

Table 10: Kolmogorov–Smirnov one sided p-values with H0 : F̂naive(P&L) ≤ F̂model(P&L) and H1 :

F̂naive(P&L) > F̂model(P&L). I calculate p-values with the formula of Hodges (1958) using the effective sample-

size adjustment from Xu (2013).

Dependence i.i.d. GARCH(1, 1)

Model A C F J AG CG FG JG

VaR90% 0.395 0.395 0.316 0.14 0.423 0.292 0.292 0.395

VaR95% 0.367 0.395 0.316 0.114 0.395 0.423 0.452 0.341

VaR99% 0.697 0.636 0.667 0.226 0.207 0.395 0.636 0.316

ES90% 0.395 0.395 0.316 0.14 0.423 0.292 0.292 0.395

ES95% 0.367 0.395 0.316 0.114 0.395 0.423 0.452 0.341

ES99% 0.697 0.636 0.667 0.226 0.207 0.395 0.636 0.316

Table 10 shows that the Kolmogorov-Smirnov (K-S) test fails to reject the null-hypothesis,

under which the naive method is preferred by virtue of stochastic dominance. Failure to reject

the K-S null-hypothesis means that all HOPAC models exhibit better behavior with regards to

moderate losses compared to the rollover futures approach. Besides testing for the stochastic

dominance of the naive method, I also test for dominance of the HOPAC models. The K-S test

with the alternative hypothesis of stochastic dominance for HOPAC implementations, leads to

p-values even closer to 1 which is why I omit the results for brevity. Therefore, the HOPACs

do not perform significantly worse or better in terms of stochastic dominance.

A.2 Model Fit

Table 11 shows the model fit across the 1541 estimation windows. Both AIC and BIC favor

the restricted HOPAC-i.i.d. models in favor of the additional GARCH specification. The
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Table 11: AIC and BIC model selection criteria, with parameter count k. The HOPAC-i.i.d. models {A, C, F,

J} are nested in the HOPAC-GARCH {AG, CG, FG, JG} models. The reported statistics are averaged results

across the 1541 estimation windows.

Model A C F J AG CG FG JG

k 10 10 10 5 28 28 28 23

AIC -2200 -2197 -2191 -2112 -2101 -2086 -2107 -2019

BIC -2164 -2161 -2155 -2095 -2001 -1986 -2008 -1937

The J and JG specifications collapse to Gumbel family models, which have 5 parameters less.

alternative futures specification does therefore not substantially impact conclusions based on

model specification criteria.

A.3 Conclusion Constant Maturity Futures

The HOPAC performance using the constant-maturity futures is lower in terms of absolute risk

reduction. Also, the HOPAC-GARCH models seem to benefit moderately from the construction

of constant-maturity futures. However, the performance of all HOPAC implementations is

arguably better in terms of stochastic dominance, compared to the implementations when using

the rollover futures approach. Both futures approaches therefore entail different potential. For

instance, the rollover method has the potential of greater risk reduction, likely linked to stronger

dependence between futures and spots. Whereas the constant-maturity futures have greater

potential of attaining stochastic dominance over the naive method, for example by use of an

alternative risk measure or time management horizon.
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