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Abstract

The aim of this research is to estimate individual claims reserving using the decision tree en-

semble methods: XGBoost, Random Forest and Extra Trees, with the focus on the prediction of

Reported But Not Settled (RBNS) claims. The results obtained from these three methods are

compared with the traditional triangular method, such that we are able to conclude if using data

on micro level and the use of machine learning methods can improve the predictions of individual

claims reserving. Also, we use an interpretation method Tree SHAP to be able to interpret the

results obtained from the decision tree ensemble methods. We find that the XGBoost algorithm

outperforms the Random Forest and Extra Trees algorithm in its predictions for individual claims

reserving. When comparing the results obtained from XGBoost with the traditional triangular

method, we find that the estimates obtained from the traditional triangular method are closer to

the actual reserves than the XGBoost algorithm. However, the differences are small and the ad-

vantage of using micro level data and machine learning methods is that it allows us to interpret the

drivers of claims reserves. Using the Tree SHAP method we find that the age of the policyholder,

the quarter of the year in which the accident took place, the number of development years between

the training and test set and a specific injured body part are the most important variables for the

prediction of individual claims reserving using all the three decision tree ensemble methods.

The content of this thesis is the sole responsibility of the author and does not reflect the view of the supervisor, second assessor,

Erasmus School of Economics or Erasmus University.
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1 Introduction

Claims reserving is one of the most important tasks non-life insurers have to deal with. Due to

regulations, such as the Solvency II Framework and increased requirements on financial reporting,

insurers are obliged to have enough reserves to reduce the risk of insolvency. Insurers need to estimate

future losses, in order to meet their future liabilities, such that they have enough funds to pay out in

times of financial distress. A proper estimation of claims reserving will reduce the risk of insolvency

and increase the insurer’s financial well-being.

Traditional claims reserving methods, so-called claims reserving triangles (Mack (1993)), have

been known for quite some time now. Most non-life insurers nowadays still use these traditional

triangular methods. These methods use aggregated data to predict the claims reserving, also known

for estimating claims reserves on macro level. This means that information per claim on micro level,

such as age of the policyholder or type of claim, is not incorporated in the estimation process. The

only information needed for the traditional triangular methods are the history of the claims amount

paid per year.

In the past, insurers did not always have access to large data sets with specific information per

claim. Therefore, they did not have any other choice than using these traditional triangular methods.

However, in the last decade due to big-data processes being very booming in the industry, insurers

have also been collecting more information per claim due to the right resources. With the advanced

computing power over the years and the availability of large data sets, recent researchers have proposed

methods to estimate the claims reserving on micro level (or: individual level) using specific claim data.

Data on micro level provides more detailed information, that can increase the interpretability of the

estimation of claims reserving. The extra information used in micro level models could for example be

explicit details of the policyholder or claim development information. Overall, incorporating this kind

of information into reserving models helps the insurer (and the regulator) to get a better understanding

into the insurance risks. Therefore, it is of interest for non-life insurers to delve into micro level models

for their estimation of reserves instead of using models with aggregated data.

Past researchers have already been using individual claims data for the estimation of claims reserv-

ing. There are multiple methods and ways to do this, for example using a Generalized Linear Model

(GLM) (Zhou and Garrido (2009), Crevecoeur and Antonio (2019b)), a Poisson process (Antonio and

Plat (2010)), copulas (Zhao and Zhou (2010)), a multivariate skew-symmetric distribution (Pigeon

et al. (2013b)) etc. Among these methods, machine learning techniques (Wüthrich (2018a), Wüthrich

(2018b), Duval and Pigeon (2019), Baudry and Robert (2019)) are also very popular to use, because

of their flexibility and their capability of using structured and unstructured information. Duval and

Pigeon (2019) have stated in their points of future research that it might be interesting to compare

results of different machine learning methods on the same data set.

There are different machine learning methods in the literature, such as neural networks (Wüthrich,

2018b), support vector machines (Ticconi, 2018) or methods using decision trees (Baudry and Robert

(2019), Duval and Pigeon (2019)). Among these three methods, decision trees are the most in-

terpretable. Therefore, our research focuses on decision trees, where we consider the decision tree

ensemble methods, XGBoost, Random Forest and Extra Trees, with its (dis)advantages and compare

the results of individual claims reserving obtained from these techniques. We will also compare this

1



with one of the traditional triangular methods, Mack Chain Ladder method (Mack (1993)) to be able

to conclude if using these kind of techniques in combination with micro level data can outperform the

traditional method.

Even though, a single decision tree is well interpretable, using decision tree ensemble methods

takes that interpretability away. Machine learning methods are well-known for their black box nature.

For a non-life insurer it is valuable to know which features drive the predictions or are the most

important features for the prediction of the reserves. With this information the insurer will have

a better understanding in the underlying factors of the insurance risks. Therefore, we perform the

interpretation method SHAP on the decision tree ensemble methods, which gives the most important

features for the prediction of the reserves obtained from the decision tree ensemble methods.

For our research we use a simulated data set obtained from Gabrielli and V. Wüthrich (2018).

The data set consists of 500,914 individual claims data with specific claims information and claims

payments per period. We conduct three decision tree ensemble methods on the data set, namely

XGBoost, Random Forest and Extra Trees to be able to answer the research question: “Can decision

tree ensemble methods in combination with micro level data outperform the traditional Mack chain

ladder method for the estimation of claims reserving? And if so, which method has the best results?”.

In our research we focus on RBNS (Reported But Not Settled) claims, explained in the next Section.

The parameters of the ensemble methods are all tuned via hyper parameter tuning and the model

recursively builds the full development period of the claims. For each development period, the training

and test sets are split via a new kind of splitting method, similar to Baudry and Robert (2019).

Furthermore, the results of the decision tree ensemble methods are evaluated with the Root Mean

Squared Error (RMSE). At last, to be able to interpret the results obtained from the decision tree

ensemble methods, the interpretation method SHAP is performed.

We find among the three decision tree ensemble methods, that the XGBoost algorithm outperforms

the Random Forest and the Extra Trees algorithm. It also has the fastest computation time among

the three methods. When comparing the predictions obtained from the XGBoost algorithm with the

predictions obtained from the traditional Mack chain ladder method, we find that the predictions from

the Mack chain ladder method are closer to the actual reserves than the XGBoost algorithm. However,

a disadvantage of the Mack chain ladder method is that we do not know the underlying factors that

play a roll in the estimation of the claims reserves. With the interpretation method SHAP we find

that the age of the policyholder, the quarter of the year in which the accident took place, the number

of development years between the training and test set and a specific injured body part are the most

important variables for the prediction of individual claims reserving using all the three decision tree

ensemble methods. This information is very valuable for non-life insurers, which they can not retrieve

from the traditional triangular methods.

In the next section of this Chapter follows more background information about claims reserving.

Then, in Section 1.2 previous work of past researchers on the topic will be discussed. Furthermore,

in Section 2 we discuss and analyse the data set. Moreover, Section 3 elaborates on the methods

used in our research, including the traditional triangular method, the decision tree ensemble methods,

the construction of training and test sets and the interpretation method SHAP. Then, the results are

presented in Section 4 and finally the conclusion of our research can be found in Section 5.
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1.1 Background information

The following paragraph explains the building blocks of an individual claim process. In Figure 1 a

timeline of a claim k is shown.

A claim starts when an accident of the policyholder takes place, this time is also known as the

accident time or the occurrence time to as shown in Figure 1. This accident may lead to financial

charges covered by a non-life insurer. In most situations, such as a car collision, the accident will

not be reported at the same time as the accident takes place. The time between the occurrence time

of the accident to and the reporting time of the claim tr is also referred to as the reporting delay.

When the reporting takes place, the insurer is able to observe details about the type of accident and

the policyholder. With this information the insurer can already make a first evaluation of the total

financial loss. After the accident is reported to the insurer, the claim will not be settled immediately.

The time between the reporting time of the claim tr and the settlement of the claim ts is called the

closing delay. During the closing delay, situations such as lawsuits, investigations or payments take

place. The time of payments on the timeline in Figure 1 are denoted as tp1 , tp2 , ... , tpm , assuming

that claim k needs a total of m payments. These payments will be paid until the claim is settled (or:

closed) at the settlement time ts. At this time all the information of the claim is available, including

the amount of payments in each development period after the occurrence time, and the insurer is not

expected to make more payments. It could also be the case that a claim re-opens after it has been

settled. However, for simplicity we only consider claims that are not reopened after settlement, as

shown in Figure 1.

Occurrence
time

Reporting
time

Payments
Settlement

time

Reporting delay Closing delay

t
(k)
o t

(k)
r t

(k)
st

(k)
p1 t

(k)
p2 t

(k)
pm

Figure 1: Timeline of a claim k.
Note: This figure shows a simplified timeline of a claim k from occurrence of the claim till settlement of the claim. The
reporting delay is the time between the occurrence time and the reporting time and the closing delay is the time between the
reporting time and the settlement time. In the closing delay, payments take place in several periods.

Furthermore, the reserves of an insurer can be divided into two main components as shown in

Figure 2. First of all, an Incurred But Not Reported (IBNR) claim is a claim, where the accident has

already occurred but the claim has not yet been reported to the insurer. A claim is an IBNR claim,

when the calculation time t∗ is between the occurred time to and the reporting time tr, also denoted

when, to < t∗ < tr. For such type of claim, information about the policyholder and type of accident

are not yet available. Therefore, the insurer does not know that these IBNR claims exist. An IBNR

claim is shown in the upper timeline in Figure 2.

Secondly, a Reported But Not Settled (RBNS) claim is a claim that has been reported but not yet

been closed. The calculation time of the claim t∗ is between the reporting date and the settlement

date, also known as the period called the closing delay. Information such as the type of accident
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and the policyholder are available and therefore this information can be used to estimate the reserves

needed for this claim. So, if tr < t∗ < ts, we are working with RBNS claims as shown in the second

timeline in Figure 2.

IBNR claim

t
(k)
o t

(k)
r t

(k)
s

Reporting delay Closing delay

RBNS claim

t
(k)
o t

(k)
r t

(k)
s

Reporting delay Closing delay

Calculation
time t∗

Figure 2: Distinction between an IBNR and a RBNS claim k.
Note: This figure shows an IBNR claim and a RBNS claim. IBNR claims are claims, where the calculation time takes
place during the reporting delay. On the other hand, RBNS claims are claims, where the calculation time takes place during
the closing delay. For IBNR claims information about the policyholder is not yet available, whereas for RBNS claims such
information is available.

1.2 Previous Research

Past researchers have already published several papers surrounding the use of decision tree ensemble

methods for the estimation of individual loss reserving.

First of all, Duval and Pigeon (2019) propose a Gradient Boosting-Based Approach (Chen and

Guestrin, 2016) on micro-level using decision trees as weak learners. They contrast their results with

the traditional aggregated techniques at macro level. They conduct five different boosting models,

varying from different response variables and covariates. Their choice of a gradient boosting decision-

tree model is motivated by its strong performance on structured data and its short calculation time

in comparison with other methods, such as Random Forest. Through their case study, they show that

using generalized linear models on micro level could be unstable for the estimation of loss reserving.

However, combining an approach of a macro level model for the completion of open claims and a

gradient-boosting model on micro level could be interesting for a non-life insurer. A point of future

research states to compare results obtained from different machine learning methods on the same data

set.

On the other hand, Wüthrich (2018a) proposes a machine learning method for individual loss

reserving using regression trees (Breiman et al., 1984). For this approach, in contrary with the paper

above, Wüthrich (2018a) only considers the number of payments instead of the claims amount paid.

Regression trees are very flexible and allows to incorporate any kind of feature information. However,

he also mentions some drawbacks, such that regression trees are not a very robust method. Using

other machine learning techniques, like random forest, neural networks or a bagging approach, can

overcome such issues. However, the latter can cause issues with the computation time.
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Moreover, Baudry and Robert (2019) use the Extra Trees algorithm for individual claims reserving.

They propose a model that recursively builds the full development of a claim, development period

after development period. After that, they evaluate their performance with its true values and on the

traditional chain ladder method. The paper concludes that the machine learning estimators are more

robust for changes in the development patterns of claims than the chain ladder estimators based on

aggregated data and that the machine learning estimates outperform the chain ladder method. Baudry

and Robert (2019) states that taking into account the heterogeneity between claims causes these

accurate predictions. However, they do mention that using random forests or a boosting approach,

instead of the Extra Trees algorithm, could also result into great performance.

Even though all these papers use different approaches for individual claims reserving. Their simi-

larity is that they successfully use individual claims data in the estimation process of claims reserving

with a decision tree ensemble method. Also, they all state that using claims data on micro level helps

to better understand the structural differences between claims payments, captures the specific develop-

ment patterns of the claims and allows for claims heterogeneity. This concludes that using information

on micro level is highly valuable in comparison with the traditional methods using macro level data

and that machine learning techniques (especially decision tree ensemble methods) can definitely help

with incorporating such data in the estimation of claims reserves.

In our research, we build three different decision tree ensemble methods using XGBoost, Random

Forest and Extra Trees. In contrary to the work of Wüthrich (2018a) and Duval and Pigeon (2019),

our models will recursively build the full development of RBNS claims, period after period, similar to

the approach in Baudry and Robert (2019). However, Baudry and Robert (2019)’s work estimates the

IBNR claims recursively via frequency and severity measures and considers a different construction of

training and test sets per period. Also, we implement hyper parameter tuning to obtain the optimal

parameter set and do not average out the predictions over the considered models, like Baudry and

Robert (2019) do.

Furthermore, we perform the interpretation method SHAP on the predictions of the decision tree

ensemble methods to make the methods interpretable. The machine learning methods used in the

papers discussed above end up with a black box model, meaning that it is not known which features

are the most important for the prediction of the reserves. Therefore, our research is valuable to the

literature and investigates one of the future points of Duval and Pigeon (2019) to compare the results

of individual claims reserving from different machine learning methods on the same data set.
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2 Data

In this thesis we use the simulated data set of Gabrielli and V. Wüthrich (2018). Gabrielli and

V. Wüthrich (2018) use a stochastic simulation machine based on real non-life insurance data. The

simulation machine generates individual claims histories of non-life insurance claims based on neural

networks for the incorporation of individual claims information, such as line of business and age of

the policy holder. This information should be able to influence the reporting and settlement delay

of the claim and the claim amount paid. The resulting simulated data set should be as realistic as

possible, such that it reflects a real insurance claims portfolio. The true data used for the simulation is

kept completely anonymous, therefore we do not know the origin of the claims. We do know that the

chosen data has been preprocessed correcting for wrong values and dropping out claims with missing

features. After this, the final true data set consists of almost 10 million individual claims histories on

which the simulation is based on.

The simulation machine consists of eight steps in the modeling process. Gabrielli and V. Wüthrich

(2018) use different simulations for the reporting delay, the payment indicator, the number of pay-

ments, the total claim size, the number of recovery payments, the recovery size, the cash flow and the

claim status. Each of these steps are based on neural networks (Anthony and Bartlett, 2009). Neural

networks have been proved to be very capable for regression and classification problems. However,

a drawback of neural networks is the black box nature between the inputs and the output variable

giving a disadvantage in the interpretation of the method. But, this drawback is not a problem for

this simulation machine, because due to the missing interpretation the generating mechanism of the

true data can not easily be retrieved. For a detailed description of the simulations we refer to the

paper of Gabrielli and V. Wüthrich (2018).

Also, the paper states that these simulated claims perfectly allow to test the traditional reserving

methods, such as the chain ladder method, as well as new developed methods on micro level data.

Gabrielli and V. Wüthrich (2018) believes that with their simulation machine the drawback of no

publicly available individual claims data is resolved and that it benefits the research in the field of

individual claims reserving by providing a realistic synthetic data set.

The simulated data set has already been used for the estimation of individual claims reserving

using neural networks by Wüthrich (2018b). Wüthrich (2018b) succeeds in using the simulated data

set for the estimation of individual claims reserving using neural networks and concludes that incorpo-

rating individual claims data (in combination with neural networks) makes room for heterogeneity and

captures changes in the portfolio. Since the purpose of our research is to also incorporate individual

claims information using other machine learning methods, this data set is suitable for our research.

2.1 Data analytics

In this Section we elaborate more on the data analytics of the simulated data set of Gabrielli and

V. Wüthrich (2018). The simulation machine simulates 500,914 claims from accident years 1994 until

2005. The data set consists of 32 variables with the following information:

• the claims number (ClNr), which is an explicit claims identifier related to a specific accident.

• the line of business (LoB), which is a categorical variable {1,...,4} indicating the line of business

of the policy holder.
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• the claims code (cc), which is a categorical variable {1,...,53} denoting the labor sector of the

policy holder.

• the accident year (AY), which is the year the accident occurred ranging from {1994,...,2005}.
• the accident quarter (AQ), which is the quarter the accident of the claim took place indicated

with {1,...,4}.
• the age (age), which is the age of the injured policyholder ranging from {15,...,70}.
• the injured body part (inj part), which is a categorical variable denoting the injured body part

of the policy holder with labels in {10,...,99}.
• the reporting delay (RepDel), which indicates in years how long the reporting delay is of the

claim. The reporting delay plus the accident year is also known as the reporting year, which can

be in {1994,...,2016}.
• the payments (PayXX), which indicates the payments made in each development period XX with

XX ranging from 00 till 11.

• the open/closed indicator (OpenXX), which is a binary variable with 1, indicating the claim is

still open in development period XX and with 0, indicating the claim is closed in development

period XX with XX ranging from 00 till 11.

As explained above, the accident years range from 1994 till 2005. This means that, there are 0

till 11 development periods with 0 meaning that the payments of the claim were paid in the same

year as the accident year. We assume that 11 development periods are enough to fully capture the

development of the claim and therefore we consider this data set as a complete data set with no further

claims to be considered surpass the 11 development periods.

As mentioned in Section 1, we use methods that recursively build the full development of the

claims. This is done per calculation year, which in our case ranges from 2006 till 2016. These years

are also known as development period 1 till development period 11 based on the latest accident year

2005. The calculation year is the year of which we calculate the reserves for. Depending on the

accident year of the claims, the calculation year can be a different development period for each claim.

For example, if we calculate the reserves for the calculation year 2006, for the claims with an accident

year 2004 these are the reserves for development period 2, but for the claims with an accident year

2005 these are the reserves for development period 1.

In Section 1.1, we gave more background information about the timeline of a claim and introduced

the terms IBNR (Incurred But Not Reported) and RBNS (Reported But Not Settled) claims. We

will explain later in Section 3.2 the construction of the training and test sets. However, in Table 1

the number of IBNR and RBNS claims per calculation year (in our specific case 2006 till 2016) for

the training and test sets are already shown. Note that, in Section 1.1 we mentioned that we do not

have the data for IBNR claims, since these claims are not yet reported to the insurer in the specific

calendar year. The insurer does not know that these claims exist, let alone know the individual data

of these claims. Therefore, using micro level data for the estimation of individual loss reserving is not

allowed for the IBNR claims and it is necessary to take out these IBNR claims when conducting our

analysis. For each calculation year we find a very small number of IBNR claims (less than 0.05%) as

shown in Table 1. The majority of the total claims are RBNS claims and therefore it is acceptable in

our research to just focus on the RBNS claims.
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Table 1: Amount of IBNR and RBNS claims per calculation year used in the training and test sets.

Test set Training set

Calculation IBNR RBNS Total %IBNR of IBNR RBNS Total %IBNR of
year claims claims claims total claims claims claims claims total claims

2006 210 460,681 460,891 0.046% 111 456,977 457,088 0.024%
2007 97 420,863 420,960 0.023% 43 413,911 413,954 0.010%
2008 67 380,193 380,260 0.018% 19 370,685 370,704 0.005%
2009 46 339,780 339,826 0.014% 6 327,977 327,983 0.002%
2010 32 298,977 299,009 0.011% 0 285,841 285,841 0.000%
2011 24 257,020 257,044 0.009% 0 243,870 243,870 0.000%
2012 10 215,063 215,073 0.005% 0 201,905 201,905 0.000%
2013 4 172,927 172,931 0.002% 0 161,088 161,088 0.000%
2014 1 130,209 130,210 0.001% 0 120,654 120,654 0.000%
2015 0 86,960 86,960 0.000% 0 79,954 79,954 0.000%
2016 0 43,826 43,826 0.000% 0 40,023 40,023 0.000%

Note: This table shows the amount of IBNR claims, RBNS claims, total amount of claims and the percentage of the total
claims that are IBNR for each calculation year of our training and test sets. The total amount of claims is the sum of the
IBNR and RBNS claims and the percentage of IBNR claims is calculated as: Amount of IBNR claims / Total amount of
claims × 100.

Furthermore, Figure 3 shows histograms of the number of total claims per accident year (AY),

accident quarter (AQ) , age of the policyholder (age) and the reporting delay (RepDel). From Figure

3, it can be shown that for each accident year and each accident quarter roughly the same number

of total claims is observed. Therefore, as expected the mean of these two variables lays perfectly in

the middle of the range. Furthermore, for the age of the policyholder we find a linear decrease of the

number of claims from age 35 on wards. Before age 35 the number of claims observed is roughly the

same. The average age of the policyholder is 35. Next, the reporting delay of the claims finds a sharp

decrease after a reporting delay of 2. For a reporting delay of 1 and 2 the number of claims exceed the

limits of the Figure. The number of claims are for these two reporting delays respectively 460,340 and

38,889. The mean of the reporting delay is also very low, namely 0.09. This means that on average a

claim is reported after 1 year.
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(a) Accident year (b) Accident quarter

(c) Age of the policyholder (d) Reporting delay

Figure 3: The number of claims per accident year, accident quarter, age of the policyholder and
reporting delay.

Note: This figure shows the number of claims per accident year, accident quarter, age of the policyholder and reporting delay.
The black dotted line shows the mean of the variable. For a reporting delay of 1 and 2 the number of claims exceed the limits
of the figure. The number of claims when the reporting delay is 1 and 2 is respectively 460,340 and 38,889.

Table 2 shows the descriptive statistics of the other non-categorical and non-binary variables in the

data set, namely the variables indicating the payments of the claim per development period (PayXX).

The descriptive statistics are calculated on the total number of claims. We find a descending mean

from development period 0 until development period 11. This is not a surprising result, since most

claims are reported after one year or less. Thus, most claims are paid in the first few development

periods. Also, for development periods 1 till 11 we find a negative claim as minimum value, meaning

that the insurer gets a compensation from the policyholder.

Table 2: Desciptive statistics of the simulated data set by Gabrielli and V. Wüthrich (2018).

Variable Mean Min Max S.D.

Pay00 921.90 0 876,373 5387.97
Pay01 544.00 -10,317 1,363,113 6391.65
Pay02 202.70 -34,734 716,645 3634.74
Pay03 98.80 -82,376 343,173 2049.06
Pay04 57.22 -117,754 226,842 1421.74
Pay05 37.79 -76,607 192,709 1037.24
Pay06 26.41 -63,930 142,981 840.04
Pay07 20.12 -87,236 105,965 699.87
Pay08 15.84 -32,112 95,737 547.32
Pay09 13.52 -96,405 96,545 500.98
Pay10 10.40 -92,039 87,722 465.20
Pay11 7.10 -157,488 84,970 516.44

Note: This table shows the descriptive statistics of the payments of the claims for development period 0 till 11. The mean,
minimum, maximum and standard deviation (S.D.) of the variables are calculated. The descriptive statistics are calculated
on the total number of claims, so IBNR plus RBNS.
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A variable indicating the line of business of the claim is also available. In Figure 4 the development

of the cumulative and incremental claims amount paid are shown per line of business. The line of

business is indicated with a 1, 2, 3 or 4. However, since we use a simulated data set, it is unknown

what kind of line of business are referred to the categorical variable. From this Figure it can be

shown that claims corresponding to the second line of business have higher to be paid claims than the

other three categories. Furthermore, for all line of businesses, it can be said that the further into the

development periods the lower amount of claims are paid. This can be concluded by the decreasing

lines in the second figure presenting the incremental claims amounts. We also observe that the claims

in each business line follow the same pattern.

(a) Cumulative claims amounts (b) Incremental claims amounts

Figure 4: Development of the cumulative and incremental claims amounts paid per line of business.
Note: This figure shows the cumulative and incremental claims amounts paid per business line in millions. Each business
line is distinguished by 1,2,3 or 4. The development period goes from 0 till 11, with 0 meaning that the claims are paid in the
same period as the accident year.

3 Methodology

In this Section, we discuss the methods used in this thesis. First, we explain the traditional Chain

Ladder method. Afterwards, we elaborate on the construction of training and test sets to recursively

build the development of the claims and the grid search for hyper parameter tuning. Then, we discuss

the decision tree ensemble methods: XGBoost, Random Forest and Extra Trees, which are used to

estimate the individual claims reserving. At last, we elaborate on the interpretation method SHAP.

3.1 Mack Chain Ladder

In Section 1 we mentioned that the traditional triangular method use aggregated data for the estima-

tion of claims reserves. One of the first models based on these triangular methods is proposed by Mack

(1993), also called the Mack Chain Ladder method. Due to its simplicity and its distribution-free ap-

proach, the traditional triangular method is still widely used by non-life insurers for the estimation of

their claims reserves. However, this method does not make use of individual claims data and therefore

solely looks at aggregated data. We use Mack Chain Ladder method as a benchmark method for

comparison with the machine learning techniques on micro level proposed later in this Section.

First, lets introduce Cij to denote the accumulated claims amount paid of accident year i up
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until development period j, where i = 1, ..., I and j = 0, ..., J . The number of accident years and

development periods is equal to each other, thus we can denote J as I − 1. For example, if the

first accident year in the data set is 1994 and we are calculating the accumulated claims amount

paid for development period 0, this means that we are summing up the total claims amount paid in

1994, denoted as C10. Furthermore, for development period 1 (and the same accident year 1994), the

accumulated total claims amount paid up until development period 1, is denoted as C11 and are the

accumulated total claims amount paid up until 1995 (so also including 1994) for all the claims with

an accident year of 1994.

We can split the accumulated total claims amount paid Cij into two different parts, namely the

observed claims amounts and the predicted claims amounts. In Table 3 a basic chain ladder method is

shown with on the rows the accident years and on the columns the development periods. The diagonal

in this Table refers to a calendar year. When j ≤ J − i + 1, we can observe the accumulated total

claims amount paid for each i and j. In Table 3, these claims are in the upper left triangle part of the

table. The goal is to ultimately estimate the outstanding claims reserves as:

R̂i = Ĉi,J − Ci,J+1−i, (1)

for each accident year i = 2, ..., I., where Ĉi,J are the predicted accumulated total claims amount

paid as shown as the last column in the lower triangle part of Table 3 and Ci,J+1−i the observed

accumulated total claim payments, also referred to the diagonal value of accident year i.

Table 3: A basic chain ladder method.

Accident Development period j
year i 0 1 2 .. j .. .. J

1
2 Observed
3 Cij
..
i
.. Predicted

.. Ĉij
I

Note: This table shows a representation of a basic chain ladder method. The upper left triangle of the table shows the
observed accumulated total claim payments and the lower right triangle are the predicted accumulated total claim payments.
The diagonal refers to a calendar year.

In the basic chain ladder method, Mack (1993) assumes that there are development factors fj > 0

for each j = 0, ..., J − 1 with

E(Ĉi,j+1|Ci0, Ci1, ..., CiJ) = fjCij or Ĉi,j+1 ≈ fjCij , (2)

for every accident year i = 1, ..., I. According to the chain ladder method, the accumulated total

claim payments over the development periods behave in a similar pattern. This pattern should be

captured by the development factors, also referred to as age-to-age factors or the chain ladder factors.

Ultimately, we need to estimate Ĉi,J for each i = 2, ..., I to be able to calculate the reserves as in
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Equation 1. This can be calculated as

Ĉi,J = Ci,I−i

J−1∏
j=I−i

fj for all i = 2, ..., I. (3)

Furthermore, the development factors fj are calculated as described in Mack (1993) with

fj =

∑I−j−1
i=1 Ci,j+1∑I−j−1
i=1 Ci,j

for all j = 0, ..., J − 1. (4)

Additionally, with this approach of estimation it can also be assumed that the accident years are

independent from each other.

3.2 Construction of training and test sets

In this Section we elaborate on the construction of training and test sets, which are necessary to

recursively build the development of the claims with the decision tree ensemble methods discussed

later in this Chapter.

First, we re-arrange Table 3 with the development years on the columns. Note that the development

years are not equal to the development periods j as presented in Table 3. The development year is the

calendar year in which the claim has been paid. Therefore, for each accident year not all development

years are applicable and there are different development years for each accident year as shown in Table

4. However, the number of development periods remains the same for each accident year. In Table

4 an example is shown with i = 1, .., 6 accident years and j = 0, .., 5 development periods for each

accident year. The light grey area in Table 4 are the observed accumulated claim payments Cij and

the dark grey area are the predicted accumulated claim payments Ĉij , predicted with the decision

tree ensemble methods later explained in this Chapter. Note that the example given in Table 4 only

consists of six accident years and five development periods. In our data set we have data available

from twelve accident years ranging from 1994 till 2005 as explained in Section 2 and we work with

eleven development periods.

Table 4: Representation of the accumulated claim amount per development year.

Development year

Accident year i
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Observed Cij Predicted Ĉij

2000 (i = 1) C10 C11 .. .. .. C15 × × × × ×
2001 (i = 2) × C20 C21 .. .. .. Ĉ25 × × × ×
2002 (i = 3) × × C30 C31 .. .. .. Ĉ35 × × ×
2003 (i = 4) × × × C40 C41 .. .. .. Ĉ45 × ×
2004 (i = 5) × × × × C50 C51 .. .. .. Ĉ55 ×
2005 (i = 6) × × × × × C60 Ĉ61 .. .. .. Ĉ65

Note: This table shows a representation of the accumulated claim number per development year for each accident year
i = 1, .., 6. The light grey area represents the observed accumulated claim payments and the dark grey area represents the
predicted accumulated claim payments. The cells with a cross can be ignored, since these are not observed nor predicted.

For example, if the calculation year t∗ = 2006, this means that for accident year 2001 (i = 2) we

predict the claim payments for development period 5 (Ĉ25) and for accident year 2002 (i = 3) this is
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for development period 4 (Ĉ34) etc. The goal is to predict the claim payments for each development

year 2006 until 2010, these are J = 5 development years after the last accident year 2005. For each of

these development years, we need a separate training and test set. As a result of that, we also need a

separate model for each of these calculation times.

We continue with the example with the calculation year t∗ = 2006, in Table 5 this is denoted as

the dark blue coloured column. To be able to predict the accumulated total claim payments for this

calculation year, we construct explicit training and test sets. We refer to the light orange area as the

X.TRAIN area and the dark orange area as the Y .TRAIN area. These two training sets are used for

the training of the model with a decision tree ensemble method explained later in this Chapter. For

the testing of this trained model, we then use the light blue area also referred to as X.TEST. This

model is then used for the prediction of the accumulated total claim payments for development year

2006, in this case known as Y .TEST. The training sets (X.TRAIN and Y .TRAIN) use all the claim

data from 2000 until 2004 and the test sets use (X.TEST and Y .TEST) all the claim data from 2001

till 2005 (in this example).

However, in Section 1.1 we mentioned that information about IBNR claims are not yet available

at the calculation time. For example, if a claim is occurred in 2004, but reported in 2007, we can not

use the data of this claim for the training and test sets for the calculation year 2006, because this data

is not available in 2006. Therefore, we omit all the IBNR claims in the construction of the training

and test sets and solely focus on RBNS claims with the use of decision tree ensemble methods.

Table 5: Construction of training and test sets for t∗ = 2006.

Development year

Accident year i
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Observed Cij Predicted Ĉij

2000 (i = 1) C10 C11 .. .. .. C15 × × × × ×
2001 (i = 2) × C20 C21 .. .. .. Ĉ25 × × × ×
2002 (i = 3) × × C30 C31 .. .. .. Ĉ35 × × ×
2003 (i = 4) × × × C40 C41 .. .. .. Ĉ45 × ×
2004 (i = 5) × × × × C50 C51 .. .. .. Ĉ55 ×
2005 (i = 6) × × × × × C60 Ĉ61 .. .. .. Ĉ65

Development year

Accident year i
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Observed Cij Predicted Ĉij

2000 (i = 1) C10 C11 .. .. .. C15 × × × × ×
2001 (i = 2) × C20 C21 .. .. .. Ĉ25 × × × ×
2002 (i = 3) × × C30 C31 .. .. .. Ĉ35 × × ×
2003 (i = 4) × × × C40 C41 .. .. .. Ĉ45 × ×
2004 (i = 5) × × × × C50 C51 .. .. .. Ĉ55 ×
2005 (i = 6) × × × × × C60 Ĉ61 .. .. .. Ĉ65

Note: This table shows the construction of the training and test sets for the calculation time t∗ = 2006. The yellow area
(X.TRAIN) denotes the data we use for the training of the model. The orange area (Y .TRAIN) is the dependent variable we
use for the training of the model. The light blue is (X.TEST) the data used in the trained model for predicting the accumulated
total claim payments in 2006, denoted as the dark blue area Y .TEST).

Furthermore, when the calculation year t∗ shifts to 2007 the training and test sets also shift.

Y .TEST becomes the predictions in the column of 2007, X.TEST consists of all the data with an
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accident year of 2002 and higher, Y .TRAIN contains the accumulated total claim payments up until

2005 for the claims with accident years 2000 until 2003 and X.TRAIN consists of all the data with

an accident year from 2000 until 2003. In the Appendix in Table 10, you can find an example of the

construction of training and test sets for the calculation year 2007. All the other training and test

sets for the other calculation times are constructed in the same way.

As explained in Section 2, we use the simulated data set from the stochastic simulation machine

of Gabrielli and V. Wüthrich (2018). For the X .TRAIN and X.TEST sets, we use the independent

variables: line of business (LoB), claims code (cc), accident quarter (AQ), age (age), injured body part

(inj part) and the number of development years between the Y .TRAIN and Y .TEST set respectively,

and the accident year. For the X.TRAIN set, the latter independent variable is 2005 minus the

corresponding accident year for any calculation time in the example of Table 5, since Y .TRAIN (the

orange column) is always corresponding to the accumulated total claim payments of 2005. In contrary

to the Y .TRAIN set, the calculation time of the Y .TEST set (dark blue column) does change per

construction of the training and test sets. However, the number of development years between the

calculation time of the corresponding Y set and the accident year, is never the same for the training

and test sets for the same calculation year. Thus, we use distinct data in both training and test sets

and do not re-use data for both training and testing. For the categorical variables line of business

(LoB), claims code (cc) and injured body part (inj part), we use dummies for each value in these

variables. This means that both the X.TRAIN and X.TEST set consist of 104 variables. Note that

not all values in the range explained in Section 2 are used for the variables. For example, for the

injured body part, the values 82 until 98 are not used. Therefore, we also do not use a dummy

variable for these values, because the columns will only consist of zeros.

3.3 Hyper parameter tuning and approach for training and testing

In this Section we explain the use of hyper parameter tuning for our decision tree ensemble methods

that are discussed in the next Section and our approach for training and testing the methods to be

able to estimate the full development of the claims.

After constructing the training and test sets for each calculation year as explained in Section 3.2,

we perform hyper parameter tuning on the parameter set of the decision tree ensemble methods. For

the hyper parameter tuning we first set a grid with the parameters and its values to be optimized

during the tuning process. After this we run the model on each combination of parameter values in

the grid and evaluate the models with the Root Mean Squared Error (RMSE), calculated as:

RMSE =

√∑n
i=1 |(ŷij − yij)|2

n
, (5)

where ŷij stands for the predicted reserves and yij for the actual reserves for development period j.

The model with the lowest RMSE is the optimal model and therefore the parameter set corresponding

to this model is the optimal hyper parameter set. This process is further elaborated in Algorithm 1.

Each decision tree ensemble method has different parameters to be optimized, so each grid is set on

different values. The hyper parameter tuning is an important step in our approach. Some important

reasons for using hyper parameter tuning to machine learning methods are that it reduces human

effort, since developers spend a considerable amount of time finding the optimal parameters, it has a
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significant impact on the performance of the model and it makes the models better reproducible for

other researchers (Schratz et al. (2019), Yang and Shami (2020)).

As explained in Section 3.2, for each of the calculation years (the development years that need

a prediction for their claim payments) we have separate training and test sets, separate models and

therefore also separate optimal hyper parameter sets for each of these models. In Algorithm 1, the

pseudo code for the estimation of individual claims reserving with a machine learning method is shown.

This pseudo code shows the use of the different training and test sets for each calculation year. The

different training and test sets are used to find the optimal hyper parameter set in the grid search.

Moreover, the pseudo code also shows the testing of the final models to estimate the full development

of the claims.

Algorithm 1 Pseudocode for estimating the full development of the individual claims reserving

Input: J (number of development periods), list X train, list Y train, list X test (lists of all
the training and test sets for the J development periods) and a machine learning method
Output: The full development of all the RBNS claims as in Table 4

1: grid ← Specify the grid with the parameters to be optimized during the grid search
2: for j ← 1 to J do
3: all rmse ← Create an empty vector (the RMSE will be saved in this vector)
4: for g ← 1 to length(grid) do
5: ML model ← Train the model with a machine learning method using list X train[j],
6: list Y train[j] and the parameters in grid[g]

7: Y pred ← Predict the claims for j with ML model and list X test[j]

8: acc Y pred ← Accumulate Y pred per accident year
9: res pred ← Calculate the reserves using acc Y pred, the observed accumulated claim

10: payments and if j > 1 the predictions of the prior calculation years
11: rmse← Calculate Root Mean Squared Error between res pred and the actual reserves and
12: save this result in the vector all rmse

13: end for
14: opt param ← Get the optimal hyper parameter set, which is the index in grid

15: with min(all rmse)

16: ML model opt ← Train the model with a machine learning method using list X train[j],
17: list Y train[j] and the optimal hyper parameter set opt param

18: Y pred opt ← Predict the claims for j with ML model opt and list X test[j]

19: acc Y pred ← Accumulate Y pred opt per accident year
20: res pred ← Calculate the reserves using acc Y pred, the observed accumulated claim
21: payments and if j > 1 the predictions of the prior calculation years
22: end for

Note: This algorithm contains the pseudo code for the estimation of the full development of the individual claims reserving.

As input it uses the number of development periods, the training and test sets as explained in Section 3.2 and a machine

learning method.

The pseudo code starts with the input and output of the algorithm. As input for the algorithm we

use the number of development periods J, the lists of the X.TRAIN, X.TEST and the Y .TRAIN sets,

respectively noted in the algorithm as list X train, list X test and list Y train, and a machine

learning method. For the machine learning methods we use decision tree ensemble methods that will

be discussed in Section 3.4. However, other machine learning methods, such as Neural Networks, are

also acceptable to use in this algorithm. Then, using all these variables as input for the algorithm,

gives the full development of the RBNS claims as desired in Table 4.

Furthermore, line 1 shows the specification of the grid with the parameters of the machine learning

method to be optimized during the grid search. Then, in line 2-4, we loop over the development periods
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and the grid search specified in the previous step, such that for each development period we use the

corresponding training and test for the hyper parameter tuning. We also create an empty vector at the

beginning of each loop over a development period, which is necessary for later in this Algorithm. The

search for the optimal hyper parameter set is shown in lines 5-12, where each of the hyper parameter

sets in grid is used for the training of the model with a machine learning method. The output of the

machine learning method is accumulated and the reserves are calculated as in Equation 1. The next

step is then to calculate the Root Mean Squared Error (RMSE) as in Equation 5. Furthermore, on line

14-21 we get the optimal hyper parameter set from the grid, which is the hyper parameter set that

gives the lowest RMSE of the trained model. We again train the model, but this time with the optimal

hyper parameter set, accumulate the predictions per accident year and calculate the reserves again

as in Equation 1. Repeating this process for all the development periods gives the desired output,

namely the full development of all the RBNS claims.

3.4 Decision tree ensemble methods

In Section 1.2, we already delve into papers from past researchers with regards to using decision tree

ensemble methods for individual claims reserving. From these papers we conclude that decision tree

ensemble methods are acceptable methods for incorporating micro-level data to the estimation of

claims reserving. In this Section we explain the decision tree and elaborate on the different decision

tree ensemble methods used in this thesis for the estimation of individual claims reserving and for the

comparison with the benchmark model as explained in Section 3.1.

Ensemble methods try to improve the results obtained by machine learning methods by combining

several machine learning methods (the learning algorithms of the ensemble method) together. This

allows for better performance in prediction compared to a single model (stacking), it decreases the

variance (bagging) and it decreases bias (boosting). The advantage of using ensemble methods is

that if one of the learners fails, the overall system can still recover the error (Valentini and Masulli,

2002). However, a disadvantage is that ensemble methods are less interpretable than a single learning

algorithm and can result in a black box model.

In this research, we use decision tree ensemble methods, which are ensemble methods that use

decision trees as their learning algorithms. Therefore, to be able to fully understand these ensemble

methods it is necessary to first understand a single decision tree.

A decision tree can have two different types, namely classification trees for classification purposes

and regression trees for regression purposes (Breiman et al., 1984). In our case, we work with a

continuous decision variable (the payments of a claim) and therefore use regression trees. The idea

of a regression tree is to partition the feature space by splitting the set of variables with an impurity

measure. For regression trees the impurity measure is the sum of squared residuals (Loh, 2014). The

split which reduces the impurity measure the most, is chosen for the next split. Each split is chosen

such that it maximizes the performance of the model. The first split of the tree happens in the so-

called root node, which is also known for the most important variable for the estimation of the output.

An example of a decision tree can be found in the Figure below.

16



Figure 5: An example of a decision tree.
Source by: https://www.researchgate.net/figure/Decision-tree-example_fig1_320970818

Furthermore, the advantages of using decision trees is that decision trees are non-parametric, which

means they do not make any assumptions about the distribution of the data. Single decision trees

are also interpretable. There are several functions that can give you the most important features for

the estimation of the decision variable. Some disadvantages are that decision trees are very prone

to overfitting. One of the reasons we use ensemble methods is that ensemble methods can prevent

this problem. For classification purposes with an imbalanced data set, decision trees can have issues

with the low representation of a class. Observations of the minority class can get lost in the majority

class nodes, which causes the model to give non accurate predictions of the minority class. A solution

for this issue is to make the imbalanced data set more balanced with up and downward sampling

(Kotsiantis et al., 2005).

3.4.1 XGBoost algorithm

The first decision tree ensemble method we use is a gradient boosting algorithm (Friedman, 2001),

namely the XGBoost algorithm, also known as the Extreme Gradient Boosting algorithm by Chen

and Guestrin (2016). The XGBoost algorithm has been widely used by several researchers in different

areas. Schratz et al. (2019) uses the algorithm for the diagnosis of chronic kidney disease. On the

other hand, Pan (2018) shows that the algorithm can also be used for predicting the concentration

of air quality in China. As explained in Section 1.2, the XGBoost algorithm can also be used for the

estimation of individual claims reserving (Duval and Pigeon (2019), Pesantez-Narvaez et al. (2019)).

However, both of these paper do not consider the splitting of the training and test sets, such as

explained in Section 3.2 and use different type of features.

The XGBoost algorithm is a scalable tree boosting system. The main idea of this algorithm is to

build D decision trees (Breiman et al., 1984) after each other, such that each subsequent tree is trained

using the residuals of the previous tree. In other words, each subsequent tree corrects the errors made

by the previous trained tree and predicts the outcome. This process is called boosting. The algorithm

is also known as an ensemble learner, meaning that it creates a final model based of a set of individual

models, also known as the decision trees. The individual models have a weak predictive power and are

prone to overfitting when considered separately, but combining all these models in an ensemble learner

can lead to improvements in the results. The individual decision trees are not completely built on

random subsets of the data, but the algorithm sequentially puts more weight on data points with high

errors. In Figure 6 you can find an example of a boosting algorithm with decision trees as learners.
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The algorithm makes use of the gradient descent algorithm to minimize the loss when adding a new

tree, hence the name gradient boosting.

Figure 6: Boosting algorithm.

Furthermore, the XGBoost algorithm is a specific implementation of the gradient boosting algo-

rithm (Friedman, 2001). In the Appendix you can find the gradient boosting algorithm in Algorithm

2. The differences between these two algorithms is that the XGBoost algorithm computes second

order partial derivatives of the loss function, which provides more specific information about the di-

rection of the gradient for the minimization of the loss function. Also, the XGBoost algorithm uses

a more advanced regularization (L1&L2) (Ng, 2004), which improves the generalization capabilities

of the model. Moreover, it can use parallel computing. All these implications cause high predictive

performance and fast computation time compared to the gradient boosting algorithm. Due to this, the

XGBoost algorithm dominates in many competitions, such as in the Kaggle competitions (Bentéjac

et al., 2019). Therefore, we choose to use the XGBoost algorithm over a normal gradient boosting

algorithm in our research.

We implement XGBoost in R with the package xgboost and perform hyper parameter tuning as

explained in Section 3.3. One of the parameters that we tune is the eta parameter, which controls

the learning rate at which our model detects patterns in the data (eta). Typically a lower eta means

a larger computation time. Furthermore, the gamma parameter controlling regularization to prevent

overfitting is also tuned, with a higher value meaning higher regularization and 0 indicating that no

regularization is used in the algorithm. Moreover, the maximum depth of the tree (max depth) is

also tuned. Setting a cap to the maximum depth of the tree prevents overfitting and reduces the

variance. All other parameters are set on fixed values, such as the booster is set on gbtree, which

builds decision trees and optimizes this using regularization and gradient descent, and the number of

iterations (nrounds) is set on 500. All other variables are set on its default values.

3.4.2 Random Forest

The next decision tree ensemble method we use is Random Forest, just like the XGBoost algorithm,

this is a well known ensemble method of decision trees in the field of machine learning introduced by

Breiman (2001). Just as the XGBoost algorithm as explained in the previous Section, Random Forest

is also widely used in the literature. For example, for breast cancer detection among women (Elgedawy,

2017) and credit scoring (Zhang et al., 2018). Furthermore, for individual claims reserving Baudry

and Robert (2019) confirm that a Random Forest instead of their implemented Extra Trees algorithm,

can also be considered for prediction of individual claims reserving. Also, Wüthrich (2018a) mentions
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in his paper that using Random Forest can overcome issues such as lack of robustness experienced

with just regression trees.

Random Forest combines multiple decision trees with bagging and bootstrapping methods. Bag-

ging means that the decision trees are independently grown from each other. It can be used for

regression and classification purposes. For regression, we fit B regression trees to bootstrap-sampled

versions of the data (Hastie et al., 2009), which are drawn from the full data set with replacement.

It can be the case that these bootstrap-sampled versions of the data only contain a subset of the ob-

servations. Each b ∈ B generates a prediction ŷb. The Random Forest prediction is then the average

of all these predictions ŷ = B−1
∑B

b=1 ŷb. In Figure 7, an example of a Random Forest prediction is

shown for B = 600 trees. Breiman (2001) states that generating different trees and averaging their

predictions is more preferred than generating a single tree, because this reduces the variance of the

model and it is very difficult to find one highly-optimized decision tree. In contrary to XGBoost, Ran-

dom Forest suffers large computation times and complexity in the interpretability. In the Appendix

you can find the algorithm for Random Forest in Algorithm 3.

Figure 7: Random Forest algorithm.
Source by: https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781789132212/2/

ch02lvl1sec21/decision-tree-based-ensemble-methods

We implement Random Forest in R with the package randomForest. As explained in Section 3.3,

we perform hyper parameter tuning to optimize the different parameters used in Random Forest. Due

to the high computation time of Random Forest, we only consider a few parameters to be tuned,

which are in our opinion the most important parameters for the model. The parameters that we

optimize are the number of variables used as candidates at each split (mtry) and the minimum node

size (nodesize). The number of variables used as candidates at each split is of importance, because

the tree is then able to identify the effects that different variables have on the dependent variable. This

prevents the tree from always being dominated by the same set of independent variables. Furthermore,

the minimum node size is of importance for the depth of the tree. Setting a cap to the maximum

depth of the tree prevents overfitting and reduces the variance. The larger the minimum node size, the

smaller the trees are grown and the less time it takes for the algorithm. Another important variable

is the number of trees (ntree). The number of trees contribute to the reduction of bias and variance,

because of the averaging of the predictions of the trees. However, due to the high computation time

of the tuning process we set the number of trees on a fixed value of 50. At last, all other variables

are set on default. This means that the data is sampled with replacement, the trees are grown to the
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maximum possible terminal nodes and the importance of the predictors is not assessed.

3.4.3 Extra Trees

The last tree-based ensemble method is the Extra Trees algorithm, also known as Extreme Randomized

Trees algorithm developed by Geurts et al. (2006). Extra Trees have also been used by past researchers

in several areas. Sharaff and Gupta (2019) use Extra Trees for the detection of spam mails and

conclude that the accuracy using the Extra Trees classifier has a major improvement compared with

previous researches using decision trees. Also, in the field of health care Extra Trees has been used

for the prediction of cardiovascular diseases by Shafique et al. (2019). In the field of non-life insurance

Baudry and Robert (2019) succeeds to use Extra Trees for the prediction of individual claims reserving.

However, they use a different approach with a different construction of the training and test sets.

Just as Random Forest and XGBoost explained in the last two previous sections, Extra Trees is

also suitable for both classification and regression problems. While XGBoost is a boosting method and

Random Forest combines bagging and bootstrapping methods, Extra Trees is an alternative bagging

process, which uses a classical top-down procedure using unpruned decision trees. Extra Trees is very

similar to Random Forest and the visual representation in Figure 7 is also suitable for Extra Trees.

However, the two main differences in comparison with Random Forest is that Extra Trees splits the

nodes of the tree randomly and uses the whole data sample to grow trees (rather than bootstrapped-

samples as used in Random Forest). The predictions of M trees are aggregated to yield the final

prediction with use of arithmetic average in regression problems. Geurts et al. (2006) state that using

randomization for cutting points combined with averaging out the predictions over M trees leads to

reduction of the variance and using the whole data sample instead of bootstrapped-samples leads to

minimization of the bias. Even though, given the tight similarities between Extra Trees and Random

Forest, Ampomah et al. (2020) shows that from six different decision tree ensemble methods, the

Extra Trees algorithm outperforms all other methods (also Random Forest) in the context of stock

price predictions.

We make use of R and the package ranger for the implementation of the Extra Trees algorithm.

Similar to XGBoost and Random Forest, we also conduct hyper parameter tuning as explained in

Section 3.2. We choose to tune a few parameters taking into consideration the high computation time

of the grid search. First of all, we tune the number of features tried at each node (mtry). This is of

importance for the tree to identify the different effects the variables have on the dependent variable.

If you would always choose the same variables, some variables might get dominated by other variables

and this can cause issues in the estimation process. Furthermore, the size of the leaves of the tree

(nodesize) is also tuned, this variable corresponds to the depth of the tree. The larger the size of

the nodes, the smaller the trees and the faster the computation time. At last, we tune the number

of random cuts for each feature (numRandomCuts). The higher the number of cuts, the higher the

chance of a good cut. The first three (to be tuned) parameters are also tuned for Random Forest.

The number of random cuts (numRandomCuts) is not tuned in Random Forest, since this parameter is

a specific parameter only used for the Extra Trees algorithm. Just as the Random Forest, we do not

tune the number of trees (ntree) due to the high computation time of the tuning process. However,

the number of trees is still an important variable, which a higher number of trees contributes to the

reduction of bias and variance. We set the number of trees on a fixed value of 50 for the Extra Trees
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algorithm.

3.5 Interpretation of the methods

Machine learning methods are known for their black box nature. Based on the output of the machine

learning methods, it is not immediately clear what specifically happens and how the predictions are

made in such methods. Even though a method performs well, not knowing which variables drive

the predictions can make the predictions untrustworthy. By explaining the predictions with the

independent variables used in the methods, we provide a better understanding of the relationship

between our independent variables and our predictions of the claims reserves. With the results of

interpretation methods, insurers will have a better understanding in what the driving forces are in the

estimation of the claims reserves.

In our case, using decision tree ensemble methods for the estimation of individual claims reserving,

also leads us to interpretation problems. If we would have used a single decision tree for our predictions,

the interpretation would be fairly straight forward. The variables that are split in the first few nodes

of the decision tree are then the most important variables for the prediction of the model. However,

using decision tree ensemble methods make the interpretation a lot harder, because you have multiple

decision trees with most likely different splits in the first few nodes. Therefore, to interpret decision

tree ensemble methods we need an interpretation approach that suits these type of methods the best.

Recently, researchers have proposed new approaches to solve these interpretation problems for

machine learning methods. Ribeiro et al. (2016) proposed the Local Interpretable Model-agnostic

Explanations (LIME) method to analyse the relationship between the independent variables and the

target variable on a specific observation. For this analysis, LIME considers the local neighborhood

along the particular observation being explained. Another approach in the literature is proposed

by Lundberg and Lee (2017). They present a unified framework for interpreting predictions coming

from complex models, such as ensemble or deep learning models, called SHAP (SHapley Additive

exPlanations). SHAP uses Shapley values (Shapley, 1953) from game theory to calculate the added

value of each feature to the predictions of the model. In contrary to LIME, SHAP does not only perform

locally, meaning on a single observation. This means that when using LIME the interpretation results

differ among every observation. In our case this is not a desirable way to interpret the results, because

we work with a large portfolio of claims. Therefore, to get an interpretation for a big part of our

portfolio of claims we use SHAP instead of LIME. In the next paragraph we further explain the use

of SHAP.

3.5.1 Shapley Additive Explanations (SHAP)

Lundberg and Lee (2017) propose a unified feature importance measure called the SHAP (SHapley

Additive exPlanations) values. This framework is a model agnostic method for explaining a model,

meaning that the SHAP values can be used for many different models. The output of this interpretation

method provides an understanding in the relationship between the variables used in the decision tree

ensemble methods and the prediction of the claims reserves. It is not a measure for causality, but

solely focuses on the intepretability of the model. Various researchers, such as Chen et al. (2018) and

Lubo-Robles et al. (2020), have already used this method for the interpretation of machine learning

methods. SHAP is mostly used to explain individual predictions, just as the interpretation method
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LIME explained in the previous Section. However, SHAP also has the possibility to interpret the

predictions globally, based on the mean of the SHAP values. Therefore, we prefer the use of SHAP

over the method LIME. We use the global interpretation method of SHAP to explain a big part of

our portfolio of claims.

Furthermore, SHAP is the only interpretation method that satisfies the three properties: local

accuracy, missingness and consistency (Lundberg and Lee, 2017). Local accuracy means that the

SHAP values of an observation must correspond to the output of the model. Therefore, the output of

the interpretation method is reliable and truthful. Furthermore, missingness means if an observation

has a missing value for a specific feature x, that the missing feature x does not contribute to the

interpretation method. At last, consistency states that changes in the model, which then causes

contributions of a specific feature to increase or stay the same, should not contribute to decreasements

in the SHAP value. For a more detailed description of these three properties, we refer to the paper of

Lundberg and Lee (2017).

The purpose of the SHAP framework is to explain the prediction of a single observation i by

computing the added value of each feature to the prediction. As mentioned in the previous Section,

SHAP uses Shapley values (Shapley, 1953) from game theory to calculate this added value. The added

value of a feature x is calculated as the weighted decrease or increase in the prediction when adding

the feature x over all subsets of features that excludes the feature x, denoted as S ⊆ F \ {x}.
To compute the added value per feature x, a model fS∪{x} is trained with feature x in its feature

space. On the other hand, another model fS is also trained excluding feature x in its feature space.

The predictions of these two models are compared with its current input values fS∪{x}(zS∪{x})−fS(zS),

where zS corresponds to the values of the input variables in set S. These differences are computed for

all possible subsets S ⊆ F \ {x}. The SHAP values are then computed as the weighted average of all

differences:

φx =
∑

S⊆F\{x}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{x}(zS∪{x})− fS(zS)]. (6)

When interpreting more than one observation, the SHAP values are computed for every observation.

The global SHAP value is then calculated as the mean of the SHAP values computed from every

observation.

A drawback of using SHAP values is the extensive computation time due to the consideration of

all possible subsets S ⊆ F \ {x}. However, researchers have found a solution to this drawback by

developing model specific algorithms. These optimizations take advantage of the model’s structure

and significantly reduces the computation time of the SHAP values. For example, in the case of neural

networks the method Deep SHAP can be used, which considers the structure of a neural network. In

our case, using decision tree ensemble methods, we can improve the computation time of the SHAP

values with considering the structure of a decision tree. This approach is called Tree SHAP, which is

further elaborated in the next Section.

3.5.2 Tree SHAP

Lundberg et al. (2019) propose another version of the SHAP method, specifically for decision tree

ensemble methods, called Tree SHAP. It has been proven that computing SHAP values for decision
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tree ensemble methods without the Tree SHAP method causes inconsistency. This contradicts the

three properties mentioned in Section 3.5.1 and does not contribute to a useful interpretation method.

First of all, Tree SHAP is an algorithm that calculates the SHAP values in polynomial time instead

of exponential time. The intuition behind this application is to recursively monitor the proportion of

the possible subsets that flow down into the leaves of a decision tree. This improves the computation

time significantly and takes into consideration the structure of a decision tree.

Secondly, Tree SHAP separates interaction effects from the main effects. This separation uncovers

important interactions captured by the decision tree ensemble methods that otherwise will be missed.

The Shapley interaction index computed in the Tree SHAP method is then calculated as:

Φ{x,y} =
∑

S⊆F\{x,y}

|S|!(|F | − |S| − 1)!

2(|F | − 1)!
∇{x,y}(S), (7)

where x 6= y and

∇{x,y}(S) = fS∪{x,y}(zS∪{x,y})− fS∪{y}(zS∪{y})− [fS∪{x}(zS∪{x})− fS(zS)]. (8)

The Shapley interaction index between a feature x and a feature y is split equally between both

features, meaning that Φ{x,y} = Φ{y,x}. Then, the total interaction effect is Φ{x,y}+ Φ{y,x}. The main

effect can then be computed as the difference between the SHAP value and the total interaction effect

for a feature x:

Φ{x,x} = φx −
∑
y 6=x

Φ{x,y}. (9)

Given the two applications implemented in the Tree SHAP method and the advantages that come

with these applications, we consider the Tree SHAP method for the interpretation method of our

decision tree ensemble methods. We use TreeExplainer in python to compute the SHAP values for

the optimal models using the decision tree ensemble methods explained in the previous Sections. For

the optimal models we use the optimal parameters obtained from the grid search. We use a summary

plot, which orders the variables from the highest feature importance to the lowest feature importance

taking into consideration a sample of observations instead of a single observation. Moreover, we

conduct the computation of the SHAP values on 100,000 unique random observations. This means for

training sets with less than 100,000 observations, the SHAP values are computed for the total training

set.

4 Results

In this Section we present the results obtained from the methods explained in Section 3. First, we

present the results from the traditional triangular method. Then, we show the results from the grid

search and the decision tree ensemble methods. Finally, we give the results from the interpretation

method Tree SHAP.
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4.1 Mack Chain Ladder

First, we implement the Mack Chain Ladder method, one of the traditional triangular methods, on

our data set as explained in Section 3.1. In Table 3 a basic chain ladder is shown for I accident

years and J development periods. Filling this table in with the results obtained from the Mack Chain

Ladder Method, results in Table 6 as shown below. The light grey area corresponds to the observed

accumulated total claim payments for accident year i up until development period j, Cij . This data

is then used for the predicted accumulated total claim payments Ĉij , denoted as the dark grey area

in Table 6.

Table 6: Accumulated total claim payments obtained from the Mack Chain Ladder method.

Accident Development period j
year i 0 1 2 3 4 5 6 7 8 9 10 11

1994 36.57 55.80 62.37 65.70 67.59 69.01 69.96 70.74 71.24 71.70 72.08 72.38
1995 35.70 54.63 61.25 64.55 66.45 67.86 68.81 69.58 70.13 70.67 71.11 71.43
1996 35.25 54.77 62.59 66.27 68.49 69.99 71.26 72.09 72.77 73.44 73.79 74.11
1997 34.40 54.07 61.24 64.62 66.60 68.04 69.12 69.98 70.68 71.23 71.69 71.84
1998 35.28 56.28 63.37 67.07 69.23 70.72 71.67 72.53 73.17 73.68 74.13 74.42
1999 36.75 59.39 67.76 71.60 73.88 75.40 76.56 77.35 78.10 78.68 79.18 79.51
2000 36.75 59.27 67.44 71.40 73.64 75.07 76.02 76.68 77.30 77.90 78.40 78.78
2001 38.42 61.33 70.01 74.10 76.46 77.98 79.00 79.78 80.39 80.75 81.08 81.31
2002 38.88 62.72 72.05 76.89 79.63 81.36 82.57 83.49 84.32 84.99 85.47 85.90
2003 44.14 72.89 85.01 90.95 94.34 96.40 97.81 98.84 99.69 100.43 100.93 101.28
2004 42.83 68.21 77.63 82.21 84.88 86.65 87.90 88.78 89.46 90.03 90.46 90.67
2005 46.83 74.94 85.12 89.95 92.77 94.43 95.46 96.37 96.89 97.41 97.82 98.06

Note: This Table shows the result of the Mack Chain Ladder method conducted on our simulated data set. It also corresponds
to Table 3 in Section 3.1, but then filled in with available data for this research. The values in this Table are in millions.
The light grey area corresponds to the observed values and the dark grey area are to the predicted values with the Mack Chain
Ladder method.

When comparing the results in the dark grey area with the observed values in the light grey area,

we see that (especially for the earlier development periods) the predicted accumulated total claim

payments are higher than the observed accumulated total claim payments for the same development

period. However, this can be caused due to the higher value at development period 0 for some accident

years and the larger difference in claim payments between development period 1 and development

period 0. Since, the Chain Ladder method calculates development factors for the development of the

claims, the higher the total claim payments for development period 0, the higher the accumulated

total claim payments is in the further development periods.

The resulting claims reserves in millions as calculated in Equation 1 for the Mack Chain Ladder

method are shown in the Figure below, next to the actual reserves. The black bar stands for the Ground

Truth (GT), which corresponds to the actual reserves and the red bar are the reserves obtained from

the Triangular Method (TM). In Figure 8 it can be shown that for the first few accident years, the

reserves obtained from the Mack Chain Ladder method are quite similar to the actual reserves. As

we predict later accident years the results slightly differ more than in previous accident years. This is

caused due to the fact that in later accident years more development periods are predicted and less

observed values are used for the prediction. This is also noticeable in Table 6, where for accident year

2005 there are way more predictions made (dark grey cells) than for accident year 1995.
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Figure 8: Claims reserves from the Mack Chain Ladder method.
Note: This figure shows the claims reserves per accident year obtained from the Mack Chain Ladder method (TM), next to
the actual reserves (GT).

When calculating the Root Mean Squared Error and the percentage difference for each accident

year with the predictions of the Mack Chain Ladder method, we get the results as shown in Table 7.

In this Table we can also see that for the first few accident years the RMSE is lower than for the last

accident years in our data set. This is again due to the more predictions needed for the later accident

years. Overall, the RMSE are quite low regarding the high values in claims reserves.

To give a more relative comparison between the different accident years, we look at the percentage

difference between the predicted claims reserves obtained from the Mack Chain Ladder and the actual

reserves. These results are also shown in Table 7. We notice that for accident year 1999, the relative

difference is the smallest among all accident years and for accident year 2001 the largest. Most

percentage differences are below the absolute value of 10%.

Table 7: Measures per accident year.

Accident
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

year

RMSE 0.014 0.066 0.108 0.036 0.010 0.370 1.003 0.553 1.437 0.551 1.442

% difference -4.3% 10.0% 9.3% 1.9% 0.4% 10.0% 20.7% -6.1% -8.8% 2.5% 2.8%

Note: This Table shows the Root Mean Squared Error and the percentage difference between the reserves obtained from the
Mack Chain Ladder method and the actual reserves. The values in this table for RMSE are also in million.

4.2 Decision tree ensemble methods

First of all, for every decision tree ensemble method we perform hyper parameter tuning as explained

in Section 3.3 and shown in Algorithm 1. In Table 8 you can find the full list of optimal parameters

used per decision tree ensemble method and per calculation year. Due to the high computation time of

the gridsearch, we set a few parameters on fixed values as also explained in Section 3.3. For XGBoost

we set the number of rounds (num rounds) on 500, for Random Forest we set the number of trees

(ntree) on 50 and for the Extra Trees we also set the number of trees (ntree) on 50. In Table 8 it

can be shown that the parameters for all the three methods we tuned in the algorithm quite differ per
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calculation year.

Table 8: Optimal parameter sets resulting from the gridsearch per calculation year.

XGBoost Random Forest Extra Trees

Calculation year max depth eta mtry nodesize mtry nodesize numRandomCuts

2006 2 0.5 6 5 6 5 2
2007 2 0.5 6 5 6 3 3
2008 4 0.3 6 3 6 5 2
2009 2 0.3 6 3 6 3 1
2010 2 0.3 6 3 6 5 1
2011 2 0.5 6 3 6 3 1
2012 2 0.3 4 5 6 3 2
2013 8 0.5 4 5 6 3 1
2014 8 0.5 6 3 2 5 1
2015 2 0.5 2 5 2 3 3
2016 4 0.5 4 5 2 3 1

Note: This Table shows the optimal parameters for the decision tree ensemble methods XGBoost, Random Forest and Extra
Trees for the estimation of individual claims reserving. All other parameters are set on its default values. For XGBoost we
set the number of rounds (num rounds) on 500, for Random Forest we set the number of trees (ntree) on 50 and for the Extra
Trees we also set the number of trees (ntree) on 50.

Then using these optimal parameter sets we calculate the claims reserves for the accident years

1995 till 2005 in our data set as also shown in Algorithm 1. For the calculation of the claims reserves

we first need to predict the accumulated total claim payments per claim and per development period.

In the Appendix you can find similar Tables as Table 6 but then with the results obtained from the

decision tree ensemble methods. The results in these Tables are then used for the calculation of the

claims reserves.

The resulting claims reserves in millions as calculated in Equation 1 for the decision tree ensemble

methods, XGBoost, Random Forest and Extra Trees, are shown in the Figure below next to the actual

reserves and the reserves obtained from the traditional triangular method. Again, the black bar stands

for the Ground Truth (GT), which corresponds to the actual reserves, the red bar correspond to the

reserves from the traditional triangular method (see Section 4.1), the orange bar are the results

obtained from XGBoost (XGB), the yellow bar from the Random Forest (RF) and the pink bar

corresponds to the results obtained from the Extra Trees (ET). When comparing the three decision

tree ensemble methods with the actual reserves, we notice that the XGBoost algorithm results into

claims reserves that are the closest to the actual reserves for almost all accident years. Only for

the accident years 2003 and 2004 we can clearly see that the Extra Trees algorithm outperforms the

XGBoost and approaches the actual reserves closer.

We also notice in Figure 9, that from the three decision tree ensemble methods the predictions

obtained from the XGBoost algorithm approaches the predictions of the traditional triangular method

the closest.
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Figure 9: Claims reserves from the decision tree ensemble methods.
Note: This figure shows the claims reserves per accident year obtained from the decision tree ensemble methods XGBoost
(XGB), Random Forest (RF) and Extra Trees (ET), next to the actual reserves (GT).

The results shown in the Figure above, are also noticeable in Table 9 below. In this Table it

can be seen that for the accident years 2003 and 2004, the RMSE for Extra Trees is smaller than the

RMSE for XGBoost and Random Forest. However, for all other accident years the XGBoost algorithm

outperforms Random Forest and Extra Trees and the predictions are the closest to the actual reserves.

Comparing the results obtained from the decision tree ensemble methods with the triangular method,

we observe that the triangular method outperforms all three decision tree ensemble methods for six

out of the eleven accident years. But, the RMSE of the triangular method do not differ that much

compared to the RMSE of XGBoost.

To give a more relative comparison between the different accident years, we look at the percentage

difference between the predicted claims reserves obtained from the decision tree ensemble methods

and the actual reserves. These results are also shown in Table 9. We notice the same results as with

the comparison with the RMSE. We do observe way higher percentage difference obtained from the

Random Forest and Extra Trees algorithm, especially for the first few accident years.

Table 9: RMSE per accident year.

Accident
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

year

RMSE - TM 0.014 0.066 0.108 0.036 0.010 0.370 1.003 0.553 1.437 0.551 1.442
RMSE - XGB 0.020 0.144 0.470 0.023 0.103 0.602 0.911 0.317 2.374 2.719 0.243
RMSE - RF 1.447 2.364 2.730 2.433 2.423 2.341 2.543 0.285 4.200 1.629 9.625
RMSE - ET 1.068 1.896 2.284 2.344 2.588 2.857 3.428 1.440 1.401 1.072 14.833

% difference - TM -4.3% 10.0% 9.3% 1.9% 0.4% 10.0% 20.7% -6.1% -8.8% 2.5% 2.8%
% difference - XGB 6.2% 21.6% 40.6% 1.2% 3.5% 16.2% 18.8% -3.5% -14.6% 12.1% 0.5%
% difference - RF 459.8% 355.4% 235.8% 128.4% 82.1% 63.1% 52.5% -3.2% -25.8% -7.3% -18.8%
% difference - ET 339.5% 285.1% 197.3% 123.7% 86.7% 77.0% 70.7% 16.0% -8.6% -4.8% -29.0%

Note: This Table shows the Root Mean Squared Error and the percentage difference between the reserves obtained from the
decision tree ensemble methods and the actual reserves. The values in this table are also in million. The values in bold mean
that for that specific accident year the corresponding method outperforms the others.
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4.3 Tree SHAP

In Section 3.5.1, we explained the interpretation method Tree SHAP for the interpretation of the

decision tree ensemble methods. Since we perform eleven models for each of the three decision tree

ensemble methods (each accident year has a different model with separate optimal parameters), we

use the Tree SHAP method on 33 models (11 accident years × 3 decision tree ensemble methods).

For each method we show two different summary plots of the SHAP values as shown in Figures

10, 11 and 12. Only the top ten features with the highest impact on the output variable is shown.

The two yellow plots in Figure 10 are summary plots obtained from the Random Forest for accident

years 1995 and 1997. The two pink plots in Figure 11 are obtained from the Extra Trees algorithm for

accident years 1999 and 2001. At last, the last two orange plots in Figure 12 are from the XGBoost

algorithm for accident years 2003 and 2005.

We notice in the six plots shown in the Figures below, that the number of development years

between the Y .TRAIN and Y .TEST set (num dev years), accident quarter (AQ) and age of the poli-

cyholder (age) are in all six cases in the top ten of the most important features and for five out of the

six cases even in the top five. Only for the last case in Figure 12 (XGBoost for accident year 2005) we

notice that the number of development years between the Y .TRAIN and Y .TEST set (num dev years)

is not in the top ten. Also, the injured body parts 36 and 56 are in some cases in the top ten of most

important features for the estimation of claims reserving.

(a) SHAP values for accident year 1995 (b) SHAP values for accident year 1997

Figure 10: SHAP value plots for different accident years obtained from the Random Forest.
Note: These figures show the global SHAP values. The SHAP values are computed among a sample of 100,000 observations
or if the training set consists of less than 100,000 observation, the whole training set. The ten features with the largest impact
obtained from the Tree SHAP method are shown in the plots.
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(a) SHAP values for accident year 1999 (b) SHAP values for accident year 2001

Figure 11: SHAP value plots for different accident years obtained from Extra Trees.
Note: These figures show the global SHAP values. The SHAP values are computed among a sample of 100,000 observations
or if the training set consists of less than 100,000 observation, the whole training set. The ten features with the largest impact
obtained from the Tree SHAP method are shown in the plots.

(a) SHAP values for accident year 2003 (b) SHAP values for accident year 2005

Figure 12: SHAP value plots for different accident years obtained from XGBoost.
Note: These figures show the global SHAP values. The SHAP values are computed among a sample of 100,000 observations
or if the training set consists of less than 100,000 observation, the whole training set. The ten features with the largest impact
obtained from the Tree SHAP method are shown in the plots.

For each method we showed two SHAP plots from two different accident years in Figures 10, 11 and

12. However, we can find similar results for the other cases that we did not incorporate in the Figures.

In all the other cases we again find that the number of development years between the Y .TRAIN and

Y .TEST set (num dev years), accident quarter (AQ) and age of the policyholder (age) are all featured

in the top five most important variables.

5 Conclusion

The focus of this research is on the implementation of decision tree ensemble methods for the estimation

of individual claims reserving to answer the main research question: “Can decision tree ensemble

methods in combination with micro level data outperform the traditional Mack chain ladder method

for the estimation of claims reserving? And if so, which method has the best results?”.

We used a simulated data set obtained from Gabrielli and V. Wüthrich (2018) to incorporate

data on micro level for the estimation of individual claims reserving. We performed the following

three decision tree ensemble methods on the data set, namely XGBoost, Random Forest and Extra
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Trees. Since, IBNR claims are not known at the time of estimation, we can not use the data of these

claims in our estimation process. Therefore, the focus of this research is the estimation of RBNS

claims. In Table 1 it can be shown that less than 0.05% of the claims in our data set are IBNR

claims. Thus, it is acceptable to focus on the RBNS claims in our research. Then, we recursively

build the development of the claims via different training and test sets for each calculation year. The

training and test sets are constructed via a splitting criteria explained in Section 3.2. Furthermore, the

parameters of each decision tree ensemble method for each calculation year are tuned via a grid search

and evaluated with the RMSE. The predictions obtained from the decision tree ensemble methods are

then compared with the traditional triangular method, Mack chain ladder. At last, we also performed

the interpretation method Tree SHAP on the decision tree ensemble methods, such that we can get

to know the underlying factors that play a roll in the estimation of individual claims reserving.

First of all, we conducted the Mack chain ladder method on our simulated data set. The results

of this method are explained in Section 4.1. We notice a larger increase between the claims payments

in development period 1 and development period 0 than between other development periods. This

is not surprising, because in Table 2 we observe the highest mean for the claims paid in the same

accident year (Pay00). Furthermore, in Table 7 we observe lower RMSE in the first few accident

years in comparison with the later accident years. This comes from the fact that the claims are build

recursively, so the results of the predictions of the first few accident years are used for the predictions

in the later accident years. Overall, the predictions obtained from the Mack chain ladder method are

close to the actual reserves with the exception of the predictions in accident year 2001. For accident

year 2001 we find a percentage difference of roughly 20% and for all other accident years below an

absolute value of 10%. With that being said, we can conclude that the Mack chain ladder predicts

the claims reserves well.

Then, to use the decision tree ensemble methods we performed a grid search to find the optimal

hyper parameter sets for each decision tree ensemble method per calculation year. In Table 8, we

find for every calculation year very different parameter sets for each decision tree ensemble method.

Overall, we observe that the amount of features tried at each node (mtry) takes in most cases for

Random Forest and Extra Trees the highest possible value in the grid, namely 6. This indicates that

the trees used in these two decision tree ensemble methods identify the effects that different variables

have on the dependent variable. Given the different results in Table 8, we can conclude that the grid

search is of importance for the prediction of the claims reserves.

Furthermore, using the optimal hyper parameter sets in Table 8, we conducted the three decision

tree ensemble methods. In Figure 9, a comparison of the output of the three decision tree ensemble

methods, the Mack chain ladder method and the actual reserves is shown. Among the three decision

tree ensemble methods, it can be observed that the XGBoost algorithm comes closest to the actual

reserves for almost all accident years with the exception of accident years 2003 and 2004. The Random

Forest and Extra Trees algorithm result into a very large percentage difference and also a higher

RMSE for the first few accident years. This can be due to the fact that a boosting algorithm, such

as XGBoost, helps to reduce the bias and gives therefore more accurate predictions. Also, taking

into consideration the computation time of the three different methods, we find that the XGBoost

algorithm is significantly faster than the computation time for the Random Forest and Extra Trees

algorithm. Overall, it can be concluded that the XGBoost algorithm is the most efficient algorithm
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among the three decision tree ensemble methods and gives the most accurate predictions for the

individual claims reserves.

However, when comparing the estimates obtained from the XGBoost algorithm with the traditional

triangular method, we do find that the traditional triangular method is more accurate than the

XGBoost algorithm. In seven out of the eleven accident years the Mack chain ladder method gives

more accurate predictions than the XGBoost algorithm. But, the differences are quite small and the

XGBoost algorithm still performs very well.

Also, a major disadvantage of using the traditional triangular method is that it does not give

any insight in the underlying factors contributing to the prediction of the claims reserves. This is

because the traditional triangular methods use data on macro level. However, using data on micro

level opens up the possibility to find these underlying factors. This information is very valuable for

non-life insurers, since they get to know which characteristics of policyholders might play a big role in

the estimation of the claims payments. Also, using machine learning methods in stead of triangular

methods make the estimations more robust for changes in the development pattern of the claims.

Moreover, for the interpretation of the decision tree ensemble methods, we use the interpretation

method Tree SHAP. Some results of this method are shown in Figures 10, 11 and 12. From these

figures we observe that the number of development years between the Y .TRAIN and Y .TEST set

(num dev years), accident quarter (AQ) and age of the policyholder (age) are almost in all cases in

the top five of most important variables for the output. We also sometimes notice the injured body

parts 36 and 56 in the top ten. This might indicate that these injured body parts are large injuries

with a big impact on the claims payments. Since we do not know the origin of the simulated data set,

it is hard to say something about the other variables being in the top ten most important variables.

Overall, after considering all the results obtained from our methodology, the XGBoost algorithm

outperforms the three decision tree ensemble methods in its predictions for individual claims reserv-

ing. However, it depends on the desires of the insurer to use the traditional triangular method or

the XGBoost algorithm for the estimation of claims reserving. Some non-life insurers might find it

very important to predict accurate claims reserves and do not care much about the underlying factors

that might play a roll in these predictions. For these type of insurers we suggest to stick to the tradi-

tional triangular methods, because compared to the decision tree ensemble methods, the traditional

triangular methods still give more accurate predictions. On the other hand, other non-life insurers

might want to switch from the traditional triangular methods and want to use the available data

and computer power that are at its disposal nowadays to get better insight in the data. For them,

we suggest to look into using the XGBoost method for the estimation of individual claims reserving.

The XGBoost algorithm in combination with data on micro level can give a better understanding

in the most important features for the estimation of individual claims reserving with the use of the

interpretation method Tree SHAP.

6 Future Research

We have noticed that this research is a hot-topic in the world of non-life insurance. Therefore, further

research is needed on the estimation of individual claims reserving.

First of all, we have used simulated data for this research. However, to give better results and
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insights in the used methods we recommend to conduct this research on a real life data set from an

insurer. This can give a better understanding in the predictions obtained from a certain sector in

the non-life insurance industry, such as car insurance, home owners insurance etc. It might be also

interesting to compare the results obtained from real life insurance data sets that differ in its origin

and to see if XGBoost is still the best performing methods among the decision tree ensemble methods.

Furthermore, the focus of our research is solely on the estimation of RBNS claims. For an insurer

the IBNR claims are also very important to estimate, but with the use of our data set we could not

have estimated these claims. To be able to estimate the IBNR claims for an insurer, a more complex

data set is necessary with more claims information per policyholder. In the simulated data set we

used in our research, we have claims that belong to a specific policyholder. However, if it is possible

to get data per policy holder, such that we can know the history of each policyholder, it might be

possible to estimate the IBNR claims of an insurer. With the use of such kind of data sets the history

of claims per policy holder is available and with this information it is possible to calculate the chance

of an IBNR claim for a specific policy holder.

Moreover, we have focused on the use of decision tree ensemble methods. We have found in the

literature that other machine learning methods, such as neural networks (Wüthrich (2018b)), have

also been used on our simulated data set. However, machine learning methods are not the only

way to estimate the claims reserves on micro level. It might be interesting to look into parametric

ways (Crevecoeur and Antonio (2019a), Pigeon et al. (2013a)) to incorporate the data on micro level

and compare the results obtained from parametric methods with non-parametric methods, such as

XGBoost.

Altogether, estimating claims reserves on micro level is still a topic that needs to be researched in

the future. It is important to keep thinking about ways to incorporate the available data of non-life

insurers in their models. Insurers that are interested to make the switch from the traditional triangular

methods to more complex models incorporating data on micro level, should keep up with the literature

surrounding this subject.
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J. Pesantez-Narvaez, M. Guillen, and M. Alcañiz. Predicting motor insurance claims using telematics data—xgboost

versus logistic regression. Risks, 7(2), 2019. ISSN 2227-9091. doi: 10.3390/risks7020070. URL https://www.mdpi.

com/2227-9091/7/2/70.

M. Pigeon, K. Antonio, and M. Denuit. Individual loss reserving with the multivariate skew normal framework. ASTIN

Bulletin, 43(3):399–428, 2013a. doi: 10.1017/asb.2013.20.

M. Pigeon, K. Antonio, and M. Denuit. Individual loss reserving with the multivariate skew normal framework. ASTIN

Bulletin, 43(3):399–428, 2013b. doi: 10.1017/asb.2013.20.

M. T. Ribeiro, S. Singh, and C. Guestrin. ” why should i trust you?” explaining the predictions of any classifier.

In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages

1135–1144, 2016.

P. Schratz, J. Muenchow, E. Iturritxa, J. Richter, and A. Brenning. Hyperparameter tuning and performance assessment

of statistical and machine-learning algorithms using spatial data. Ecological Modelling, 406:109–120, 2019. ISSN

0304-3800. doi: https://doi.org/10.1016/j.ecolmodel.2019.06.002. URL https://www.sciencedirect.com/science/

article/pii/S0304380019302145.

R. Shafique, A. Mehmood, D. S. Ullah, and G. S. Choi. Cardiovascular disease prediction system using extra trees

classifier. 09 2019. doi: 10.21203/rs.2.14454/v1.

L. Shapley. S. 1953.“a value for n-person games.”. Contributions to the Theory of Games, pages 31–40, 1953.

A. Sharaff and H. Gupta. Extra-Tree Classifier with Metaheuristics Approach for Email Classification, pages 189–197.

05 2019. ISBN 978-981-13-6860-8. doi: 10.1007/978-981-13-6861-5 17.

D. Ticconi. Individual claims reserving in credit insurance using glm and machine learning. 12 2018. doi: 10.13140/RG.

2.2.13118.33600.

G. Valentini and F. Masulli. Ensembles of learning machines. Neural Nets WIRN Vietri-2002, Series Lecture Notes in

Computer Sciences, 2486:3–22, 05 2002. doi: 10.1007/3-540-45808-5 1.
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A Appendix

Construction of a training and test set

Table 10: Construction of training and test sets for t∗ = 2007.

Development year

Accident year i
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Observed Cij Predicted Ĉij

2000 (i = 1) C10 C11 .. .. .. C15 × × × × ×
2001 (i = 2) × C20 C21 .. .. .. Ĉ25 × × × ×
2002 (i = 3) × × C30 C31 .. .. .. Ĉ35 × × ×
2003 (i = 4) × × × C40 C41 .. .. .. Ĉ45 × ×
2004 (i = 5) × × × × C50 C51 .. .. .. Ĉ55 ×
2005 (i = 6) × × × × × C60 Ĉ61 .. .. .. Ĉ65

Development year

Accident year i
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Observed Cij Predicted Ĉij

2000 (i = 1) C10 C11 .. .. .. C15 × × × × ×
2001 (i = 2) × C20 C21 .. .. .. Ĉ25 × × × ×
2002 (i = 3) × × C30 C31 .. .. .. Ĉ35 × × ×
2003 (i = 4) × × × C40 C41 .. .. .. Ĉ45 × ×
2004 (i = 5) × × × × C50 C51 .. .. .. Ĉ55 ×
2005 (i = 6) × × × × × C60 Ĉ61 .. .. .. Ĉ65

Note: This table shows the construction of the training and test sets for the calculation time t∗ = 2007. The yellow area
(X.TRAIN) denotes the data we use for the training of the model. The orange area (Y .TRAIN) is the dependent variable we
use for the training of the model. The light blue is (X.TEST) the data used in the trained model for predicting the accumulated
total claim payments in 2007, denoted as the dark blue area Y .TEST).

Algorithms for the decision tree ensemble methods

Algorithm 2 Gradient boosting algorithm.

Input: input data (x, y)Ni=1, number of iterations M , choice of loss function Ψ(y, f), choice of base-
learner model h(x, θ)

1: Initialize f̂0 with a constant
2: for t = 1 till M do
3: Compute the gradient gt(x)
4: Fit a new base-learner function h(x, θt)
5: Find the best gradient descent step-size ρt: ρt = arg minρ

∑n
i=1 Ψ[yi, f̂t−1(xi) + ρh(xi, θt)]

6: Update the function estimate: f̂t ←− f̂t−1 + ρth(x, θt)
7: end for

Note: This algorithm shows the gradient boosting algorithm in short. We use as base-learners decision trees and for the choice

of loss function the sum of squared error. The number of iterations M is set to 1000. Note that this algorithm shows the

gradient boosting algorithm, but in our research we use the XGBoost algorithm (see Section 3.4.1 for the differences). Source

by: Natekin and Knoll (2013).
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Algorithm 3 Random Forest algorithm for regression purposes.

Input: input data (x, y)Ni=1, number of trees B, bootstrap sample size K, number of variables used
as candidates at each split m, minimum node size nmin
Output: Ensemble of trees {Tb}B1 with predictions {yb}B1

1: for b = 1 till B do
2: Draw a bootstrap sample of size K from the training data.
3: Grow a regression tree Tb to the bootstrapped data.
4: (i) Select m variables at random from the total of p variables.
5: (ii) Pick the best splitting point among the m variables.
6: (iii) Split the node into two ’daughter’ nodes.
7: Repeat the above steps until the minimum node size nmin is reached.
8: end for
9: To get the Random Forest prediction: ŷ = B−1

∑B
b=1 yb

Note: This algorithm shows the Random Forest algorithm for regression purposes. We tune the number of trees B, number

of variables used as candidates at each split m and the minimum node size nmin with hyper parameter tuning as explained in

Section 3.3. Source by: Breiman (2001)

Results of the reserved obtained from the decision tree ensemble methods

Table 11: Accumulated total claim payments obtained from XGBoost.

Accident Development period j
year i 0 1 2 3 4 5 6 7 8 9 10 11

1994 36.57 55.80 62.37 65.70 67.59 69.01 69.96 70.74 71.24 71.70 72.08 72.38
1995 35.70 54.63 61.25 64.55 66.45 67.86 68.81 69.58 70.13 70.67 71.11 71.48
1996 35.25 54.77 62.59 66.27 68.49 69.99 71.26 72.09 72.77 73.44 73.95 74.25
1997 34.40 54.07 61.24 64.62 66.60 68.04 69.12 69.98 70.68 71.42 71.96 72.31
1998 35.28 56.28 63.37 67.07 69.23 70.72 71.67 72.53 73.11 73.71 74.16 74.45
1999 36.75 59.39 67.76 71.60 73.88 75.40 76.56 77.47 78.15 78.85 79.31 79.61
2000 36.75 59.27 67.44 71.40 73.64 75.07 76.30 77.20 77.92 78.61 79.09 79.38
2001 38.42 61.33 70.01 74.10 76.46 77.86 79.08 79.97 80.68 81.40 81.90 82.22
2002 38.88 62.72 72.05 76.89 79.30 80.72 82.11 83.03 83.75 84.45 84.95 85.59
2003 44.14 72.89 85.01 89.93 92.43 93.99 95.21 96.14 96.93 97.67 98.24 98.90
2004 42.83 68.21 80.04 84.82 87.23 88.70 89.90 90.83 91.59 92.46 93.11 93.38
2005 46.83 72.53 84.63 89.68 92.08 93.57 94.74 95.68 96.78 97.55 98.00 98.31

Note: This Table shows the result of XGBoost conducted on our simulated data set. It also corresponds to Table 3 in Section
3.1, but then filled in with available data for this research. The values in this Table are in millions. The light grey area
corresponds to the observed values and the dark grey area are to the predicted values with the XGBoost algorithm.
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Table 12: Accumulated total claim payments obtained from the Random Forest.

Accident Development period j
year i 0 1 2 3 4 5 6 7 8 9 10 11

1994 36.57 55.80 62.37 65.70 67.59 69.01 69.96 70.74 71.24 71.70 72.08 72.38
1995 35.70 54.63 61.25 64.55 66.45 67.86 68.81 69.58 70.13 70.67 71.11 72.88
1996 35.25 54.77 62.59 66.27 68.49 69.99 71.26 72.09 72.77 73.44 75.23 76.47
1997 34.40 54.07 61.24 64.62 66.60 68.04 69.12 69.98 70.68 72.56 73.82 74.57
1998 35.28 56.28 63.37 67.07 69.23 70.72 71.67 72.53 74.28 75.47 76.18 76.86
1999 36.75 59.39 67.76 71.60 73.88 75.40 76.56 78.48 79.84 80.65 81.36 81.93
2000 36.75 59.27 67.44 71.40 73.64 75.07 77.05 78.40 79.25 79.99 80.54 81.12
2001 38.42 61.33 70.01 74.10 76.46 78.75 80.24 81.20 82.10 82.75 83.32 83.85
2002 38.88 62.72 72.05 76.89 79.58 81.28 82.43 83.32 84.01 84.62 85.16 85.62
2003 44.14 72.89 85.01 88.94 91.45 92.77 93.85 94.78 95.48 96.16 96.64 97.08
2004 42.83 68.21 77.61 81.58 83.85 85.08 86.16 87.00 87.66 88.24 88.66 89.04
2005 46.83 67.64 77.28 81.18 83.20 84.45 85.51 86.36 87.10 87.69 88.12 88.44

Note: This Table shows the result of the Random Forest method conducted on our simulated data set. It also corresponds to
Table 3 in Section 3.1, but then filled in with available data for this research. The values in this Table are in millions. The
light grey area corresponds to the observed values and the dark grey area are to the predicted values with the Random Forest
algorithm.

Table 13: Accumulated total claim payments obtained from Extra Trees.

Accident Development period j
year i 0 1 2 3 4 5 6 7 8 9 10 11

1994 36.57 55.80 62.37 65.70 67.59 69.01 69.96 70.74 71.24 71.70 72.08 72.38
1995 35.70 54.63 61.25 64.55 66.45 67.86 68.81 69.58 70.13 70.67 71.11 72.50
1996 35.25 54.77 62.59 66.27 68.49 69.99 71.26 72.09 72.77 73.44 74.91 76.01
1997 34.40 54.07 61.24 64.62 66.60 68.04 69.12 69.98 70.68 72.27 73.41 74.13
1998 35.28 56.28 63.37 67.07 69.23 70.72 71.67 72.53 74.24 75.39 76.17 76.77
1999 36.75 59.39 67.76 71.60 73.88 75.40 76.56 78.60 79.90 80.77 81.47 82.07
2000 36.75 59.27 67.44 71.40 73.64 75.07 77.36 78.75 79.68 80.47 81.12 81.64
2001 38.42 61.33 70.01 74.10 76.46 79.27 80.91 82.02 82.94 83.66 84.27 84.74
2002 38.88 62.72 72.05 76.89 80.51 82.61 83.94 84.92 85.69 86.36 86.91 87.34
2003 44.14 72.89 85.01 90.91 93.80 95.45 96.59 97.51 98.26 98.89 99.40 99.88
2004 42.83 68.21 77.85 82.06 84.22 85.51 86.55 87.42 88.11 88.72 89.21 89.59
2005 46.83 65.31 73.29 76.72 78.38 79.53 80.48 81.27 81.95 82.47 82.90 83.23

Note: This Table shows the result of Extra Trees conducted on our simulated data set. It also corresponds to Table 3 in
Section 3.1, but then filled in with available data for this research. The values in this Table are in millions. The light grey
area corresponds to the observed values and the dark grey area are to the predicted values with the Extra Trees algorithm.
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