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Abstract

In this paper, we extend the existing dynamic Peak-Over-Threshold methodology

with the following covariate selection techniques: best subset selection (BeSS), Lasso,

and Relaxed Lasso. We then test all three covariate selection techniques using a simu-

lation study. We find that all three methods work approximately equally well for the

loss frequency. For loss severity, we find that Relaxed Lasso performs best in selecting

covariates, while BeSS tends to select too few covariates and Lasso too many. Finally,

we apply our methodology on a market risk dataset. We find that the S&P Volatility

Index is selected the most often by all three covariate selection techniques. The S&P

Volatility Index has a positive relation with both frequency of extreme losses and the

expected loss in case of such an extreme event.
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1 Introduction

Modeling the distribution of extreme losses can provide quantitative insights into risks,

which are often required by regulators. Moreover, it might also lead to insights into the

drivers behind the risk exposure. These insights can be very useful for reducing risk

exposure.

The standard methods for modeling the distribution of extreme losses include the

Block Maxima approach and the Peak-over-Threshold (POT) approach (Gumbel, 1958;

Pickands, 1975). In the Block Maxima approach, the maximum in each time period is

modelled using a Generalized Extreme Value (GEV) distribution. The POT approach

models the frequency and severity of exceedances of a (high) threshold. The frequency

and severity are modeled as two separate and independent distributions. This gives the

POT approach the advantage of being more flexible in modeling and the ability to incor-

porate more data. In this ‘classic’ POT approach, the distributions of both the frequency

and severity are assumed to be stationary. However, Jagannathan and Wang (1996) ob-

serve non-stationarity for risk exposure of stocks. Therefore, Chavez-Demoulin, Em-

brechts, and Hofert (2016) propose a dynamic POT approach that lets the distribution

parameters depend on covariates.

As the availability of data has grown rapidly in recent years, many potential covariates

have become available. However, this leads to a practical problem when implementing

the dynamic POT approach, including all covariates in the current methodology could

lead to several issues. Coefficients in the model could become unidentified, or the model

could be overfitted to the data. Moreover, the current methodology does not select a

subset of covariates that significantly drive the risk exposure.

This paper focuses on applying covariate selection in the dynamic POT approach.

There exist different methods for covariate selection. Hastie, Tibshirani, and Tibshirani

(2020) provide an extensive comparison of best subset selection and Lasso regularization

(L1) and conclude that neither of them dominates the other in all cases. However, Relaxed

Lasso, a variation on Lasso, is found to perform best. Therefore, we extend the dynamic

POT approach with these three covariate selection techniques. We test the methodology
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extensively using a simulation study, where we test performance on both providing the

best distribution parameter estimate and the ability to select the correct covariates. Fi-

nally, we apply the proposed methodology on a market risk dataset in combination with

a large number of potential covariates.

The structure of this paper is as follows. In Section 2, we discuss the current literature

and methods that are relevant to our research. Continuing, in Section 3, we describe the

proposed methodology. Thereafter, in Section 4, we discuss the setup and results of the

simulation study. Next, in Section 5, we elaborate on the application to a market risk

dataset and present the results. In Section 6, we present our findings and draw conclu-

sions about our results. Lastly, in Section 7, we discuss the limitations of our research

and provide suggestions for further research.
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2 Literature Review

In this section, the current literature is discussed in detail. First, we discuss the ‘classic’

POT approach. Secondly, we discuss an extension of this approach, the dynamic POT

approach. Lastly, we discuss the three covariate selection techniques that are considered.

2.1 Peak-Over-Threshold (POT) approach

The POT approach is used for modeling losses above a (high) threshold, u. In this method,

two distributions are fitted: a distribution that models the number of exceedances of

the threshold, Nt, and a distribution that models the severity of such an exceedance, Li .

Where t denotes the time period and i denotes the index of the exceedance.

Embrechts, Klüppelberg, and Mikosch (1997) suggest the following model to approx-

imate the frequency and severity of extreme losses:

• The frequency of a high threshold exceedance approximately follows a Poisson pro-

cess, i.e. Nt ∼ Pois(λ) with the rate parameter λ > 0.

• The severity of a loss above a high threshold approximately follows a generalized

Pareto distribution (GPD) independent of Nt, i.e. Li − u = Yi ∼ GPD(ξ,σ ) with the

shape parameter ξ ∈ R and scale parameter σ > 0. The pdf and cdf of the GPD are

defined as follows,

gξ,σ (y) =


1
σ

(
1 + y ξσ

)− ξ+1
ξ , ξ , 0,

1
σ exp

(
− yσ

)
, ξ = 0,

(1)

Gξ,σ (y) =


1−

(
1 + y ξσ

)−1/ξ
, ξ , 0,

1− exp(−y/σ ), ξ = 0.
(2)

When ξ < 0, y is bounded between 0 and −σ/ξ. For ξ = 0, the GPD corresponds to

the Exponential distribution. Most often, ξ is therefore restricted in the following way:

ξ > 0. This restriction corresponds to the heavy-tail case. The GPD has infinite variance

when ξ ≥ 0.5, and no finite moment when ξ ≥ 1 (Moscadelli, 2011).
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The likelihood function of the POT approach takes the following form,

L(λ,ξ,σ ;Y) =
λn

n!
exp(−λ)

n∏
i=1

gξ,σ (Yi), (3)

where Y = (Y1, ...,Yn), and gξ,σ (·) corresponds to the pdf of the GPD.

As the frequency and severity are asymptotically independent, the log likelihood of

equation (3) can be split into two parts:

`(λ,ξ,β;Y) = `(λ;Y) + `(ξ,σ ;Y), (4)

where

`(λ;Y) = n ln(λ)− ln(n!)−λ, (5)

`(ξ,σ ;Y) = −n ln(σ )− (1 + 1/ξ)
n∑
i=1

ln
(
1 + ξ

Yi
σ

)
. (6)

The split of the log-likelihood in equation (4) separates the frequency and severity

part of the log-likelihood. This implies that the estimation of the frequency and severity

distributions can be done separately.

2.2 Dynamic POT approach

The ‘classic’ POT approach assumes that the distribution parameters are equal for all

observations and thus do not depend on any covariates or time. In practice, these sta-

tionarity assumptions are often violated. The loss distributions may depend on several

covariates. For example, loss distributions might change with the business line or eco-

nomic conditions.

Therefore, Chavez-Demoulin et al. (2016) extend the ‘classic’ POT approach into a

dynamic POT approach which allows its parameters to depend on covariates. In this

dynamic POT approach, λ is replaced by

λ(x, t) = exp(fλ(x) + hλ(t)), (7)
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where fλ(·) maps the covariates to correspondingly many constants, and hλ(t) is a non-

parametric smoothing function regarding time t.

As the parameters of the Poisson distribution and GPD can be estimated separately,

the estimation of the Poisson distribution becomes a standard generalized additive model

(GAM). Wood (2017) describes an algorithm to estimate such a model.

In the dynamic POT approach, the severity of a loss becomes dependent on covariates

as well. Letting ξ and σ directly depend on the covariates may lead to statistical identi-

fication issues during estimation (Chavez-Demoulin & Embrechts, 2004). By replacing ξ

or σ with so-called orthogonal parameters solves this potential issue. Two reparameteri-

zations are possible, however the reparameterization on σ is easier to compute and more

stable. Cox and Reid (1987) provide the following reparameterization,

ν = ln((1 + ξ)σ ). (8)

For the dependence on the covariates, the parameters ξ and ν are replaced by

ξ(x, t) = fξ(x) + hξ(t), (9)

ν(x, t) = fν(x) + hν(t), (10)

where fp(·) maps the covariates to correspondingly many constants, and hp(t) is a non-

parametric smoothing function regarding time t with p ∈ {ξ,ν}.

Chavez-Demoulin et al. (2016) propose an iterative procedure to estimate ξ and ν si-

multaneously. After estimation of the model, Chavez-Demoulin et al. (2016) perform a

graphical goodness-of-fit test. If y(t,i) (approximately independently) follow GPD(ξt,σt),

then R(t,i) = 1 −Gξt ,σt (y(t,i)) approximately forms a random sample from a standard uni-

form distribution. Therefore, we can check using a Q-Q plot whether,

r(t,i) = − ln(1−Gξt ,σt (y(t,i))), (11)

are distributed approximately as independent standard exponential variables. Where

y(t,i) denotes the ith exceedance of the threshold in time period t, i.e. y(t,i) = l(t,i) −u, with
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l(t,i) defined as the ith loss in time period t and u denoting the threshold.

2.3 Best subset selection

Best subset selection maximizes the likelihood function under the restriction that the

number of non-zero coefficients is equal to or lower than a predetermined hypertuning

parameter k (Hocking & Leslie, 1967), i.e.,

max
β
`(β) subject to ‖β‖0 ≤ k, (12)

where ‖β‖0 is the L0 norm of β, i.e. the number of nonzero elements in β.

A major drawback of this technique is the optimization difficulties that arise when the

number of covariates grows. Bertsimas, King, and Mazumder (2016) propose a mixed-

integer formulation for this optimization problem. Using this formulation, this difficulty

can be overcome. However, this mixed-integer formulation is only valid for linear least

squares regressions. Another optimization method, the primal-dual active set (PDAS)

method, is proposed by Ito and Kunisch (2014). This method iteratively updates the

active set (i.e. the selected covariates) through the use of primal and dual variables. The

PDAS algorithm is generalized by Wen, Zhang, Wang, and Quan (2020) for general convex

loss functions. The basic idea of this algorithm is to iteratively estimate the model with

the active set, denoted as Ai in the ith iteration, and then update the active set to the

covariates that have the most effect on the log-likelihood, measured by
(
∆i

)
j

in the ith

iteration for the jth covariate, until the active set converges. We use this algorithm to

estimate our models with best subset selection for a given k, which is given in Algorithm

1 below.
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Algorithm 1: Primal-dual active set (PDAS) algorithm

A0 = {1, . . . , k} ;

A1 = ∅;

i = 1 ;

while i < imax and Ai−1 ,Ai do

βi = argmax
β
`(β) subject to βAci−1

= 0 ;

(
∆i

)
j

= 1
2

(
hi

)
j

(βi)j −
(
gi

)
j(

hi

)
j


2

, j = 1, . . . ,p ;

Ai =
{
j :

(
∆i

)
j
≥

[
∆i

]
(k)

}
;

i = i + 1;

end

return βi ;

where gi denotes the gradient of `(β) evaluated at βi , hi the diagonal elements of

the Hessian of `(β) evaluated at βi ,
[
∆i

]
(k)

the kth order statistic of ∆i and imax

the maximum number of iterations.

There are several options to determine the value for k. One option is Cross-Validation

which optimizes the prediction performance. However, using Cross-Validation can be

time-consuming especially with high-dimensional data. Wen et al. (2020) propose an

alternative way of determining k, the sequential primal-dual active set (SPDAS) algo-

rithm. This algorithm performs the best subset selection algorithm for an increasing k

and chooses k such that some criteria is optimized. Suggested criteria include the Akaike

information criterion (AIC), Bayesian information criterion (BIC), and extended Bayesian

information criterion (Akaike, 1974; Schwarz, 1978; Chen & Chen, 2008).

Wen et al. (2020) find in their application that the optimal k is found at the so-called

elbow point, i.e. the point where increasing k does not lead to a large improvement in

the likelihood. The elbow heuristic is used in determining the optimal number of clus-

ters (Kodinariya & Makwana, 2013). Delgado, Anguera, Fredouille, and Serrano (2015)

describe an algorithm to identify this elbow point. We use this algorithm in combination

with SPDAS to determine the optimal k.
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2.4 Lasso (L1) regularization

The Lasso regularization technique as proposed by Tibshirani (1996) is very popular.

Lasso subtracts an L1 penalty from the maximum likelihood function, leading to the fol-

lowing maximization problem,

βlasso(κ) = argmax
β
`(β)−κ‖β‖1, (13)

where ‖β‖1 is the L1 norm of β, i.e. the sum of absolute values of the elements, and κ is a

predetermined hypertuning parameter.

Solving this maximization problem using standard numerical optimization algorithms

does not lead to a sparse solution. Therefore, Fu (1998) propose the shooting algorithm.

This algorithm calculates a sparse solution of Lasso regularized linear regressions. The

idea behind this algorithm is to solve the optimization problem in Equation (13) and then

iteratively set coefficients to zero whose effect of becoming zero is small until the coeffi-

cients converge. Alternatives for obtaining a sparse solution for linear regressions have

been developed since, such as Least Angle Regression (Efron et al., 2004) and pathwise

coordinate descent (Friedman, Hastie, Höfling, & Tibshirani, 2007). These algorithms

converge very fast and work extremely well even when the number of parameters is large

(Wu & Lange, 2008). Note, however, that there are no algorithms in the current literature

that provide a sparse solution for the optimization problem in Equation (13) when `(β)

has a more general form. Therefore, we adapt the shooting algorithm of Fu (1998) in such

a way that it works for general log-likelihood specifications.

Lasso’s hyperparameter, κ, is commonly chosen by the application of Cross-Validation

(Cawley & Talbot, 2010; Mosteller & Tukey, 1968). We follow this and choose κ using

Cross-Validation.

2.5 Relaxed Lasso

Adding Lasso regularization has two effects on the solution: model selection and param-

eter shrinkage. Lasso sets a subset of the coefficients to zero, and these covariates are thus
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excluded from the model. On the other hand, the parameters in the model that are not set

to zero are shrunk towards zero. The covariates corresponding to the parameters that are

not set to zero are called the active set, denoted by Aκ. In the standard Lasso formulation,

both effects are controlled with one hyperparameter, and it is not possible to limit the

second effect. Therefore, Meinshausen (2007) propose the Relaxed Lasso estimator. The

Relaxed Lasso estimator maximizes the following optimization problem,

βrelax = argmax
β
`(βκ)−ϕκ‖β‖1, (14)

with κ ∈ [0,∞) and ϕ ∈ (0,1]

In Equation (14), βκ is defined as the parameter vector where the parameters that are

not contained in the Lasso solution for a given κ are set to zero. That is,

βκk =


0 if βlasso

k (κ) = 0,

βk else.
(15)

Hastie et al. (2020) propose a simplified version of Relaxed Lasso which can be esti-

mated more easily. Their formulation of the Relaxed Lasso is as follows,

βrelax = ϕβlasso(κ) + (1−ϕ)βLS(κ), (16)

where βLS(κ) is defined as a full-length vector (same dimensions as β) with the coefficients

of the least squares regression on the covariates of the active set, Aκ, and zeros for the

coefficients corresponding to the covariates not in the active set.

This formulation of Relaxed Lasso is only applicable for regressions. As we have a

more general optimization problem, we adapt the formulation to also work for general

log-likelihood specifications.

In the literature the two hyperparameters, κ and ϕ, are often chosen by k-fold Cross-

Validation (Hastie et al., 2020; Cawley & Talbot, 2010; Mosteller & Tukey, 1968). We use

this method to determine both hypertuning parameters.
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3 Methodology

The proposed methodology is based on the POT approach and thus split into two parts.

First, we estimate the loss frequency distribution. Secondly, we estimate the distribution

of loss severity. As the frequency and severity are independent the estimation of the

two parts can be done separately. Both parts are subject to various covariate selection

techniques which we discuss in Subsection 3.4. The proposed methodology produces a

distribution for both the frequency and severity of losses in a certain time period, e.g.

one month. The assumption is made that both distributions stay unchanged within such

a time period. Therefore, the covariates need to have the same frequency as this set time

period. We also assume that the extreme losses above the threshold in a given time period

are i.i.d. draws from the distribution.

3.1 Loss frequency

Like the dynamic POT approach, as suggested by Chavez-Demoulin et al. (2016), the loss

frequency is modeled using a non-homogeneous Poisson distribution with a time-varying

rate λt. Unlike the methodology of Chavez-Demoulin et al. (2016), λt does not directly

depend on time, and thus does not include any smoothing functions. As the proposed

methodology is able to include many covariates the effect of the time variable is assumed

to be captured by covariates. The number of extreme losses in a given time period t

is denoted by Nt, leading to Nt ∼ Pois(λt). Where λt is depended on covariates in the

following way,

ln(λt) = c0,λ +
p∑
i=1

ci,λxi,t, (17)

where c0,λ corresponds to the intercept, ci,λ to the ith coefficient and xi,t to the ith covari-

ate for time period t.

Note that this is equivalent to a Poisson regression of the covariates on the number of
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extreme losses. Therefore, the log-likelihood of equation (5) becomes the following,

`(cλ;Y ) =
∑
t

(
ln(λt)Nt −λt − ln(Nt!)

)
, (18)

where cλ = {c0,λ, c1,λ, . . . , cp,λ} and Y = {Nt, y(t,1), . . . , y(t,Nt)|∀t}.

As optimization is only done over cλ, Equation (18) can be simplified to,

`(cλ;Y ) =
∑
t

(
ln(λt)Nt −λt

)
. (19)

3.2 Loss severity

The loss severity is modeled with a non-stationary generalized Pareto distribution (GPD).

Similar to the rate parameter of the loss frequency, we loosen the assumption of stationary

shape and scale parameters of the GPD. Moreover, the shape and scale parameters are

assumed to depend on covariates. To prevent identification issues the scale parameter is

chosen to be transformed in the following way,

νt = ln((1 + ξt)σt). (20)

We discuss the details of this transformation in Section 2.2.

To ensure that the domain of the extreme losses is not bounded from above, ξt is re-

stricted to the heavy tail case, i.e. ξt > 0. This restrictions is enforced by making the

dependence structure of ξt log-linear. The transformation of Equation (20) already en-

forces the restrictions that σt > 0. Therefore, the dependence structure of νt is kept linear.

This leads to the following relation with respect to the covariates for the shape and trans-

formed scale parameters,

ln(ξt) = c0,ξ +
p∑
i=1

ci,ξxi,t, (21)

νt = c0,ν +
p∑
i=1

ci,νxi,t, (22)
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where c0,· corresponds to the intercept and ci,· to the ith coefficient.

The log likelihood of Equation (6) becomes the following after accounting for the non-

stationarity and parameter transformation,

`(cξ ,cν ;Y ) =
∑
t

Nt ln(1 + ξt)−Ntνt

− ξt + 1
ξt

Nt∑
i=1

ln
(
1 +

ξt(1 + ξt)
exp(νt)

y(t,i)

)
,

(23)

where cξ = {c0,ξ , c1,ξ , . . . , cp,ξ} and cν = {c0,ν , c1,ν , . . . , cp,ν}.

3.3 Non-linear optimization

For the loss frequency, estimation techniques for the used covariate selection methods

are already implemented in the software package R. For the loss severity, this is not the

case. Therefore, direct maximization of the log-likelihood is required. This maximization

is done using the BFGS (Broyden, 1970; Flecther, 1970; Goldfarb, 1970; Shanno, 1970).

The BFGS method is a quasi-Newton optimization technique that iteratively updates the

inverse Hessian. We calculate the gradients of `(cξ ,cν) with respect to cξ and cν sepa-

rately. The gradients can be found in equations (24) and (25) respectively. The partial

derivatives with respect to ln(ξt) and νt can be found in Appendix Section 8.1.1.

∇ξ`(cξ ,cν) =
∑
t

Nt∑
i=1

∂`(cξ ,cν)
∂ ln(ξt)

∣∣∣∣∣∣
ξt=ξt ,νt=νt ,y=y(t,i)

xt, (24)

∇ν`(cξ ,cν) =
∑
t

Nt∑
i=1

∂2`(cξ ,cν)
∂νt

∣∣∣∣∣∣
ξt=ξt ,νt=νt ,y=y(t,i)

xt, (25)

where x′t = (1,x1,t, . . . ,xp,t).

3.4 Covariate selection

For both distributions of the proposed POT approach, we apply three covariate selection

techniques.
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3.4.1 Best subset selection

First of all, we apply the classic method best subset selection. For the loss frequency, we

maximize the log-likelihood of equation (19) with the restriction on the L0 norm of all

coefficients (except the intercept).

Estimation is done using the PDAS algorithm as described in Section 2.3. For com-

putation of ∆ in the algorithm the gradient and the diagonal elements of the Hessian of

`(cλ) are necessary. These have the following analytical form,

∇`(cλ) =
∑
t

(Nt −λt)xt, (26)

∇2`(cλ) = −
∑
t

λtxtx
′
t. (27)

For the loss severity, the log-likelihood of equation (23) is maximized with the restric-

tion on the L0 norm of all coefficients (except the intercept). Similar to the loss frequency,

estimation is done using the PDAS algorithm. As only the diagonal elements of the Hes-

sian are used in the algorithm, both the gradient and Hessian of `(cξ ,cν) are derived in

block forms with respect to cξ and cν . The Hessian of `(cξ ,cν) with respect to cξ and cν

can be found in Equations 28 and 29 respectively. The second partial derivatives with

respect to ln(ξt) and νt can be found in Appendix Section 8.1.1. For completeness, we

also give the mixed second partial derivative in the Appendix.

∇2
ξ`(cξ ,cν) =

∑
t

Nt∑
i=1

∂2`(cξ ,cν)
∂ ln(ξt)2

∣∣∣∣∣∣
ξt=ξt ,νt=νt ,y=y(t,i)

xtx
′
t, (28)

∇2
ν`(cξ ,cν) =

∑
t

Nt∑
i=1

∂2`(cξ ,cν)

∂ν2
t

∣∣∣∣∣∣
ξt=ξt ,νt=νt ,y=y(t,i)

xtx
′
t. (29)

In the PDAS algorithm as discussed in Section 2.3 the assumption is made that each

covariate has one coefficient that influences the log likelihood. However, the GPD has

two parameters which both depend on the covariates and therefore each covariate has

two coefficients that influence the log-likelihood. Therefore, the influence on the log
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likelihood of the GPD is relatively measured as follows,

∆j = hj,ξ

(
cj,ξ −

gj,ξ
hj,ξ

)2

+ hj,ν

(
cj,ν −

gj,ν
hj,ν

)2

, j = 1, . . . ,p, (30)

where gj,· denotes the jth element of the gradient, ∇·`(cξ ,cν), and hj,· denotes the jth

diagonal element of the block Hessian, ∇2
· `(cξ ,cν).

For both distributions, the hyperparameter k is chosen by the SPDAS algorithm. The

choice of k is the elbow point of the log-likelihoods, identified by the algorithm of Delgado

et al. (2015).

3.4.2 Lasso

Secondly, Lasso regularization is applied to the log-likelihood functions of both distribu-

tions. The penalization term is the L1 norm of all coefficients (except the intercept).

As the estimation of the loss frequency becomes a Lasso regularized Poisson regres-

sion, the algorithm by Friedman, Hastie, and Tibshirani (2010) can be used to obtain

a sparse solution. However, the estimation of the loss severity does not collapse to a

Lasso regularized GLM. Unfortunately, numerically solving the maximization problem

of Equation 13 using the standard numerical optimization algorithms does not lead to a

sparse solution. Therefore, an algorithm is proposed to obtain a sparse solution for the

loss severity. The algorithm is based on the shooting algorithm (Fu, 1998). The main dif-

ference between the proposed algorithm and the shooting algorithm is the measurement

of the effect of a coefficient becoming zero, c. This is measured by the derivative with

respect to β of log-likelihood instead of the derivative with respect to β of the sum of

squared residuals. The proposed algorithm puts two restrictions on the form of the log-

likelihood. The log-likelihood, `(β), needs to be concave and at least once differentiable.
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Algorithm 2: Shooting Algorithm for Lasso with Maximum Likelihood

Result: βlasso(κ)

βlasso(κ) = argmax
β
`(β)−κ‖β‖1 (numerically solved, i.e. non-sparse Lasso

solution);

εc =∞ ;

while εc > ε do

βprev(κ) = βlasso(κ) ;

ci = ∂`(β)
∂βi

∣∣∣∣
β=βprev

−i (κ)
;

βlasso
i (κ) =


0 if |ci | ≤ κ

β
prev
i (κ) else

;

εc = (βlasso(κ)− βprev(κ))′(βlasso(κ)− βprev(κ)) ;

end

where βprev
−i (κ) is equal to the vector βprev(κ) with the ith element set to zero and ε

the predefined convergence tolerance.

The hypertuning parameter κ is chosen by ten-fold Cross-Validation. The grid for κ is

chosen to be an exponentially spaced grid between κmin and κmax with

κmax =
`NR − `naive∑

tNt
, (31)

κmin = κmax × 10−4, (32)

where `naive is the maximized log likelihood when all covariates are included and `naive is

the maximized log likelihood when no covariates are included and thus only the intercept

is optimized. This grid selection is based on Friedman et al. (2010) and adjusted for log-

likelihood optimizations.

3.4.3 Relaxed Lasso

Lastly, Relaxed Lasso is applied to both the loss frequency and severity. For ease of es-

timation, the simplified version of Relaxed Lasso is used. The application to the loss
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frequency is relatively straightforward as the parameters can be obtained using Poisson

regression.

As the loss severity does not fall into the class of GLM the application of the simplified

version of Relaxed Lasso is not directly possible. It is possible to apply Relaxed Lasso by

solving the optimization problem of equation (14). However, this optimization is not

trivial in practice. Therefore, the simplified version of Relaxed Lasso is adapted in the

following way such that it no longer depends on a regression solution.

βrelax = ϕβlasso(κ) + (1−ϕ)βNR(κ), (33)

where βNR(κ) is defined as a p × 1 vector with the not regularized solution when only the

covariates of the active set, Aκ, are included and zeros in the places of the other covariates.

The two hyperparameters κ and ϕ are chosen by ten-fold Cross-Validation. For the

hyperparameter κ the grid as described in Section 3.4.2 is used. For the hyperparameter

ϕ, Friedman et al. (2010) use ϕ ∈ {0, 0.25, 0.5, 0.75, 1}. However, as ϕ = 1 equals the Lasso

solution, we use ϕ ∈ {0, 0.25, 0.5, 0.75}.

3.5 Goodness-of-fit test

We use the graphical goodness-of-fit test as described in Section 2.2 to check whether we

set the threshold u correctly. We check the Q-Q plots for signs of misspecification. When

this is the case, we perform the graphical goodness-of-fit test for different values for the

threshold u and use the results of the threshold where the Q-Q plots show no or the least

signs of misspecification.

The graphical goodness-of-fit test requires visual inspection of each Q-Q plot. This be-

comes impossible when the number of analyses is large. Therefore, we use the Kolmogorov-

Smirnov (KS) test as described by Massey (1951) to quantify the distance between the

theoretical and empirical distribution. In the KS-test we compare r(t,i) as described in

Equation 11 with the standard exponential distribution. Therefore, the null hypothesis

of the KS-test is that the losses are a draw from the estimated distribution. Thus, rejec-

tion of the KS-test means that we reject that the losses are a draw from the estimated
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distribution.
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4 Simulation study

To assess the performance of the proposed methodology in selecting the covariates used

in the data generating process (DGP) out of many covariates, a simulation study is con-

ducted. In the simulation study, we simulate the frequency and severity of extreme

losses from a Poisson and generalized Pareto distribution respectively. We simulate non-

extreme losses from a normal distribution. The parameters of these distributions depend

on a subset of the simulated covariates. The generation of a single simulation is per-

formed as follows.

First, we set the threshold u to a quantile between 80% and 95% of the standard

normal distribution. Second, we generate 50 covariates for each time period t by drawing

from a i.i.d. standard normal distribution, i.e. xi,t
iid∼ N (0,1), ∀(i, t). From this set of

covariates a subset, denoted by A, with size k ∈ {3,4,5,6} is taken which will be used in

the DGP.

As the methodology estimates the coefficients for νt instead of σt, we let νt depend

on the covariates such that the coefficients can be compared. This leads to the following

(log-)linear relations,

ln(λt) = c0,λ +
∑
i∈A

ci,λxi,t, ln(ξt) = c0,ξ +
∑
i∈A

ci,ξxi,t, νt = c0,ν +
∑
i∈A

ci,νxi,t, (34)

where c0,· denotes the intercept corresponding to the distribution parameter and c·,· de-

notes the coefficient corresponding to the distribution parameter and the covariate.

Chavez-Demoulin, Embrechts, and Nešlehová (2006) find values for ξ that range be-

tween 0.2 and 0.8 and values for σ that range between 1 and 2. Therefore, we choose the

coefficients for ξt and νt in such a way that the resulting values are in the same magni-

tude. To ensure sufficient losses are available for each time period we choose the coeffi-

cients for λt in such a way that the resulting values are between 10 and 100. Appendix

Table 13 describes the distributions the intercepts and coefficients are (independently)

drawn from.

Using these resulting distribution parameters we simulate the frequency and severity
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of the extreme losses. First, we draw the number of extreme losses for each time period

(denoted withNt) independently from a non-homogeneous Poisson distribution with rate

λt, i.e. Nt ∼ Pois(λt), ∀t. Secondly, for each time period Nt, we draw the excess losses

from a non-homogeneous generalized Pareto distribution (GPD) with parameters ξt and

σt = exp(νt)
1+ξt

, i.e. y(t,i) ∼ GPD(ξt,σt), ∀i ∈ {1, . . . ,Nt} and ∀t. The inverse CDF of the GPD is

defined as follows,

F−1(y) =
σ ((1− y)−ξ − 1)

ξ
. (35)

Therefore, a random draw, y(t,i) ∼ GPD(ξt,σt), can be simulated using a random draw

from a standard uniform distribution, U ∼Uni(0,1), using the following transformation,

y(t,i) =
σt(U−ξt − 1)

ξt
. (36)

Next, we transform the excess losses into extreme losses by adding the threshold u.

Lastly, we simulate the non-extreme losses. For each time period, we simulate 500 −Nt
non-extreme losses to get a total of 500 losses per time period. These losses are inde-

pendent draws from a standard normal distribution with the restriction that the value is

lower than u.

This procedure leads to a dataset that contains 500 losses (of which Nt are extreme)

and 50 covariates for each time point t. After the generation of a simulation, we apply the

methodology. The chosen threshold, selected covariates, and coefficients are not available

for the estimation process.

4.1 Correlation in covariates

We also test the performance of the proposed methodology when the potential covariates

are correlated. Instead of drawing xi,t from a i.i.d. standard normal distribution, xt =

{x1,t, . . . ,x50,t} is drawn from a multivariate normal distribution, i.e. xt
iid∼ N (0,Σ).

Joe (2006) propose a method to simulate a random correlation matrix. Joe (2006) pa-

rameterize the correlation matrix in correlations and partial correlations and draw these

from a Beta distribution. In their method, they use one parameter, α, which influences
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the distribution of the correlation matrix. We choose α = 1 which leads to a uniform dis-

tribution over the space of positive definite correlation matrices. We choose the variance

of xt to be 1. Therefore, the covariance matrix, Σ, is equal to the correlation matrix.

4.2 Performance measures

We use the following performance measure to assess the performance of the proposed

methods in the simulation study. First, we consider the percentage of the selected covari-

ates that are identified as a significant covariate (TP, true positive). Secondly, we consider

the percentage of the not-selected covariates that are correctly identified as not significant

(TN, true negative). We calculate these statistics using the following formulas,

TP =
1
|A|

∑
i∈A

Iβ̂i,0, (37)

TN =
1
|Ac|

∑
i∈Ac

Iβ̂i=0. (38)

Next, we also consider the mean squared error (MSE) of the estimated coefficients.

MSE =
1

51

50∑
i=0

(βi − β̂i)2. (39)

4.3 Results

First, we perform 100 simulations with no correlation in the covariates. Table 1 shows

the mean of the performance measures with the threshold, u, chosen at the 90% quan-

tile of the losses. For the loss frequency, we find that, on average, BeSS has the highest

true positive rate. The average true negative rate for Relaxed Lasso is 0.99 and the true

positive rate is lower, 0.87, than the other two. This indicates that Relaxed Lasso might

be too restrictive in selecting covariates. BeSS produces the lowest MSE, indicating that

on average the error in the estimated coefficients is the lowest with BeSS. BeSS and Lasso

correctly select all covariates in the active set (i.e. TP = 1) 81 and 75 times, respectively,

and Relaxed Lasso does only this 58 times. However, Relaxed Lasso is able to select only
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the correct covariates (i.e. TP = TN = 1) 50 times. BeSS and Lasso are able to do this only

26 and 24 times respectively.

Table 1: Mean over 100 simulation of the performance measures for the simulation study
with no correlation in the covariates. Threshold, u, is chosen at 90% quantile.

Loss frequency Loss severity
Method TP TN MSE TP TN MSE
BeSS 0.94 0.98 2.65 0.91 1.00 13.53
Lasso 0.92 0.96 2.76 0.96 0.49 12.05
Relaxed Lasso 0.87 0.99 2.69 0.96 0.87 14.06

The reported MSE is scaled by 102.

For the loss severity, we find that Lasso and Relaxed Lasso produce the highest true

positive rate, 0.96. For Lasso, we observe a relatively low true negative rate, 0.49, indicat-

ing that Lasso selects too many covariates. BeSS has a true negative rate of 1 and a lower

true positive rate, indicating that BeSS is on the restrictive side when selecting covariates.

The number of times all covariates of the active set are selected is in line with this.

Namely, BeSS does this 61 times, Lasso 83 times, and Relaxed Lasso 84 times. Moreover,

the number of times only the covariates of the active set are selected by BeSS is 57, by

Relaxed Lasso 31 and Lasso is never able to do this. Regarding the MSE, we observe high

values compared to the median, which ranges between 3.29-3.34. This is due to two sim-

ulations for which all three methods produce an MSE which is two orders of magnitude

greater than the MSE’s for other simulations. BeSS produces the lowest median MSE,

closely followed by Relaxed Lasso and Lasso. The median of the performance measures

can be found in Appendix Table 14.

Appendix Tables 15 and 16 show the mean of the performance measures with the

threshold, u, chosen at the 80% and 95% quantile of the losses respectively. For the loss

frequency, the results with these different thresholds are similar to the results shown in

Table 1. The true positive rates are slightly lower when the threshold is chosen at the

80% quantile. For the MSE, the values are higher when the 80% quantile is used, and

lower when the 95% quantile is used. This indicates that selecting a too high value for

the threshold still leads to accurate estimates. For the loss severity, we find lower true

positive and negative rates when the threshold is chosen at the 80% quantile. The MSE
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for all three methods is higher when the 80% quantile is used. When the 95% quantile is

used we find similar true positive and negative rates as with the 90% quantile. However,

the MSE is lower than the mean and median MSE of the 90% quantile. Thus, for the loss

severity, we find the same pattern that a higher threshold leads to better performance.

Table 2: Count table with significance levels of the KS-statistics for all simulations with-
out correlation in the covariates for each threshold and method.

80% quantile 90% quantile 95% quantile
Significance BeSS Lasso RL BeSS Lasso RL BeSS Lasso RL

< 1% 100 100 100 77 77 76 46 45 44
< 5% 100 100 100 79 79 78 50 50 51
< 10% 100 100 100 80 81 80 51 56 51
≥ 10% 0 0 0 20 19 20 49 44 49

RL denotes Relaxed Lasso

Table 2 contains the number of simulations for which we reject the KS-test at certain

significance levels. When the threshold is chosen at the 80% quantile we reject the KS-test

at the 1% level for all simulations and for each method. For the 90% quantile, we reject

the KS-test at the 1% level 77 times for BeSS and Lasso and 76 times for Relaxed Lasso.

We do not reject the KS-test at the 10% level 19 times for Lasso and 20 times for BeSS and

Relaxed Lasso. For the 95% quantile, the number of times we do not reject the KS-test

increases to 44-49 times. Thus, we observe a trend where the fit becomes better when the

threshold is chosen at a higher value. However, it should be noted that the number of

points that we fit decreases when the threshold is chosen at a higher value.

Figure 1 contains the Q-Q plots using both the actual and estimated parameter values

for the first four simulations as examples. For the first simulation, we find that the right

skewness is underestimated by all three methods. We also reject the KS-test at the 1%

level for this simulation. For simulations 2, 3, and 4 the Q-Q plots indicate a good fit by

all methods. However, for simulation 3 we also reject the KS-test at the 1% level for all

methods. For simulations 2 and 4 we do not reject the KS-test at the 10% level for all

methods. For simulation 1, the inaccuracy is large due to the inaccurate estimates for ξ

where the MSE is above average for all three methods. For simulation 3, the inaccuracy

is due to the threshold. The estimated threshold for this simulation is lower than the
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threshold used in the DGP.
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Figure 1: Q-Q plots of the losses above the 90% quantile using the actual parameters of
the distribution and estimated parameters of the distribution by each method for the first
four simulations.

Next, we drop the independence of the covariates and perform 100 simulations with

correlation in the covariates. For each simulation, we simulate a random covariance ma-

trix as described in Section 4.1. Table 3 shows the mean of the performance measures

with the threshold, u, chosen at the 90% quantile of the losses. For the loss frequency, we

find that BeSS outperforms both Lasso and Relaxed Lasso in terms of true positive rate

and MSE. Relaxed Lasso produces a slightly higher true negative rate. BeSS and Lasso

are able to correctly select all covariates of the active set (i.e. TP = 1) 79 and 76 times

respectively. Relaxed Lasso does this 64 times. Moreover, BeSS and Relaxed Lasso are

able to select only the correct covariates (i.e. TP = TN = 1) 41 times, Lasso does this only

15 times.
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Table 3: Mean over 100 simulation of the performance measures for the simulation study
with correlation in the covariates. Threshold, u, is chosen at 90% quantile.

Loss frequency Loss severity
Method TP TN MSE TP TN MSE
BeSS 0.93 0.98 2.30 0.88 1.00 15.14
Lasso 0.92 0.94 2.41 0.95 0.53 4.31
Relaxed Lasso 0.88 0.99 2.33 0.96 0.85 7.69

The reported MSE is scaled by 102.

For the loss severity, BeSS has a relatively low true positive ratio and a true negative

rate of 1, indicating that BeSS selects fewer covariates than in the DGP. This might be

caused by the correlation in the covariates. Lasso, on the other hand, has a relatively

high true positive ratio and a low true negative ratio. This indicates that Lasso does

the opposite and selects too many covariates. Relaxed Lasso has a slightly higher true

positive rate than Lasso, however, its true negative rate is in between BeSS and Lasso.

Lasso and Relaxed Lasso are able to select all covariates in the active set 76 and 81 times

respectively and BeSS only 52 times. However, Lasso never selects only the covariates in

the active set. BeSS and Relaxed Lasso do this 47 and 11 times respectively. In terms of

MSE, Lasso outperforms both BeSS and Relaxed Lasso. For BeSS and Relaxed Lasso, we

observe relatively high values for the MSE compared to the median. For both methods,

this is due to two simulations that produce a large MSE. For both simulations, the 90%

quantile is below the threshold used in the DGP. The median MSE leads to the same

conclusion as the mean. All median values are reported in Appendix Table 14.

Appendix Tables 18 and 19 show the results with the threshold, u, chosen at the 80%

and 95% quantile respectively. We find a similar pattern as in the case of no covariate

correlation. For both the loss frequency and severity, we observe that the MSE is higher

when the threshold is set at 80% and lower when the threshold is set at 95%. Notably, for

the loss severity, we find that both BeSS and Relaxed Lasso outperform Lasso in terms of

MSE when the threshold is chosen at the 95% quantile.

Page 24 of 49



D.R.A. Lemmen Master Thesis

Table 4: Count table with significance levels of the KS-statistics for all simulations with
correlation in the covariates for each threshold and method.

80% quantile 90% quantile 95% quantile
Significance BeSS Lasso RL BeSS Lasso RL BeSS Lasso RL

< 1% 100 100 100 74 73 74 41 41 41
< 5% 100 100 100 74 74 74 42 44 43
< 10% 100 100 100 74 74 74 44 47 45

RL denotes Relaxed Lasso

Table 4 contains the number of simulations for which we reject the KS-test at certain

significance levels. When the threshold is chosen at the 80% quantile we reject the KS-test

at the 1% level for all simulations and for each method. For the 90% quantile, we reject

the KS-test at the 1% level 74 times for BeSS and Relaxed Lasso and 73 times for Lasso.

We do not reject the KS-test at the 10% level 26 times for all three methods. For the 95%

quantile, the number of times we do not reject the KS-test increases to 53-56 times. We

observe the same trend as in the simulations with no correlation in the covariates where

the fit becomes better when the threshold is chosen at a higher value.

Figure 2 contains the Q-Q plots using both the actual and estimated parameter values

for the first four simulations as examples. We observe that the Q-Q plots indicate a good

fit for simulations 1 and 2 by all methods. For both of these simulations, we do not reject

the KS-test at the 10% level for all three methods. However, for simulations 3 and 4 we

find that the right skewness is underestimated by all three methods. In line with this,

we reject the KS-test for these simulations at the 1% level for all three methods. For both

these simulations, we find that the 90% quantile of the data is below the real threshold

and therefore non-extreme losses are used as extreme losses.
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Figure 2: Q-Q plots of the losses above the 90% quantile using the actual parameters of
the distribution and estimated parameters of the distribution by each method for the first
four simulations.
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5 Application to market risk

We apply the proposed methodology to a market risk dataset. This application is split

into three parts. First, we analyze the daily loss returns of the S&P 500. Secondly, we

analyze the loss returns of the 500 companies in the S&P500 per company, i.e. we perform

500 analyses. Lastly, we analyze the loss returns of each sector. In all of these analyses

the time period, denoted in the methodology by t, is set to be one month. That is, we

fit distributions for the loss frequency and severity per month and the covariates have a

monthly frequency.

We obtain the closing prices of the S&P 500 index from Standard and Poor’s website,

and we download the adjusted closing prices1 of the 500 companies in this index from

Yahoo Finance. All closing prices are obtained for the years 2011-2020, i.e. 2,517 trading

days. We convert The (adjusted) closing prices into loss returns.

For all three analyses, we use the large macro-economic dataset with a monthly fre-

quency, FRED-MD. FRED-MD is developed by the Research Division of the Federal Re-

serve Bank of St. Louis and contains over 120 macro-economic variables. All variables in

the dataset have either a monthly frequency or have been transformed to have a monthly

frequency. Some variables are adjusted for the use of statistical analysis (McCracken &

Ng, 2016). All transformations can be found in the FRED-MD Updated Appendix. We

standardize all variables for our methods to work correctly. The lagged values of the

covariates are used in the analysis such that the fitted distributions are forecasts.

5.1 S&P500

First, we analyze the loss returns of the S&P500 index. As each month has around 21

trading days, each month in this analysis has around 21 loss returns. To have sufficient

extreme losses to train the models the threshold, u, is set to the 80% quantile. This means

that on average each month has around 4 extreme losses. Appendix Table 20 shows the

1Yahoo provides adjusted closing prices which are the closing prices adjusted for dividends and stock
splits following the Center for Research in Security Prices (CRSP) standards.
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number of exceedances per month. Seven of the 120 months contain no extreme losses

and the most extreme losses (12) occurred in March 2020. Appendix Figure 7 contains

the histogram of the daily loss returns of the S&P500 index.

5.1.1 Results

First, we perform BeSS, Lasso, and Relaxed Lasso on the loss frequency. Both Lasso and

Relaxed Lasso select no covariates indicating that there is no significant relation between

the covariates and frequency of extreme losses. However, BeSS selects three covariates,

namely, the S&P Dividend Yield, U.S./U.K. Foreign Exchange Rate and the S&P Volatility

Index. For the S&P Dividend Yield the relation is negative, indicating that an increase

in dividend yield leads to a decrease in the frequency of extreme losses. The U.S./U.K.

Foreign Exchange Rate and the S&P Volatility Index both have a positive relation.

Table 5: Estimated coefficients by all three methods for the S&P500 index. The threshold
is chosen at 80%.

BeSS Lasso Relaxed Lasso
Coefficients λ ξ ν λ ξ ν λ ξ ν
(Intercept) 1.85 -6.11 -0.24 1.43 -65.95 -0.19 1.43 -14.80 -0.23

IPDCONGD 0.00 3.60 0.03 0.00 0.00 0.00 0.00 0.00 0.00
IPNCONGD 0.00 0.00 0.00 0.00 0.00 0.05 0.00 -0.58 0.11

IPBUSEQ 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00
USGOVT 0.00 0.00 0.00 0.00 0.00 0.09 0.00 6.92 0.00

CES0600000007 0.00 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 0.00
S.P.div.yield -1.21 -1.10 -0.19 0.00 0.00 -0.03 0.00 0.00 0.00

T5YFFM 0.00 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 0.00
EXSZUSx 0.00 0.00 0.00 0.00 0.00 -0.05 0.00 0.00 0.00

EXUSUKx 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OILPRICEx 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00
CPIAPPSL 0.00 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 0.00

CUSR0000SA0L2 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
VXOCLSx 0.03 -0.70 0.33 0.00 0.00 0.07 0.00 -0.32 0.20

A description of the variables can be found in the FRED-MD Appendix.

Next, we perform BeSS, Lasso, and Relaxed Lasso on the loss severity. BeSS once again

selects three covariates: namely, the Industrial Production Durable Consumer Goods, the

S&P Dividend Yield, and the S&P Volatility Index. Lasso selects 10 covariates, which can

Page 28 of 49

https://files.stlouisfed.org/files/htdocs/uploads/Appendix%20Tables%20Update%20MD%2003152021.pdf


D.R.A. Lemmen Master Thesis

be seen in Table 5. Relaxed Lasso also selects three covariates: namely, the Industrial

Production Non-Durable Consumer Goods, the number of U.S. government employees,

and the S&P Volatility Index.

To assess the estimated fit we perform the KS-test for all three methods. For all three

methods, we do not reject the KS-test at the 10% significance level. Figure 3 contains the

Q-Q plots for all three methods. We do not observe any structural deviations in the Q-Q

plots. Thus, all three methods lead to a good fit of the losses.

BeSS Lasso RelaxedLasso

0 2 4 6 0 2 4 6 0 2 4 6

0.0

2.5

5.0
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theoretical

s
a
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Figure 3: Q-Q plots of the losses above the 80% quantile using the estimated parameters
of the distribution by each method.

5.2 Single stock analysis

For each of the 500 companies in the S&P500 index, an analysis is performed on the loss

returns. The threshold, u, is chosen at the 80% quantile. Two of the 500 companies have

more than ten months without extreme losses.

5.2.1 Results

First, we perform BeSS, Lasso, and Relaxed Lasso on the loss frequency. Lasso and Re-

laxed Lasso select no covariates 57% and 55% of the time respectively. Therefore, the

median of the number of selected covariates is zero for both. For BeSS, this median is 3

with a mean of 3.3. The means for Lasso and Relaxed Lasso are 2.2 and 2 respectively. As

can be seen in Figure 4, Lasso and Relaxed Lasso select more than 20 covariates a small

number of times whereas BeSS always selects less than 15 covariates.
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Figure 4: Histograms of the number of selected covariates per method for loss frequency
and severity.

Table 6 shows the 10 most chosen variables per method. All three methods select

the S&P Volatility Index the most often and for all three methods the median of the

corresponding coefficients is positive. The S&P 500 Dividend Yield, Switzerland/U.S.

Foreign Exchange Rate and Industrial Production index are also chosen often by all three

methods. With the median of the corresponding coefficients being positive for the S&P

500 Dividend Yield and Switzerland/U.S. Foreign Exchange Rate and negative for the

Industrial Production index. Lasso and Relaxed Lasso often choose the Consumer Price

Index with a negative median of the corresponding coefficient.
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Table 6: The 10 most chosen variables for the loss frequency per method.

BeSS Lasso Relaxed Lasso
Median 3 0 0
Mean 3.3 2.2 2.0
Variable % Variable % Variable %
VXOCLSx 52.5 VXOCLSx 33.9 VXOCLSx 34.1
S.P.div.yield 28.7 CPIAPPSL 12.7 CPIAPPSL 11.3
EXSZUSx 16.8 S.P.div.yield 9.3 IPNCONGD 8.7
IPNCONGD 16.0 EXSZUSx 9.3 EXSZUSx 8.5
IPBUSEQ 12.7 IPNCONGD 6.9 S.P.div.yield 8.1
IPFUELS 10.5 ANDENOx 6.9 IPB51222S 6.1
TOTRESNS 9.3 IPBUSEQ 5.9 TOTRESNS 6.1
ANDENOx 9.1 IPFUELS 5.5 ANDENOx 5.9
BAA 8.9 TOTRESNS 5.5 IPFUELS 5.5
PPICMM 8.9 IPB51222S 5.3 IPBUSEQ 5.3

A description of the variables can be found in the FRED-MD Ap-
pendix.

Next, we perform all three methods on the loss severity. In contrast to the loss fre-

quency, Lasso and Relaxed Lasso select, on average, more than double the number of

covariates than BeSS. This can also be seen in Figure 4. BeSS always selects 10 covariates

or less, whereas Lasso and Relaxed Lasso sometimes select over 40 covariates.

Table 7 contains the most chosen variables for the loss severity per method. Again,

for all three methods, the S&P Volatility Index is the most selected covariate. For all

three methods, the median of the corresponding coefficients is negative with respect to

ξt and positive with respect to νt. It is therefore difficult to state which effect an increase

in the Volatility Index has on the expected loss. Lasso and Relaxed Lasso often select

the number of U.S. government employees. This might be due to the co-movement of

the number of U.S. government employees and large (economic) events including market

crashes.
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Table 7: The 10 most chosen variables for the loss severity per method.

BeSS Lasso Relaxed Lasso
Median 4 11 9
Mean 4.0 15.4 11.7
Variable % Variable % Variable %
VXOCLSx 52.9 VXOCLSx 89.3 VXOCLSx 83.8
IPDCONGD 38.0 USGOVT 77.2 USGOVT 66.7
USGOVT 36.6 IPBUSEQ 55.6 IPBUSEQ 48.5
EXSZUSx 23.8 EXSZUSx 51.3 T5YFFM 42.6
S.P.div.yield 18.8 S.P.div.yield 49.9 EXSZUSx 39.6
IPNCONGD 15.4 T5YFFM 49.3 S.P.div.yield 39.4
DTCTHFNM 14.7 IPNCONGD 44.8 IPNCONGD 35.0
PERMITNE 13.1 PERMITNE 41.0 DTCTHFNM 32.1
T5YFFM 13.1 CES0600000007 39.4 CES0600000007 31.3
HOUSTNE 12.5 OILPRICEx 39.0 PERMITNE 30.9

A description of the variables can be found in the FRED-MD Appendix.

To assess the provided fit by each method we perform KS-tests. Table 8 contains the

number of analyses for which we reject the KS-test at certain significance levels. We find

that we reject the KS-tests the most often for Lasso indicating that the fit provided by

Lasso is worse. At the 1% significance level, we reject the KS-tests the least often for

the fits provided by Relaxed Lasso. For the 5% and 10% significance levels, we reject

the least often for the fits provided by BeSS. As the number of rejections at the 10%

significance level is almost double for Relaxed Lasso compared to BeSS we conclude that

BeSS provides the best fit.

Table 8: Count table with significance levels of the KS-statistics for all analyses for each
method and the number of expected rejections based on the significance levels.

Significance BeSS Lasso Relaxed Lasso Expected rejections
< 1% 32 53 19 5
< 5% 42 132 57 25
< 10% 58 203 103 50
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5.3 Sector analysis

The 500 companies in the S&P500 index can be split into 11 sectors2. For each of the

11 sectors, an analysis on the loss returns is performed. In these analyses, we assume

that the coefficients for stocks within the same sector are equal. Such an assumption, de-

spite being arbitrary, has the advantage to allow more loss returns in each month. Corre-

spondingly, the threshold, u, can be chosen at a higher value while maintaining sufficient

extreme losses for training. However, this analysis violates an assumption made in the

methodology. The methodology assumes that all extreme losses are drawn independently

from a GPD. Empirically, stock returns are cross-sectionally correlated and thus not inde-

pendent draws from a distribution, especially when the absolute stock returns are large

(Cizeau, Potters, & Bouchaud, 2001). We keep this violation in mind when interpreting

the results.

The threshold, u, is chosen to be the 95% quantile. On average 46 losses exceed this

threshold per month per sector, within sector average vary between 23 and 75. Appendix

Table 21 contains the summary statistics of the number of exceedances per month.

2The division into these sectors is according to the Global Industry Classification Standard (GICS).
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5.3.1 Results
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Figure 5: Histograms of the number of selected covariates per method for loss frequency
and severity.

First, we analyze the loss frequency of the 11 sectors. As can be seen in Figure 5, BeSS

always chooses over 20 covariates. Lasso and Relaxed Lasso choose either a small number

of covariates (0-3) or more than 25 covariates. Lasso chooses more than 25 covariates for

the sectors Consumer Staples, Industrials, and Materials. Relaxed Lasso does this for the

sectors Communication Services, Materials, and Utilities.

Table 9 shows the 10 most chosen covariates per method. For all three methods, the

S&P Volatility Index is the most chosen variable and the relation is always positive. We

observe that the covariates selected by BeSS always include a set of 5 variables and the

relations are always in the same direction: the S&P Volatility Index (positive relation),

the number of new Housing Units (positive relation), the number of new Housing Units

authorized (negative relation), the S&P 500 Dividend Yield (negative relation) and the

number of filled unemployed claims (negative relation).
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Table 9: The 10 most chosen variables for the loss frequency per method.

BeSS Lasso Relaxed Lasso
Median 25 1 1
Mean 24.7 9.6 8.2
Variable % Variable % Variable %
VXOCLSx 100.0 VXOCLSx 72.7 VXOCLSx 63.6
HOUSTNE 100.0 CPIAPPSL 36.4 IPNCONGD 36.4
PERMITNE 100.0 IPNCONGD 27.3 IPNMAT 36.4
S.P.div.yield 100.0 IPBUSEQ 27.3 UEMP5TO14 36.4
CLAIMSx 100.0 UEMPLT5 27.3 CLAIMSx 36.4
IPB51222S 90.9 UEMP5TO14 27.3 USGOVT 36.4
BAA 90.9 USGOVT 27.3 CES0600000007 36.4
DNDGRG3M086SBEA 90.9 CES0600000007 27.3 HOUSTNE 36.4
IPBUSEQ 81.8 HOUSTNE 27.3 HOUSTMW 36.4
USGOVT 81.8 HOUSTMW 27.3 PERMITNE 36.4

A description of the variables can be found in the FRED-MD Appendix.

Next, we analyze the loss severity. We observe that BeSS always chooses less than 10

covariates. For both Lasso and Relaxed Lasso we observe that both choose around 10 co-

variates for most sectors. However, for Energy, Materials, Real Estate, and Utilities both

choose over 30 covariates. For all three methods, we find that the number of U.S. govern-

ment employees is the most chosen covariate. All three methods estimate the relation to

be negative with respect to ξt and positive with respect to νt. Lasso also always chooses

the number of unemployed for 15-26 weeks with a positive relation with respect to ξt

and negative with respect to νt.
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Table 10: The 10 most chosen variables for the loss severity per method.

BeSS Lasso Relaxed Lasso
Median 4 12 12
Mean 3.9 25.8 19
Variable % Variable % Variable %
USGOVT 72.7 USGOVT 100.0 USGOVT 100.0
IPBUSEQ 63.6 UEMP15T26 100.0 UEMP15T26 90.9
T5YFFM 45.5 TB6SMFFM 90.9 IPBUSEQ 81.8
UEMP15T26 27.3 T5YFFM 90.9 TB6SMFFM 81.8
UEMPLT5 18.2 IPBUSEQ 72.7 T5YFFM 72.7
ANDENOx 18.2 PERMITNE 72.7 S.P.div.yield 63.6
GS5 18.2 S.P.div.yield 72.7 GS5 63.6
EXSZUSx 18.2 GS5 72.7 UEMP5TO14 54.5
VXOCLSx 18.2 EXSZUSx 72.7 PERMITNE 54.5
IPDCONGD 9.1 BAA 63.6 TOTRESNS 54.5

A description of the variables can be found in the FRED-MD Appendix.

To assess the fit provided by each method we perform KS-tests. Table 11 contains the

p-values for each KS-test corresponding to the sectors and methods. We never reject the

KS-test when BeSS is used. For Lasso and Relaxed Lasso, we reject the KS-test for five and

three sectors respectively at the 5% significance level. This indicates that BeSS provides

the best fit.

Table 11: P-values (in %) of KS test for each all 11 sectors per estimation method. The
threshold is chosen at the 95% quantile.

Sector BeSS Lasso Relaxed Lasso
Communication Services 90.9 39.6 72.7
Consumer Discretionary 98.7 40.8 97.0
Consumer Staples 95.8 0.0*** 89.5
Energy 22.8 27.8 25.8
Financials 27.0 0.0*** 20.8
Health Care 55.1 0.4*** 65.3
Industrials 13.1 0.0*** 2.7**
Information Technology 45.9 5.9* 38.3
Materials 22.6 71.4 52.6
Real Estate 41.7 33.8 3.4**
Utilities 88.2 0.1*** 0.3***

*** p-value < 1% ** p-value < 5% * p-value < 10%

Additionally, we perform a graphical goodness-of-fit test using the Q-Q plots. Figure
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6 contains the Q-Q plots for all 11 sectors estimated using all three methods. Here we

again observe that the fit provided by Lasso is the least accurate as the Q-Q plots contain

relatively many points far from the theoretical line. From the Q-Q plots, we cannot clearly

distinguish a difference in goodness-of-fit between BeSS and Relaxed Lasso.

Figure 6: Q-Q plots of all 11 sectors estimated using all three methods. The threshold is
chosen at the 95% quantile.

As BeSS provides the best fit we further inspect the selected covariates by BeSS for

each sector. We observe that many of the relations with the selected covariates are am-

biguous. This makes it difficult to interpret these relations. We observe the following

notable relations: Communication Services and Consumer Discretionary are both nega-

tively associated with the number of unemployed. This is a peculiar relationship, espe-

cially for Consumer Discretionary as it contains companies that produce non-essential

consumer goods. For the sector Energy, we observe a negative relation with the price of

Crude Oil indicating that an increase in the price of Crude Oil leads to a lower expected

loss. Another notable relationship is seen for the sector Financials: we observe a negative

relation with the total reserves of depository institutions, indicating that having more

reserves leads to a lower expected loss for financial companies.
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Table 12: Selected covariates by BeSS in the loss severity analysis for each sector. The
relation is given in the parentheses.

Sector Selected covariates

Communication Services
UEMP15T26 (-), USGOVT (+/-), T5YFFM (+/-),
EXSZUSx (+/-)

Consumer Discretionary
IPBUSEQ (+/-), UEMP15T26 (-), USGOVT (+/-),
ANDENOx (+), GS5 (-), DTCOLNVHFNM (+/-)

Consumer Staples
UEMP15T26 (+/-), S.P.div.yield (-), T5YFFM (-),
VXOCLSx (+/-)

Energy IPDCONGD (+/-), OILPRICEx (-)

Financials
IPBUSEQ (+/-), IPDMAT (+/-), ANDENOx (+/-),
TOTRESNS (-)

Health Care
IPBUSEQ (+/-), UEMPLT5 (-), USGOVT (+/-),
T5YFFM (-), DNDGRG3M086SBEA (+/-)

Industrials IPBUSEQ (+/-), USGOVT (+/-), EXSZUSx (+/-)

Information Technology IPBUSEQ (+/-), USGOVT (+/-), GS5 (-), VXOCLSx (-)

Materials IPBUSEQ (+/-), UEMPLT5 (+/-), USGOVT (+)

Real Estate
IPBUSEQ (+/-), USGOVT (+), PERMITNE (+/-),
T5YFFM (+/-)

Utilities
UEMP5TO14 (+), USGOVT (+), FEDFUNDS (+/-),
T5YFFM (+/-)

A description of the variables can be found in the FRED-MD Appendix.
(+) denotes a positive relation.
(-) denotes a negative relation.
(+/-) denotes an ambiguous relation, i.e. the relations with ξ and ν are in opposite direc-

tion.
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6 Conclusion

In this paper, we extend the dynamic POT approach with three covariate selection tech-

niques: best subset selection, Lasso, and Relaxed Lasso. We test our methodology in a

simulation study and assess the performance of all three covariate selection techniques.

Finally, we apply our methodology on a market risk dataset. In this section, we present

our main findings.

From the simulation study, we learn that all three proposed methods perform well in

selecting covariates and estimating their coefficients for the loss frequency. We do not

find that any methods are dominating or are being dominated by others. However, we

find that performance drops when the threshold is chosen at a too low value. Moreover,

when the threshold is chosen at a value above the actual threshold performance remains

almost the same. The most likely reason for this is that when the threshold is chosen

at a too low value non-extreme losses are used in the analysis as extreme losses. As the

non-extreme losses come from a different DGP than the extreme losses the performance

drops. When the threshold is chosen at a too high value information is lost as not all

extreme losses are taken into account. However, there are no non-extreme losses used

in the analysis. Therefore, the performance drop is little when there are still sufficient

losses to analyze. Additionally, we find that even when the covariates are correlated the

methods remain performing well in both selecting the correct covariates and estimating

their coefficients.

For the loss severity, we find that Lasso tends to select too many covariates and BeSS

tends to select a too sparse model. Relaxed Lasso tends to fit a model in between both,

in terms of sparsity. For coefficient estimation accuracy we find that Lasso outperforms

BeSS and Relaxed Lasso when the threshold is chosen at a value lower than the thresh-

old in the DGP. When the threshold is chosen at a value above the threshold in the DGP

performance in terms of coefficient estimation accuracy is very similar for all three meth-

ods. Again, we see that correlation in the covariates has little effect on the performance.

For the threshold sensitivity, we see that both the estimation accuracy as the provided

fit, assessed by the KS-test, drops dramatically when the threshold is chosen at a too low
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value. However, when the threshold is chosen at a value above the actual threshold both

the estimation accuracy as the provided fit have little to no performance drop. Therefore,

we conclude that it is better to choose the threshold at a relatively high value when the

exact threshold is unknown. However, when the threshold is chosen at a too high value

information is lost. Graphically inspecting the Q-Q plots and performing KS-tests for

different thresholds should provide good insights.

In all of our applications, we find that the S&P Volatility Index is the most chosen

covariate for both the loss frequency and severity. When inspecting the Q-Q plots for

the loss severity and performing KS-tests we find that BeSS provides the best fits, closely

followed by Relaxed Lasso. The most likely reason for this is that BeSS tends to select

the sparsest model and Relaxed Lasso selects models that are sparser than the models

selected by Lasso. From our applications, we conclude that the S&P Volatility Index has

a positive relation with the frequency of extreme losses and the expected loss in case of

such an extreme event.
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7 Discussion and Further Research

The conclusions drawn in our paper are subject to some limitations. In the proposed

methodology the threshold is assumed to remain constant in the whole analysis. Espe-

cially, when applying the methodology to a long time period this assumption might be

violated. Therefore, in further research, the methodology could be extended by allowing

for a (time-)varying threshold.

In the simulation study, the simulated covariates are drawn from a (multivariate) stan-

dard normal distribution. In practice, however, covariates may have distributions very

different from the standard normal case. Moreover, our methods are only tested using

continuously distributed covariates. We choose to simulate the non-extreme losses in-

dependently from a standard normal distribution (subject to being lower than the cho-

sen threshold). For further research, it would be interesting to investigate the perfor-

mance of the proposed methods when the non-extreme losses are also drawn from a non-

homogeneous (dependent) distribution.

Chavez-Demoulin et al. (2016) developed their methodology for the use on opera-

tional risk data. As operational risk data is not readily available we choose to apply our

methodology on market risk data. For further research, we would suggest applying our

methodology on operational risk data if available.
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8 Appendix

8.1 Methodology

8.1.1 Partial derivatives

∂`(cξ ,cν)
∂ξt

= 1/(1 + ξt) + ln(1 + ξt(1 + ξt)exp(−νt)y)/ξ2
t

− (1 + 1/ξt)
(1 + 2ξt)exp(−νt)y

1 + ξt(1 + ξt)exp(−νt)y
(40)

∂`(cξ ,cν)
∂ ln(ξt)

=
∂`(cξ ,cν)
∂ξt

ξt (41)

∂2`(cξ ,cν)

∂ξ2
t

= −1/(1 + ξt)
2 − 2ln(1 + ξt(1 + ξt)exp(−νt)y)/ξ3

t

+
2(1 + 2ξt)exp(−νt)y

ξ2
t (1 + ξt(1 + ξt)exp(−νt)y)

− (1 + 1/ξt)exp(−νt)y
2(1 + ξt(1 + ξt)exp(−νt)y)− (1 + 2ξt)2 exp(−νt)y

(1 + ξt(1 + ξt)exp(−νt)y)2 (42)

∂2`(cξ ,cν)
∂ ln(ξt)2 =

∂2`(cξ ,cν)

∂ξ2
t

ξ2
t +

∂`(cξ ,cν)
∂ξt

ξt (43)

∂`(cξ ,cν)
∂νt

=
−1 + (1 + ξt)exp(−νt)y
1 + ξt(1 + ξt)exp(−νt)y

(44)

∂2`(cξ ,cν)

∂ν2
t

=
−(1 + ξt)2 exp(−νt)y

(1 + ξt(1 + ξt)exp(−νt)y)2 (45)

∂2`(cξ ,cν)
∂ξtνt

= (1 + 1/ξt)
(1 + 2ξt)y exp(νt)

(ξt(1 + ξt)y + exp(νt))2

−
(1 + ξt)y/ξt

ξt(1 + ξt)y + exp(νt)
(46)

∂2`(cξ ,cν)
∂ ln(ξt)νt

= (ξt + 1)
(1 + 2ξt)y exp(νt)

(ξt(1 + ξt)y + exp(νt))2

−
(1 + ξt)y

ξt(1 + ξt)y + exp(νt)
(47)
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8.2 Simulation study

Table 13: Distributions of intercepts and coefficients

Coefficient Distribution
c0,λ Uni(2,4)
c0,ξ Uni(−2,0)
c0,ν Uni(−2,1)
c·,· 2(B− 0.5)×U where U ∼Uni(0.1,0.5) and B ∼ Bernoulli(0.5)

8.2.1 Results

Table 14: Median over 100 simulation of the performance measures for the simulation
study with no correlation in the covariates. Threshold, u, is chosen at 90% quantile.

Loss frequency Loss severity
Method TP TN MSE TP TN MSE
BeSS 1.00 0.98 1.72 1.00 1.00 3.29
Lasso 1.00 0.98 1.83 1.00 0.49 3.36
Relaxed Lasso 1.00 1.00 1.73 1.00 0.98 3.34

The reported MSE is scaled by 102.

Table 15: Mean over 100 simulation of the performance measures for the simulation study
with no correlation in the covariates. Threshold, u, is chosen at 80% quantile.

Loss frequency Loss severity
Method TP TN MSE TP TN MSE
BeSS 0.86 0.98 6.32 0.87 1.00 68.97
Lasso 0.82 0.97 6.43 0.97 0.40 40.66
Relaxed Lasso 0.78 1.00 6.36 0.95 0.77 48.10

The reported MSE is scaled by 102.

Table 16: Mean over 100 simulation of the performance measures for the simulation study
with no correlation in the covariates. Threshold, u, is chosen at 95% quantile.

Loss frequency Loss severity
Method TP TN MSE TP TN MSE
BeSS 0.96 0.98 1.23 0.92 1.00 2.48
Lasso 0.95 0.96 1.22 0.95 0.56 2.41
Relaxed Lasso 0.90 1.00 1.22 0.97 0.91 2.43

The reported MSE is scaled by 102.
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Table 17: Median over 100 simulation of the performance measures for the simulation
study with correlation in the covariates. Threshold, u, is chosen at 90% quantile.

Loss frequency Loss severity
Method TP TN MSE TP TN MSE
BeSS 1.00 0.98 1.12 1.00 1.00 3.39
Lasso 1.00 0.96 1.26 1.00 0.55 2.83
Relaxed Lasso 1.00 1.00 1.17 1.00 0.91 2.87

The reported MSE is scaled by 102.

Table 18: Mean over 100 simulation of the performance measures for the simulation study
with correlation in the covariates. Threshold, u, is chosen at 80% quantile.

Loss frequency Loss severity
Method TP TN MSE TP TN MSE
BeSS 0.85 0.98 5.89 0.83 0.99 66.45
Lasso 0.82 0.96 6.02 0.95 0.46 41.05
Relaxed Lasso 0.77 0.99 5.93 0.94 0.71 45.97

The reported MSE is scaled by 102.

Table 19: Mean over 100 simulation of the performance measures for the simulation study
with correlation in the covariates. Threshold, u, is chosen at 95% quantile.

Loss frequency Loss severity
Method TP TN MSE TP TN MSE
BeSS 0.94 0.98 1.22 0.89 1.00 2.59
Lasso 0.95 0.93 1.18 0.95 0.57 2.73
Relaxed Lasso 0.90 0.99 1.21 0.96 0.82 2.67

The reported MSE is scaled by 102.
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8.3 Application to market risk

8.3.1 S&P500 index

Table 20: Number of loss returns of the S&P500 index per month that exceeded the
threshold, u = 0.5%.

Year January February March April May June July August September October November December Total
2011 2 2 7 2 7 7 7 8 10 6 8 6 72
2012 2 2 3 6 8 5 6 3 3 4 5 4 51
2013 0 4 2 4 5 8 0 6 2 4 1 1 37
2014 6 2 5 5 3 2 3 2 5 7 0 8 48
2015 10 0 6 2 4 6 4 8 6 2 3 10 61
2016 9 6 2 5 5 4 1 3 5 2 3 2 47
2017 1 0 2 1 1 3 1 2 1 0 1 1 14
2018 2 8 7 7 4 3 4 2 1 10 7 8 63
2019 4 1 3 1 9 1 4 8 4 3 0 3 41
2020 4 6 12 8 6 6 6 1 8 8 3 1 69

−10 −5 0 5 10

Loss returns (%)

Figure 7: Histogram of the daily loss returns of the S&P500 index for the years 2011-2020.
The threshold, u = 0.5%, is marked in red.
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8.3.2 Sector analysis

Table 21: Summary statistics of the number of losses exceeding the threshold per month.

Sector Min Median Mean Max
Communication Services 1 16.00 23.62 216
Consumer Discretionary 5 41.50 64.05 569
Consumer Staples 2 23.50 32.47 265
Energy 0 11.00 23.73 200
Financials 1 32.00 67.38 654
Health Care 14 43.00 64.98 509
Industrials 9 43.00 72.94 641
Information Technology 8 51.00 74.54 622
Materials 1 17.00 27.01 230
Real Estate 0 15.50 30.41 252
Utilities 1 20.00 29.36 252
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