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Abstract

Over the last years research on extreme values has become increasingly popular.

Observations are classified as extreme values if they are in the heavy tails. We look at three

methods in Extreme Value Analysis: spherical k-means, Principal Component Analysis (PCA)

and spherical k-principal-components. We perform all methods on a finance data set and two

pollution data sets. Spherical k-means and PCA show that extreme losses in heavy industries

coincide with each other, while being mitigated by losses in consumer products. Spherical

k-principal-components shows a similar result when using random starting values. All methods

indicate that pollution of any type is mostly observed independently of other types. Spherical

k-principal-components breaks down in high dimensions when using k-means starting values.

The main finding of this thesis is that all three methods produce almost identical results for

low dimensional data, while producing some overlapping results for high dimensional data.
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1 Introduction

Finding patterns in data is something that researchers have been doing for a long time. Researches

have come up with various methods for different types of data to try and get an idea of the prop-

erties of the data. One type of analysis that has become very popular over the last couple of years

is called Extreme Value Analysis. As the name suggests, Extreme Value Analysis deals with ana-

lysing observations that are in the extreme parts of the tail belonging to a distribution. The main

reason for this spike in interest in Extreme Value Analysis is the ongoing climate change. Extreme

temperatures as well as other extreme scenarios like floodings and hurricanes are not as rare as

they used to be, which makes it easier to investigate these occurrences (Easterling et al., 2000).

Moreover, Extreme Value Analysis has not only been applied to extreme weather conditions, but

also to financial applications for example in which someone can assess the risk of a client not paying

its loan (Brodin & Klüppelberg, 2014).

This thesis looks at three different Extreme Value Analysis methods performed on finance and

pollution data to answer the research question: “Which clustering methods/dimension reduction

algorithms can we combine with Extreme Value Analysis?” The first method uses Extreme Value

Analysis in conjunction with spherical k-means, a method similar to “standard” k-means but with

the main difference being that spherical k-means looks at an angular measure for the distance

instead of the Euclidean distance. The second method makes use of a special form of Principal

Component Analysis (PCA) to see which variables are most important in explaining the variability

that is present in the data. The final method we use is called spherical k-principal-components

and, as the name suggests, combines the two previously explained methods. Section 2 discusses

previously conducted research on similar topics as well as knowledge that is required to understand

the subject. Section 3 discusses that data used to answer the research question and the transform-

ations performed on the raw data. Section 4 goes into depth on the mathematics behind the use of

spherical k-means, PCA and spherical k-principal-components for Extreme Value Analysis. Section

5 shows the main results that are obtained from performing all methods. Section 6 concludes with a

conclusion on the obtained results as well as a short discussion with some future recommendations.

This thesis combines three unsupervised learning methods with Extreme Value Analysis, so this

thesis adds to the current Extreme Value Analysis literature as well as to the existing machine

learning literature. The main contribution of this thesis to the present literature is that we use all

methods for different data sets, so that we highlight situations in which any of the methods do not

perform well. In addition we mention some limitations. The Conclusion section also explains how

we can relate the results from the three different methods so that we can accurately compare their

outcomes, which has not been done so far.
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2 Literature

This section touches on previously conducted research on similar topics as well as introducing vital

concepts that are important to understand the methodology.

2.1 k-means

Data that has to be analysed is often very large. For example one could analyse data of all households

in the US for 20 years or look at monthly precipitation data in the country of Portugal. These data

sets would have many observations which is beneficial, but the added downside of this fact is that

for both data sets we cannot assume that all data was observed under the same conditions. In case

of the household data different individuals could for example have come from a different city. For

the precipitation data it is unreasonable to assume that in the month of January we observe as much

rain as in the month of July. To account for these differences among various observations we try

to incorporate so-called heterogeneity. Sometimes it is also referred to as unobserved heterogeneity,

because the differences may not be observable (Mannering et al., 2016). By not accounting for

individual differences we would assume all data to have the same characteristics, which in turn would

lower the accuracy of our results. A regularly implemented approach to incorporate heterogeneity

is called k-means. As the name of this method somewhat implies, the goal is to investigate the

means of different groups of data. Beforehand we specify the number of groups k, also referred

to as clusters, in which we segment the data. The goal is then to assign observations with similar

characteristics in one cluster, while putting observations with distinct characteristics in different

clusters (Likas et al., 2003). The name k-means could make one think that we can only investigate

the means, but this is not the case. While we do assign observations optimally based on their

“distance” from the mean, each cluster is still a subset of the data. This means that we can perform

any known method of analysing data on the observations in a cluster. Note that all variables should

be of the same scale, otherwise the optimisation algorithm mainly focuses on variables with large

variance. One limitation of this method however is that (assuming all variables are normalised)

the method assumes all variables to be of equal importance. In other words, it assumes that every

single variable contributes equally to the variation of observations. A method that specifically looks

at the importance of each variable is called Principal Component Analysis.

2.2 Principal Component Analysis

Not all variables in a data set contribute as much to the structure of the used data. Pearson (1901)

therefore introduced a method to explain the variance-covariance structure of the variables which

he called Principal Component Analysis (PCA). The idea behind PCA is that we construct new

variables called (principal) “components” that are linear combinations of all the original variables.

We obtain all coefficients by calculating the eigenvectors for the covariance matrix. Then by looking

at the coefficient for each variable, we can see how heavily the component depends on each variable
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(Drees & Sabourin, 2019). Next we obtain the eigenvalues of the same covariance matrix. Because

the covariance matrix is always positive semi-definite by construction, all eigenvalues are non-

negative and we can make a ranking of all eigenvalues. Each component has one corresponding

eigenvalue, so the component with the largest eigenvalue has the largest variance and is thus most

influential in explaining the variability of the data. The component corresponding to the second

largest eigenvalue then has the second largest variance, and so on until we get to the component

with the smallest eigenvalue and hence the smallest variance (Johnson & Wichern, 2014). For

example we could look at a data set containing the variables rainfall, sunshine and temperature. If

the component with the largest eigenvalue has a high coefficient for sunshine and temperature, but

not for rainfall, then sunshine and temperature are more important in explaining the variance of

the data than rainfall. Sometimes the new components have a logical interpretation based on the

coefficients. A medical example could be that a component has large coefficients for the variables

diabetes and blood pressure. The component now signifies the likelihood of having heart failure as

having diabetes and a high blood pressure both increase the change of having a heart failure (From

et al., 2006). Be aware that when one wants to use PCA, the data should first be normalised so

that every variable has the same scale. If the researcher does not do this beforehand, PCA will

focus more heavily on variables with a larger variance and the conclusion will always be that the

variables with a high variance are most important in explaining the total variance of the data.

2.3 Extreme Value Analysis

Different types of data require different types of models to investigate the data. For example data

recorded over time requires a time series model, while for cross-sectional data a simple linear model

may suffice. A special type of analysis that deals with observations which are very far away from

the bulk of the data, also referred to as observations in the heavy tails, is called Extreme Value

Analysis. Tippett (1925) pioneered this special type of unsupervised learning, but most research on

this topic has been performed in the last few decades due to climate change. Extreme events such as

high temperatures and flooding are becoming more common which makes it easier for researchers to

investigate these occurrences. A concise summary of relevant papers on Extreme Value Analysis is

given by Zhang et al. (2004). Extreme Value Analysis is a collective name that encompasses many

different methods, but all methods have something in common. In Extreme Value Analysis we

always start off by examining which observations in the data can be constituted as extreme values.

Usually we first apply a form of normalisation to ensure that all variables lie within a common

interval, after which the 5-10% largest observations become the new data set. Now we perform

any known method to analyse the extreme values. Often we can perform conventional methods on

the extreme values, for example the Bayesian mixture model by Kottas & Sansó (2007). However

for some methods we need to take extra steps to account for the fact that we are dealing with

extreme values. This is for example the case when trying to perform Principal Component Analysis

as proposed by Cooley & Thibaud (2019). In this paper Cooley & Thibaud use an altered formula
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to estimate the covariance matrix. This formula is tweaked so that it can be estimated for extreme

values. The “regular” unbiased estimator for the covariance matrix is not used.

3 Data

This section discusses all data used to answer the research question. We use two different data sets.

The first data set is referred to as “finance” and contains data on daily stocks of companies special-

ised in various markets. Data is observed from July 1st 1926 up to March 31st 2021. This data set is

obtained from the Kenneth French Data Library1. Among other things, the data set contains data

for companies dealing with food, beer, smoking, oil, etc. The data set also contains one variable

that indicates on which day the stock was recorded. This variable is only used to filter the data,

as we would only like to model stocks observed during the time period 1950-2015. This variable

is subsequently removed, which leaves us with p = 30 variables. The number of observations after

filtering is n = 16, 694. Companies can of course record either losses or profit, which is why the data

set contains both positive and negative values. For this research however we are only interested in

extreme losses, i.e. the extreme negative values. Therefore we transform the observations using the

formula

x
(temp)
ij = max{−xij , 0}, i = 1, . . . , n, j = 1, . . . , p. (1)

This transformations ensures that all gains are zero, while losses are now larger than zero. Finally

we apply a transformation to this new temporary data set to ensure that those values are bounded

away from zero. The formula for this transformation is the following:

x̂ij = t(x
(temp)
ij ) = ln[1 + exp(x

(temp)
ij )], i = 1, . . . , n, j = 1, . . . , p. (2)

The expression ln(·) in Equation (2) signifies the natural logarithm. The transformation in Equation

(2) only has effect on small values, as the value 1 within the logarithm is negligible if x
(temp)
ij . This is

the case because for large x
(temp)
ij the term exp(x

(temp)
ij ) becomes very large and so x ≈ ln[1+exp(x)]

(Cooley & Thibaud, 2019). We will perform our methods using the finance data set for the data

points x̂ij .

The second data set comes from the R package texmex2. This data set is referred to as pollution and

contains data on several air pollution statistics measured over the 1994-1998 period in the British

city of Leeds. This data set is comprised of 5 variables; daily maximum ozone (O3) measured in parts

per billion, daily maximum nitrogen dioxide (NO2) in parts per billion, daily maximum nitric oxide

(NO) in parts per billion, daily maximum sulfur monoxide (SO2) in parts per billion and particulates

(PM10) measured in micrograms/metre3. The data is segmented into winter months (November up

to and including February) and summer months (April up to and including July), which can be

1https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
2https://cran.r-project.org/web/packages/texmex/texmex.pdf
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obtained with the commands data(winter) and data(summer) respectively. The winter data set

contains a total of 532 observations, while the summer data set contains a bit more observations

with 578. Summary statistics for the winter months are shown in Table 1.

Table 1: Summary statistics winter air pollution

Statistic O3 NO2 NO SO2 PM10

Mean 20.056 44.169 135.457 21.032 48.442
Median 22 43 112.5 15 40
Maximum 44 104 568 200 177
Minimum 1 19 10 1 7
Std. Dev 10.896 11.287 102.487 20.951 27.894

The summary statistics for the summer months are shown in Table 2.

Table 2: Summary statistics summer air pollution

Statistic O3 NO2 NO SO2 PM10

Mean 31.997 37.628 55.201 17.369 41.123
Median 31 36 47 8 34
Maximum 84 105 256 313 185
Minimum 8 9 4 0 9
Std. Dev 10.335 11.862 36.443 29.264 23.133

The two data sets contain a different number of observations and the summary statistics indicate

that the two data sets are not identically distributed. There is no feasible way of obtaining a one-

to-one relationship between the observations in both data sets or combining the data in any other

way, so we will examine the data set separately.

4 Methodology

This section discusses the main methods that are implemented. First we introduce the concept

of extreme values and regular variation. After that we will discuss spherical k-means, Principal

Component Analysis and spherical k-principal-components.
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4.1 Generalised Extreme Value Distribution

This research deals with analysing extreme values in data. We would thus like to obtain a dis-

tribution for the maximum of a set of data points, where the maximum is denoted as Mn =

max{x1, ..., xn} and {x1, ..., xn} is the sequence of independent identically distributed (iid) data

points. As all data points are smaller than or equal to the data point with the maximum value, a

näıve approach of obtaining a distribution for Mn is to calculate the probability of all data points

lying below a certain threshold. Mathematically this is equal to

Pr[Mn ≤ z] = Pr[x1 ≤ z, ..., xn ≤ z]

= Pr[x1 ≤ z]× · · · × Pr[xn ≤ z]

= [F (z)]n.

(3)

We can compute all n probabilities separately, because we assumed each data point to be independ-

ent. The main issue with the approach in Equation (3) however is that the distribution function

F (·) is usually not known (Coles et al., 2001). Also, if the distribution function is different over

individuals then we cannot use the final expression in (3), regardless of whether we know every

distribution. On thing that we can use to obtain the distribution function is to use a linear renor-

malisation Mn∗ = Mn−bn
an

, an > 0, bn ∈ R, so that we obtain a distribution function as introduced

by Jenkinson (1955):

P (Mn∗ ≤ z) ≈ G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}

, 1 + ξ

(
z − µ
σ

)
> 0. (4)

The corresponding probability density function is now

g(z) = G′(z) =

[
1 + ξ

(x−µ
σ

)]−1/ξ−1

σ
exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}
. (5)

The distribution associated with Equation (4) is called the Generalised Extreme Value distribution

(GEV). In Equation (4), µ is the location parameter, σ is the scale parameter and ξ is the shape

parameter. Estimating the parameters θ = {µ, σ, ξ} of the GEV is done by means of maximum

likelihood. The maximum likelihood equation is

L(X; θ) = −n ln(σ)− (1− 1

ξ
)

n∑
i=1

ln(yi)−
n∑
i=1

y
−1/ξ
i , (6)

where yi = 1 + ξ
(xi−µ

σ

)
, i = 1, . . . n (Hosking, 1985).
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4.2 Heavy tailed variables

This thesis deals with variables that have observations in the heavy tails and only take on positive

values. Formally a random vector x ∈ Rp+ = [0,∞)p is regularly varying if there exists a sequence

bn →∞ and a limit measure vx for sets in (0,∞)p such that

n pr(b−1
n x ∈ C)

v−→ vx(C) as n→∞, (7)

where
v−→ denotes vague convergence (Resnick, 2007). It holds that bn = L(n) n1/α for some slow

varying function L(n) and α > 0 is called the tail index of x. Because of its definition, vx(C) has

the scaling property vx(aC) = a−αvx(C) for an arbitrary set C ⊂ (0,∞)p with a > 0. We fix α = 2

as suggested by Cooley & Thibaud (2019). Due to the scaling property of vx, it is much more

convenient to look at sets defined by polar coordinates. First define the unit ball

Sp−1
+ = {x ∈ Rp+ : ||x|| = 1} (8)

and

C(r,B) = {x ∈ Rp+ : ||x|| > r,
x

||x||
∈ B} (9)

for r > 0 and a Borel set B ⊂ Sp−1
+ . From these definitions we can obtain that vx(C(r,B)) =

r−αHx(B), where Hx(B) is called the angular measure on Sp−1
+ . Note that the superscript of the

unit ball is p−1 and not p, seeing that we only need the values of p−1 variables to know the values

for all p variables as the norm must be equal to one and all values are non-negative.

So far we assumed that the available data satisfies the previously mentioned restrictions. For most

data sets however this is not the case, so we need a general way of transforming any data set so

that we can always inspect the extreme values of data sets.

4.2.1 Transformation of variables

We would like to model observations which are classified as extreme values. To model these ob-

servations we first need an expression for the distribution function of the extreme values. For this

we assume a sequence of constants exists anj > 0, bnj ∈ R, j = 1, . . . , p. We denote the data

as X = (X1, . . . , Xp), where p is the number of variables and we have n observations. Now the

convergence that must hold is

lim
n→∞

P

(
maxi=1,...,nX

i
1 − bn1

an1
≤ x1, . . . ,

maxi=1,...,nX
i
p − bnp

anp
≤ xp

)
= G(x1, . . . , xp). (10)

One transformation that we can use so that restriction 10 is satisfied is by transforming the data

based on the probability of each value occurring. We transform the variables in both data sets using
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the formula

Y =

(
1√

−ln[F (X1)]
, . . . ,

1√
−ln[F (Xp)]

)
. (11)

In Equation (11) the expression F (Xj) denotes the marginal distribution of variable j. For this

thesis we use the empirical distribution function as suggested by Janßen & Wan (2020). The

empirical distribution function that is often used is F̂j,n(t) = 1
n

∑n
i=1 I[xij ≤ t], j = 1, . . . , p, where

I[xij ≤ t] is the indicator function that has value one if the restriction between the brackets holds

and zero otherwise and t > 0 is some threshold. However an issue arises when using this formula.

By plugging in the maximum value into Equation (11), i.e. we have the value for the empirical cdf of

F̂j,n(max{x1j , . . . , xnj}) = n
n = 1, we get a transformed value of 1√

−ln(1)
= 1

0 , which is not defined.

Therefore we use a slightly altered version of the empirical cdf function, where the denominator is

n+1: F̂j,n(t) = 1
n+1

∑n
i=1 I[xij ≤ t], j = 1, . . . , p. Plugging the transformed sample Y in restriction

10 we get

lim
n→∞

P

(
maxi=1,...,nY

i
1

n
≤ x1, . . . ,

maxi=1,...,nY
i
p

n
≤ xp

)
= G0(x1, . . . , xp). (12)

For this new sample Y the convergence in restriction 10 holds and we can perform Extreme Value

Analysis. The subsequent subsections talk about the methods that we perform. For all methods

we assume that the data is transformed as described by Equation (11).

4.3 Spherical k-means

One assumption that we often make when analysing data is that all observations are independent

and have similar characteristics. In more mathematical terms, we assume all observations to come

from the same distribution with the same parameters, which we call iid. This assumption however

may not always be reasonable. Data could be observed over a very long time period or other

factors that are not observed in the data can have an (unobserved) effect on the data. In fact

these differences might even be of significant interest as they they can help to explain the structure

in the data. One straightforward and frequently used method to examine the differences between

groups of data is called spherical k-means. This method is similar to the perhaps more well-known

method called k-means. Spherical k-means starts off by defining a set of k ∈ N different groups

called “clusters”. As the name somewhat implies, our main interest is the centroid (mean) of each

cluster. We denote the set of centroids as A = {a1, . . . , ak}, ac ∈ Rp, c = 1, . . . , k (Buchta et al.,

2012). The next step in performing spherical k-means is actually assigning observations to any of

the clusters. Observations can be assigned to any cluster, but every observation is only assigned to

one cluster (hard clustering). By simply looking at the data it is practically impossible to assign

observations to clusters by hand, so we need an algorithm that optimally does this for us.
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4.3.1 Assigning observations optimally

The way in which we optimise spherical k-means is that we set up clusters and assign observations

to any cluster so that the distance between observations within the same cluster and their respective

centroid is minimised, where the number of clusters k is specified beforehand (Likas et al., 2003).

Combining what we so far know about spherical k-means with the fact that data is transformed as

explained in Subsection 4.2.1, we thus need to solve the equation

W (A,P ) =

∫
Sp−1
+

min
a∈A

d(x,a)P (dx) ∈ [0,∞), (13)

where P is a probability measure and d(x,a) is a function that measures the distance between x

and a (Janßen & Wan, 2020). Note that the value of W (A,P ) is strictly non-negative, as the data

itself is also non-negative. So far we have talked about “distance” between points, but distance can

be measured in various ways. The distance measure is the part where spherical k-means is different

from “regular” k-means, as spherical k-means uses the cosine dissimilarity as distance measure

instead of the Euclidean distance (Dhillon & Modha, 2001). The formula for the distance between

observation x and the centroid of its cluster a using the cosine dissimilarity is

d(x,a) = dϕ(x,a) = 1− cos(x,a) = 1− x · a
||x||2||a||2

, (14)

where ||.||2 denotes the Euclidean norm. Normalising all variables to have unit length so that the

denominator in Equation (14) is 1, reduces the formula to 1 − x · a. For P in Equation (13) we

substitute its sample version Sn, which assigns weight 1/n to every observation. We now obtain

a set of sample means denoted Ank . Everything neatly summarised, assigning observations in our

data optimally to clusters is done by solving

W (Ank , Sn) =min
a,µ

k∑
c=1

n∑
i=1

µic

(
1− xi · ac
||xi||2||ac||2

)
,

s.t.

k∑
c=1

µic = 1, i = 1, . . . , n,

µik ∈ {0, 1}, i = 1, . . . , n, c = 1, . . . , k,

ac ∈ Rp, c = 1, . . . , k,

(15)

where µic = 1 if observation i is assigned to cluster c and 0 otherwise (Buchta et al., 2012).

4.3.2 Optimisation of k

Choosing the correct number of clusters in (spherical) k-means is very important for getting optimal

results. In an ideal world we know the optimal numbers of clusters k in which to segment the

observations beforehand. Unfortunately this is not the case in practice. We do know however that
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increasing the number of clusters decreases the variance within clusters. By knowing this one might

think to use as many clusters as possible, but increasing the number of clusters also makes the model

more biased towards the used data set. Having a large number of clusters also ensures most clusters

are sparse which makes it difficult to interpret the results. Thus, we need a sufficient number of

clusters to ensure a small variance, but the number of clusters should not be too large so that the

model is not biased towards the data and results are interpretable. The most straightforward way

for finding the optimal number of clusters is to use some metric whose value we can compare for

different values of k (Pham et al., 2005). The metric that one uses to find the optimal number of

clusters is usually the distance measure that is used to optimally assign observations to clusters.

We use the cosine dissimilarity measure, so our metric is Equation (14). We now construct a set

containing different numbers of clusters {2, 3, 4, . . . }. Next for all number of clusters in the set

we perform the spherical k-means algorithm as explained in the previous subsection. The next

step is to set up a so-called elbow plot. This plot shows the number of clusters plotted against

the value of Equation (14). As the name suggests, the line drawn between the points somewhat

resembles an elbow and we look for a significant decline in the value of the metric. The point at

which this happens signifies the optimal number of clusters. A nice example of an elbow plot for

simulated data as well as the Matlab code is given by Bholowalia & Kumar (2014). Note that the

number of clusters should always be at most equal to the number of observations, otherwise some

clusters cannot contain observations and thus have no interpretation. In practice the numbers of

clusters should even be smaller than the number of observations, because having as many cluster

as observations means that every observation contains only one observation. This would not add

anything to the interpretability of each cluster.

4.4 Principal Component Analysis

In unsupervised learning methods, the data we use often consists of many variables. Some variables

in the data might be of greater importance than other variables. By simply looking at the data

we cannot easily deduce which variables are most important. A frequently used method that looks

at the relative importance of variables is called Principal Component Analysis (PCA). If we have

a data set denoted X = (X1, . . . , Xp), then we can construct the p × p covariance matrix ΣX ,

where p refers to the number of variables present in the data. This matrix has the covariance

between variable j and variable k on element σXjk, where jk refers to the element on row j and

column k, j, k = 1, . . . , p, j 6= k. The variance of variable j can be found on the diagonal element

σXjj , j = 1, . . . , p. Due to the specification of the covariance matrix it holds that this matrix is

both symmetric and positive semi-definite (Yang & Berger, 1994). From this matrix ΣX we can

calculate all eigenvalues by solving the equation det(ΣX − λIp) = 0 for the eigenvalues λ, where

det(U) refers to the determinant of matrix U and Ip denotes the identity matrix of size p. The

corresponding eigenvectors are obtained by finding the null space of the matrix ΣX −λIp by means

of row operations. For the mathematical details on eigenvalues and eigenvectors we refer to the
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book by Johnson & Wichern (2014).

After having obtained each eigenvalue and eigenvector, we construct each eigenvalue-eigenvector

pair, denoted (λ1, e1), . . . , (λp, ep). Each eigenvector ej is made up of the elements

ej = [ej1, ej2, . . . , ejp]
′, j = 1, . . . , p, where ’ refers to the transpose of a matrix or vector. As noted

earlier, the covariance matrix ΣX is positive semi-definite which means that for the eigenvalues

the inequality λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 holds. Based on the eigenvalue-eigenvector pairs we can

construct new principal components, where principal component j is given by the formula

PCj = e′jX = ej1X1 + ej2X2 + · · ·+ ejpXp, j = 1, . . . , p. (16)

Every principal component is a linear combination of all original variables, so that the elements

of an eigenvector show the importance of each variable for a principal component (Johnson &

Wichern, 2014). This has the convenient added effect that components sometimes have a logical

interpretation. Because the eigenvalues are ordered based on their values, we know that the formula

λ̂j =
λj∑p
k=1 λk

, j = 1, . . . , p, (17)

gives the relative importance of principal component j. We refer to λ̂j as the relative eigenvalue.

This formula is also ordered for all eigenvalues, which implies that a large value for Equation (17)

means that the corresponding component is of great importance. For example a value of λ̂j = 0.3

for this formula means that the component to which this eigenvalue belongs explains 30% of the

variability in the data.

Now we could construct all p principal components and try to explain our results by looking at

the coefficients of every single principal component. This however may not be convenient nor even

feasible if our data contains many variables. It is more useful to only examine the k most important

principal components where we want k to be (much) smaller than the total number of variables p.

Two ways are often practised to achieve this. First we could examine Equation (17) somewhat closer.

As noted earlier, the value for λ̂j can be interpreted as the percentage of the variance explained

by component j. This also means that the sum of relative eigenvalues signifies the percentage of

the variance that the corresponding components together explain. Based on this information one

approach for determining the optimal number of components is to beforehand specify a percentage

of the variance that we want to explain. Then we only look at the minimal number of principal

components (ranked from largest to smallest) that we need to exceed this threshold (Valle et al.,

1999). The threshold is usually 80 or 90%, dependent on the data used. We use a threshold of 80%.

The second method we can use to find the optimal number of principal components is by looking

at what we call the scree plot. For this plot we look at the ordered eigenvalues and the number of

components. The x-axis shows the component, while the y-axis shows the value for the eigenvalue

λ. Now similar to the elbow plot for spherical k-means, we look for a sudden significant decrease in

the value of the eigenvalue. This sudden decrease indicates that the optimal number of components
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is reached (Kanyongo, 2005). To recap, the goal of using principal components is to find “new”

variables that explain much of the variance in the data. These new variables are simply linear

combinations of the original variables, which therefore maintain the structure of the data and hence

everything discussed in this subsection also applies to Extreme Value Analysis. Also Cooley &

Thibaud analyse the extremal dependence using eigendecomposition, but the matrices that one

obtains simply contain the eigenvalues and eigenvectors. Henceforth the theory discussed in this

subsection also holds in the context of extreme values.

4.4.1 Tail pairwise dependence

In the previous subsection we discussed how to obtain the eigenvalues and eigenvectors from a

given covariance matrix. Subsequently we talked about how to interpret the results. The previous

subsection however assumed that we already know how to estimate the covariance matrix, but in

the context of Extreme Value Analysis this is not as clear. The main issue stems from the fact that

we want to model pairwise dependence only for observations that are classified as extreme outliers.

Using “regular” formulas to estimate the covariance matrix ΣX break down in this context as it

does not maintain the structure and nature of extreme values. From this point on we will refer to

the matrix ΣX as the tail pairwise dependence matrix, to generalise the concept of a covariance

matrix. To understand the formula for the tail pairwise dependence matrix, we first look at the

formula that is used in regular cases. The covariance between variable x and y is then defined by

the formula

cov(x, y) = E[(x− E(x))(y − E(y))] =

∫ ∫
(x− E(x))(y − E(y))f(x, y)dxdy, (18)

where f(x, y) indicates the joint probability density function of x and y (Heij et al., 2004). Equation

(18) is scale dependent and so it does not accurately capture the nature of the extreme values, as

all these observations have large values for some variables. A näıve approach to this issue could

be to simply normalise all variables. This would mean that all variables have the same scale and

therefore Equation (18) is now applicable to this transformed data set. If we would analyse the

entire data set then we could indeed do this, but for out goals this will not solve the issue. The

main problem stems from the fact that we are conducting Extreme Value Analysis. In other words

we are only interested in the behaviour of observations that lie within the extreme ends of the

tail. Therefore we only inspect a small fraction of the data. Applying Equation (18) to these

extreme values will not ensure that the nature of the extreme values is retained, and therefore we

are not able to use Equation (18). Instead we need a formula so that the requirements discussed

in Subsection 4.2 of regular variation hold. Larsson & Resnick (2012) defined an altered formula

for the covariance matrix that uses an angular measure to incorporate the structure of extreme

values in a bivariate context. Cooley & Thibaud (2019) extended on this by making the formula

compatible for a continuous interval. The tail pairwise dependence between variable j and variable
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k can be calculated by evaluating the formula

σV jk =

∫
Θp−1

ωjωkdHV (ω), j, k = 1, . . . , p. (19)

In Equation (19), Θp−1 = {ω ∈ Rp : ||ω||2 = 1} and HV is what we call the angular measure of V ,

where V refers to the set of extreme values. The integral is taken over an interval of positive and

negative numbers, while the data only contains positive numbers. We can solve this issue simply

by redefining the interval over which we take the integral. The formula now becomes

σXjk =

∫
Sp−1
+

wjwkdHX(w), j, k = 1, . . . , p. (20)

In Equation (20) wj =
Xj

||Xj ||2 ∈ Sp−1
+ , j = 1, . . . , p. Finally Equation (20) assumes that we know

the true angular measure. Larsson & Resnick have shown that by substituting the angular measure

HX for an empirical estimate, Equation (20) simplifies to

σ̂Xjk = m̂

∫
Sp−1
+

wjwkdN̂X(w) ≈ m̂

nexc

n∑
i=1

wijwikI[||xi|| > r], j, k = 1, . . . , p. (21)

In Equation (21), m̂ is an estimate for HX(Sp−1
+ ) and r is some threshold based on the data above

which we define observations to be extreme outliers, for example the 95th percentile. The number of

observations above the threshold r is mathematically given by the formula nexc =
∑n

i=1 I[||xi|| > r],

where I[u] denotes the indicator function which has value one if statement u is true and zero

otherwise. By first transforming the data so that every variable in the data has a common unit

scale, the estimate for the angular measure m̂ is simply equal to the number of variables, i.e. m̂ = p.

We transform variables as described in Subsection 4.2.1.

4.5 Spherical k-principal-components

In the previous subsections we discussed two methods that can be applied to analyse extreme

values. The first method is called spherical k-means, which optimally allocates observations to

clusters. The second method is called Principal Component Analysis. The goal of PCA is to

explain the variance in the data using a limited number of components. In spherical k-means we

are interested in the means of all clusters, while for PCA we look at the values for each entry of

a limited number of components. One recently introduced method that combines both methods

is called spherical k-principal-components. Fomichov & Ivanovs (2020) prove the validity of this

method by first examining what it means for clusters to be optimal. Recall that for the partition
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X = (x1, . . . , xk) ⊂ Sp−1
+ where X satisfies restriction 10 it holds that

E

(
max
c=1,...,k

{x′cX}
)
≤ E

(
max
c=1,...,k

{a′cX}
)

and E

(
max
c=1,...,k

{(x′cX)2}
)
≤ E

(
max
c=1,...,k

{(e′cX)2}
)
,

(22)

where ac denotes the cluster mean of cluster c and ec denotes the eigenvector corresponding to

eigenvalue λc. To see how we can use these two results we inspect what both inequalities actually

mean.

The first inequality refers to spherical k-means. Thus if we define the set of partitions

{A1, . . . , Ak} = Pk ⊂ Sp−1
+ , we can also write the left hand side of the inequality as

max
x1,...,xk∈Sp−1

+

E

(
max
c=1,...,k

{x′cX}
)

= max
Pk

k∑
c=1

||E(I[X ∈ Ai])||2. (23)

For the second inequality we can similarly write it out in terms of Borel sets instead of partitions,

which gives us

max
x1,...,xk∈Sp−1

+

E

(
max
c=1,...,k

{(x′cX)2}
)

= max
Pk

k∑
c=1

λ1(Σc). (24)

The term Σc in Equation (24) refers to the tail pairwise dependence matrix of cluster c. Espe-

cially Equation (24) shows us a nice result. The equality tells us that the main interest lies in

the largest eigenvalue of every covariance matrix. In other words we would like to set up the

covariance matrix for every cluster, from which we only look at the largest eigenvalue and cor-

responding eigenvector. To do this we first evaluate the product between the centroids and the

data, as shown in Equation (23) and for each row we store which column contains the highest

value. Next we approximate the covariance matrix and find the largest eigenvalue and corres-

ponding eigenvalue for each cluster, as shown in Equation (24). The most important eigenvectors

of all clusters then give a new set of cluster means. We iterate over this procedure until a cer-

tain condition is met. In short the spherical k-principal-components algorithm goes as follows:
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Algorithm 1: Spherical k-principal-components

Result: Optimal cluster centroids

Input: Normalised extreme values X̂ = (x̂1, . . . , x̂nexc) ⊂ Sp−1
+ and starting values

a1, . . . , ak ∈ Sp−1
+ ;

Old cluster means (â1, . . . , âk) = (∞p, . . . ,∞p);

diff =
∑k

c=1 ||âc − ac||2;

g = 0nexc ;

ε = 0.001;

while diff < ε do

M = X̂(a1, . . . , ak) of size (nexc × k);

for i = 1 to i = nexc do

gi = argmax
j=1,...,p

{x̂ij};

end

for c = 1 to c = k do

Σc = 1
nexc

∑nexc
i=1 (x̂cx̂

′
cI[gi = c]) ;

Set ac to first eigenvector of Σc;

end

diff =
∑k

c=1 ||âc − ac||2;

Update old means (â1, . . . , âk) = (a1, . . . , ak);

end

return Optimal cluster means (a1, . . . , ak)

5 Results

This section discusses the main findings obtained from performing the proposed methods.

5.1 Finance data

The following subsections present the results obtained for the finance data set.

5.1.1 Spherical k-means

In this subsection we look at the results that have been obtained from performing the spherical

k-means algorithm on the finance data set containing n = 16, 694 observations. The goal of this

method is to assign observations to clusters such that observations in the same cluster have similar

characteristics. We then look at each cluster to see any possible patterns in the data. We use the

99th percentile to obtain nexc = 167 extreme outliers. For these 167 observations we would like

to determine how we can optimally assign them to clusters. We therefore first need to know into

how many clusters we should segment the data. To answer this question we look at the summed
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distances plotted against the number of clusters, also called the elbow plot. This plot is shown in

Figure 1.

Figure 1: Number of clusters plotted against W (Ank , Sn) for finance data.

The elbow plot for the finance data mostly shows a gradual decline for the values of W (Ank , Sn)

over all clusters. However the elbow plot seems to become most flat after the point of k = 11

clusters. Therefore we view k = 11 as being the optimal number of clusters and henceforth we

will further examine the results associated with k = 11 clusters with the summed distances of

W (Ank , Sn) = 15.28621.

To ease the interpretation of numbers we divide each centroid by the centroid of the variable which

has the largest mean. Mathematically we thus perform the transformation(
ac1

maxj=1,...,p{acj}
, . . . ,

acp
maxj=1,...,p{acj}

)
, c = 1, . . . , k. (25)

The largest mean now has value 1 and all other values lie within the interval [0, 1]. The finance data

set contains p = 30 variables, so it is difficult and highly inefficient to inspect every single cluster

mean. If we would do that we need to inspect a total of 30 × 11 = 330 values. Instead it is more

useful to look at the heatmap, which shows high cluster means thanks to light colours. Low cluster

means have dark colours. By inspecting which variables have dark colours in the same cluster we

know which variables arise in high quantities at the same time. The heatmap for all 30 variables of

the finance data is shown in Figure 2.
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Figure 2: Heatmap of cluster centroids for finance data.

The most efficient way to examine the results is to look at each cluster separately and see which

variables have a light colour, indicating that for this type of stock extreme losses have been frequently

documented within this cluster.

• The first cluster is already remarkable, in the sense that only one stock has seen extreme

losses; Smoke. The only other variable that has a somewhat light colour is Food. We thus

conclude that cluster one shows extreme losses in businesses selling tobacco products and to

a smaller extent food businesses. Moreover Smoke has a very dark colour in all other clusters

so extreme losses in smoking mostly occur independently of other extreme losses. Especially

the first observations seems logical, as tobacco products and food are both products that

individuals consume on a daily basis.

• The second cluster shows joint high losses of the variables Games (anything recreational such

as fishing), Books, Clths (clothes), Txtls (textiles), Cnstr (construction materials), Autos and

Fin (financial institutions like banks). It is not surprising to find high losses for the variables

Cnstr, Autos and to a lesser extent FabPr (fabricated products and machinery) in the same

cluster as one needs any of the products to build the other. For example construction materials

are needed to make machines, which we in turn need to make those construction materials

as well as large products like cars. Furthermore we see extreme losses in textiles, which is

also a material used to make other products. Therefore it is not a surprise to see extreme

losses in Clths in the same cluster. The remaining variables Games and Fin seem somewhat

out of place. These types of businesses do not seem to have connections with each other nor

with the aforementioned businesses, but they may provide useful insides by performing further
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research. In short cluster two contains losses in companies that provide some sort of material,

as well as companies selling the products that need these materials.

• Cluster three shows joint extreme losses for the variables Food, Hshld (consumer products

such as furniture or jewellery), paper (this includes object made of paper and wood, such

as wooden furniture or pencils) and Rtall (retail) as well as Hlth (healthcare products) and

Telcm (communication services such as phone or tv) to a lesser extent. This cluster mostly

shows extreme losses for business dealing with products that people use on a daily basis. For

example everyone has to eat food daily and most people use their phone or television every

single day. This in turn explains why retail stores are in the same cluster, because people

need to go to these types of stores in order to buy products that they use daily.

• Cluster four shows extreme losses for Cnstr, Chems (chemical products including paint and

agricultural products), FabPr, Mines (mines for precious minerals). This cluster also contains

less extreme but still significant losses in Oil and Util (utilities such as gas and electricity).

Cluster four clearly contains extreme losses of companies which deal with anything that serves

as some type of energy. This in turn makes it remarkable that extreme losses in Coal stocks

are not present in the same cluster. Apart from energy businesses this cluster also contains

businesses dealing with chemical products or construction products. These seem somewhat

out of place in a cluster with energy companies, but conducting further research may lead to

useful discoveries.

• Cluster five contains extreme losses for companies in the sectors Servs (service sector), BusEq

(business equipment) and Other (sanitary services, air conditioning and irrigation systems).

This cluster mainly shows extreme losses in the service sector, as all products in this cluster are

used by companies in the service sector. Another loss worth mentioning is the losses in Telcm

stocks, as businesses in the service sector need products that facilitate communication like

phones to maintain contact with clients. Moreover service sectors, just like any other company,

need business equipment. Finally the companies in the Other category can somewhat be

viewed as being businesses in service sector themselves.

• Cluster six is only dominated by observations showing extreme losses in Whlsl (wholesale) or

Trans (transport services) stocks. Combining this with the fact that Whlsl stocks do not show

extreme losses in any other cluster, we conclude that extreme losses in the stocks of wholesale

companies are always observed independently of other stocks, apart from Trans stocks.

• Cluster seven shows white for the variables Beer and Coal. Beer does not seem to have

anything in common with Coal, so this cluster does not have a logical interpretation. The

only conclusion that could be drawn from this cluster, is by combining cluster four and seven.

As cluster four contains other energy related companies, we can see clusters four and seven

combined as extreme losses of any energy providing company.
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• Cluster eight only contains extreme losses for Steel (any product made of steel, e.g blast fur-

naces) and ElcEq (electrical equipment). It is reasonable to assume that electrical equipment

and steel are used together when making various products, so it is no surprise to see these

two variables being present in the same cluster. Both variables do not shows extreme losses in

other clusters, so extreme losses in any of the two stocks always goes together with extreme

losses in the other stock, independently of all other stocks.

• Cluster nine only shows extreme losses for Carry (aircraft, ship and railroad equipment). No

cluster outside of cluster nine contains extreme losses for Carry stocks. It also should be noted

that some extreme losses in Trans are observed in this cluster, which is logical as these types

of companies go hand in hand with the companies that make transporting goods possible in

the first place. All in all cluster nine shows extreme losses observed in the transport sector,

mainly the construction of the vehicles and infrastructure used for transport.

• Cluster ten only contains observations that show extreme losses in Meals (restaurants and

hotels). Similar to other clusters only containing one extreme loss, extreme losses for Meals

stocks are not observed in any other cluster so extreme losses in stocks for this type of company

are always observed independently. The only other variable in this cluster that is worth

mentioning is Food, which is not surprising.

• Finally we examine cluster eleven. This cluster is dominated by observations showing extreme

losses in Hlth, Oil, Util and Telcm. This cluster shows a similar result to cluster four, in the

sense that extreme losses in some heavy industry stocks are jointly observed. Having extreme

losses in Hlth and Telcm in the same cluster as extreme losses in Oil and Util is not an intuitive

result, so further research is required to investigate whether there is an underlying connection

between these types of stocks.

5.1.2 Principal Component Analysis

We examine the main results obtained from the Principal Component Analysis using the finance

data set. Similar to the spherical k-means algorithm, we use the 99th percentile so that we are left

with nexc = 167 extreme observations. To see how many components we need to analyse, we first

look at the number of components plotted against the value for the eigenvalues. Note that on top of

the transformation from Equation (11), we have transformed the data to have Euclidean norm 1 for

every variable, so all eigenvectors sum up to the number of variables. In other words
∑p

j=1 λj = p

with p = 30. The scree plot is shown in Figure 3.
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Figure 3: Scree plot finance data.

Looking at the scree plot we see a very significant drop in the eigenvalues after the first component.

This means that the first component is by far the most important component in terms of explaining

the variance in the data. The total number of variables is 30, so only including the first principal

component would not be sufficient. To see how many components we should analyse we zoom in

onto the eigenvalues for components 2 to 30. This is shown in Figure 4.

Figure 4: Scree plot finance data λ2, . . . , λ30.

The scree plot for the finance data excluding the first component gives us a better idea of how

many components to include. For the first few components we see a steep drop in the eigenvalue,

after which the value does not change much starting at component seven. The rest of Figure 4 does
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not show a point that seems optimal, so the scree plot tells us that analysing seven components is

optimal. We also look at the cumulative variances to see whether seven components is indeed the

optimal number for the finance data set. The cumulative variance after including any number of

principal components as well as the prespecified threshold of 80% are shown in Figure 5.

Figure 5: Cumulative variance plotted against number of components finance data.

First of all the figure for the cumulative variance shows something that we already noticed in the

scree plot from Figure 3, namely that the first component already explains much of the variation

present in the finance data. Secondly we see that the threshold of 80% is surpassed after including

five principal components, which is two components less than the number of components which was

deemed optimal by the zoomed in scree plot from Figure 4. Note that the goal of performing PCA

is to obtain a certain number of principal components that explain most of the variation in the data

set, where we want the number of components to be as few as possible. Therefore it would seem

logical to include five instead of seven components, especially seeing that five components already

explain 80% of the variation in the finance data. Therefore we will further inspect the result for the

first 5 principal components. The finance data set contains a total of p = 30 variables, which gives

us 5× 30 = 150 values to look at. It would therefore be inefficient to inspect every single value and

compare them. For this reason we visualise the values similar to what we did with the heatmap.

We first transform the values of the eigenvectors using Equation (2), so that the numbers are easier

to interpret. Values that were previously negative now lie below the threshold of ln(2) ≈ 0.69,

while previously positive values lie above this threshold. The values for the first five eigenvectors

are visualised in Figure 6.
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Figure 6: Colour scale first five eigenvectors finance data.

The colour scale represents extreme negative losses using a light yellow colour, while stocks that

show no sign of an extreme loss are coloured dark and blue. Similar to each cluster from the

spherical k-means algorithm, we inspect each component separately.

• The first component does not show any important results, as all values fall within a small

interval. We can therefore interpret component one as being the general loss of stocks.

• The second component shows a clear contrast between two significant industries. First this

component has the highest value for the variables Steel, Mines and Coal, which all correspond

to companies that are part of the heavy industry. The smallest values are observed at the

variables Smoke, Food, Beer, Consumer Goods and Healthcare. These variables resemble

products that individuals comsume. Therefore this eigenvector shows the contrast between

heavy and non-heavy industries.

• The variable that by far has the highest value in component three is Smoke. We also see

significantly high values in the variables Mines, Coal, Oil and Util, which are all heavy in-

dustries as well as companies that supply some sort of energy/power. The lowest values are

observed at the variables Servs and BusEq, which both correspond to companies in the service

sector. This component thus shows the extreme losses in smoking companies as well as heavy

industries, mitigated by losses in stocks service providing businesses.

• The penultimate component number four again has the largest value for Smoke, albeit smaller

than the value in component three. We also see high values for the transport variables Auto,

Carry and Trans as well as for the recreational variables Games, Books, Clothes and Paper.

The extreme losses in any of the aforementioned businesses are contrasted by the heavy
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industries, as the variables Mines, Coal, Oil and Util all have small values. Another sector that

has small values for its variables is consumables, as the variables Food, Beer, Healthcare and

consumer goods have dark blue colours. It is notable that the value for Smoke is much larger

than that of the other consumables. Component four thus contrast smoking, recreational and

transport companies with heavy industries and consumer goods (excluding smoking).

• Finally component number five has the highest values for Food, Beer, Smoke, Consumer Good

and Meals. Another strangely placed variables with a high value is Textiles. Textile companies

as well as companies in the consumable/food industries are contrasted by companies that are

specialised in either Healthcare, Steel, Electrical Equipment, Telcom, Service or Business

Equipment. This component seems most out of place of all components. For example many

consumer goods have high values, while Healtcare has a small value. Also apart from Steel

and Electrical Equipment, the variables with small values do not seem to have anything in

common. Further research is required to determine whether any underlying connections are

present.

5.1.3 Spherical k-principal-components

In this part we inspect the final results obtained for the finance data set by performing the Spherical

k-principal-components algorithm. As noted in Subsection 4.5 we need a starting value for the

cluster means as well as a fixed value for the number of clusters k. To not complicate things too

much we use the same k as we deemed optimal from spherical k-means, which means we use k = 11.

Moreover using the same number of clusters increases the likelihood of obtaining similar results.

We also use the 99th percentile to obtain nexc = 167 extreme values. We obtain results using two

different starting values. First we draw random values from a uniform distribution and normalise

these values so that all clusters have a mean with norm 1. Secondly the output of spherical k-

principal-components can be seen as cluster means, similar to the output of spherical k-means.

Therefore we also use the cluster means that were found by spherical k-means as starting values.

Because we obtain cluster means, we will once again inspect the results by means of a heatmap,

where all cluster means are normalised using Equation (25). The heatmap using starting values

drawn from a uniform distribution using the seed 12345 is shown in Figure 7.
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Figure 7: Heatmap of cluster centroids for finance data using random uniform starting values.

The results for spherical k-means were already discussed in detail in Subsection 5.1.1 and the results

are partially overlapping, so discussing every single cluster is redundant. Therefore we will only

touch on significantly different results. One thing that immediately stands out when looking at the

heatmap from spherical k-principal-components is that many clusters only show a light colour for

one variable. Clusters one and nine especially show this, as these clusters show white for only one

variable while all other variables are practically inconsiderable. Extreme losses in Smoke, Games,

Healthcare, Util, Wholesale, Meals and Other all seem to be observed independently of all other

losses if we exclude clusters three, four, five and eight. Clusters three, four, five and eight however

show more concurrent results with those obtained by spherical k-means. First of all cluster four

shows joint extreme losses in Food, Beer, Healthcare and Retail. The first three of those variables

are products that individuals consume, while seeing Retail in the same cluster is not surprising as

one needs those store to actually buy these products. These losses are mitigated by Steel, Mines and

Coal, which are all part of heavy industries. Cluster five shows extreme losses in heavy industries,

namely Steel, Mines, Coal, Oil and Util. Other heavy losses in this cluster are Chems, FabPr,

Electrical Equipment and Autos which could be linked to the previously mentioned industries but

further research is required to look into that connection. Losses in this cluster are mainly mitigated

by extreme losses in Beer and Smoke, which are consumed products.

We now look at the heatmap obtained by using the spherical k-means clusters as starting values.

The heatmap can be seen in Figure 8.
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Figure 8: Heatmap of clusters centroids for finance data using spherical k-means starting values.

The heatmap using the starting values as obtained by the spherical k-means algorithm show, sim-

ilarly to the previous heatmap, that most clusters are dominated by one variable. The number of

clusters that are dominated by one variable however is lower, while the clusters that are dominated

by one variable show an even more extreme focus on one variable. In this case extreme losses of

Smoke, Games, Electrical Equipment, Coal and Meals dominate a separate cluster. Cluster eleven

shows extreme losses in only two heavy industries, while remarkably being mitigated by extreme

losses in Mines and Coal. Cluster four also shows unintuitive results as extreme losses in Steel,

Oil and Utilities contrast losses in Mines and Coal. The same cluster also shows extreme losses in

consumed products such as Food, Beer and Smoke. Cluster five perhaps produces the most logical

results, as this cluster shows joined extreme losses in all heavy industries. Cluster three shows a

similar result.

5.2 Winter pollution data

The subsequent subsections discuss the results obtained for the winter pollution data set.

5.2.1 Spherical k-means

We now look at the results obtained by performing spherical k-means on the winter pollution data

set as described in Subsection 4.3. We first normalise all n = 532 observations. We use the 90th

percentile and obtain nexc = 54 extreme values. Then we would like to determine the optimal

number of clusters by using the so-called elbow plot, which is shown in Figure 9.
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Figure 9: Number of clusters plotted against W (Ank , Sn) for winter pollution data.

The elbow plot shows a steep decline in the differences for the first few clusters, after which the

decline becomes insignificant from k = 5 clusters onward. Therefore we will further inspect the

results obtained for k = 5 clusters with a value of W (Ank , Sn) = 1.740996. We normalise the cluster

means using Equation (25) so that the results are more straightforward to interpret. The normalised

cluster means for all variables are shown in Table 3.

Table 3: Normalised means for all variables in the winter data using k = 5 clusters.

Cluster O3 NO2 NO SO2 PM10

5 0.118 0.475 0.266 0.180 1
4 0.697·10−1 0.258 0.142 1 0.210
3 0.731·10−1 0.434 1 0.226 0.284
2 0.135 1 0.601 0.277 0.511
1 1 0.166 0.982·10−1 0.722·10−1 0.137

The normalised cluster means can be nicely visualised using a heatmap. This is shown in Figure

10.
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Figure 10: Heatmap of cluster centroids for winter pollution data.

The heatmap shows that each cluster mainly consists of observations that have a high pollution

for just one of the five types. One notable exception to this observation is cluster five and to a

lesser extent cluster one. For cluster five we see a high concentration of NO2, while also observing a

significant concentration of both NO and PM10. Cluster one has a high concentration of PM10 and

less but significant concentration of NO2. Seeing this we can conclude that NO, NO2 and PM10

can jointly occur in high concentrations, while high concentrations for any of the other types of

pollution are observed individually during the winter months.

5.2.2 Principal Component Analysis

In this subsection we examine the main results obtained after carrying out Principal Component

Analysis for the extreme values in the winter data set. We again use the 90th percentile to get

nexc = 54 extreme values. As described in the Methodology we first look at the scree plot and try

to find a sudden drop in the eigenvalues. The scree plot for the winter data set is shown in Figure

11.
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Figure 11: Scree plot winter pollution data.

In Figure 11 we see the number of components being plotted against the values for the eigenvalues.

A sudden and significant drop is shown when we go from one to two and from two to three principal

components, so three principal components in this context is considered optimal. Second we look at

the values of the eigenvalues and the percentage of the variance that their corresponding components

explain. Eigenvalues are shown in Table 4.

Table 4: Eigenvalues winter pollution data

Component Eigenvalue Variance Cumulative variance

5 0.131 2.6% 100%
4 0.315 6.3% 97.3%
3 0.657 13.1% 91.1%
2 0.908 18.2% 77.9%
1 2.989 59.8% 59.8%

Inspecting Table 4 shows that we exceed the threshold of a cumulative variance of 80% when includ-

ing three components, which is the same conclusion as the one drawn from the scree plot. Therefore

we will further inspect the eigenvectors corresponding to the three most important principal com-

ponents. Note that all eigenvectors sum up to the number of variables, i.e.
∑p

j=1 λj = 5, because

we have pre-processed the data so that all variables have Euclidean norm 1. The eigenvalues from

Table 4 may not exactly sum up to 5 due to the rounding of numbers. The same argument goes

for the variances which should sum up to 100%. Finally all eigenvectors are divided by its absolute

maximum value, which is shown in Equation (25) but inserting an absolute sign in every element of

the denominator. This is mathematically correct as a linear combination of any eigenvector is also

an eigenvector of the matrix. Also we are only interested in difference within one eigenvector, not
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between eigenvectors. The values for all eigenvectors are shown in Table 5.

Table 5: Eigenvectors winter pollution data

Component O3 NO2 NO SO2 PM10

5 -0.379·10−2 1 -0.782 -0.194·10−1 -0.225
4 -0.342·10−1 -0.330 -0.710 -0.287·10−1 1
3 0.432·10−1 -0.259 -0.276 1 -0.277
2 1 -0.139 -0.146 -0.152 -0.116
1 0.502 0.970 0.931 0.763 1

For the eigenvector e1 corresponding to the largest eigenvalue, there is not one value that is much

further away from zero than all other values. The variable PM10 has the largest absolute value,

but NO2 and NO with values of 0.970 and 0.931 respectively are not far off. Using this information

combined with the fact that all entries are positive the conclusion of this eigenvector is that e1

shows the general pollution, mostly caused by PM10, NO2 and NO.

For the second eigenvector e2 we see one absolute value that is significantly larger than all other

values. For this eigenvector the value of 1 corresponding to the variable O3 is the largest value.

All other values are much smaller, so the second eigenvector signifies the pollution that only has

extreme levels in O3

Finally we look at the third eigenvector e3. For this eigenvector again one value is much further

away from zero than all other values. The variable SO2 has the largest absolute value. The value

that is second furthest away from zero (after 1) is -0.277, so we can safely assume that only SO2

is relevant for this component. The conclusion of this eigenvector is that e3 shows the extreme

pollution caused by SO2.

5.2.3 Spherical k-principal-components

This subsection touches on the results obtained by the spherical k-principal-components algorithm

performed on the winter pollution data set. As explained in Subsection 5.1.3 we use two different

starting values. The value for k is set to the same value as deemed optimal by the spherical k-means

algorithm, so k = 5. Similar to the other two algorithms we use the 90th percentile on this data set

so that we have nexc = 54 extreme observations. The heatmap visualising the cluster centroids for

the winter data using random uniform starting values is shown in Figure 12a, while the heatmap

using the spherical k-means starting values is shown in Figure 12b.
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(a) Heatmap of cluster centroids for winter pol-
lution data with random uniform starting values.

(b) Heatmap of cluster centroids for winter pollu-
tion data with spherical k-means starting values.

Figure 12: Heatmaps of cluster centroids for winter pollution data after performing spherical k-
principal-components.

The two heatmaps shows similar results. Almost every cluster is dominated by one type of pollution,

with the main exception being cluster five in both cases. The conclusion from both heatmaps is

thus that apart from NO2, every type of pollution is observed independently of every other type.

Extreme levels of NO2 will also show less but still high levels of NO and PM10. The two Figures

12a and 12b are almost identical. The only difference is the slightly darker shade for some variables

within cluster four in Figure 12a compared to Figure 12b.

5.3 Summer pollution data

In the upcoming subsections we look at the results obtained by performing all proposed methods

on the summer pollution data set.

5.3.1 Spherical k-means

We now look at the results obtained by performing the spherical k-means algorithm on the summer

pollution data set as described in Subsection 4.3. We first normalise all n = 578 observations. Using

the 90th percentile we are left with nexc = 58 extreme values. Then we would like to determine the

optimal number of clusters by using the elbow plot. Figure 13 shows the numbers of clusters being

plotted against the value for Equation (15) for k = {2, 3, . . . , 29, 30} number of clusters.
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Figure 13: Number of clusters plotted against W (Ank , Sn) for summer pollution data.

In Figure 13 we see a steep decline in the value for the optimisation function for the value k = 2

up to k = 5. After this the decline rapidly stagnates and the line drawn through the points almost

becomes flat. Seeing this we view k = 5 with W (Ank , Sn) = 2.089766 as the optimal number of

clusters, so we will further inspect this number of clusters.

First we look at the set of means denoted A = {a1, . . . ,a5}. To ease the interpretation of numbers

we divide each mean by the mean of the variable which has the largest mean. Mathematically we

see this in Equation (25).

Table 6: Normalised means for all variables in the summer data using k = 5 clusters.

Cluster O3 NO2 NO SO2 PM10

5 0.190 0.223 0.196 0.250 1
4 0.213 0.397 0.230 1 0.355
3 0.213 0.495 1 0.269 0.338
2 0.377 1 0.397 0.243 0.355
1 1 0.296 0.125 0.259 0.303

The heat map for the summer pollution data that visualises the values in Table 6 is shown in Figure

14.
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Figure 14: Heatmap of cluster centroids for summer pollution data.

We inspect each cluster in the heatmap separately. A white square indicates that the corresponding

variable is largely represented in the cluster, while darker squares indicate that the variable is

sparsely represented in the cluster. For each cluster (i.e. each row) we see a large concentration of

one of the five types of pollution, while all other types have a low concentration. In other words

every cluster mainly consists of observations that have high pollution of the same type and only

one type of pollution. This hints at the fact that pollution of all types are observed independently

of each other during the summer months.

5.3.2 Principal Component Analysis

The summer pollution data set has a total of five variables, so there are also five possible components

to analyse. We use the 90th percentile to obtain nexc = 28 extreme values. To determine the optimal

number of components we both look at the first differences in the eigenvalues and the percentage of

the variance they explain. We start off by looking at the first differences with the help of plotting

the values for the eigenvalues against the number of components. This plot is shown in Figure 15.

35



Figure 15: Scree plot summer pollution data.

A very steep decline in the eigenvalues is shown when going from one to two components. After

this point the eigenvalues do not seem to go down very quickly anymore and the line stagnates.

Therefore Figure 15 tells us that two components is optimal for this data set. To verify or contradict

this statement we also look at the percentage of the variance explained by the eigenvalues. All

eigenvalues and their corresponding percentages are shown in Table 7.

Table 7: Eigenvalues summer pollution data

Component Eigenvalue Variance Cumulative variance

5 0.263 5.3% 100%
4 0.395 7.9% 94.7%
3 0.518 10.4% 86.8%
2 0.586 11.7% 76.5%
1 3.238 64.7% 64.7%

We first look at the individual percentages shown in Table 7. They tell us what we have already

seen in Figure 15, namely that the first component explains much of the variance in the data, while

the other components explain the rest of variance in similar quantities but much less than the first

component. We now look at the cumulative variances, in which we see that the threshold of 80%

is only exceeded after including a total of three principal components. This however contradicts

to the observation that was made previously. Still the second and third principal component both

explain more than 10% of the variance in the data, therefore it seems logical to also include them.

Three components is thus viewed as optimal. This data set only contains p = 5 variables, so we do

not obtain many values and we can inspect every number. All eigenvectors and their corresponding

values can be found in Table 8.
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Table 8: Eigenvectors summer pollution data

Component O3 NO2 NO SO2 PM10

5 -0.438 1 -0.751 -0.877·10−1 0.702·10−1

4 -0.419·10−1 -0.229 -0.996·10−1 -0.753 1
3 -0.734 -0.531 -0.343 1 0.567
2 1 -0.258 -0.948 0.235 0.652·10−1

1 0.805 1 0.856 0.853 0.991

Similar to each cluster in spherical k-means we divided each value by the absolute largest value in

its respective component.

We start off by looking at the eigenvector corresponding to the largest eigenvalue. This eigenvector,

denoted e1, has no variable that immediately stands out. All values have the same sign (i.e. all are

positive) and the difference between the largest and smallest value is less then 0.2. Therefore this

variables shows general pollution.

The second eigenvector e2 is, unlike e1, mainly driven by two variables. This eigenvector is most

heavily influenced by the variable O3. Secondly, but to a lesser extent, the eigenvector is influenced

by the variable NO seeing that this variable has a value of -0.948. The eigenvector e2 thus corres-

ponds to the pollution caused by PM10, while being offset by the pollution caused by O3 and vice

versa.

Finally we look at the third eigenvector e3. This eigenvector is distinct from the two previously

discussed eigenvectors in the sense that only one value is far away from zero. The variable with the

largest absolute value is SO2, while the second most important is O3 with a value of -0.734. The

third eigenvector can therefore be seen as a variable that shows extreme pollution in SO2 which is

partially being offset by extreme levels of O3.

5.3.3 Spherical k-principal-components

In the final part of the Results section we show and inspect the results obtained by performing

spherical k-principal-components for the summer pollution data. We explained in Subsection 5.1.3

that we use two starting values and assume k to be the same as obtained by spherical k-means, so

k = 5. We use the 90th percentile and are left with nexc = 58 observations classified as extreme

values. Figure 16a shows the heatmap using random starting values and Figure 16b shows the

heatmap using spherical k-means starting values.
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(a) Heatmap of clusters for summer pollution
data with random uniform starting values.

(b) Heatmap of clusters for summer pollution
data with spherical k-means starting values.

Figure 16: Heatmaps of cluster centroids for summer pollution data after performing spherical
k-principal-components.

The heatmaps in Figure 16a and Figure 16b are very similar. In both heatmaps each cluster is

dominated by one variable while other variables in the same cluster are insignificant. The conclusion

of both heatmaps is that extreme levels in any type of pollution is always observed independently

of other types of pollution. The only difference that one could mention between the two heatmaps

is that the shades of some variables are slightly different, but they do not seem significant enough

to change the conclusion.

6 Discussion and Future Research

In the previous section we discussed the results obtained by performing the proposed methods for

all data sets. Now we would like determine what all results per data set have in common. At first

glance (spherical) k-means and Principal Component Analysis seem like two completely different

methods. Any form of k-means tries to optimally allocate observations to clusters, ensuring that

similar observations end up in the same cluster. On the other hand PCA is a dimension reduction

algorithm that tries to explain most of the variation in the data by constructing “new” components

that are linear combinations of all variables in the data. However the two methods are very similar

and one could even argue that both methods try to accomplish the same thing. A prominent paper

that studies the relationship in depth is the paper written by Ding & He (2004). Ding & He prove

that the analogy lies within the cluster means of the k-means algorithm. In short Ding & He state

that the cluster means of each cluster have a similar interpretation to the values of a corresponding

eigenvector. This means that if two variables have a high mean in a cluster, there is likely to be

an eigenvector that has a high value for the same two variables. Spherical k-means is almost the

same algorithm as “regular” k-means, apart from the fact that spherical k-means uses the cosine

dissimilarity instead of the Euclidean distance. Therefore we can still use the result pioneered by

Ding & He to compare the eigenvectors with the cluster means for each data set. We start the
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analysis with the finance data set, as this was the first data set for which we performed the pro-

posed methods. We thus compare the heatmap in Figure 2 with the colour scale in Figure 6. As

mentioned earlier the third algorithm that we performed called spherical k-principal-components

produces results that can be seen as cluster means. Therefore we can subsequently compare the

spherical k-means and PCA results with the heatmaps in Figure 7 as well as Figure 8.

It should first be noted that the number of clusters that we deemed optimal for the spherical k-means

is larger than the number of principal components we inspected. Therefore we cannot find a one-

to-one correspondence of clusters and components. By inspecting each cluster and component, we

indeed see some similarities. For example we see a cluster that is dominated by the variable Smoke,

while we also see a component that is almost the same is simply the variable Smoke. Moreover

we see two clusters that mainly contain extreme losses of stocks that belong to power supplying

companies, while also observing two components that are a linear combination of several power sup-

plying stocks. There however also seem to be some dissimilarities. For example the aforementioned

cluster dominated by the variable Smoke also shows a relatively light colour for Food, while the

analogous component has a positive but small value for Food and high values for heavy industries.

The spherical k-means algorithm also produced a cluster dominated by Beer, while no principal

component has an extremely high value for this variable. The differences might be a result of the

fact that we do not have a similar number of clusters and components. Ding & He argue that k

cluster are somehow linked to the first k− 1 principal components, but further research is required

to see whether this applies to this data and these Extreme Value Analysis methods. Now we look

at the results obtained from the spherical k-principal-components algorithm, which perhaps show

the most distinct results. First of all the heatmaps using two different starting values differ among

each other. The most significant similarity is that most clusters are dominated by one variable, but

the variables that dominate a cluster do differ somewhat. Also, the heatmaps when using spherical

k-means results as starting values do not seem reliable. The heatmaps for example show that ex-

treme losses in some heavy industries contrast extreme losses in other heavy industries. Therefore

we will only compare the heatmaps using random uniform draws as starting values with the other

results.

The heatmap in Figures 7 shows some similarities to both PCA and spherical k-means, mainly that

extreme losses in heavy industries coincide with each other and one cluster is dominated by the

variable Smoke. However there is one big difference between the spherical k-principal-components

results and the spherical k-means and PCA results. The main difference is that in spherical k-

principal-components results many clusters are dominated by one variable and not many results

are intuitive. This could have two causes. Firstly using different starting values can produce very

different clusters, as shown by the obtained results. Secondly we assumed k to be equal for spherical

k-means and spherical k-principal-components. Future research could follow up on these two points

by optimising spherical k-principal-components using different starting values as well as different

values for k. Secondly we compare the results obtained for the pollution data sets. We compare
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the centroids in Figure 10 with the numbers from Table 5 as well as the centroids from Figure 14

with the eigenvectors from Table 8. Again there is no one-to-one correspondence of cluster and

components, but we do see some similarities. The centroids for the winter data show that extreme

pollution for most types of pollution are independent of other types, while extreme levels of NO2 will

also see less but still significantly high levels of NO and PM10. If we then look at the eigenvectors

we see a similar figure. Each component is dominated by one variable, while component one has the

highest value for PM10 and significantly high absolute values for NO2 and NO. The heatmap for the

summer pollution data shows a similar figure. In this case each cluster is fully dominated by one

type of pollution, meaning that extreme levels of pollution for any type will occur independently

of other types of pollution. Also cluster three shows that extreme levels of NO will also see high

levels of NO2. We see a similar figure in component one, which has the highest value for NO2 and

a high positive value for NO. However the second largest value of this component corresponds to

the variable PM10, while the value of NO is only the third largest. Finally we compare all these

results to the heatmaps corresponding to spherical k-principal-components. The winter heatmaps

are shown in Figures 12a and 12b, while the summer heatmaps can be found in Figures 16a and

16b. The heatmaps per data set are practically identical, while the heatmaps for different data sets

differ somewhat. All heatmaps show the same results as obtained by spherical k-means. This means

that during the winter extreme levels of pollution are observed independently and extreme levels of

NO2 will also see less but still high levels of NO and PM10. In the summer months most types of

pollution are observed independently of other types of pollution, while extreme levels of NO2 will

also see high levels of NO. From these findings we conclude that again there are many similarities

between the numbers obtained by spherical k-means, PCA and spherical k-principal-components

but also a notable number of differences. However for this data the results obtained by spherical k-

means and spherical k-principal-components are almost the same. Still one must inspect all results

to come to a definitive conclusion. Also the results for the winter and summer pollution data differ

significantly, so it is indeed advised to expect both data sets separately.

The conclusion on the validity of all methods is that spherical k-means, PCA and spherical k-

principal-components all produce logical and reliable results. However the results are not always

identical. Spherical k-principal-components seems to work well when having a small number of

variables. For the pollution data spherical k-means even comes to the same conclusions as spherical

k-principal-components, regardless of starting values. Research that follows up on this thesis can

experiment with multiples starting values and different values for k. One might also want to take

the running time of the clustering methods into account, as spherical k-means takes 54 seconds for

the finance data set, while spherical k-principal components converges after about half the amount

of time at 28 seconds. Both runtimes do not include optimisation of k. Obtaining the scree plot for

the finance data set using spherical k-means takes just over 2.5 minutes.

When including more variables the results differ on various fronts and different starting values pro-

duce different results. PCA and spherical k-means differ for any number of variables, but future
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research can be conducted so that the number of clusters and number of components are better

aligned with each other.

Finally we further inspect why results obtained by spherical k-principal-components for many vari-

ables differ when using different starting values. We argue that k-means starting values are not

reliable, because the results are very distinct from the results obtained by spherical k-means and

PCA. These differences could have two explanations. First, certain starting values can result in

the algorithm ending up in a local optimum. One could think that using starting values close

to the optimal values ensure convergence to the global optimum, but this is not true. A simple

counterexample is shown in Figure 17.

Figure 17: Plot of function f(x) = (x− 2)2(x− 3)(x− 4).

In the plot, spherical k-means starting values are indicated by the black cross at the coordinate

(x, f(x)) = (2.15, f(2.15) ≈ (2.15, 0.035). The difference in the x-values between this point and the

global optimum is about 1.5, which is less than the distance to the nearest local optimum. Now

the random uniform starting values are any point from x = 5.5 onwards (i.e. points with a distance

greater than 1.5 from the global optimum). In this example the random uniform starting values are

further away from the global optimum than the spherical k-means starting values. Yet, the random

uniform starting values are likely to end up in the global optimum while the spherical k-means

starting values end up in a local optimum.

The second possible explanation for the different results is that spherical k-means starting values

actually produce better results. Fomichov & Ivanovs state that spherical k-principal-components

work better for concomitant extremes. This should ensure a sparse model, which for this algorithm

means we would have a small number of clusters. This explains why many clusters are dominated

by one variable, because these clusters would be merged for lower values of k. Decreasing the

number of clusters ensures that each cluster has more observations so that clusters are less likely
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to be dominated by one variable. This is another argument for why researchers should experiment

with different values of k in the future. In short, we have not found any hard evidence to show that

spherical k-principal-components with spherical k-means starting values produce incorrect result,

but the clusters obtained for the finance data set do seem to point in that direction. To ensure

reliable results one should use a set of different starting values and try to find similarities between

all the obtained results. If multiple starting values produce the same results, the corresponding

conclusion that can be drawn is likely to be true.
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