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1 Introduction

1.1 Problem description

ED overcrowding/’Access block’ means that patients who require emergency hospital admission
spend an unreasonable amount of time in an emergency department (ED) because they cannot
gain access to appropriate hospital beds (Richardson, 2002). Access block is regarded as the major
issue currently facing emergency medicine in Australia (Richardson et al., 2009) (Geelhoed and
de Klerk, 2012) (Cameron et al., 2009). It is linked with longer hospital stay afterwards. Patients
that remain in the ED for 8-12 hours are 20% more likely to have an excess stay (i.e. longer
than the state average for the relevant admission problem) in the hospital afterwards. For patients
that remain in the ED for more than 12 hours this can be as high as 50%. Research in Australia
has shown than increased ED occupancy is associated with significantly higher short-term patient
mortality (Liew et al., 2003).

There was a 6.8% total growth in ED presentations per 1000 persons in South Australia in the period
2000-2001 to 2009-2010. The annual growth in this period was 0.8% (FitzGerald et al., 2012). In
a selection of major metropolitan hospitals1 the total number of ED presentations increased from
375,703 in 2012/2013 to 412,935 in 2017/2018, corresponding to an increase of approximately 6%
when adjusting for the change in population (SAH, 2019). In 2017-2018, 61% of the patients
admitted to the ED in South Australia were seen on time (i.e. < 4 hours). In 2014/2015, the return
rate to the ED in South Australia was about 0.89% (AIH, 2018). These number indicate that the
problem of ’access block’ is becoming bigger.

In Australia there are almost 1 million ED presentations every year of a suspected cardiac chest
patient. In South Australia this represents approximately 30,000 presentations per year. However,
about 85% of these patients do not actually have an acute coronary syndrome. In 2015, the mean
cost per chest pain patient in admitted to the ED in Australia was $5,272 (Cullen et al., 2015).
In the Australian Capital Territory 16.2% of the ED patients had cardiac complaints (Richardson,
2002) and in New South Wales this was even 22.7% (Chan et al., 2008). This strongly indicates
that a relatively high proportion of ED patients in Australia has cardiac complaints and that chest
pain presentations are a major cause of access block. Hence, it can be beneficial to target chest
pain patient in order to reduce ED waiting times and to improve patient flow.

In metropolitan South Australia (in 2011-2012) refugees (Refugee and Asylum Seeker Countries
(RASC)), aboriginals and those aged 75 and older had the highest risk of presenting to the emergency
department (ED). Moreover, aboriginals and those aged 75 and older had the highest risk of multiple
ED presentations (re-admission). The excess costs of ED presentations associated with vulnerable

1The Queen Elizabeth Hospital, Royal Adelaide Hospital, Lyell McEwin Hospital, Modbury Hospital, Women’s
and Children’s Hospital – Paediatrics, Flinders Medical Centre and Noarlunga Hospital
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groups (RASC, aboriginals and patients aged 75 years and older) were $A 22 million per year
(Banham et al., 2019). Access block is more likely to lead to longer hospital stays for people older
than 65 years, females and patients presented to the ED outside working hours (Liew et al., 2003).
Higher ED occupancy was associated with a higher proportion of elderly, female and was more likely
during weekdays and during winter (Sprivulis et al., 2006).

1.2 Social relevance

In order to explain the social relevance of this thesis, it is important to note that this thesis is written
in collaboration and in assignment of SAHMRI in South Australia, specifically, in collaboration with
the researchers in the RAPIDx AI project. Hence, the context of the application of this thesis is the
RAPIDx AI project. The goal of the RAPIDx AI project is to assist with the medical management
of patients presenting to the emergency department with potential acute coronary syndrome (ACS).
This will be done by integrating clinical care with validated real-time data and modern analytical
methods to better support clinical decision-making and help establish the South Australian health
system as an effective learning health system. The RAPIDx AI project will deploy an AI-based
diagnostic algorithm for identifying patients with potential Type I or Type II myocardial infarction
(MI)/myocardial injury within the emergency departments (EDs) of six South Australian hospitals,
and will provide protocolised recommendations for medical management of these patients. By
supporting cardiologists in correctly identifying Type I MI patients, the RAPIDx AI will hopefully
improve patient flow and reduce access block. The HeartAI system provides the digital platform
to enable real-time data and analytical methods. In a supporting partnership with the RAPIDx
AI project, Siemens will deploy the AI-Pathway Companion to provide a robust interface at the
clinical point-of-care (Dykes, 2021). Hopefully, developing Bayesian causal models will support the
RAPIDx AI predictive models.

An important component in detecting a MI is the troponin level. Recent advancements in troponin
testing have led to an improvement in detection of myocardial injuries. However, this has not
necessarily made decision-making for clinicians in the ED easier. Namely, chest pain patients with
a T2MI cardiac outcome are falsely labelled as T1MI patients, leading to unnecessary admittance
to the ED (Dykes, 2021). Troponin are structural proteins unique to the heart. For the diagnosis
of a myocardial infarction, the troponin levels are superior to all other available clinical biomarkers
(e.g. Creatine-kinase or the white blood cell count) (Reichlin et al., 2009). Troponin is known to
be highly correlated with the chance of having a myocardial infection (Fathil et al., 2015).

Correct identification of Type I MI’s by predictive models can be very beneficial in supporting the
cardiologists’ decision in whether or not to discharge a cardiac patient presented to the ED. Dis-
charging a cardiac patient with a Type I MI can have severe consequences. However, unnecessary
admittance of cardiac patients to the ED leads to excess costs and increase of access block. In gen-
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eral, cardiologists with less field experience (i.e. junior cardiologists) tend to be over-conservative
in their clinical decision-making and thus be hesitant to discharge patients. Whereas predictive
models are generally focused on attaining the highest prediction accuracy, causal models are fo-
cused on describing causal structures. In order to support the RAPIDx AI predictive models, this
paper attempts to describe causalities of data of cardiac patients admitted to the ED. These causal
structures can be useful for the RAPIDx AI predictive models because they can be used for the
likelihood specification.

In the Australian Capital Territory (ACT) 16.2% of the ED patients had cardiac complaints
(Richardson, 2002) and in New South Wales (NSW) this was even 22.7% (Chan et al., 2008).
As to my knowledge, no exact numbers exist for the proportion of cardiac complaints at the ED.
However, a report by AIH (2018) contains data on ED admissions specified by ICD-10-AM cate-
gory. The categories ’Diseases of the respiratory system’ (J00–J99) and ’Diseases of the blood and
blood-forming organs and certain disorders involving the immune mechanism’ (D50–D89) consist of
8.36% of the ED presentation in Australia in 2017/2018. In comparison, this is 8.63% and 8.07% for
NSW and ACT, respectively (AIH, 2018). This strongly indicates that a relatively high proportion
of ED patients in South Australia has cardiac complaints. ED presentations and overcrowding are
associated with higher mortality, longer hospital stays afterwards and excess costs. Patient out-
comes like service usage, representation/readmission to the ED, length of stay and costs related to
the ED presentation differ greatly for patients.

Since ED presentation, a higher ED occupancy and the consequences of a higher ED occupancy
are associated with certain patients characteristics, it can be valuable to build a statistical (i.e. a
Bayesian causal) model, for the patient outcomes of cardiac patients to the emergency department,
for the following two reasons:

• The found described causalities can be used to support the RAPIDx AI predictive models.
Models predicting using cardiac patient data often have a bias because an observation bias
exists. In the context of the RAPIDx AI project, the following is an example of an observation
bias: Patients receive multiple troponin tests when the first test result is abnormal and/or
an overall abnormal cardiac profile. Hence, the values (and missingness) of later troponin
measures are dependent on other variables in the data. In conclusion, it can be of great
added value for the RAPIDx AI predictive models to gain more insights into the actual causal
structures.

• Clinical data in general and data on cardiac patients/heart attacks, in particular, is very com-
plex of nature and thus it is easy to build prediction models based on false likelihood specifi-
cations. Particularly, this is problematic in case the data contains many missing observations,
as is the case with patient data. Namely, missingness of data leads to worse performance of
prediction models, especially when the proportion of missingness increases (Gill et al., 2007).
Hence, it can be of great added value to study a model that solely focuses on describing the
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causal structures of the complex data sets, in order to support the RAPIDx AI predictive
models.

Two examples of the practical applications of the results of this research are:

• Cardiologists with less field experience (i.e. junior cardiologists) tend to be over-conservative in
their clinical decision-making and thus be hesitant to discharge patients. Consequently, these
patients are admitted to the hospital/ED at costs of 3000$ per day instead of being discharged.
Apart from the costs, this also leads to more access block. The found causalities in this research
can improve the predictive models of the RAPIDx AI project. Consequently, these prediction
models can improve the ability to identify cardiac patients to discharge because the clinicians
will be supported in their decision making, based on the predictions.

• An ED clinician (i.e. cardiologist) can admit a patient to the ED whereas the patient should
be discharged, due to incorrect identification of the cardiac patients’ clinical outcome. Apart
from the extra direct costs, this can be harmful for the cardiac patient as well. Namely,
iatrogenic complications (i.e. complications caused by medical treatment) may arise, such as
adverse drug events, bed sickness and acquired infections. Apart from these complications
leading to higher costs, they are also associated with higher mortality (Laskou et al., 2006).
The predictive models by RAPIDx AI can support the decision making by the ED clinicians
and, as previously mentioned, the found causalities in this paper can support the predictive
models by RAPIDx AI.

Apart from studying the causal structures, a solution for the problem of missing data is explored.
Missing data in patients’ datasets is a very common problem, for example due to patients dying
or not all tests being done on every patient (Altman and Bland, 2007). Hence, both SAHMRI
and other medical research institutes can profit from a proper solution of the problem of missing
data. As can be seen in the methodology (section 4) the fully Bayesian approach as solution for
the problem of missing data is explored. To my knowledge, relatively few researchers have used
the fully Bayesian approach in the medical world of research. In general, there is few research
on applications of the fully Bayesian approach as solution for missingness of data. A possible
explanation is the fact that few researchers are familiar with Bayesian inference. As previously
mentioned, missingness in patient data is a very common problem and thus exploration of this
approach can lead to more insights. According to Ibrahim et al. (2012), the fully Bayesian approach
can be perceived as the most powerful and general approach to solving the problem of missing
data. Namely, a widely used method, of simply omitting observations with missing values, leads to
a decrease in power and an increase in standard errors (Dong and Peng, 2013). Besides, Bayesian
inference after multiple imputation (another widely used solution for the problem of missing data)
generally leads to unreliable results. Namely, the results are solely reliable in case the posterior

4



distribution is Gaussian (Zhou and Reiter, 2010). Contrarily, the fully Bayesian approach is feasible
when the posterior distribution is not Gaussian (Ibrahim et al., 2012).

1.3 Research questions

In this subsection the research questions are presented. They are formulated as follows:

• Which causal structures are found by modelling patient characteristics on patient outcomes
of chest pain patients in the ED?

• How effective is the fully Bayesian approach in solving the problem of missingness in patient
data?

• How is the Bayesian workflow effectively used in modelling patient data?

In this research, the following patient outcome is considered:

• Classification of cardiac outcomes. See table 1 for the categories and the meaning of the
categories.

The remainder of the thesis is structured as follows: Firstly, the literature related to this topic
is presented. Secondly, the data/data structure is described. Thirdly, the proposed methods for
answering the research questions are presented. Fourthly, the results of the models are presented
in the results section. Consequently, the results are discussed. At last, a conclusion is given, the
limitations of the research are discussed and recommendations for further research are presented.

2 Related Literature

Similar research has previously been conducted by Kim et al. (2014). They have used data from the
emergency department (ED) patients at Flinders Medical Centre between January 2010 and March
2012. By using logistic regression they have predicted the need of a patient for hospital admission
after the ED presentation. The model with the most accurate prediction accuracy had an accuracy
of 76%, as opposed to a nurse accuracy of 67.7%. The research by Kim et al. (2014) is different from
this paper since they focus on the chance of a patient leaving the ED or not instead of describing
the causal structures on the patient outcomes mentioned in the introduction.

Aboagye-Sarfo et al. (2015) forecasted total ED demand in Western Australia with time-series
techniques (VARMA, ARMA and Winters’ method). Using the VARMA model they managed to
get the most accurate prediction. The VARMA model predicted 1,143,812 ED presentations over
a five year period in Western Australia, about 60.8% of these would be in metropolitan hospitals.
Approximately 24.63% of the ED presentations are predicted to result in admission to the hospital
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afterwards (Aboagye-Sarfo et al., 2015). Their study is different from this paper since Aboagye-
Sarfo et al. (2015) used time-series techniques to forecast ED demand instead of describing causal
structures on patient outcomes.

Cardona et al. (2018) evaluated the predictive validity of an Australian clinical prediction tool called
’Criteria for Screening and Triaging to Appropriate aLternative care (CRISTAL)’ to identify short-
term mortality risk (within three months) among older patients. Logistic regression regression was
used in order to model death prediction. This was done based on two clinical outcome criteria: The
Clinical Frailty Score (CFS) and the Fried Frailty Score. The Area Under the Receiving Operating
Curve (AUROC) in Australia were 0.825 and 0.81, respectively. The variables age, male, advanced
malignancy and nursing home residence had a positive significant effect on the short-term mortality
(Cardona et al., 2018). Even though the study by Cardona et al. (2018) gives valuable insights,
their study is different from this paper since their focus was on evaluating the predictive validity of
a tool instead of predicting patients outcomes per se.

Liew et al. (2003) evaluated whether or not the length-of-stay in the ED predicts the excess inpatient
length-of-stay (i.e. longer than the state average for the relevant admission problem). Based on
logistic regression the researchers have shown that an 8-12 hours stay in the ED and stay of more
than 12 hours in the ED has a positive significant effect on the excess inpatient length-of-stay. Apart
from that, being older than 65 years, being female and being presented to the ED outside working
hours (18:00-08:00) has a positive significant effect on excess inpatient length of stay (Liew et al.,
2003). Their study focused on predicting whether or not a patient had an excess stay in the hospital
instead of describing the causal structures on the patient outcomes mentioned in the introduction.

Apart from the reasons mentioned in each paragraph above, the studies used frequentist methods
whereas this paper will focus on Bayesian methods. Besides, their research focuses on ED presenta-
tions in general instead of solely cardiac patients. However, they all focused on Australia as well. As
to my knowledge, the Bayesian approach is completely new in this context. The Bayesian approach
is beneficial in this research for the following reasons:

• Combined information from multiple sources can be incorporated in Bayesian models by using
a prior. Besides, flexibility is introduced in Bayesian models by incorporation of multiple levels
of randomness, while incorporating reasonable sources of uncertainty in inferential summaries.
This allows for more realistic parameter estimates in complex data structures (Gelman et al.,
2013), like the data structure of this research (see subsection data).

• In general, interval estimates are interpreted as Bayesian intervals by specialists in the medical
field. More specifically, the interval estimates are interpreted as the probability that the
interval contains a value of an unknown quantity, conditional on the data (Gelman et al.,
2013).
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Besides, my research uses the fully Bayesian approach as solution to missingness of data. As to my
knowledge, this method has never been used in the context of (cardiac) patient data, let alone cardiac
patient data in South Australia. A possible explanation for this is the fact that Bayesian inference
gained much popularity due to exponential increase in computational power. In the past, Bayesian
methods were less interesting due to the time it takes to run a desirable number of iterations.

3 Data

First of all, a textual description of the data is given. Furthermore, the descriptive statistics of the
variables are presented. At last, the degree of missingness of every variable is evaluated.

3.1 Data description

In this subsection a textual description of the data is given. For this research a collection of the
RAPIDx AI datasets is used. The datasets are the result of a study conducted on 9,600 patients
in total at 12 South Australian Hospitals, of which 6 urban hospitals and 6 rural hospitals. 2 The
inclusion criteria, for patients presented to the ED, are the following:

• Clinical features of chest pain or suspected acute coronary syndrome as the principal cause.

• At least one Troponin measure is conducted.

• 18 years or older.

All patients admitted to the participating hospitals are considered part of the trial, unless they
decide to opt-out. The data is partly collected by taking measures (e.g. Creatine or Troponin level)
in the Emergency Department whereas the rest of the data already exists in the database (e.g. Age
or Gender).

These datasets have been provided by Flinders University and SAHMRI in South Australia. In
total, 13 of the available datasets are used for this research. The Pandas library in Python is used
for data processing and merging of the datasets. After merging and filtering of this data 3388
observations are left. An observation represents a chest pain patient that has been admitted to the
ED, the information contained in one observation is described below. Duplicate admissions for one
patient have been omitted for simplicity reasons. The final dataset contains 42 variables, that can
(roughly) be divided in the following categories:

2Flinders Medical Centre, Royal Adelaide Hospital, The Queen Elizabeth Hospital, The Lyell McEwen Hospital,
Noarlunga Hospital, Modbury Hospital, Mount Gambier Hospital, Murray Bridge Hospital, South Coast District
Hospital, Berri Hospital, Port Augusta Hospital and Whyalla Hospital
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• Clinical outcomes: The cardiac outcomes (Normal, Acute, Chronic, Type 1 Myocardial Infec-
tion (commonly known as: a heart attack) and Type 2 Myocardial Infection) and the length
of stay in the ED (in minutes). See table 1 for a comprehensive description of the definitions
of the cardiac outcomes.

• Clinical observations: troponin levels, white blood cell count, creatine level, lactate level
etcetera. The first and second measurement are considered of the troponin levels of patients
being admitted to the ED. In order to estimate the velocity of the troponin levels, the difference
between the first and second troponin measurement is taken. Troponin is known to be highly
correlated with the likelihood of having experienced a myocardial infarction (Fathil et al.,
2015).

• Risk factors: Variables that are known to influence the chance of getting a myocardial infarc-
tion, like age, gender, the kidney function level, history of a heart attack, an ECG etcetera.

For a full description of all 42 variables, please refer to the table 8 Appendix .
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Clinical outcome Description

Normal Rule-out myocardial injury - Recommendation for early dis-
charge. Evidence for routine functional testing is limited.
Consider involvement in clinical trial of early outpatient
computed tomography coronary angiography (CTCA).

Type I MI Type 1 MI likely - Consider early coronary angiography.
Commence aspirin, statin and P2Y 12 inhibitor (choice of
agent to be determined by co-morbidities).

Type II MI Type 2 MI, in case cardiac likely - Consider management
of concomitant heart failure or arrhythmia. Consider as-
pirin, but do not commence P2Y 12 inhibition. Consider
echocardiogram. Cardiology team will determine coronary
investigation. In case non-cardiac is likely, Treat primary
presenting condition. Do not commence aspirin or P2Y 12
inhibition. Consult cardiology team for possible involve-
ment in ongoing trials of coronary investigation for Type 2
MI.

Acute injury Acute myocardial injury likely - Consider other non-
coronary diagnoses including pulmonary embolus and aortic
dissection. Consider echocardiogram. Do not commence as-
pirin or P2Y 12 inhibition. Consult cardiology team.

Chronic injury Chronic myocardial injury likely - Consider other non-
coronary diagnoses including pulmonary embolus and aortic
dissection. Consider echocardiogram. Do not commence as-
pirin or P2Y 12 inhibition. Consult cardiology team for
possible ongoing optimization of heart failure investigation
and management.

Table 1: Description of cardiac outcomes and corresponding advice for treatment by SAHMRI.
These textual descriptions are taken from the HeartAI website

3.2 Descriptive statistics

In this subsection the descriptive statistics are presented. Additionally, the effects that are expected
(based on the literature) are presented here. Even though the cardiac outcome is categorical (and will
be modelled as such), the expected effects are evaluated as binary in order to keep it comprehensive.
Hence, the effects evaluated as either having a positive or negative effect on the probability of having
a myocardial injury (i.e. T1MI Cardiac Outcome).
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In figure 1 the distribution of the cardiac outcome variable is presented. As can be seen, for
approximately 50% of the patient a heart attack is ruled-out (classified as Normal). Apart from
that, a relatively big proportion of the patients is classified as either Acute or Chronic. A relatively
small and approximately equal proportion of patients is classified as T1MI or T2MI. The exact
counts and proportions of the Cardiac Outcome categories can be seen in table 2, along with the
descriptives for Onset and Smoking.

Figure 1: Distribution of the cardiac outcomes

Cardiac outcome Onset Smoking
Acute 572 (16.88%) <1 hour 117 (3.45%) Never 896 (26.45%)
Chronic 733 (21.64%) 1-4 hours 346 (10.21%) Past 491 (14.49%)
Normal 1670 (49.29%) 4-6 hours 170 (5.02%) Currently 820 (24.2%)
T1MI 209 (6.17%) 6-12 hours 123 (3.63%) NA 1181 (34.86%)
T2MI 204 (6.02%) 12-24 hours 119 (3.51%)
NA 0 (0%) Above 24 hours 270 (7.97%)

NA 2243 (66.2%)

Table 2: Descriptive statistics of the categorical variables

Apart from that, the continuous risk factor are presented in table 3. The average age of the patients
is 66.77 years. Age is expected to have a positive effect on the chance of having a myocardial
injury (Members et al., 2014). The average Heart Rate falls within the ’normal’ range of 60 to 100
beats per minute. The Heart Rate is expected to have a positive effect on the chance of having a
myocardial injury (Perret-Guillaume et al., 2009). However, the average Systolic Blood Pressure
is higher than what is considered to be ’normal’ (less than 120 mm Hg). Moreover, the average
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Diastolic Blood Pressure is just below the ’normal’ range (less than 80 mm Hg). At last, the mean
of the Kidney Function is within the ’normal’ range (higher than 60). Both the Systolic Blood
Pressure and the Diastolic Blood Pressure are expected to have a positive effect on the chance of
having a myocardial injury (Everson-Rose and Lewis, 2005). Kidney Function is known to have a
positive effect on the probability of having a myocardial infarction (Sarnak et al., 2003).

NA Min Max Range Median Mean Variance
Length of Stay 0 0.67 3020.22 3019.55 243.40 523.69 490448.57
Age 0 14.09 105.00 90.91 67.34 65.77 318.05
Heart Rate 1178 36.00 182.00 146.00 75.00 77.94 338.80
Systolic Blood Pressure 1179 78.00 226.00 148.00 137.00 138.99 495.55
Diastolic Blood Pressure 2376 40.00 138.00 98.00 79.00 79.07 203.37
Kidney Function 1191 6.60 274.70 268.11 82.51 86.14 986.53

Table 3: Descriptive statistics length of stay & continuous risk factors

In figure 2 the distribution for the first and second troponin measure are presented. Please note
that troponin values higher than 1000 are not included to keep the figure comprehensive. As can
be seen in the figure, the density is higher for low Troponin First Measure values, as opposed to
the Troponin Second Measure values. Moreover, the mean of the second troponin measure is higher
compared to the first troponin measure (131.85 vs 85.67). This is most likely caused by the fact
that patients with a low troponin level on the first measure are more often discharged (because the
low troponin level indicates a lower risk of a myocardial infarction) and thus the patients remaining
are more likely to have a higher troponin value. Hence, it can be stated that patients with a low
troponin value are underrepresented in Troponin Second Measure. Whereas Troponin First Measure
only contains 20 missing values, Troponin Second Measure contains 470 missing values.
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Figure 2: Distribution of the Troponin Variables

In figure 3 the distribution of Troponin Difference is presented. As can be seen in the figure,
approximately 20% of the values are 0. The mean of the Troponin Difference values is 54.06.
Troponin Difference contains 468 missing values. All Troponin First Measure, Troponin Second
Measure and Troponin Difference are expected to have a positive effect on the chance of having a
myocardial injury (Members et al., 2014).
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Figure 3: Distribution of Troponin difference

In subfigure 4a boxplots per Cardiac Outcome are presented for Troponin First Measure. The y-axis
is cut off at a troponin value of 2000 in order to keep it orderly, which led to some observations
being omitted. However, in subfigure 4b the full scale figure is presented. As can be seen in the
figures, the Troponin First Measures are higher on average for the T1MI Cardiac Outcome group
compared to the other categories. Specifically, the Troponin First measures values are relatively low
for the Normal Cardiac Outcome group. Moreover, the interquartile range is relatively high for the
T1MI group.

(a) Y-axis cut off at 2000 (b) Full scale

Figure 4: Distribution of Troponin First Measure
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As can be seen in subfigure 5a, the Troponin Second Measure is relatively high for the T1MI Cardiac
Outcome group. The previously mentioned observation bias (i.e. the second measure being higher
because patients not at risk are being discharged) is also present in the boxplots, when comparing
subfigure 5a to subfigure 4a.

(a) Y-axis cut off at 2000 (b) Full scale

Figure 5: Distribution of Troponin Second Measure

In figure 6 boxplots of the Tropinin Difference by Cardiac Outcome (y-axis cut off at 2000 and
full-scale) are presented. Interestingly, there were a few observations with a substantial decrease in
Troponin in the T1MI Cardiac Outcome group.

(a) Y-axis cut off at 2000 (b) Full scale

Figure 6: Distribution of Troponin Difference

The descriptive statistics for the physiological variables and the binary risk factors can be found
in table 9 and table 10 in the appendix (section 8). Apart from that, the expected effects of the
physiological variables and the binary risk factors can be found in table 8 in 8.
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3.3 Missingness of data

3.3.1 Overall missingness

In this subsection the missingness of the variables is analysed. The percentage of missing values
is presented for all 42 variables in figure 7. As can be seen in figure 7a, the dependent variable,
Cardiac Outcome, does not contain any missing values.

The variables of interest, the troponin values, contain only 20 (< 1%) missing values for the first
troponin measure but 470 missing values (> 10%) for the second troponin measure (see figure
7b). This is most likely caused by the fact that patients with a low tropinin value for the first
measure (and thus at less risk for a heart attack) are discharged before getting a second troponin
measure. This assumption is supported by the fact that the mean of the Troponin Second Measure
is substantially higher compared to the mean of the Troponin First Measure (see figure 2).

Whereas some risk factor variables contain no missing values (i.e. Gender, Angiogram and Age),
some risk factor variables (e.g. Prior Heart Attack, Diastolic Blood Pressure or History Hyper-
tension) contain approximately 70% missing values (see figure 7b). The physiological variables
generally contain a relatively high proportion of missing values, this can be seen in figure 7.

(a) First half of variables (b) Second half of variables

Figure 7: Percentage of missing values

3.3.2 Missingness by Cardiac Outcome

In figure 8 the percentage of missing values by Cardiac Outcome factor is presented 3. Interestingly,
the Troponin Second Measure (and thus, Troponin Difference) mostly contains missing values for
the ’Normal’ group. This is likely caused by the fact that patients with a low troponin value for the
first measure are discharged and thus their second troponin measure is missing. In combination with

3This figure only contains 41 variables on the y-axis because their missingness is evaluated by cardiac outcome,
one of the variables from the original dataset
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the increase in the mean of the troponin value (see figure 2), this is a strong indication for Missing
Not at Random (MNAR) since the missingness of Troponin Second Measure seems to depend on
both the y-variable (Cardiac Outcome) and the missing values (the value would have been lower
than average if the patient wasn’t discharged). In subsection 4.4 an overview of the missing data
mechanisms can be seen.

(a) First half of variables (b) Second half of variables

Figure 8: Percentage of missing values by Cardiac Outcome factor

Surprisingly, as can be seen in figure 8b, the risk factor variables (e.g Heart Rate or Kidney Func-
tion) generally contain less missing values for the Normal category compared to the other Cardiac
Outcome categories. Contrarily, most of the physiological variables (e.g. Pulmonary Hypertension
or Dioxide Pressure) contain more missing values for the Normal category compared to the other
Cardiac Outcome categories. A possible explanation for this is the fact that these measures are
only taken (either during admittance in the ED or prior to the admittance) for patients that are
considered to be at risk of a myocardial infarction.

4 Methodology

In this section of the paper the models used for analysis are discussed. Firstly, the Bayesian GLMM
and the corresponding settings in R are discussed. Secondly, the variable and model selection
methods are discussed. Thirdly, the missing data mechanisms and corresponding possible solutions
are discussed. Fourthly, the scenarios that will be evaluated are discussed. At last, sensitivity
analysis is discussed.
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4.1 Bayesian GLMM

4.1.1 The model

The first model that will be used for prediction of patients outcomes in cardiac patients admitted to
the Emergency Department is the Bayesian generalized linear mixed model (GLMM). One can think
of GLMMs as an extension of generalized linear models (GLM) by also incorporating varying effects.
In the Bayesian context, the varying effects can be incorporated within the (hyper-)parameters. A
common way to do this for a GLMM is by the usage of an ’adaptive prior’ for the intercept,
meaning that the intercept βj is a function of parameters as well (e.g. the intercept being β0 + b0j

with b0j ∼ N(b̂0j , σ)). Consequently, the prior adaptively pools the information across the groups
(McElreath, 2020). The GLM itself is an alternative of Ordinary Least Squares (OLS) that allows
for a non-normal error distribution (Agresti, 2015). A linear mixed model contains both non-
varying regressors and varying effects (varying regressors) (Cameron and Trivedi, 2005). Linear
mixed models are commonly used for cross-sectional data on subjects nested in hospitals (Chung
et al., 2013).

Mathematically, a GLMM looks as follows (McElreath, 2020):

Yij = f(πij) = β0 + b0i + (β1 + b1i)Xij (1)

Where f(πij) is the link function, β1 is a vector of parameters and b1i a vector of group-level effects.
This function relates the expected value of the response of the linear predictors in the model. It is
determined independently from the distribution choice (McElreath, 2020).

In this paper, the categorical link is used. Mathematically, this looks as follows (Hadfield et al.,
2010):

f(πij) = P [yi = j] =
1

1 +
∑m

h=2 exp(β0 + b0i + (β1 + b1i)Xij)
for j = 1

f(πij) = P [yi = j] =
exp(β0 + b0i + (β1 + b1i)Xij)

1 +
∑m

h=2 exp(β0 + b0i + (β1 + b1i)Xij)
for j = 2, ...,m

(2)

Where β1 is a vector of parameters.

The Bayesian variant of the GLMM allows for modelling of varying effects in longitudinal data (Zhao
et al., 2006). For interpretation of the parameter estimates, the probability density function of the
posterior distribution of the Bayesian GLMM can be evaluated. The credible intervals (C.I.) are
evaluated. The credible intervals contain a certain posterior probability mass (McElreath, 2020).
One advantage of a Bayesian approach over its frequentist counterpart (GLMM) is the fact that it
better accounts for uncertainty of the variance component for the prior, likelihood and the posterior
distribution (Handcock and Stein, 1993) (Zhao et al., 2006) (Diggle et al., 1998). An additional
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advantage of the Bayesian GLMM is the fact that it is computationally more simple to obtain
variance estimates of the random effect predictions (Zhao et al., 2006).

4.1.2 Model settings

STAN is a probabilistic programming language that implements full Bayesian statistical inference
via Markov Chain Monte Carlo (Carpenter et al., 2017). STAN in R makes use of the No-U-Turn
sampler (NUTS), which is an extension of Hamiltonian Monte Carlo (HMC) simulation, for sampling
from an estimation of the posterior. HMC uses derivatives of the target probability density w.r.t.
the parameters, the sampling can be done in less steps and thus HMC is faster as opposed to the
simple random walk methods (Neal et al., 2011). Hence, the random walk behaviour, that comes
with Gibbs sampling, is mostly eliminated (Betancourt and Girolami, 2015). However, the desired
number of steps L has to be specified by the user. Values of L that are too small lead to undesirable
random walk behaviour and large values of L is a waste of computation (Hoffman and Gelman,
2014). Hence, the NUTS sampler was introduced which does not require the use to specify L. The
NUTS sampler searches for a set of likely candidate points (Hoffman and Gelman, 2014).

For the non-varying effect parameters the student(nu, 0, σ) prior is used. nu represents the degrees
of freedom, 0 is the location parameter and σ is the scale parameter. σ is related to the standard
deviation, namely, SD = nu

nu−2σ. Hence, for large nu the standard deviation is equal to σ (Fonseca
et al., 2008). This prior is commonly used in the literature as weakly informative prior for models
with a discrete outcome (Gelman et al., 2008). Hence, it is a suitable choice for the models with
the Cardiac Outcome as dependent variable. Specifically, the prior used for the non-varying effect
parameters is the student(3, 0, 5). Gelman (2020) advises to use degrees of freedom between 3 and
7. However, no conclusive results exist on what specific value should be chosen. The default degrees
of freedom in the ’brms’ package is also 3 (Bürkner, 2017b). The ’brms’ package can be used to
imlement Bayesian multilevel models in R using STAN (Bürkner, 2017b).

The most preferred prior option for the covariance matrix is the Lewandowski, Kurowicka and
Joe (LKJ) correlation distribution, which can be interpreted as a symmetric Beta distribution
(Bürkner, 2017b). The advantage of this prior for the covariance matrix is the fact that it requires
less computational time compared to the so called ’onion-method’ by Ghosh and Henderson (2003)
and the ’D-vine method’ by Joe (2006). Mathematically, it looks as follows (Bürkner, 2017b):

Ω ∼ LKJ(η) (3)

Where Ω is the correlation matrix and the parameter η > 0 .

If η = 1, then the probability density function (PDF) is uniform over correlation matrices of order
K. For values of η higher than 1, the PDF concentrates around the identity matrix. Hence, less
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correlation is favored (Bürkner, 2017b). Since the value of η can be adjusted, the expected amount
of correlation among the parameters βj can be controlled with the use of the LKJ prior (Bürkner,
2017b). In other words, flexibility exists in expressing prior beliefs about the correlations between
variables, independently of the variances itself, by using the LKJ prior. This has proven to lead
to a reduced absolute bias of the coefficients (Follett and Vander Naald, 2020). The value of η is
usually set to 2 and this is also the value that is used in this research. In figure 9 the density of the
LKJ prior for different values of η is presented.

Figure 9: LKJ prior for different values of η

One disadvantage of the LKJ prior is the fact that the LKJ prior places strong assumptions on
the correlation matrix. Another disadvantage is the fact that the non-conjugancy of the LKJ prior
leads to a posterior distribution which is less convenient in terms of deriving closed-form analytical
solutions. However, the conjugacy is not a problem in terms of computation in STAN (Follett and
Vander Naald, 2020).

Another widely used prior for the covariance matrix is the Inverse Wishart (IW) prior. However,
this prior is not used in this research since it is known to cause dependencies between correlations
and variations (Akinc and Vandebroek, 2018b). Even though the Scaled IW prior reduces the
dependencies between correlations and standard deviations, it does not fully eliminate them (Akinc
and Vandebroek, 2018a).

The Bayesian GLMM can be implemented with the ’brm’ function from the ’brms’ package, which
uses STAN on the back end. The family parameter is set to ’categorical’ because the dependent
variable (Cardiac Outcome) is categorical. The ’Normal’ category of Cardiac Outcome is used as
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reference point because this is the most logical in terms of interpretation. The number of iterations
is set to the default setting in ’brms’, namely, 2000, and this will be increased if the convergence
criteria are unacceptable (see subsection 4.1.3). The number of Markov chains and cores are set to
4 because my laptop has 16 available threads. With 4 chains and 4 cores parallelisation, over all
threads is possible (4 times 4). The ’control’ argument can be used to control the behavior of the
NUTS sampling, it contains the ’adapt delta’ and ’max treedepth’ parameters. The ’adapt delta’
parameter is set to 0.96 in order to decrease the number of divergent transitions (which lead to a
bias in the posterior sample), even though this slows down the NUTS sampler. The ’max treedepth’
parameter is set to 12 in order to prevent the evaluated three depth in each iteration being exceeded
(Bürkner, 2017a).

Since the models can take quite long to run, it can be useful to run the models parallel. With use
of the ’future’ package, the models are run in parallel by inserting ’plan(multisession(workers = 4))’
into the Rscript. This reduces the running time to the running time of the slowest model, which is
most likely the most complex model.

4.1.3 Evaluation of the convergence

The Gelman-Rubin statistic, also known as the potential scale reduction factor (PSRF) or R̂, is
evaluated as indicator for likely convergence of the MCMC (Brooks and Gelman, 1998). The
Gelman-Rubin statistic is an approximation of convergence of the MCMC by using the between-
chain variation and the within-chain variation (Vats and Knudson, 2018). Mathematically, the
between-chain variation looks as follows:

B =
n

m− 1

n∑
j=1

(θj − θj)2 (4)

Where j represents the j-th chain, m the number of chains and n the number of draws. The within-
chain variation looks as follows:

W =
1

m

m∑
j=1

s2j (5)

where

s2j =
1

n− 1

n∑
i=1

(θj − θj)2 (6)

The variance of the stationary distribution is then estimated as follows:

ˆV ar(θ) = (1− 1

n
)W +

1

n
B (7)
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Consequently, the univariate PSRF or R̂ can be calculated as follows (Gelman et al., 1992):

R̂ =

√
ˆV ar(θ)

W
(8)

At last, the multivariate R̂ or multivariate potential scale reduction factor (MPSRF) is calculated
as follows:

MPSRF =
n− 1

n
+ (

m+ 1

m
)λ1 (9)

Where λ1 is the largest eigenvalue of the symmetric, positive definite matrix:

W−1B

n
(10)

In this research, a threshold of the multivariate R̂ of 1.1 is used, as recommend by Gelman and
Rubin (Gelman et al., 1992). For the univariate R̂ a treshold of 1.05 is used, which is the second
most used threshold in the existing literature (Vats and Knudson, 2018).

4.2 Variable selection

4.2.1 Modular construction

Variable selection is done based on the methods proposed by Gelman et al. (2020) in their ’Bayesian
Workflow’ paper. For variable selection, Gelman et al. (2020) use a method called ’modular con-
struction’. Based on domain knowledge and literature, an initial likelihood function and priors are
chosen. Consequently, this base model is extended by adding variables (i.e. modules) and these
extensions are compared to the base model (or an improved extension). When a local optimum is
found, this likelihood specification is used to proceed with the modelling with a higher number of
iterations. This variable selection method is chosen because, with the guidance of SAHMRI and
Flinders University, a proper initial likelihood function and prior can be chosen based on domain
knowledge. In a context where the researcher has such limited knowledge about the context of
the data, it might be better to resort to Bayesian Lasso, the Horseshoe prior or Stochastic Search
Variable Selection (see below).

In this paper, the initial model is specified as follows:

Cardiac Outcome = log(Troponin First Measure)

+ (Troponin First Measure|ECG Ischaemia)
(11)

with the priors mentioned above. Consequently, variables are like Troponin Difference or Creatine
are iteratively added. The order of adding these variables is done based on domain knowledge and
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literature.

ECG Ischaemia is chosen as varying effect component because cardiac patients receiving a ECG
can be considered as a separate sub-population, similarly to cardiac patients not receiving an ECG.

The models found with the iterative approach are presented in a directed acyclic graph, which is a
graphical representation of causal structures (McElreath, 2020). An arrow from X to Y implies a
causal effect of X on Y.

4.2.2 Alternative methods

Apart from modular construction, other variable selection methods exist in the Bayesian context.
The following widely-used Bayesian variable selection methods 4 were considered but are not the
most preferred choice in this research:

• Bayesian Lasso. This method was not the most preferred due to the fact that, in case a group
of explanatory variables is correlated, Bayesian Lasso only selects one of these explanatory
variables (Van Erp et al., 2019).

• Horseshoe prior. With this method it is not possible to specify a prior on the non-varying
effect parameters (Piironen et al., 2017).

• Stochastic Search Variable Selection (SSVS): This method is known to be computationally
very intensive (Srivastava and Chen, 2009).

4.3 Model selection

For the selection of the models, the following methods are proposed: the Watanabe-Akaike Infor-
mation Criterium (WAIC) and the Leave-one-out Cross Validation (LOOCV). Different models (see
subsection 4.5 for the scenarios) are estimated and these are compared by abovementioned model
selection criteria. Apart from that, the models are evaluated based on their predictive accuracy,
specificity and sensitivity.

4.3.1 Information criteria

The model fit is based on the Leave-One-Out Cross Validation (LOOCV). If the LOOCV is indecisive
(i.e. <1% difference), the Watanabe–Akaike information criterion (WAIC) is used. The Bayes Factor
is not considered in this paper since research has shown that it is strongly dependent on irrelevant
aspects of the model (Gelman and Yao, 2020).

LOOCV
LOOCV is an estimation of the out-of-sample log posterior predictive density (lppd). In case of N

4Bayesian Lasso and the Horseshoe prior are technically shrinkage priors
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observations the model is fit N times and one observation yi each time. The LOOCV can then be
seen as the sum of the average accuracy for each omitted yi (McElreath, 2020).

Mathematically, the LOOCV looks as follows:

LOOCV =

N∑
i=1

1

S

S∑
s=1

log Pr(yi|θ−i,s) (12)

The disadvantage of LOOCV is the fact that it is computationally expensive to compute N posterior
distributions in case of N observations. Luckily, methods exist to approximate the CV score without
having to run the model over and over again (McElreath, 2020). Pareto Smoothing Importance
sampling assigns a weight to observations that have a larger influence on the posterior distribution.
An estimation of the model’s out-of-sample accuracy can be done based on these weights. It can be
seen as the Bayesian version of importance sampling with a prior on the largest importance ratios
(Vehtari et al., 2015).

WAIC
The AIC is not useful in hierarchical modelling since the prior effectively restricts the freedom of the
model parameters. Hence, the appropriate number of parameters is generally unclear (Spiegelhalter
et al., 2014). An innovation on the AIC is the Watanabe-Akaike information criterion as proposed
by Watanabe and Opper (2010).

Mathematically, the WAIC looks as follows (McElreath, 2020):

WAIC(y, θ) = −2(lppd(y, θ)−
∑
i

varθ log p(yi|θ))

with lppd(y, θ) =
∑
i

log
1

S

∑
s

p(yi|θs)

Where S is the number of samples

(13)

The log-pointwise-predictive-density (lppd) can be considered as the Bayesian version of the log-
probability score (McElreath, 2020). The second part of the WAIC formula between brackets is the
penalty term PWAIC : ∑

i

varθ log p(yi|θ)) (14)

PWAIC can be considered as the effective number of parameters. In case of multilevel models, the
effective number of parameters can reduce by the addition of parameters to the model (McElreath,
2020). The model with the lowest WAIC is selected.
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4.3.2 Accuracy

As previously mentioned, the models are evaluated based on their predictive accuracy. The per-
centage of correctly classified observations is evaluated for each model and this is visualised with
a confusion matrix. Apart from that, the specificity and sensitivity are evaluated. Even though
the Cardiac Outcome consists of five categories, it can be divided into having a T1MI (Type 1
Myocardial Injury) or having another Cardiac Outcome (Normal, Acute, Chronic or T2MI). T1MI
will be classified as a ’positive’ and the other categories as a ’negative’. In this scenario, a false
negative could have disastrous consequences whereas a false positive would only lead to higher costs
because the patients has to be hospitalized.

Even though the accuracy, sensitivity and specificity are considered in this research, it is not the
main goal of this paper to attain the highest possible accuracy. As previously mentioned, one of
the goals of this research is to describe the causal structures of cardiac patient data on patient
outcomes. The Bayesian GLMM, and Bayesian multilevel models in general, are not focused on
attaining the highest prediction accuracy per se, but more on describing the causal structures, in
contrary to machine learning methods like Neural Networks. However, from a point of view of the
RAPIDxAI team at SAHMRI, the difference in accuracy amongst different likelihoods is interesting
and thus it is considered in this research.

4.4 Missing data

Missingness of data is a common problem in cardiac patient data sets (Faris et al., 2002). Before
discussing the multiple solutions to the problem of missing data, it is useful to analyse the nature
of the missingness of the data. Denote X = {Xmiss, Xobs} as the variable with missing observations
and Y as the dependent variable, without any missing values. Multiple missing data mechanisms
exist in the Bayesian context, namely (Gelman et al., 2013):

• Missing Completely At Random (MCAR), in which the missing data mechanism is completely
independent of the distribution of X and the distribution of Y.

P (Xmiss|X,Y ) = P (Xmiss) (15)

• Missing At Random (MAR),in which the missing data mechanism does not depend on the
distribution of X but only on the distribution of Y.

P (Xmiss|X,Y ) = P (Xmiss, Y ) (16)

• Missing Not At Random (MNAR), in which the missingness depends on both the distribution
of X and the distribution of Y.

P (Xmiss|X,Y ) = P (Xmiss|Xmiss, Xobs, Y ) (17)
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The missing data mechanism has to be determined based on the data. Most likely, the missingness
mechanism is MAR or MNAR because patient data is lost due to patients dying. The latter is
greatly dependent on variables like age, medical condition, reason for presentation etcetera. No
statistical tests exist to differentiate between MAR and MNAR (Nakagawa, 2015). Hence, the
missing data mechanism is determined based on domain knowledge.

The most common solution to solving the problem of missing data is simply dropping all observations
containing missing values (complete case analysis) (McElreath, 2020). However, this can lead to
statistical issues (i.e. biased estimations) if the data set is too sparse (which is probable with patient
data) and it is a waste since patient data collection can be costly.
In the Bayesian context, there are two main ways of solving the problem of missing data (Gelman
et al., 2013):

• Multiple imputation: Simulation of draws from the posterior predictive distribution P (ymis|yobs).
Sampled values of parameter Θ are used to impute the missing data in P (ymis|yobs) M times.
The pooled estimate is then based on the M estimates (Linero and Daniels, 2018).

• Directly taking draws from the posterior distribution of model parameters θ, this is considered
to be the fully-Bayesian approach. Obtaining samples of Θ is usually done by MCMC. The
disadvantage of the fully-Bayesian approach is the fact that it is computationally expensive.
However, this problem can be avoided by using an informative prior (Linero and Daniels,
2018).

In practice, multiple imputation in combination with Bayesian inference is often used even though it
is solely a viable option in case normality of the posterior distribution justifiable (Zhou and Reiter,
2010). Even though multiple imputation is easier to apply since the variables used in the imputation
do not have to be explicitly specified, the fully Bayesian approach is preferred since it is still viable
when normality of the posterior distribution is not justifiable (Zhou and Reiter, 2010). Besides,
with the fully Bayesian approach the multilevel structure of the Bayesian GLMM can be used for
the imputation of missing values within the ’brms’ framework in R (Burkner, 2015). Hence, in this
thesis the use of the fully Bayesian approach is used. The fully Bayesian approach is also referred
to as the ’one-step’ approach because the imputation is done during the fitting of the model. A
disadvantage is the fact that discrete variables cannot be estimated since STAN does not support
this (Burkner, 2015).

The problem of missing data in patient data is very common and has undesirable statistical conse-
quences like estimation biases and reduction in power (Bell and Fairclough, 2014). Hence, it can be
of great value to evaluate the effectiveness of the fully Bayesian approach as solution to the problem
of missing patient data.
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4.5 Scenarios

As mentioned in the previous subsection, the fully-Bayesian approach solution to missingness of
data is implemented. In order to evaluate the effectiveness of this method, the following scenarios
are evaluated (for every patient outcome):

• Model 1: No solution for the problem of missing data. STAN simply removes all observations
that contain a missing value.

• Model 2: The fully Bayesian approach as solution to the problem of missingness of data.

The imputation of the variables in the second model is done as follows:

• Step 1: Estimate the missing Troponin Second Measure values in a ’sub-model’.

• Step 2: Calculate (not estimate) the Troponin Difference based on the Troponin First Mea-
sure (observed, this variable hardly contains missing values) and Troponin Second Measure
(observed + imputed) values.

• Step 3: Estimate the main outcome model component.

Unfortunately, STAN in R does not support linear transformation (i.e. the subtraction mentioned
in step 2) of imputed variables (i.e. Troponin Second Measure) 5. Hence, the imputation of the
variables has to be done in a sub-optimal way. Namely, as follows:

• Step 1: Calculate the observed Troponin Difference based on the difference between the Tro-
ponin Second Measure and Troponin First Measure.

• Step 2: Estimate the missing Troponin Difference values in a ’sub-model’.

• Step 3: Estimate the main outcome model component.

Estimating the missing values of Troponin Difference in a ’sub-model’ is sub-optimal (in comparison
to estimating missing Troponin Second Measure values) due to the nature of the data. Besides,
modelling Troponin Second Measure is more suitable based on the domain knowledge/literature.

As previously mentioned, ECG Ischaemia is modelled as varying effect component. However, this
variable contains 2191 missing observations (out of 3388, see table 10). Unfortunately, STAN does
not allow estimation of discrete parameters and thus ECG Ischaemia cannot be imputed with the

5An attempt was done by adding both Troponin measures linearly and calculating as follows: -Troponin First
Measure = Troponin Second Measure. However, this did not improve the model performance. This is most likely
caused by perfect multicollinearity. Namely, the correlation between Troponin First Measure and Troponin Second
Measure is approximately 0.7
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fully Bayesian approach. Hence, 2191 observations are omitted. Even though ECG Ischaemia

contains relatively many missing observations, the models including the variable as varying effect
component still performed the best, in comparison with models containing another variable as
varying effect component.

The models are compared by the model selection criteria (LOOCV and WAIC) as described in
subsection 4.3.1.

4.6 Sensitivity analysis

Prior research on Bayesian multilevel models has shown that the results can depend heavily on the
prior assumptions (Geisser, 1993) (Roos et al., 2011). Hence, sensitivity analysis is performed in
this research. With sensitivity analysis, the influence of changes in modelling assumptions (e.g. like-
lihoods, priors or link functions) on the Bayesian inferences are explored (McElreath, 2020). In this
research, sensitivity analysis is conducted by adjustment of the parameter(s) of the studentt(nu, 0, s)
and the LKJ prior.

In the sensitivity analysis (for both model 1 and model 2), the studentt(7, 0, 5) distribution is used
as prior on the non-varying effect parameters and the lkj(4) is used as prior for the correlation
matrix. The degrees of freedom are changed to 7 since it is the other extreme of the range of
recommended degrees of freedom for a studentt prior, namely, 3 < nu < 7 (Gelman et al., 2020).

5 Results

First of all, the final likelihood specifications and the corresponding directed acyclic graphs of the
models are presented. Second of all, the model output and predictions of model 1 are evaluated.
Furthermore, the model output and predictions of model 2 are discussed. Then, the results of the
sensitivity analysis are evaluated and compared to the ’original’ models. At last, the results of the
two models are compared.

5.1 Directed acyclic graphs

In figure 10 the directed acyclic graphs (DAGs) of model 1 and model 2 are presented. These
likelihoods specifications are a result of the ’modular construction’. As can be seen in subfigure 10a,
the final likelihood specification of model 1, the model without a solution for missingness of data,
is as follows:

Cardiac Outcome ∼ log(Troponin First Measure) + Troponin Difference+

Physiological P latec+Angiogram+Gender + Physiological Creatine+

(Troponin First Measure|ECG Ischaemia)

(18)
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The final likelihood specification of model 2, the model with the Fully Bayesian approach as solution
for missing data, looks as follows (see subfigure 10b):

Cardiac Outcome ∼ log(Troponin First Measure) +mi(Troponin Difference)+

Physiological P latec+Angiogram+Gender + Physiological Creatine+

(Troponin First Measure|ECG Ischaemia)

Troponin Difference|mi() ∼ Physiological Creatine+ Physiological P latec+

Gender +Angiogram+ Smoking

(19)

(a) Directed acyclic graph of model 1 (b) Directed acyclic graph of model 2

Figure 10: Directed acyclic graphs

28



5.2 Model 1

5.2.1 Model output

In table 4 the output of model 1 (see formula 18 for the DGP) is presented. This is the model
without any imputation of missing data. Furthermore, the performance criteria and the model
settings are presented in the table. Moreover, the STAN code corresponding to the model can be
seen in the technical appendix (see section 9).

As can be seen in table 4, all univariate R-hats are lower than 1.05, indicating convergence. Besides,
the multivariate R-hat is below 1.10, which also indicates convergence. The Leave-One-Out Cross-
Validation cross validation (LOOCV) of model 1 is 652.6.

Unsurprisingly, a positive significant effect exists (at a 5 % significance level) of the logarithm of the
first troponin measure on the probability of having a Type 1 Myocardial Injury (heart attack). The
effect can be interpreted as follows: if the Troponin First Measure goes up by 1%, the probability
of having a Type 1 Myocardial Injury increases by approximately 3.89%, keeping other variables
constant. Similarly, positive significant effects of the logarithm of Troponin First Measure on the
probability of being in the Cardiac Outcome categories Acute, Chronic and T2MI. Moreover, a
positive significant effect exists of the logarithm of Troponin Difference on the probability of having
a T1MI. If Troponin Difference goes up by 1%, the probability of having a T1MI increases by
approximately 0.13%, ceteris paribus. Similar effects exist of Troponin Difference on the probability
of being in the Cardiac Outcome categories Acute, Chronic or T2MI. Besides, a positive significant
effect exists of a patient having had an Angiogram on the probability of having a T1MI. Moreover,
a positive significant effect exists of Gender on the probability of having a T2MI. Apart from that,
no signifcant effects (except for the intercepts) exists. However, positive significant effects of the
Platelet count and the Creatine level on the modelled Cardiac Outcome categories were expected.
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Varying effects
Group Variable Estimate [Credible Interval (C.I.)] Rhat
Acute sd(Acute Intercept) 3.0798 [0.34; 8.63] 1.01

sd(Acute Troponin First Measure) 0.2903 [0.02; 1.42] 1.00
cor(Acute Intercept,muAcute Troponin First Measure) -0.0748 [-0.84; 0.75] 1.01

Chronic sd(Chronic Intercept) 1.9682 [0.07; 6.98] 1.00
sd(Chronic Troponin First Measure) 0.2647 [0.01; 1.64] 1.00
cor(Chronic Intercept,muChronic Troponin First Measure) -0.0586 [-0.84; 0.77] 1.00

T1MI sd(T1MI Intercept) 2.1559 [0.05; 8.33] 1.00
sd(T1MI Troponin First Measure) 0.4832 [0.05; 2.69] 1.01
cor(T1MI Intercept,muT1MI Troponin First Measure) 0.0018 [-0.82; 0.81] 1.01

T2MI sd(T2MI Intercept) 3.2025 [0.06; 13.9] 1.00
sd(T2MI Troponin First Measure) 0.338 [0.01; 1.71] 1.01
cor(T2MI Intercept,muT2MI Troponin First Measure) -0.0674 [-0.84; 0.78] 1.00

Non-varying effects
Group Variable Estimate [Credible Interval (C.I.)] P[C.I.]a Rhat
Acute Intercept -22.3456 [-33.93; -10.71] * 1.00

Log Troponin First Measure 5.2511 [3.35; 7.11] * 1.01
Troponin Difference 0.1238 [0.07; 0.18] * 1.00
Physiological Platec 0.6983 [-0.69; 2.13] 1.00
Angiogram 0.3307 [-1.19; 1.92] 1.00
Gender 0.123 [-0.74; 1.02] 1.00
Physiological Creatine 0.8309 [-0.48; 2.26] 1.00

Chronic Intercept -18.099 [-28.15; -7.97] * 1.00
Log Troponin First Measure 6.795 [4.82; 8.51] * 1.00
Troponin Difference 0.0772 [0.02; 0.14] * 1.00
Physiological Platec -0.7597 [-1.98; 0.39] 1.00
Angiogram -0.3363 [-1.8; 1.21] 1.00
Gender 0.5943 [-0.15; 1.33] 1.00
Physiological Creatine 0.7504 [-0.45; 2.05] 1.00

T1MI Intercept -8.773 [-23.98; 6.5] 1.00
Log Troponin First Measure 3.8949 [1.83; 5.72] * 1.00
Troponin Difference 0.1266 [0.07; 0.18] * 1.00
Physiological Platec -0.7263 [-2.74; 1.25] 1.00
Angiogram 4.1798 [2.62; 5.86] * 1.00
Gender -0.9164 [-2.42; 0.47] 1.00
Physiological Creatine -0.79 [-2.89; 1.3] 1.00

T2MI Intercept -50.8471 [-105.44; -6.42] * 1.00
Log Troponin First Measure 11.3029 [5.19; 21.31] * 1.00
Troponin Difference 0.1439 [0.08; 0.21] * 1.00
Physiological Platec 1.9123 [-3.41; 7.98] 1.00
Angiogram -0.2741 [-4.49; 3.63] 1.00
Gender 7.2632 [0.48; 20.04] * 1.00
Physiological Creatine -1.1107 [-6.72; 3.15] 1.00

Performance criteria Model settings
LOOCV 652.6 Priors student_t(3,0,5)
Multivariate Rhat 1.04 lkj(2)

Reference category Normal
Significance level 0.05 Iterations 2000

Chains 4
Cores 4
Adapt_delta 0.96
Max_treedepth 12

Table 4: Results model 1, significance level of 5%. See formula 18 for the DGP

aC.I. stands for credible interval, not confidence interval
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Moreover, the marginal effects of Gender and Angiogram are evaluated. In figure 11 the marginal
effects for Gender and Angiogram in model 1 are presented, respectively. Subfigure 11a can be read
as follows: the effect size of Gender on the probability of a Cardiac Outcome is presented (on the
y-axis) for different values of Gender. For example, the effect of being female (Gender = 0) on the
probability of having a T2MI is significantly lower than the effect of being male (Gender = 1). The
figures can solely be interpreted at X = 0 or X = 1 because both Gender and Angiogram cannot
have values between 0 and 1. Only significant effects can be interpreted and it can be seen from the
figures that the non-significant effects are stable when the X-value increases from 0 to 1 (e.g. the
effect of Gender on the Normal Cardiac Outcome changes only slightly). Since Gender solely has
a significant effect on the T2MI Cardiac Outcome in model 1 (see table 4), it is the only marginal
effect that is evaluated here. As can be seen in subfigure 11a, the probability of a T2MI increases
when Gender goes from 0 to 1, according to the results of model 1. In other words, if two patients
share the exact same values for all modelled variables except Gender, the male patient will have a
higher probability on a T2MI. 6

Angiogram only has a significant effect on T1MI in model 1 (see table 4) and thus that is the only
effect that is discussed here. As can be seen in subfigure 11b, the probability of a T1MI goes up
substantially if Angiogram goes from 0 to 1, according to the results of model 1. In other words,
when evaluating two patients with exactly the same characteristics except for the Angiogram, the
patient with an Angiogram will have a substantially higher probability of having a T1MI, as opposed
to the patient without the Angiogram.

6It has to be noted that this does not imply that surgically changing a patients’ gender will affect its probability
of a certain Cardiac Outcome
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(a) Gender (b) Angiogram

Figure 11: Marginal effects of Gender and Angiogram in model 1
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5.2.2 Prediction

In figure 12 the distribution of the predicted values based on the results of model 1 is presented.
Moreover, the confusion matrix of model 1 is presented in table 5, along with the prediction accuracy
values. Besides, the sensitivity and specificity of category T1MI are presented in table 5. As can
be seen in both figure 12 and table 5, predictions of the categories Acute and T2MI are relatively
few based on the results of model 1. The overall prediction accuracy of model 1 is 0.9077. The
sensitivity of class T1MI is solely 0.7751, which is relatively low considering the consequences of
discharging a patient who can potentially get a myocardial infarction. The specificity of class T1MI
is 0.9823, this implies that the model does relatively well on detecting patients without a heart
attack. As mentioned in section 1, the costs of admittance of cardiac patients to the ED are very
high and thus properly discharging a relatively big proportion of cardiac patients can be very cost
efficient.

Figure 12: Predictions of Cardiac Outcome of model 1

Observed
Acute Chronic Normal T1MI T2MI

Predicted Acute 8 2 1 2 1
Chronic 27 127 5 7 1
Normal 10 17 742 3 0
T1MI 9 6 2 37 0
T2MI 0 0 0 0 1

Overal accuracy Sensitivity class T1MI Specificity class T1MI
0.9077 0.7551 0.9823

Table 5: Confusion matrix model 1
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5.3 Model 2

5.3.1 Model output

In table 6 the output of the second model (see formula 19 for the DGP) is presented. As can be
seen, the output contains the parameter mi(Troponin Difference) instead of Troponin Difference (as
in table 4). mi(Troponin Difference) contains both observed and imputed values. The values are
imputed in the sub-model, the results for this model are also presented in 6, below the non-varying
effects. Furthermore, the performance criteria and model settings are presented. At last, the STAN
code corresponding to model 2 is presented in the Technical Appendix (see section 9).

As can be seen in table 6, all univariate R-hats are lower than 1.05, indicating convergence. Besides,
the multivariate R-hat is below 1.10, which also indicates convergence. The LOOIC of model 2 is
693.2.

Unsurprisingly, there is a positive significant effect of the logarithm of Troponin First Measure on the
probability of having a T1MI Cardiac Outcome. Similarly, positive significant effects exists of the
logarithm of Troponin First Measure on the probability of having a Acute, Chronic or T2MI Cardiac
Outcome, respectively. Moreover, a positive significant effects exists of mi(Troponin Difference) on
the probability of having a T1MI Cardiac Outcome. This can be interpreted as follows: If a patients’
Troponin Difference (i.e. Troponin Second Measure minus Troponin First Measure) increases by
1, then the probability of having a T1MI Cardiac Outcome increases by approximately 0.07%,
ceteris paribus. Similarly, there are positive significant effects of mi(Troponin Difference) on the
probability of having a Acute or T2MI Cardiac Outcome, respectively. However, the effect of
mi(Troponin Difference) on the probability of having a Chronic Cardiac Outcome is not significant
at 5%. Apart from that, a patient having had an Angiogram leads to an increase of the probability
of having a T1MI of approximately 4.45%, ceteris paribus. At last, being male leads to an increase
of the probability of having a T2MI of approximately 4.45%, ceteris paribus.

Since the link of the sub-model is Gaussian, the interpretation of the results is different. As can
be seen in table 6, a positive effect exists of both Creatine and Anigogram on Troponin Difference.
In other words, if the Creatine level of a patient goes up by 1, the Troponin Difference increases
by approximately 17.75, ceteris paribus. Besides, a patient having had an Angiogram leads to an
increase of the patients’ Troponin Difference of approximately 33.28, ceteris paribus.
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Varying effects
Group Variable Estimate [Credible Interval (C.I.)] Rhat
Acute sd(Acute Intercept) 3.08 [0.26; 8.97] 1.00

sd(Acute Troponin First Measure) 0.23 [0; 1.37] 1.00
cor(Acute Intercept,muAcute Troponin First Measure) -0.05 [-0.83; 0.77] 1.00

Chronic sd(Chronic Intercept) 2.2 [0.07; 7.46] 1.00
sd(Chronic Troponin First Measure) 0.21 [0; 1.31] 1.00
cor(Chronic Intercept,muChronic Troponin First Measure) -0.04 [-0.85; 0.79] 1.00

T1MI sd(T1MI Intercept) 2.09 [0.05; 7.25] 1.00
sd(T1MI Troponin First Measure) 0.33 [0.03; 1.53] 1.00
cor(T1MI Intercept,muT1MI Troponin First Measure) -0.02 [-0.84; 0.82] 1.00

T2MI sd(T2MI Intercept) 3.26 [0.09; 12.74] 1.00
sd(T2MI Troponin First Measure) 0.36 [0.01; 1.73] 1.00
cor(T2MI Intercept,muT2MI Troponin First Measure) -0.08 [-0.84; 0.78] 1.00

Non-varying effects
Group Variable Estimate [Credible Interval (C.I.)] P[CI]a Rhat
Acute Intercept -24.72 [-36.8; -13.54] * 1.00

Log Troponin First Measure 5.81 [3.61; 7.57] * 1.00
Physiological Platec 0.72 [-0.61; 2.06] 1.00
Angiogram 0.62 [-0.87; 2.12] 1.00
Gender 0.01 [-0.83; 0.82] 1.00
Physiological Creatine 1.01 [-0.34; 2.35] 1.00
mi(Troponin Difference) 0.07 [0.03; 0.11] * 1.00

Chronic Intercept -20.21 [-30.34; -9.93] * 1.00
Log Troponin First Measure 7.35 [5.13; 9.07] * 1.00
Physiological Platec -0.56 [-1.7; 0.56] 1.00
Angiogram -0.16 [-1.65; 1.32] 1.00
Gender 0.46 [-0.21; 1.15] 1.00
Physiological Creatine 0.85 [-0.32; 2.03] 1.00
mi(Troponin Difference) 0.02 [-0.01; 0.07] 1.00

T1MI Intercept -14.67 [-29.23; -0.53] * 1.00
Log Troponin First Measure 4.49 [2.22; 6.36] * 1.00
Physiological Platec -0.22 [-2.07; 1.64] 1.00
Angiogram 4.45 [2.91; 6.2] * 1.00
Gender -0.91 [-2.3; 0.43] 1.00
Physiological Creatine -0.28 [-2.3; 1.62] 1.00
mi(Troponin Difference) 0.07 [0.04; 0.11] * 1.00

T2MI Intercept -48.94 [-98.93; -8.57] * 1.00
Log Troponin First Measure 11.3 [5.32; 21.14] * 1.00
Physiological Platec 1.78 [-3.13; 7.58] 1.00
Angiogram -0.12 [-4.41; 3.8] 1.00
Gender 7.14 [0.5; 20.84] * 1.00
Physiological Creatine -1.31 [-7.26; 3.05] 1.00
mi(Troponin Difference) 0.09 [0.04; 0.14] * 1.00

Sub-model
Y-Variable Variable Estimate P[C.I.]b Rhat
Troponin Difference Intercept -74.03 [-124.92; -22.2] * 1.00

Physiological Creatine 17.75 [9.55; 25.5] * 1.00
Physiological Platec -1.02 [-7.32; 5.26] 1.00
Gender 3.93 [-0.47; 8.37] 1.00
Angiogram 33.28 [25.43; 41.2] * 1.00
Smoking 0.27 [-1.98; 2.58] 1.00

Performance criteria Model settings
LOOCV 693.2 Priors student_t(3,0,5)
Multivariate Rhat 1.06 lkj(2)

Links categorical
Sginificance level 0.05 Gaussian

Reference category Normal
Iterations 2000
Chains 4
Cores 4
Adapt_delta 0.96
Max_treedepth 12

Table 6: Results model 2, significance level of 5%. See formula 19 for the DGP

aC.I. stands for credible interval, not confidence interval
bC.I. stands for credible interval, not confidence interval
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Moreover, the marginal effects of Gender and Angiogram are evaluated. In figure 13 the marginal
effects for Gender and Angiogram in model 2 are presented, respectively. The interpretation of
theses figures is the same as the interpretation of figure 11. Whereas Gender only has a significant
effect on T2MI in model 2, Angiogram solely has a significant effect on T2MI in model 2. As can be
seen when comparing subfigure 13 and 11, the interpretation of the marginal effects is very similar.

(a) Gender (b) Angiogram

Figure 13: Marginal effects of Gender and Angiogram in model 2

5.3.2 Prediction

In figure 14 the distribution of the predicted outcomes based on model is presented. When compared
to the distribution of the observed values (see figure 1), there are relatively few predicted values
for the Acute and T2MI Cardiac Outcome, respectively. In table 7 the confusion matrix for the
predictions of model 2 is presented. Moreover, the accuracy, the sensitivity of class T1MI and the
specificity of class T1MI are presented. Model 2 predicts relatively few Acute and T2MI Cardiac
Outcomes, in comparison the the distribution of the observed values (see figure 1). The overall
accuracy of model 2 is 0.9183, as can be seen in table 7. The sensitivity of class T1MI is 0.7400,
which is relatively low given the consequences of a false negative. The specificity of class T1MI is
relatively high, namely, 0.9846.
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Figure 14: Predictions of Cardiac Outcome of model 2

Observed
Acute Chronic Normal T1MI T2MI

Predicted Acute 7 2 0 3 1
Chronic 28 136 5 7 1
Normal 9 18 876 3 0
T1MI 10 6 1 37 0
T2MI 0 0 0 0 1

Overall accuracy Sensitivity class T1MI Specificity class T1MI
0.9183 0.7400 0.9846

Table 7: Confusion matrix model 2

5.4 Sensitivity analysis

In table 11 and table 12 the results of the sensitivity analysis for model 1 and model 2, respectively,
are presented. For both models, the prior has been changed to a studentt(7, 0, 5) prior for the non-
varying effects and lkj(4) for the correlation matrix. Originally, the priors were studentt(3, 0, 5)

and lkj(2), respectively.

5.4.1 Model 1

In terms of the LOOCV, the adjustment of the priors has not influenced the results of model 1
(difference < 1%). With the robustness check the LOOCV is 654.1, whereas the value is 652.6
in the original model (see table 11). The model still convergences after adjustment of the priors
(Multivariate Rhat < 1.10 & univariate Rhats < 1.05). However, the significance of the non-varying
effect parameters changes. Specifically, the significance of the effect of the logarithm of Troponin
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First Measure on the probability on having a Chronic or T1MI Cardiac Outcome, respectively,
disappears. As previously mentioned in section 4, lkj(η) priors with a high value for η assume few
correlation between the parameters. Most likely, this assumption is not realistic for the likelihood
specification of model 1 and thus adjusting the value of η distorts the significance of the results.

5.4.2 Model 2

For model 2, the adjustment of the priors has not influenced the LOOCV. The original value of
the LOOCV was 693.2, whereas the value is 690.3 after adjustment of the priors (see table 12).
Even though the model performance increases on paper due to the decrease of the LOOIC, the
difference is so small that it can be considered indecisive (difference <1%). Model 2 still converges
after adjustment of the priors (Multivariate Rhat <1.10 univariate Rhats <1.05)). Moreover, the
sign and significance of the non-varying effect parameter (most importantly, the Troponin variables)
remain the same after adjustment of the priors. In conclusion, model 2 is robust for changes in the
model settings.

5.5 Model comparison

The LOOIC of model 1 is 652.6, whereas the LOOIC of model 2 is 693.2. The model with the lowest
LOOIC is preferred. Hence, a strong indication exists for a better model performance of model 1.

The sign and significance of the non-varying effects of model 2 are almost the same as model 1.
However, in model 2 no significant effect exists of mi(Troponin Difference) on the Cardiac Outcome
’Chronic’, whereas a positive significant was expected. However, differences in the effect size exist.
As can be seen in table 6, the effect of log Troponin First Measure on T1MI is 4.49, whereas this
effect is 3.89 in model 1 (see table 4). Moreover, the effect of mi(Troponin Difference) on T1MI in
model 2 is 0.07, whereas this effect is 0.13 in model 1. In other words, under the assumptions of
model 1 the effect of an increase of Troponin Difference by 1 leads to an increase in the probability
of having a T1MI of 0.13%, whereas this is 0.07% under the assumptions of model 2. Similar
differences in effect size exist for other parameters. However, one cannot state which one of these
effect sizes is the best due to lack of similar research in the field.

In terms of overall prediction accuracy, model 2 performs better compared to model 1 (0.9183 vs
0.9077). Besides, the specificity of class T1MI is slightly higher for model 2 compared to model 1
(0.9846 vs 0.9823). However, the sensitivity of class T1MI for model 1 is better than for model 2
(0.7551 vs 0.7400).

Whereas model 1 is sensitive to adjustments of the priors, model 2 is robust to adjustment of the
priors. In the sensitivity analysis for model 1 the significance of the variables (of interest) was
influenced by adjustments of the priors, whereas the significance was unaffected in model 2.
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6 Conclusion

The aim of this paper is twofold. Firstly, causal structures in cardiac patient data, of those admitted
to the ED in South Australia, were studied by the use of Bayesian multilevel models. Specifically,
the Bayesian Generalized Linear Mixed Model (GLMM) was used. Secondly, the Fully Bayesian
approach as solution to missingness of data was explored. The contribution of this paper is, first
of all, the fact that causal structures of patient characteristics on the Cardiac Outcome of cardiac
patients, admitted to the ED, were described. This was done despite (cardiac-) patient data being
very complex by nature. Specifically, significant effects of the Troponin variables on the probability
of having a myocardial infarction (T1MI Cardiac Outcome) were found. Moreover, this paper made
a first attempt on using the Fully Bayesian approach as solution to missingness of cardiac patient
data. Even though it did not substantially improve (nor impair) the model performance, the Fully
Bayesian approach seems promising in this context. Despite the limitations of the probabilistic
programming language used in this paper (STAN), the model performance amongst the models was
similar. Hence, there is a strong indication that the Fully Bayesian approach would have performed
substantially better if these limitations had not existed (see section 7 for more on this).

In comparison, model 1 performed better than model 2 based on the LOOIC. The sign and sig-
nificance on the non-varying effects of model 2 are almost the same as model 1. However, some
differences in the effect size existed. Though, it cannot be stated that one model performs best in
terms of effect size due to lack of comparable results in the literature. Whereas model 2 performs
better in terms of overall prediction accuracy, model 1 performs better in terms of sensitivity. The
specificity was highly similar amongst models. Whereas the Fully Bayesian approach, as solution
to missingness of data, led to a model robust to adjustment of priors, model 1 was sensitive to
adjustments of the priors and and did therefore not pass the sensitivity analysis.

7 Discussion

Even though modelling cardiac patient data with Bayesian GLMMs has its advantages, there are
some major drawbacks that hinder the ease of experimentation with this technique. The likelihood
specifications used in this paper were found by using the ’modular construction’ method, as pro-
posed by Gelman et al. (2020) in their ’Bayesian Workflow’ paper. Even though an optimum is
found after experimenting with many likelihood specifications, this optimum is most likely a local
optimum and not a global optimum. Specifically, there is most likely a combination of priors and
explanatory variables that results in better model performance/results. However, attaining this
global optimum was not possible within the timeline of my thesis and with the available compu-
tation power. Though, this is interesting for future research on this topic. In the context of the
RAPIDx AI project, the RAPIDx AI dataset can be modelled by the use of Bayesian GLMMs with
more extensive experimentation with likelihood specifications and choice of priors. Consequently,
the model performance will improve, compared to my model performance. In a wider context, the
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same can be done on (cardiac-) patient data. Since the computational power has been increasing
exponentially, it becomes more and more interesting for researchers to use Bayesian models.

Apart from more experimentation with the variable selection method mentioned above, future re-
search can focus on using Bayesian Lasso, the Horseshoe prior or Stochastic Search Variable Selection
in the context of patient data. Namely, using these variable selection methods could have led to
improved model performance but experimenting with all Bayesian variable selection methods was
outside of the scope/timeline of this study. Besides, a comparison of all four methods in this context
would be interesting. Due to limited time and computational power for this thesis, a choice had
to be made for the variable selection method and thus only the ’modular construction’ method, as
proposed by (Gelman et al., 2020), was explored.

Apart from the drawback regarding the variable and prior selection, the probabilistic language/soft-
ware engine used in this research, STAN, poses some serious drawbacks. Firstly, discrete parameters
cannot be estimated in STAN. Despite ECG Ischaemia being (by far) the best variable to use as
varying-effect parameter, this leads to a relatively big proportion (about two-third) of the observa-
tions being dropped when including it in the likelihood specification. Hence, it would be interesting
for future research to find a way to still estimate ECG Ischaemia. In other words, it could greatly
improve model performance if researchers would find a way to impute the variable with the Fully
Bayesian approach (i.e. in a sub-model). Possible solutions for this would be marginalizing discrete
parameters (Yackulic et al., 2020) or the use of Discontinuous Hamiltonian Monte Carlo as sampling
algorithm (Nishimura et al., 2017).

Moreover, linear transformations of the imputed variable are currently not possible in the ’brms’
package. As described in the methodology 4, it would be optimal to impute Troponin Second Mea-
sure and calculate Troponin Difference based on the difference between Troponin Second Measure
(observed imputed) and Troponin First Measure (observed). However, this linear transformation
(i.e. calculating the difference) cannot be done directly with the ’brms’ package and thus a sub-
optimal solution was used. Even consulting the ’brms’ forum on Discourse.org, on which Paul
Bürkner himself is very active, did not result into a proper solution (within the scope of my thesis).
However, the abovementioned linear transformation could be conducted by writing STAN code.
Unfortunately, this was beyond the scope of this thesis. Yet, it would be interesting for further
researchers to explore this solution and to model cardiac patient data in the optimal way.
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8 Appendix

Variable Description Expected effect
on myocardial
injury

Reference expected effect

Cardiac Outcome Classification of the clinical outcome, the categories are:
Normal, Type 1 Mim Type 2 MI, Acute & Chronic

NA NA

Length Of Stay Duration of the ED visit in minutes NA NA
Troponin First Measure First measurement of the troponin level, measured in ng/L + Members et al. (2014)
Troponin Second Measure Second measurement of the troponin level, measured in

ng/L
+ Members et al. (2014)

Troponin Difference Difference between the troponin measurements, estimation
of the velocity

+ Members et al. (2014)

Carbon Dioxide Pressure Co2 level in a patients body + Atkinson et al. (2017)
Lactate Measurement of the amount of lactic acid in the blood + Demers et al. (2000)
Dioxide Pressure CO2 in a patients body + Atkinson et al. (2017)
Pulmonary Hypertension Pulmonary artety systolic pressure in mm Hg + Members et al. (2014)
Brain Natriuretic Peptide Brain Natriuretic Peptide in pg/L + Members et al. (2014)
Creatine Kinase MB Creatine kinase myocardial band in IU/L + Levy et al. (2011)
Fibrin Fibrinogen in mg/L + Members et al. (2014)
Urea Urea nitrogen in mmol/L - Members et al. (2014)
Creatine Creatine level + Members et al. (2014)
Upper Respiratory Tract Upper respiratory tract level + Ruane et al. (2017)
Albumin Albumin level in g/L - Kuller et al. (1991)
Haeglob Hemoglobin level in g/L + Kim et al. (2013)
White Blood Cell Count White blood cell count per cubib microliter of blood + Lee et al. (2001)
Platec Platelet count per microliter + Gregg and Goldschmidt-

Clermont (2003)
Platev Platelet volume in femtolitre + Gregg and Goldschmidt-

Clermont (2003)
Hemoglobin A1C Hemoglobin A1C in % + Kim et al. (2013)
Thyroid Stimulating Hormone Thyroid Stimulating Hormone in mIU/L + ?
C-Reactive Protein C-Reactive Protein test result in mg/L + Collaboration et al. (2010)
Ferritin Ferritin in ng/mL + Liu et al. (2019)
D-Dimer D-Dimer in ng/L + Mansour et al. (2020)
Lactv Blood lactate level in mmol/L + Demers et al. (2000)
Smoking 0 = Never, 1 = Past, 2 = Currently + Members et al. (2014)
Age Age of patient at time of admittance, not rounded + Members et al. (2014)
Gender 1 = Male, 0 = Female + Gao et al. (2019)
Prior Heart Attack 1 = Yes, 0 = No + Members et al. (2014)
History Diabetes 1 = Yes, 0 = No + Everson-Rose and Lewis

(2005)
History Hypertension 1 = Yes, 0 = No + Members et al. (2014)
History STD 1 = Yes, 0 = No + Mussa et al. (2006)
ECG Ischaemia 1 = Yes, 0 = No + Members et al. (2014)
Coranary Heart Disease 1 = Yes, 0 = No + Members et al. (2014)
Dyslipidemia 1 = Yes, 0 = No + Miller (2009)
Family History Coronary Disease 1 = Yes, 0 = No + ?
Heart Rate Heart rate in beats per minute + Perret-Guillaume et al. (2009)
Systolic Blood Pressure Systolic Blood Pressure in mm Hg + Everson-Rose and Lewis

(2005)
Diastolic Blood Pressure Diastolic Blood Pressure in mm Hg + Everson-Rose and Lewis

(2005)
Kidney Function Glomerular filtration rate + Sarnak et al. (2003)
Onset Duration between onset of symptoms and admission: 1 =

less than 1 hr, 2 = 1-3 hours, 3 = 4-6 hours, 4 = 6-12 hours,
5 = 12-24 hours, 6 = above 24 hours

+ Luepker et al. (2000)

Angiogram 1 = Yes, 0 = No + (minor effect) Tavakol et al. (2012)
History Angiogram 1 = Yes, 0 = No + (minor effect) Tavakol et al. (2012)

Table 8: Data dictionary of all variables, including expected effect on the chance of a myocardial
injury
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NA Min Max Range Median Mean Variance
Carbon Dioxide Pressure 2604 14 137 123 43 44.49 14.14
Lactate 2660 0.3 23.79 23.49 1.5 2.22 2.24
Dioxide Pressure 2605 9 589 580 52 74.2 82.53
Pulmonary Hypertension 2604 1.01 7.64 6.63 7.39 7.36 0.24
Brain Natriuretic Peptide 3289 50 35000 34950 2348 5621.54 8382.91
Creatine Kinase MB 2318 0.3 1472 1471.7 2.7 7.54 49.98
Fibrin 3328 0.4 8.1 7.7 2.91 3.15 1.59
Urea 29 1.5 57.5 56 6.3 8.07 5.76
Creatine 30 30 1445 1415 82 101.93 80.72
Upper Respiratory Tract 2098 0.05 1.11 1.06 0.35 0.37 0.14
Albumin 141 14 54 40 37 36.38 5.13
Haeglob 43 50 207 157 136 133.69 20.13
White Blood Cell Count 42 0.12 259 258.88 8.2 9.47 6.84
Platec 59 6 2043 2037 235 243.59 87.04
Platev 2553 8.2 13.6 5.4 10.3 10.35 0.93
Hemoglobin A1C 2997 4.6 142 137.4 6.1 15.39 21.38
Thyroid Stimulating Hormone 2809 0.01 150 149.99 1.7 2.84 9.53
C-Reactive Protein 915 0.2 455.6 455.4 4.4 24.5 51.66
Ferritin 3235 5 2941 2936 98 205.62 362.61
D-Dimer 2951 0.2 80 79.8 0.5 2.74 9.17
Lactv 3168 0.5 14.7 14.2 1.7 2.12 1.68

Table 9: Descriptive statistics of the physiological variables

Variable Male Female NA
Gender 1788 (52.77%) 1600 (47.23%) 0 (0%)

Variable Yes No NA
History Diabetes 835 177 2376
Prior Heart Attack 831 179 2378
History Hypertension 497 515 2376
History STD 877 131 2380
ECG Ischaemia 1186 11 2191
Coranary Heart Disease 831 367 2190
Dyslipidemia 1125 1085 1178
Family History Coronary 355 554 2479
History Angiogram 930 82 2376
Angiogram 3032 356 0

Table 10: Descriptive statistics of the binary variables
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Varying effects
Group Variable Estimate Rhat
Acute sd(Acute Intercept) 3.1074 [0.4; 8.75] 1.00

sd(Acute Troponin First Measure) 0.2612 [0.02; 1.37] 1.00
cor(Acute Intercept,muAcute Troponin First Measure) -0.055 [-0.66; 0.57] 1.00

Chronic sd(Chronic Intercept) 1.9546 [0.07; 6.83] 1.00
sd(Chronic Troponin First Measure) 0.2568 [0.01; 1.45] 1.00
cor(Chronic Intercept,muChronic Troponin First Measure) -0.0153 [-0.65; 0.62] 1.00

T1MI sd(T1MI Intercept) 2.1146 [0.08; 7.62] 1.00
sd(T1MI Troponin First Measure) 0.4194 [0.05; 2.33] 1.00
cor(T1MI Intercept,muT1MI Troponin First Measure) -0.0086 [-0.64; 0.62] 1.00

T2MI sd(T2MI Intercept) 3.0271 [0.07; 13.24] 1.00
sd(T2MI Troponin First Measure) 0.3004 [0.01; 1.53] 1.00
cor(T2MI Intercept,muT2MI Troponin First Measure) -0.0418 [-0.65; 0.6] 1.00

Non-varying effects
Group Variable Estimate Star Rhat
Acute Intercept -22.1322 [-33.92; -10.55] * 1.00

Log Troponin First Measure 5.2355 [3.33; 7.01] * 1.00
Troponin Difference 0.1235 [0.07; 0.18] 1.01
Physiological Platec 0.6696 [-0.7; 2.05] * 1.00
Angiogram 0.4026 [-1.15; 1.91] * 1.00
Gender 0.1199 [-0.77; 0.98] * 1.00
Physiological Creatine 0.8347 [-0.58; 2.25] 1.00

Chronic Intercept -17.995 [-27.82; -8.78] 1.00
Log Troponin First Measure 6.7675 [4.82; 8.56] 1.00
Troponin Difference 0.0771 [0.02; 0.14] 1.01
Physiological Platec -0.7848 [-2.04; 0.35] * 1.00
Angiogram -0.2606 [-1.76; 1.2] * 1.00
Gender 0.5919 [-0.15; 1.32] 1.00
Physiological Creatine 0.7616 [-0.46; 2.06] 1.00

T1MI Intercept -8.5847 [-23.78; 6.9] 1.00
Log Troponin First Measure 3.9254 [1.9; 5.76] 1.00
Troponin Difference 0.1263 [0.08; 0.18] * 1.01
Physiological Platec -0.7631 [-2.7; 1.19] * 1.00
Angiogram 4.2293 [2.62; 5.92] 1.00
Gender -0.8946 [-2.31; 0.53] * 1.00
Physiological Creatine -0.7791 [-3.03; 1.29] 1.00

T2MI Intercept -46.0778 [-93.25; -3.8] 1.00
Log Troponin First Measure 10.0618 [4.77; 17.23] * 1.00
Troponin Difference 0.1436 [0.08; 0.21] * 1.01
Physiological Platec 1.9093 [-3.02; 7.74] 1.00
Angiogram -0.0424 [-4.26; 4.03] 1.00
Gender 6.0442 [0.32; 14.66] * 1.00
Physiological Creatine -1.114 [-6.68; 3.23] 1.00

Performance criteria Model settings
LOOCV 654.1 Priors student_t(7,0,5)
Multivariate Rhat 1.02 lkj(4)

Link Categorical
Significance level 0.05 Reference category Normal

Iterations 2000
Chains 4
Cores 4
Adapt_delta 0.96
Max_treedepth 12

Table 11: Results sensitivity analysis model 1
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Varying effects
Group Variable Estimate Rhat
Acute sd(Acute Intercept) 2.8939 [0.28 ;8.73 ] 1.00

sd(Acute Troponin First Measure) 0.2017 [0.01 ;1.22 ] 1.00
cor(Acute Intercept,muAcute Troponin First Measure) -0.033 [-0.64 ;0.61 ] 1.00

Chronic sd(Chronic Intercept) 2.0698 [0.06 ;7.08 ] 1.00
sd(Chronic Troponin First Measure) 0.2094 [0 ;1.34 ] 1.00
cor(Chronic Intercept,muChronic Troponin First Measure) -0.0257 [-0.64 ;0.62 ] 1.00

T1MI sd(T1MI Intercept) 2.1113 [0.06 ;7.86 ] 1.00
sd(T1MI Troponin First Measure) 0.3445 [0.03 ;1.61 ] 1.00
cor(T1MI Intercept,muT1MI Troponin First Measure) -0.0068 [-0.64 ;0.65 ] 1.00

T2MI sd(T2MI Intercept) 3.451 [0.09 ;14.65 ] 1.00
sd(T2MI Troponin First Measure) 0.3319 [0.02 ;1.63 ] 1.00
cor(T2MI Intercept,muT2MI Troponin First Measure) -0.0344 [-0.66 ;0.6 ] 1.00

Non-varying effects
Group Variable Estimate Star Rhat
Acute Intercept -24.5234 [-36.06; -13.08 ] * 1.00

Log Troponin First Measure 5.8137 [3.75; 7.56 ] * 1.00
Physiological Platec 0.7078 [-0.62; 2.09 ] 1.00
Angiogram 0.5878 [-0.91; 2.09 ] 1.00
Gender 0.0092 [-0.86; 0.87 ] 1.00
Physiological Creatine 1.0115 [-0.38; 2.34 ] 1.00
m(iTroponin Difference) 0.067 [0.03; 0.11 ] * 1.00

Chronic Intercept -20.2888 [-29.69; -10.44 ] * 1.00
Log Troponin First Measure 7.3398 [5.38; 8.96 ] * 1.00
Physiological Platec -0.5671 [-1.65; 0.51 ] 1.00
Angiogram -0.1894 [-1.65; 1.26 ] 1.00
Gender 0.4595 [-0.23; 1.17 ] 1.00
Physiological Creatine 0.8663 [-0.32; 2.06 ] 1.00
mi(Troponin Difference) 0.0255 [-0.01; 0.06 ] 1.00

T1MI Intercept -14.7851 [-29.79; -0.22 ] * 1.00
Log Troponin First Measure 4.4681 [2.27; 6.35 ] * 1.00
Physiological Platec -0.2359 [-2.14; 1.62 ] 1.00
Angiogram 4.4251 [2.89; 6.08 ] * 1.00
Gender -0.8952 [-2.22; 0.43 ] 1.00
Physiological Creatine -0.2658 [-2.35; 1.75 ] 1.00
mi(Troponin Difference) 0.0698 [0.04; 0.11 ] * 1.00

T2MI Intercept -46.0122 [-93.36; -4.44 ] * 1.00
Log Troponin First Measure 10.4648 [4.98; 17.86 ] * 1.00
Physiological Platec 1.8258 [-3.14; 7.38 ] 1.00
Angiogram -0.1358 [-4.38; 3.68 ] 1.00
Gender 5.9787 [0.09; 15.35 ] * 1.00
Physiological Creatine -1.3627 [-6.92; 2.99 ] 1.00
mi(Troponin Difference) 0.0875 [0.04; 0.14 ] * 1.00

Sub-model
Y-Variable Variable Estimate Star Rhat
Troponin Difference Intercept -67.481 [-117.22; -18.32 ] * 1.00

Physiological_Creatine 16.2408 [8.77; 23.96 ] * 1.00
Physiological_Platec -0.9442 [-6.91; 5.17 ] 1.00
Gender 3.4936 [-0.83; 7.76 ] 1.00
Angiogram 31.732 [23.89; 39.72 ] * 1.00
Smoking 0.3189 [-2.01; 2.66 ] 1.00

Performance criteria Model settings
LOOCV 690.3 Priors student_t(7,0,5)
Multivariate Rhat 1.05 lkj(4)

Links categorical
Sginificance level 0.05 Gaussian

Reference category Normal
Iterations 2000
Chains 4
Cores 4
Adapt_delta 0.96
Max_treedepth 12

Table 12: Results sensitivity analysis model 2
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9 Technical Appendix

Listing 1: Stan code model 1

// genera ted wi th brms 2 .14 .0
functions {

/∗ turn a vec t o r in t o a matrix o f de f i ned dimension
∗ s t o r e s e lements in row major order
∗ Args :
∗ X: a vec t o r
∗ N: f i r s t dimension o f the de s i r e d matrix
∗ K: second dimension o f the de s i r e d matrix
∗ Returns :
∗ a matrix o f dimension N x K
∗/

matrix as_matrix (vector X, int N, int K) {
matrix [N, K] Y;
for ( i in 1 :N) {

Y[ i ] = to_row_vector(X[ ( ( i − 1) ∗ K + 1 ) : ( i ∗ K) ] ) ;
}
return Y;

}
/∗ compute c o r r e l a t e d group−l e v e l e f f e c t s
∗ Args :
∗ z : matrix o f unsca led group−l e v e l e f f e c t s
∗ SD: vec t o r o f s tandard d e v i a t i on parameters
∗ L : cho l e s k y f a c t o r c o r r e l a t i o n matrix
∗ Returns :
∗ matrix o f s c a l e d group−l e v e l e f f e c t s
∗/
matrix scale_r_cor (matrix z , vector SD, matrix L) {

// r i s s t o r ed in another dimension order than z
return t ranspose (diag_pre_multiply (SD, L) ∗ z ) ;

}
}
data {

int<lower=1> N; // t o t a l number o f o b s e r va t i on s
int<lower=2> ncat ; // number o f c a t e g o r i e s
int Y[N ] ; // response v a r i a b l e
int<lower=1> K_muAcute ; // number o f popu la t ion−l e v e l e f f e c t s
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matrix [N, K_muAcute ] X_muAcute ; // popu la t ion−l e v e l de s i gn matrix
int<lower=1> K_muChronic ; // number o f popu la t ion−l e v e l e f f e c t s
matrix [N, K_muChronic ] X_muChronic ; // popu la t ion−l e v e l de s i gn matrix
int<lower=1> K_muT1MI; // number o f popu la t ion−l e v e l e f f e c t s
matrix [N, K_muT1MI] X_muT1MI; // popu la t ion−l e v e l de s i gn matrix
int<lower=1> K_muT2MI; // number o f popu la t ion−l e v e l e f f e c t s
matrix [N, K_muT2MI] X_muT2MI; // popu la t ion−l e v e l de s i gn matrix
// data f o r group−l e v e l e f f e c t s o f ID 1
int<lower=1> N_1; // number o f grouping l e v e l s
int<lower=1> M_1; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J_1 [N ] ; // grouping i n d i c a t o r per ob s e r va t i on
// group−l e v e l p r e d i c t o r va l u e s
vector [N] Z_1_muAcute_1 ;
vector [N] Z_1_muAcute_2 ;
int<lower=1> NC_1; // number o f group−l e v e l c o r r e l a t i o n s
// data f o r group−l e v e l e f f e c t s o f ID 2
int<lower=1> N_2; // number o f grouping l e v e l s
int<lower=1> M_2; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J_2 [N ] ; // grouping i n d i c a t o r per ob s e r va t i on
// group−l e v e l p r e d i c t o r va l u e s
vector [N] Z_2_muChronic_1 ;
vector [N] Z_2_muChronic_2 ;
int<lower=1> NC_2; // number o f group−l e v e l c o r r e l a t i o n s
// data f o r group−l e v e l e f f e c t s o f ID 3
int<lower=1> N_3; // number o f grouping l e v e l s
int<lower=1> M_3; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J_3 [N ] ; // grouping i n d i c a t o r per ob s e r va t i on
// group−l e v e l p r e d i c t o r va l u e s
vector [N] Z_3_muT1MI_1;
vector [N] Z_3_muT1MI_2;
int<lower=1> NC_3; // number o f group−l e v e l c o r r e l a t i o n s
// data f o r group−l e v e l e f f e c t s o f ID 4
int<lower=1> N_4; // number o f grouping l e v e l s
int<lower=1> M_4; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J_4 [N ] ; // grouping i n d i c a t o r per ob s e r va t i on
// group−l e v e l p r e d i c t o r va l u e s
vector [N] Z_4_muT2MI_1;
vector [N] Z_4_muT2MI_2;
int<lower=1> NC_4; // number o f group−l e v e l c o r r e l a t i o n s
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int pr ior_only ; // shou ld the l i k e l i h o o d be ignored ?
}
transformed data {

int Kc_muAcute = K_muAcute − 1 ;
matrix [N, Kc_muAcute ] Xc_muAcute ; // centered ve r s i on o f X_muAcute wi thout an i n t e r c e p t
vector [ Kc_muAcute ] means_X_muAcute ; // column means o f X_muAcute b e f o r e c en t e r ing
int Kc_muChronic = K_muChronic − 1 ;
matrix [N, Kc_muChronic ] Xc_muChronic ; // centered ve r s i on o f X_muChronic wi thou t an i n t e r c e p t
vector [ Kc_muChronic ] means_X_muChronic ; // column means o f X_muChronic b e f o r e c en t e r in g
int Kc_muT1MI = K_muT1MI − 1 ;
matrix [N, Kc_muT1MI] Xc_muT1MI; // centered ve r s i on o f X_muT1MI wi thou t an i n t e r c e p t
vector [Kc_muT1MI] means_X_muT1MI ; // column means o f X_muT1MI be f o r e c en t e r ing
int Kc_muT2MI = K_muT2MI − 1 ;
matrix [N, Kc_muT2MI] Xc_muT2MI; // centered ve r s i on o f X_muT2MI wi thou t an i n t e r c e p t
vector [Kc_muT2MI] means_X_muT2MI ; // column means o f X_muT2MI be f o r e c en t e r ing
for ( i in 2 :K_muAcute) {

means_X_muAcute [ i − 1 ] = mean(X_muAcute [ , i ] ) ;
Xc_muAcute [ , i − 1 ] = X_muAcute [ , i ] − means_X_muAcute [ i − 1 ] ;

}
for ( i in 2 :K_muChronic ) {

means_X_muChronic [ i − 1 ] = mean(X_muChronic [ , i ] ) ;
Xc_muChronic [ , i − 1 ] = X_muChronic [ , i ] − means_X_muChronic [ i − 1 ] ;

}
for ( i in 2 :K_muT1MI) {

means_X_muT1MI [ i − 1 ] = mean(X_muT1MI[ , i ] ) ;
Xc_muT1MI[ , i − 1 ] = X_muT1MI[ , i ] − means_X_muT1MI [ i − 1 ] ;

}
for ( i in 2 :K_muT2MI) {

means_X_muT2MI [ i − 1 ] = mean(X_muT2MI[ , i ] ) ;
Xc_muT2MI[ , i − 1 ] = X_muT2MI[ , i ] − means_X_muT2MI [ i − 1 ] ;

}
}
parameters {

vector [ Kc_muAcute ] b_muAcute ; // popu la t ion−l e v e l e f f e c t s
real Intercept_muAcute ; // temporary i n t e r c e p t f o r cen tered p r e d i c t o r s
vector [ Kc_muChronic ] b_muChronic ; // popu la t ion−l e v e l e f f e c t s
real Intercept_muChronic ; // temporary i n t e r c e p t f o r cen tered p r e d i c t o r s
vector [Kc_muT1MI] b_muT1MI; // popu la t ion−l e v e l e f f e c t s
real Intercept_muT1MI ; // temporary i n t e r c e p t f o r cen tered p r e d i c t o r s
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vector [Kc_muT2MI] b_muT2MI; // popu la t ion−l e v e l e f f e c t s
real Intercept_muT2MI ; // temporary i n t e r c e p t f o r cen tered p r e d i c t o r s
vector<lower=0>[M_1] sd_1 ; // group−l e v e l s tandard d e v i a t i o n s
matrix [M_1, N_1] z_1 ; // s tandard i z ed group−l e v e l e f f e c t s
cholesky_factor_corr [M_1] L_1 ; // cho l e s k y f a c t o r o f c o r r e l a t i o n matrix
vector<lower=0>[M_2] sd_2 ; // group−l e v e l s tandard d e v i a t i o n s
matrix [M_2, N_2] z_2 ; // s tandard i z ed group−l e v e l e f f e c t s
cholesky_factor_corr [M_2] L_2 ; // cho l e s k y f a c t o r o f c o r r e l a t i o n matrix
vector<lower=0>[M_3] sd_3 ; // group−l e v e l s tandard d e v i a t i o n s
matrix [M_3, N_3] z_3 ; // s tandard i z ed group−l e v e l e f f e c t s
cholesky_factor_corr [M_3] L_3 ; // cho l e s k y f a c t o r o f c o r r e l a t i o n matrix
vector<lower=0>[M_4] sd_4 ; // group−l e v e l s tandard d e v i a t i o n s
matrix [M_4, N_4] z_4 ; // s tandard i z ed group−l e v e l e f f e c t s
cholesky_factor_corr [M_4] L_4 ; // cho l e s k y f a c t o r o f c o r r e l a t i o n matrix

}
transformed parameters {

matrix [N_1, M_1] r_1 ; // ac t ua l group−l e v e l e f f e c t s
// us ing v e c t o r s speeds up index ing in l oops
vector [N_1] r_1_muAcute_1 ;
vector [N_1] r_1_muAcute_2 ;
matrix [N_2, M_2] r_2 ; // ac t ua l group−l e v e l e f f e c t s
// us ing v e c t o r s speeds up index ing in l oops
vector [N_2] r_2_muChronic_1 ;
vector [N_2] r_2_muChronic_2 ;
matrix [N_3, M_3] r_3 ; // ac t ua l group−l e v e l e f f e c t s
// us ing v e c t o r s speeds up index ing in l oops
vector [N_3] r_3_muT1MI_1 ;
vector [N_3] r_3_muT1MI_2 ;
matrix [N_4, M_4] r_4 ; // ac t ua l group−l e v e l e f f e c t s
// us ing v e c t o r s speeds up index ing in l oops
vector [N_4] r_4_muT2MI_1 ;
vector [N_4] r_4_muT2MI_2 ;
// compute a c t ua l group−l e v e l e f f e c t s
r_1 = scale_r_cor (z_1 , sd_1 , L_1 ) ;
r_1_muAcute_1 = r_1 [ , 1 ] ;
r_1_muAcute_2 = r_1 [ , 2 ] ;
// compute a c t ua l group−l e v e l e f f e c t s
r_2 = scale_r_cor (z_2 , sd_2 , L_2 ) ;
r_2_muChronic_1 = r_2 [ , 1 ] ;
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r_2_muChronic_2 = r_2 [ , 2 ] ;
// compute a c t ua l group−l e v e l e f f e c t s
r_3 = scale_r_cor (z_3 , sd_3 , L_3 ) ;
r_3_muT1MI_1 = r_3 [ , 1 ] ;
r_3_muT1MI_2 = r_3 [ , 2 ] ;
// compute a c t ua l group−l e v e l e f f e c t s
r_4 = scale_r_cor (z_4 , sd_4 , L_4 ) ;
r_4_muT2MI_1 = r_4 [ , 1 ] ;
r_4_muT2MI_2 = r_4 [ , 2 ] ;

}
model {

// l i k e l i h o o d i n c l u d i n g a l l cons tan t s
i f ( ! pr ior_only ) {

// i n i t i a l i z e l i n e a r p r e d i c t o r term
vector [N] muAcute = Intercept_muAcute + Xc_muAcute ∗ b_muAcute ;
// i n i t i a l i z e l i n e a r p r e d i c t o r term
vector [N] muChronic = Intercept_muChronic + Xc_muChronic ∗ b_muChronic ;
// i n i t i a l i z e l i n e a r p r e d i c t o r term
vector [N] muT1MI = Intercept_muT1MI + Xc_muT1MI ∗ b_muT1MI;
// i n i t i a l i z e l i n e a r p r e d i c t o r term
vector [N] muT2MI = Intercept_muT2MI + Xc_muT2MI ∗ b_muT2MI;
// l i n e a r p r e d i c t o r matrix
vector [ ncat ] mu[N ] ;
for (n in 1 :N) {

// add more terms to the l i n e a r p r e d i c t o r
muAcute [ n ] += r_1_muAcute_1 [ J_1 [ n ] ] ∗ Z_1_muAcute_1 [ n ] + r_1_muAcute_2 [ J_1 [ n ] ] ∗ Z_1_muAcute_2 [ n ] ;

}
for (n in 1 :N) {

// add more terms to the l i n e a r p r e d i c t o r
muChronic [ n ] += r_2_muChronic_1 [ J_2 [ n ] ] ∗ Z_2_muChronic_1 [ n ] + r_2_muChronic_2 [ J_2 [ n ] ] ∗ Z_2_muChronic_2 [ n ] ;

}
for (n in 1 :N) {

// add more terms to the l i n e a r p r e d i c t o r
muT1MI[ n ] += r_3_muT1MI_1 [ J_3 [ n ] ] ∗ Z_3_muT1MI_1[ n ] + r_3_muT1MI_2 [ J_3 [ n ] ] ∗ Z_3_muT1MI_2[ n ] ;

}
for (n in 1 :N) {

// add more terms to the l i n e a r p r e d i c t o r
muT2MI[ n ] += r_4_muT2MI_1 [ J_4 [ n ] ] ∗ Z_4_muT2MI_1[ n ] + r_4_muT2MI_2 [ J_4 [ n ] ] ∗ Z_4_muT2MI_2[ n ] ;

}
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for (n in 1 :N) {
mu[ n ] = transpose ( [ muAcute [ n ] , muChronic [ n ] , 0 , muT1MI[ n ] , muT2MI[ n ] ] ) ;

}
for (n in 1 :N) {

target += categorical_logit_lpmf (Y[ n ] | mu[ n ] ) ;
}

}
// p r i o r s i n c l u d i n g a l l cons tan t s
target += student_t_lpdf (b_muAcute | 3 , 0 , 5 ) ;
target += student_t_lpdf ( b_muChronic | 3 , 0 , 5 ) ;
target += student_t_lpdf (b_muT1MI | 3 , 0 , 5 ) ;
target += student_t_lpdf (b_muT2MI | 3 , 0 , 5 ) ;
target += student_t_lpdf ( sd_1 | 3 , 0 , 2 . 5 )

− 2 ∗ student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
target += std_normal_lpdf ( to_vector (z_1 ) ) ;
target += lkj_corr_cholesky_lpdf (L_1 | 2 ) ;
target += student_t_lpdf ( sd_2 | 3 , 0 , 2 . 5 )

− 2 ∗ student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
target += std_normal_lpdf ( to_vector (z_2 ) ) ;
target += lkj_corr_cholesky_lpdf (L_2 | 2 ) ;
target += student_t_lpdf ( sd_3 | 3 , 0 , 2 . 5 )

− 2 ∗ student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
target += std_normal_lpdf ( to_vector (z_3 ) ) ;
target += lkj_corr_cholesky_lpdf (L_3 | 2 ) ;
target += student_t_lpdf ( sd_4 | 3 , 0 , 2 . 5 )

− 2 ∗ student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
target += std_normal_lpdf ( to_vector (z_4 ) ) ;
target += lkj_corr_cholesky_lpdf (L_4 | 2 ) ;

}
generated quantities {

// ac t ua l popu la t ion−l e v e l i n t e r c e p t
real b_muAcute_Intercept = Intercept_muAcute − dot_product(means_X_muAcute , b_muAcute ) ;
// ac t ua l popu la t ion−l e v e l i n t e r c e p t
real b_muChronic_Intercept = Intercept_muChronic − dot_product(means_X_muChronic , b_muChronic ) ;
// ac t ua l popu la t ion−l e v e l i n t e r c e p t
real b_muT1MI_Intercept = Intercept_muT1MI − dot_product(means_X_muT1MI, b_muT1MI) ;
// ac t ua l popu la t ion−l e v e l i n t e r c e p t
real b_muT2MI_Intercept = Intercept_muT2MI − dot_product(means_X_muT2MI, b_muT2MI) ;
// compute group−l e v e l c o r r e l a t i o n s
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corr_matrix [M_1] Cor_1 = multiply_lower_tri_self_transpose (L_1 ) ;
vector<lower=−1,upper=1>[NC_1] cor_1 ;
// compute group−l e v e l c o r r e l a t i o n s
corr_matrix [M_2] Cor_2 = multiply_lower_tri_self_transpose (L_2 ) ;
vector<lower=−1,upper=1>[NC_2] cor_2 ;
// compute group−l e v e l c o r r e l a t i o n s
corr_matrix [M_3] Cor_3 = multiply_lower_tri_self_transpose (L_3 ) ;
vector<lower=−1,upper=1>[NC_3] cor_3 ;
// compute group−l e v e l c o r r e l a t i o n s
corr_matrix [M_4] Cor_4 = multiply_lower_tri_self_transpose (L_4 ) ;
vector<lower=−1,upper=1>[NC_4] cor_4 ;
// e x t r a c t upper d iagona l o f c o r r e l a t i o n matrix
for ( k in 1 :M_1) {

for ( j in 1 : ( k − 1) ) {
cor_1 [ choose ( k − 1 , 2) + j ] = Cor_1 [ j , k ] ;

}
}
// e x t r a c t upper d iagona l o f c o r r e l a t i o n matrix
for ( k in 1 :M_2) {

for ( j in 1 : ( k − 1) ) {
cor_2 [ choose ( k − 1 , 2) + j ] = Cor_2 [ j , k ] ;

}
}
// e x t r a c t upper d iagona l o f c o r r e l a t i o n matrix
for ( k in 1 :M_3) {

for ( j in 1 : ( k − 1) ) {
cor_3 [ choose ( k − 1 , 2) + j ] = Cor_3 [ j , k ] ;

}
}
// e x t r a c t upper d iagona l o f c o r r e l a t i o n matrix
for ( k in 1 :M_4) {

for ( j in 1 : ( k − 1) ) {
cor_4 [ choose ( k − 1 , 2) + j ] = Cor_4 [ j , k ] ;

}
}

}

Listing 2: Stan code model 2

/ generated with brms 2 . 1 4 . 0
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f un c t i on s {
/∗ turn a vec to r in to a matrix o f de f ined dimension
∗ s t o r e s e lements in row major order
∗ Args :
∗ X: a vec to r
∗ N: f i r s t dimension o f the de s i r ed matrix
∗ K: second dimension o f the de s i r ed matrix
∗ Returns :
∗ a matrix o f dimension N x K
∗/

matrix as_matrix ( vec to r X, i n t N, i n t K) {
matrix [N, K] Y;
f o r ( i in 1 :N) {
Y[ i ] = to_row_vector (X[ ( ( i − 1) ∗ K + 1 ) : ( i ∗ K) ] ) ;

}
re turn Y;

}
/∗ compute c o r r e l a t e d group−l e v e l e f f e c t s
∗ Args :
∗ z : matrix o f unsca led group−l e v e l e f f e c t s
∗ SD: vec to r o f standard dev i a t i on parameters
∗ L : cho l e sky f a c t o r c o r r e l a t i o n matrix
∗ Returns :
∗ matrix o f s c a l ed group−l e v e l e f f e c t s
∗/
matrix scale_r_cor ( matrix z , vec to r SD, matrix L) {

// r i s s to r ed in another dimension order than z
re turn t ranspose ( diag_pre_multiply (SD, L) ∗ z ) ;

}
}
data {

int<lower=1> N; // t o t a l number o f ob s e rva t i on s
int<lower=1> N_CardiacOutcome ; // number o f ob s e rva t i on s
int<lower=2> ncat_CardiacOutcome ; // number o f c a t e g o r i e s
i n t Y_CardiacOutcome [ N_CardiacOutcome ] ; // re sponse va r i a b l e
int<lower=1> K_muAcute_CardiacOutcome ; // number o f populat ion−l e v e l e f f e c t s
matrix [ N_CardiacOutcome , K_muAcute_CardiacOutcome ] X_muAcute_CardiacOutcome ;

// populat ion−l e v e l des ign matrix
int<lower=1> Ksp_muAcute_CardiacOutcome ; // number o f s p e c i a l e f f e c t s terms
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int<lower=1> K_muChronic_CardiacOutcome ; // number o f populat ion−l e v e l e f f e c t s
matrix [ N_CardiacOutcome , K_muChronic_CardiacOutcome ] X_muChronic_CardiacOutcome ;

// populat ion−l e v e l des ign matrix
int<lower=1> Ksp_muChronic_CardiacOutcome ; // number o f s p e c i a l e f f e c t s terms
int<lower=1> K_muT1MI_CardiacOutcome ; // number o f populat ion−l e v e l e f f e c t s
matrix [ N_CardiacOutcome , K_muT1MI_CardiacOutcome ] X_muT1MI_CardiacOutcome ;

// populat ion−l e v e l des ign matrix
int<lower=1> Ksp_muT1MI_CardiacOutcome ; // number o f s p e c i a l e f f e c t s terms
int<lower=1> K_muT2MI_CardiacOutcome ; // number o f populat ion−l e v e l e f f e c t s
matrix [ N_CardiacOutcome , K_muT2MI_CardiacOutcome ] X_muT2MI_CardiacOutcome ;

// populat ion−l e v e l des ign matrix
int<lower=1> Ksp_muT2MI_CardiacOutcome ; // number o f s p e c i a l e f f e c t s terms
int<lower=1> N_TroponinDifference ; // number o f ob s e rva t i on s
vec to r [ N_TroponinDifference ] Y_TroponinDifference ; // re sponse va r i a b l e
int<lower=0> Nmi_TroponinDifference ; // number o f mi s s ings
int<lower=1> Jmi_TroponinDif ference [ Nmi_TroponinDifference ] ; // p o s i t i o n s o f mi s s ings
int<lower=1> K_TroponinDifference ; // number o f populat ion−l e v e l e f f e c t s
matrix [ N_TroponinDifference , K_TroponinDifference ] X_TroponinDifference ;

// populat ion−l e v e l des ign matrix
// data f o r group−l e v e l e f f e c t s o f ID 1
int<lower=1> N_1; // number o f grouping l e v e l s
int<lower=1> M_1; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J_1_CardiacOutcome [ N_CardiacOutcome ] ; // grouping i nd i c a t o r per obse rvat i on
// group−l e v e l p r ed i c t o r va lue s
vec to r [ N_CardiacOutcome ] Z_1_muAcute_CardiacOutcome_1 ;
vec to r [ N_CardiacOutcome ] Z_1_muAcute_CardiacOutcome_2 ;
int<lower=1> NC_1; // number o f group−l e v e l c o r r e l a t i o n s
// data f o r group−l e v e l e f f e c t s o f ID 2
int<lower=1> N_2; // number o f grouping l e v e l s
int<lower=1> M_2; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J_2_CardiacOutcome [ N_CardiacOutcome ] ; // grouping i nd i c a t o r per obse rvat i on
// group−l e v e l p r ed i c t o r va lue s
vec to r [ N_CardiacOutcome ] Z_2_muChronic_CardiacOutcome_1 ;
vec to r [ N_CardiacOutcome ] Z_2_muChronic_CardiacOutcome_2 ;
int<lower=1> NC_2; // number o f group−l e v e l c o r r e l a t i o n s
// data f o r group−l e v e l e f f e c t s o f ID 3
int<lower=1> N_3; // number o f grouping l e v e l s
int<lower=1> M_3; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J_3_CardiacOutcome [ N_CardiacOutcome ] ; // grouping i nd i c a t o r per obse rvat i on
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// group−l e v e l p r ed i c t o r va lue s
vec to r [ N_CardiacOutcome ] Z_3_muT1MI_CardiacOutcome_1 ;
vec to r [ N_CardiacOutcome ] Z_3_muT1MI_CardiacOutcome_2 ;
int<lower=1> NC_3; // number o f group−l e v e l c o r r e l a t i o n s
// data f o r group−l e v e l e f f e c t s o f ID 4
int<lower=1> N_4; // number o f grouping l e v e l s
int<lower=1> M_4; // number o f c o e f f i c i e n t s per l e v e l
int<lower=1> J_4_CardiacOutcome [ N_CardiacOutcome ] ; // grouping i nd i c a t o r per obse rvat i on
// group−l e v e l p r ed i c t o r va lue s
vec to r [ N_CardiacOutcome ] Z_4_muT2MI_CardiacOutcome_1 ;
vec to r [ N_CardiacOutcome ] Z_4_muT2MI_CardiacOutcome_2 ;
int<lower=1> NC_4; // number o f group−l e v e l c o r r e l a t i o n s
i n t pr ior_only ; // should the l i k e l i h o o d be ignored ?

}
transformed data {

i n t Kc_muAcute_CardiacOutcome = K_muAcute_CardiacOutcome − 1 ;
matrix [ N_CardiacOutcome , Kc_muAcute_CardiacOutcome ] Xc_muAcute_CardiacOutcome ;

// cente red ve r s i on o f X_muAcute_CardiacOutcome without an i n t e r c e p t
vec to r [ Kc_muAcute_CardiacOutcome ] means_X_muAcute_CardiacOutcome ; // column means o f X_muAcute_CardiacOutcome be f o r e c en t e r i ng
i n t Kc_muChronic_CardiacOutcome = K_muChronic_CardiacOutcome − 1 ;
matrix [ N_CardiacOutcome , Kc_muChronic_CardiacOutcome ] Xc_muChronic_CardiacOutcome ;

// cente red ve r s i on o f X_muChronic_CardiacOutcome without an i n t e r c e p t
vec to r [ Kc_muChronic_CardiacOutcome ] means_X_muChronic_CardiacOutcome ;

// column means o f X_muChronic_CardiacOutcome be f o r e c en t e r i ng
i n t Kc_muT1MI_CardiacOutcome = K_muT1MI_CardiacOutcome − 1 ;
matrix [ N_CardiacOutcome , Kc_muT1MI_CardiacOutcome ] Xc_muT1MI_CardiacOutcome ;

// cente red ve r s i on o f X_muT1MI_CardiacOutcome without an i n t e r c e p t
vec to r [ Kc_muT1MI_CardiacOutcome ] means_X_muT1MI_CardiacOutcome ; // column means o f X_muT1MI_CardiacOutcome be f o r e c en t e r i ng
i n t Kc_muT2MI_CardiacOutcome = K_muT2MI_CardiacOutcome − 1 ;
matrix [ N_CardiacOutcome , Kc_muT2MI_CardiacOutcome ] Xc_muT2MI_CardiacOutcome ;

// cente red ve r s i on o f X_muT2MI_CardiacOutcome without an i n t e r c e p t
vec to r [ Kc_muT2MI_CardiacOutcome ] means_X_muT2MI_CardiacOutcome ; // column means o f X_muT2MI_CardiacOutcome be f o r e c en t e r i ng
i n t Kc_TroponinDifference = K_TroponinDifference − 1 ;
matrix [ N_TroponinDifference , Kc_TroponinDifference ] Xc_TroponinDifference ;

// cente red ve r s i on o f X_TroponinDifference without an i n t e r c e p t
vec to r [ Kc_TroponinDifference ] means_X_TroponinDifference ; // column means o f X_TroponinDifference be f o r e c en t e r i ng
f o r ( i in 2 :K_muAcute_CardiacOutcome) {

means_X_muAcute_CardiacOutcome [ i − 1 ] = mean(X_muAcute_CardiacOutcome [ , i ] ) ;
Xc_muAcute_CardiacOutcome [ , i − 1 ] = X_muAcute_CardiacOutcome [ , i ] − means_X_muAcute_CardiacOutcome [ i − 1 ] ;
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}
f o r ( i in 2 : K_muChronic_CardiacOutcome ) {

means_X_muChronic_CardiacOutcome [ i − 1 ] = mean(X_muChronic_CardiacOutcome [ , i ] ) ;
Xc_muChronic_CardiacOutcome [ , i − 1 ] = X_muChronic_CardiacOutcome [ , i ] − means_X_muChronic_CardiacOutcome [ i − 1 ] ;

}
f o r ( i in 2 :K_muT1MI_CardiacOutcome) {

means_X_muT1MI_CardiacOutcome [ i − 1 ] = mean(X_muT1MI_CardiacOutcome [ , i ] ) ;
Xc_muT1MI_CardiacOutcome [ , i − 1 ] = X_muT1MI_CardiacOutcome [ , i ] − means_X_muT1MI_CardiacOutcome [ i − 1 ] ;

}
f o r ( i in 2 :K_muT2MI_CardiacOutcome) {

means_X_muT2MI_CardiacOutcome [ i − 1 ] = mean(X_muT2MI_CardiacOutcome [ , i ] ) ;
Xc_muT2MI_CardiacOutcome [ , i − 1 ] = X_muT2MI_CardiacOutcome [ , i ] − means_X_muT2MI_CardiacOutcome [ i − 1 ] ;

}
f o r ( i in 2 : K_TroponinDifference ) {

means_X_TroponinDifference [ i − 1 ] = mean( X_TroponinDifference [ , i ] ) ;
Xc_TroponinDifference [ , i − 1 ] = X_TroponinDifference [ , i ] − means_X_TroponinDifference [ i − 1 ] ;

}
}
parameters {

vec to r [ Kc_muAcute_CardiacOutcome ] b_muAcute_CardiacOutcome ; // populat ion−l e v e l e f f e c t s
r e a l Intercept_muAcute_CardiacOutcome ; // temporary i n t e r c e p t f o r cente red p r ed i c t o r s
vec to r [ Ksp_muAcute_CardiacOutcome ] bsp_muAcute_CardiacOutcome ; // s p e c i a l e f f e c t s c o e f f i c i e n t s
vec to r [ Kc_muChronic_CardiacOutcome ] b_muChronic_CardiacOutcome ; // populat ion−l e v e l e f f e c t s
r e a l Intercept_muChronic_CardiacOutcome ; // temporary i n t e r c e p t f o r cente red p r ed i c t o r s
vec to r [ Ksp_muChronic_CardiacOutcome ] bsp_muChronic_CardiacOutcome ; // s p e c i a l e f f e c t s c o e f f i c i e n t s
vec to r [ Kc_muT1MI_CardiacOutcome ] b_muT1MI_CardiacOutcome ; // populat ion−l e v e l e f f e c t s
r e a l Intercept_muT1MI_CardiacOutcome ; // temporary i n t e r c e p t f o r cente red p r ed i c t o r s
vec to r [ Ksp_muT1MI_CardiacOutcome ] bsp_muT1MI_CardiacOutcome ; // s p e c i a l e f f e c t s c o e f f i c i e n t s
vec to r [ Kc_muT2MI_CardiacOutcome ] b_muT2MI_CardiacOutcome ; // populat ion−l e v e l e f f e c t s
r e a l Intercept_muT2MI_CardiacOutcome ; // temporary i n t e r c e p t f o r cente red p r ed i c t o r s
vec to r [ Ksp_muT2MI_CardiacOutcome ] bsp_muT2MI_CardiacOutcome ; // s p e c i a l e f f e c t s c o e f f i c i e n t s
vec to r [ Nmi_TroponinDifference ] Ymi_TroponinDifference ; // est imated mis s ings
vec to r [ Kc_TroponinDifference ] b_TroponinDif ference ; // populat ion−l e v e l e f f e c t s
r e a l Inte rcept_Tropon inDi f f e rence ; // temporary i n t e r c e p t f o r cente red p r ed i c t o r s
r ea l <lower=0> sigma_TroponinDif ference ; // r e s i d u a l SD
vector<lower=0>[M_1] sd_1 ; // group−l e v e l standard dev i a t i on s
matrix [M_1, N_1] z_1 ; // s tandard i zed group−l e v e l e f f e c t s
cho lesky_factor_corr [M_1] L_1 ; // cho l e sky f a c t o r o f c o r r e l a t i o n matrix
vector<lower=0>[M_2] sd_2 ; // group−l e v e l standard dev i a t i on s
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matrix [M_2, N_2] z_2 ; // s tandard i zed group−l e v e l e f f e c t s
cho lesky_factor_corr [M_2] L_2 ; // cho l e sky f a c t o r o f c o r r e l a t i o n matrix
vector<lower=0>[M_3] sd_3 ; // group−l e v e l standard dev i a t i on s
matrix [M_3, N_3] z_3 ; // s tandard i zed group−l e v e l e f f e c t s
cho lesky_factor_corr [M_3] L_3 ; // cho l e sky f a c t o r o f c o r r e l a t i o n matrix
vector<lower=0>[M_4] sd_4 ; // group−l e v e l standard dev i a t i on s
matrix [M_4, N_4] z_4 ; // s tandard i zed group−l e v e l e f f e c t s
cho lesky_factor_corr [M_4] L_4 ; // cho l e sky f a c t o r o f c o r r e l a t i o n matrix

}
transformed parameters {

matrix [N_1, M_1] r_1 ; // ac tua l group−l e v e l e f f e c t s
// us ing ve c t o r s speeds up index ing in loops
vec to r [N_1] r_1_muAcute_CardiacOutcome_1 ;
vec to r [N_1] r_1_muAcute_CardiacOutcome_2 ;
matrix [N_2, M_2] r_2 ; // ac tua l group−l e v e l e f f e c t s
// us ing ve c t o r s speeds up index ing in loops
vec to r [N_2] r_2_muChronic_CardiacOutcome_1 ;
vec to r [N_2] r_2_muChronic_CardiacOutcome_2 ;
matrix [N_3, M_3] r_3 ; // ac tua l group−l e v e l e f f e c t s
// us ing ve c t o r s speeds up index ing in loops
vec to r [N_3] r_3_muT1MI_CardiacOutcome_1 ;
vec to r [N_3] r_3_muT1MI_CardiacOutcome_2 ;
matrix [N_4, M_4] r_4 ; // ac tua l group−l e v e l e f f e c t s
// us ing ve c t o r s speeds up index ing in loops
vec to r [N_4] r_4_muT2MI_CardiacOutcome_1 ;
vec to r [N_4] r_4_muT2MI_CardiacOutcome_2 ;
// compute ac tua l group−l e v e l e f f e c t s
r_1 = scale_r_cor (z_1 , sd_1 , L_1 ) ;
r_1_muAcute_CardiacOutcome_1 = r_1 [ , 1 ] ;
r_1_muAcute_CardiacOutcome_2 = r_1 [ , 2 ] ;
// compute ac tua l group−l e v e l e f f e c t s
r_2 = scale_r_cor (z_2 , sd_2 , L_2 ) ;
r_2_muChronic_CardiacOutcome_1 = r_2 [ , 1 ] ;
r_2_muChronic_CardiacOutcome_2 = r_2 [ , 2 ] ;
// compute ac tua l group−l e v e l e f f e c t s
r_3 = scale_r_cor (z_3 , sd_3 , L_3 ) ;
r_3_muT1MI_CardiacOutcome_1 = r_3 [ , 1 ] ;
r_3_muT1MI_CardiacOutcome_2 = r_3 [ , 2 ] ;
// compute ac tua l group−l e v e l e f f e c t s
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r_4 = scale_r_cor (z_4 , sd_4 , L_4 ) ;
r_4_muT2MI_CardiacOutcome_1 = r_4 [ , 1 ] ;
r_4_muT2MI_CardiacOutcome_2 = r_4 [ , 2 ] ;

}
model {

// l i k e l i h o o d in c l ud ing a l l cons tant s
i f ( ! pr ior_only ) {

// vec to r combining observed and miss ing r e sponse s
vec to r [ N_TroponinDifference ] Yl_TroponinDif ference = Y_TroponinDifference ;
// i n i t i a l i z e l i n e a r p r ed i c t o r term
vecto r [ N_CardiacOutcome ] muAcute_CardiacOutcome = Intercept_muAcute_CardiacOutcome + Xc_muAcute_CardiacOutcome ∗ b_muAcute_CardiacOutcome ;
// i n i t i a l i z e l i n e a r p r ed i c t o r term
vecto r [ N_CardiacOutcome ] muChronic_CardiacOutcome = Intercept_muChronic_CardiacOutcome + Xc_muChronic_CardiacOutcome ∗ b_muChronic_CardiacOutcome ;
// i n i t i a l i z e l i n e a r p r ed i c t o r term
vecto r [ N_CardiacOutcome ] muT1MI_CardiacOutcome = Intercept_muT1MI_CardiacOutcome + Xc_muT1MI_CardiacOutcome ∗ b_muT1MI_CardiacOutcome ;
// i n i t i a l i z e l i n e a r p r ed i c t o r term
vecto r [ N_CardiacOutcome ] muT2MI_CardiacOutcome = Intercept_muT2MI_CardiacOutcome + Xc_muT2MI_CardiacOutcome ∗ b_muT2MI_CardiacOutcome ;
// l i n e a r p r ed i c t o r matrix
vec to r [ ncat_CardiacOutcome ] mu_CardiacOutcome [ N_CardiacOutcome ] ;
// i n i t i a l i z e l i n e a r p r ed i c t o r term
vecto r [ N_TroponinDifference ] mu_TroponinDifference = Intercept_Tropon inDi f f e rence + Xc_TroponinDifference ∗ b_TroponinDif ference ;
Yl_TroponinDif ference [ Jmi_TroponinDif ference ] = Ymi_TroponinDifference ;
f o r (n in 1 : N_CardiacOutcome ) {

// add more terms to the l i n e a r p r ed i c t o r
muAcute_CardiacOutcome [ n ] += (bsp_muAcute_CardiacOutcome [ 1 ] ) ∗ Yl_TroponinDif ference [ n ] + r_1_muAcute_CardiacOutcome_1 [ J_1_CardiacOutcome [ n ] ] ∗ Z_1_muAcute_CardiacOutcome_1 [ n ] + r_1_muAcute_CardiacOutcome_2 [ J_1_CardiacOutcome [ n ] ] ∗ Z_1_muAcute_CardiacOutcome_2 [ n ] ;

}
f o r (n in 1 : N_CardiacOutcome ) {

// add more terms to the l i n e a r p r ed i c t o r
muChronic_CardiacOutcome [ n ] += (bsp_muChronic_CardiacOutcome [ 1 ] ) ∗ Yl_TroponinDif ference [ n ] + r_2_muChronic_CardiacOutcome_1 [ J_2_CardiacOutcome [ n ] ] ∗ Z_2_muChronic_CardiacOutcome_1 [ n ] + r_2_muChronic_CardiacOutcome_2 [ J_2_CardiacOutcome [ n ] ] ∗ Z_2_muChronic_CardiacOutcome_2 [ n ] ;

}
f o r (n in 1 : N_CardiacOutcome ) {

// add more terms to the l i n e a r p r ed i c t o r
muT1MI_CardiacOutcome [ n ] += (bsp_muT1MI_CardiacOutcome [ 1 ] ) ∗ Yl_TroponinDif ference [ n ] + r_3_muT1MI_CardiacOutcome_1 [ J_3_CardiacOutcome [ n ] ] ∗ Z_3_muT1MI_CardiacOutcome_1 [ n ] + r_3_muT1MI_CardiacOutcome_2 [ J_3_CardiacOutcome [ n ] ] ∗ Z_3_muT1MI_CardiacOutcome_2 [ n ] ;

}
f o r (n in 1 : N_CardiacOutcome ) {

// add more terms to the l i n e a r p r ed i c t o r
muT2MI_CardiacOutcome [ n ] += (bsp_muT2MI_CardiacOutcome [ 1 ] ) ∗ Yl_TroponinDif ference [ n ] + r_4_muT2MI_CardiacOutcome_1 [ J_4_CardiacOutcome [ n ] ] ∗ Z_4_muT2MI_CardiacOutcome_1 [ n ] + r_4_muT2MI_CardiacOutcome_2 [ J_4_CardiacOutcome [ n ] ] ∗ Z_4_muT2MI_CardiacOutcome_2 [ n ] ;

}
f o r (n in 1 : N_CardiacOutcome ) {
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mu_CardiacOutcome [ n ] = transpose ( [ muAcute_CardiacOutcome [ n ] , muChronic_CardiacOutcome [ n ] , 0 , muT1MI_CardiacOutcome [ n ] , muT2MI_CardiacOutcome [ n ] ] ) ;
}
f o r (n in 1 : N_CardiacOutcome ) {

t a r g e t += catego r i ca l_ log i t_ lpmf (Y_CardiacOutcome [ n ] | mu_CardiacOutcome [ n ] ) ;
}
t a r g e t += normal_lpdf ( Yl_TroponinDif ference | mu_TroponinDifference , s igma_TroponinDif ference ) ;

}
// p r i o r s i n c l ud ing a l l cons tant s
t a r g e t += student_t_lpdf ( b_muAcute_CardiacOutcome | 3 , 0 , 5 ) ;
t a r g e t += student_t_lpdf ( bsp_muAcute_CardiacOutcome | 3 , 0 , 5 ) ;
t a r g e t += student_t_lpdf ( b_muChronic_CardiacOutcome | 3 , 0 , 5 ) ;
t a r g e t += student_t_lpdf ( bsp_muChronic_CardiacOutcome | 3 , 0 , 5 ) ;
t a r g e t += student_t_lpdf (b_muT1MI_CardiacOutcome | 3 , 0 , 5 ) ;
t a r g e t += student_t_lpdf (bsp_muT1MI_CardiacOutcome | 3 , 0 , 5 ) ;
t a r g e t += student_t_lpdf (b_muT2MI_CardiacOutcome | 3 , 0 , 5 ) ;
t a r g e t += student_t_lpdf (bsp_muT2MI_CardiacOutcome | 3 , 0 , 5 ) ;
t a r g e t += student_t_lpdf ( b_TroponinDif ference | 3 , 0 , 5 ) ;
t a r g e t += student_t_lpdf ( s igma_TroponinDif ference | 3 , 0 , 2 . 5 )

− 1 ∗ student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += student_t_lpdf ( sd_1 | 3 , 0 , 2 . 5 )

− 2 ∗ student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += std_normal_lpdf ( to_vector (z_1 ) ) ;
t a r g e t += lkj_corr_cholesky_lpdf (L_1 | 2 ) ;
t a r g e t += student_t_lpdf ( sd_2 | 3 , 0 , 2 . 5 )

− 2 ∗ student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += std_normal_lpdf ( to_vector (z_2 ) ) ;
t a r g e t += lkj_corr_cholesky_lpdf (L_2 | 2 ) ;
t a r g e t += student_t_lpdf ( sd_3 | 3 , 0 , 2 . 5 )

− 2 ∗ student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += std_normal_lpdf ( to_vector (z_3 ) ) ;
t a r g e t += lkj_corr_cholesky_lpdf (L_3 | 2 ) ;
t a r g e t += student_t_lpdf ( sd_4 | 3 , 0 , 2 . 5 )

− 2 ∗ student_t_lccdf (0 | 3 , 0 , 2 . 5 ) ;
t a r g e t += std_normal_lpdf ( to_vector (z_4 ) ) ;
t a r g e t += lkj_corr_cholesky_lpdf (L_4 | 2 ) ;

}
generated quan t i t i e s {

// ac tua l populat ion−l e v e l i n t e r c e p t
r e a l b_muAcute_CardiacOutcome_Intercept = Intercept_muAcute_CardiacOutcome − dot_product (means_X_muAcute_CardiacOutcome , b_muAcute_CardiacOutcome ) ;
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// ac tua l populat ion−l e v e l i n t e r c e p t
r e a l b_muChronic_CardiacOutcome_Intercept = Intercept_muChronic_CardiacOutcome − dot_product (means_X_muChronic_CardiacOutcome , b_muChronic_CardiacOutcome ) ;
// ac tua l populat ion−l e v e l i n t e r c e p t
r e a l b_muT1MI_CardiacOutcome_Intercept = Intercept_muT1MI_CardiacOutcome − dot_product (means_X_muT1MI_CardiacOutcome , b_muT1MI_CardiacOutcome ) ;
// ac tua l populat ion−l e v e l i n t e r c e p t
r e a l b_muT2MI_CardiacOutcome_Intercept = Intercept_muT2MI_CardiacOutcome − dot_product (means_X_muT2MI_CardiacOutcome , b_muT2MI_CardiacOutcome ) ;
// ac tua l populat ion−l e v e l i n t e r c e p t
r e a l b_TroponinDif ference_Intercept = Intercept_Tropon inDi f f e rence − dot_product (means_X_TroponinDifference , b_TroponinDif ference ) ;
// compute group−l e v e l c o r r e l a t i o n s
corr_matrix [M_1] Cor_1 = mult ip ly_lower_tr i_se l f_transpose (L_1 ) ;
vector<lower=−1,upper=1>[NC_1] cor_1 ;
// compute group−l e v e l c o r r e l a t i o n s
corr_matrix [M_2] Cor_2 = mult ip ly_lower_tr i_se l f_transpose (L_2 ) ;
vector<lower=−1,upper=1>[NC_2] cor_2 ;
// compute group−l e v e l c o r r e l a t i o n s
corr_matrix [M_3] Cor_3 = mult ip ly_lower_tr i_se l f_transpose (L_3 ) ;
vector<lower=−1,upper=1>[NC_3] cor_3 ;
// compute group−l e v e l c o r r e l a t i o n s
corr_matrix [M_4] Cor_4 = mult ip ly_lower_tr i_se l f_transpose (L_4 ) ;
vector<lower=−1,upper=1>[NC_4] cor_4 ;
// ex t r a c t upper d iagona l o f c o r r e l a t i o n matrix
f o r ( k in 1 :M_1) {

f o r ( j in 1 : ( k − 1) ) {
cor_1 [ choose ( k − 1 , 2) + j ] = Cor_1 [ j , k ] ;

}
}
// ex t r a c t upper d iagona l o f c o r r e l a t i o n matrix
f o r ( k in 1 :M_2) {

f o r ( j in 1 : ( k − 1) ) {
cor_2 [ choose ( k − 1 , 2) + j ] = Cor_2 [ j , k ] ;

}
}
// ex t r a c t upper d iagona l o f c o r r e l a t i o n matrix
f o r ( k in 1 :M_3) {

f o r ( j in 1 : ( k − 1) ) {
cor_3 [ choose ( k − 1 , 2) + j ] = Cor_3 [ j , k ] ;

}
}
// ex t r a c t upper d iagona l o f c o r r e l a t i o n matrix
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f o r ( k in 1 :M_4) {
f o r ( j in 1 : ( k − 1) ) {

cor_4 [ choose ( k − 1 , 2) + j ] = Cor_4 [ j , k ] ;
}

}
}
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