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Abstract

This paper discusses the modelling of the leverage effect in financial returns. The leverage effect is a

well-known feature in financial returns, but the cause remains unclear, and a clear explanation is absent.

The general assumption is that volatility shocks depend on past return shocks; we argue that both the

timing and causality of this assumption are wrong. Firstly, it makes more sense to model the leverage

effect contemporaneously, as we do not expect the financial market to react with a delay. Second, it is well

known that the price and return of an asset depend on its risk. Therefore, we model the return shock as a

function of the volatility shock instead of the contrary. With an extensive simulation study, we show that,

while return shocks do not seem to be a function of volatility shocks, there is also evidence against the

traditional modelling of the leverage effect. Finally, we estimate various stochastic volatility models, and

other types of state-space models, using both the new Bellman filter by Lange (2020) and the extended

particle filter by Malik and Pitt (2011). We show that the Bellman filter performs almost as well as the

particle filter while being much faster.

Keywords — volatility, stochastic volatility, leverage effect, state-space models, Bellman filter,

particle filter
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1 Introduction

Stochastic volatility models are widely used to describe the return and volatility process of finan-

cial returns. Stochastic volatility models allow independent innovations to both the returns and

the log-volatility process, giving it an advantage over the famous ARCH models, where volatility

is solely a function of past returns. First introduced in the seminal work of Taylor (1986), more

sophisticated extensions to the stochastic volatility model are introduced, including the so called

’leverage effect’.

The leverage effect is widely defined as the asymmetric reaction of volatility to positive and

negative returns. The timing of this effect is a subject of debate. For example, Jacquier et al.

(2004) model this effect contemporaneously, while Harvey and Shephard (1996) suggest an inter-

temporal leverage effect. This has lead to Yu (2005) and Catania (2020) incorporating both

contemporaneous and inter-temporal leverage. Nonetheless, the inter-temporal specification is

still the most used model in the literature. Using the inter-temporal specification seems counter

intuitive, as financial markets these days are assumed to be highly efficient in the processing

of information. One of the reasons that the inter-temporal model is often preferred is due to

the characteristics of the contemporaneous model. Namely, financial returns turn out to be

autocorrelated in the contemporaneous specification. This paper investigates whether it is correct

to model the leverage effect inter-temporal or if this should be adjusted.

When modelling multiple leverage effects, Yu (2005) and Catania (2020) assume volatility

shocks are partly explained by past and present return shocks. Catania (2020) shows that 70%

to 90% of the volatility shocks of major index returns are explained by past and present return

shocks. We argue that this does not seem reasonable and think that volatility shocks should

contain mainly new information. To investigate this, we introduce a new model where volatility

shocks are completely independent and return shocks are partly explained by present and future

volatility shocks.

As stochastic volatility models consist of the observed financial returns and the non-observed

volatility process, we can present them as state-space models. Still, the estimation of the stochas-

tic volatility models is nonstandard. Due to the nonlinear relation between the volatility and

observation, the regular Kalman filter cannot be used. As a solution, Harvey and Shephard

(1996) suggested using log-squared returns and estimating the models with quasi maximum like-

lihood. Many simulated based methods also have been proposed. In this paper, we use one of

these simulation methods, namely the extension of the particle filter by Malik and Pitt (2011).

Furthermore, we use the new Bellman filter introduced by Lange (2020), a quick non-simulation-
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based method, but rather based on dynamic programming, for filtering and estimating nonlinear

and/or non-Gaussian state-space methods.

In our empirical application, we find that the leverage effect is more likely to be inter-temporal

rather than contemporaneous. However, including both contemporaneous and inter-temporal

leverage leads to the best volatility predictions. Comparing the empirical results to an extensive

simulation study shows that the classic model specification is not entirely correct, and that

the leverage structure of financial returns is different than what the stochastic volatility models

assume. Suggesting that it would be better to model the leverage effect in a completely different

way.

Furthermore, we find that the new Bellman filter by Lange (2020) can quickly and efficiently

estimate both stochastic volatility models and other state-space models. Thus, the Bellman filter

is an innovative way to model nonlinear/non-Gaussian state-space model without relying on the

computationally intensive simulation-based methods.

The remainder of this paper is structured as follows. In Section 2, we discuss the stochastic

volatility models that are present in literature and present our new way of modelling the leverage

effect. In Section 3, we review three methods to filter and estimate state-space models. Section

4 presents the estimators of our sophisticated stochastic volatility models and an extensive sim-

ulation study on the performance of these models. In Section 5, we apply the methodology to

empirical data, and Section 6 concludes.

2 Stochastic volatility models

The class of stochastic volatility models has its roots in mathematical finance and financial econo-

metrics. Several stochastic volatility models originated from researching different issues. Clark

(1973) modelled asset returns as a function of the random process of information arrival, which

generated an asset return model with time-varying volatility. Tauchen and Pitts (1983) continued

by using a mixture of distributions model of asset returns with temporal dependence on informa-

tion arrival. Hull and White (1987) introduced a stochastic volatility model to price European

options assuming continuous-time stochastic volatility models for the underlying asset. In the

seminal work of Taylor (1986), the research in stochastic volatility models as used in this paper

began. Taylor (1986) formulated a discrete-time stochastic volatility model as an alternative

to Autoregressive Conditional Heteroskedasticity (ARCH) models. This section presents this

stochastic volatility model, and shows how this model has led to many extensions incorporating

the so called ’leverage effect’. Then, we introduce a new way of incorporating this leverage effect
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into a stochastic volatility model.

2.1 Classic stochastic volatility model

Taylor (1986) introduced the stochastic volatility model as an alternative for the ARCH models.

Discrete-time ARCH models are time series models that describe the volatility of the current

return shock as a function of previous shocks. ARCH models originated in the seminal paper by

Engle (1982) and were continued by Bollerslev (1986). In ARCH models, the process of volatility

is fully explained by past and current financial returns, and thus both the financial returns

and the volatility are subject to the same error term. The usefulness of ARCH models is that

they do display conditional heteroskedasticity, something very much present in financial returns,

and that the likelihood can easily be evaluated, such that ARCH models are straightforward to

estimate. These reasons have led to the ARCH models being very popular and widely used.

However, the major drawback of ARCH models is that the conditional volatility depends on past

returns and does not itself incorporate any new information. A stochastic volatility model has

this characteristic, as both the volatility and the returns follow their own stochastic process.

Research has shown that this does lead to a better model specification. For example, Kim et al.

(1998) provide evidence of better in-sample-fit of the basic stochastic volatility model relative to

ARCH-type models. The standard stochastic volatility model is given by:

yt = exp

{
ht
2

}
εt, εt

iid∼ N (0, 1),

ht = c+ φht−1 + σnηt, ηt
iid∼ N (0, 1).

(1)

The time series yt is the return of a financial asset and has standard Gaussian distributed shocks.

As the expectation of the shock εt is zero, the expectation of the returns E[yt] is also zero. The

conditional volatility of the financial return is given by V ar(yt|ht) = σ2
yt = exp(ht). Thus, variable

ht is the log-volatility. Modelling the volatility process as log-volatility ensures that the volatility,

and therefore the variance of yt, is always positive. In the model, σn > 0 and |φ| < 1 control

for the variance and persistence of the volatility process, respectively. Furthermore, unrestricted

parameter c controls for the level of the volatility process.1 2 The unconditional distribution of

the log-volatility is Gaussian with mean c
1−φ and variance σ2

n
1−φ2 , ht ∼ N ( c

1−φ ,
σ2
n

1−φ2 ). 3 Inference

and prediction of the model is nonstandard and was troublesome for some time, as the likelihood

can not be evaluated analytically. Due to the nonlinearity of the model, the Kalman filter

1An alternative and interchangeable way of presenting the volatility model is using parameter β in the return
equation controlling for the level of the log-volatility process.

2The definitions and restrictions for these parameters apply for all stochastic volatility models presented in this
paper

3These are the unconditional mean and variance of a standard AR(1) model.



4 Is the leverage effect modelled correctly? May 1, 2021

(Kalman (1960) could not be used. Taylor (1986) and Melino and Turnbull (1990) estimated the

model using the method of moments (MM), to avoid the integration problems associated with

evaluating the likelihood exactly. However, MM may be inefficient relative to a likelihood-based

method (Pearson, 1936). Nelson (1988), Harvey et al. (1994), and Ruiz (1994) suggested using the

Kalman filter after taking log-squares of the returns, after which the model can be estimated with

quasi-maximum likelihood (QML). Since then, new methods have been introduced. For example,

computationally intensive simulation-based methods using Bayesian analysis as in Jacquier et al.

(2002) or particle filtering (Gordon et al., 1993). As these methods are computationally very

intensive, the QML estimator via the Kalman filter is still a commonly used method. In this

paper, we show that the new Bellman filter by Lange (2020) can quickly estimate the stochastic

volatility model while not relying on any data transformations.

2.2 The financial leverage effect

The financial leverage effect is the asymmetric reaction of volatility to negative and positive

financial returns. Specifically, it is often observed that volatility increases after negative financial

returns. The leverage effect is an important and well-documented empirical feature in many

financial time series. See, for example, Black (1976), Christie (1982), Nelson (1991), and Engle

and Ng (1993). Hull and White (1987) show that option prices could be substantially biased

when the leverage effect is not incorporated in a stochastic volatility model. A widely accepted

explanation for the leverage effect is that bad news, which reduces the price (a negative return)

and therefore increases the debt-to-equity (DE, also called financial leverage), makes the firm

riskier and therefore increases future expected volatility. Nelson (1991) and Glosten et al. (1993)

introduced this effect in the ARCH literature, by modelling the conditional variance as not only

a function of the size, but also as a function of the sign of the previous return. Harvey and

Shephard (1996) were the first to incorporate the leverage effect in a stochastic volatility model.

While many models have since incorporated the leverage effect, the exact interpretation re-

mains a topic for debate. Figlewski and Wang (2000) find, among other anomalies, that there

is no effect on volatility when a firm changes its debt-to-equity ratio by a change in outstanding

debt or shares. Furthermore, Hasanhodzic and Lo (2011) show that the leverage effect is also

present, and at least as strong, for firms that are fully financed by equity. Thus, while there is

sometimes a link between financial leverage and the leverage effect, there is not enough proof to

assume causality. Alternative economic interpretations have been suggested. French et al. (1987)

and Campbell and Hentschel (1992) suggest that an anticipated increase in volatility requires a

higher rate of return from an asset, which can only be produced by a fall in the asset price. They
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suggest that the volatility affects the returns and not the other way around. Something that we

theoretically agree on.

Despite the questionable causality of the leverage effect, it is agreed that there is indeed a

link between (negative) returns and (increased) volatility, and the leverage effect is present in

most sophisticated stochastic volatility models. Below, we discuss the different ways in which the

leverage effect is incorporated in a stochastic volatility model and introduce a new way of doing

this.

2.3 Stochastic volatility models with leverage

Harvey and Shephard (1996) were the first to model the leverage effect in a stochastic volatility

model by assuming a correlated structure between the current return shock and future volatility

shock:  εt

ηt+1

 ∼ N

0

0

 ,

 1 ρ1

ρ1 1

 . (2)

Here, we have an inter-temporal dependence between the return and volatility shocks. The

shocks are multivariate normally distributed. With the well known conditional distribution of

multivariate normally distributed variables, we can easily derive the conditional distribution of

ηt+1, which is given by ηt+1|εt ∼ N (ρ1εt, 1−ρ2
1). We can write this as ηt+1 = ρ1εt+

√
1− ρ2

1bt+1,

where bt+1 is normally distributed with mean 0 and variance 1, bt+1 ∼ N (0, 1). Writing this in

our model notation gives the inter-temporal leverage stochastic volatility model:

yt = exp

{
ht
2

}
εt, εt

iid∼ N (0, 1),

ht = c+ φht−1 + σnηt,

ηt = ρ1εt−1 +
√

1− ρ2
1bt, bt

iid∼ N (0, 1).

(3)

As before, the log-volatility is (unconditionally) normally distributed with mean c
1−φ and variance

σ2
n

1−φ2 , ht ∼ N ( c
1−φ ,

σ2
n

1−φ2 ). The expectation of tomorrow’s return is given by:

E[yt+1|It] = E

[
exp

{
ht+1

2

}
εt+1

∣∣∣∣∣It
]

= E

[
exp

{
c+ φht + σn(ρ1εt +

√
1− ρ2

1bt+1)

2

}
εt+1

∣∣∣∣∣It
]

= exp

{
c+ φht

2

}
exp

{σnρ1εt
2

}
E

[
exp

{
σn
√

1− ρ2
1bt+1

2

}∣∣∣∣∣It
]
E

[
εt+1

∣∣∣∣∣It
]

= 0.

(4)
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Furthermore, it can easily be seen that the expected future volatility is affected by today’s return:

E[ht+1|yt, ht] = E

[
c+ φht + σn

(
ρ1εt +

√
1− ρ2

1bt+1

) ∣∣∣yt] = c+ φht + σnρ1E[εt|yt, ht] (5)

However, as the log-volatility ht is never actually observed, we take the expectation of future

volatility conditional only on today’s return:

E[ht+1|yt] = c+ φ
c

1− φ
+ σnρ1ytE

[
exp

{
−ht

2

}]
= c+ φ

c

1− φ
+ σnρ1yt exp

{
c

2(1− φ)
+

σ2
n

8(1− φ2)

}
.

(6)

Here we use that we can write εt = yt exp
{−ht

2

}
and that the unconditional distribution of the

log-volatility is given byht ∼ N ( c
1−φ ,

σ2
n

1−φ2 ). In this expression, the expectation of volatility is

a linear function in yt. If ρ1 < 0, a negative return yt leads to a higher expected volatility

E[ht+1|yt]. If we define the leverage effect as an increase in volatility due to a negative return,

the leverage effect is clearly present here as long as ρ1 < 0. Harvey and Shephard (1996) estimate

this model with QML using the Kalman filter, after transforming the returns and by conditioning

on the signal of the return. Omori et al. (2007) estimate the model using Bayesian inference.

These authors find, as many authors that followed them in using this model, a significant negative

relation ρ1 when applied to returns of stock indices.

Jacquier et al. (2004) were the first to assume a contemporaneous relation between the shocks.

Instead of modelling an inter-temporal relation they assumed a correlation between the current

return shock and the current volatility shock:

εt
ηt

 ∼ N

0

0

 ,

 1 ρ0

ρ0 1

 . (7)

Again, the shocks are multivariate normally distributed. We write the conditional distribution

of ηt as ηt = ρ0εt +
√

1− ρ2
0ξt, where bt is normally distributed with mean 0 and variance 1,

bt ∼ N (0, 1). Writing this in our model notation gives:

yt = exp

{
ht
2

}
εt, εt

iid∼ N (0, 1),

ht = c+ φht−1 + σnηt,

ηt = ρ0εt +
√

1− ρ2
0bt, bt

iid∼ N (0, 1).

(8)

The log-volatility is again (unconditionally) normally distributed with mean c
1−φ and variance

σ2
n

1−φ2 , ht ∼ N ( c
1−φ ,

σ2
n

1−φ2 ). Yu (2005) shows that the expectation of tomorrow’s return is given
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by:

E[yt+1|yt, ht] = E

[
exp

{
ht+1

2

}
εt+1

∣∣∣∣∣It
]

= E

[
exp

{
c+ φht + σn(ρ0εt+1 +

√
1− ρ2

0bt+1)

2

}
εt+1

∣∣∣∣∣yt, ht
]

= exp

{
c+ φht

2

}
exp

{
σ2
n

8

}
1

2
σnρ0,

(9)

which is not equal to zero. Noting that the log-volatility is not observable, tomorrow’s expected

return conditional on today’s expected return is equal to:

E[yt+1|yt] = E[E[yt+1|yt, ht]] = E

[
1

2
σnρ0 exp

{
c+ φht

2

}
exp

{
σ2
n

8

}]
=

1

2
ρ0σn exp

{
2− φ
2− 2φ

c+
2− φ2

8− 8φ2
σ2
n

}
,

(10)

which is different from zero unless there is no contemporaneous leverage effect (ρ0 = 0). Following

the efficient market hypothesis, which states that a share price should reflect all information, it is

argued that expected returns should be zero. This problematic feature in the contemporaneous

leverage model was first argued by Harvey and Shephard (1996), who therefore modelled the

leverage effect as inter-temporal. Also, this contemporaneous relation leads to autocorrelated

returns (Catania, 2020) and a negative relation between returns and stochastic volatility as in

Equation (5) can not be derived. Due to these reasons, the stochastic volatility model in (3) with

inter-temporal leverage is more frequently used. However, this model is still used occasionally

in literature, as Jacquier et al. (2004) and others find a significant correlation ρ0 between the

contemporaneous return shock εt and volatility shock ηt.

2.4 Stochastic volatility models with multiple leverage effects

Due to the inconsistency with the efficient market hypothesis, the stochastic volatility model

with contemporaneous leverage is less accepted in literature than the model with inter-temporal

leverage. However, the inter-temporal model indicates that there is a delay in the response of

log-volatility to information in the returns. Intuitively, it would make more sense if volatility was

to react immediately to new information becoming available from a return shock. Research into

both models led to significant relations ρ0 and ρ1 between the return shock and the volatility

shocks, which lead to a combination of the two models. Yu (2005) was the first to combine the
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contemporaneous and inter-temporal leverage models. We write this model in our notation as:

yt = exp

{
ht
2

}
εt, εt

iid∼ N (0, 1),

ht = c+ φht−1 + σnηt,

ηt = ρ0εt + ρ1εt−1 +
√

1− ρ2
0 − ρ2

1bt, bt
iid∼ N (0, 1).

(11)

Yu (2005) estimated this model using Bayesian inference, finding negative values for both cor-

relation parameters. To do so, he rewrites the model using the following nonlinear state-space

form:

yt =
exp

{
ht
2

}
σn(1 + ρ0ρ1)

(ρ0(ht − c− φht−1) + ρ1(ht+1 − c− φht)) + exp

{
ht
2

}√
1− ρ2

0 + ρ2
1

1 + ρ0ρ1
zt,

ht+1 = φht + ρ0ρ1(ht − φht−1) + σn

√
1− ρ2

0ρ
2
1ut+1.

(12)

Catania (2020) notes that this representation is correct but cannot be used for a Markov chain

Monte Carlo (MCMC) sampler, as he argues error terms are not uncorrelated but instead are

MA(2) processes. We agree with this conclusion but add that this representation is not correct.

Yu (2005) notes that the volatility shocks are correlated in this model, as E(ηtηt+1) = E((ρ0εt +

ρ1εt−1 +
√

1− ρ2
0 − ρ2

1bt)(ρ0εt+1 +ρ1εt+
√

1− ρ2
0 − ρ2

1bt)) = ρ0ρ1. We can write the multivariate

distribution of εt, ηt, ηt+1 as:


εt

ηt+1

ηt

 ∼ N



0

0

0

 ,


1 ρ1 ρ0

ρ1 1 ρ0ρ1

ρ0 ρ0ρ1 1


 . (13)

Now, we first compute ηt+1 conditional on ηt, which can be written as ηt+1|ηt = ρ0ρ1ηt +√
1− ρ2

0ρ
2
1ut+1. Which leads to the same state equation as Yu (2005) in the model of Equa-

tion (12). The conditional distribution of εt on the state errors ηt and ηt+1 is normal, εt|ηt+1, ηt,
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with mean and variance given by:

µε = 0 +
(
ρ1 ρ0

) 1 ρ0ρ1

ρ0ρ1 1

−1ηt+1

ηt

 =
1

1− ρ2
0ρ

2
1

(
ρ1 ρ0

) 1 −ρ0ρ1

−ρ0ρ1 1

ηt+1

ηt


=

1

1− ρ2
0ρ

2
1

((ρ1 − ρ2
0ρ1)ηt+1 + (ρ0 − ρ0ρ

2
1)ηt),

Σε = 1−
(
ρ1 ρ0

) 1 ρ0ρ1

ρ0ρ1 1

−1ρ1

ρ0

 = 1− 1

1− ρ2
0ρ

2
1

(ρ2
1 + ρ2

0 − 2ρ2
0ρ

2
1).

(14)

This is clearly different from the model of Yu (2005). Furthermore, we can show that the error

terms in the model of Equation (12) are not uncorrelated. Namely, if we keep the definition of

ηt+1 the same, ηt+1 = 1
σn

(ht+1− c−φht), we can write this as ηt+1 = ρ0ρ1ηt + σn
√

1− ρ2
0ρ

2
1ut+1.

Rewriting this with error term ut+1 on the left-hand side gives:

ut+1 =
1

σn
√

1− ρ2
0ρ

2
1

(ηt+1 − ρ0ρ1ηt). (15)

Now, if we remember that all ηt have expectation zero, but are correlated with E[ηt+1ηt] = ρ0ρ1,

we have correlation between ut and ut+1 given by:

E[ut+1ut] = E

[
1

σn
√

1− ρ2
0ρ

2
1

(ηt+1 − ρ0ρ1ηt)
1

σn
√

1− ρ2
0ρ

2
1

(ηt − ρ0ρ1ηt−1)

]
=

1

σ2
n(1− ρ2

0ρ
2
1)
E[(ηt+1 − ρ0ρ1ηt)(ηt − ρ0ρ1ηt−1)].

(16)

This is different from zero, as we have multiple terms of ηt and correlation between ηt+1 and ηt as

well as correlation between ηt and ηt−1. In a similar manner, it can be shown that E[ut+1, ut−1]

is correlated. Thus, the error terms of the state equation in the model of Yu (2005) are not

correlated but, in fact, an MA(2) process. H Furthermore, taking the state equation of the Yu

(2005) model, we can write

zt =
1

exp
{
ht
2

}√
1− ρ20+ρ21

1+ρ0ρ1

(
yt −

exp
{
ht
2

}
1 + ρ0ρ1

(ρ0ηt + ρ1ηt+1)

)
, (17)

where we use that ηt = 1
σn

(ht − c− ht−1) for easier notation. Now, using the same reasoning as

for ut, we can show that E[zt, zt−i] 6= 0 for i = 1, 2, and zt is therefore also an MA(2) process.

Furthermore, we can show in a similar way that the volatility shocks and return shocks are

correlated, namely E[ut, zt−i] 6= 0 for i = −1, 0, 1, 2, 3. Thus, we agree with Catania (2020) that
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the state-space representation used by Yu (2005) is not correct, which we have shown here. Also

for our correct derivation of this model, as in Equation (14), we find similar correlation structures.

Wen we estimate the model using our correct specification, we do find results close to that of Yu

(2005). Namely, a significant leverage parameter ρ both contemporaneously and inter-temporal.

However, as we have shown that this representation is not correct due to the correlated errors, we

conclude that these results are not valid. We will discuss a valid representation of this stochastic

volatility model later in this paper.

Catania (2020) extends the model of Yu (2005) by introducing a stochastic volatility model

with a general leverage specification, where the leverage effect is both contemporaneous and inter-

temporal, as that of Yu (2005). However, now the inter-temporal leverage can last for more than

one time step. The amount of days the leverage effect exists is indicated by m, where m = 0

leads to the contemporaneous leverage effect model and m ≥ 0 leads to a model containing

both the contemporaneous leverage effect and m inter-temporal leverage effects at time steps

t+ 1, . . . , t+m. In our notation, we write this model as:

yt = exp

{
ht
2

}
εt, εt

iid∼ N (0, 1),

ht = c+ φht−1 + σnηt,

ηt =

m∑
j=0

ρjεt−j +

√√√√1−
m∑
j=0

ρ2
jbt, bt

iid∼ N (0, 1).

(18)

The log-volatility state equation of this model is quite different, containing present and multiple

past return shocks. While the unconditional mean of the log-volatility, c
1−φ , is unchanged, the un-

conditional variance of the log-volatility is now given by V [ht] = σ2
n

1−φ2

[
1 + 2

∑m
i=1 φ

i
∑m

j=1 ρjρj−i

]
.

Furthermore, the expectation of tomorrow’s return is now given by:

E[yt+1|yt] =
1

2
σnρ0 exp

 c

2(1− φ)
+

σ2
n

8(1− φ2)

1 + 2

m∑
i=1

φi
m∑
j=1

ρjρj−i

 . (19)

Which is, as in the model with contemporaneous leverage, not equal to zero if ρ0 6= 0. Catania

(2020) implements the model using both a particle filter and quasi maximum likelihood via the

Kalman filter. However, to use the Kalman filter, Catania (2020) adds the constraint ρ0 = 0,

such that there is only inter-temporal leverage. In the rest of this paper, we will use this model,

and refer to it as the ’Catania model’. Nested in this model are the other stochastic volatility

models. Setting the constraint that all ρ are zero leads to the classic volatility model of Taylor

(1986). Using m = 0 leads to the contemporaneous leverage model of Jacquier et al. (2004), and
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setting the constraint ρ0 = 0 and m = 1 leads to the inter-temporal leverage model of Harvey

and Shephard (1996).

We have seen that including contemporaneous leverage leads to a model that has the subopti-

mal characteristic of expected returns unequal to zero. However, we argue that this result might

not be completely false. It is well known that the price of an asset is highly dependent on its

risk. In fact, it is one of the most famous and researched topics in asset pricing. In the stochastic

volatility models that we use, volatility is a measure of risk for the return. Thus, it does not

seem unlikely that the expected return is unequal to zero. Therefore, in many of the stochastic

volatility models used in this paper we include contemporaneous leverage, and compare these to

stochastic volatility models without contemporaneous leverage.

2.5 New stochastic volatility model

In the Catania model, it is assumed that the volatility shock ηt is a function of current and past

returns εt, .., εt −m. In his application to index returns, Catania argues that the best stochastic

volatility models include around 5 leverage effects. Overall, the sum of squared leverage effects∑m
j=1 ρ

2
j for some major indices varies from 0.70 to 0.90. This would mean that around 70%

to 90% of the shocks to volatility come from past returns. In other words, only 10% to 30% of

the innovations of volatility is actually new information. This would mean that the stochastic

volatility model approaches an ARCH model, where the volatility is only a function of past return

shocks. This is not intuitive and seems to take away the usefulness of the stochastic volatility

model. Therefore, we propose a new way of modelling the correlation between return shocks

and volatility shocks. In this specification, volatility shocks are independent, while return shocks

depend on current and/or future volatility shocks. This model is given by:

yt = exp

{
ht
2

}
εt,

ht = c+ φht−1 + σnηt, ηt
iid∼ N (0, 1),

εt =
m∑
j=0

ρjηt+j +

√√√√1−
m∑
j=0

ρ2
jξt, ξt

iid∼ N (0, 1).

(20)

What differentiates this model from the previous is that now volatility shocks are completely

independent while shocks to returns incorporate some effect of the volatility shocks. The un-

conditional distribution of the log-volatility is now the same as in the first stochastic volatility

models, ht ∼ N ( c
1−φ ,

σ2
n

1−φ2 ). The amount of future volatility shocks that affect the return is left
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variable for now, and is indicated by m. The expected future return is given by:

E[yt+1|yt, ht] = E

[
exp

{
ht+1

2

}
εt+1

∣∣∣∣∣It
]

= E

exp

{
c+ φht + σnηt+1

2

} m∑
j=0

ρjηt+j+1 +

√√√√1−
m∑
j=0

ρ2
jξt+1

∣∣∣∣∣yt, ht


= exp

{
c+ φht

2

}
E

[
exp

{σnηt+1

2

}
(ρ0ηt+1)

∣∣∣∣∣yt, ht
]

= XXX,

(21)

which is again unequal to zero if ρ0 6= 0. However, as we argued before, this does not have

to be completely unnatural, as long as we remember that risk is a very important driver for

financial returns. One downside of this specification is that financial returns are now subject

to the same shocks ηt. For example, when including contemporaneous leverage and one inter-

temporal leverage effect, such that ρ0 6= 0 and ρ1 6= 0, we have correlation between returns given

by:

E[yt+1yt] = E

[
exp

{
ht+1

2

}
εt+1[exp

{
ht
2

}
εt

]
= E

[
exp

{
ht+1

2

}(
ρ0ηt+1 + ρ1ηt+2 +

√
1− ρ2

0 − ρ2
1ξt

)

× exp

{
ht
2

}(
ρ0ηt + ρ1ηt+1 +

√
1− ρ2

0 − ρ2
1ξt

)]

= E

[
exp

{
ht+1

2

}
(ρ0ηt+1)

(
exp

{
ht
2

}
(ρ1ηt+1

)]
= ρ0ρ1E[exp

{
ht+1

2

}
exp

{
ht
2

}
],

(22)

which is clearly nonzero if ρ0 6= 0 and ρ0 6= 1. For leverage effects at other times, for example

if ρ1 6= 0 and ρ2 6= 1, results are similar. Thus, if we have multiple leverage effects there is

autocorrelation in the financial returns. As this is a characteristic that is not present in financial

returns, this might be a problem when applying this stochastic volatility model. However, we

think it might still be useful to apply this model to empirical data, as it might provide new

insights on the timing of the leverage effect and understand the causality relation between return

shocks and volatility shocks.

In this new stochastic volatility model, hereafter named the new SV model, we assume return

shocks are a function of present and future volatility shocks. We assume that shocks to volatility

are completely ’new’ information, while shocks to returns are partly dependent on volatility

shocks. We argue that this is a more intuitive way of modelling the leverage effect, as it is logical

that return shocks depend on volatility shocks, since returns depend on risk. Whereas modelling
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the volatility shocks dependent on past return shocks would indicate that risk is dependent on

previous returns. While the ’financial leverage’ theory was one way to argue why this is the

case, we have discussed literature that proved that this does not correspond to empirical evidence

about financial leverage.

Overall, we agree with the empirical findings of a correlation between volatility shocks and

return shocks. However, we argue that modelling the leverage effect as an inter-temporal relation

is not correct, as it would be expected for financial returns and risk to incorporate any new

information directly into the price and the corresponding volatility process. Furthermore, we

think that volatility shocks are not partly explained by return shocks, but that the causality is

vice versa, namely that volatility shocks affect return shocks.

3 Filtering and estimation of state-space models

The stochastic volatility models described in the paper so far are state-space models. Models that

have consist of a time series of one or more observed variables, in our case financial returns, for

which we assume are subject to some underlying process, in our case, the log-volatility process.

This section discusses and compares three methods to filter and estimate state-space models.

After, in Section 4, we discuss and apply these estimation methods to our volatility models. We

write a state-space model in the following notation:4

yt ∼ p(yt|ht;θ), ht ∼ p(ht|ht−1;θ), h1 ∼ p(h1;θ). (23)

Here, for discrete times t = 1, . . . , T , yt are the observations and ht are the unobserved states,

which in the stochastic volatility models from section 2 are returns and volatilities, respectively. θ

denotes the model parameters, in our case θ = (c, σn, φ,ρ). The observation is drawn conditional

on the unobserved states, while the states follow a first-order Markov process. We assume these

probability densities are known.

To estimate state-space models, one can split the problem into two cases. First, the filtering

problem, where one filters the unobserved states ht, given the observed yt and assuming the

model parameters θ are known. Second, the estimation problem, where both the parameter θ

and unobserved states ht have to be estimated. We use three different filtering and estimation

methods, namely the Kalman filter, the particle filter, and the Bellman filter. These methods

are presented in Section 3.1, Section 3.2, and Section 3.3 respectively. In Section 3.4 we perform

4State-space models can also incorporate exogenous factors xt in the observation equation. For simplicity, this
is left out.
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simulation studies in order to investigate the filtering performance and estimation performance

of the three methods.

3.1 Kalman filter

The Kalman filter is introduced in the seminal paper by Kalman (1960) and is widely used in

literature. The Kalman filter can solve the filtering problem in closed form when the state-space

model is linear and Gaussian. Thus, to apply the Kalman filter, we need the following model:

yt = α+ βht + εt, εt ∼ N (0,Σε)

ht = c+ φht−1 + ηt, ηt ∼ N (0,Q).
(24)

We can see that the observations yt and the unobserved states ht are normally distributed

conditional on ht and ht−1, respectively. Due to these characteristics, the Kalman filter can

analytically calculate the prediction and updating step for the state-space model. Thus, the

Kalman filter gives the optimal solution for such a linear Gaussian model. Also, parameter

estimation becomes relatively easy through the prediction error decomposition and can be done

with maximum likelihood estimation. As the Kalman filter is extensively studied in literature

and very well known, we refer to other literature for a more thorough description, for example

(Welch and Bishop, 1995; Meinhold and Singpurwalla, 1983).

3.2 Particle filter

The particle filter, also called sampling importance resampling (SIR), is introduced in the seminal

paper by Gordon et al. (1993). To use this algorithm for state-space filtering, the only require-

ments are that it is possible to simulate from the state density ht ∼ p(ht|ht−1;θ) and that it is

possible to evaluate the observation density yt ∼ p(yt|ht;θ). This provided a breakthrough in the

filtering of state-space models, whereas previous Markov chain Monte Carlo (MCMC) methods,

for example, Kitagawa (1987), relied on evaluating the state density ht ∼ p(ht|ht−1;θ) instead of

only simulating from this density. 5

5A new and innovative extension to the particle filter is to use Rao-Blackwellization. The idea of the Rao-
Blackwellized particle filter (RBPF) (Akashi and Kumamoto, 1977; Doucet et al., 2001; Gordon et al., 2004), also
called the Mixture Kalman filter (MKF) by Chen and Liu (2000), is to evaluate some of the filtering equations
analytically. This requires that the observation equation is linear and Gaussian in part of the state variables.
In this paper we consider only fully nonlinear/non-Gaussian observations, and thus do not use Rao-Blackwellized
particle filters.
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3.2.1 Filtering

Particle filtering uses the principle of Bayesian updating, implying that the density of the state

conditional on all available information is constructed from a prior and a likelihood. Suppose that

at time t we have a set of random ’particles’ h1
t , . . . ,h

N
t with corresponding discrete probability

masses π1
t , . . . , π

N
t drawn from the density p(ht|It;θ). 6 Since we can simulate from the state

density ht ∼ p(ht|ht−1;θ) we can approximate the prediction density

p(ht+1|It;θ) =

∫
p(ht+1|ht;θ)p(ht|It;θ)dht. (25)

Then at time step t+ 1 the observation yt+1 becomes available and we can update this prior via

the Bayes rule

p(ht+1|It+1;θ) =
p(yt+1|ht+1;θ)p(ht+1|It;θ)

p(yt+1|It+1;θ)
. (26)

Implementing this principle recursively forms the basis of the particle filter. By propagating and

updating these particles, a sample is obtained which approximates the true filtering density:

p(ht+1|It+1;θ) ∝ p(yt+1|ht+1;θ)

∫
p(ht+1|ht;θ)p(ht|It;θ)dht. (27)

To sample from the density, we follow the bootstrap algorithm of Gordon et al. (1993), presented

in Algorithm 1. By drawing N particles from the distribution h0 ∼ p(h0;θ), which is generally

the stationary distribution, we can initialize the particle filter.

This will yield an approximation of the desired posterior density p(ht+1|It+1;θ). Here, δ is

the Dirac-delta function with mass zero. Step 3 is the sampling step, referred to as the weighted

bootstrap step. Smith and Gelfand (1992) show that as N → ∞ these discrete distributions go

to their required density. Thus, the obtained samples in step 1 and step 3 will converge to the

predictive density p(ht+1|It;θ) and the filtered density p(ht+1|It+1;θ), respectively. Now, we can

approximate the hidden state ht by taking the average over the sampled states at that time step

1
N

∑N
i=1 h

i
t.

3.2.2 Parameter estimation

The likelihood can be estimated using the prediction decomposition. Using the output from the

algorithm, we can estimate the prediction density by taking the average of the unnormalized

6Note that in the rest of this paper It denotes the set off all available y1:t and h1:t. Since the state variables
ht are not observed but only filtered, It does not denote the available information at time t − 1 but rather the
’filtration’ at time t− 1.
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Algorithm 1: SIR algorithm from Gordon et al. (1993)

Initialization:
Draw hi0 ∼ p(h0;θ) for i = 1,. . . ,N.
for t = 0, . . . , T − 1 do

Importance sampling step:
1. For i = 1 : N , sample h̃it+1 ∼ p(ht+1|hit;θ).
2. For i = 1 : N , calculate weights:

ωit+1 = yt+1 ∼ p(yt+1|hit+1;θ)

3. For i = 1 : N , calculate normalised weights:

πit+1 =
ωit+1∑N
j=1 ω

j
t+1

.

Resampling (selection) step:
4. For i = 1 : N , sample hit+1 ∼

∑N
i=1 π

i
t+1δ(ht+1 − h̃it+1).

end

weights ωit+1

p̂(yt+1|I;θ) =
1

N

N∑
i=1

p(yt+1|h̃it+1;θ) =
1

N

N∑
i=1

ωit+1. (28)

Del Moral (2004) shows that this estimator is consistent and unbiased for N ≥ 2. For parameter

estimation we need to estimate the (log-)likelihood function, which is given by

L(θ) = log p(y1, . . . , yT |θ) =
T∑
t=1

log p(yt|θ; It−1). (29)

Thus, using the estimate for the prediction density in Equation (28), the estimate for the log-

likelihood is

L̂(θ) =

T∑
t=1

log p̂(yt|θ; It−1) =

T∑
t=1

log

(
1

N

N∑
i=1

ωkt

)
. (30)

This is the sum of the log of the mean of unnormalized weights over all time steps t = 1, . . . , T ,

and can be estimated quickly with the already calculated weights.

Now, a problem that arises with the estimation of the log-likelihood of this particle filter is that

the log-likelihood is not a continuous function of the parameters θ. If the particles hit, t = 1, . . . , N

are slightly altered, the proposal samples hit+1 will suffer the same consequence. As the corre-

sponding discrete probabilities also change, such that the resampled particles will not be close,

and the likelihood will not be a continuous function of θ. This leads to implications for (gradient-

based) maximization and computing standard errors, as is shown by Liu and West (2001) and

Polson et al. (2008). Malik and Pitt (2011) present a filter, the continuous sampling importance

resampling (CSIR) filter, which computes a smooth approximation of the likelihood. It is im-
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portant to note that this method only works for models with one state variable. Hürzeler and

Künsch (2001) propose an importance sampling method for multidimensional models. However,

this method is more computationally intensive and only provides low variance estimates in the

neighborhood of a suitably preselected parameter value (Kantas et al., 2015). In this paper we

use the particle filter to estimate one-dimensional state-space models, and thus use the method

of Malik and Pitt (2011).

Malik and Pitt (2011) introduce a new way of resampling in step 4 of Algorithm 1 form Gordon

et al. (1993). From now on, we consider the one-dimensional state variable ht. We start by sorting

particles hit+1 in ascending order resulting in particles h1
t+1, h

2
t+1, . . . , h

N
t+1, such that h1

t+1 ≤

h2
t+1 ≤ · · · ≤ hNt+1. Malik and Pitt (2011) show that sampling hit+1 ∼

∑N
i=1 π

i
t+1δ(ht+1 − h̃it+1) is

equal to sampling from the empirical distribution function F̂N (ht+1) =
∑N

i=1 π
i
t+1I(ht+1 − hit+1),

where I(q) is the indicator function taking value 1 if q > 0 and 0 otherwise. Sampling from this

step function is what leads to a non-continuous likelihood function in θ. Malik and Pitt (2011)

propose to approximate this distribution by a function which is constructed to be continuous.

This function is given by:

F̃N (ht+1) =
N∑
i=0

λit+1Gi

(
ht+1 − hit+1

hi+1
t+1 − hit+1

)
, (31)

where hN+1
t+1 =∞ and h0

t+1 = −∞. The new weights λt+1 are given by:

λ0
t+1 =

π1
t+1

2
, λNt+1 =

πNt+1

2
, λit+1 =

πi+1
t+1 + πit+1

2
, for i = 1, . . . , N − 1. (32)

For function Gi(·), i = 1, . . . , N we take the standard uniform distribution, such that Gi(q) = q

for i = 1, . . . , N . Furthermore, at the end points we take G0(q) = I(q) and GN (q) = I(q). We

now have a monotonically increasing function, which in fact is constructed from interpolating the

empirical CDF F̂N (ht+1). Malik and Pitt (2011) show that the distance between F̂N (ht+1) and

F̃N (ht+1) is of order 1
N , such that as N →∞ we have F̃N (ht+1)→ F̂N (ht+1).

For the above method we need a set of N uniform variables, u1 ≤ · · · ≤ uN . To generate

these uniforms, we use stratification. Stratification is used in particle filtering to reduce sample

impoverishment (Kitagawa, 1996; Carpenter et al., 1999; Liu and Chen, 1998). We use the method

proposed by Carpenter et al. (1999) to generate uniforms as:

uj =
(j − 1) + u

N
, for j = 1, . . . , N, where u ∼ UID(0, 1). (33)

The new resampling step for the particle filter, to replace step 4 from Algorithm 1, is presented
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Algorithm 2: Continuous resampling step from Malik and Pitt (2011)

Initialization:
Set s = 0, j = 1, and draw uniforms u1, . . . , uN as in Equation (33). Initialise vector
r1, . . . , rN to store new regions.

Compute new regions:
for i = 0, . . . , N do

1. s = s+ λi

2. while uj ≤ s, j ≤ N do
1. rj = i.
2. u∗j = (uj − (s− λi))/λi.
3. j = j+1.

end

end
Assign new samples:
for j = 0, . . . , N do

1. If rj = 0, set hj∗t+1 = h1
t+1

2. If rj = N , set hj∗t+1 = hNt+1

3. Otherwise, set hj∗t+1 = (hr
j+1
t+1 − hr

j

t+1)× u∗j + hr
j

t+1

end

This produces samples hj∗t+1, j = 1, . . . , N from F̃N (ht+1).

in Algorithm 2. Here, we have suppressed subscript t+ 1 for notational convenience.

Now, using the sampling importance resampling algorithm with this resampling schedule,

we gain a smooth likelihood function in model parameters θ. Therefore, we can estimate the

parameters with regular optimization techniques.

3.3 Bellman filter

The Bellman filter is a new filtering method introduced by Lange (2020). The Bellman filter is

based on the mode, the mode being appealing due to its ’optimality property analogous to that of

maximum likelihood estimates of fixed parameters in finite samples’ (Durbin and Koopman, 2012,

p. 252-3). The straightforward method for computing the mode is computationally unattainable

because it involves re-estimating the entire sequence of states for each time step. Furthermore,

the mode estimator does not address the parameter estimation problem. Lange (2020) employs

the principle of dynamic programming from Bellman (1957) to circumvent these problems.

3.3.1 Filtering

The joint log-likelihood of the states and observations is written as `(h1:t,y1:t). As before, the

observations y1:t are known while the states h1:t are unknown and to be estimated. For our state-

space models, we can rewrite this joint log-likelihood using the ’probability chain rule’ (Godsill
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et al., 2004) as:

`(h1:t,y1:t) =
t∑
i=1

`(yi|hi) +
t∑
i=2

`(hi|hi−1) + `(h1). (34)

By noting that the joint log-likelihood is a recursive relation for 2 ≤ t ≤ n, we can rewrite this

to:

`(h1:t,y1:t) = `(yt|ht) + `(ht|ht−1) + `(h1:t−1,y1:t−1). (35)

Now, Lange (2020) defines the value function by maximizing `(h1:t,y1:t) with respect to all

previous states h1:t−1. This value function is given by:

Vt(ht) := max
h1:t−1∈Rm×(t−1)

`(h1:t,y1:t) = `(yt|ht) + max
ht−1∈Rm

{`(ht|ht−1) + Vt−1(ht−1)} . (36)

Now, when the state equation has linear and Gaussian dynamics, the Bellman filter can be

exploited very usefully. The value function Vt−1(ht−1) can be approximated by a (multivariate)

quadratic function:

Vt−1(ht−1) ≈ −1

2
(ht−1 − ht−1|t−1)′It−1|t−1(ht−1 − ht−1|t−1) + constants, ht−1 ∈ Rm, (37)

for an estimate of the state ht−1|t−1 and corresponding symmetric and positive definite precision

matrix It−1|t−1. As we are interested in maximizing the value function, constants in the equation

can be ignored. As the state equation is linear and Gaussian, `(ht|ht−1) is a quadratic function

in the state variables and can be written as:

`(ht|ht−1) ≈ −1

2
(ht − c−Φht−1)′Q−1(ht − c−Φht−1) + constants, ht,ht−1 ∈ Rm. (38)

Lange (2020) shows that, by substituting the quadratic approximation in (37) and the state

transition of (38) into Bellman’s equation, we can write the value function as:

Vt(ht) = `(yt|ht) + max
ht−1∈Rm

{
− 1

2
(ht − c−Φht−1)′Q−1(ht − c−Φht−1)

− 1

2
(ht−1 − ht−1|t−1)′It−1|t−1(ht−1 − ht−1|t−1)

}
+ constants, ht ∈ Rm,

(39)

where we use an equality sign instead of an approximation. While the equation is not exact, for

simplicity, we write this as equality while keeping in mind that the solution is in fact generally not

exact. Now, since ht−1 appears quadratically on the right-hand side, we can compute the first-

order condition of this equation and solve this for ht−1. The optimal solution depends linearly
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on ht, substituting the optimal solution back into the value function gives:

Vt(ht) = `(yt|ht) +−1

2
(ht − ht|t−1)′I−1

t|t−1(ht − ht|t−1) + constants, ht ∈ Rm. (40)

Here the predicted state ht|t−1 and the predicted precision matrix It|t−1 are defined as:

ht|t−1 := c+ Φht−1|t−1 (41)

It|t−1 := Q−1 −Q−1Φ(It−1|t−1Φ
′Q−1Φ)Φ′Q−1. (42)

These equations form the prediction step of the Bellman filter of Lange (2020). For the filtering

step, Lange (2020) show that the filtered state ht|t and filtered precision matrix It|t can be found

as:

ht|t = max
h∈Rm

Vt(h), It|t = −d2Vt(h)

dhh′

∣∣∣∣∣
h=ht|t

. (43)

The gradient and negative Hessian of the value function can be approximated as:

dVt(h)

dh
=

d`(yt|h)

dh
− It|t−1(h− ht|t−1, h ∈ Rm, (44)

−d2Vt(h)

dhh′
= It|t−1 −

d2`(yt|h)

dhh′
, h ∈ Rm. (45)

Now, we can use Newton’s optimization method, an iterative method, to maximize the value

function Vt(h) with respect to the state variable. Here, define the derivative of the likelihood

with respect to the state, d2Vt(h)
dhh′ , as the score quantity, and the second derivative d2Vt(h)

dhh′ as the

realized information. The Newton optimization method (Nocedal and Wright, 2006) is online

applicable if It|t−1−
d2`(yt|h)

dhdh′ is positive definite. When this is not the case, we can use the Fisher

optimization step:

h
(i+1)
t|t = h

(i)
t|t +

{
It|t−1 + E

[
−d2`(yt|h)

dhdh′

∣∣∣∣∣h
]}{

d`(yt|h)

dh
− It|t−1(h− ht|t−1)

} ∣∣∣
h=h

(i)
t|t

, (46)

It|t = It|t−1 + E

[
−d2`(yt|h)

dhdh′

∣∣∣∣∣h
]
. (47)

Here, we define E

[
−d2`(yt|h)

dhdh′

∣∣∣∣∣h
]

as the expected information. These derivations are the basis

of the Bellman filter used in this paper. For the complete derivations, as well as a motivation,

we encourage the reader to read Lange (2020). The algorithm of the Bellman filter is given in

Algorithm 3.
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Algorithm 3: Bellman filter algorithm from Lange (2020) with Newton optimization

Set h0|0 = (1−Φ)−1c and vec(I−1
0|0 ) = (1−Φ⊗Φ)−1vec(Q). Set t = 1.

for t = 1, . . . , T do
ht|t−1 = c+ φht−1|t−1

It|t−1 = Q−1 −Q−1Φ(It−1|t−1 + Φ′Q−1Φ)Φ′Q−1

Set h0
t|t = ht|t−1. Set i = 0.

while i ≤ imax and not converged do

h
(i+1)
t|t = h

(i)
t|t +

{
It|t−1 −

d2`(yt|h)
dhdh′

}{
d`(yt|h)

dh − It|t−1(h− ht|t−1)
} ∣∣∣
h=h

(i)
t|t

end

It|t = It|t−1 −
d2`(yt|h)

dhdh′

∣∣∣
h=h

(i)
t|t

end

3.3.2 Parameter estimation

As before, the model parameters θ are actually unknown and have to be estimated, while also

estimating the states h1:t. Now, if the model has linear Gaussian state dynamics, Lange (2020)

proposes decomposing the log-likelihood in terms ’fit’ generated by the Bellman filter, penalized

by the realized KullBack-Leibler (KL) (Kullback and Leibler, 1951) divergence between filtered

and predicted states, such that we can use the output of the Bellman filter without the need of

complementary techniques. Lange (2020) derives an approximation for the KL divergence, which

leads to the following ’likelihood minus KL divergence’ decomposition:

θ̂ = arg max
θ

T∑
t=1

{
`(yt|ht|t +

1

2
log det(I−1

t|t It|t−1)− 1

2
(ht|t − ht|t−1)′It|t−1(ht|t − ht|t−1)

}
. (48)

This can be maximized using regular optimization techniques also used for the Kalman filter and

particle filter. As we are using the unconditional distribution of the states to initialize the model,

the mode exists at time t = 1. 7

3.4 Simulation studies

This section investigates the filtering and estimating performances of the three methods mentioned

above on models with various distributions. First, we investigate the performance of the three

methods on a linear Gaussian model: the Random Walk plus Noise model, also called the Gaussian

local level model. This is a model that the Kalman filter can exactly evaluate, thus gives optimal

results. Lange (2020) shows that the Bellman filter is able to give the exact same result with just

7When the unconditional distribution is not available, Lange (2020) proposes to start the maximization from
t0 ≥ 0, where t0 is large enough to ensure the mode exists.
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Table 1: Performance of filtering and estimating Gaussian Local Level models

Panel A: Mean absolute errors of one-step-ahead predictions of state variable
True parameters Estimated parameters

Method MAE Relative MAE MAE Relative MAE

Kalman filter 0.2195 1.0000 0.2199 1.0000
Particle filter 0.2199 1.0019 0.2204 1.0020
Bellman filter 0.2195 1.0000 0.2199 1.0000

Panel B: Mean and mean absolute errors of estimated model parameters
Method c φ σn σy

Kalman filter -0.001 0.978 0.150 0.448
(0.002) (0.004) (0.006) (0.005)

Particle filter -0.001 0.978 0.150 0.448
(0.002) (0.004) (0.006) (0.005)

Bellman filter -0.001 0.978 0.150 0.448
(0.002) (0.004) (0.006) (0.005)

NOTE: We simulate 100 time series of length T = 5, 000 for the Gaussian local level model. We use parameter
values c = 0, φ = 0.98, σn = 0.15. Then, we use the true values of the parameters to predict the state variable
one-step-ahead and compute the mean absolute error (MAE) as the distance between the one-step-ahead prediction
and the true value, over the last 2,500 observations. MAEs are presented in Panel A. After, we use the first 2, 500
observations to estimate the model and compute MAEs of the estimated parameters in Panel B. Finally, we use
the estimated parameters to predict the one-step-ahead state variable for the last 2, 500 observations and compute
the corresponding MAEs, which are presented in Panel A.

one iteration, we expect it to have the same performance. The local level model is given by:

yt = µt + εt, εt ∼ N (0, σ2
y),

µt = c+ φµt−1 + ηt, ηt ∼ N (0, σ2
η).

(49)

In Table 1, we present the results of this simulation. We find the Kalman filter and the Bellman

filter to give the same results, as was expected. Furthermore, the particle filter performs almost

exactly equal to these methods, showing that it can compute with the Kalman filter even for the

optimal linear Gaussian model. However, the estimation time of the particle filter is significantly

larger.

3.4.1 Design

To further investigate the performances of the Kalman filter, particle filter, and Bellman filter,

we follow the Monte Carlo study from Lange (2020). We conduct a Monte Carlo study for ten

data-generating processes (DGPs), nine of them from Koopman et al. (2016) and the final from

Lange (2020), all with linear Gaussian state dynamics and observation densities as in Table 2.

The simulation study is equal to that of Lange (2020). However, we compare the performance

of the new Bellman filter to that of the particle filter, whereas Lange (2020) compares it to the
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numerically accelerated importance sampling (NAIS) method of Koopman et al. (2016).

For each of the GDPs, we simulate 100 time series of length 5000.8 For the first nine, the

parameter values are obtained from Koopman et al. (2016), and for the last DGP the parameter

values are from Lange (2020). The state-transition parameters are c = 0, φ = 0.98, σn = 0.15 for

eight of the models. For the dependence models we use parameters c = 0.2, φ = 0.98, σn = 0.1.

Furthermore, Student’s t-distributions have degrees of freedom ν = 10 except for the local-level

t model, which has degrees of freedom ν = 3. The shape parameters have value k = 4 for the

negative binomial distribution, k = 1.5 for the Gamma distribution, k = 1.2 for the Weibull

distribution, and σy = 0.45 for the local-level t model. The goal of the simulation study is

twofold.

First, we investigate only the filtering performance of the methods. We use the true parameter

values and produce one-step-ahead predictions of the quantities of interest, which come from the

link functions in Table 2 for timesteps t = 2501, . . . , 5000. Then, we compute the mean absolute

error (MAE) between the predicted quantity and its true simulated value. As we have 2500

predictions for 100 time series, this method results in an average error of 250,000 predictions.

Second, we investigate the performance of the methods when estimating the parameters is

necessary. We use the first 2500 observations to estimate the model parameters. We then compute

the means and MAEs of the estimated parameters from the true values. For each parameter, we

have one estimation for each DGP, such that we take the mean and mean absolute error of

100 estimations. Then, like before, we produce one-step-ahead predictions of the quantities of

interest, but now using the estimated parameters. After which, we again compute MAEs of

250,000 predictions. The three methods are used as follows:

1. The Kalman filter (see Section 3.1) can only be applied for linear models. To use the Kalman

filter for the stochastic volatility models, we transform the observations by taking squares and

logarithms to obtain a linear state-space model, as is often done in literature (Ruiz, 1994; Harvey

et al., 1994). The resulting observation equations are non-Gaussian but can be estimated using

quasi maximum likelihood (QML) with the Kalman filter. As the local-level t model is linear but

non-Gaussian, it can be estimated directly through QML.

2. The algorithm to use the Bellman filter from Lange (2020) (see Section 3.3) is presented in

Algorithm 3. We initialize the model using the unconditional distribution. For the dependence

models and the local-level t model the realized information quantity might be negative, in which

case we use the Fisher updating step to ensure It|t ≥ It|t. Following Lange (2020), we stop the

8We deviate slightly from the simulations in Lange (2020) and Koopman et al. (2016) as we only use 100 times
series. This is due to the large estimation time of the particle filter
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Table 2: Overview of data-generating processes in simulation studies

DGP Link function Density
Model type Distribution p(yt|ht)

Count Poisson λt = exp(ht) λytt exp(−λt)/yt!

Count Negative binomial λt = exp(ht)
Γ(k+yt)

Γ(k)Γ(yt+1)

(
k

k+λt

)k (
λt

k+λt

)yt
Intensity Exponential λt = exp(ht) λt exp(−λtyt)
Duration Gamma βt = exp(ht)

1
Γ(k)βkt

yk−1
t exp(−yt/βt)

Duration Weibull βt = exp(ht)
k
βt

(
yt
βt

)k−1
exp(−(yt/βt)

k)

Volatility Gaussian σ2
t = exp(ht)

1√
2πσt

exp(−y2
t /(2σ

2
t ))

Volatility Student’s t σ2
t = exp(ht)

Γ( ν+1
2

)√
(ν−2)πΓ( ν

2
)σt

(
1 +

y2t
(ν−2)σ2

t

)− ν+1
2

Dependence Gaussian ρt = 1−exp(−ht)
1+exp(−ht)

1

2π
√

1−ρ2t
exp

{
− y

2
1t+y

2
2t−2ρty1ty2t

2(1−ρ2t )

}
∏2
i=1

1
2π

exp(−y2it/2)

Dependence Student’s t ρt = 1−exp(−ht)
1+exp(−ht)

Γ( ν+2
2

)Γ( ν
2

)

Γ( ν+1
2

)2

1√
1−ρ2t

(
1+

y21t+y
2
2t−2ρty1ty2t

ν(1−ρ2t )

) ν+2
2

∏2
i=1(1+y2it/ν)−

ν+1
2

Local level Student’s t µt = ht
Γ( ν+1

2
)√

(ν−2)πΓ( ν
2

)σy

(
1 + (yt−µt)2

(ν−2)σ2
y

)− ν+1
2

NOTE: This table contains the distributions and link functions of then data-generating processes (DGPs) used in
the simulation study of Lange (2020). The first nine DGPs come from Koopman et al. (2016). For each DGP, we
simulate 100 state-space time series of length 5,000 with state variable ht from a linear Gaussian state equation.
The link function show how the state variable is transformed when used to the observation equation. Finally, we
to use the Bellman filter we compute scores and information quantities for each of the GDPs. For these quantities
we refer to Table 3 of Lange (2020).

optimization step when either the convergence criterion |hit|t − h
i−1
t|t | < 0.0001 or the maximum

number of iterations imax = 40 is reached. For the score and information quantities of the

DGP processes, we refer to Table 3 of Lange (2020). To obtain predictions for the quantities

of interest, Bellman predicted states ht|t−1 are transformed using the link functions of Table

2. To have an exact transformation of the predictions using the link (monotone) functions, the

predictions should be based on the median. However, the Bellman filter is based on the mode.

Following Lange (2020), we ignore this for simplicity.

3. We use the continuous sampling importance resampling (CSIR) algoritm from Malik and

Pitt (2011) as the particle filter (see Section 3.2). We use number of particles N = 1, 000.9

At each time step, we compute one-step-ahead predictions of the quantities of interest by first

transforming all predicted particles with the link function, and then taking the median.

9We found that using larger N did not noticeably improve performance, and using N = 1000 gave consistent
results.
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Table 3: Mean absolute errors (MAEs) and relative mean absolute erros of one-step-ahead pre-
dictions in simulation studies

Bellman filter Particle filter Kalman filter
Type Distribution True Estimated True Estimated True Estimated

Count Poisson 0.3616 0.9977 0.9947 0.9984 n/a n/a
Count Neg. Bin. 0.3838 1.0055 0.9989 1.0058 n/a n/a
Intensity Exponential 0.4029 1.0000 1.0011 0.9931 n/a n/a
Duration Gamma 0.3652 1.0039 1.0050 0.9947 n/a n/a
Duration Weibull 0.3714 0.9988 0.9996 0.9931 n/a n/a
Volatility Gaussian 0.1877 0.9990 0.9992 0.9921 1.1714 1.1627
Volatility Student’s t 0.1958 1.0100 1.0074 0.9973 1.1392 1.1282
Dependence Gaussian 0.1198 1.0267 1.0040 0.9906 n/a n/a
Dependence Student’s t 0.1225 1.0192 0.9958 0.9898 n/a n/a
Local level Student’s t 0.2009 1.0150 0.9984 0.9958 1.0746 1.0715

NOTE: We simulate 100 time series of length 5,000 for the 10 data-generating processes shown in Table 2 with linear
Gaussian state dynamics. We first evaluate the filtering performance by computing one-step-ahead predictions of
the quantity of interest, given by the link function in Table 2, using the true model parameters. We compute the
mean absolute errors (MAEs) by taking the distance of the predicted quantity of interest from its true simulated
value over the last 2,500 observations. Results for each filtering method are presented in the columns ’True’.
Then we evaluate the estimation performance of the methods by using the first 2,500 observations to estimate the
parameter values. We then use these estimated parameters to make one-step-ahead predictions over the last 2,500
observations and again compute MAEs of the quantities of interest. Relative MAEs of the estimation methods are
shown in the columns ’Estimated’.

3.4.2 Results

Table 3 shows the MAEs of one-step-ahead predictions when using true parameters and estimated

parameters. To compute MAEs, we have used the median of the predicted particles in the particle

filter. The median being optimal for the MAE loss function. The Bellman filter prediction is

based on the mode, and therefore not optimal.

Using the true parameter values, we find the particle filter and Bellman filter to perform very

closely. The Bellman filter performs slightly better, with an MAE of 0.1% to 1% lower than the

particle filter, for four DGPs. The particle filter has lower MAEs for six DGPs, all of them with

a difference less than 0.5% of the Bellman filter. Finally, the Kalman filter performs much worse

than the other methods, from a 7% higher MAE for the Local level t to a 17% higher MAE for

the Gaussian stochastic volatility model. As the models are non-Linear and/or non-Gaussian and

estimated by quasi maximum likelihood, this was to be expected.

Most of the time, the true parameters of the model are unknown and have to be estimated

beforehand. The results in Table 3 show that the particle filter performs slightly better when the

parameters have to be estimated. For all DGPs, except the Negative Binomial, does the particle

filter perform around 0.5% to 1% better than the Bellman filter. For the Negative Binomial DGP,

the Bellman filter performs around 0.5% better. Again, the Kalman filter cannot compete with
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Table 4: Mean and mean absolute errors (MAEs) of estimated parameters in simulation studies

Bellman filter Particle filter
Type Distribution c φ σn k/ν c φ σn k/ν

Count Poisson -0.008 0.977 0.153 n/a -0.000 0.978 0.151 n/a
(0.008) (0.005) (0.012) n/a (0.002) (0.005) (0.012) n/a

Count Neg. Bin. -0.004 0.980 0.148 4.221 -0.000 0.978 0.151 4.056
(0.004) (0.005) (0.012) (0.474) (0.002) (0.005) (0.012) (0.314)

Intensity Exponential -0.008 0.976 0.160 n/a -0.000 0.978 0.153 n/a
(0.008) (0.006) (0.015) n/a (0.002) (0.005) (0.011) n/a

Duration Gamma 0.007 0.977 0.156 1.504 -0.000 0.978 0.151 1.498
(0.007) (0.005) (0.011) (0.033) (0.003) (0.005) (0.010) (0.032)

Duration Weibull 0.009 0.976 0.160 1.206 -0.000 0.978 0.152 1.198
(0.008) (0.006) (0.011) (0.019) (0.002) (0.004) (0.011) (0.017)

Volatility Gaussian 0.007 0.975 0.163 n/a 0.000 0.978 0.151 n/a
(0.007) (0.007) (0.020) n/a (0.002) (0.005) (0.015) n/a

Volatility Student’s t 0.004 0.975 0.161 14.398 0.000 0.977 0.153 10.342
(0.005) (0.007) (0.022) (5.008) (0.003) (0.006) (0.017) (0.492)

Dependence Gaussian 0.016 0.983 0.064 n/a 0.025 0.975 0.105 n/a
(0.008) (0.007) (0.037) n/a (0.009) (0.009) (0.019) n/a

Dependence Student’s t 0.013 0.988 0.007 13.139 0.029 0.970 0.121 16.328
(0.008) (0.009) (0.023) (3.237) (0.012) (0.013) (0.032) (6.328)

Local level* Student’s t -0.000 0.982 0.121 3.913 -0.000 0.977 0.150 3.015
(0.002) (0.004) (0.029) (0.914) (0.003) (0.005) (0.006) (0.169)

NOTE: We simulate 100 time series of length 5,000 for the 10 data-generating processes shown in Table 2 with
linear Gaussian state dynamics. We use the first 2,500 observations to estimate the parameter values according to
the methods presented in Sections 3.1, 3.2, and 3.3. We then compute the mean of the 100 estimated parameters
and compute mean absolute errors (MAEs) using the distance between the estimated parameters and their true
value. The mean of the estimations is presented first with the MAEs in brackets below. *For the Local level t,
we also estimate parameter σy. Both models estimate this parameter accurately and with similar errors as the
estimation of σn.

the two other methods, with MAEs of 7% to 16% higher. Looking at the estimated parameters

over the same estimation period of 2500 observations, we find both the Bellman filter and particle

filter to perform very well. The level of hidden state c, which is 0 in the DGPs, is estimated very

well for almost every DGP. Only for the two dependence models do the Bellman filter and particle

filter estimate the parameter a little too high. Furthermore, state transition parameter φ and

state volatility σn are estimated very accurate. The degrees of freedom ν are somewhat harder

to estimate, with the Bellman filter predicting a too high degrees of freedom for the stochastic

volatility Student’s t model, while the particle filter does the same for the dependence Student’s

t model. We conclude that both models very accurate, with the particle filter being slightly more

precise.
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Figure 1: Scatter plots of 100 out-of-sample MAEs for each DGP after estimating the model
parameters, together with a 45-degree line. Bellman filter errors are presented horizontally,
particle filter errors are presented vertically.
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NOTE: We simulate 100 time series of length 5,000 for the 10 data-generating processes (DGPs) shown in Table 2
with linear Gaussian state dynamics. We use the first 2,500 observations to estimate the parameters after which use
these estimations to make one-step-ahead predictions of the quantities of interest over the last 2,500 observations.
See the note of Table 3 for more detail. These plots show the mean absolute errors (MAEs) for each of the 100
time series of the 10 DGPs. The MAEs of the Bellman filter are shown on the horizontal axis and the MAEs of
the particle filter on the vertical axis. A 45-degree line is also added for reference. Dots below the 45-degree line
indicate a lower MAE for the particle filter than for the Bellman filter, and above the 45-degree line vice versa.
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Table 5: Average computation times in seconds

Bellman filter Particle filter
Type Distribution Filtering Estimation Filtering Estimation

Count Poisson 0.002 0.110 1.037 27.305
Count Neg. Bin. 0.003 0.365 1.304 80.047
Intensity Exponential 0.002 0.150 0.806 20.028
Duration Gamma 0.003 0.302 1.211 66.808
Duration Weibull 0.007 0.443 1.545 82.501
Volatility Gaussian 0.004 0.227 0.976 23.737
Volatility Student’s t 0.005 0.511 1.274 53.718
Dependence Gaussian 0.007 0.849 0.960 29.376
Dependence Student’s t 0.007 1.464 1.319 131.429
Local level Student’s t 0.005 1.342 0.968 127.018

NOTE: We simulate 100 time series of length 5,000 for the 10 data-generating processes shown in Table 2 with
linear Gaussian state dynamics. This table shows the time the Bellman filter and particle filter need to filter the
time series of length 5,000 under the columns ’Filtering’. Furthermore, this table shows the time needed to estimate
the parameters for the time series of length 2,500. The optimization is for both methods is done in MATLAB using
function fminunc with identical settings. For the particle filter, we use number of particles N = 1000. Not all
simulations are run on the same computer. Thus, times across different DGPs are not comparable. Simulations
for the same DGP are done on the same computer, such that estimation and filtering times within a DGP are
comparable.

Figure 1 shows the MAEs per simulated time series, such that for each DGP, we have 100

errors. The mean errors of the Bellman filter is shown on the horizontal axis and the mean errors

of the particle filter on the vertical axis. We find that the errors concentrate around the 45-degree

line, indicating that, from a predictive point of view, the simulated time series is of much more

importance than the estimation method used. Looking closer, we find that the errors with a lower

value generally lie more on the left of the 45-degree line, while larger errors generally lie on the

right of the 45-degree line. This indicates that the Bellman filter performs slightly better when

average errors are lower, while the particle filter performs slightly better when average errors are

higher.

So far, we have seen the Bellman filter and particle filter perform very comparably, with the

particle filter performing slightly better in estimation. What differentiates the Bellman filter and

particle filter is the computational time necessary for the methods. Table 5 present the average

computation time of filtering the complete time series of length 5000 and the average computation

time of parameter estimation on the estimation samples of length 2500. We find the Bellman

filter to be far superior from the computational point of view, with maximum filtering times of

less than 0.01 seconds. The particle filter, on the other hand, needs around one full second for

filtering. Furthermore, the estimation of one time series takes on average between 0.1 and 1.5

seconds for the Bellman filter, depending on the DGP. Average estimating times for the particle

filter range from 20 seconds for the exponential DGP to 131 seconds for the dependence Student’s
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t DGP. Overall, the Bellman filter is faster in both filtering and estimation by more than a factor

100 for most of the DGPs. Concluding, while the methods are close when filtering and estimating,

with a slight preference for the particle filter, the Bellman filter is computationally far superior

to the particle filter.

4 Estimating stochastic volatility models

In this section, we present the estimation methods for the stochastic volatility models presented

in Section 2. The models that we estimate are the Catania model from Equation (18) and the

new stochastic volatility model from Equation (20). The classical stochastic volatility model

from Equation (1) (no leverage), the contemporaneous stochastic volatility model from Equation

(8) (m = 0), and the inter-temporal stochastic volatility model from Equation (3) (m = 1, no

contemporaneous leverage) are nested in these models.

4.1 Estimating the Catania model with the particle filter

We follow Catania (2020) in estimating the Catania model with the particle filter. To do so, we

write the model in the following nonlinear state-space representation:

yt = exp

{
ht
2

} ρ0

σn(1−
∑m

j=1 ρ
2
j )

ht − c− φht−1 − σn
m∑
j=1

ρjyt−j exp

{
−ht−j

2

}
+ exp

{
ht
2

}√
1− ρ2

0

1−
∑m

j=1 ρ
2
j

ut,

ht = c+ φht−1 + σn

m∑
j=1

ρjyt−j exp

{
−ht−j

2

}
+ σn

√√√√ m∑
j=1

ρ2
jwt,

(50)

where ut and wt are standard normally distributed, ut ∼ N (0, 1), wt ∼ N (0, 1), and are uncor-

related E[utwt] = 0. The derivation of this state-space representation is given in Appendix A.

This representation with m = 1 and ρ0 6= 0 is a correct state-space representation of the two-

leverage model by Yu (2005), for which we earlier showed the errors were not independent and

uncorrelated. The conditional distribution of yt|ht, It−1 is normal with the following mean and
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variance:

yt|ht, It−1 ∼ N (µyt, σ
2
yt),

µyt = exp

{
ht
2

} ρ0

σn(1−
∑m

j=1 ρ
2
j )

ht − c− φht−1 − σn
m∑
j=1

ρjyt−j exp

{
−ht−j

2

}
σ2
yt = exp {ht}

(
1− ρ2

0∑m
j=1 ρ

2
j

)
,

(51)

and the conditional distribution of ht|It−1 is given by:

ht|It−1 ∼ N (µht, σ
2
ht)

µht = c+ φht−1 + σn

m∑
j=1

ρjyt−j exp

{
−ht−j

2

}
,

σ2
ht = σ2

n

 m∑
j=1

ρ2
j

 .

(52)

This model can be estimated using the particle filter from Malik and Pitt (2011) presented in

Section 3.2. The likelihood can be obtained with the prediction error decomposition:

L(θ) =
T∏
t=1

p(yt|It−1;θ) =
T∏
t=1

p(yt|ht, It−1;θ)p(ht|It−1;θ)dht. (53)

Which we approximate using the particle filter by:

p(yt|It−1;θ) ≈ 1

N

N∑
i=1

p(yt|hit, It−1), (54)

where hit, i = 1, . . . , N are draws from the predictive distribution p(ht|It−1) in the particle filter.

10

4.2 Estimating the new stochastic volatility model with the Bellman filter

The new stochastic volatility model from Equation (20) is estimated with the Bellman filter from

Lange (2020). In this model, the state equation for ht is linear and Gaussian, and therefore the

model can easily be estimated by the Bellman filter. 11 We write the model in the following

10For the first steps in the particle filter, past observations y0, y−1, . . . , y−m+1 are needed. We solve this by
moving the start of the sample by m steps, and draw the first m log volatilities from the unconditional distribution.
Catania (2020) noted that different sampling schemes have no effect on the behavior of the algorithm.

11This model could also be estimated using the particle filter. However, the model is a multivariate state-space
model, for which estimation with the particle filter cannot be done with the particle filtering method described
above, but would require additional more intensive and less accurate techniques.
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nonlinear state-space representation:

yt = exp

{
ht
2

} m∑
j=0

ρjηt+j +

√√√√1−
m∑
j=0

ρ2
jξt

 , ξt ∼ N (0, 1)

αt = c+ Φαt−1 + ξt, Ξt ∼ N (0,Q),

(55)

where we have the following definitions:

αt =



ht

ηt+m

ηt+m−1

. . .

ηt+1

ηt


, c =



c

0

0

. . .

0

0


, Φ =



φ 0 0 . . . σn 0

0 0 0 . . . 0 0

0 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 0

0 0 0 . . . 1 0


,

ξ =



0

ξ

0

. . .

0

0


, Q =



0 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 0

0 0 0 . . . 0 0


.

The conditional distribution of yt|αt, It−1 is nonlinear and Gaussian, given by:

yt|αt, It−1 ∼ N (µyt, σ
2
yt),

µyt = exp

{
ht
2

} m∑
j=0

ρjηt+j


σ2
yt = exp {ht}

1−
m∑
j=0

ρ2
j

 .

(56)

The conditional distribution of the hidden states αt|It−1 is linear and Gaussian, as is necessary

to implement Algorithm 3 from Lange (2020). However, we have to adjust Algorithm 3 slightly

to implement this state-space model. Due to the unusual state-space representation with singular

variance matrix Q, the prediction step for the information matrix has to be adjusted to It|t−1 =

(ΦI−1
t−1|t−1Φ

′ +Q)−1.12 Apart from these adjustments, the Bellman filter can be used as before.

From the conditional distribution of yt in (57) we can derive the conditional probability density

12See Lange (2020) for more details.
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of yt:

p(yt|αt) =
1√

2πσ2
yt

exp

{
1

2σ2
yt

− (yt − µyt)2

}
. (57)

This leads the following score, realized information and expected information quantities:
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dαt

=

[
d`(yt|αt)

dht
,
d`(yt|αt)

dηt+m
, . . . ,
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E
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For a full derivation see Appendix B. With the quantities and adjustments mentioned above, we

can straightforwardly implement the Bellman filter of Lange (2020) from Algorithm 3.13

4.3 Simulation results

We conduct an extensive simulation study to investigate how the different stochastic volatility

models are estimated when data is simulated from different DGPs. In all simulations, we set

c = 0, φ = 0.975, σn = 0.15, but differ the values the leverage effect ρ. Furthermore, for each

different DGP, we simulate 20 time series of length T = 5000.14 Estimation is done for the

Catania model as in Section 4.1 and the new SV model as in Section 4.2. On all simulated

series, we estimate six versions of the Catania model and six versions of the new stochastic

volatility model. Firstly, we estimate the models without any leverage effect. Furthermore,

we estimate the models when only allowing contemporaneous leverage (ρ0 6= 0) and when only

allowing inter-temporal leverage (ρ1 6= 0). We also estimate the models when allowing for two

leverage effects, once when having both contemporaneous leverage and inter-temporal leverage

(ρ0 6= 0, ρ1 6= 0), and once when allowing two inter-temporal leverage effects, (ρ0 6= 0, ρ1 6= 0).

Finally, we estimate both models when allowing for three leverage effects, both contemporaneous

and two inter-temporal leverage effects (ρ0 6= 0, ρ1 6= 0, ρ2 6= 0). For the particle filter, we use

N = 5000. Results indicated that this was necessary, as for lesser values the particle filter did

not give optimal results. We report the average and errors of the estimated model parameters.

Furthermore, similar to Section 3.4, we report the out-of-sample estimation errors (on the extend

of the time series with a further T = 1000) of our quantity of interest, the volatility given by

exp
{
ht+1

2

}
, after estimating the parameters.

We first simulate data from the standard stochastic volatility model of Taylor (1986), the

contemporaneous leverage stochastic volatility model of Jacquier et al. (2004), and the inter-

temporal stochastic volatility model of Harvey and Shephard (1996). For the leverage parameters

ρ0 and ρ1, we use the true parameter value ρj = −0.7, a value similar to that found in empirical

applications. Also, for both the Catania model and the new SV model, we consider models

without the contemporaneous leverage effect, ρ0 = 0, and models with the contemporaneous

leverage effect.

Table 6 shows the results of this simulation. In Panel A we have simulated data according

to the classic stochastic volatility model without leverage. We find the models to perform very

similar. The out-of-sample volatility predictions are very similar for all models. Furthermore, the

13We use the same stopping criterion and maximum iterations as in Section 3.4.
14Due to the immense computational time required for the particle filter, which also increased for the stochastic

volatility models with leverage, we simulate a limited amount of time series.
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estimations of c, φ, and σn are pretty accurate, with the Catania model that uses particle filter a

little better. The models estimate the leverage effects ρ quite close to zero on average. However,

looking at the root mean squared errors (RMSEs) of the leverage parameters, we see that they

are not equal to zero but around 0.1. For the models with one leverage effect, models with only

ρ0 6= 0 or ρ1 6= 0, RMSEs of the leverage parameters are less than 0.1. This is also the case for

the new SV models with two leverage effects. The Catania models with two leverage effects have

RMSEs around 0.10 to 0.15, indicating that the values are on average estimated zero, but single

estimates could be wrong by over 0.10. Finally, for the three leverage effects model, we find the

values again lying close to zero, but with even larger RMSEs. Further research into the results

shows that the models often have offsetting parameters, for example ρ0 = −0.3 and ρ2 = 0.3.

This is especially the case for the new SV model with three leverage effects, as can be seen by

the high RMSEs for the leverage parameters. Thus, while in this case there is no leverage effect,

the more comprehensive models are not very good in fully finding the lack of leverage effects.

Furthermore, Panel B and Panel C show estimations when the contemporaneous leverage SV

model is the DGP and when the inter-temporal leverage SV model is the DGP, respectively. We

find that this time, the estimation of σn is somewhat less accurate, but still quite good. More

interesting is the estimation of the leverage effects. When estimating a model with just one

leverage effect, it will show a very large value despite the true timing of the leverage effect. For

example, while the DGP in Panel B has a contemporaneous leverage effect of ρ0 = −0.7, the

models in the third row estimate an average inter-temporal leverage effect of ρ1 = −0.718 and

ρ1 = −0.740 for the new SV model and Catania model respectively. This is an important result,

as this explains why researchers as Harvey and Shephard (1996) find a large value for ρ1 and

researchers as Jacquier et al. (2004) find a large value for ρ0. When there is only one leverage

effect in the DGP, and the new SV model is estimated with two leverage effects, it is pretty good

at identifying the leverage effect, as can be seen from the fourth rows of Panel B and Panel C.

For example, in Panel B, the new SV model estimates an average ρ0 of -0.802 and an average ρ1

of -0.006, very close to the true values. The Catania model is performs worse for identifying the

correct leverage effect, with average parameters of around -0.4 and -0.3 when estimated with only

contemporaneous or only inter-temporal leverage. A further look into these estimations shows

that the two leverage parameters are almost always very close, and we do not see any switching

behaviour as we saw for the new SV model with three leverage effects. Finally, both models

perform a bit worse than before when estimating three leverage effects. We find the new SV

model often estimates a large ρ2, while the true value is zero. The Catania model estimates a

leverage effect for all three parameters, while the DGPs only contain one leverage effect. Finally,
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Table 6: Simulation results where basic stochastic volatility models are the data-generating pro-
cesses

New SV model Catania model
c φ σn ρ0 ρ1 ρ2 σ̂t c φ σn ρ0 ρ1 ρ2 σ̂t

Panel A: DGP is the classic stochastic volatility model without leverage
0.005 0.971 0.163 - - - 0.242 -0.001 0.975 0.149 - - - 0.239
0.006 0.006 0.023 - - - - 0.002 0.005 0.019 - - - -

0.005 0.971 0.163 0.009 - - 0.242 -0.001 0.974 0.150 -0.011 - - 0.239
0.006 0.006 0.023 0.078 - - - 0.003 0.004 0.016 0.105 - - -

0.005 0.972 0.163 - 0.009 - 0.242 -0.001 0.974 0.149 - 0.009 - 0.239
0.006 0.006 0.023 - 0.070 - - 0.002 0.005 0.017 - 0.076 - -

0.005 0.972 0.163 0.015 -0.006 - 0.242 -0.001 0.974 0.151 -0.002 0.010 - 0.239
0.006 0.006 0.023 0.086 0.068 - - 0.002 0.005 0.017 0.125 0.104 - -

0.005 0.972 0.163 - 0.035 -0.031 0.242 -0.001 0.974 0.152 - 0.059 -0.057 0.240
0.006 0.006 0.023 - 0.087 0.081 - 0.002 0.004 0.016 - 0.162 0.141 -

0.005 0.972 0.163 0.126 0.028 -0.101 0.242 -0.001 0.974 0.153 -0.002 0.052 -0.048 0.240
0.004 0.006 0.027 0.307 0.121 0.266 - 0.002 0.005 0.015 0.133 0.178 0.131 -

Panel B: DGP is the contemporaneous leverage stochastic volatility model with ρ0 = −0.7
0.004 0.971 0.147 - - - 0.197 -0.001 0.978 0.134 - - - 0.197
0.004 0.008 0.013 - - - - 0.002 0.007 0.023 - - - -

-0.001 0.976 0.128 -0.803 - - 0.150 -0.005 0.967 0.154 -0.590 - - 0.166
0.001 0.003 0.023 0.105 - - - 0.007 0.020 0.048 0.164 - - -

-0.004 0.974 0.124 - -0.718 - 0.151 -0.005 0.975 0.120 - -0.740 - 0.151
0.004 0.003 0.028 - 0.718 - - 0.005 0.003 0.031 - 0.740 - -

-0.001 0.976 0.128 -0.802 -0.006 - 0.150 -0.006 0.979 0.132 -0.463 -0.295 - 0.172
0.001 0.003 0.023 0.104 0.011 - - 0.006 0.009 0.046 0.466 0.350 - -

-0.004 0.973 0.126 - -0.492 -0.226 0.154 -0.005 0.975 0.121 - -0.657 -0.095 0.151
0.004 0.004 0.026 - 0.596 0.385 - 0.005 0.004 0.031 - 0.678 0.259 -

-0.002 0.978 0.145 -0.706 -0.089 -0.169 0.165 -0.005 0.964 0.123 -0.397 -0.256 -0.317 0.176
0.002 0.007 0.016 0.226 0.126 0.366 - 0.006 0.021 0.036 0.314 0.339 0.362 -

Panel C: DGP is the inter-temporal leverage stochastic volatility model with ρ1 = −0.7
0.003 0.972 0.142 - - - 0.205 -0.001 0.977 0.135 - - - 0.205
0.004 0.007 0.015 - - - - 0.002 0.005 0.022 - - - -

0.004 0.980 0.112 -0.691 - - 0.160 0.001 0.977 0.123 -0.579 - - 0.173
0.004 0.005 0.039 0.693 - - - 0.002 0.010 0.034 0.590 - - -

0.001 0.973 0.133 - -0.782 - 0.145 0.000 0.976 0.126 - -0.834 - 0.151
0.002 0.003 0.019 - 0.087 - - 0.002 0.004 0.002 - 0.156 - -

0.000 0.976 0.127 -0.006 -0.797 - 0.136 0.001 0.982 0.111 -0.374 -0.461 - 0.153
0.001 0.003 0.024 0.011 0.099 - - 0.003 0.011 0.047 0.404 0.293 - -

0.000 0.976 0.128 - -0.666 -0.131 0.138 -0.001 0.976 0.124 - -0.740 -0.094 0.136
0.001 0.003 0.024 - 0.302 0.314 - 0.002 0.003 0.030 - 0.142 0.252 -

0.002 0.978 0.164 -0.215 -0.200 -0.799 0.160 0.003 0.976 0.116 -0.297 -0.502 -0.329 0.180
0.002 0.003 0.018 0.215 0.500 0.799 - 0.008 0.009 0.040 0.347 0.247 0.344 -

NOTE: We simulate 20 stochastic volatility time series of length 5,000. In all simulations we use parameter values
c = 0, φ = 0.975, and σn = 0.15. In Panel A we simulate the classic stochastic volatility model without leverage.
In Panel B, we simulate the stochastic volatility model with contemporaneous leverage using value ρ0 = −0.7.
In Panel C, we simulate the stochastic volatility model with inter-temporal leverage using ρ1 = −0.7. We then
estimate the volatility models of Section 4.1 and Section 4.2 while varying the amount of leverage effects within
these models between zero and three. This table shows the average of the estimated parameters with the root mean
squared error (RMSE) below. Furthermore, we compute one-step-ahead volatility predictions σ̂t on an extend of
the time series of length 1,000 and report the RMSE.
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we also find the volatility estimates to worsen when adding the third leverage effect, while two

leverage effects give the best volatility predictions.

Next, we simulate data using the Catania model as the DGP, while using three different sets

of leverage effects. First, we simulate time series from the Catania model with ρ0 = −0.7 and

ρ1 = −0.4. Then, we simulate with values ρ1 = −0.7 and ρ2 = −0.4 and finally with values

ρ0 = −0.7, ρ1 = −0.4, and ρ2 = −0.2. Results are presented in Table 7. We note that the

new SV model has very high estimations for a single leverage effect in every model type. When

estimated with only ρ0 or with only ρ1, an average parameter of around -0.9 is estimated. Also

when estimated with two leverage effects, the new SV model assigns all weight to a single ρ.

This is probably a result of the lack of autocorrelation in the simulated data. Whereas the new

SV model with multiple leverages assumes correlation between the data. When estimated with

three leverage effects, the new SV model estimates on average a high ρ2 with lower values of ρ0

and ρ1, even when the DGP contains only leverage effects for ρ0 and ρ1. The Catania model

predicts the leverage effects somewhat less extreme. When only estimated with contemporaneous

leverage, the estimation for ρ0 is on the lower side of the true value, whereas the new SV model

estimated ρ0 larger than its true value. When the Catania model corresponding to its DGP is

estimated, results are on average pretty good, but have a high RMSE, especially in the model

with three leverage effects. These results are in line with those of Catania (2020). However, when

the Catania model is estimated on a different DGP, the results are not always as accurate. For

example, in Panel B we have ρ1 = −0.7 and ρ2 = −0.4. When the Catania model is estimated

with only contemporaneous and one inter-temporal leverage effect, is estimates average values of

ρ0 = −0.426 and ρ1 = −0.483. In this case, the model cannot identify the true leverage effect.

Also when estimating the Catania model with three leverage effects, it is not able to identify the

two leverage effects of the DGP. Finally, when the Catania model with three leverage effects is

estimated on its corresponding DGP, it is again not able to correctly identify the right sizes of

the true leverage effects, but gives average estimations of around -0.4 for all three parameters.

Again, these results are quite in line with Catania (2020), who shows that when using T = 50, 000

or T = 100, 000 the leverage effects are identified better. However, time series of such length are

empirically not available. Even if such a time series would be available, it is infeasible to assume

the underlying model would remain constant of such a long time period.

Lastly, we simulate data using the new SV model as the DGP, with true parameter values for

ρ as in the simulations of the Catania model. Results are presented in Table 8. We find that the

new SV model performs quite well when data is simulated from its own DGP. When only one

leverage effect is estimated, average parameters are again very high. For models with two leverage
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Table 7: Simulation results where the Catania model is the data-generating process

New SV model Catania model
c φ σn ρ0 ρ1 ρ2 σ̂t c φ σn ρ0 ρ1 ρ2 σ̂t

Panel A: DGP is the Catania model with ρ0 = −0.7 and ρ1 = −0.4
0.008 0.972 0.188 - - - 0.251 0.000 0.975 0.171 - - - 0.249
0.008 0.007 0.041 - - - - 0.002 0.006 0.025 - - - -

0.002 0.979 0.156 -0.942 - - 0.129 -0.001 0.968 0.166 -0.569 - - 0.191
0.002 0.004 0.008 0.242 - - - 0.006 0.010 0.023 0.168 - - -

-0.008 0.975 0.162 - -0.937 - 0.126 -0.008 0.975 0.162 - -0.942 - 0.126
0.008 0.002 0.013 - 0.537 - - 0.008 0.002 0.013 - 0.543 - -

0.002 0.979 0.157 -0.942 -0.007 - 0.129 -0.004 0.971 0.130 -0.549 -0.387 - 0.158
0.002 0.004 0.008 0.242 0.394 - - 0.005 0.006 0.026 0.163 0.083 - -

-0.008 0.975 0.162 - -0.937 -0.001 0.126 -0.008 0.975 0.158 - -0.912 -0.076 0.127
0.008 0.002 0.013 - 0.537 0.002 - 0.008 0.002 0.021 - 0.520 0.080 -

-0.002 0.973 0.217 -0.218 -0.207 -0.794 0.171 -0.004 0.973 0.146 -0.445 -0.292 -0.346 0.196
0.002 0.004 0.068 0.482 0.207 0.794 - 0.006 0.012 0.041 0.306 0.257 0.344 -

Panel B: DGP is the Catania model with ρ1 = −0.7 and ρ2 = −0.4
0.008 0.971 0.188 - - - 0.265 -0.001 0.974 0.172 - - - 0.263
0.008 0.008 0.041 - - - - 0.002 0.006 0.026 - - - -

0.007 0.983 0.135 -0.889 - - 0.141 0.003 0.983 0.132 -0.579 - - 0.209
0.007 0.008 0.015 0.889 - - - 0.006 0.010 0.030 0.591 - - -

-0.001 0.977 0.164 - -0.950 - 0.109 -0.001 0.977 0.159 - -0.964 - 0.113
0.001 0.002 0.015 - 0.250 - - 0.001 0.002 0.018 - 0.263 - -

-0.001 0.977 0.164 0.001 -0.950 - 0.109 0.001 0.975 0.115 -0.426 -0.483 - 0.171
0.001 0.002 0.015 0.009 0.250 - - 0.002 0.009 0.049 0.430 0.284 - -

-0.001 0.976 0.167 - -0.480 -0.474 0.116 -0.001 0.976 0.131 - -0.720 -0.516 0.105
0.001 0.002 0.018 - 0.372 0.370 - 0.001 0.002 0.020 - 0.042 0.155 -

0.003 0.974 0.218 -0.190 -0.175 -0.822 0.136 0.005 0.978 0.138 -0.389 -0.450 -0.332 0.170
0.004 0.002 0.070 0.194 0.478 0.423 - 0.006 0.010 0.055 0.408 0.278 0.111 -

Panel C: DGP is the Catania model with ρ0 = −0.7 and ρ1 = −0.4 and ρ2 = −0.2
0.011 0.972 0.215 - - - 0.286 -0.001 0.975 0.197 - - - 0.284
0.011 0.007 0.067 - - - - 0.002 0.005 0.049 - - - -

0.005 0.980 0.176 -0.961 - - 0.130 0.003 0.970 0.189 -0.598 - - 0.204
0.005 0.005 0.026 0.260 - - - 0.005 0.007 0.047 0.112 - - -

-0.009 0.976 0.187 - -0.966 - 0.124 -0.010 0.976 0.186 - -0.969 - 0.124
0.009 0.001 0.037 - 0.566 - - 0.010 0.001 0.037 - 0.269 - -

0.005 0.980 0.177 -0.961 -0.008 - 0.130 -0.004 0.974 0.130 -0.562 -0.501 - 0.175
0.005 0.005 0.028 0.261 0.561 - - 0.006 0.003 0.030 0.178 0.191 - -

-0.009 0.975 0.189 - -0.648 -0.318 0.136 -0.010 0.975 0.161 - -0.901 -0.251 0.123
0.009 0.002 0.039 - 0.510 0.463 - 0.010 0.002 0.018 - 0.508 0.200 -

-0.002 0.973 0.252 -0.221 -0.208 -0.786 0.179 -0.006 0.973 0.124 -0.475 -0.371 -0.451 0.163
0.002 0.004 0.104 0.480 0.193 0.586 - 0.007 0.003 0.036 0.237 0.142 0.269 -

NOTE: We simulate 20 stochastic volatility time series of length 5,000. In all simulations we use parameter
values c = 0, φ = 0.975, and σn = 0.15. In Panel A we simulate data from the Catania model (Equation 18)
using parameters ρ0 = −0.7 and ρ1 = −0.4. In Panel Bw e simulate data from the Catania model using values
ρ1 = −0.7 and ρ2 = −0.4. In Panel C we simulate data from the Catania model using values ρ0 = −0.7, ρ1 = −0.4,
and ρ2 = −0.2. We then estimate the volatility models of Section 4.1 and Section 4.2 while varying the amount
of leverage effects within these models between zero and three. This table shows the average of the estimated
parameters with the root mean squared error (RMSE) below. Furthermore, we compute one-step-ahead volatility
predictions σ̂t on an extend of the time series of length 1,000 and report the RMSE.
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Table 8: Simulation results where the new SV model is the data-generating process

New SV model Catania model
c φ σn ρ0 ρ1 ρ2 σ̂t c φ σn ρ0 ρ1 ρ2 σ̂t

Panel A: DGP is the new SV model with ρ0 = −0.7 and ρ1 = −0.4
-0.001 0.961 0.206 - - - 0.286 -0.009 0.965 0.186 - - - 0.267
0.005 0.017 0.060 - - - - 0.010 0.012 0.040 - - - -

-0.005 0.974 0.127 -0.875 - - 0.191 -0.010 0.971 0.159 -0.625 - - 0.222
0.005 0.002 0.025 0.179 - - - 0.011 0.015 0.034 0.187 - - -

-0.011 0.970 0.135 - -0.876 - 0.182 -0.012 0.971 0.135 - -0.897 - 0.177
0.012 0.007 0.019 - 0.481 - - 0.012 0.006 0.018 - 0.501 - -

-0.007 0.974 0.155 -0.790 -0.460 - 0.181 -0.012 0.968 0.158 -0.453 -0.430 - 0.205
0.007 0.002 0.011 0.100 0.067 - - 0.013 0.010 0.025 0.257 0.072 - -

-0.015 0.961 0.157 - -0.442 -0.572 0.221 -0.010 0.973 0.221 - -0.885 0.372 0.179
0.019 0.040 0.076 - 0.044 0.573 - 0.010 0.003 0.078 - 0.486 0.376 -

-0.011 0.972 0.165 -0.314 -0.552 -0.413 0.181 -0.014 0.964 0.142 -0.352 -0.277 -0.309 0.206
0.012 0.007 0.023 0.362 0.176 0.349 - 0.015 0.018 0.044 0.358 0.161 0.349 -

Panel B: DGP is the new SV model with ρ1 = −0.7 and ρ2 = −0.4
-0.002 0.957 0.213 - - - 0.293 -0.010 0.963 0.191 - - - 0.276
0.004 0.021 0.069 - - - - 0.011 0.015 0.047 - - - -

0.001 0.981 0.112 -0.797 - - 0.189 -0.004 0.981 0.125 -0.562 - - 0.221
0.001 0.006 0.039 0.798 - - - 0.006 0.010 0.037 0.571 - - -

0.005 0.003 0.020 - -0.877 - 0.173 -0.005 0.975 0.130 - -0.891 - 0.168
0.012 0.007 0.019 - 0.170 - - 0.005 0.003 0.024 - 0.195 - -

-0.003 0.977 0.145 -0.429 -0.834 - 0.172 -0.004 0.981 0.117 -0.246 -0.524 - 0.197
0.003 0.003 0.011 0.430 0.137 - - 0.005 0.010 0.037 0.306 0.282 - -

-0.008 0.972 0.145 - -0.421 -0.584 0.208 -0.006 0.975 0.108 - -0.692 -0.372 0.169
0.008 0.004 0.010 - 0.279 0.185 - 0.006 0.006 0.043 - 0.149 0.166 -

-0.005 0.974 0.172 -0.274 -0.432 -0.618 0.169 -0.007 0.972 0.119 -0.015 -0.545 -0.450 0.174
0.006 0.005 0.025 0.278 0.280 0.274 - 0.007 0.008 0.035 0.200 0.223 0.130 -

Panel C: DGP is the new SV model with ρ0 = −0.7 and ρ1 = −0.4 and ρ2 = −0.2
-0.031 0.949 0.252 - - - 0.361 -0.039 0.955 0.226 - - - 0.337
0.033 0.029 0.105 - - - - 0.040 0.023 0.078 - - - -

-0.017 0.975 0.122 -0.747 - - 0.298 -0.013 0.983 0.134 -0.598 - - 0.285
0.017 0.002 0.030 0.065 - - - 0.017 0.015 0.030 0.130 - - -

-0.026 0.968 0.136 - -0.762 - 0.290 -0.027 0.969 0.132 - -0.780 - 0.283
0.026 0.007 0.019 - 0.366 - - 0.027 0.006 0.021 - 0.383 - -

-0.020 0.977 0.121 -0.647 -0.598 - 0.315 -0.025 0.971 0.115 -0.364 -0.415 - 0.295
0.020 0.006 0.034 0.063 0.202 - - 0.028 0.015 0.039 0.342 0.084 - -

-0.029 0.970 0.123 - -0.476 -0.556 0.334 -0.025 0.971 0.157 - -0.836 0.183 0.283
0.029 0.005 0.028 - 0.076 0.356 - 0.025 0.005 0.022 - 0.437 0.394 -

-0.027 0.971 0.155 -0.421 -0.524 -0.512 0.313 -0.023 0.972 0.099 -0.340 -0.332 -0.203 0.294
0.028 0.004 0.009 0.282 0.143 0.358 - 0.024 0.009 0.058 0.397 0.129 0.126 -

NOTE: We simulate 20 stochastic volatility time series of length 5,000. In all simulations we use parameter values
c = 0, φ = 0.975, and σn = 0.15. In Panel A we simulate data from the new SV model (Equation 20) using
parameters ρ0 = −0.7 and ρ1 = −0.4. In Panel B we simulate data from the new SV model using values ρ1 = −0.7
and ρ2 = −0.4. In Panel C simulate data from the new SV model using values ρ0 = −0.7, ρ1 = −0.4, and ρ2 = −0.2.
We then estimate the volatility models of Section 4.1 and Section 4.2 while varying the amount of leverage effects
within these models between zero and three. This table shows the average of the estimated parameters with the
root mean squared error (RMSE) below. Furthermore, we compute one-step-ahead volatility predictions σ̂t on an
extend of the time series of length 1,000 and report the RMSE.
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effects, both are estimated quite accurately. When estimated with three leverage effects, there

is again a too high average estimation for the last parameter ρ2. The Catania model estimates

similar parameters for ρ0 and ρ1 regardless of the DGP, while when estimated with three leverage

effects again estimates all three leverage effects around -0.4. As the stochastic volatility process

does not depend on past/current returns and is a fully independent process, we find that the

volatility is harder to predict, with higher RMSEs for the volatility predictions σ̂t.

Noticeable is that, in all simulation studies above, adding contemporaneous leverage ρ0 6= 0

did not improve the volatility predictions for the Catania model. Furthermore, the three leverage

models often performed worse when estimating the volatility for both the new stochastic volatility

model as the Catania model. For the Catania model, we know from Equation (52) that the

conditional distribution of the volatility ht|It−1 does not depend on ρ0, which explains why the

volatility predictions did not improve.

5 Empirical application

In the previous section, we have seen that the models can estimate the parameters somewhat

accurately, but that it very much depends on the underlying DGP and the choice of leverage

effects in the model. In this section, we apply the models to empirical data.

5.1 Data

We use daily logarithmic returns for two major financial indices: the Standard & Poor’s 500

(SP500) and the Financial Times Stock Exchange 100 Index (FTSE). These returns are obtained

from Yahoo Finance. 15 The data is obtained over the period 1 January 1990 to 31 December

2019, resulting in 7558 observations for the SP500 and 7606 observations for the FTSE.

Furthermore, we use foreign exchange (FX) data for two exchange rates: The Japanese yen

(Yen) to the United States dollar (USD) and the United States dollar to the United Kingdom

pound sterling (Pound). The exchange rates are obtained from the Federal Reserve Bank Reports

via the Wharton Research Data Services (WRDS). We construct daily logarithmic returns over

the period 1 January 1990 to 31 December 2018, resulting in 7285 observations for both the

(YEN/USD) series and the (Pound/USD) series.

Finally, we use daily logarithmic returns on two stocks that have been part of the SP500 for

longer than the sample period, namely Apple Inc.(AAPL) and The Boeing Company (BA). These

companies are active in different industries: Technology and Industrials (Aerospace & Defense)

15Available from https://finance.yahoo.com.

https://finance.yahoo.com
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respectively. Returns are obtained from Yahoo Finance over the period 1 January 1990 to 31

December 2019. Resulting in 7557 returns for both the AAPL series and the BA series.

5.2 Results

We have estimated the same models as in the simulation studies in Section 4.3 on the two major

indices. Results are presented in Table 9. About the standard parameters c, φ, and σn the models

are generally in agreement. With c fluctuating between -0.19 and -0.30 for the SP500 series and

between -0.11 and -0.16 for the FTSE series. The log-volatility transition parameter φ is close to

one, ranging between 0.968 and 0.986 for all models. Finally, the volatility of the log-volatility

state equation, σn, is somewhat higher for the SP500 than for the FTSE, with values around 0.20

and 0.15 respectively.

Looking at the leverage parameters for the SP500, both the new SV model and the Catania

model estimate both the contemporaneous leverage parameter and the inter-temporal leverage

parameter at -0.7 when it is the only parameter in the model. As we have seen in the simulations

of Section 4.3, no conclusions can be derived from this result, as these parameters are estimated

high regardless of the correct timing of the leverage effect. Looking at the estimations of the new

SV model with two leverage effects, in rows four and five, we find that models the parameter ρ1

is the only estimated leverage effect, with values of -0.686 and -0.702. In the simulation studies

we have seen that the new SV model estimates only one leverage effect different from zero, if

the data is generated from a different GDP. Furthermore, in Panel B and C of Table 6 we have

seen that the new SV model correctly estimates the leverage effect at the right time, when there

is only one leverage effect in the DGP but two are estimated. Finally, the new SV model with

three leverage effects estimates parameters ρ0 = −0.591, ρ1 = −0.177, and ρ2 = 0.362. This is

an interesting result, as the model gave similar results in Panel A and B of Table 6, where no

leverage effect or a contemporaneous leverage effect was present. When data was simulated with

inter-temporal leverage, as in Panel C of Table 6, and when data was simulated from the Catania

model as DGP, as in Table 7, the three leverage new SV model always estimated ρ2 very large

and negative.

The two aforementioned results are somewhat contrary. Comparing the results of row four

and five of the SP500 estimations with the simulations, one would say the correct timing of the

leverage is at ρ1. However, comparing the result of row six with the simulations, where the three

leverage new SV model is estimated, would suggest that neither the inter-temporal leverage model

nor the Catania models are the DGP. When the Catania model is estimated with ρ0 and ρ1 we

obtain values -0.781 and -0.382 respectively, suggesting a leverage effect at both times, but more
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significant contemporaneously. When the model is subsequently estimated with three leverage

effects, we obtain values ρ0 = −0.113 and ρ1 = −0.747, which contradict the results from the two

leverage model. Furthermore, when the Catania model is estimated with ρ2, we obtain estimates

around 0.2, suggesting a small reverted leverage effect. However, as we seen in the simulations

that the estimated parameters can still be somewhat off for such a sample size, we cannot draw

any large conclusion from that parameter.

Results for the FTSE index are similar, except this time there is even a more pronounced

inter-temporal leverage effect. Again, both the new SV models and the Catania models with a

single leverage effect have values around -0.7, regardless of the timing. Furthermore, the new

SV model specification with two leverage effects assigns all weight on the first inter-temporal

parameter ρ1. The Catania models with two leverage effects assign a much larger weight to ρ1 as

well, in contrast to the SP500 series. Finally, the new SV model with three leverage effects shows

again very unclear results, with a positive parameter ρ1 and a strongly negative ρ0 and slightly

negative ρ2. In the simulations we have seen that while this model does not identify the leverage

effects correctly, it does assign negative values to all parameters when data is simulated from the

classic stochastic volatility with leverage or the Catania model. As this does not happen here,

it seems like the underlying process is not defined as clearly as the Catania model or the classic

leverage models assume.

5.3 Forecasting performance

The above results suggest that, if we would construct a stochastic volatility model with only one

leverage specification, it would be best to use the inter-temporal leverage parameter ρ1, as that

is the parameter which the new SV model estimated to be nonzero. While this is an interesting

result, we are also interested in whether this specification then also leads to the best volatility

predictions. To investigate this, we perform an out-of-sample analysis. We split the index returns

series in an out-of-sample period of the last 1500 returns, and estimate the model parameters on

the preceding in-sample sample period. With both models, we make predictions of the variance

(squared volatility) var[yt|It−1] = σ̂t
2. For the Catania model, we make predictions of the

volatility using the predicted mean of the volatility σ̂t
2 = E[σ2

t |It−1] = E[exp{ht}|It−1], which

can be computed with the predicted state particles, as in Section 3.4. For the new SV model,

we compute the Bellman predicted state of ht|t−1 and transform it into predicted volatility by

σ̂2
t = exp{ht|t−1}. Following Patton (2011), we use the mean squared error (MSE) loss function to

compare different variance predictions. As Patton (2011) noted, MSE induces a perfect ranking
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Table 9: Estimated parameters from the Catania model and the new SV model on stock index
returns

New SV model Catania model
c φ σn ρ0 ρ1 ρ2 c φ σn ρ0 ρ1 ρ2

Panel A: Standard & Poor’s 500 (SP500)
-0.194 0.979 0.203 - - - -0.199 0.982 0.179 - - -
0.026 0.003 0.011 - - - 0.018 0.002 0.008 - - -

-0.191 0.981 0.190 -0.722 - - -0.196 0.981 0.193 -0.727 - -
0.022 0.002 0.010 0.027 - - 0.020 0.007 0.007 0.023 - -

-0.295 0.968 0.243 - -0.692 - -0.270 0.971 0.228 - -0.722 -
0.033 0.004 0.014 - 0.026 - 0.023 0.003 0.017 - 0.019 -

-0.297 0.968 0.245 -0.014 -0.686 - -0.244 0.982 0.220 -0.781 -0.382 -
0.033 0.004 0.014 0.018 0.028 - 0.011 0.011 0.007 0.008 0.011 -

-0.294 0.968 0.243 - -0.702 0.020 -0.249 0.973 0.276 - -0.802 0.241
0.033 0.003 0.014 - 0.026 0.012 0.027 0.003 0.020 - 0.019 0.050

-0.286 0.968 0.226 -0.591 -0.177 0.362 -0.225 0.976 0.219 -0.113 -0.747 0.190
0.050 0.005 0.018 0.014 0.010 0.013 0.010 0.006 0.006 0.104 0.088 0.149

Panel B: Financial Times Stock Exchange 100 Index (FTSE)
-0.130 0.986 0.145 - - - -0.119 0.987 0.132 - - -
0.027 0.003 0.012 - - - 0.014 0.002 0.004 - - -

-0.111 0.987 0.138 -0.703 - - -0.132 0.985 0.140 -0.688 - -
0.018 0.002 0.009 0.039 - - 0.021 0.003 0.010 0.040 - -

-0.151 0.983 0.150 - -0.695 - -0.143 0.985 0.145 - -0.715 -
0.023 0.002 0.010 - 0.037 - 0.026 0.003 0.009 - 0.038 -

-0.152 0.983 0.151 -0.005 -0.692 - -0.152 0.969 0.177 -0.257 -0.512 -
0.025 0.003 0.011 0.020 0.040 - 0.014 0.003 0.013 0.039 0.009 -

-0.151 0.983 0.151 - -0.699 0.008 -0.143 0.985 0.153 - -0.745 0.079
0.022 0.002 0.010 - 0.037 0.014 0.053 0.006 0.032 - 0.058 0.109

-0.149 0.984 0.162 -0.608 0.233 -0.137 -0.159 0.983 0.147 -0.231 -0.428 0.199
0.399 0.001 0.615 0.097 0.101 0.098 0.025 0.003 0.003 0.010 0.011 0.008

NOTE: This table shows parameter estimations of the stochastic volatility models from Section 4.1 and Section
4.2 on returns of two major indices. We vary the leverage effects in the stochastic volatility models between zero
and three. The estimated parameters are shown in this table, with below their estimated standard errors using
MATLAB’s fminunc function.

of competing volatility forecasts, and is given by

MSEt = (σ̃t
2 − σ̂t2)2, (61)

where σ̂t
2 is the predicted variance and σ̃t

2 is a proxy for the variance. As proxy for variance,

we use squared returns y2
t . While squared returns are generally noisy, they are valid volatility

proxies (Patton, 2011).

Table 10 reports the average MSE computed over the out of sample period of length T = 1500.

We make forecasts for the same 12 models that we used before, now numbered model (1) to (6),

with the same ordering as before. Model (1) indicates the no leverage specification, and model

(6) is the model specification with three leverage effects. We set the no leverage specification for
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Table 10: Relative mean square error (MSE) average losses for volatility predictions of the stochas-
tic volatility models on index returns

New SV model Catania model
Index (1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)

Panel A: Standard & Poor’s 500 (SP500)
MSE 1.000 0.944 0.933 0.944 0.932 0.930 1.004 0.922 0.928 0.928 0.954 0.921

Panel B: Financial Times Stock Exchange 100 Index (FTSE)
MSE 1.000 0.960 0.961 0.943 0.961 0.964 1.000 0.993 0.956 0.931 0.961 0.960

NOTE: This table shows mean square error (MSE) average losses for volatility predictions on returns of two major
indices. We use the MSE loss function from Patton (2011). As volatility proxy we use squared returns. We make
out-of-sample volatility predictions for the returns on the last 1,500 observations, after estimating the stochastic
volatility models from Section 4.1 and Section 4.2 on the previous observations. We vary the leverage effects in the
stochastic volatility models between zero and three. Models (1) to (6) follow the same order as in the simulation
studies of Section 4.3, but are now presented as columns. We use the first model, the new SV model (1), as
benchmark and set its relative MSE to 1.

the new SV model as the benchmark with relative MSE of 1. As expected, the corresponding

Catania model with no leverage performs almost equally, given that the only differences between

the models is the estimation method, namely the Bellman filter and particle filter respectively.

For the SP500, we find the Catania model with three leverage effects to give the best results,

almost 10% better than the benchmark model. Looking only at the new SV model results, the

three leverage specification gives the best forecasts as well. Furthermore, the other models in-

cluding contemporaneous leverage effects, (2) and (4), give worse results than the models with

only inter-temporal leverage effects. For the Catania model we find the contrary, with models in-

cluding contemporaneous leverage giving better forecasts than models without contemporaneous

leverage.

Results for the FTSE index returns are different. Model (4) with contemporaneous and inter-

temporal leverage gives best predictions for both the new SV model and the Catania model.

Furthermore, predictions are now closer to the benchmark, with the best model giving less than

6% improvement relative to the stochastic volatility model without leverage.

While there is still not a clear best specification, including a leverage effect does always lead

to an improvement in volatility predictions from the benchmark model, with prediction errors

decreasing with at least 3% and at most almost 8%. In every case, the best forecasts are from a

model that includes contemporaneous leverage. Thus, including contemporaneous leverage in a

stochastic volatility certainly is useful from a forecasting point of view. As this was clearly not the

case in the simulation studies of Section 4.3, it seems that there is a different contemporaneous

relation in the financial returns than in the data-generating processes of the simulation studies.
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Table 11: Estimated parameters from the Catania model and the new SV model on stock index
returns

New SV model Catania model
Index (1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)

Panel A: Standard & Poor’s 500 (SP500)
MSE 1.000 0.946 0.934 0.946 0.934 0.932 1.004 0.923 0.931 0.942 0.951 0.929

Panel B: Financial Times Stock Exchange 100 Index (FTSE)
MSE 1.000 0.964 0.964 0.951 0.964 0.975 1.004 0.969 0.961 0.943 0.964 0.965

NOTE: This table shows mean square error (MSE) average losses for volatility predictions on returns of two major
indices. We use the MSE loss function from Patton (2011). As volatility proxy we use the realized volatility from
the Oxford-Man Realized Library. We make out-of-sample volatility predictions for the returns on the last 1,500
observations, after estimating the stochastic volatility models from Section 4.1 and Section 4.2 on the previous
observations. We vary the leverage effects in the stochastic volatility models between zero and three. Models (1)
to (6) follow the same order as in the simulation studies of Section 4.3, but are now presented as columns. We use
the first model, the new SV model (1), as benchmark and set its relative MSE to 1.

Which suggests that none of the specifications used in this paper match the exact correlation

structure of returns and volatility that is present in financial returns.

5.4 Robustness check using realized volatility

While the results of the above forecasting analysis is certainly useful, it might be affected by the

choice of volatility proxy. Like we mentioned before, squared returns are generally very noisy.

Therefore, we also compute analogous results when using the 5 minute realized volatility (RV) as

volatility proxy. 5 minute realized volatility is obtained from the Oxford-Man Institute’s realized

library. 16

Results are presented in Table 11. As expected, we find very similar results as before. Including

leverage effects improves predictions from the no-leverage benchmark with the same magnitude

of 4% to 7%. For the SP500, we find the Catania model with only contemporaneous leverage

to give best results. Second best are the models with three leverage effects. Again, the Catania

models where contemporaneous leverage is included provide better predictions, while the new SV

models with contemporaneous leverage perform worse than the models without contemporaneous

leverage. For the FTSE we find exactly the same results as before, with the fourth model,

including contemporaneous and one inter-temporal leverage effect, providing best predictions for

both the new SV model as the Catania model.

16Available from https://realized.oxford-man.ox.ac.uk

https://realized.oxford-man.ox.ac.uk
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5.5 Robustness check using foreign exchange data

As we discussed in Section 2.2, empirical evidence finds that the leverage effect is present even

when a firm does not have any debt, and that changes in debt do not increase volatility. Still,

the leverage effect is very much related to the ’financial leverage’, namely the debt/equity ratio

of a firm. If the leverage effect does indeed come from financial leverage, despite the evidence

mentioned earlier, it would be expected that foreign exchanges (FX) do not show a leverage effect,

as foreign exchanges have no deb/equity structure. Meyer and Yu (2000) estimate the inter-

temporal leverage model from Harvey and Shephard (1996) on the Pound/US dollar exchange

rate series and do find a significant negative parameter ρ1, but conclude that the effect is not as

strong as found in index and stock returns. Furthermore, Catania (2020) finds a small ’inverted’

leverage effect for the Canadian dollar (CAD) to US dollar (USD) series, but notes that the

uncertainty is very large.

We estimate all 12 stochastic volatility models on the exchange rate series USD/Pound and

Yen/USD. Complete estimation results are presented in Appendix C. Interestingly, we mostly find

positive leverage effects for the USD/Pound series and negative leverage effects for the Yen/USD

series. Both series include the US dollar, but the first as numerator and the second as denominator.

It seems that the price of the US dollar influences the underlying volatility. If the price of the US

dollar goes down, series USD/Pound has a positive return while Yen/USD has a negative return,

which both lead to an increase in volatility. Furthermore, the leverage effect seems to take place

contemporaneously, as the models with both contemporaneous leverage ρ0 and inter-temporal

leverage ρ1 assign the largest (absolute) value to ρ0.

We find the new SV model with three leverage effects to give almost off-setting ρ0 and ρ2,

which we have seen from the simulation studies happen when there is no leverage effect in the

DGP. The Catania model with three leverage effects assigns small values to all three parameters.

However, from the simulation studies in Section 4.3, as well as the simulations in Catania (2020),

we have seen that the model is cannot fully identify the leverage effects for time series of this

length. However, the fact that both positive and negative values are found indicates that there

is not a strong negative relation, as the simulation studies have shown that all parameters would

be estimated negatively when this is the case. In fact, it seems that there is a small leverage

effect when the price of the US dollar goes down, and that this effect somewhat corrected after

two days.
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Table 12: Estimated parameters from the Catania model and the new SV model on stock returns

New SV model Catania model
c φ σn ρ0 ρ1 ρ2 c φ σn ρ0 ρ1 ρ2

Panel A: Apple Inc. (AAPL)
-0.488 0.933 0.378 - - - -0.386 0.950 0.321 - - -
0.069 0.009 0.027 - - - 0.037 0.005 0.012 - - -

-0.461 0.937 0.364 -0.120 - - -0.342 0.955 0.292 -0.148 - -
0.067 0.009 0.027 0.033 - - 0.024 0.001 0.002 0.010 - -

-0.491 0.933 0.378 - -0.267 - -0.400 0.948 0.324 - -0.290 -
0.070 0.009 0.026 - 0.032 - 0.028 0.004 0.009 - 0.028 -

-0.490 0.933 0.378 -0.012 -0.263 - -0.412 0.946 0.331 0.015 -0.293 -
0.061 0.008 0.024 0.029 0.031 - 0.001 0.002 0.004 0.017 0.023 -

-0.492 0.933 0.378 - -0.255 -0.016 -0.387 0.949 0.320 - -0.298 0.005
0.061 0.008 0.024 - 0.044 0.039 0.017 0.002 0.008 - 0.055 0.057

-0.439 0.952 0.311 -0.502 -0.225 0.411 -0.395 0.948 0.323 0.022 -0.307 0.003
0.045 0.006 0.023 0.014 0.014 0.012 0.004 0.001 0.007 0.021 0.005 0.010

Panel B: The Boeing Company (BA)
-0.568 0.930 0.327 - - - -0.424 0.949 0.262 - - -
0.095 0.011 0.031 - - - 0.071 0.008 0.024 - -

-0.512 0.936 0.305 -0.127 - - -0.415 -0.950 0.260 -0.140 - -
0.080 0.010 0.025 0.037 - - 0.018 0.003 0.005 0.012 - -

-0.535 0.934 0.314 - -0.257 - -0.410 0.950 0.257 - -0.288 -
0.080 0.010 0.026 - 0.033 - 0.017 0.002 0.006 - 0.015 -

-0.532 0.934 0.313 -0.024 -0.247 - -0.421 0.949 0.259 -0.004 -0.289 -
0.077 0.009 0.024 0.032 0.040 - 0.016 0.001 0.020 0.035 0.031 -

-0.568 0.930 0.324 - -0.114 -0.161 -0.417 0.950 0.254 - -0.156 -0.165
0.087 0.010 0.026 - 0.070 0.074 0.015 0.003 0.005 - 0.085 0.087

-0.530 0.961 0.237 -0.532 -0.196 0.424 -0.425 0.949 0.256 0.001 -0.159 -0.163
0.073 0.004 0.014 0.011 0.008 0.011 0.007 0.001 0.007 0.005 0.059 0.108

NOTE: This table shows parameter estimations of the stochastic volatility models from Section 4.1 and Section 4.2
on returns of two stocks part of the Standard & Poor’s 500 (SP500). We vary the leverage effects in the stochastic
volatility models between zero and three. The estimated parameters are shown in this table, with below their
estimated standard errors using MATLAB’s fminunc function.

5.6 Application to stock returns

In this section, we estimate the stochastic volatility models on returns of two major stocks part of

the SP500: Apple Inc. (AAPL) and The Boeing Company (BA). Results are presented in Table

12. The first thing we notice is that the transition parameter φ is lower for stocks returns, while c

is much more negative. Combining these, we find that the unconditional level of the log-volatility,

given by c
1−φ , does not differ significantly between stocks and indices. However, the volatility

of the log-volatility, σn, is much higher for stocks than for indices, with values around 0.3 for

both the AAPL returns and BA returns compared to 0.2 and 0.15 for the SP500 and FTSE,

respectively. Thus, shocks to log-volatility are higher for stock returns, but die out more quickly.

As returns of stocks are more extreme than index returns, this is as expected.

The leverage parameter estimations are quite surprising. When only estimated contempo-
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raneous leverage ρ0, the coefficient of around -0.13 is twice as small as when estimating only

contemporaneous leverage ρ1. In our simulation studies, this only happened when there was no

contemporaneous leverage present. Furthermore, when estimating model (4), with both contem-

poraneous and one inter-temporal leverage effect, both the new SV model and Catania model

estimate only a significant negative value for ρ1. Furthermore, when estimating model (5) for

BA with both ρ1 and ρ2, both the Catania model and the new SV model estimates equal values

of the ρ1 and ρ2. Comparing this to the simulation results suggests that the BA returns have a

small leverage effect at both inter-temporal times. For the AAPl returns, all results suggest that

there is only a leverage effect at ρ1.

6 Conclusion

In this paper, we review the different ways in which stochastic volatility models incorporate the

leverage effect. The classical stochastic volatility model of Taylor (1986) is extended to incorporate

contemporaneous leverage by Jacquier et al. (2004) as well as inter-temporal leverage by Harvey

and Shephard (1996). Then, Yu (2005) and Catania (2020) extended these models by including

both contemporaneous leverage and inter-temporal leverage. In these models, the leverage effect

is modelled as the effect of past/present return shocks on the volatility shock. Catania shows

that 70% to 90% of the shock to volatility is explained by past return shocks, meaning that the

stochastic volatility models approach ARCH models in which past shocks to returns fully explain

volatility. We argue that this assumption is wrong, as volatility shocks should contain only new

information. Also, we argue that it is more likely that shocks to returns are affected by shocks to

volatility, such that volatility shocks contain new information while shocks to returns are affected

by these shocks to volatility. Furthermore, we disagree with the inter-temporal modelling of the

leverage effect. It is unlikely that information is processed with such a delay, while we assume

that markets are very efficient and incorporate all information immediately.

In an attempt to model the leverage effect correctly, we introduce a new model where current

and future volatility shocks partly explain return shocks, instead of vice versa. While this model

leads to autocorrelation when including multiple leverage effects, which is a characteristic not

present in financial returns, we show that it could help investigate the leverage effect. Estimating

this model on empirical data leads to only an inter-temporal leverage effect. This result of only

one leverage effect is most likely to prevent autocorrelation. While we conclude that this new

model is not an improvement from the other stochastic volatility models due to the resulting

autocorrelation, it indicates that the leverage effect in financial returns is more likely to be inter-

temporal than contemporaneous.
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In an extensive simulation study, we show that this new stochastic volatility gives clear neg-

ative parameter values for all three leverage effects when data is simulated from the Catania

model. As we do not find similar estimation results in the empirical application, we are not

convinced that empirical data does contain such a leverage structure. Furthermore, we show

that the Catania model cannot correctly distinguish the leverage effect when estimated on time

series of representative length. Also, in the simulation study, we found that incorporating three

leverage effects does not lead to an improvement in volatility predictions, but in fact, performs

worse. In the empirical application, we find that incorporating three leverage effects does lead to

improved predictions. Another indicator that the empirical data does not follow a process such

as is assumed in the stochastic volatility models discussed in this paper.

Our results suggest that the leverage structure of financial returns is not equal to that which is

assumed in stochastic volatility models. However, our new model is not an improvement. Thus,

we encourage future research to find a model that better fits financial returns and the correlation

structure between return and volatility shocks.

In our application to stock returns, we find that the leverage effect is much smaller for stocks

than for indices. We argue that this result adds to the already abundant evidence that the

leverage effect is not due to the financial leverage structure of assets but comes from a different

relation between returns and volatility.

Literature has shown that the leverage effect is often not present in foreign exchanges. We

find a small leverage effect in the Japanese Yen to United States dollar foreign exchange returns,

while we find an inverted leverage effect of similar size in the United States dollar to United

Kingdom pound sterling. This suggests that the price of the US dollar is highly correlated with

the volatility of the exchanges. Namely, there is a positive relation between the price of the US

dollar and the volatility of foreign exchanges.

Finally, we reconstruct the simulation studies of Lange (2020) to investigate the performance

of the new Bellman filter by Lange (2020) with that of the particle filtering method by Malik

and Pitt (2011). We show that the methods perform similarly when filtering state-space models.

When parameters also have to be estimated, the particle filter performs slightly better. However,

the Bellman filter is computationally far superior. Therefore, we conclude that the Bellman filter

is preferably when applied to large datasets or repetitive tasks. The particle filter extension of

Malik and Pitt (2011) can only be applied to one-dimensional state-space models. We expect

the Bellman filter to be an even greater computational improvement from the particle filter when

applied to multivariate state-space models. However, we leave this to future research to validate.
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Appendix A Catania model state-space representation

We have the following stochastic volatility model from Catania (2020):

yt = exp

{
ht
2

}
εt, εt

iid∼ N (0, 1),

ht = c+ φht−1 + σnηt,

ηt =
m∑
j=0

ρjεt−j +

√√√√1−
m∑
j=0

ρ2
jbt, bt

iid∼ N (0, 1).

(A.1)

We know that the observation errors εt are i.i.d. distributed. Thus, we can write the multivariate

distribution of the state error ηt and the observation errors εt, . . . , εt−m as:



εt

ηt

εt−1

. . .

εt−m


∼ N





0

0

0

. . .

0


,



1 ρ0 0 . . . 0

ρ0 1 ρ1 . . . ρm

0 ρ1 1 . . . 0

. . . . . . . . . . . . . . .

0 ρm 0 . . . 1




. (A.2)

We first compute the conditional distribution of ηt given εt−1, . . . , εt−m, which is normally dis-

tributed, ηt|εt−1, . . . , εt−m ∼ N (µη,Ση), with mean µη and variance Ση given by:

µη = 0 +
(
ρ1 . . . ρm

)
1 . . . 0

. . . 1 . . .

0 . . . 1


−1

εt−1

. . .

εt−m

 =

m∑
j=1

ρjεt−j ,

Ση = 1−
(
ρ1 . . . ρm

)
1 . . . 0

. . . 1 . . .

0 . . . 1


−1

ρ1

. . .

ρm

 = 1−
m∑
j=1

ρ2
j .

(A.3)

We can write ηt|εt−1, . . . , εt−m as ηt =
∑m

j=1 ρjεt−j+
√

1−
∑m

j=1 ρ
2
jwt, where wt ∼ N (0, 1). Now,

from the state equation yt = exp
{
ht
2

}
εt, we can write εt = exp

{−ht
2

}
yt. Replacing εt−j with

this expression leads to:

ηt =

m∑
j=1

ρj exp

{
−ht−j

2

}
yt−j +

√√√√1−
m∑
j=1

ρ2
jwt. (A.4)
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Thus, the state equation from model (A.1) can be written as:

ht = c+ φht−1 + σn

m∑
j=1

ρjyt−j exp

{
−ht−j

2

}
+ σn

√√√√ m∑
j=1

ρ2
jwt, (A.5)

For the observation equation, we compute the conditional distribution of εt given ηt and the

previous observation shocks εt−1, . . . , εt−m, which is normally distributed, ηt|εt−1, . . . , εt−m ∼

N (µε,Σε), with mean and variance given by:

µε = 0 +
(
ρ0 0 . . . 0

)


1 ρ1 . . . ρm

ρ1 1 . . . 0

. . . . . . 1 . . .

ρm 0 . . . 1



−1
ηt

εt−1

. . .

εt−m


=

ρ0

(1−
∑m

j=1 ρ
2
j )

ηt − m∑
j=1

ρjεt−j

 ,

Σε = 1−
(
ρ0 0 . . . 0

)


1 ρ1 . . . ρm

ρ1 1 . . . 0

. . . . . . 1 . . .

ρm 0 . . . 1



−1
ρ0

0

. . .

0

 = 1− ρ2
0

1−
∑m

j=1 ρ
2
j

.

(A.6)

Therefore, we can write

εt =
ρ0

(1−
∑m

j=1 ρ
2
j )

ηt − m∑
j=1

ρjεt−j

+

√
1− ρ2

0

1−
∑m

j=1 ρ
2
j

ut

=
ρ0

(1−
∑m

j=1 ρ
2
j )

ηt − m∑
j=1

ρj exp

{
−ht−j

2

}
yt−j

+

√
1− ρ2

0

1−
∑m

j=1 ρ
2
j

ut,

(A.7)

where ut ∼ N (0, 1). Finally, rewriting from the second equation in model (A.1), we get ηt =

1
σn

(ht− c−φht−1). Pluggin this into equation (A.7) gives the observation equation and plugging

this equation for εt in the observation equation in (A.1) gives:

yt = exp

{
ht
2

} ρ0

σn(1−
∑m

j=1 ρ
2
j )

ht − c− φht−1 − σn
m∑
j=1

ρjyt−j exp

{
−ht−j

2

}
+ exp

{
ht
2

}√
1− ρ2

0

1−
∑m

j=1 ρ
2
j

ut,

(A.8)

which is the observation equation of the state-space representation of the Catania model.
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Appendix B Score and information quantities of the SV model

We have the following stochastic volatility model:

yt = exp

{
ht
2

} m∑
j=0

ρjηt+j +

√√√√1−
m∑
j=0

ρ2
jξt

 , ξt ∼ N (0, 1)

αt = c+ Φαt−1 + ξt, Ξt ∼ N (0,Q),

(B.1)

such that conditional distribution of yt|αt, It−1 is nonlinear and Gaussian, given by:

yt|αt, It−1 ∼ N (µyt, σ
2
yt),

µyt = exp

{
ht
2

} m∑
j=0

ρjηt+j


σ2
yt = exp {ht}

1−
m∑
j=0

ρ2
j

 .

(B.2)

For simplicity, we leave It−1 out from here on. The probability density function of yt|αt is given

by the usual Gaussian pdf:

p(yt|αt) =
1

σyt
√

2π
exp

{
−1

2

(yt − µyt)2

σ2
yt

}
, (B.3)

with corresponding logarithm:

`(yt|αt) = − log(σyt)−
1

2

(yt − µyt)2

σ2
yt

= −ht
2
− 1

2

(yt − µyt)2

σ2
yt

, (B.4)

where we leave out the constants −1
2 log(2π) and −1

2 log
(

1−
∑m

j=0 ρ
2
j

)
. To compute score and

information quantities, we first compute the derivatives of the mean µyt and the variance σ2
yt with

respect to the state variables:

dµyt
dht

=
1

2
exp

{
ht
2

}( m∑
i=0

ρiηt+j

)
=

1

2
µyt,

dµyt
dηt+j

= ρj exp

{
ht
2

}
, for j = 0, . . . ,m,

dσ2
yt

dht
= exp {ht}

(
1−

m∑
i=0

ρ2
i

)
= σ2

yt,

dσ2
yt

dηt+j
= 0 for j = 0, . . . ,m.

(B.5)
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Furthermore, we note that

dσ−2
yt

dht
= − exp {−ht}

(
1−

m∑
i=0

ρ2
i

)−1

= σ−2
yt = − 1

σ2
yt

(B.6)

The score is given by:

d`(yt|αt)
dαt

=

[
d`(yt|αt)

dht
,
d`(yt|αt)

dηt+m
, . . . ,

d`(yt|αt)
dηt

]
, (B.7)

which can now easily be evaluated:

d`(yt|αt)
dht

= −1

2
− 1

2
(yt − µyt)2

dσ−2
yt

dht
+

(yt − µyt)
σ2
yt

dµyt
dht

= −1

2
+

1

2

(yt − µyt)2

σ2
yt

− 1

2

(yt − µyt)
σ2
yt

µyt

= −1

2
+

1

2

(yt − µyt)
σ2
yt

yt,

d`(yt|αt)
dηt+j

=
(yt − µyt)

σ2
yt

dµyt
dηt+j

=
(yt − µyt)

σ2
yt

ρj exp

{
ht
2

}
=

(yt − µyt)
σyt

ρj√
1−

∑m
i=0 ρ

2
i

, for j = 0, . . . ,m.

(B.8)

Next, we calculate the realized information matrix, which is given by:

−d2`(yt|αt)
dαtdα′t

=



−d2`(yt|αt)
dh2t

−d2`(yt|αt)
dhtdηt+m

. . . −d2`(yt|αt)
dhtdηt

−d2`(yt|αt)
dhtdηt+m

−d2`(yt|αt)
dη2t+m

. . . −d2`(yt|αt)
dηt+mdηt

. . . . . . . . . . . .

−d2`(yt|αt)
dhtdηt

−d2`(yt|αt)
dηt+mdηt

. . . −d2`(yt|αt)
dη2t


. (B.9)
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For which we compute the elements by:

−d2`(yt|αt)
dh2

t

= −

(
1

2
(yt − µyt)yt

dσ−2
yt

dht
− 1

2

yt
σ2
yt

dµyt
dht

)
=

1

2

(yt − µyt)yt
σ2
yt

+
1

4

ytµyt
σ2
yt

=
1

2

y2
t

σ2
yt

− 1

4

ytµyt
σ2
yt

,

−d2`(yt|αt)
dhtdηt+j

= −

(
−1

2

yt
σ2
yt

dµyt
dηt+j

)
=

1

2

yt
σ2
yt

ρj exp

{
ht
2

}
=

1

2

yt
σyt

ρj√
1−

∑m
i=0 ρ

2
i

, for j = 0, . . . ,m,

−d2`(yt|αt)
dη2

t+j

= −

− ρj√
1−

∑m
i=0 ρ

2
i

1

σyt

dµyt
dηt+j

 =
ρj√

1−
∑m

i=0 ρ
2
i

1

σyt
ρj exp

{
ht
2

}

=
ρ2
j

1−
∑m

i=0 ρ
2
i

, for j = 0, . . . ,m,

− d2`(yt|αt)
dηt+jdηt+k

= −

− ρj√
1−

∑m
i=0 ρ

2
i

1

σyt

dµyt
dηt+k

 =
ρj√

1−
∑m

i=0 ρ
2
i

1

σyt
ρk exp

{
ht
2

}

=
ρjρk

1−
∑m

i=0 ρ
2
i

, for j = 0, . . . ,m, k = 0, . . . ,m, j 6= k.

(B.10)

Finally, the expected information matrix is given by:

E

[
−d2`(yt|αt)

dαtdα′t

∣∣∣∣∣αt
]

= E





−d2`(yt|αt)
dh2t

−d2`(yt|αt)
dhtdηt+m

. . . −d2`(yt|αt)
dhtdηt

−d2`(yt|αt)
dhtdηt+m

−d2`(yt|αt)
dη2t+m

. . . −d2`(yt|αt)
dηt+mdηt

. . . . . . . . . . . .

−d2`(yt|αt)
dhtdηt

−d2`(yt|αt)
dηt+mdηt

. . . −d2`(yt|αt)
dη2t


∣∣∣∣∣αt

, (B.11)

for which we only have to take the expectations of the elements of the realized information, given

in B.12.

E

[
−d2`(yt|αt)

dh2
t

∣∣∣αt] =
1

2

(µ2
yt + σ2

yt)

σ2
yt

− 1

4

µ2
yt

σ2
yt

=
1

2
+

1

4

µ2
yt

σ2
yt

,

E

[
−d2`(yt|αt)

dhtdηt+j

∣∣∣αt] =
1

2

µyt
σyt

ρj√
1−

∑m
i=0 ρ

2
i

, for j = 0, . . . ,m,

E

[
−d2`(yt|αt)

dη2
t+j

∣∣∣αt] =
ρ2
j

1−
∑m

i=0 ρ
2
i

, for j = 0, . . . ,m,

E

[
− d2`(yt|αt)

dηt+jdηt+k

∣∣∣αt] =
ρjρk

1−
∑m

i=0 ρ
2
i

, for j = 0, . . . ,m, k = 0, . . . ,m, j 6= k.

(B.12)
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Appendix C Estimation on foreign exchange returns

Table C.1: Estimated parameters from the Catania model and the new SV model on foreign
exchange returns

New SV model Catania model
c φ σn ρ0 ρ1 ρ2 c φ σn ρ0 ρ1 ρ2

Panel A: United States dollar vs British pound sterling (USD/Pound)
-0.192 0.981 0.135 - - - -0.170 0.984 0.120 - - -
0.042 0.004 0.014 - - - 0.069 0.007 0.010 - - -

-0.204 0.980 0.137 0.155 - - -0.189 0.979 0.125 0.197 - -
0.041 0.004 0.013 0.050 - - 0.004 0.001 0.004 0.005 - -

-0.204 0.980 0.137 - 0.087 - -0.179 0.983 0.124 - 0.091 -
0.042 0.004 0.014 - 0.053 - 0.050 0.005 0.012 - 0.080 -

-0.206 0.980 0.137 0.145 0.026 - -0.170 0.984 0.122 0.149 -0.055 -
0.043 0.004 0.014 0.054 0.050 - 0.002 0.001 0.004 0.015 0.010 -

-0.206 0.980 0.138 - 0.078 0.015 -0.173 0.984 0.125 - 0.183 -0.108
0.042 0.004 0.013 - 0.061 0.059 0.033 0.003 0.004 - 0.142 0.062

-0.205 0.980 0.063 0.556 0.204 -0.431 -0.199 0.973 0.219 0.128 0.183 -0.159
0.001 0.000 0.006 0.012 0.009 0.013 0.007 0.001 0.008 0.017 0.021 0.028

Panel B: Japanese yen vs United States dollar (YEN/USD)
-0.427 0.928 0.287 - - - -0.432 0.958 0.201 - - -
0.053 0.025 0.055 - - - 0.028 0.003 0.008 - - -

-0.429 0.958 0.261 -0.212 - - -0.462 0.956 0.208 -0.199 - -
0.036 0.013 0.033 0.036 - - 0.002 0.002 0.006 0.002 - -

-0.506 0.950 0.301 - -0.142 - -0.458 0.955 0.206 - -0.160 -
0.089 0.018 0.042 - 0.038 - 0.033 0.003 0.028 - 0.051 -

-0.456 0.955 0.267 -0.199 -0.021 - -0.409 0.956 0.202 -0.260 -0.032 -
0.054 0.015 0.037 0.045 0.041 - 0.016 0.002 0.008 0.039 0.026 -

-0.499 0.951 0.300 - -0.187 0.056 -0.436 0.958 0.213 - -0.323 0.191
0.076 0.017 0.039 - 0.048 0.043 0.028 0.003 0.013 - 0.053 0.060

-0.448 0.955 0.245 -0.499 -0.211 0.446 -0.432 0.956 0.324 -0.279 -0.078 0.182
0.068 0.007 0.017 0.013 0.010 0.011 0.077 0.021 0.008 0.019 0.024 0.028

NOTE: This table shows parameter estimations of the stochastic volatility models from Section 4.1 and Section
4.2 on returns of two major foreign exchanges. We vary the leverage effects in the stochastic volatility models
between zero and three. The estimated parameters are shown in this table, with below their estimated standard
errors using MATLAB’s fminunc function.
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