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Abstract

Limited prior research addresses the cross-section of delta-hedged equity option returns. Mean-

while, the literature on explaining stock returns is ever expanding with the introduction of novel

machine learning methods. In this paper, I aim to bridge this gap in the literature by studying

conditional latent factor models that use covariates in order to explain the cross-section of eq-

uity option returns and evaluating the most important characteristics that drive these models.

I find that these unsupervised machine learning models significantly outperform traditional fac-

tor models and that non-linearity of the factor loadings further improves the models, especially

from an economic perspective. Furthermore, the models identify the volatility risk premium and

option liquidity as the most important characteristics in terms of explanatory power. However, I

discover that these advanced modeling approaches are not very robust and, thus, very dependent

on the data that they are applied to.

Keywords: Equity option returns, Instrumented Principal Component Analysis, conditional

autoencoder, unsupervised machine learning, factor model
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1 Introduction

Ever since the introduction of the Capital Asset Pricing Model and the three-factor model

proposed by Fama and French (1993), research on explaining the cross-sectional differences

between stock returns has become increasingly popular. However, up until today, there is

only a limited number of studies aiming to explain the cross-section of equity option returns.

Horenstein, Vasquez, and Xiao (2018) highlight the importance of understanding the cross-

section of option returns. In practice it could prove expensive for investors to hedge their

portfolio variance risk. They argue that one can hedge this variance risk by trading the factors

that drive the cross-section of delta-hedged option returns. Besides, Bakshi and Kapadia (2003)

demonstrate that delta-hedged option portfolios do not only exhibit the equity risk premium,

but also a volatility risk premium. Thus, as equity options cannot be simply regarded as levered

positions in the underlying stocks, they provide an interesting area of research.

This paper investigates whether novel methods in the field of unsupervised machine learning

yield superior results compared to conventional factor models, when explaining the cross-section

of equity option returns. These modeling approaches utilize covariates to explain the risk-return

characteristics and could, therefore, offer enhanced explanatory power, while maintaining the

economic interpretability. I evaluate the performance in terms of total R2 and predictive R2, in

addition to the Sharpe ratio and variance. Furthermore, this paper aims to identify a subset of

the most important characteristics in terms of explaining this cross-section. Finally, by splitting

the test sample based on these important characteristics, into sets with materially different types

of options (e.g. liquid options versus illiquid options), I challenge the robustness of these results.

For the covariates, I consider a large set of 95 option and stock characteristics, inspired by

Green, Hand, and Zhang (2017), Brooks, Chance, and Shafaati (2018) and Horenstein et al.

(2018). Each of the characteristics in the set has proven to be relevant in prior research and can

be broadly categorized as either trading, return or balance sheet related.

In this paper, I study two unsupervised machine learning methods. The first model is

a latent conditional factor model called Instrumented Principal Component Analysis (IPCA).

Kelly, Pruitt, and Su (2019) introduce this new method in an effort to overcome the shortcomings

of conventional observable and latent factor models, in order to explain the cross-section of stock

returns. In contrast to Principal Component Analysis (PCA), in IPCA factor loadings linearly

depend on observable asset characteristics (the instrumental variables). Therefore, IPCA allows

for the factor model to incorporate stock characteristics into the analysis, capitalizing on previous

research on factor structures. Furthermore, IPCA performs dimension reduction directly in the

model.

1



Gu, Kelly, and Xiu (2019a) present another asset pricing model for explaining stock returns,

inspired by autoencoder neural networks. The proposed Conditional Autoencoder (CA) model

extends on the standard autoencoder model by including covariates and helps guide dimension

reduction. However, in contrast to IPCA of Kelly et al. (2019) which assumes linearity for the

factor exposures, the autoencoder allows for nonlinear functions. Consequently, the autoencoder

model shares the benefits offered by IPCA, but allows for more flexibility, which could improve

the results.

The aforementioned modeling approaches seem to offer a lot of potential when explaining

stock returns. To be best of my knowledge, these methods have not yet been studied in the

field of delta-hedged equity option returns. Hence, I aim to bridge this gap in the literature, as

it could offer new insights into the performance of conditional latent factor models, while also

expanding on existing literature about important characteristics in explaining equity option

returns.

The empirical analysis finds that the models that use covariates, IPCA and CA, significantly

outperform conventional observable and latent factor models, both from a statistical and eco-

nomic perspective. For the 5-factor model, IPCA and CA demonstrate a total R2 of 8.0% and

7.7%, respectively, compared to 4.4% for standard Principal Component Analysis. From an

economic perspective, CA is yielding the highest Sharpe ratio of 2.61, for long-short portfolios

constructed using its predicted returns.

Moreover, the paper finds that two characteristics are the most important in explaining the

cross-section of equity option returns: the volatility risk premium and option liquidity. IPCA

and CA both observe this result, but deviate in terms of the importance of the remaining, less

significant characteristics. This finding reinforces the results from prior studies conducted on the

subject, most notably by Goyal and Saretto (2009) and Christoffersen, Goyenko, Jacobs, and

Karoui (2018). Finally, the robustness analysis shows that the models’ performance is highly

dependent on the sample of options considered. Especially when splitting the sample based on

the aforementioned important characteristics, the model results can differ substantially.

This study contributes to the existing literature by providing evidence of the versatility of

the models under different types of data. It does, however, reveal a potential shortcoming of

the models in terms of their robustness to the sample. Furthermore, the paper reaches similar

conclusions to prior research, but by taking a structurally different approach. This further

reinforces the soundness of these findings.

The remaining structure of the paper is as follows. Section 2 elaborates further on how this

paper is related to prior literature. Section 3 describes the modeling framework and methods in
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more details. Moreover, it discusses the testing and performance criteria. Section 4 introduces

the data for the empirical study and discusses how delta-hedged option returns are constructed.

Section 5 presents the findings of the comparison of the different methods. Finally, Section 6

concludes and proposes possible areas of further research.

2 Literature Review

Bakshi and Kapadia (2003) are one of the pioneers in studying delta-hedged option returns,

focusing on index options. They demonstrate that on average a delta-hedged option strategy

underperforms zero, where at-the-money options show the largest underperformance. Further-

more, this underperformance increases during periods of higher volatility.

Leveraging the common finding that volatility is mean-reverting, Goyal and Saretto (2009)

show that large deviations of implied volatility from historical volatility often imply mispricing

of an option. That is, the zero-cost strategy with a long position in an option portfolio of

stocks with a large positive difference between historical and implied volatility and short in

a portfolio with a large negative difference generates statistically and economically significant

returns. In line with the findings of Bakshi and Kapadia (2003) for index options, Cao and Han

(2013) show that individual delta-hedged equity option returns decrease with an increase in the

idiosyncratic volatility of the underlying stock. This result cannot be explained by the volatility

risk premium. Moreover, they note that returns decrease further for options on less liquid stocks

and when option open interest is higher. Finally, Christoffersen et al. (2018) find that equity

option returns are larger in the case of less liquid options, which is in contrast to option returns

on less liquid stocks.

In an endeavor to summarize the aforementioned findings, Horenstein et al. (2018) aim to

find the common factors that drive the cross-section of delta-hedged equity option returns. Out

of the 13 considered factors, they find that a four-factor model (firm size, idiosyncratic volatility,

volatility deviation and market volatility risk) can explain the cross-section and time series of

option returns. Moreover, they show that traditional stock factors cannot price the cross-section

of option returns. Brooks et al. (2018) perform a similar analysis, but consider a substantially

larger set of factors, namely 99 underlying stock and option characteristics. Green et al. (2017)

study the relevant characteristics to explain monthly stock returns and provide a large set of

stock characteristics in doing so. Together, these papers form the basis of the characteristics

data that I consider in my analysis.

Besides observable factor models, many research is devoted to employing latent factor models

in order to explain the cross-section of returns. Chamberlain and Rothschild (1982) pioneered the
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use of Principal Component Analysis (PCA) as a latent factor model to simultaneously estimate

factors and factor loadings from asset returns. PCA is directly related to CA, as autoencoders

can be considered a nonlinear neural network counterpart to PCA (Baldi & Hornik, 1989).

Kelly et al. (2019) and Gu et al. (2019a) introduce novel methods that aim to take the

favourable aspects from both observable and latent factor models, by incorporating covariates

into the model. Gu, Kelly, and Xiu (2019b) expand on their research by considering a wider

range of asset pricing models, but only concentrate on evaluating their pure predictability, as

opposed to the risk-return characteristics. The aforementioned papers focus solely on explaining

the cross-section of stock returns.

3 Methodology

This section elaborates on the modeling approaches used in the empirical analysis and outlines

the evaluation framework. First, I describe the IPCA model in detail. Second, I discuss a

generalization of IPCA, which concerns a conditional autoencoder (CA). Third, I introduce two

benchmark models that share features of the aforementioned methods. Section 3.4 elaborates on

the evaluation framework. Next, Section 3.5 is devoted to explaining the methodology behind

determining the most relevant characteristics in the models. Finally, I describe the robustness

checks on the models in Section 3.6.

3.1 Instrumented Principal Component Analysis

Instrumented Principal Component Analysis (IPCA), as pioneered by Kelly, Pruitt, and Su

(2017), is a novel modeling approach aimed at explaining the cross-section of returns. Similar

to Principal Component Analysis (PCA), IPCA treats risk factors as latent. However, unlike

PCA’s static loadings and inability to incorporate other data beyond returns, IPCA allows

for time-varying factor loadings that depend on observable characteristics related to the asset.

Hence, IPCA offers a revamped approach to standard PCA that exploits its favorable aspects,

while overcoming its shortcomings. For instance, the instrumental variables used in IPCA ensure

an increased economic interpretability over PCA. In doing so, IPCA is able to capitalize on the

extensive literature on observable factor models and factor anomalies.

Another beneficial feature of IPCA is its embedded dimension reduction in the model. Con-

sequently, IPCA imposes parameter parsimony and should be well-behaved when characteristics

are highly correlated, noisy or spurious.
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Following the definition from Kelly et al. (2019), the IPCA model is specified as

ri,t+1 = αi,t + βi,tft+1 + εi,t+1,

αi,t = z
′
i,tΓα + να,i,t, βi,t = z

′
i,tΓβ + νβ,i,t,

(1)

where ri,t+1 is the excess return, βi,t the dynamic factor loading and ft+1 the vector of k latent

factors. The time-varying factor loadings are a function of the observable asset characteristics,

or instruments, denoted by L-vector zi,t. The anomaly intercept is represented by αi,t, which

is also a function of the instrumental variables. Throughout this research, I impose the no-

arbitrage restriction in order to focus on the risk-return relationship of the factors. Hence, it

follows that αi,t = 0 for all i and t or, alternatively, Γα = 0 and να,t,t = 0 for all i and t.

The L x K parameter matrix Γβ represents a mapping from potentially high dimensional

characteristics to a small number of risk factors loadings, ensuring dimension reduction takes

place within the model. Simultaneously, νβ,i,t captures any residual behavior of the loadings that

is orthogonal to the instruments, as the observable characteristics might not perfectly explain

the risk exposures.

3.1.1 Model Estimation

Under the zero-intercept no-arbitrage restriction, the model in Equation 1 can be further sim-

plified as

ri,t+1 = z
′
i,tΓβft+1 + ε∗i,t+1, (2)

where ε∗i,t+1 = εi,t+1 + νβ,i,tff+1 is the new error term.

Besides, I rewrite the model in vector form, such that Equation 2 becomes

rt+1 = ZtΓβft+1 + ε∗t+1, (3)

where rt+1 is the N x 1 vector of stacked asset returns at time t + 1, Zt is the N x L matrix

of stacked characteristics of each asset at time t, and the individual asset error terms ε∗i,t+1 are

represented by the N x 1 vector ε∗t+1.

Following Kelly et al. (2019), I define the objective function as the minimization of the sum

of squared errors in the model:

min
Γβ ,F

T−1∑
t=1

(rt+1 − ZtΓβft+1)
′
(rt+1 − ZtΓβft+1) . (4)
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The solution of this objective function is provided by a system of first-order conditions,

without a closed-form solution. Specifically, Kelly et al. (2019) show that the ft+1 and Γβ that

minimize Equation 4 satisfy the following equations:

f̂t+1 =
(

Γ̂
′
βZ
′
tZtΓ̂β

)−1
Γ̂
′
βZ
′
trt+1,∀t (5)

and

vec(Γ̂
′
β) =

(
T−1∑
t=1

Z
′
tZt ⊗ f̂t+1f̂

′
t+1

)−1(T−1∑
t=1

[
Zt ⊗ f̂

′
t+1

]′
rt+1

)
. (6)

As this system of equations does not have a closed-form solution, I resort to numerical methods

to solve the system for ft+1 and Γβ simultaneously.

3.1.2 Numerical Solution: Alternating Least Squares

The solution of ft+1 and Γβ in Equation 5 and 6 is currently unidentified. In order to identify

a unique solution, I impose three additional restrictions: (1) Γ
′
βΓβ = Ik; (2) the unconditional

second moment of ft is a diagonal matrix with descending elements along the diagonal; (3) the

mean of ft is non-negative. These assumptions solely ensure a unique solution, without imposing

any economic restrictions on the model (Kelly et al., 2019).

Alternating Least Squares Following Kelly et al. (2019), I apply the Alternating Least

Squares algorithm to find numerical solutions to ft+1 and Γβ. In particular, I choose the eigen-

vectors corresponding to the k largest eigenvalues of the characteristic-managed portfolio’s sec-

ond moment matrix as the initial guess for Γ̂β. That is,
∑

t r
p
t+1r

p′

t+1 =

(
Z
′
trt+1

Nt+1

)(
Z
′
trt+1

Nt+1

)′
is

the initial guess, where Nt+1 is the number of non-missing observations. Section 4.4 elaborates

on the usage and advantages of the managed portfolios. Kelly et al. (2019) highlight that this

starting point is a close approximation to the exact solution and can, thus, significantly reduce

the algorithm’s run-time.

After the initialization of Γ̂β, I proceed by solving for f̂t+1 in Equation 5. This boils down

to a least squares regression for all t. Subsequently, I plug in the obtained f̂t+1 into Equation

6 and solve for Γ̂β by evaluating the least squares regression. I continue these iterations until

convergence, which is reached when at any point the maximum absolute change in any element

of either Γ̂β or f̂t+1, for all t, is less than 10−6.
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3.2 Conditional Autoencoder

Even though IPCA offers various advantages over conventional methods such as observable factor

models and latent factor models, it also has a potential limitation. Namely, IPCA only allows

for a linear relationship between the characteristics and the factor loadings. Goyal and Saretto

(2009) argue that it is unlikely for a linear factor model to explain the cross-section of option

returns over any discrete time interval.

Gu et al. (2019a) introduce an extended conditional autoencoder (CA) model that bypasses

this limitation by allowing for nonlinear functions for the factor exposures. Similar to IPCA (and

PCA), autoencoders are classified as dimension reduction models in the field of unsupervised

machine learning. They are a type of neural network, in which the outputs try to estimate the

corresponding input variables. In general, neural networks proceed by passing input variables

through a set of neurons in the hidden layers (i.e. encoding), which is subsequently decoded on

the output layer. While the standard autoencoder solely uses asset returns as input, Gu et al.

(2019a) propose a conditional extension that incorporates asset characteristics and, consequently,

generalizes the IPCA model.

3.2.1 Model Estimation

In defining the conditional autoencoder model, I follow Gu et al. (2019a) for any new notation,

while holding on to earlier notation and assumptions. In particular, I use the rectified linear unit

(g(y) = max(y, 0)) as the model’s nonlinear function in the methodology and empirical results,

and maintain the zero-intercept no-arbitrage restriction throughout. Moreover, I define K(l) as

the number of neurons in each layer l, for l = 1, . . . , L, and let r
(l)
k or z

(l)
k denote the output of

neuron k in layer l for the factors and loadings, respectively.

The conditional autoencoder consists of two branches1: one branch to model the factor

loadings, or betas, as a nonlinear function of the asset characteristics, and a second branch to

model the factors using the individual asset returns. The first branch, related to factor loadings,

is specified by the following set of recursive equations:

z
(0)
i,t−1 = zi,t−1, (7)

z
(l)
i,t−1 = max

(
b(l−1) +W (l−1)z

(l−1)
i,t−1 , 0

)
, l = 1, . . . , Lβ, (8)

βi,t−1 = b(Lβ) +W (Lβ)z
(Lβ)
i,t−1. (9)

Equation 7 initializes the network using the characteristic data, zi,t−1. Equation 8 outlines

1Gu et al. (2019a) provide an excellent visual representation of this model in Figure 2.
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the recursive transformation that occurs in each hidden layer of the inputs from the previous to

the next layer. W (l−1) represents a K(l) x K(l−1) weighting matrix and b(l−1) is the K(l)-vector

of bias parameters. The objective of the neural network is to simultaneously optimize these

weighting and bias parameters. In the empirical analysis, I fix the number of hidden layers, Lβ,

to 1, as this provides the best results for Gu et al. (2019a). Finally, Equation 9 describes how

the K-dimensional factor loadings are obtained as the output of the network.

For the second input layer, related to factors, I also fix the number of hidden layers, Lf , to

1. In this way, the resulting factors are simply linear combinations or portfolios of the individual

assets. The network is defined as follows:

r
(0)
t = rpt , (10)

r
(1)
t = max

(
b̃(0) + W̃ (0)r

(0)
t , 0

)
, (11)

ft = b̃(1) + W̃ (1)r
(1)
t . (12)

This time, the network is initialized with a set of portfolios of individual asset returns, defined

as:

rpt =
Zt−1rt
Nt

, (13)

where Nt represents the number of non-missing observations. Gu et al. (2019a) highlight the

various benefits that emerge from initializing the network with a set of portfolios, instead of

individual asset returns rt. Most notably, it performs an initial dimension reduction of the data

and resolves issues arising from unbalanced panels. Similar to Equation 8, Equation 11 describes

the transformation through the single hidden layer, where W̃ (l−1) and b̃(l−1) once again represent

the weighting matrix and vector of bias parameters, respectively. Finally, the K-dimensional

output is obtained from Equation 12.

Combining the output of the factor loadings (Equation 9) and factors (Equation 12) results

in the final model fit for each individual asset return. More specifically, I multiply loading βi,t−1

by factor ft for every i and t. The goal of the autoencoder is to optimize the weighting and bias

parameters in such way that sum of squared errors is minimized. More formally, the objective

function of the autoencoder is defined as follows:

min
b,b̃,W,W̃

1

NT

T−1∑
t=0

N−1∑
i=0

||ri,t+1 − β
′
i,t(b,W )ft+1(b̃, W̃ )||2, (14)

where β
′
i,t(b,W ) and ft+1(b̃, W̃ ) are the model outputs of Equation 9 and Equation 12, respec-

tively, given their respective weighting and bias parameters.
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3.2.2 Regularization

I apply regularization to further mitigate the risk of overfitting of the data. Regularization

promotes more parsimonious models by adding a penalty term to the objective function that

shrinks coefficient estimates towards zero. Consequently, it sacrifices in-sample performance in

an endeavor to improve its out-of-sample results. Following Gu et al. (2019a), I apply three

regularization techniques: LASSO, early stopping and random initialization. Besides, I split

the data into a disjoint training, validation and test sample, as further elaborated on in Section

3.4.3.

LASSO LASSO regularization adapts the objective function in Equation 14 slightly by adding

a first-order penalty term. Moreover, LASSO promotes sparsity by setting insignificant weight

parameters equal to zero. The revised objective function is now defined as

L(θ; ·) =
1

NT

T−1∑
t=0

N−1∑
i=0

||ri,t+1 − β
′
i,tft+1||2 + λ

∑
j

|θj |, (15)

where λ
∑

j |θj | represents the LASSO penalty term, with non-negative hyperparameter λ, which

is tuned in the validation sample. θ summarizes all the weight parameters (i.e. weighting

matrices W (j) and W̃ (j), and bias parameters b(j) and b̃(j)) from the networks in Equation 7

through 12.

Early Stopping As a second regularization technique, I apply early stopping. The algorithm

starts with an initial guess that all weight parameters of θ are zero. At each iteration, it reduces

the pricing errors in the training sample by updating the parameter estimates. Simultaneously,

errors in the validation sample are calculated using these parameter estimates. This process

proceeds until the validation sample errors no longer decline, even though the model continues

to reduce errors in the training sample. Intuitively, early stopping ensures that parameters are

shrunken towards the initial guess of zeros, since this algorithm generally terminates before full

optimization of the training sample fitting errors has been achieved. Algorithm 1 provides a

formal definition of early stopping.
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Algorithm 1 Early Stopping

1: Initialization: j = 0, ε =∞ and select p (patience parameter)
2: while j < p do
3: Update θ (using SGD in Algorithm 2)
4: Use θ to calculate the errors from the validation sample (ε

′
)

5: if ε
′
< ε then

6: j ← 0
7: ε← ε

′

8: θ
′ ← θ

9: else
10: j ← j + 1

11: return θ
′

Random Seeds The final regularization method that I employ is a randomization technique

that further improves the stability of the results. Specifically, I initialize the neural network

using ten different random seeds and average the estimates that result from these networks.

Hence, this diminishes the risk of reporting results from a local optimum in the optimization.

3.2.3 Optimization: Stochastic Gradient Descent

Gu et al. (2019a) propose the use of the stochastic gradient descent (SGD) algorithm to optimize

the conditional autoencoder model from Section 3.2.1. The power of this algorithm lies in

the fact that it only requires a small random subset of the data at each iteration to evaluate

the gradient. While the accuracy diminishes slightly as a consequence of this approximation,

considerable gain is achieved in terms of run time. In particular, I adopt the SGD algorithm as

proposed by Kingma and Ba (2014) and specified in Algorithm 2.

Algorithm 2 Stochastic Gradient Descent (SGD)

1: Initialization: β1 = 0.9, β2 = 0.999, ε = 10−8, m0 = 0, v0 = 0 and t = 0
2: Tuning parameters: α (learning rate) and b (batch size)
3: Set up θ0 as initial parameter vector
4: while θt is not converged do
5: t← t+ 1
6: gt ← ∇θ

[
1
b

∑
s∈Bt L(θ; s)

]
|θ=θt−1 , where Bt is the set of batch samples

7: mt ← β1 ·mt−1 + (1− β1) · gt
8: vt ← β2 · vt−1 + (1− β2) · g2

t

9: m̂t ← mt/(1− βt1)
10: v̂t ← vt/(1− βt2)
11: θt ← θt−1 − α · m̂t/(

√
v̂t + ε)

12: return θt

Finally, I also adopt the Batch Normalization algorithm, proposed by Ioffe and Szegedy

(2015). This technique bypasses the problem that arises in neural networks when the distribution
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of each layer’s inputs changes during training, also referred to as internal covariate shift. This

phenomenon can substantially increase the run-time or can result in non-optimal outcomes.

Ioffe and Szegedy (2015) resolve this problem by normalizing the layer inputs for each batch.

Algorithm 3 formalizes this process.

Algorithm 3 Batch Normalization

1: Input parameters: values of x over mini-batch B = {x1, . . . , xN}
2: Initialization: ε is constant (for numerical stability)
3: Tuning parameters: γ and β
4: µB ← 1

N

∑N
i=1 xi

5: σ2
B ←

1
N

∑N
i=1(xi − µB)2

6: x̂i ← xi−µB√
σ2
B+ε

7: yi ← γx̂i + β ≡ BNγ,β(xi)
8: return yi for i = 1, . . . , N

3.3 Benchmark Models

Since the models that I describe in Section 3.1 and Section 3.2 share features of both observable

and latent factor models, it logically follows to introduce multiple benchmark models to compare

against. More specifically, in line with Gu et al. (2019a), I apply Principal Component Analysis

(PCA) and an observable factor model as the benchmark models. While both benchmarks

are unconditional by default, by considering characteristic-managed portfolios as test assets, I

embed conditional information into the models.

3.3.1 Latent Factor Model

PCA forms a natural candidate, due to its close relation to the advanced models considered in

this research. First of all, PCA is a dimension reduction technique in the field of unsupervised

learning. IPCA and autoencoder described in Section 3.1 and Section 3.2, respectively, fall into

the same category of machine learning methods. Second of all, IPCA is considered an extension

to PCA that includes instruments or characteristics into the analysis.

In contrast to feature selection, where a subset of factors are selected from a potentially

large group of characteristics, PCA is a dimension reduction technique that extracts features.

In doing so, PCA solely uses the asset returns and constructs k latent factors, for a pre-specified

k.

In order to find the principal components, I first define the N x N sample covariance matrix

of the asset returns as Σ̃ = 1
T−1

∑T
t=1(rt − r̄)(rt − r̄)

′
. In this equation, the returns are stacked

such that rt = (r1,t, . . . , rN,t), and r̄ = 1
T

∑T
t=1 rt represents the mean returns across the time
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dimension. Jolliffe (2002) shows that the covariance matrix can be decomposed into

Σ̃ = AΛA
′
, (16)

where A is the matrix of eigenvectors and Λ the diagonal matrix with eigenvalues λi. Using

this eigenvector decomposition, PCA proceeds by selecting k eigenvectors in decreasing order

of importance in terms of explaining the variation. That is, the eigenvalues are sorted in a

descending order and the first k eigenvalues, and corresponding eigenvectors, are selected by

PCA. Subsequently, I construct the k latent factors, ft, using the eigenvector transformation for

each i-th factor: fi,t = a
′
i(rt− r̄), where ai is the i-th column of matrix A and ft = (f1,t, . . . , fk,t).

Finally, the first k columns of matrix A provide the corresponding factor loadings matrix B =

(β1, . . . βk), which is static across time: βi = βi,t for all i = 1, . . . , k and t = 1, . . . , T .

3.3.2 Observable Factor Model

Besides PCA as a latent factor model, I introduce an observable factor model of k factors, for

k = 1, 2, 3, 4, 5, 6. When considering stock returns, an obvious observable benchmark is the

Fama and French (1993) three-factor model, and its more recent extensions (e.g., Fama and

French (2015)). Kelly et al. (2019) and Gu et al. (2019a) indeed resort to this literature for their

observable factor model benchmarks, as they only analyze stock return data. Unfortunately,

the literature on equity options does not provide an equivalently common benchmark model.

Therefore, I capitalize on the findings of Horenstein et al. (2018) about common factors in equity

option returns to create observable factor benchmark models.

In the stock return literature, the Capital Asset Pricing Model (CAPM) is generally used as

an observable factor model with only one factor: the excess market return (often proxied by the

excess return of the S&P 500 Index over the risk-free return). In a similar fashion, Goyal and

Saretto (2009) and Cao and Han (2013) argue that one can consider the delta-hedged return

of S&P 500 Index options as a market factor for option returns. Consequently, the 1-factor

observable factor benchmark model is defined as

ri,t+1 = αi + βm,iDHm,t + εi,t+1, (17)

where DHm,t is the delta-hedged return of the S&P 500 Index option and βm,i the associated

factor loading of each asset i. The intercept, αi, and error term, εi,t+1, are similar in definition

to the basic framework in Equation 18.

Horenstein et al. (2018) find six relevant factors to explain delta-hedged equity option returns,
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out of their 13 candidate factors. Moreover, they rank these factors in terms of importance. All

candidate factors are created based on long-short decile portfolios. To construct k-factor models

for k = 2, 3, 4, 5, 6, I gradually add five factors to the model in Equation 17 in order of importance,

as presented by Horenstein et al. (2018). That is, the 2-factor model consists of DHm and the

size factor, which represents the long-short decile portfolio based on market capitalization of the

underlying stock. The 3-factor model adds a factor related to idiosyncratic volatility, while the

4-factor model also includes a factor for the volatility differential between realized and implied

volatility. Finally, the 5-factor models adds a factor related to the cash-to-assets ratio and the

6-factor model also includes a factor based on analyst earnings forecast dispersion. Appendix

Section B provides a complete overview of all the k-factor observable benchmark models for

k = 1, 2, 3, 4, 5, 6, including elaborate definitions of the factors used.

3.4 Evaluation Framework

This section introduces statistical and economic evaluation criteria used in the empirical analysis.

Moreover, it describes how the dataset is divided into a training, validation and test sample,

which is a common approach when evaluating machine learning methods.

In order to be able to elaborate on the evaluating criteria, I define a generic factor model

that reflects each of the models in this paper as

ri,t+1 = αi,t + β
′
i,tft+1 + εi,t+1, (18)

where ri,t+1 is the excess asset return, which in this paper is represented by the delta-hedged

equity option return, as defined in Section 4.2. Furthermore, ft+1 is the K-vector of factor

returns, βi,t the associated factor loading and the intercept is given by αi,t. Finally, εi,t+1 is the

error term, with Et(εi,t+1) = Et(εi,t+1ft+1) = 0, for all i and t. The cross-section is represented

by i = 1, . . . , N and the time dimension by t = 1, . . . , T .

Besides, I follow Kelly et al. (2019) in defining the risk price associated with factors, λt,

as the expected one-step ahead return of the factors. That is, λt = Et(ft+1). λt can also be

expressed as a function of the stochastic discount factor2 (Kelly et al., 2019).

3.4.1 No-Arbitrage Restriction

In evaluating the performance of methods, one can choose between comparing their pure pre-

diction performance or solely considering the predictability and compensation that arises from

2This statement is correct under the following assumptions. No arbitrage, a stochastic discount factor (mt+1)
exists and the following equation is satisfied (for any excess return ri,t): Et(mt+1ri,t+1) = 0. This equation in

turns implies: Et(ri,t+1) =
Covt(mt+1,ri,t+1)

V art(mt+1)

(
−V art(mt+1)

Et(mt+1)

)
, where the last fraction is equal to the risk price λt.
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exposure to risk factors. In line with Gu et al. (2019a), I opt for the latter approach and,

thus, impose the no-arbitrage restriction on all the models prior to the comparison. That is, all

the models in this research are all specified without an intercept, or αi,t = 0 for all i and t in

Equation 18.

In order to challenge the validity of this restriction, I test to which extend this no-arbitrage

restriction is satisfied in the data. The model residuals, i.e. the difference between the actual

return and the out-of-sample fitted value, are represented by

ε̂i,t+1 = ri,t+1 − β̂
′
i,tf̂t+1, (19)

for all i and t. Intuitively, these residual terms should not be statistically different from zero for

the no-arbitrage restriction to be valid. Hence, following Gu et al. (2019a), I perform t-tests for

every asset and for each of the modeling approaches to evaluate the restriction.

3.4.2 Performance Evaluation

This paper evaluates the out-of-sample performance of the modeling approaches based on two

statistical criteria: total R2 and predictive R2, and two economic criteria: Sharpe ratio and

variance. I follow Gu et al. (2019a) for the definition of these model performance measures. The

variables in Equation 20 and Equation 21 follow the definitions from the framework in Equation

18.

Total R2 Total R2 assesses the model’s performance in terms of describing the riskiness of

delta-hedged options. That is, it represents the fraction of variance in ri,t+1 that is explained

by β̂
′
i,tf̂t+1, and is defined as

Total R2 = 1−

∑
i,t

(
ri,t+1 − β̂

′
i,tf̂t+1

)2∑
i,t r

2
i,t+1

. (20)

Predictive R2 Predictive R2 evaluates the model’s ability to explain variation in risk com-

pensation and predict future returns based on past data. More formally, it is the fraction of

variation in ri,t+1 that is explained by the predictions of future returns (β̂
′
i,tλ̂t), and is defined

as

Predictive R2 = 1−

∑
i,t

(
ri,t+1 − β̂

′
i,tλ̂t

)2∑
i,t r

2
i,t+1

, (21)

where λ̂t is the sample average of f̂ up until month t.
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Sharpe ratio and Variance In addition to the two main statistical evaluation criteria, total

R2 and predictive R2, I also evaluate the models’ economic performance. That is, I follow Gu

et al. (2019a) and use each model’s return predictions to form decile portfolios of the options.

Subsequently, I construct a monthly-rebalanced zero-cost portfolio by taking a long position in

the top decile and a short position in the bottom decile.

The resulting portfolios are assessed based on their Sharpe ratios and variances. Sharpe ratio

(Sharpe, 1966), defined as the average excess return over its standard deviation, is a commonly

used metric by both academia and practitioners to evaluate the risk-adjusted performance of

a financial asset. The variance highlights the variability in the performance and is thus also

reported for completeness.

3.4.3 Training, Validation and Test Samples

Machine learning methods are often prone to overfitting, resulting in exceptional in-sample re-

sults at the cost of poor out-of-sample performance. In order to bypass this problem, it is

common in the machine learning literature to divide the data into disjoint, collectively exhaus-

tive, training, validation and test samples. The training sample is used to estimate the model

parameters. If necessary, these estimates are subsequently used in the validation sample, in

order to tune the hyperparameters. While the training and validation sample are sometimes

combined, validation of the hyperparameters plays a crucial role when regularization is applied.

Section 3.2.2 elaborates on the regularization techniques that I apply to the conditional autoen-

coder. Finally, the test sample is used to evaluate the model’s out-of-sample performance based

on the model estimates from the training and validation samples.

3.5 Determining the Relevant Characteristics

Besides the statistical and economic performance evaluation described in Section 3.4.2, an im-

portant part of the empirical analysis is concerned with identifying the relevant characteristics

that drive the various models. In line with Kelly et al. (2019) and Gu et al. (2019a), I define

characteristic importance in terms of contribution to the total R2. That is, I calculate the re-

duction in total R2 for each characteristic resulting from setting all values of this characteristic

to zero, while keeping the others intact. While this analysis can be performed for any model,

with any number of factors, I focus on identifying important characteristics in the IPCA and

CA models with 5 factors. Finally, I investigate whether similar characteristics are identified

for both models, what their economic interpretation is and whether this is in line with findings

from prior research.
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3.6 Robustness

Based on the findings from Section 3.5, I select the two most important characteristics among

both the IPCA and conditional autoencoder models. Due to the potential magnitude of the

explanatory power arising from these characteristics, it is advisable to challenge the robustness

of the models when isolating either of these two characteristics. Specifically, I adopt the approach

from Kelly et al. (2019) for large versus small stocks and break the sample in two groups (i.e.

high and low values), for each characteristic. The group cut-off points are determined by the

median values of the respective characteristic.

For each of the four groups, without performing any additional model estimations, I recal-

culate the total R2 and predictive R2, holding the model parameters fixed at their estimates

from the original sample. A similar statistical performance in each group would imply that the

models and its findings are robust. Besides the characteristics-based robustness test, I also test

the models’ robustness by splitting the sample at random and performing a similar analysis.

4 Data

This section introduces the option data used throughout the rest of the paper. Moreover, it

describes how I construct delta-hedged option returns and provides summary statistics of the

processed data. Finally, I discuss the option and stock characteristics used in the various models.

4.1 Data and Filtering Procedure

For the empirical analysis, I focus on the U.S. market and obtain daily equity option and stock

data from January 1996 until December 2018. More specifically, I obtain option data on the

constituents of the S&P 500 Index (S&P) from OptionMetrics and stock data from the Center

for Research in Security Prices (CRSP). The constituents of the S&P represent a large part of

the total market capitalization of U.S. public companies and are most likely to be associated

with highly tradable and liquid options.

Following Cao and Han (2013) and Horenstein et al. (2018), I apply several filters to the

option data. First, options with zero trading volumes, missing bid prices, missing underlying

stock data, abnormal bid-ask spreads or mid prices below $1/8 are excluded. I also exclude any

options that violate the no-arbitrage condition. Second, only options with moneyness between

0.8 and 1.2 are kept. Moneyness is defined as the ratio of the stock price over the strike price.

Third, in order to avoid the early exercise premium of American options, I exclude options

where the underlying stock paid a dividend during the remaining life of the option. Lastly, as
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suggested by Boyer and Vorkink (2014), options with extreme prices are excluded.

At the end of each month and for each firm, I select the option closest to being at-the-money

with the shortest maturity above one month, and that has an expiration date on the third Friday

of the month. In practice, this results in a set of options with a maturity of approximately one

and a half month. This is consistent with previous literature on delta-hedged option returns

(e.g., Cao and Han (2013) and Horenstein et al. (2018)) and results in a subset with the most

tradable options. Finally, in line with Brooks et al. (2018), any options with zero open interest at

the end of the month, when the options are selected, are removed. This data filtering procedure

results in a final sample of 67,157 option-month observations for calls.

Following the methodology, I split the data into a training, validation and test sample,

maintaining a division of approximately 30%, 20% and 50%, respectively. In particular, I classify

the first seven years of data from January 1996 until December 2002 as the training data set

and the four years from January 2003 until December 2006 as the validation sample. The

remaining data, from January 2007 until December 2018, is used as test data for the out-of-

sample evaluation.

4.2 Delta-Hedged Option Returns

The return on an individual equity option or portfolio of options depends on various factors,

often in practice and in the literature referred to as the option greeks. An important option

greek is the delta, which represents the sensitivity of the option price to a change in the price

of the underlying stock. Formally, the delta is defined as the first derivative of the option price

with respect to the underlying stock price. OptionMetrics calculates the delta and other option

greeks using the binomial tree, as introduced by Cox, Ross, and Rubinstein (1979).

In order to isolate the option return, irrespective of the movements of the underlying stock,

one can consider the delta-hedged option return. In the case of a call option, delta hedging

involves short selling the underlying stock equal to the delta value the option, such that the

delta of the combined position is zero (i.e. delta neutral). As the delta of an option is varying,

the size of the hedge has to be adjusted accordingly. In practice, however, it is impossible to

continuously adjust the size of the hedge and, thus, I assume a daily rebalanced delta-hedge in

this study.

Following the definition from Bakshi and Kapadia (2003) and Cao and Han (2013), I consider

an option that is hedged (rebalanced) N times over a period [t, t + τ ]. In the case of a daily

rebalanced delta-hedge, it follows that N = τ . The discrete delta-hedged option gain, πt,t+τ , is
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defined as

πt,t+τ = Ct+τ − Ct −
N−1∑
n=0

∆C,tn(Stn+1 − Stn)−
N−1∑
n=0

anrtn
365

(Ct −∆C,tnStn), (22)

where Ct is the mid price of the call option at time t, ∆C,tn represents the delta of the call

option at time tn, Stn is the underlying stock price at time tn, rtn is the annualized risk free

rate and an is the number of calendar days between hedges tn and tn+1.

After applying data filtering procedure of Section 4.1, the delta-hedged option gains are

calculated. For each of the delta-hedged options, I consider a holding period of one month.

That is, the position is initiated at the end of the month and closed at the end of the following

month. Conveniently, this results in monthly return observations and avoids any potential issues

that could arise with the option settlement when holding on to the position until maturity (i.e.

the third Friday of the subsequent month) (Goyal & Saretto, 2009). As an additional filter,

I remove any options that have less than 10 observations within this one month period. By

summing up the delta-hedged option gains throughout the holding period of an option, the total

option gain is calculated. Following Cao and Han (2013), I divide this total gain by ∆tSt − Ct

in order to obtain comparable monthly delta-hedged option returns.

Table 1 shows the summary statistics of the option data. The average delta-hedged option

return is negative, which is in line with previous findings on individual equity option returns

(Carr and Wu (2009) and Cao and Han (2013)). By construction, the average maturity is around

50 days and the moneyness close to 100%. Figure 1 visualizes the delta-hedged option returns,

highlighting the negative mean and median return, as well as the bell-shaped distribution of the

returns.
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Table 1: Summary statistics of the call option data

Delta-hedged option return (%) Days to maturity Moneyness (%)

Mean -0.49 50 100.33

Median -0.56 50 100.32

Standard deviation 2.62 2 2.17

10th percentile -3.13 46 97.44

25th percentile -1.76 49 98.89

75th percentile 0.65 51 101.82

90th percentile 2.21 52 103.30

Note: The summary statistics in this table are based on options on the constituents of the S&P500

from January 1996 until June 2019. The delta-hedged option returns are monthly returns, where the

position is initialized on the last day of the month, delta-hedged on a daily basis and unwound on the

last day of the next month. The returns represents the sum of the delta-hedged option gains divided

by ∆tSt − Ct. Moneyness is defined as the ratio of the stock price over the option strike price.
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Figure 1: Distribution of delta-hedged call option returns on all S&P500 constituents from
January 1996 until June 2019 (excluding outliers3)

4.3 Characteristics

Capitalizing on existing literature about the cross-section of stock returns and option returns, I

consider 95 option and stock characteristics that are used to explain delta-hedged equity option

returns. More specifically, I obtain data of the option characteristics from Brooks et al. (2018)

and Horenstein et al. (2018), while following the extensive list provided by Green et al. (2017)

for stock characteristics.
3The histogram represents the center 99% of the returns. That is, values below the 0.5th percentile and above

the 99.5th percentile have been excluded.
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Table 2 lists all the characteristics used in the empirical analysis. Appendix Section A

provides a more detailed overview, including references to the literature that introduced, and

proved the relevance of, the corresponding characteristic. The characteristics data are obtained

from Option Metrics, CRSP, Compustat and I/B/E/S and are monthly in nature. To the best

of my knowledge, this is one of the most comprehensive sets of characteristics considered in a

study on the cross-section of delta-hedged equity option returns.

In order to reduce the models’ sensitivity to outliers, each of the characteristics is standard-

ized on a scale from [−0.5,+0.5]. That is, for every period, I rank each of the characteristics

and divide its rank by the number of non-missing observations. Next, I subtract 0.5 to move the

standardized characteristics into the [−0.5,+0.5] interval and balance them around zero. Kelly

et al. (2019) note that such a transformation of characteristics does not qualitatively influence

the results.

Table 2: Overview of option and stock characteristics

Panel A: Option Characteristics

Acronym Characteristic Acronym Characteristic

VRP Volatility risk premium opt liquidity Option bid-ask spread

opt demand Option demand pressure opt volume Option trading volume

open interest Option open interest

Panel B: Stock Characteristics

Acronym Characteristic Acronym Characteristic

absacc Absolute value of acc mom12m 12-month momentum

acc Working capital accruals mom1m 1-month momentum

aeavol Abnormal volume around
earnings announcements

mom36m 36-month momentum

age Number of years of cover-
age on Compustat

mom6m 6-month momentum

agr Asset growth mve Market capitalization

baspread Stock bid-ask spread mve ia Industry-adjusted mve

beta Market beta nanalyst Number of analysts cover-
ing the stock

bm Book-to-market nincr Number of earnings in-
creases

bm ia Industry-adjusted bm orgcap Organization capital
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cash Cash to total assets pchcapx ia Industry-adjusted percent
change in CapEx

cashdebt Cash flow to debt pchcurrat Percent change in currat

cashpr Cash productivity pchdepr Percent change in depr

cfp Cash flow to price pchgm pchsale Percent change in gross
margin minus percent
change in sales

cfp ia Industry-adjusted cfp pchquick Percent change in quick

chatoia Industry-adjusted change
in asset turnover

pchsale pchinvt Percent change in sales mi-
nus percent change in in-
ventory

chcsho Change in shares outstand-

ing

pchsale pchrect Percent change in sales mi-
nus percent change in re-
ceivables

chempia Industry-adjusted change
in number of employees

pchsale pchxsga Percent change in sales
minus percent change in
SG&A

chfeps Change in forecasted EPS
(earnings per share)

pchsaleinv Percent change in sales to
inventory

chinv Change in inventory pctacc Percent accruals

chmom Change in 6-month mo-
mentum

pricedelay Explained variation of
stock return by lagged
market returns

chnanalyst Change in nanalyst quick Quick ratio

chpmia Industry-adjusted change
in net profit margin

rating S&P debt credit rating

chtx Change in tax expense roeq Return on equity

cinvest Corporate investment rd mve R&D to market cap.

currat Current ratio rd sale R&D to sales

depr Depreciation to PP&E roaq Return on assets

disp Forecasted EPS dispersion roavol Earnings volatility

roic Return on invested capital

dolvol Stock dollar trading vol-
ume

rsup Revenue surprise

dy Dividend yield sp Sales to price

ear Earnings announcement
return

salecash Sales to cash

egr Growth in common share-
holder equity

saleinv Sales to inventory

ep Earnings to price salerec Sales to receivables
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fgr5yr Forecasted 5-year EPS
growth rate

sfe Scaled earnings forecasts

gma Gross profitability sgr Sales growth

grCAPX Growth in CapEx

herf Industry sales concentra-
tion

sratio Systematic volatility to to-

tal volatility (tvol)

hire Employee growth rate std dolvol Volatility of liquidity (dol-

lar trading volume)

operprof Operating profitability std turn Volatility of liquidity

(share turnover)

idiovol Idiosyncratic stock return
volatility

stdacc Volatility of accruals

ill Illiquidity stdcf Cash flow volatility

indmom Industry momentum sue Unexpected earnings

invest Capital expenditures and
inventory

tang Asset tangibility

lev Leverage tb Tax to book income

lgr Growth in long-term debt turn Share turnover

maxret Maximum daily stock re-
turn

tvol Total volatility

Note: An extensive overview of the characteristics, including descriptions and data sources, is provided

in Appendix Section A.

4.4 Test Assets

Most of the asset pricing literature focuses on explaining the returns of portfolios of individual

assets, such as long-short portfolios of stocks. By forming portfolios of individual assets, an

initial dimension reduction is performed, averaging out a large part of the idiosyncratic risk.

Consequently, portfolios often exhibit lower estimation errors when used as test assets and

have proved to be useful in finding common factors due to the reduced idiosyncratic variation.

However, Lewellen, Nagel, and Shanken (2010) argue that asset pricing tests on portfolios are

often misleading and one should instead test models on individual asset returns.

Due to the embedded dimension reduction of IPCA and CA, these modeling approaches can

be applied to both portfolios and individual equity option returns (Kelly et al., 2019). As the

two groups of test assets exhibit substantially different behavior, I examine both types in the
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empirical analysis. Specifically, I follow Kelly et al. (2019) and Gu et al. (2019a) and compare all

modeling approaches on both individual delta-hedged option returns and characteristic-managed

portfolios.

Each characteristic, as described in Table 2, is used to create a single managed portfolio,

thus resulting in 95 managed portfolios. Formally, for a set of L instruments or characteristics,

the corresponding L-vector of managed portfolio returns at time t+ 1 is defined as

rpt+1 =
Z
′
trt+1

Nt+1
, (23)

where Zt represents the N x L matrix of standardized characteristics at time t, rt+1 the vector

of individual delta-hedged option returns at time t+ 1, and Nt+1 is the number of non-missing

return observations at time t+ 1.

It is important to highlight that no model re-estimation is required after obtaining fitted

values for the individual asset returns. Instead, since the portfolio weights (derived from the

standardized characteristics) are known in advance, one can simply apply the portfolio trans-

formation of Equation 23 to the fitted returns of the individual delta-hedged option returns in

order to obtain estimates for the managed portfolios.

Another benefit of using managed portfolios is in the comparison with the benchmark models.

The latent and observable factor benchmark models from Section 3.3 are unconditional in nature,

that is, their parameters are time invariant. While one can opt to model conditional distributions

instead, this approach is often cumbersome. Consequently, Cochrane (2009) suggest the usage of

characteristic-managed portfolios as an alternative to incorporating conditional information into

the models. In this way, one can continue to consider unconditional moments, while exploiting

the benefits of the incorporated condition information, without having any further complexity

arising from time-varying parameters in the model.

Economically, managed portfolios can be considered as long-short portfolios, each sorted and

weighted based on the corresponding characteristic’s ranking of assets. This is in line with past

research, such as Fama and French (1993) and Horenstein et al. (2018), however, instead of only

using the top and bottom quantiles, all assets are included and weighted according to their rank.

Besides, by using managed portfolios as test assets, I can incorporate conditional information into

the unconditional benchmark models. Consequently, due the conditional nature of the advanced

methods described in the methodology, it is interesting to compare the performance of these

models against benchmarks when using managed portfolios. Simultaneously, the comparison

between IPCA and CA is additionally evaluated using individual equity option returns as test

assets.

23



5 Results

This section investigates the empirical findings resulting from applying the models from Section

3 to the data, as discussed in Section 4. First, I compare the models’ performance from a

statistical perspective, focusing on Total R2 and Predictive R2. Second, I use each model’s

return predictions to construct portfolios and evaluate their economic performance. Third,

Section 5.2 tests the no-arbitrage assumption that is enforced throughout the paper. Fourth,

Section 5.3 investigates the most relevant characteristics and relates this back to prior research.

Finally, I test the robustness of the models by splitting the test sample on the basis of Section

5.3 results and by splitting randomly.

5.1 Performance Evaluation

5.1.1 Statistical Analysis

Table 3 reports the out-of-sample Total R2 for each of the models. The Observable Factor

Model significantly underperforms the other factor models, showing only negative R2 numbers.

Interestingly, the model’s performance in sample is substantially better than its out-of-sample

performance (e.g. the in sample Total R2 for individual test assets, rt, is 36% in the case of the

full 6-factor model). This is in line with the research conducted by Horenstein et al. (2018), who

find similar in sample R2 results. Gu et al. (2019a) also report poor findings for their observable

factor model, which is based on Fama-French (Fama & French, 2015). Besides the fact that it

concerns out-of-sample results, they also attribute the model’s poor performance to its static

beta, which is proving to be a significant shortcoming compared to the characteristics-driven

models.

As outlined in Section 4.4, I test each of the model using two types of test assets: individual

returns (rt) and managed portfolios (rpt ). The results derived from managed portfolios are

generally expected to be better, due to its reduced dimensionality. This phenomenon is clearly

highlighted in the results for the PCA, IPCA and CA models.

PCA offers a decent out-of-sample performance for the single factor variation, but only

improves marginally for the incremental multi-factor models. This shows that a single factor is

able to explain a relatively large part of the variation in returns and could, therefore, indicate

that there is a single characteristic that is driving the returns to a large extent.

However, when comparing the PCA to the conditional models, IPCA and CA, its shortcoming

are revealed. The time-varying factor loadings and embedded dimension reduction of IPCA and

CA result in a strong outperformance of these advanced models, compared to PCA. This is
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particularly reflected in the results for multi-factor models, e.g. K = 4, 5, 6.

Finally, IPCA and CA perform broadly in line with a maximum Total R2 of 8.7% and 8.6%,

respectively, for the 6-factor model. Although CA does show slightly better results overall,

the differences are marginal. Hence, I conclude that CA’s non-linearity does not seem to offer

superior explanatory power over the linear IPCA model, when considering delta-hedged equity

option returns.

Table 4 reports the out-of-sample Predictive R2. The Predictive R2 shows how well the

model can predict future returns, by solely using past data from returns and characteristics.

Therefore, these results should be a good predictor of each model’s economic performance, as

discussed in Section 5.1.2.

Similar to the Total R2 results, the Observable Factor Model has a very poor out-of-sample

performance and is, thus, not further discussed. PCA’s results also show a similar pattern: strong

performance for the single factor model, but only marginal improvements for the incremental

factor models. A notable difference to the findings in Table 3 is that the PCA, IPCA and CA

models perform mostly in line for individual returns as test assets. In the case of managed

portfolios, IPCA and CA are still the clear outperformers. Finally, CA does tend to perform

better than IPCA in terms of out-of-sample predictability, which is in line with findings from

Gu et al. (2019a), albeit with a smaller magnitude.
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Table 3: Out-of-sample Total R2 (%)

Model Test Assets

K

1 2 3 4 5 6

Observable Factor Model
rt < 0 < 0 < 0 < 0 < 0 < 0

rpt < 0 < 0 < 0 < 0 < 0 < 0

PCA
rt 2.9 3.2 3.5 4.3 4.4 5.6

rpt 15.0 15.9 16.2 17.6 18.0 18.3

IPCA
rt 3.5 6.2 6.8 7.3 8.0 8.7

rpt 12.8 24.9 28.1 29.8 32.2 35.7

CA
rt 4.0 6.7 7.0 7.6 7.7 8.6

rpt 13.5 25.0 28.8 30.2 32.2 36.2
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Note: Observable Factor Model relates to the models described in Section 3.3 and is further elaborated

on in Appendix Section B. PCA (Principal Component Analysis) is also described in Section 3.3. An

extensive description of IPCA (Instrumented Principal Components Analysis) and CA (Conditional

Autoencoder) is provided in Section 3.1 and Section 3.2, respectively. The following hyperparameters

are used for CA: learning rate = 0.001, batch size = 1000 and LASSO penalty = 0.001. Two groups

of test assets are specified: rt (individual assets) and rpt (managed portfolios). K represents the

number of factors in the respective models.
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Table 4: Out-of-sample Predictive R2 (%)

Model Test Assets

K

1 2 3 4 5 6

Observable Factor Model
rt < 0 < 0 < 0 < 0 < 0 < 0

rpt < 0 < 0 < 0 < 0 < 0 < 0

PCA
rt 1.21 1.21 1.19 1.54 1.53 1.52

rpt 2.53 2.83 2.76 2.77 2.78 2.68

IPCA
rt 1.07 1.17 1.16 1.17 1.33 1.50

rpt 2.26 2.53 2.66 2.44 3.39 4.26

CA
rt 1.62 1.58 1.51 1.58 1.66 1.76

rpt 2.86 2.96 3.14 3.10 4.21 4.84
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Note: Observable Factor Model relates to the models described in Section 3.3 and is further elaborated

on in Appendix Section B. PCA (Principal Component Analysis) is also described in Section 3.3. An

extensive description of IPCA (Instrumented Principal Components Analysis) and CA (Conditional

Autoencoder) is provided in Section 3.1 and Section 3.2, respectively. The following hyperparameters

are used for CA: learning rate = 0.001, batch size = 1000 and LASSO penalty = 0.001. Two groups

of test assets are specified: rt (individual assets) and rpt (managed portfolios). K represents the

number of factors in the respective models.
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5.1.2 Economic Analysis

Besides comparing the models from a statistical perspective, I evaluate each of the models’

economic performance using Sharpe ratios and variances. As discussed in Section 3.4.2, the

Sharpe ratios correspond to monthly-rebalanced zero-cost portfolios, constructed by taking a

long position in the top decile and a short position in the bottom decile. These deciles are

based on the model’s predicted returns, linking the economic analysis directly to the Predictive

R2 results in Table 4. One would expect models with a high Predictive R2 to deliver strong

economic performance (i.e. a high Sharpe ratio).

Table 5 shows out-of-sample Sharpe ratios (Panel A) and variances (Panel B) of the afore-

mentioned long-short decile portfolios. It is important to note that the Sharpe ratios of all

models are positive, regardless of the number of factors. Even the Observable Factor Model,

that failed to produce any positive Predictive R2, yields positive Share ratios. This is a remark-

able result, since the mean option return in the sample is negative, as highlighted in Table 1.

Hence, although not always statistically significant, each of the models is able to predict future

returns at least to some extent, from an economic perspective.

The difference in economic performance between the conditional models and the uncondi-

tional benchmark models is very clear. The Observable Factor Model and PCA perform broadly

in line, while IPCA and CA significantly outperform these benchmarks. That is, the Predictive

R2 results in Table 4 are indeed a good indicator of the economic performance, except for PCA,

which shows a relatively high Predictive R2 compared to its Sharpe ratio. Finally, in line with

predictability results, CA has the highest Sharpe ratios of up to 2.61 for the 5-factor model.

Panel B of Table 5 presents the portfolio variances, used to calculate the Sharpe ratio. The

variance of the unconditional benchmark models is generally smaller, indicating their respective

returns are substantially smaller than IPCA and CA, which have higher Sharpe ratios.
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Table 5: Out-of-sample Performance Metrics of Long-Short Portfolios

Panel A: Out-of-sample Sharpe Ratios (annualized)

Model

K

1 2 3 4 5 6

Observable Factor Model 0.63 1.25 0.81 0.92 0.99 0.69

PCA 0.76 1.02 1.04 1.00 1.11 0.96

IPCA 1.94 1.77 1.97 1.92 2.35 2.39

CA 2.34 2.10 2.08 2.56 2.61 2.59

Panel B: Out-of-sample Portfolio Variances (annualized)

Model

K

1 2 3 4 5 6

Observable Factor Model 0.0010 0.0007 0.0008 0.0008 0.0006 0.0005

PCA 0.0011 0.0008 0.0007 0.0007 0.0007 0.0007

IPCA 0.0010 0.0012 0.0010 0.0010 0.0010 0.0010

CA 0.0011 0.0012 0.0010 0.0010 0.0009 0.0010
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Note: Observable Factor Model relates to the models described in Section 3.3 and is further elaborated

on in Appendix Section B. PCA (Principal Component Analysis) is also described in Section 3.3. An

extensive description of IPCA (Instrumented Principal Components Analysis) and CA (Conditional

Autoencoder) is provided in Section 3.1 and Section 3.2, respectively. Two groups of test assets are

specified: rt (individual assets) and rpt (managed portfolios). K represents the number of factors

in the respective models. The Sharpe ratio, and its respective variance, are derived from long-short

decile portfolios, which are constructed using the models’ return predictions.
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5.2 No-Arbitrage Results

One key assumption made throughout this paper is the no-arbitrage restriction for all the models.

That is, the evaluation framework, as described by Equation 18, is specified without an intercept

(i.e. αi,t = 0 for all i and t). Consequently, the models only consider exposure to risk factors in

their performance analysis, and assets without any exposure should not earn any excess return.

Figure 2 depicts the out-of-sample mean pricing errors against its respective mean return. For

each of these pricing errors I perform a t-test, in order to test whether the error is significantly

different from zero. Following Gu et al. (2019a), I use managed portfolios, rpt , as test assets for

this analysis, due to its lower dimensionality.

Overall the tests show sufficient evidence in favour of the no-arbitrage restriction. That is,

most pricing errors are not significantly different from zero. Pricing errors for PCA tend to

deviate the most from zero, with 23 out of 95 t-statistics exceeds 3 in absolute value. IPCA

and CA show more robust results with only 9 and 5 t-statistics above 3, respectively. The

Observable Factor Model does not have any significant pricing error, but is also known not to

offer any meaningful out-of-sample result, as highlighted in Section 5.1.

5.3 Relevant Characteristics

Besides the superior performance of the conditional models in this paper, they offer another

important advantage: IPCA and CA have the ability to incorporate option and stock charac-

teristics into the model. Consequently, one can analyze and compare the marginal contribution

of each characteristic to the model’s performance. I follow the approach taken by Gu et al.

(2019a) and rank the characteristics based on the reduction in Total R2 when the respective

characteristic is removed from the evaluation.

Figure 3 shows the top 20 characteristics in terms of their marginal contribution, in the

case of K = 5 factors. The performance of IPCA is very reliant on a single characteristic: the

volatility risk premium (VRP). Other important characteristic are the option bid-ask spread

(opt liquidity) and the number of consecutive earnings increases (nincr).

Determining the relevant characteristics of CA is less straightforward. The deviation in

marginal contribution among the characteristics is slightly smaller, making it harder to pinpoint

the cut-off for a characteristic to be deemed important. The two most relevant characteristics,

VRP and opt liquidity, are in line with the results from IPCA, which reinforces the finding that

they are important in explaining the cross-section of equity option returns.
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Figure 2: Out-of-sample Pricing Errors versus Average Returns
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Note: Red data points exhibit alphas with absolute t-statistics larger than 3. Blue data points have
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′

i,tf̂t+1, for

all i and t, and averaged over the time dimension.
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Moreover, these two option characteristics are well-known in prior literature on equity option

returns. Goyal and Saretto (2009) show this for VRP (i.e. the difference between historical and

implied volatility), and Christoffersen et al. (2018) report significantly positive return spreads

for illiquid over liquid equity options. The economic intuition is therefore clear as well. The

volatility risk premium is present due to the mean reversion in the volatility of a stock. That

is, in the long term the implied volatility of an option should equal its realized volatility. The

positive illiquidity premium arises from the compensation required by market makers for the risk

of large positions they are holding (Christoffersen et al., 2018). Finally, in line with Horenstein

et al. (2018), stock characteristics appear to have limited explanatory power in the cross-section

of equity option returns, as the most important characteristics are all option-related.
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Figure 3: Top 20 Marginal Contribution to Total R2 (k = 5) for IPCA (left) and CA (right).

5.4 Robustness

In this section, I perform two type of robustness tests on the IPCA and CA models. First, I

capitalize on the findings from Section 5.3 by testing the models’ robustness by splitting the

sample based on the important characteristics. Second, I perform a similar test by splitting the

sample randomly.

It is important to note that no re-estimation of the models is performed under the split

samples. Instead, I keep the parameters from the models in Section 5.1 and only change the

test sample in order to recalculate the performance metrics.
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5.4.1 Split Samples: Important Characteristics

Table 6 reports robustness results by splitting the test sample based on high and low values

for VRP and opt liquidity. As mentioned in Section 5.3, VRP and opt liquidity are important

in explaining the cross section of equity option returns, both from a statistical and economic

perspective. Therefore, it is important to evaluate the robustness of the findings when we isolate

these characteristics.

The results in Table 6 once again reinforce the importance of VRP and opt liquidity. How-

ever, it also reveals a potential weakness in the IPCA and CA models. There is a material

difference between the Total R2 and Predictive R2 when considering test samples with above

median versus below median characteristic values. More specifically, the performance of the

sample with low VRP and low opt liquidity is substantially better than the performance of the

samples with high values for these characteristics. While this is observed for both models, it is

especially present for IPCA, which appears to be less robust than CA.

Interestingly, high explanation power seems to be related to expected negative returns of the

options. Both a low VRP (i.e. historical volatility minus implied volatility is small or negative)

and a low opt liquidity (i.e. tight bid-offer option spreads, or liquid options) are on average

concerned with low or negative returns, as shown by Goyal and Saretto (2009) and Christoffersen

et al. (2018), respectively. Hence, I conclude from this that negative option returns are more

pronounced for these characteristics and, thus, that the positive returns of long-short decile

portfolios based on these characteristics are mainly driven by the short position as opposed to

the long position.

5.4.2 Split Samples: At Random

As a second robustness test, I split the sample randomly into two test sets. In order for the

models to be robust, one would expect minimal deviation between the performance of the two

samples. Table 7 reports the robustness results under a random split. The performance of IPCA

and CA is again not very robust, although to a lesser degree than in Table 6. While the Total

R2 of the two samples are relatively close, the Predictive R2 tend to deviate, especially for CA.

All in all, I conclude that the models are not very robust and, thus, extremely reliant on the

training and test data used to evaluate them.

33



Table 6: Characteristics-Grouped Performance

High Low

K K

1 2 3 4 5 6 1 2 3 4 5 6

Panel A.1: IPCA (VRP)

Total R2 (%) < 0 4.66 5.27 5.74 6.11 6.53 10.09 7.49 8.05 8.57 9.55 10.47

Pred. R2 (%) < 0 < 0 < 0 < 0 < 0 < 0 3.19 3.16 3.16 3.23 3.45 3.65

Panel A.2: IPCA (opt liquidity)

Total R2 (%) 1.79 4.22 4.90 5.58 6.61 8.06 5.69 8.80 9.26 9.53 9.83 9.55

Pred. R2 (%) 0.80 0.98 0.88 0.93 1.20 1.72 1.42 1.42 1.51 1.49 1.49 1.22

Panel B.1: CA (VRP)

Total R2 (%) 3.56 4.50 4.63 4.92 5.08 5.67 6.43 6.93 7.48 8.39 8.78 9.99

Pred. R2 (%) < 0 < 0 < 0 < 0 < 0 < 0 3.16 2.97 2.93 3.08 3.30 3.42

Panel B.2: CA (opt liquidity)

Total R2 (%) 1.34 3.97 4.29 5.21 5.73 7.40 5.17 8.26 8.67 8.93 8.94 8.90

Pred. R2 (%) 0.17 0.14 0.13 0.17 0.21 0.26 1.42 1.14 1.30 1.38 1.36 0.98

K=
1

K=
2

K=
3

K=
4

K=
5

K=
6

0

2

4

6

8

10

To
ta

l R
2

IPCA

K=
1

K=
2

K=
3

K=
4

K=
5

K=
6

CA

K=
1

K=
2

K=
3

K=
4

K=
5

K=
6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
ed

ict
iv

e 
R

2

(VRP, High)
(VRP, Low)

(opt_liquidity, High)
(opt_liquidity, Low)

K=
1

K=
2

K=
3

K=
4

K=
5

K=
6

Note: Panel A.1 and Panel B.1 display results for a test sample with above median (high) and below

median (low) Volatility Risk Premia (VRP) for IPCA and CA, respectively. Panel A.2 and Panel B.2

display results for a test sample with above median (high) and below median (low) option liquidity

(opt liquidity) for IPCA and CA, respectively.
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Table 7: Random Split Performance

Even Odd

K K

1 2 3 4 5 6 1 2 3 4 5 6

Panel A: IPCA

Total R2 (%) 3.06 5.61 6.19 6.81 7.53 8.16 3.91 6.81 7.40 7.79 8.49 9.24

Pred. R2 (%) 0.90 1.04 1.02 1.01 1.15 1.28 1.23 1.29 1.29 1.33 1.50 1.70

Panel B: CA

Total R2 (%) 2.64 5.16 5.83 6.28 6.94 7.62 3.39 6.50 6.57 7.37 7.34 8.48

Pred. R2 (%) 0.80 0.88 0.82 0.87 0.89 1.07 1.26 1.18 1.13 1.20 1.40 1.47
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Note: Panel A and Panel B display results for a test sample split randomly into two sets consisting

of the even and odd columns for IPCA and CA, respectively.
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6 Conclusion and Further Research

This paper studies advanced unsupervised machine learning methods and their ability to explain

the cross-section of delta-hedged equity option returns. I first define the evaluation framework

used to analyze the performance of each of the modeling approaches. The evaluation frame-

work assumes the no-arbitrage restriction and is, thus, solely concerned with evaluating the

explanatory power derived from exposure to risk factors, as opposed to pure predictability. I

consider two methods that include covariates in the empirical analysis: Instrumented Principal

Components Analysis and the Conditional Autoencoder. In addition, I compare the results

to two benchmark models: an observable factor model and Principal Components Analysis. I

evaluate the performance of each model using the Total R2, Predictive R2, Sharpe ratio and

variance. Besides analyzing the explanatory power of the modeling approaches, I determine the

most important characteristics in terms of explaining the cross-section of equity option returns.

Finally, I test the robustness of the models by splitting the test samples and recalculating the

performance metrics.

The empirical results successfully show that the models that use covariates outperform the

benchmark models. For the 5-factor model, the total R2 of IPCA and CA is 8.0% and 7.7%,

respectively, compared to only 4.4% for the benchmark PCA model. The observable factor

model fails to provide any out-of-sample explanatory power. The Conditional Autoencoder

provides the best overall results, especially from an economic perspective, yielding a Sharpe

ratio of 2.61 under predictions from the 5-factor models. My findings show that from the

extensive set of characteristics the volatility risk premium and option liquidity are most relevant

in explaining the cross-section of returns, for both IPCA and CA. However, this study does not

consider transaction costs, which might impact the importance of option liquidity. Finally, the

robustness analysis reveals a weakness in the models, as their performance is highly dependent

on the sample of option data.

6.1 Further Research

This paper encompasses a broad range of research areas. As such, there are multiple extensions

for further research. First, the data could be expanded by including put options, more companies

outside of the S&P 500 and options with different maturity or moneyness. This study only

considers short-dated at-the-money options, which does not consider important elements in the

option market such as the skew and convexity of the volatility surface. Even though the current

set of characteristics is very extensive, the set of option-related characteristics could be extended

in further research, for instance by including less well understood covariates. Second, more
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unsupervised machine learning methods could be considered and compared against. In addition,

the current analysis could be extended by evaluating multiple variations of the Conditional

Autoencoder. In an endeavor to improve the explanatory power, the current models can also

be investigated from a pure predictability standpoint, without restricting the intercept. Finally,

practical challenges such as transaction costs could be considered in further research, as they

might help explain the importance of certain characteristics.
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Appendix

A Option and Stock Characteristics

Table 8: Extended overview of option and stock characteristics (grouped by literature source
and sorted by ascending publication date)

Panel A: Option Characteristics

Literature Source Acronym Characteristic

Bollen and Whaley (2004) opt demand Option demand pressure

Goyal and Saretto (2009) VRP Volatility risk premium

Fodor, Krieger, and Doran (2011) open interest Option open interest

Brooks et al. (2018) opt volume Option trading volume

Christoffersen et al. (2018) opt liquidity Option bid-ask spread

Panel B: Stock Characteristics

Literature Source Acronym Characteristic

Fama and MacBeth (1973) beta Market beta

Basu (1977) ep Earnings to price

Banz (1981) mve Market capitalization

Litzenberger and Ramaswamy

(1982)

dy Dividend yield

Rendleman Jr, Jones, and Latane

(1982)

sue Unexpected earnings

Hawkins, Chamberlin, and Daniel

(1984)

chfeps Change in forecasted EPS (earnings
per share)

Rosenberg, Reid, and Lanstein

(1985)

bm Book-to-market

Bauman and Dowen (1988) fgr5yr Forecasted 5-year EPS growth rate

Bhandari (1988) lev Leverage

Amihud and Mendelson (1989) baspread Stock bid-ask spread

Ou and Penman (1989)

cashdebt Cash flow to debt

currat Current ratio

pchcurrat Percent change in currat

pchquick Percent change in quick
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pchsaleinv Percent change in sales to inventory

quick Quick ratio

salecash Sales to cash

saleinv Sales to inventory

salerec Sales to receivables

Jegadeesh (1990) mom12m 12-month momentum

Holthausen and Larcker (1992)
depr Depreciation to PP&E

pchdepr Percent change in depr

Jegadeesh and Titman (1993)

mom1m 1-month momentum

mom36m 36-month momentum

mom6m 6-month momentum

Lakonishok, Shleifer, and Vishny

(1994)

sgr Sales growth

Barbee Jr, Mukherji, and Raines

(1996)

sp Sales to price

Sloan (1996) acc Working capital accruals

Abarbanell and Bushee (1998)

pchcapx ia Industry-adjusted percent change
in CapEx

pchgm pchsale Percent change in gross margin mi-
nus percent change in sales

pchsale pchinvt Percent change in sales minus per-
cent change in inventory

pchsale pchrect Percent change in sales minus per-
cent change in receivables

pchsale pchxsga Percent change in sales minus per-
cent change in SG&A

Datar, Naik, and Radcliffe (1998) turn Share turnover

Moskowitz and Grinblatt (1999) indmom Industry momentum

Barth, Elliott, and Finn (1999) nincr Number of earnings increases

Asness, Porter, and Stevens (2000)

bm ia Industry-adjusted bm

cfp ia Industry-adjusted cfp

chempia Industry-adjusted change in num-
ber of employees

mve ia Industry-adjusted mve

Chordia, Subrahmanyam, and

Anshuman (2001)

dolvol Stock dollar trading volume

45



std dolvol Volatility of liquidity (dollar trad-

ing volume)

std turn Volatility of liquidity (share

turnover)

Elgers, Lo, and Pfeiffer Jr (2001)
nanalyst Number of analysts covering the

stock

sfe Scaled earnings forecasts

Amihud (2002) ill Illiquidity

Diether, Malloy, and Scherbina

(2002)

disp Forecasted EPS dispersion

J. K. Thomas and Zhang (2002) chinv Change in inventory

Ali, Hwang, and Trombley (2003) idiovol Idiosyncratic stock return volatility

Desai, Rajgopal, and Venkatacha-

lam (2004)

cfp Cash flow to price

Eberhart, Maxwell, and Siddique

(2004)

rating S&P debt credit rating

Francis, LaFond, Olsson, and

Schipper (2004)

roavol Earnings volatility

Titman, Wei, and Xie (2004) cinvest Corporate investment

Lev and Nissim (2004) tb Tax to book income

Hou and Moskowitz (2005) pricedelay Explained variation of stock return
by lagged market returns

Jiang, Lee, and Zhang (2005) age Number of years of coverage on
Compustat

Richardson, Sloan, Soliman, and

Tuna (2005)

egr Growth in common shareholder eq-
uity

lgr Growth in long-term debt

Anderson and Garcia-Feijoo (2006) grCAPX Growth in CapEx

Gettleman and Marks (2006) chmom Change in 6-month momentum

Guo, Lev, and Shi (2006)
rd mve R&D to market cap.

rd sale R&D to sales

Hou and Robinson (2006) herf Industry sales concentration

Almeida and Campello (2007) tang Asset tangibility

Brown and Rowe (2007) roic Return on invested capital

46



Brandt, Kishore, Santa-Clara, and

Venkatachalam (2008)

ear Earnings announcement return

Cooper, Gulen, and Schill (2008) agr Asset growth

Lerman, Livnat, and Mendenhall

(2008)

aeavol Abnormal volume around earnings
announcements

Pontiff and Woodgate (2008) chcsho Change in shares outstanding

Soliman (2008)
chatoia Industry-adjusted change in asset

turnover

chpmia Industry-adjusted change in net
profit margin

Scherbina (2008) chnanalyst Change in nanalyst

Duan and Wei (2009) sratio Systematic volatility to total

volatility (tvol)

Huang (2009) stdcf Cash flow volatility

Kama (2009) rsup Revenue surprise

Balakrishnan, Bartov, and Faurel

(2010)

roaq Return on assets

Bandyopadhyay, Huang, and

Wirjanto (2010)

absacc Absolute value of acc

stdacc Volatility of accruals

Chen and Zhang (2010) invest Capital expenditures and inventory

Bali, Cakici, and Whitelaw (2011) maxret Maximum daily stock return

Hafzalla, Lundholm, and Matthew

Van Winkle (2011)

pctacc Percent accruals

J. Thomas and Zhang (2011) chtx Change in tax expense

Palazzo (2012) cash Cash to total assets

Eisfeldt and Papanikolaou (2013) orgcap Organization capital

Novy-Marx (2013) gma Gross profitability

Rao, Tang, and Chandrashekar

(2013)

cashpr Cash productivity

Belo, Lin, and Bazdresch (2014) hire Employee growth rate

Fama and French (2015) operprof Operating profitability

Hou, Xue, and Zhang (2015) roeq Return on equity

Brooks et al. (2018) tvol Total volatility
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B Observable Benchmark Models

Table 9: Observable factor models

# factors Observable factor model

1 ri,t+1 = αi + βm,iDHm,t + εi,t+1

2 ri,t+1 = αi + βm,iDHm,t + βsize,iLSsize,t + εi,t+1

3 ri,t+1 = αi + βm,iDHm,t + βsize,iLSsize,t + βivol,iLSivol,t + εi,t+1

4 ri,t+1 = αi+βm,iDHm,t+βsize,iLSsize,t+βivol,iLSivol,t+βvoldev,iLSvoldev,t+εi,t+1

5 ri,t+1 = αi + βm,iDHm,t + βsize,iLSsize,t + βivol,iLSivol,t + βvoldev,iLSvoldev,t +

βch,iLSch,t + εi,t+1

6 ri,t+1 = αi + βm,iDHm,t + βsize,iLSsize,t + βivol,iLSivol,t + βvoldev,iLSvoldev,t +

βch,iLSch,t + βdisp,iLSdisp,t + εi,t+1

Note: The variables in the factor models directly follow the definitions from Horenstein et al. (2018).

That is, DHm,t is the delta-hedged return of the S&P 500 Index option at time t. The other variables

are represented by long-short decile portfolios based on the respective characteristic. Specifically,

LSsize,t is the return of the long-short decile portfolio sorted based on market capitalization. LSivol,t

is the long-short portfolio return based on idiosyncratic volatility, defined as the standard deviation of

the residuals of the Fama-French 3-factor model over the previous month’s stock returns. LSvoldev,t

is based on the volatility risk premium, or the difference between implied volatility and historical

volatility, where historical volatility is defined as the standard deviation of daily stock returns of the

previous month. LSch,t is the return of a portfolio sorted based on their cash-to-assets ratio. Finally,

LSdisp,t is based on the standard deviation of analyst forecasts divided by the absolute value of the

mean forecast.
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C Python Code

This section provides short descriptions of the programming files used in the empirical analysis

of this study. All of the code is written in Python 3.7.0. In order to run the models, I suggest

to use sufficient computing power.

1. Filter Option Data

Input Raw option data from Option Metrics

Output Filtered option data

Libraries Numpy, Pandas

Length 194 lines

Description Follows the filter procedure from Section 4.1 in order to generate a set of daily

option return data.

2. Delta-Hedged Option Returns

Input Filtered option data

Output Monthly delta-hedged option returns

Libraries Numpy, Pandas, Matplotlib

Length 146 lines

Description Calculates the delta-hedged option return of each option in each month and pro-

vides summary statistics.

3. Characteristics

Input Raw characteristics data from Option Metrics, CRSP, Compustat and I/B/E/S

Output Combined and processed characteristics data matching the option data

Libraries Numpy, Pandas, Statsmodels

Length 812 lines

Description Calculates the delta-hedged option return of each option in each month and pro-

vides summary statistics.
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4. Models

Input Monthly option returns and monthly characteristics data

Output Model (and benchmark) results for statistical and economic analysis

Libraries Numpy, Pandas, Matplotlib, Scipy, Sklearn, Torch

Length 1048 lines

Description Obtains all model results: Total R2, Predictive R2, Sharpe ratio, variance, im-

portant characteristics, no-arbitrage results and robustness tests.
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