
ERASMUS UNIVERSITY ROTTERDAM
Erasmus School of Economics

Master Thesis Operations Research And Quantitative Logistics

COMPARING TWO METHODS FOR
ROBUSTIFICATION OF A SOCP AFFECTED BY

SIMPLE ELLIPSOIDAL UNCERTAINTY

Author:
Niels Floris Leonardus in ’t Veld

Student ID:
547817

Supervisor:
Dr. K.S. Postek

Second Assesor:
Dr. O. Kuryatnikova

May 1, 2021
The content of this thesis is the sole responsibility of the author and does not
reflect the view of the supervisor, second assessor, Erasmus School of Economics
or Erasmus University.

Abstract

Robust optimization (RO) is a paradigm for solving optimization problems af-
fected by uncertainty. In RO, two key methods are the robust counterpart (RC)
method and the adversarial approach. We present these two methods applied
to a Second Order Cone Programming (SOCP) perturbed by an ellipsoidal un-
certainty set. The adversarial approach is based on two steps, the optimization-
and pessimization step. First a SOCP is optimized for a finite set of uncer-
tainties, then a pessimization for this optimal solution is found. The latter is a
problem of maximizing a convex function, which has a hidden convexity struc-
ture. This makes it equivalent to minimizing a convex optimization problem.
Such problems can be solved using the trust region subset problem. The RC
method derives a deterministically equivalent problem, the robust counterpart.
For a SOCP affected with ellipsoidal uncertainty the RC can be reformulated
exactly to an explicit SDP reformulation, which is computationally tractable.
Our aim is to thoroughly explain this reformulation. The size of the resulting
SDP is a lot larger than the size of the original problem, making it inferior to
the adversarial approach for large scale problems. Finally, in modest numer-
ical experiments we show that the SDP-reformulation breaks down for large
scale problems. Conversely, for small problems it out-preforms the adversarial
approach.

Acknowledgements
First and foremost, I would like to use this opportunity to thank my thesis
supervisor Krzysztof Postek for his guidance, bookkeeping skills and invaluable
feedback sessions. He extended me the opportunity to use this thesis project
to satisfy my interest in conic programming, a topic which caught my atten-
tion when it was touched upon briefly in one of his courses. Olga Kuryatnikova
thank you for taking the time to be the second reader of my thesis. Next, I
thank my family and friends for supporting me throughout this turbulent year.
In particular, I would like to express my appreciation to Rianne ’t Jong, for her
support and linguistic feedback, and Coen De Jong for his friendly ear to my
monologues about, convex functions, cones, matrices and so on.
To whomever it may concern, I hope you find this report enjoyable and infor-
mative.

Dordrecht, May 1, 2021

Niels Floris Leonardus in ’t Veld

1

Contents
1 Introduction 3

2 Theory 5
2.1 Mathematical Concepts . 5

2.1.1 Convex Analysis . 5
2.1.2 Conic Mappings . 6

3 Mathematical Optimization 8
3.1 Optimization Problems . 8

3.1.1 Linear Optimization . 8
3.1.2 Convex Optimization . 8
3.1.3 Conic Optimization . 9

3.2 Uncertainty in Optimization . 10
3.2.1 Robust Optimization . 10

4 Applying Robust Optimization 13
4.1 The Adversarial Approach . 13

4.1.1 Optimization-step . 14
4.1.2 Pessimization-step . 14
4.1.3 The Cutting Set Method 14

4.2 The Robust Counterpart Method 15
4.2.1 Tractability Condition . 15
4.2.2 The SDP reformulation 16

5 Numerical Experiment 19
5.1 Experimental Setup . 19

5.1.1 Sampling . 19
5.1.2 Averaging of the Experiments 20
5.1.3 Implementation Problems 20

5.2 Results . 22
5.3 Summary . 23

6 Conclusion 25

A Relevant Mathematical Concepts 26
A.1 The Subspaces of Skew-Symmetric Matrices 26

Bibliography 28

2

1 | Introduction
In the early 20th century the relatively new area of applied mathematics be-
gan to develop. The invention of modern-day computers ushered in a whole
new field called (Mathematical) Optimization, focussing on selecting the best
element out of a set subject to various criteria. These problems arise in most
quantitative disciplines ranging from computer science and engineering to op-
erations research and stock markets. In modern day life optimization problems
are deeply embedded into our society.
Linear Programming (LP) is the most widely used class of optimization prob-
lems. It arises in all sorts of application and can be solved numerically in a
very efficient way. Conic Programming (CP) is a generalization of LP, which is
able to deal with more complexly constrained problems. Such constraints arise
in various engineering problems, e.g. in signal processing or antenna design. In
this thesis we will be focussing on Second Order Cone Programming (SOCP),
i.e. problems with constraints in the following form

||Ax+ b||2 ≤ c>x+ d.

The theory behind CP is not nearly finished, many applications are still waiting
to be discovered. A relatively newly emerging sub-field deals with optimization
problems affected by uncertainty.
One of the key paradigms for solving such problems is Robust Optimization.
Two methods will be discussed, the adversarial approach and the robust coun-
terpart (RC) Method . The first method, is based on iteratively constructing
a finite list of similar additional (deterministic) constraints. It ’cuts’ away in-
feasible realizations and ensures that the optimal solution satisfies the original
uncertain constraint. Whereas the RC method is based on mathematically de-
riving a deterministically equivalent constraint, called the robust counterpart.
We will study both methods applied to a SOCP affected by ellipsoidal uncer-
tainty. Such problems have constraints of the form

||A(z)x+ b(z)||2 ≤ c(z)>x+ d(z) : ||z||2 ≤ r. (1.1)

In the adversarial approach, we split up the constraint into two problems. An
optimization problem in the form of minimizing the decision variables (x) for
a given finite set of uncertainties. And the adversarial1 problem of maximizing
the uncertainty (z) for a given optimal solution x∗, i.e. selecting the worst
possible realization. From now one we will call this the pessimization problem,
since the goal is to find the the most pessimistic value for z. It turns out this
problem has a hidden convexity structure which makes it efficiently solvable.
In the RC method we will robustify the constraint directly. This will lead to a
linear matrix inequality, which can be seen as an exact Positive Semi-definite
Programming (SDP) reformulation. Finally, the computational advantages and
disadvantages of both methods are evaluated by means of sampling. We end
this section by giving a short motivational example.

1It is common to refer to the uncertainty as ’the adversary’, synonymous to the enemy,
because in worst-case analysis you assume it will always try to find the worst possible real-
ization.

3

Example 1.0.1:
Consider a field where we need to place a signal towers as efficiently as possible,
in order to get a ’decent’ signal at every point. Mathematically we want to
maximize the signal at every point in the entire field subject to constraining
the signal-to-noise ratio. Let g(x, z) ≥ 0 be the function of the signal itself and
||f(x, z)|| be the norm of the noise. If we want to constraint the signal to noise
ratio to be less then 10%, we would need constraints of the form

||f(x, z)||
g(x, z)

≤ 0.1,

where f, g are bi-affine in (x, z). Notice, these constraints are not linear con-
straints, but they can be rewritten in the form of Constraint (1.1). If there was
no uncertainty, i.e. z = 0, then the problem could be solved by any convex
programming solver. But the dependence on z makes it difficult. There are
decision variables x for which some realization of z would lead to

||f(x, z)||
g(x, z)

6≤ 0.1,

In order to find the best solution x∗ we need to take this into consideration.
Therefore, we need a way to ’find’ the solution x∗ that is robustly optimal,
i.e. it is optimal and feasible for all realization of z. Robust Optimization,
is a paradigm for deriving optimization problems that find robustly optimal
solutions.

4

2 | Theory
In order to clearly explain the relevant methods, we need to digest some theory.
This chapter contains a clear and concise overview of all the related definitions,
lemmas and theorems. For the reader who has sufficient knowledge of Opti-
mization (or in general Mathematics) we advice reading Section 2.1.2 and then
immediately skip to Section 3.2.1.

2.1 Mathematical Concepts

2.1.1 Convex Analysis
For brevity, we will list the relevant definitions

• A line through x1 and x2 consists of points of the form

y = θx1 + (1− θ)x2, ∀θ ∈ R,

restricting θ ∈ [0, 1] leads to the line segment between x1 and x2.

• A set A ∈ Rn is called affine if the line through any two distinct points
in A lies in A, i.e.

∀x1, x2 ∈ A ∀θ ∈ R : θx1 + (1− θ)x2 ∈ A

• A set C ∈ Rn is called convex if the line segment between any two distinct
points in A lies in A, i.e.

∀x1, x2 ∈ C ∀θ ∈ [0, 1] : θx1 + (1− θ)x2 ∈ C

• A set K ∈ Rn is called a cone, if ∀x ∈ K and θ ≥ 0 we have θx ∈ K.
And it is called a convex cone if it is convex and a cone, i.e.

∀x1, x2 ∈ K ∀θ1, θ2 ≥ 0 : θ1x1 + θ2x2 ∈ K.

it is proper if it satisfies the following, K is convex, closed1, solid, i.e.
intK 6= ∅, and pointed, i.e. x,−x ∈ K ⇒ x = 0.

• Let K ∈ Rn be a cone, then the set K∗ = {y ∈ Rm|y>x ≥ 0∀x ∈ K} is
called the dual cone of K.

CP revolves around proper cones, because they have convenient properties.
They can be extended by direct products, i.e. for proper cones K1, . . . ,Km,
the direct product K1× · · · ×Km is also a proper cone. And they are self-dual,
i.e. K∗ = K. These facts are the key reason why CP’s can be solved efficiently.

1A set is called closed if its complement is open.

5

Next, we will touch on some important examples of proper cones:

• The nonnegative orthant (also called a LP-cone)

Rn
+ = {x ∈ Rn : x ≥ 0}

• Lorentz or second-order or ice-cream cone (also called a SOCP-cone)

Ln+1 = {(x, t) ∈ Rn+1 : ||x||2 ≤ t}

• Positive semidefinite cone (also called a SDP-cone)

Sn+ = {Z ∈ Sn : uTZu ≥ 0∀u ∈ Rn}

For the SOCP problems in question, the constraints are elements of a SOCP-
cone, and we will show that its RC is a special type of matrix, which is an
element of the SDP-cone.

2.1.2 Conic Mappings
To properly introduce the exact way the RC of Constraint (1.1) is constructed
we need some seemingly incoherent complex mathematical concepts. We will
state them in form of theorems and lemmas without providing proofs, because
that would involve a complex linear algebra going beyond the scope of this
thesis.
Starting with the fact that every linear mapping can be represented by a matrix.
We begin with two definitions about mapping one cone into another, which give
rise to special cones.

Definition 1. Let K1 ⊂ Rm,K2 ⊂ Rn be proper cones. We call a linear map
B : Rm → Rn K1-to-K2 positive if B[K1] ⊂ K2. The cone ofK1-to-K2 positive
mappings is itself a proper cone (of matrices) in Rn×m, called the K1-to-K2

positive cone. Moreover, if both K1 and K2 are Lorentz cones, then we call
the linear mapping Lorentz-positive.

This definition means that if a linear mapping is K1-to-K2 positive, then it
maps all the elements of cone K1 into the cone K2. Thus, for a linear mapping
B, it holds that

B[K1] ⊂ K2 ⇐⇒ the linear map B is K1-to-K2 positive

Hildebrand’s Theorem

R. Hildebrand proved that there exists an explicit representation for the cone
of Lorentz-Positive [n ×m]-matrices [1]. Technically, he found an explicit rep-
resentation for the set

Pm,n = {A : Rm → Rn|A[Lm] ⊂ Ln},

i.e. the set of matrices mapping Lm into Ln. The theorem is based upon the link
between the SOCP-cone and SDP-cone, which can be stated in the following
lemma

6

Lemma 1. (x1, x2, · · · , xn) ∈ Ln if and only if
xn + x1 x2 · · · xn−1
x2 xn − x1
...

. . .
xn−1 xn − x1

 � 0,

where A � 0 means that A is a symmetric positive definite matrix, i.e. A ∈ Sn+.
The explicit representation relies heavily on the use of two slightly overwhelming
definitions, namely

Definition 2. Define a linear mapping a A 7→ W(A) from Rn×m, the space
of real [n × m]-matrices, into SN , the space of N -symmetric matrices, where
N = (n− 1)(m− 1), as follows.
For two vectors u ∈ Rn, v ∈ Rm we have W[u, v] = Wn[u]⊗Wm[v], where ⊗ is
the Kronecker product, which is defined in appendix section A.1, and Wk[u] is
given by2

u 7→

uk + x1 u2 · · · uk−1
u2 uk − u1
...

. . .
uk−1 uk − u1

 .

The marix W is symmetric3, with entries that are bilinear in the entries of u
and v. And it only works on rank 1 matrices, as follows. Let A be of rank 1,
i.e. A = uv>, then

W(A) =Wn[u]⊗Wm[v].

But this can be extended by linearity. Ending up with a linear mapping W(A)
that linearly depends on A, i.e. linear in the entries Aij .

Next we need to build up a matrix-set comprised of the Kronecker product of
skew-symmetric matrices, i.e. A> = −A.

Definition 3. Define A(k) as the space of skew-symmetric matrices of size k.
Next denote with A(n)⊗A(m) ⊂ SN a linear subspace, of symmetric matrcies,
defined as the linear span of the Kronecker product of skew-symmetric matrices
of size n and m, respectively.

A detailed explanation of elements of this linear subspace is given in Appendix
A.1. No we can state Hildebrand’s theorem.

Theorem 1 (Hildebrand’s Theorem). Let min{m,n} ≥ 3. Then an [n ×m]-
matrix A maps Lm into Ln if and only if A can be extended to a feasible solution
to the explicit system of linear matrix inequalities

W(A) +X � 0, X ∈ A(n)⊗A(m),

in variables A,X.

The lesson we can draw from this theorem is that there is a linear matrix
inequality which encapsulates the Lorentz-Positivity of a mapping, i.e. the
restriction A[Lm] ⊂ Ln, which we will later see is of major importance to the
main problem of this thesis.

2Notice the similarity with Lemma 1.
3Because the Kronecker-product of symmetric matrices, is also symmetric.

7

3 | Mathematical Optimization
In this chapter we will formally introduce Mathematical Optimization and the
sub-field Robust Optimization. In general, optimization focusses on minimiz-
ing (or maximizing) a decision function over a set decision variables under a
set of constraints. For both fields, we will mainly focus on convex and conic
optimization problems.

3.1 Optimization Problems

A generic optimization problem (OP) has the following form

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = [m],
(3.1)

where x ∈ Rn is called the decision variable, the function f0 is the objective
function, the functions fi are the inequality-constraint functions, bi’s are called
bounds for the constraints and [m] = {1, . . . ,m}.
A decision variable, or solution, x is called feasible if every constraint is not
violated. Otherwise it is called infeasible. A feasible solution is called optimal
if it minimizes the objective function the most, notated with x∗. We call two
OP’s equivalent if they have the same optimal solution value. Specifically inter-
esting are classes of optimization problems characterized by particular forms of
objective and constraint functions.

3.1.1 Linear Optimization
The most well known class of OP is called linear programming (LP). An OP
is called linear if both the objective function and the constraints functions are
linear, i.e. it holds that

∀x, y ∈ Rn : fi(ax+ by) = afi(x) + bfi(y).

A generic LP has the following form

minimize
x

c>x

subject to Gix ≤ hi, i = [l],
(3.2)

where Gi ∈ Rm×n, hi ∈ Rm. OP’s that are not linear are called non-linear.

3.1.2 Convex Optimization
Convex Programming is a generalization of LP. For an elaborate explanation
of convex programming we refer to [2]. An OP is called convex if both the
objective function and the constraints functions are convex, i.e. it holds that

∀x, y ∈ Rn : fi(ax+ by) ≤ afi(x) + bfi(y), ∀a, b ≥ 0, a+ b = 1.

For convex functions every local minimum is also a global minimum. Hence,
minimizing a convex function is inherently easy.

8

3.1.3 Conic Optimization
The constraint functions of Problem (3.1) could be replaced by cone constraints,
such that the decision variables "live" in a specific cone. This gives rise to Conic
Optimization (CP). CP is a major sub-field of convex optimization, mainly
because there are fast algorithms for solving special subclasses of these problems.
In CP a linear objective function is minimized over the intersection of an affine
subspace and a proper cone. A generic CP has the following form

(CPK) minimize
x

{c>x : Aix+ bi ∈ Ki, i = [l]}, (3.3)

where x ∈ Rn is the decision vector, Ki ⊂ Rm
i are proper cones and

x 7→ Aix+ bi,

are given affine mappings from Rn to Rmi . The three examples of proper cones,
from Section 2.1.1, give rise to the three most prominent CP subclasses. First
and foremost, LP,

minimize
x

{c>x : Aix+ bi ∈ Rm
+ , i = [l]}, (3.4)

which is equivalent to Problem (3.2).

SOCP

Secondly, Second Order Cone Optimization (SOCP),

minimize
x

{
c>x :

(
Ai

c>i

)
x+

(
bi
di

)
∈ Lm, i = [l]

}
=
{
c>x : ||Aix+ bi||2 ≤ c>i x+ bi ≥ 0, i = [l]

}
,

SDP

And Lastly, Semi Definite Optimization (SDP),

minimize
x

{c>x : Ax+B ∈ Sk+} = {c>x : Ax+B � 0},

where

x 7→ Ax−B ≡
n∑
j

(xjA
j)−B

is an affine mapping from Rn to Sk.1 The �-constraint in question is called a
linear matrix inequality (LMI). Thus, it is the problem of minimizing a linear
objective over a LMI.

A word of note

CP has a lot of structure, due the convexity and conic nature. Furthermore,
within the subclasses of CP there is an additional structure, namely

LP ⊂ SOCP ⊂ SDP ⊂ CP, (3.5)
1For completeness, in this sense, the space Sn is treated as an Euclidean Space equipped

with the Forbenius inner-product, i.e. 〈A,B〉 = Tr(AB) =
∑

i,j AijBij .

9

indicating that every LP can be written as a SOCP and every SOCP can be
written as a SDP. It turns out that most convex optimization problems can
be described by just three families of proper cones: the non-negative orthants,
lorentz cones and semidefinite cones [3]. Making it an incredibly rich field of
optimization.

3.2 Uncertainty in Optimization

OP foccusses mostly on real world problems. Data for real-world problems is
more often than not uncertain. Mathematicians came up with all sorts of way
to deal with this uncertainty. Usually, uncertainty is expressed in the form of
an uncertainty set Z. A generic OP affected by an uncertainty set Z has the
following form

minimize
x

c>x

subject to fi(x, z) ≤ bi(z), i = [m], z ∈ Z.

The crux of these problems is that choosing an x could lead to an infeasible
solution, due to inability to control z. Hence, we would like to restrict our
choice of x to be feasible for all realizations of z, in order to safely optimize
over x. The way this is done is heavily dependent on the structure of both the
optimization problem and the uncertainty set.

3.2.1 Robust Optimization
A methodology for handling such problems is offered by Robust Optimization,
focussing on worst-case analysis. For an extensive overview of the theory we
refer to [4]. Since we will only be discussing SOCP’s affected by ellipsoidal
uncertainty, we will restrict ourselves to the convex and conic optimization do-
main. Without first going into all the technical details surrounding our exact
uncertain SOCP, we will discuss two prominent methods, the adversarial ap-
proach and the Robust Counterpart method in a more general setting. Both
methods try to robustify the problem by making sure that the solution of the
robustified problem is optimal and feasible for all the realizations of z. In a way,
the dependence on z is factored out.

The Adversarial Approach

The adversarial approach is a generic procedure for robustifying convex op-
timization problems. It boils down to finding a finite list for the worst-case
realizations of z. It is based on two steps. First, the optimization step, in which
the problem is solved for a finite set of uncertainties, called scenarios. This will
produce an optimal solution x∗. Then the pessimization step will find a realiza-
tion z∗, which violates the current optimal solution the most. This z∗ will be
added to the other scenarios. This process is repeated until no more realizations
of z, which violate the original constraint, can be found. If the optimization
an pessimization step are both exact, then the resulting solution is known to
be robustly optimal. If one of them is approximate, then you cannot guarantee
optimality.

10

Notice, in the optimal step every scenario produces an additional constraint,
of the same structure as the original uncertain constraint but with fixed un-
certainty. Since for CP’s the constraints are convex in x we can solve the
optimization step in an efficient way. The pessimization step is governed by
the structure of the individual constraints and the structure of the uncertainty
set, which could potentially make it a difficult problem. Luckily in our case of
ellipsoidal uncertainty it is relatively simple. We will fully elaborate this in the
next chapter.
Usually, every constraint produces a pessimization. But this z does not nec-
essarily have to violate the original constraint. Only if it does it will become
a new scenario for that specific constraint. Thus, every constraint has its own
set of scenarios, denoted as Zi for constraint i. Clearly, there is room for vari-
ation. For instance, one could also put all the scenarios in one set, but this
would greatly increase the number of constraints (added in the next uncertainty
step). We will stick to the specified version of one pessimization per constraint,
possibly leading to a scenario.

The Robust Counterpart Method

Instead of iteratively building to a robustified solution, the robust counterpart
method derives it in one go, by finding a deterministically equivalent constraint
for each uncertain constraint. This deterministic equivalent is called the robust
counterpart (RC). Let z ∈ Z be the uncertainty set in question. In the case of
CP perturbed by uncertainty we can write it in the following form

minimize
x

{c>x : Ai(z)x+ bi(z) ∈ Ki, i = [m], z ∈ Z}. (3.6)

A conic constraint i is violated for some realization (Ai(z), bi(z)) if the affine
mapping is not part of the cone any-more, i.e. Ai(z)x + bi(z) /∈ Ki. We want
to safeguard for this by rewriting the original constraint into its RC

minimize
x

{c>x : Aix+ bi ∈ Ki, i = [m], ∀z ∈ Z}. (3.7)

By restricting the feasible set in this way we make sure that all possible decision
variables x are feasible for the constraints of (3.6) for every realization of z.
We know (3.6) and (3.7) are not equivalent. But they are related, the optimal
solution of the RC will always be higher than the nominal solution of the original
problem, i.e. z = 0.2
Unfortunately, in general, finding an RC is computationally intractable, since it
has to be feasible for all realizations of z. This uncertainty set can have infinitely
many members. For instance, in [5] they showed even for simple LPs finding
an RC becomes computationally intractable. However, as we will see ellipsoidal
uncertainty is a special case, where things become computationally tractable.

Unsubstantiated Claim

If we consider the case that the uncertainty set Z is a proper cone, which
technically we are considering3, then using the conclusions from Section 2.1.2,

2Technically, both optimal solutions could be equivalent, but this would in reality, where
things are more often than not subject to randomness, never happen.

3The norm-cone {(z, r) : ||z|| ≥ r} is a closed,c convex, solid and pointed. Hence, it is a
proper cone.

11

additional linear algebra, combined with the fact that the CP mapping is affine,
one can deduce that Problem (3.7) is equivalent to

minimize
x

{cᵀx : Bi[Z] ⊂ Ki},

where the Bi is a linear map. Hence, the inclusion Bi[Z] ⊂ Ki is equivalent to
Bi being a Z-to-K positive mapping. Concluding, the tractability of the robust
counterpart depends on the availability of a description for the Z-to-K positive
cone.
But not to get ahead of ourselves, there are three main reason for proposing this
unsubstantiated claim. Firstly, to hint on how in general this is done. Secondly,
to point out that a tractable RC revolves around finding out if the constraint
maps one cone into another cone. And finally, to shed light on the extensiveness
of possibilities coming forth from the conic structure of CP. In the next chapter
we will substantiate this claim for the constraint in question specifically.

12

4 | Applying Robust Optimiza-
tion

In the previous chapters the ground work for applying the RC method and the
adversarial approach has been sketched. In this chapter we will discuss the
application of both methods in detail. Consider the following SOCP affected by
ellipsoidal uncertainty

minimize
x

c>x

subject to ||Ai(z)x+ bi(z)||2 ≤ c>i (z)x+ di(z), z ∈ Z, i = [l],
(4.1)

where x ∈ Rk are the decision variables, the uncertainty z ’lives’ in

Z = {z ∈ Rm−1 : ||z||2 ≤ r},

which is an ellipsoidal uncertainty set, and Ai(z) ∈ R(n−1)×k, bi(z) ∈ Rn−1,
ci(z) ∈ Rk, di(z) ∈ R are affine in z, l is the number of constraints involved and
c ∈ Rk. It is worth nothing that (n− 1) is the size of the vector in the norm.
Without loss of generality we can assume that the uncertainty set Z is an
euclidean ball in Rm−1, i.e Z = {z ∈ Rm−1 : ||z||2 ≤ 1}. Hence, Problem (4.1)
is equivalent to the following CP

minimize
x

{
c>x :

(
Ai(z)x+ bi(z)
c>i (z)x+ di(z)

)
∈ Ln, ||z||2 ≤ 1, i = [l]

}
(4.2)

which clearly is an uncertain SOCP.

4.1 The Adversarial Approach

First we will apply the adversarial approach. Notice that (4.1) can be rewritten
into the form

minimize
x

c>x

subject to fi(x, z) ≤ 0, z ∈ Z, i = [l],
(4.3)

where l is the number of constraints in question and

fi(x, z) = ||Ai(z)x+ bi(z)||2 − c>i (z)x− di(z).

Hence, we conclude f is convex in both x and z. As explained the optimization
step will be simple. But in the pessimization step we want to maximize fi(x, z)
for a fix x. This will pose problems because of the convexity in z.1 However, in
[6] it is shown that the pessimization problem has some kind of hidden convexity
structure, which can be exploited. More explicitly, it is equivalent to a convex
optimization problem.2 And for convex problems every local minimum is also

1Maximizing a concave function is easy, it is equivalent to minimizing a convex function.
A function f is concave if −f is convex.

2One can show our problem is actually a quadratically constrainted quadractic problem.
And using some basic assumptions we can establish an equivalence to a min-max-convex
problem. This allows for recovering of the optimal solution of the non-convex problem via
their equivalent convex counterparts. Hence, the name hidden convexity.

13

a global minimum. Therefore, the pessimization step, finding the worst-case z
for a fixed x, is actually a simple problem.

4.1.1 Optimization-step
Let a finite collection of scenarios be given by

Zi = {zi,1, . . . , zi,ki
} ⊂ Z, i = [l],

where ki indicates the number of scenarios for constraint i. Then we can solve
the sampled robust problem

minimize
x

c>x

subject to fi(x, zi,j) ≤ 0, i = [1], j = [ki],
(4.4)

which is a basic convex optimization problem. Hence, it can be solved efficiently
resulting in an optimal solution x∗.

4.1.2 Pessimization-step

Given such a x∗ and using some extensive bookkeeping one can rewrite3

||Ai(z)x
∗+bi(z)||2 ≤ c>i (z)x∗+di(z)⇒ z>Qi(x

∗)z+p>i (x
∗)z+ri(x

∗) ≤ 0, i = [l].

Thus, for the pessimization step of constraint i, we get an optimization problem
of the form

maximize
z

{z>Qiz + p>i z + ri : |z||2 ≤ 1}. (4.5)

This can be solved efficiently using the hidden convexity structure. Finding
such a solution z in the literature is called the Trust Region Problem, which
goes beyond the scope of this thesis. But for completeness we refer to [7] in
which the method is described in detail. From now on we will refer to this as
the oracle i for finding z for constraint i.

4.1.3 The Cutting Set Method
Now it is time to introduce the adversarial approach as described in [8]. To this
extent define

Fi(x) = sup
z∈Z

fi(x, z),

the worst-case constraint function, and

V (x) = max
i=1,...,l

Fi(x),

the maximum constraint violation. The whole procedure can best be summa-
rized into an algorithm, as is done in Algorithm 1. To initialize the algorithm
we start with finding the nominal solution by solving Problem (4.3) and setting
z = 0 for all constraints.
The method is called the Cutting-Set method, because it cuts away subsets of
the feasible region. Similar to the way the cutting-planes method cuts away
the feasible regions of a LP with (hyper)planes. It can be seen as a non-linear
extension and its convergence is proved in the paper.

3This is possible because the constraint is bi-affine in x and z.

14

Algorithm 1 The Cutting-Set Method

Set, the stopping criterion V tol > 0 and Zi := {0}, i = [l]
repeat

(1) Optimization
Solve sampled problem (4.4) with Zi, i = [l] and return a solution x∗
(2) Pessimization
for i = 1, . . . , l do

(a) Call oracle i to find z(x∗)
(b) Calculate Fi(x

∗)
if Fi(x

∗) > 0 then
add z(x∗) to Zi

until V (x∗) ≤ V tol

Conclusion

Based on the algorithm we will draw some preliminary conclusions. If we apply
the adversarial approach, then at each step a deterministic SOCP has to be
solved, which will grow in size as the algorithm progresses. And after that a
constant number of l problems of the form (4.5) is solved, resulting in at most l
new scenarios, but probably less. Solving the pessimization problem is simple,
as is solving SOCP’s. But if the original problem contains many constraints,
then this might result in an enormous amount of SOCP-constraints in the final
steps.

4.2 The Robust Counterpart Method

Instead of iteratively building to a robustified solution, we can derive the RC
as an explicit SDP reformulation. Existence of such an explicit representation
was a long-standing open question [4]. For reference, a concrete example for
deriving the explicit SDP-reformulation is added in the end of this chapter.

4.2.1 Tractability Condition

For convenience, we define ζ =

(
z
1

)
∈ Rm, and then we reformulate (4.2)

into

minimize
x

{
c>x : Bi(z)x+ βi(z) ∈ Ln, ∀ζ ∈ Lm, i = [l]

}
, (4.6)

where, Bi(z) = [Ai(z), c
>
i (z)]

> and βi(z) = [bi(z), di(z)]
>.

Looking at a specific constraint i, this leads to

B(z)x+β(z) =

(
A(z)x+ b(z)
c>(z)x+ d(z)

)
=

(
A1x+ b1 A2x+ b2 · · · Amx+ bm A0x+ b0
c>1 x+ d1 c>2 x+ d2 · · · c>mx+ dm c>0 x+ d0

)
z1
...
zm
1

 = Bxζ,

15

where Bx : Rm → Rn describes an affine mapping of x. Following Section 2.1.2
motivates rewriting Problem (4.6) into

minimize
x

{c>x : Bx[Lm] ⊂ Ln}. (4.7)

Intuitive Reasoning

In order to make a CP robust we need to make sure that every possibility of x is
feasible for every instance of z. This not the case if Bxζ /∈ Ln,. The matrix Bx
acts on vector ζ ’living’ in the Lorentz cone Lm and projects it onto Rn. But
this can be anywhere and being the ’adversary’ it will pick the worst possible
outcome, which is not inside of Ln. Requiring Bx to project all ζ into Ln is
equivalent to Bx[Lm] ⊂ Ln, which makes the affine mapping Bx robust, i.e.
feasible ∀ζ.

Hence, we can conclude that the RC is computationally tractable if and only if
Bx is a Lorentz-positive mapping.

4.2.2 The SDP reformulation
Using Theorem 2.1.2 we can derive the RC. We state the following corollary
from [4]

Corollary 1. when m−1 = dimZ ≥ 2 and n = dimβ(x) ≥ 3, then the explicit
(n− 1)(m− 1)× (n− 1)(m− 1)-LMI

W(Bx) +X � 0, X ∈ A(n− 1)⊗A(m− 1),

where Bx = [B(x), β(x)] in variables x and X is an equivalent SDP representa-
tion of the constraints of Problem (4.1).

Remember,

– B 7→ W(B) is a linear mapping from the space of [n×m]-matrices (Rn×m)
to space of symmetric matrices SN , where N = (m− 1)(n− 1).4

– and A(n−1)⊗A(m−1) is a linear subspace SN spanned by the pair-wise
kronecker product of skew-symmetric matrices of size (n−1) and (m−1).
For details, see Appendix A.1.

It is worth noting that the bounds on the dimensions of both x and z can al-
ways be maintained by adding zero-columns or zero-rows to Bx, respectively.
The W(Bx) can be seen as the SOCP-constraint elevated or reorganized into a
specific matrix structure, which is the SDP reformulation of the original cone
structure. The special structure of matrix X acts as a restriction on the refor-
mulation, in a sense forcing the Lorentz-positivity. If such an X cannot be found
then there exists no explicit RC. But if it exists than the RC is conveniently
given by W(Bx) +X � 0.

4It is worth nothing that technically it only maps rank 1 matrices, but this can be extended
by linearity.

16

Going back to our original Problem (4.6) we can write the RC as

minimize
x,Xi

{
c>x :W(Bix) +Xi � 0 i = [l]

}
, (4.8)

which is a basic SDP. Hence it can be solved efficiently resulting in a robustly
optimal solution x∗.

Conclusion

Based on the reformulation we can draw some preliminary conclusions. Firstly,
it is interesting to note that the RC of a SOCP can be formulated as a SDP,
which shows an interesting additional connection in structure of CP as a whole.
Especially, if you consider this was the by-product answering a different ques-
tion, namely if there exists an SDP reformulation of the cone of Lorentz-positive
mappings. In hindsight it seems completely logical, but this can definitely
be said about more facts in mathematics. Anyhow, even though the results
are profound they probably are not practically relevant. Considering Prob-
lem (4.1) with relevant dimensions (n,m) the RC is an SDP of dimension
N = (n − 1)(m − 1) the size of the SDP grows enormously once the origi-
nal problem becomes bigger. Large scale SDP turned out to be practically
unsolvable with current day computers. However, it is interesting to see what
happens if n and m are still small. Before going to the numerical experiment
we provide an elaborate example.

17

Example 4.2.1:
Let Z = {z ∈ R2 : ||z||2 ≤ 1}, thus ζ ∈ L3. We consider the following uncertain
SOCP

minimize
x ≥ 0

x3 :

∥∥∥∥∥∥
z1 1 1

1 z2 1
1 1 0

x1x2
x3

+

−1−1
0

∥∥∥∥∥∥
2

≤ x3 (4.9)

Rewriting this CP into the form of (4.6).

Bx =

(
A1x+ b1 A2x+ b2 A0x+ b0
c>1 x+ d1 c>2 x+ d2 c>x+ d0

)
=

x1 0 x2 + x3 + 1
0 x2 x1 + x3 + 1
0 0 x1 + x2
0 0 x3

 (4.10)

Thus, in the form of CP (4.2), is given by

minimize
x

{c>x : Bx[L3] ⊂ L4}. (4.11)

Checking the Lorentz-positivity of Bx leads to the question if there exists a
X ∈ A(3)⊗ A(2) such that W(Bx) +X � 0. Firstly, we know X is of the form

X =

0 0 0 X14 0 X16

0 0 −X14 0 −X16 0
0 −X14 0 0 0 X36

X14 0 0 0 −X36 0
0 X16 0 −X36 0 0
X16 0 X36 0 0 0

 ∈ S6

Secondly, rememberW(Bx) = (W4⊗W3)(Bx) is only defined on rank 1 matrices
(A = aa>). So we need to decompose Bx using a rank 1 decomposition as follows

Bx =

x1
0
0
0

 e>1 +

0
x2
0
0

 e>2 +

x2 + x3 + 1
x1 + x3 + 1
x1 + x2
x3

 e>3 ,

where ei are the standard basis vectors which span R3. Leading to

W(Bx) =W4

((
x1
0
0
0

))
⊗W3(e1) +W4

((
0
x2
0
0

))
⊗W3(e1) +W4

((x2+x3+1
x1+x3+1
x1+x2

x3

))
⊗W3(e1)

=
(x1 0 0

0 −x1 0
0 0 −x1

)
⊗
(
1 0
0 −1

)
+
(

0 x2 0
x2 0 0
0 0 0

)
⊗ (0 1

1 0) +
(2x3+x2+1 x1+x3+1 x1+x2

x1+x3+1 −x2−1 0
x1+x2 0 −x2−1

)
⊗ (1 0

0 1)

=

x1+x2+2x3+1 0 x1+x3+1 x2 x1+x2 0

0 −x1+x2+2x3+1 x2 x1+x3+1 0 x1+x2
x1+x3+1 x2 −x1−x2−1 0 0 0

x2 x1+x3+1 0 x1−x2−1 0 0
x1+x2 0 0 0 −x1−x2−1 0

0 x1+x2 0 0 0 x1−x2−1

.
Therefore Problem (4.9) is equivalent to

minimize
x ≥ 0, X ∈ S6

{c>x :W(Bx) +X � 0}, (4.12)

which is an SDP in the variables x,X, where X is a matrix containing three
decision variables X14, X16, X36.

18

5 | Numerical Experiment
In the previous chapter we set out two methods for solving Problem (4.1) in
a robustly optimal fashion. From a theoretical perspective both methods are
able to solve this problem efficiently.1 However, in general, SDP suffers from an
extremely high time complexity. Current SDP solvers scale as O(N4.5) or worse
[9], where N is the dimension of the the relevant matrices. This makes solving
large scale SDP’s practically impossible. In our case, for a relatively small
problem of say x ∈ R10 and z ∈ R5, the SDP consists of matrices of N = 45.
So even though the RC might be computationally tractable, the resulting SDP
would probably still be too computationally intensive due to its intense size. By
comparing the numerical performance of both the adversarial Approach and the
Robust Counterpart method we are able to draw more practical conclusions.

5.1 Experimental Setup

For the numerical experiment we used Matlab (version 9.8 R2020a) to write
the code itself and for solving the optimization problems we made use of CVX
(version 2.2) which utilized SDPT3 (version 4.0), a non-comercial all purpose
SDP-solver. The code was run on Mac OS X (x86_64 version 10.15.7) with
a 2,5 GHz Dual-Core Intel Core i5 processor and a total RAM of 8 GB (1600
MHz DDR3).

5.1.1 Sampling
Different problem sizes of Problem (4.1), which will be named experiments,
are explored, with respect to n the dimension of x, m the dimension of the
uncertainty z, l the number of constraints. Remember, constraint i looks like∥∥∥∥∥∥
Ai0 +

m∑
j=1

zjAij

x+

bi0 + m∑
j=1

zjbij

∥∥∥∥∥∥
2

≤

ci0 + m∑
j=1

zjcij

> x+
di0 + m∑

j=1

zjdij

 .

Without loss of generality, we restrict the vector in the norm to be of size n.
For each experiment 50 instances are sampled as follows. Each entry of Aij ,bij
and cij is sampled uniformly from [−1, 1] and then normalized in the following
way

Aij =
Aij

Si1
where

∥∥[Ai0, · · · , Aim]>
∥∥
2,2
,

bij =
bij
Si1

where
∥∥[bi0, · · · , bim]>

∥∥
2,2
,

cij =
cij
Si1

where
∥∥[ci0, · · · , cim]>

∥∥
2,2
,

where ||A||2,2 = max||x||2≤1 ||Ax||2. To ensure Slater feasibility of the sampled
problem we set d(z) = −1 to be fixed and unperturbed by uncertainty, facili-
tating that at least one solution is strictly feasible.

1In the case of the Robust Counterpart Method, efficiency is meant in the sense of the RC
being computationally tractable.

19

Table 5.1 describes the different experiments that were run. In the first set we
are interested in the change of the problem size, i.e. the n. In the second set
we focus on the dimensionality of the uncertainty, i.e the m. And in the last set
only the number of constraints was changed.

Table 5.1: Three sets of Experiments for comparing the numerical
performance of the adversarial approach and the RC method applied
to Problem 4.1. n is the dimension of the vector in norm, m the
dimension of the uncertainty and l the number of constraints.

Set 1 n m l
experiment 1 10 2 1
experiment 2 20 2 1
experiment 3 50 2 1
Set 2 n m l
experiment 4 20 5 1
experiment 5 20 10 1
Set 3 n m l
experiment 6 10 2 2
experiment 7 10 2 5

5.1.2 Averaging of the Experiments
For an experiment we can easily average the running time of the Robust Coun-
terpart Method. Conversely, averaging the adversarial approach requires some
considerations. Every instance has a different number of cycles after which the
algorithm terminates. Every cycle k of instance i consists of a pair (tik, εik(tik)),
where εik(tik) indicates the optimality gap at moment tik. Let t̂ik be the round-
off of tik upto 2 decimal points. Then

ε̂(t) =
1

n

∑
ik:t=t̂ik

εik,

is the arithmetic mean of the optimality gap for a discretized time-point t.
Using the points (t, ε̂k) we can construct the moving average of the scenario.
The averaging of the maximum constraint violation (V) is done in an analogous
manner.2

5.1.3 Implementation Problems
During the implementation of both methods we ran into the following problem.
The robustly optimal solution of the RC method was always more pessimistic
than the optimal solution computed by the adversarial approach. Most of the
time the difference was minimal (around 5%) but there were significant outliers.
This is, possibly, due to a minor bug in the adversarial approach. But as of
yet it has not been discovered. This bug will be visible in the plots as the
adversarial approach not reaching 100% of optimality. However, the methods
still ’converges’, in the sense of having found all pessimization which violate the
original constraint. Thus, we are still able to compare both methods.

2Only the round off point of tik was set to 1 decimal.

20

Figure 5.1: Optimality-time plots and max violation constraint plots for the first set of
experiments. Red indicates the average running time of the RC method, blue the moving
average running time of the adversarial approach. The right plots indicate trajectories of the
maximum constraint violations for 5 instances.

21

Figure 5.2: Optimality-time plots and max violation constraint plots for the second set of
experiments. Red indicates the average running time of the RC method. The blue indicates
the moving average running time of the adversarial approach in the left plot and the moving
average of the max constraint violation in the right.

5.2 Results

As explained three difference sets of experiments are set out. For every optimality-
time plot the red line indicates the average running time of the RC method and
the blue line is the moving average of the adversarial approach. In Figure 5.1
the first set of experiments is visible. Because the averaging of the maximum
violation of one constraint is not interesting, a sample of 5 instances is given.
This gives an indication of the performance and to verifying the termination of
the adversarial approach.
Interestingly, for small problem sizes the RC method outpreforms the adversar-
ial approach. But as the size of the problem increases the adversarial approach
is preforming much better. This is due to the fact that solving an SOCP, with
a lot of (similar) constraints, is always faster than solving a large scale SDP.
In Figure 5.2 the result of the second set of experiments is given. Combined
with Experiment 2, the second experiment of Figure 5.1, we conclude that the
RC method starts to break down as the dimension of uncertainty increases.
The results of the last set of experiments are visible in Figure 5.3. Combined
with the Experiment 1, the first experiment of Figure 5.1, we can conclude that
the average running time increases if the number of constraints increases for
both methods. This is not unexpected, more constraints in the original problem
resulting in more RC’s and more optimization- and pessimization steps.

22

Figure 5.3: Optimality-time plots and max violation constraint plots for the second set of
experiments. Red indicates the average running time of the RC method. The blue indicates
the moving average running time of the adversarial approach in the left plot and the moving
average of the max constraint violation in the right.

5.3 Summary

In Table 5.2 an overview of the average running times for the experiments is
given. Additionally, the standard deviation has also been included in brackets.
It is reasonable to assume the bug in the implementation is of minor importance,
because both methods are terminating properly.
Hence, we can draw the conclusion that the adversarial approach is preferred for
large scale problems.3 Conversely, for small scale problems the RC method is
much more efficient. This was not entirely unexpected, because the RC method
takes care of all these pessimistic scenarios in one big transformation instead of
adding more and more scenarios like the adversarial approach.
Additionally, it is interesting to notice that the standard deviation of the aver-
age running time is relatively small.
A lot of methods for large scale optimization problems are based on solving many
small problems.4 Indeed, solving a lot of small problems is much faster than
solving one big problem. Hence, this could make the RC method the ideal can-
didate for solving sub-problems which are focused on finding a robustly optimal
solution for SOCP-constriants perturbed by ellipsoidal uncertainty. However,

3There is an argument to be made considering quantum optimization algorithms which
provide a considerable speed up for solving SDP’s [?]. But that is for the future to decide.

4Exactly like the adversarial approach does.

23

to answer this question it is clear that more thorough research is necessary. Per-
haps there are even pessimization problems, which require solving this problem,
but this remains to be seen.

Table 5.2: Summarizing table for the different experiments (of Ta-
ble 5.1). The Running times are averages over 50 instances. For
the adversarial approach this indicates the running time of the en-
tire algorithm up until termination. For completeness, the standard
deviations are added in brackets.

Experiment Parameters(n,m,l) SDP Running Time (sec) Aversarial Approach Running Time (sec)
1 (10,2,1) 1.0613 (0.3102) 2.5053 (0.9009)
2 (20,2,1) 1.5247 (0.4754) 3.1059 (2.2561)
3 (50,2,1) 5.4077 (0.8729) 3.2089 (1.2123)
4 (20,5,1) 8.9920 (0.9775) 4.9957 (6.1830)
5 (20,10,1) 230.6780 (32.7145) 5.0665 (2.7425)
6 (10,2,2) 1.3432 (0.4225) 4. 5.0080 (3.4422)
7 (10,2,5) 2.0620 (0.4661) 13.7591 (13.1923)

24

6 | Conclusion
In this thesis we have presented two methods for robustifying a Second Order
Cone Programming perturbed by an ellipsoidal uncertainty set. Both methods
work in completely different ways.

The adversarial approach is based on the cutting-set method, which iteratively
optimizes the problem for a finite set of uncertainties and then finds a scenario,
i.e. realization of uncertainty, for every constraint, which pessimizes this opti-
mal solution the most. The algorithm terminates once no more pessimizations,
which violate the original constraints, can be found. The final solution found
in the optimization step is the robustly optimal solution for the original prob-
lem. The pessimization step turned out to have a hidden convexity structure,
which makes it equivalent to minimizing a convex optimization problem, the so
called Trust Region Problem. Instead of maximizing a convex function, which
is inherently difficult, a pessimization is found using a ’simple’ problem. In
the optimization step a basic SOCP is solved. Thus, both steps are efficiently
solvable, which makes the adversarial approach efficient. However, the major
downside is the growing number of constraints per iteration.
The RC method derives a deterministically equivalent problem. In general,
finding a RC is computationally intractable. But for a SOCP perturbed by an
ellipsoidal uncertainty set, this RC can be reformulated exactly to an explicit
SDP reformulation. Hence, it turned out to be computationally tractable, in a
theoretical sense. However, the size of the resulting SDP is a lot larger than
the size of the original problem. Combined with the fact that solving a SDP
is far more time consuming than solving a SOCP this makes the RC method
impractical for large scale problems.

Modest numerical experiments supported the fact that the SDP-reformulation
breaks down for large scale problems. Interestingly, based on the experiments,
the SDP-reformulation out-preforms the adversarial approach on small prob-
lems, which could potentially make it a prevalent method for solving small
problems. However, this is a preliminary conclusion, which is largely unsub-
stantiated and needs to be researched more thoroughly.

25

A | Relevant Mathematical Con-
cepts

A.1 The Subspaces of Skew-Symmetric Matrices

In this section one of the crucial concepts for deriving the RC is set out. We
will start with two definitions,

• A matrix is called symmetric if is square and it equals its transpose, i.e.
A = A>.

• A matrix is called skew-symmetric if it is square whose transpose is its
negative, i.e.e A> = −A,

and some generic examples,
Example A.1.1:

X2 =

(
0 X12

−X12 0

)
, X3 =

 0 X12 X13

−X12 0 X23

−X13 −X23 0

 , X4 =

0 X12 X13 X14

−X12 0 X23 X24

−X13 −X23 0 X34

−X14 −X24 −X34 0

 .

Notice that every entry on the diagonal is zero, this is true for all skew-
symmetric matrices. More interestingly, a skew-symmetric matrix only consists
of n2−n

2 distinct values. Before we can move on we need to define the kronecker-
product of two matrices A and B, as follows

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

Note in general A ⊗ B and B ⊗ A are different matrices. We will show one
example of how to compute a kronecker product.
Example A.1.2:

(
1 2 0
4 3 −1

)
⊗
(
0 1
2 3

)
=

1

(
0 1
2 3

)
2

(
0 1
2 3

)
0

(
0 1
2 3

)
4

(
0 1
2 3

)
3

(
0 1
2 3

)
−
(
0 1
2 3

)
 =

0 1 0 2 0 0
2 3 4 6 0 0
0 4 0 3 0 −1
8 12 6 9 −2 −3

Linear Subspace
We need the kronecker product to construct the linear subspace of skew-symmetric
matrices. This space is constructed by setting generic matrices, like in Example
A.1, as basis matrices, which span the subspace. We will define this subspace
as follows

Definition 4. Let A(n)⊗A(m) ⊂ SN , where N = nm be a linear subspace of
symmetric matrices, defined by the linear span of kronecker products S ⊗ T of
all skew symmetric [n× n]-matrices S and [m×m]-matrices T .

26

We will discuss some specific examples, before explaining some general proper-
ties.
Example A.1.3: • Let X ∈ A(2)⊗A(2), then

X =

0 0 0 X14

0 0 X14 0
0 −X14 0 0
−X14 0 0 0

 =

(
0 A
A> 0

)

This matrix consists of two-by-two blocks of two-by-two. Notice, X has
only 1 disctinct value.

• Let X ∈ A(2)⊗A(3), then

X =

0 0 0 0 X15 X16

0 0 0 −X15 0 X26

0 0 0 −X16 −X26 0
0 −X15 −X16 0 0 0
X15 0 −X26 0 0 0
X16 X26 0 0 0 0

 =

(
0 A
A> 0

)
,

consists of three-by-three matrices in blocks of two-by-two, with the upper-
triangle block made out of a 3-by-3 skew symmetric matrix. Thus, only 3
distinct values.

• Let X ∈ A(3)⊗A(2), then

X =

0 0 0 X14 0 X16

0 0 −X14 0 X−16 0
0 X14 0 0 0 X36

X14 0 0 0 −X36 0
0 −X16 0 −X36 0 0
X16 0 X36 0 0 0

 =

 0 A1 A2

A>1 0 A3

A>2 A>3 0

 ,

consists of two-by-two matrices in blocks of three-by-three, with an upper-
triangle block made out of three 3-by-3 skew symmetric matrices. Thus,
only 3 distinct values.

In general a [N ×N]-matrix X ∈ A(n)⊗A(m), will consists of M = m2−m
2

different [n× n]-skew-symmetric matrices. And it will have the following form

X =

0 A1 · · · Am−1

A>1
.

...
...

. AM

A>m−1 · · · A>M 0

 ,

concluding the symmetric matrix X has(
n2 − n

2

)(
m2 −m

2

)
distinct values.

27

Bibliography
[1] Roland Hildebrand. An lmi description for the cone of lorentz-positive maps

ii. Linear Multilinear Algebra - LINEAR MULTILINEAR ALGEBRA, 55,
02 2006.

[2] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[3] Erling D. Andersen. Which cones are needed to represent almost all convex
optimization problems?, Nov 2010.

[4] Aharon Ben-Tal, Laurent Ghaoui, and Arkadi Nemirovski. Robust Opti-
mization. 08 2009.

[5] Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of uncertain
linear programs. Operations research letters, 25(1):1–13, 1999.

[6] Aharon Ben-Tal and Marc Teboulle. Hidden convexity in some nonconvex
quadratically constrained quadratic programming. Math. Program., 72:51–
63, 01 1996.

[7] Jorge J Moré and Danny C Sorensen. Computing a trust region step. SIAM
Journal on Scientific and Statistical Computing, 4(3):553–572, 1983.

[8] Almir Mutapcic and Stephen Boyd. Cutting-set methods for robust convex
optimization with pessimizing oracles. Optimization Methods and Software,
24(3):381–406, 2009.

[9] Yongbin Zheng, Yuzhuang Yan, Sheng Liu, Xinsheng Huang, and Wanying
Xu. An efficient approach to solve the large-scale semidefinite programming
problems. Mathematical Problems in Engineering, 2012, 2012.

[10] Almir Mutapcic and Stephen Boyd. Cutting-set methods for robust convex
optimization with pessimizing oracles. Optimization Methods And Software,
24:381–406, 07 2009.

28

