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Abstract

This paper used a probabilistic state space model motivated by the deterministic SIR

model to estimate and forecast the number of new COVID-19 infections in France, from

July 1, 2020 until July 21, 2021. The effect of vaccination and governmental policies to

control the spread of the virus have been integrated in the estimation and forecasting

process. Through the artificial specification of different forecasted policies, we are able

to assess the effectiveness of different strategies authorities could impose to successfully

control the outbreak.
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1 Introduction

The outbreak of the disease known as COVID-19 originated in Wuhan, the capital city of

the Hubei province in China, and quickly rippled through the world, disrupting lives and

economies alike. According to data published on John Hopkins University1, by April 13,

2021, there were 137 million confirmed cases, and the pandemic had claimed 2.95 million

lives, according to the data published on John Hopkins University2.

In addition to the dramatic loss of lives, the pandemic presents a challenge to public health,

food security and the world of work, according to a joint statement from Joint statement

by the International Labour Organization (ILO), the Food and Agriculture Organization

(FAO), the International Fund for Agricultural Development (IFAD), and the World Health

Organisation. According to the World Health Organization et al. (2020), “tens of millions

of people are at risk of falling into extreme poverty, while the number of undernourished

people, currently estimated at nearly 690 million, could increase by up to 132 million by the

end of the year. Nearly half of the world’s 3.3 billion global workforce are at risk of losing

their livelihoods. (...) Countries dealing with existing humanitarian crises or emergencies are

particularly exposed to the effects of COVID-19. Responding swiftly to the pandemic, while

ensuring that humanitarian and recovery assistance reaches those most in need, is critical.”

Since the beginning of the outbreak, a lot of research has been carried out on the SARS-

CoV2 and the disease it causes. Consequently, we now have a fairly good understanding

of the disease, its transmission channels and policies effective in tackling it. In addition to

vaccination, quarantining, medical isolation, hand-washing, mask-wearing, as well various

degrees of community lockdowns have proved successful in slowing the spread of the virus

Teslya et al. (2020). Though tremendous efforts have been put into the development of

multiple vaccines (Moderna, AstraZeneca, Pfizer, Johnson & Johnson, Sputnik), this hope

is overshadowed by the apparition of various mutations which threaten the efficacy of vac-

cines, and risk prolonging the duration of the pandemic3. Furthermore, development of the

said vaccines has been fast-tracked. Their side effect profile has thus so far not been fully

characterized, which leaves some uncertainty on their safety, and influences the willingness to

receive them. Recently, doubts emerged about the safety of the AstraZeneca vaccine (Wise

(2021)). As there is additionally considerable disparity in vaccines distribution throughout

the world, favouring countries whose economies are stronger, their ability to control the pan-

1https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html/bda7594740fd40299423467b48e9ecf6
2https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html/bda7594740fd40299423467b48e9ecf6
3https://www.nytimes.com/2021/04/03/health/coronavirus-variants-vaccines.html
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demic in the short term appears uncertain4.

Tackling the pandemic effectively with swift responses by authorities to alleviate the burden

on health care systems requires to have a good understanding how the disease will likely

spread. Indeed, the public interest mainly lies on how the number of infected people will

evolve, as well as on when the pandemic will converge to an end. This paper will tackle these

questions through a prediction model using COVID-19 data from July 1, 2020 up to (and

including) April 13, 2021 in France. We forecast on the future course of the pandemic in

France until July 21, 2021, and model how different policies and human intervention to tackle

COVID-19 determine the rate at which the disease propagates. To this end, we integrate a

simple time-varying function into the model to describe the impact of human intervention

on the rate of infection. This perspective was highlighted in Song et al. (2020), who intro-

duced the concept of the transmission rate modifier within COVID-19 prediction framework.

Forecasts on pandemic metrics are of extreme relevance to policy makers as these allow to

assess which countermeasures will be effective in tackling the pandemic at its various stages,

to efficiently allocate resources such as ventilators and medical staff, and overall allow for

timely intervention in order to avoid snowball effects.

The epidemic process will be modelled through a variation of the Susceptible-Infected-

Removed (SIR) model, which is a widely used model in epidemiology, originally developed

by Kermack and McKendrick (1927). The SIR model is a compartmental model in which

the population is partitioned into the three Susceptible-Infected-Removed respective groups.

We integrate the SIR model into a probabilistic State-Space model, in which the observation

equation consists of the measured time series of infections and removals (i.e. recoveries and

deaths), and the state equation consists of the true underlying prevalence of infections and

removals. The model is modified to allow for time-varying transmission modifiers, which will

reflect government interventions imposed to slow down the spread of the COVID-19 virus.

The main goal of this paper will be to forecast the evolution of the population within the

three compartments of the SIR model in France, but we shall also determine some keys met-

rics regarding the pandemic evolution, such as potential end-points for the pandemic and the

basic reproduction number (denoted R0). This is defined as the average number of infections

caused by a single case in a completely susceptible population. Additionally, we shall also

do some policy evaluation to assess the efficacy of government intervention.

The outline of this paper will be as follows. In the next section, the current literature on

4https://www.theguardian.com/world/2021/mar/30/coronavirus-vaccine-distribution-global-disparity
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similar models will be reviewed. In section 3, we present the French COVID-19 data used,

and explain the scaling applied to it. In Section 4, the model will be presented in detail,

along with the transmission rate modifier for different policies. Next, Section 5 presents the

empirical results for France. Finally, there will be a general discussion of the findings and

limitations of this paper.

2 Literature Review

Many variations of the SIR model have been proposed in the existing literature, for exam-

ple through the incorporation of additional compartments within this framework. Such an

example is the Susceptible-Exposed-Infected-Removed (SEIR) model, where individuals ex-

perience an incubation period prior to become infectious. These individuals are incorporated

into the “Exposed” compartment. This variation was used by He, Peng, and Sun (2020) to

model the COVID-19 outbreak within Hubei province in China. Another common extension

to the SIR model is the Susceptible-Infected-Removed-Susceptible (SIRS) model, which does

not add a new compartment to the model. This variation allows for re-infection after recov-

ery due to imperfect immunity, hence we observe a cyclical flow of people through the three

compartments.

A Hierarchical Bayesian SIRS model was proposed by Zhuang and Cressie (2014). Note

however that many complications arose in the estimation for their specification. In all SIR

models, it must hold that the sum of the proportions of all compartments must be one.

This is relation is known as the balance equation. Zhuang and Cressie (2014) argued that

pandemics are by nature random, hence the measurements of these proportions are subject

to error, which leads to their sum not being one. In order to main the balance equation,

they worked in terms of the log odds ratios of susceptible-over-removed and infectious-over-

removed populations. This effectively changed the scale for their compartment from [0,1] to

(−∞,∞), and argued that on this scale, small errors would have no effect on the balance

equation. While this did solve the problem of measurement errors on the counts for each

compartment, the transformation made the results less interpretable.

Another variation the SIR embeds the model into a probabilistic State-Space framework, as

was done by Shaman and Karspeck (2012). This approach exploits the forecasting power

of compartmental SIR models while accounting for sources of uncertainty in a probabilisti-

cally consistent manner, specifically for measurement errors, as they assume no process error.
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Shaman and Karspeck (2012) used this approach to model and forecast the influenza flu’s

disease transmission mechanisms within the SIRS framework, assuming normally distributed

measurement errors and estimated the model parameters used a method called the ensemble

adjustment Kalman filter (EAKF). A similar approach was implemented by Dukic, Lopes,

and Polson (2012) who used State-State SEIR model, with a simulation-based approach in-

cluding process errors. They use a particle filtering algorithm in combination with sequential

Bayesian learning to track (not forecast) the flu’s transmission in real-time and give uncer-

tainty estimates each new surveillance data point. Both Dukic, Lopes, and Polson (2012) and

Shaman and Karspeck (2012) used the normality assumption for both state and observation

equations.

Although the models proposed by Dukic, Lopes, and Polson (2012) and Shaman and Kar-

speck (2012) allow for measurement errors to be accounted for, it is possible to make different

(non-normal) distributional assumptions for the State-Space equations, as was done in Osthus

et al. (2017). They choose to work within the SIR framework over more complex variations

of the latter because of its parsimonious nature, and because of the ability to leverage analyt-

ical relations between the latent parameters of the SIR model and functions of the observed

data when specifying priors. Indeed, without observing how people transition from being

recovered to becoming susceptible again (on a macro scale), or without precise knowledge

on the rate of loss immunity or the incubation periods, it is hard to identify and estimate

the SEIR and SIRS models. Osthus et al. (2017) implemented a Dirichlet-Beta State-Space

model (DBSSM) to make forecasts on the seasonal influenza in the USA. More specifically,

they used data and metrics from previous flu seasons to make forecasts on new flu seasons.

The choices of the Beta distribution for the observation equation and Dirichlet distribution

for the state equation is natural, as these distributions match the supports of the quantities

in questions: the vector yt represents shares (in percentages) of the Infected and Removed

compartments, hence these are bounded by [0,1], while the latent space vector θt was assumed

to follow a Dirichlet distribution, which preserves the balance equation.

While the model proposed by Osthus et al. (2017) offers extremely relevant distributional

choices for its State-Space equations, it requires data from previous flu seasons to estimate

it, hence it is not directly applicable to the COVID-19 pandemic. Instead, Song et al. (2020)

proposed a slightly simplified version of this model, still within the Dirichlet-Beta State-

Space model framework, but requiring only data from the current outbreak. Additionally,

they extend the SIR methodology through the introduction of a time-varying modifier to the

rate of infection (briefly mentioned in Section 1), along with another extension that allows for
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Quarantine compartment to be added to the existing three compartments of the SIR model.

A similar methodology was followed in Kobayashi et al. (2020), with respect to the imple-

mentation of the Dirichlet-Beta state-space model with the modifier on the rate of infection

to predict future COVID-19 infections in Japan. Most notably, they offer a warning on how

one should proceed when setting the rate of transmission modifier. They argue that in theory

a reduction of mobility by 80% should be enough to terminate the pandemic, which is what

the Japanese government was aiming for when they introduced the state of emergency on

April 7, 2020. But they explain the actual reduction was more in the order of 60% to 70%

because the state does not have the legal force to regulate all individual activities.

In our model, we consider a State-Space approach to the SIR over its deterministic SIR

counterpart, as the deterministic version fails to explain the non-ignorable randomness in the

epidemic process, while the State-Space approach allows us to account for multiple sources

of uncertainty in the pandemic process. We opt for the classic SIR model because of its

parsimonious nature and its interpretability. We follow in the steps of Osthus et al. (2017),

making the same distributional choices for our observation and state equations. Additionally,

this approach circumvents the need to transform the data, as was done in Zhuang and Cressie

(2014).

As mentioned previously, we also integrate a modifier to the rate of transmission as proposed

in Song et al. (2020), however we heed the warning by the Kobayashi et al. (2020) about

how to specify this modifier, which will be set somewhat conservatively, as to reflect reality.

Unlike Song et al. (2020) and Kobayashi et al. (2020), our observation period is very long,

as we observe two waves in infections in our data, which should yield an interesting overview

of how the pandemic evolved over time, and the effect policies had on the number of infections.

Lastly, unlike most papers, we choose to work with probable cases instead of confirmed cases,

to tackle the issue of under-reporting. This allows us to get pragmatic results with respect

to forecasting the pandemic.
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3 Data

The data that is used is collected by the 2019 Novel Coronavirus Visual Dashboard operated

by the Johns Hopkins University Centre for Systems Science and Engineering (JHU CSSE)5.

It is composed of three daily cumulative time series: confirmed infected cases, recovered cases

and deaths. We used data from July 1, 2020 until (and including) April 13, 2021. Because

of the large range of the observation period, and the high variability in the daily reports, we

decided to transform daily data into weekly data. Hence, we obtain an observation period of

exactly 41 weeks.

In order to convert these cumulative time series to new incidences, we applied the first-

difference operator to them. Upon further examination of the data, it became clear there

were several caveats linked to under-reporting and the way the data was collected: we notice

that on average, the time series for confirmed infections is larger than the series for confirmed

recoveries, by a factor of approximately 18. This could be due to that recovery observations

are collected majoritarily for patients who have been hospitalised. Additionally, it is known

that the death rate for COVID-19 is around 2%, yet, in our sample we observed a death rate

of 5.4%.

Under-reporting of the infected cases is a big problem when it comes to modelling COVID-19,

and happens for a variety of reasons. Firstly, there is a large number of asymptomatic cases,

which can go undetected and individuals continue to propagate the disease without being

aware of it. Secondly, there is a disincentive for mildly affected individuals to get tested, be-

cause upon clinical confirmation of infection, they are required to follow strict self-quarantine

measures. Instead, some people self-diagnose, and simply isolate themselves until they deem

the symptoms to have passed. Thirdly, under-reporting is also due to imperfect testing accu-

racy, partially due to variability of the incubation period. Finally, the availability of testing

infrastructure and reagents limits the ability to diagnose infections and carry out mass-scale

testing. Since undetected cases are not quarantined, they are expected to transmit the dis-

ease at an accelerated rate (Deo and Grover (2020)).

To make a distinction between probable cases and confirmed cases, we use the definition

from European Parliament’s Policy Department for Economic, Scientific and Quality of Life

Policies. A probable case is defined as: “Any person meeting the clinical criteria with an

epidemiological link, or any person meeting the diagnostic criteria”, and a confirmed case:

5https://github.com/CSSEGISandData/COVID-19/tree/master/csse covid 19 data/csse covid 19 time series
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“Any person meeting the laboratory criteria”. A study in the United States by Wu et al.

(2020) suggests that by April 18, 2020, the number of probable cases could be anywhere

between 3 to 20 larger than the number of confirmed infected cases.

In order to match the reality of the pandemic as closely as possible, we work in terms of

probable cases in this paper. The data is up-scaled through the exploitation of some known

relations between the time series: we upscale the confirmed cases time series by a factor of 3,

such that the mean death rate for the new times infections time series is 1.8%, which is close

the estimated empirical death rate for the virus. Next, we upscale the recovered time series

by a factor of 50 (approximately 18x3), such that the new cumulative series of recovered

cases is relatively close to the new cumulative series of infections. For this scaling, we used

the ratio of cumulative infections to recoveries from data for Italy: on April 14, 2021, Italy

accumulated 3.809.193 confirmed infected cases, against 3.178.976 recovered cases (ratio of

infections to recoveries of 1.19). For the up-scaled French data, on April 13, 2021, we end up

with 15.091.203 cumulative probable infected cases, against 13.981.200 cumulative probable

recovered cases (ratio of 1.07).

Note that since we are dealing with weekly data for probable cases, the data points seem

quite inflated. For the sake of comparison, two plots are presented below. Figure 1 presents

the daily data of confirmed cases and recoveries without any scaling, and in Figure 2 we show

the weekly data of probable cases, after scaling has been applied. In these plots, infections

are plotted in red, while removals are plotted in blue.
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Figure 1: New daily confirmed cases, without scaling.

Figure 2: New weekly probable cases, after scaling up.
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4 Model

To model the time series described in the previous section, we use the Susceptible-Infectious-

Removed model, which we integrate into a Beta-Dirichlet State-Space model. The outline

of this section is as follows: first we briefly describe the classic SIR model, and after that

present the Beta-Dirichlet State-Space model in which the SIR model is incorporated. Then

we present how we extend this model through the integration of government intervention in

the estimation process. Lastly, details regarding posterior inference and specification prior

distributions are described as well.

4.1 Susceptible-Infected-Removed (SIR) Model

The SIR was developed by Kermack and McKendrick (1927). It is a compartmental model

which partitions a population into three compartments: Susceptible (S) to contract a disease,

Infected (I), or Removed (R) which is a joint compartment for recoveries and deaths. The

proportions of the population in these three respective categories are denoted St, It and Rt,

such that at any given time t, any member of the population must be part of exactly one of

these compartments, and the balance equation St + It + Rt = 1 holds at all times. The SIR

model is accompanied by a number of assumptions:

I) The population is closed meaning that we observe no new births or exogenous deaths

(deaths from another source than the disease), and there no migration in or out of the pop-

ulation.

II) The disease has a latent period of zero, meaning that individuals become infectious right

after they contract the disease (i.e. no incubation period).

III) Recovering from the infection grants lifelong immunity.

IV) The population mixes homogeneously.

The SIR model describes the evolution of the pandemic over time, and the flow of the popu-

lation within its three compartments is defined by the following a set of ordinary differential

equations (ODEs):

dS

dt
= −βStIt, (1)

dI

dt
= βStIt − γIt, (2)

dR

dt
= γIt, (3)
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where β > 0 is the rate of transmission and γ > 0 is the removal rate. Conceptually, as

susceptible individuals contract the disease and become infectious, they move from the Sus-

ceptible to the Infectious compartment, and they eventually recover (or die), moving from

Infectious to the Removed compartment.

The rate at which individuals circulate though these categories depend on the proportion of

the population in the respective compartments at a given time, as well as the transmission

and removals rates associated with the disease, which jointly (and deterministically) control

the pandemic process. In the SIR model, the basic reproductive number R0 can analytically

be derived from the rates of infection and removal, such that R0 = β/γ. To get a better

understanding of the dynamics of the SIR model, simulated SIR curves for are shown in

Figure 3, for β = 2, γ = 1.4, S(0) = 0.9, I(0) = 0.0004, R(0) = 1− S(0)− I(0):

Figure 3: Simulated SIR Curves

(a) Susceptible (b) Infectious (c) Removed

Note that the SIR keeps track of proportions in the three compartments, but in this paper,

our main interest is the infections and removals compartments.

4.2 Dirichlet-Beta State-Space Model (DBSSM)

The SIR model described above is embedded in the Dirichlet-Beta State-Space model. The

DBSSM replicates the dynamics of a deterministic SIR model while remaining more flexible

than the traditional deterministic SIR model, as it allows for various sources of uncertainty

to be accounted for. In particular, the model accounts for uncertainty in the SIR model

parameters, uncertainty in the pandemic’s underlying transmission dynamics (process error)

and uncertainty in the data itself (measurement error). This is done through the simultane-

ous specification of the latent disease transmission mechanism and the observed data within
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the state-space framework.

Let the two weekly time series Y I
t and Y R

t described in Section 3 represent the new probable

infected cases, and probable removed cases respectively. We observe another time series for

new deaths, but this information will be incorporated into Y R
t , such that Y R

t is the sum of

the new probable recoveries and new confirmed deaths (the death time series is not scaled

up). These series were made into proportions of whole population by dividing them by

N = 6.5387.859, where N is the total population of France. Hence, we have 0 < Y I
t , Y

R
t < 1,

with Y I
t + Y R

t + Y S
t = 1, where Y S

t is the time series for the proportions of the population

that is susceptible to contract the disease.

Within the State-Space framework, the elements of Y t = {Y I
t , Y

R
t } constitute the observation

equation and it is assumed that elements of Y t follow Beta distributions. Beta distributions

are a natural choice for modelling Y I
t and Y R

t as they are bound by [0,1], making them a

good choice for modelling rates or proportions, and making certain that our forecasts will be

feasible. Hence, we have:

Y I
t |θt, τ ∼ Beta(λIθIt , λ

I(1− θIt )) (4)

Y R
t |θt, τ ∼ Beta(λRθRt , λ

R(1− θRt )), (5)

where θt = {θSt , θIt , θRt } are the true unobserved proportions of susceptible, infectious and

removed individuals for the population at time t, and τ = (θ0, β, γ, κ,λ) are model parame-

ters. More specifically, κ, λ = (λI , λR) are scalars, β > 0 is the rate of transmission, γ > 0

is the removal rate, and θ0 is the initial state of θt. Parameters λI and λR play a role in

controlling the conditional variance of [Y t|θt, τ ], but λI , λR do not affect the conditional

expectation. As the values of λI and λR tend to infinity, the conditional variance of Y t tends

towards zero, reflecting we are certain of the values of Y t (ie. no measurement error). This

becomes clear when investigating moment properties for the Beta distribution. In particular,

if Y I
t ∼ Beta(λIθIt , λ

I(1− θIt )) (analogous result for Y R
t ), then:

E(Y I
t |θIt , λI) = θIt , (6)

Var(Y I
t |θIt , λI) =

θIt (1− θIt )
λI + 1

.

The full derivation for this result can be found in the Appendix.

The time-indexed latent state vector θt determines the dynamics of our model, and it is
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assumed that θ0:T = (θ0, ...,θT ) follows a first-order Markov Process. This implies that

[θt|θ0:t−1] = [θt|θt−1] for all t. Additionally, for all s 6= t, Yt and Ys are independent condi-

tionally on θt. We refer to this as the conditional independence assumption. The balance

equation θSt +θIt +θRt =1 must hold for all t with 0 < θSt , θ
I
t , θ

R
t < 1. Hence, a natural choice for

modeling θt is the Dirichlet distribution, as its elements are constrained to be non-negative

and sum to one. This allows us to proceed in the estimation without the need to transform

the scale of the parameters, and this probabilistic specification allows for randomness in the

evolution of the pandemic process. Within the State-space framework, the elements of θt

constitute the state equation. The distribution of θt is specified as such:

θt|θt−1, τ ∼ Dirichlet(κf(θt−1, τ )), (7)

where the function f determines the mean of the Dirichlet distribution (more detail in the

next paragraph). Similarly to λ, the parameter κ does not affect the conditional expectation

of [θt|θt−1, τ ], but controls the conditional variance. As κ tends to infinity, the conditional

variance tends to zero, reflecting confidence there is no process error. One can also view the

parameter κ as controlling the randomness of the pandemic. For more details on the moment

properties for the Dirichlet distribution, please see the Appendix.

The function f (θt−1, τ ) ∈ R3 governs the SIR flow through the determination of the mean

values for θt. Its role is to propagate the latent state vector θt−1 one step into the future,

hence it is the key to the infection dynamics. The set of ordinary differential equations

(ODEs) defining the SIR flow within the state-space model are:

dθSt
dt

= −βθSt θIt (8)

dθIt
dt

= βθSt θ
I
t − γθIt (9)

dθRt
dt

= γθIt , (10)

and the function f (θt−1, τ ) corresponds the solution of the above set of ODEs. As there is

no exact solution for the above system, we approximate f̂(θt−1, τ ) using the fourth order

Runge-Kutta (RK4) approximation to solve this system of ODEs (Chauhan and Srivastava
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(2019)). Explicitly, we have :

f̂(θt−1, τ ) =

θ
S
t−1 + 1/6[kS1

t−1 + 2kS2
t−1 + 2kS3

t−1 + kS4
t−1]

θIt−1 + 1/6[kI1t−1 + 2kI2t−1 + 2kI3t−1 + kI4t−1]

θRt−1 + 1/6[kR1
t−1 + 2kR2

t−1 + 2kR3
t−1 + kR4

t−1]

 :=

α1(t−1)

α2(t−1)

α3(t−1)

 (11)

where

kS1
t = −βθSt θIt
kS2
t = −β[θSt + 1/2kS1

t ][θIt + 1/2kI1t ]

kS3
t = −β[θSt + 1/2kS2

t ][θIt + 1/2kI2t ]

kS4
t = −β[θSt + kS3

t ][θIt + kI3t ],

kI1t = βθSt θ
I
t − γθIt

kI2t = β[θSt + 1/2kS1
t ][θIt + 1/2kI1t ]− γ[θIt + 1/2kI1t ]

kI3t = β[θSt + 1/2kS2
t ][θIt + 1/2kI2t ]− γ[θIt + 1/2kI2t ]

kI4t = β[θSt + kS3
t ][θIt + kI3t ]− γ[θIt + kI3t ],

and

kR1
t = γθIt

kR2
t = γ[θIt + 1/2kI1t ]

kR3
t = γ[θIt + 1/2kI2t ]

kR4
t = γ[θIt + kI3t ].

4.3 Integrating Policy

4.3.1 Estimation

We implement time-varying modifier to the transmission rate β, dependant on the strictness

of measures against COVID-19 in place, in an attempt to obtain better estimates, and ulti-

mately better forecasts.

To this end, we introduce the function π, with 0 < π(t) < 1, t > 0, which reflects the effects of

the policy/intervention in place at time t, and we scale the rate of infection β by this factor.
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Hence the new rate of transmission becomes βπ(t). Intuitively, one can think of π(t) as the

probability that a susceptible person encounters an infectious person or vice versa, given cur-

rent regulations and quarantine measures in place, or how successful the implemented policy

is at reducing mobility of individuals. We set values for π(t) deterministically, with π(t) = 1

being equivalent to no measures at all. Implementing this new rate boils down to adjusting

the values of β in the Runge-Kutta approximation for f(θt−1, τ ) above. This results in the

following new SIR flow:

dθSt
dt

= −βπ(t)θSt θ
I
t (12)

dθIt
dt

= βπ(t)θSt θ
I
t − γθIt (13)

dθRt
dt

= γθIt , (14)

There are many factors affecting the rate of infection of the disease, such as the use of pro-

tective face mask, as well as community-level lockdown, or simply a continuous increase in

awareness of the population. In order to model the effects of such actions, we follow the

guideline used in Song et al. (2020) and Kobayashi et al. (2020), who propose the follow-

ing values for π(t): π(t) = 1 reflects that human mobility has returned to its level before

the intervention (no concrete quarantine protocols), π(t) = 0.8 reflects alertness in public

awareness of the disease, where individuals voluntarily avoid outdoors and practice social

distancing. Next, π(t) = 0.5 would correspond to the closing of all non-essential businesses,

and lastly, π(t) = 0.2 represents an enhanced quarantine. Note that these values are some-

what subjective, thus prone to error. As mentioned in the literature review, Kobayashi et al.

(2020) warn that these values should be set conservatively, as it is difficult for governments

to monitor individual activity, leading to a slight reduction in the efficacy of these measures.

Examples of this failure include gatherings with more participants than legally permitted,

people breaking curfew, as well as illegal parties. Such an example is the illegal rave that went

on for 36 hours on New Year’s Eve in a warehouse in Bretagne with over 2500 participants
6, which defied these three measures simultaneously.

In Table 1 we give a brief outline of the policies that have been implemented by the French

government 7 that are the most relevant to this study, and we quantify them according to the

guidelines described above. Our sample begins on the 1st of July 2020, but it is important

to note that first lockdown was progressively lifted from May 11, 2020 to June 2, 2020.

6https://www.washingtonpost.com/world/2021/01/02/france-party-new-years-eve-coronavirus
7https://www.gouvernement.fr/info-coronavirus/les-actions-du-gouvernement
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Table 1: Summary of the policies and their quantification

Date Policy Description Quantification
1rst July 2020 Beginning of the observation period 0.8
10th July 2020 End of the sanitary state of emergency 0.85

20th July 2020
Introduction of a decree imposing the wearing of masks
in all indoor spaces, and in the street in some major cities.

0.75

17th October 2020 Introduction of the curfew at 20h in some French regions. 0.50
22th October 2020 Generalisation of the curfew to all French regions. 0.50
30th October 2020 Beginning of the second lockdown, while curfew remains. 0.30
15th December 2020 Gradual deconfinement, while curfew at 20h remains active. 0.55
2nd January 2021 Stricter curfew at 18h in some French regions 0.45
16th January 2021 Generalisation of the curfew at 18h to all French regions. 0.40

18th March 2021
Reinforced sanitary measures (i.e. lockdown) for
16 departments (cumulating about 60% of population)

0.35

31th March 2021 Generalisation of the lockdown to all French regions. 0.30

Another very important aspect in the control of the pandemic is the vaccination roll-out,

which we seek to integrate into the policy function π(t). According to the Covid Vaccine

Tracker 8 by the April 13, 2021, 11.430.203 had received a single vaccine shot (17.5% of the

population), while 4.008.284 had received the second shot (6.1% of the population), with

a vast majority of people receiving the Pfizer vaccine. As the SIR model assumes that the

population mixes homogeneously, we do not account for the fact that vaccines were first given

to people at high risk, before being distributed to the general population.

Figure 4 is a plot from CovidTracker.fr8 showing the cumulative number of persons having re-

ceived single and double doses of a vaccine, with the dotted lines representing the projections

for these quantities (data from the Ministry of Health).

In a study in the United-States about the necessity to take two doses of Pfizer or Moderna,

Livingston (2021) state “When the vaccines were first tested, a relatively weak immune

reaction was found within a few weeks after people received the first dose of vaccine, followed

by a strong reaction when a second dose was given. (...) It is possible that people who get only

1 dose will have only partial immunity to COVID-19 infection, [but] there is no evidence that

people who get only 1 dose have adequate long-term protection against COVID-19 infection”.

For this reason, they insist that the second dose is necessary to confer adequate immunity.

Hence, the information on vaccines that we incorporate into the π(t) function focuses primary

on the proportion of people having received a second dose. We can make this assumption

without the loss of generality as people who receive a first shot will take a second dose on

average 4 weeks after receiving the first one9. To reflect a reduction in the infection pattern,

8https://covidtracker.fr/vaccintracker/
9https://www.cdc.gov/coronavirus/2019-ncov/vaccines/second-shot.html
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Figure 4: Cumulative vaccine shots: light blue for single dose, dark blue for double dose

the values set for π(t) are slightly and progressively deflated, from 0 on February 1, 2021 to

-0.06 (=6%) on April 13, 2021. Figure 5 shows the evolution of the policies over time, with

the adjustments made to account for vaccination roll-out.

We choose to work with a step function over a continuous function for π(t), at it is a lot more

reflective of how the measures were imposed and the changes in behaviour these changes in

policies induce for the population.

4.3.2 Forecasting

The main goal of this paper is to obtain forecasts on the number of new COVID-19 infections.

Integrating policy in the model allows us to predict the number of cases that would occur

for various predicted policies (i.e. policy evaluation). France entered its third lockdown on

March 31, 2021 which was been extended to last until May 3, 2021, according to the latest

news 10. As for the plan afterwards, the country is set to gradually open up, in the hope that

the vaccination roll-out will help counteract the rise of new cases. Authorities project that

the lockdown measures will be fully lifted by the end of June.

In terms of forecasting, we look at three different scenarios. Note that these scenarios will

only diverge from May 3, 2021 onward when the current lockdown ends. Until then, we

impose the same restrictions as the ones imposed by the government. In the first scenario,

10https://www.linternaute.com/actualite/politique/2498313-discours-de-macron-des-annonces-dimanche-
2-mai-sur-le-covid-et-le-deconfinement/
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Figure 5: Graph of the evolution of imposed policies

the current policies in place will be prolonged until the end the forecasting period: we impose

a continued lockdown for a period of 15 weeks, alongside the curfew that is currently in place

at 19h. This corresponds to setting the baseline value for π1(t) at 0.3 for the weeks t ∈ [April

14, 2021; July 21, 2021]. In the second scenario, we relax the quarantine measures in place,

however in order to keep this scenario realistic, we assume that the public awareness of the

disease remains high, and that individuals will continue to practice some social distancing,

as well as engage in simple preventive behaviour such as mask-wearing and hand-washing.

Hence, we set the baseline for π2(t) at 0.8 until the end of the forecasting period. Finally,

we follow a scenario parallel to the measures announced by the government, which involves a

gradual deconfinement after May 3, 2021. After this date, the gradual re-opening is modelled

in baseline policy function π3(t) as a monotonically increasing function:

π3(t) = π(13thApril) + exp(0.037× t)− 1,

where the value for π(13thApril) includes the effect of vaccination mentioned in the previous

section. Note that we refer to the baseline values of the function π(t) throughout this sec-

tion. Indeed, after setting baseline values for π(t) in the three different scenario, all three
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specifications of this function are modified identically to integrate the effect of vaccination

roll-out in the policy function, as was done for the estimation process. According to Covid

Vaccine Tracker8, 11.392.352 people are expected to have received their second vaccination

shot by the 9th of June 2021 (17.4% of the population), versus the 4.276.086 second doses

administered by April 14th corresponding to an increase of 10.88% between these two dates.

Hence, values for the functions πi(t), i = 1, 2, 3 are linearly decreased by that amount over

the course of that period. For dates beyond June 9, 2021, we assume the linear relation

continues to hold, and values for π(t) are interpolated using the same increments. Different

specifications of the functions πi(t), i = 1, 2, 3 are plotted in Figure 6 below:

Figure 6: Policy curves, including vaccination roll-out

(a) Strict policy π1(t) (b) Loose policy π2(t)

(c) Gradual opening policy π3(t)
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4.4 Posterior Inference

4.4.1 Prior Specification

As Bayesian research can be somewhat subjective, it is important to define defensible priors

in practice. To this end, we follow the hyper-parameter prior specifications made in Song

et al. (2020), in terms of distributional choices. However, we do make some changes to the

location and scale parameters of these distributions due to new information becoming avail-

able, and differences between the outbreak in Wuhan and France.

As mentioned previously, high values for the controls κ, λI and λR reduce the conditional

variances for θt, Y
I
t and Y R

t respectively. These values also define how tight our 95% credible

intervals for our estimates will be. Hence, we increase the location parameter for κ to 20,

instead of 2 as was done in Song et al. (2020), to show we have some confidence in how well

the model can describe the pandemic process. We only increase this value slightly, because

for very high values of κ we do not observe randomness in the evolution of the pandemic.

Indeed, the values for κ tends to infinity, the SIR flow collapses to the deterministic SIR flow.

However, we do not modify the values for λI and λR because of the uncertainty linked to the

under-reporting and the up-scaling of the data. All in all, these remain relatively flat prior

distributions, reflection we know little about these three parameters.

Next, we modify the prior of the basic reproductive numberR0, as in France, R0 was estimated

to be 1.0211, whereas Song et al. (2020) estimated a R0 of 3. In our prior, we scale down the

variance of R0 to reflect the fact the basic reproductive number does not fluctuate excessively.

In fact, prior distributions for γ, β,R0 are set jointly according to analytical relations of the

SIR model. More specifically, we set γ = 0.16 according to the specification of Kobayashi

et al. (2020), then set β = 0.20, such that such that R0 = β/γ = 1.25. Next we impose

Var(R0 = 0.22) and Var(γ = 0.12). The parameters γ and R0 are then transformed such that

they follow log-normal distributions which satisfy the above constraints. Lastly, the prior for

the initial state θ0 is set using the empirical values for the proportions Y[1] and R[1], and

11https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-
respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-epidemiologique-du-
15-avril-2021
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the initial proportion of susceptible people is derived from these. Then, we have:

θ0 ∼ Dir(1− Y [1]−R[1], Y [1], R[1]),

R0 ∼ LogN(0.211, 0.0253),

γ ∼ LogN(−1.998, 0.330),

β ∼ R0γ,

κ ∼ Gamma(20, 0.0001),

λI ∼ Gamma(2, 0.0001),

λR ∼ Gamma(2, 0.0001).

Note that we do not set a distribution for the prior of β, but we calculate this value as

β = R0γ. We do not sample β and γ simultaneously, because these two parameters are

highly correlated. Instead, we sample γ and R0 which are less correlated and derive β from

these quantities. This approach was recommended by Osthus et al. (2017), who explain that

the Gibbs sampler can have difficulties sampling from the DBSSM due to highly correlated

structures. To illustrate this point, Figure 7 shows the correlation plots for R0, β and γ,

based on the first 1000 posteriors samples for these.

Figure 7: Correlations plots

(a) Posterior samples of β and γ (b) Posterior samples of R0 and γ
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4.4.2 Posterior Sampling

We use Bayesian methods for inference and forecasts within the state-space framework. Let

t′ ∈ [1, 2, ..T ] denote the time index for all values within our observed sample. We seek to

get posterior knowledge on the model parameters τ as well as on the latent space vector θt

given the observed data in the series Y I
t and Y R

t . Let [τ ] denote the prior distributions for

elements in τ . Then,

[θ1:t′ , τ |Y1:t′ ] ∝ [τ ][Y1:t′ ,θ1:t′ |τ ] = [τ ]
t′∏
t=1

[y1:t|θt, τ ][θt|θt−1, τ ]. (15)

The above equation holds because of the model’s conditional independence assumption de-

scribed in section 3. The above form does not have a closed form posterior, thus we use

MCMC methods, specifically a Gibbs sampler to collect draws from the posterior distribu-

tions. This is done using the package rjags (Plummer et al., 2019), a tool within the R

programming language (R Core Team (2020)). The package calls the software JAGS which

stands for Just Another Gibbs Sampler (Plummer (2003)) from which the simulation and

sampling is done. In terms of how sampler selection, the JAGS user manual (Plummer

(2012)) states that “The user has no direct control over the process of choosing Samplers”,

as samplers are automatically chosen for each parameter by JAGS during the initialisation

of the model. However, we do run a long adaptative phase after the burn-in to ensure that

the samplers reach optimal efficiency.

For posterior inference, we focus on values θIt and θRt , as it shown in equation 6 that on average

the prevalence of infection and removal was equal to the proportions θIt and θRt respectively.

Samples from JAGS are collected through the procedure described in the pseudo-algorithm

below:
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Algorithm 1 Posterior Sampling JAGS

1: for m = 1, 2, . . . ,M do
2: Draw κ(m) from [κ]
3: Draw λI,(m) from [λI ]
4: Draw λR,(m) from [λR]

5: Draw θ
(m)
0 from [θ0]

6: Draw γ(m) from [γ]

7: Draw R
(m)
0 from [R0]

8: Calculate β(m) as R
(m)
0 γ(m)

9: Then τ (m) = (κ(m), λI,(m), λR,(m),θ
(m)
0 , γ(m), R

(m)
0 , β(m)) constitutes draw from [τ ]

10: for t = 1, 2, . . . , T do
11: Calculate f(θ

(m)
t , τ (m))

12: Draw θ
(m)
t from [θt|θ(m)

t−1, τ
(m)]

13: Draw Y
(m)
t from [Y t|θ(m)

t , τ (m)]
14: end for
15: Then θ

(m)
1:T = (θ

(m)
1 ,θ

(m)
2 , . . . ,θ

(m)
T ) constitutes a draw from [θ1:T ]

16: And Y
(m)
1:T = (Y

(m)
1 ,Y

(m)
2 , . . . ,Y

(m)
T ) constitutes a draw from [Y 1:T ]

17: end for

4.4.3 Inference and Forecast

From the posterior, we are able to make forecasts on the number of probable infections and

removals for COVID-19. We make forecasts 15 weeks into the future, until the week of July

21, 2021. Let t∗ ∈ [T + 1, .., Tend] We seek to obtain forecasts for Y I
t∗ , Y

R
t∗ and θt∗ , which we

calculate as:

[Y (T+1):Tend
,θ(T+1):Tend

|θT , τ ] =

Tend∏
t=T+1

[Y t|θt, τ ][θt|θt−1, τ ], (16)

where the above holds true given the conditional independence assumption, and where

[Y t|θt, τ ] and [θt|θt−1, τ ] are defined as in equations 4 & 5 and 7 respectively.

Predicted policies are incorporated into these forecasts, and we can vary the intensity of the

imposed protocols to see how this would affect new incidences of COVID. For example, we

can compare the predictions of new cases under a continued strict lockdown versus a gradu-

ally attenuated lockdown, or the outcome with no quarantining protocols at all.
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5 Empirical Application

In this section, we present the results from the Dirichlet-Beta state-space SIR model, using

weekly probable cases as data. We start by presenting posterior results obtained from our

simulation within JAGS. Then, we present the forecasts obtained based on the posterior

results. We consider forecasts for different policy scenarios, which serves as policy evaluation.

5.1 Posterior Results

In the JAGS run, we run four parallel chains whose seeds are generated through RNG. In

JAGS, the burn-in is the period between the initialisation of the model and the creation of

the first monitoring point (i.e. we do not run the model and then discard these observations).

We ran 62500 iterations, with 12500 iterations as burn-in, and used a thinning of 10. This

was followed by an adaptative phase, which we ended only when the samplers reached opti-

mal efficiency. This was done through six recursive calls of the adapt for 50000 iterations. In

total, we obtain (62500/10)× 4 = 25000 draws from JAGS.

Key statistics for all the model parameters and the true underlying proportions of St, It and Rt, t ∈
[1, ..T ] are summarized in the Table 2 below.

Table 2: Summary of key statistics

2.5% 25% 50% 75% 97.5%
Parameter Description Quantile Mean SD

β Rate of infection 0.0537 0.0897 0.114 0.144 0.216 0.119 0.0418
γ Rate of removal 0.0427 0.0642 0.0773 0.0911 0.120 0.0783 0.0198
R0 Basic reproduction number 1.049 1.315 1.482 1.674 2.130 1.510 0.277
λI Y I

t variance scaling 2899 9723 15504 23389 48022 18052 11812
λR Y R

t variance scaling 6300 11280 15192 20779 39412 17100 8508
κ θt variance scaling 4591 5888 6781 7947 13228 7363 3205
θSt Proportion susceptible 0.978 0.980 0.980 0.981 0.983 0.980 0.000663
θIt Proportion infected 0.00950 0.0111 0.0117 0.0122 0.0132 0.0116 0.000526
θRt Proportion removed 0.00673 0.00760 0.00804 0.00846 0.00929 0.00803 0.000386

The estimates for θSt , θIt and θRt are first constructed by averaging out the 25.000 draws, then

statistics are calculated for each time t, and finally averaged out across t. The estimates for

λI , λR and κ allow us to examine the scale of process and measurement errors. The value κ

serves as a control for the randomness in the pandemic process, and its mean value across

the simulation returns lower than the prior we had set for it, with a very lower variance.

The lower value of E(κ) implies that the pandemic is more random than anticipated and also

indicates that a deterministic SIR model (equivalent to κ = ∞) would fail to capture the

pandemic process. As for values λI and λR, these are relatively large, but the magnitude of
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the measurement errors is hardly interpretable.

In Figure 8 below, we present the densities of posterior samples for the main model param-

eters: the rate of infection β, the removals rate γ and the reproductive number R0. The

combination of the trace plots and the density plots helps to visually assess how the draws

fluctuated throughout the sampling process. The different colours in the trace plots cor-

respond to parallel simulation chains. Similar plots for λI , λR and κ can be found in the

Appendix.

Figure 8: SIR Model Parameters

(a) Rate of infection

(b) Removal rate (c) Reproductive number

Note that we will tend to overestimate R0 = β/γ, as our samples for β are slightly inflated

26



due to the fact they are multiplied by 0 < π(t) < 1. In this study, we estimate an R0 of

1.51, close to the estimate from Kobayashi et al. (2020) of 1.44 from Japan (95% CI for

R0 ∈ (1.22, 1.64)), but lower than estimates from Song et al. (2020) who consistently esti-

mated R0’s of the order of 4, under various quarantining measures.

In reality, the basic reproductive number was estimated to be 0,95 in France, according to

Public Health Ministry12 on the 17thApril 2021. Once again, note that this is no surprise,

since this model explicitly incorporates interventions, such that R0 is the adjusted basic

reproduction number that would occur if all quarantine protocols would be removed. In

contrast, the estimate of R0 = 0.95 incorporates the effect of government intervention into

the transmission rate, leading to a reduced estimate due to the contribution of intervention.

In Figure 9 we present the posterior densities for the latent space vector θT+1 (T= week of

April 14, 2021), corresponding to the expected proportions of individuals in the Susceptible

(θST+1), Infected (θIT+1) and Removed (θRT+1) compartments, respectively.

Figure 9: Densities of latent space vector samples

12COVID-19 : point épidémiologique du 22 avril 2021
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Lastly, we present the evolution of the posterior samples for θIt and θRt , t ∈ [1, ..T ]. These

are plotted below, in Figures 10 and 11. The estimated quantities for θIt and θRt are plotted

in colour (infections in red, removals in blue), while the measured values of Y I
t and Y R

t are

plotted in black, for comparison. On average, values for Y I
t and Y R

t are very close estimates

for θIt and θRt , as expected from the moment conditions from equation 6. This remains a

good indicator of the performance of the model.

Figure 10: Measured infections versus true estimated proportions

Figure 11: Measured removals versus true estimated proportions
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5.2 Forecasts and Policy Evaluation

In this section, we present the forecasts obtained, under the three different scenarios described

in the Section 4.3.2. Here, we focus on the predicted quantities for Y I
t∗, t

∗ ∈ [T + 1, .., Tend].

We multiply these proportions of infections by N , the total population for France, to make

them into new weekly probable infections. The forecasts for the new incidences are plotted

with their 50% and 95% credible intervals, where the 50% confidence intervals are shaded in

green, while the 95% confidence intervals are shaded in red. Below are the plots for the two

first scenarios: the continued strict lockdown scenario is shown in Figure 12, and the scenario

where no concrete measures are imposed (with public awareness of the disease) in Figure 13:

Figure 12: Predicted infections: continuous lockdown

From Figure 12, we note that the cases continuously and monotonically go down if a contin-

ued lockdown is applied, in combination with vaccines being distributed. Though these are

weekly probable predicted cases, meaning these are higher than the typical daily confirmed

cases, it is interesting to note that despite a very strict lockdown, the number of cases does

not converge to 0 before the end of the sample, on July 21, 2021. This fact underlines the

importance of imposing measures for a sufficiently long time in order to mitigate the propa-

gation of the COVID-19 virus.
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Figure 13: Predicted infections: no concrete measures

Figure 13 shows what would happen if the lockdown was lifted on May 3, 2021, with no ad-

ditional measures besides mask-wearing and basic preventive behaviour of individuals. After

May 3, cases break the downwards trend initially observed, and begin to rise again. What is

particularly interesting to note is that though the slope is positive after May 3, it gradually

flattens and after June 30, 2021, the number of cases begins to slope downwards. In the

absence of any concrete policy, this decrease in the number of new infections can solely be

attributed to the vaccination efforts, which is a very optimistic result. Indeed, this implies

that if a sufficiently large proportion of the population gets vaccinated, the number of cases

should be able to converge to a very low number.

In Figure 14 we show the predictions made under the last specification π3(t), which models

the gradual re-opening of the economy from May 3, 2021, paralleled with vaccinations. We

observe a monotonically decrease in number of cases for all the predicted data points, except

the last point in the week of July 21, 2021, though this increase is barely noticeable, and

invisible graphically. Nevertheless, this estimate could serve as a warning against relaxing

too many measures too quickly. To policy makers, this would imply that a gradual relaxation

can be done without an increase in the number of cases in the medium term, however an

enhanced relaxation of measures could cause the number of cases to rise again in the long-
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term.

Figure 14: Predicted infections: Gradually lifting of the lockdown

In summary, the three policy specifications offer the following insights: Figure 12 the num-

ber of cases will only converge to a truly low number if the impactful measures (such as

lockdowns, curfew and working from home) are kept in place for a sufficiently long period.

Figures 13 shows that the roll-out of vaccines will also be a significant part in reducing the

infections, and that if a sufficiently high proportion of the population gets vaccinated, the

pandemic should become more manageable. Lastly, Figure 14 offers a warning for the relax-

ation of too many measures in a too short amount of time. Indeed, it would be best to open

up the economy at a slowed down rates, in parallel with a continued effort to get as many

people vaccinated as possible.

Finally, we present how the proportions of infections and removals θIt and θRt evolve from

the second half of observed sample. The predicted quantities are based on the third scenario

which follows the predicted government policies for the gradual lifting of the lockdown. These

are shown in plot 15 below, where the vertical black line is the date France entered its third

lockdown (March 31, 2021). Visually, it is noticeable that imposing a third lockdown helped

significantly in controlling the proportions of new weekly probable infections and removals.

In particular, the proportions of removals is projected to reach an all-time-high for the entire

observation period, and will continue to increase.
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Figure 15: Proportions of new weekly infections in Red, removals in Blue.

6 Discussion

In this paper, we modelled the COVID-19 outbreak in France using the Dirichlet-Beta state-

space model inspired by the deterministic SIR model. We extended the classic SIR by incorpo-

rating a time-varying function to account for quarantining protocols imposed by authorities,

which translated to changing the rate of infection over time. Understanding the effects of

quarantining measures is crucial to crafting effective preventive policies to control the spread

of the COVID-19 virus, hence forecasts were carried out with various degrees of government

intervention. The quality of the data is limited due to under-reporting, which motivated

up-scaling the observations. Thus, we worked in terms probable cases rather than confirmed

cases, which is a distinct perspective of this paper. The use of MCMC methods within the

state-space framework allowed us to integrate uncertainty linked to under-reporting and the

virus’s complex dynamics in the prediction process.

We found that provided adjustment to the reported data, the model accurately predicted

the recent course of the pandemic in France. The model predicts that, at current coverage

of vaccination and its likely further slow roll-out, the lockdowns should be lifted more grad-

ually than the government in France is currently envisaging. Another finding was that at

least for the short term, the impact of social behaviour on transmission is greater than that

of vaccination because it is possible to restrict social behaviour to a certain scale, whereas

the same is impossible with vaccines. As attaining population vaccine coverage will remain a
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huge challenge, and as maintaining social distancing is not feasible long term, the government

will need to find a way to mitigate the impact of the epidemic through other means. This

might require increased investment in health infrastructure to deal with a potential additional

waves of infections following measures which might be too liberal, and the development of

complication-blocking treatment for COVID infections.

The DBSSM model proposed in this paper can be further extended to accommodate for

the incubation period individual experience prior to being exposed to the COVID-19 virus,

or to account for imperfect immunity subsequent to recovery. Both of these extensions be

be achieved through the addition of a new compartments in the SIR model, such that we

obtain SEIR and SIRS models respectively. However, these specifications add complexity to

the model, and require adequate surveillance data to be implemented. As more research is

carried out on the effect of policies on controlling the outbreak, numerical quantification of

quarantine measures should also improve. A few drawbacks in methodology of this paper

are the fact the SIR model assumes we observe a closed population. Yet, migration plays

a strong role in how the virus propagates, as in France 82.80% of new COVID-19 cases

were due to the UK-variant, and 4.2% due to the South-African variant. However, the

strongest limitation to this paper and all COVID-19 related literature is the quality of the

data. Indeed, it is very difficult, if not impossible, to acquire data on infected individuals

who self-quarantined or asymptomatic cases, hence the true scale of under-reporting remains

unknown, and inestimable in practice.
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Appendices

A Moment Condition Beta Distribution

If Y I
t ∼ Beta(λIθIt , λ

I(1− θIt )), then:

E(Y I
t |θIt , λI) =

λIθIt
λIθIt + λI(1− θIt )

= θIt ,

Var(Y I
t |θIt , λI) =

λIθIt λ
I(1− θIt )

(λIθIt + λI(1− θIt ))2(λIθIt + λI(1− θIt ) + 1)
=
θIt (1− θIt )
λI + 1

.

B Moment Condition Dirichlet Distribution

If θt|θt−1, τ ∼ Dirichlet(κf(θt−1, τ )), then:

E(θt|θt−1, τ ) = f(θt−1, τ )

Var(θt|θt−1, τ ) =
1

1 + κ
Σα,

where f(θt−1, τ )=

α1(t−1)

α2(t−1)

α3(t−1)

, and Σα =

α1(1− α1) −α1α2 −α1α3

−α1α2 α2(1− α2) −α2α3

−α1α3 −α2α3 α3(1− α3)

.

C Trace Plots for κ, λI and λR

Figure 16 below show the trace plots and densities for κ, λI and λR obtained from the JAGS

simulation:
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Figure 16: Additional SIR Model Parameters

(a) Trace and density for κ samples

(b) Trace and density for λI samples (c) Trace and density for λR samples

D Full script

1 #package library

2 library(gridExtra)

3 library(dplyr)

4 library(utils)

5 library(ggplot2)

6 options(stringsAsFactors = FALSE)

7 options(scipen =999)

8 library(readxl)

9 library(stats)

10 library(lognorm)

11 library(emdbook)

12 library(rjags)

13 library(runjags)

14 library(R2OpenBUGS)

15 library(coda)

16 library(nimble)

17 library(Formula)

18 library(DirichletReg)
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19

20

21 #Very basic Simulated SIR plots

22 beta=2

23 gamma =1.4

24 S_sim=rep(0 ,35)

25 I_sim=rep(0 ,35)

26 R_sim=rep(0 ,35)

27 S_sim [1]=0.9

28 I_sim [1]=0.0004

29 R_sim[1]=1 -S_sim[1]-I_sim[1]

30

31 for (i in 2:35)

32 {

33 S_sim[i]=S_sim[i-1]-beta*S_sim[i-1]*I_sim[i-1]

34 I_sim[i]=I_sim[i-1]+ beta*S_sim[i-1]*I_sim[i-1]-gamma*I[i-1]

35 R_sim[i]=R_sim[i-1]+ gamma*I_sim[i-1]

36

37 }

38 plot(S_sim ,type="l",col="green",xlab="Time",ylab="Susceptible Proportion")

39 plot(I_sim ,col="red",type="l",xlab="Time",ylab="Infected Proportion")

40 plot(R_sim ,col="blue",type="l",xlab="Time",ylab="Recovered Proportion")

41

42 #Data (clean)

43 FR <- read_excel("Cours Uni + important documents/Masters Econometrics/

44 Thesis Active/Code/LatestDataFR.xlsx")

45 #to correct negative recovery rates , take data from two previous weeks

46 rec <- read_excel("Cours Uni + important documents/Masters Econometrics/

47 Thesis Active/Code/rec.xlsx", col_names = FALSE)

48 datesdaily <-seq(as.Date("2020/07/01"), by = "day", length.out = 347)

49 datesweek <-seq(as.Date("2020/07/01"), by = "week", length.out = 52+4)

50

51

52 N<-65387859

53 Infected <-as.numeric(FR[1 ,1:287])/N

54 Death <-as.numeric(FR[2 ,1:287])/N

55 Recovered <-as.numeric(FR[3 ,1:287])/N

56 Removed <-Recovered+Death

57 BigPolicy <-as.numeric(FR[4,])

58

59

60 VaccinesModPre <-rep (0 ,71)

61 single <-(-0.06/71)

62 VaccinesModPre [1] <-single
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63 for (i in 2:71)

64 {

65 VaccinesModPre[i]<- VaccinesModPre[i-1]+ single

66 }

67 #plot(VaccinesModPre)

68 for (i in 1:71)

69 {

70 BigPolicy[i+216] <-BigPolicy[i+216]+ VaccinesModPre[i]

71 }

72

73

74 n_days <-as.numeric(length(Infected ))

75 n_weeks <-n_days/7

76 T_fin=n_weeks +15 #=364 days , approx a year.

77

78 #Integrate vaccine in the Pi function:

79

80

81 weeklyInfected <-rep(0,n_weeks)

82 weeklyDeath <-rep(0,n_weeks)

83 weeklyRecovered <-rep(0,n_weeks)

84 weeklyBigPolicy <-rep(0,T_fin)

85

86 for (i in 1:n_weeks)

87 {

88 weeklyInfected[i]<-Infected[i*7]

89 weeklyDeath[i]<-Death[i*7]

90 weeklyRecovered[i]<-Recovered[i*7]

91 }

92

93 for (i in 1:T_fin)

94 {

95 weeklyBigPolicy[i]<-BigPolicy[i*7]

96 }

97

98 weeklyPolicy <-weeklyBigPolicy [2:n_weeks]

99 weeklyPredPolicy <-weeklyBigPolicy [(n_weeks +1):T_fin]

100

101 #Fix negative values due to first difference operator based on rates of

102 recoveries from previous weeks

103 weeklybb <-rep(0 ,43)

104 for (i in 1:43)

105 {

106 weeklybb[i]<-as.numeric(rec[i*7])/N
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107 }

108 weeklybb <-diff(weeklybb*50)

109 weeklybb [3:4] <-weeklybb [2]

110 weeklybb [6] <-weeklybb [5]

111 weeklybb <-weeklybb [3:42]

112

113 nonscaledRecovery <-(weeklybb/50)+ diff(weeklyDeath)

114

115

116 plot(datesweek [1:n_weeks -1],diff(weeklyInfected)*N/7,type="l",xlab="Time"

117 ,ylab="Cases",col="red")

118 lines(datesweek [1:n_weeks -1], nonscaledRecovery*N/7,type="l",col="blue")

119

120

121 #Upscale the data & and correct the negative values in Recovered based on the

122 data from previous weeks

123 Y <- diff(weeklyInfected*3)

124 R <- weeklybb+diff(weeklyDeath)

125 #plot(datesweek [1:(n_weeks -1)], diff(weeklyDeath ))

126

127 #Visualisation

128 plot(datesweek [2:n_weeks],Y*N,type="l",xlab="Time",ylab="Cases",col="red")

129 lines(datesweek [2:n_weeks],R*N,type="l",col="blue")

130 plot(datesweek [2:n_weeks],weeklyPolicy , type="s",lwd=1,xlab="Time",

131 ylab="Policy intensity",col="red")

132 #plot(datesweek [1:(n_weeks -1)], diff(weeklyDeath ))

133

134

135 #Lognormal parameter maker

136 lognorm.parm <- function(mu0 ,var0){

137 var <- log(var0 / mu0^2 + 1)

138 mu <- log(mu0) - var / 2

139 list(mu = mu , var = var)}

140

141 #initial conditions / hyperparameters

142 beta0 =0.20

143 gamma0 =0.16

144 gamma0_sd=0.1

145 gamma_var <- gamma0_sd^2

146 R0=beta0/gamma0 #returns about 1.214

147 R0_sd=0.2

148 R0_var <- R0_sd^2

149 lognorm_gamma <- lognorm.parm(gamma0 ,gamma_var)

150 gam0 <-c(lognorm_gamma$mu,lognorm_gamma$var)
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151 lognorm_R0 <- lognorm.parm(R0 ,R0_var)

152 initR0 <-c(lognorm_R0$mu ,lognorm_R0$var)
153 state0=c(1-Y[1]-R[1],Y[1],R[1])

154

155 #MCMC parameters

156 M=62500

157 thn =10

158 nchain =4

159 nadapt =50000

160 nburnin =12500

161

162

163 #MCMC to JAGS

164 model.string <-paste0("

165 model{

166

167  #Hyperpriors

168   theta [1 ,1:3] ~ ddirch(state0)

169   gamma ~ dlnorm(gam0[1], 1 / gam0 [2])

170   R0 ~ dlnorm(initR0 [1],1/initR0 [2])

171   beta <- R0*gamma

172   k ~  dgamma (20 ,0.0001)

173   lambdaY ~ dgamma (2 ,0.0001)

174   lambdaR ~ dgamma (2 ,0.0001)

175

176   for(t in 2:(n_weeks )){

177

178     KtS[t-1,1] <- -beta*weeklyPolicy[t-1]*theta[t-1,1]*theta[t-1,2]

179     KtI[t-1,1] <-  beta*weeklyPolicy[t-1]*theta[t-1,1]*theta[t-1,2]

180     - gamma*theta[t-1,2]

181     KtR[t-1,1] <-  gamma*theta[t-1,2]

182

183     KtS[t-1,2] <- -beta*weeklyPolicy[t-1]*(theta[t-1 ,1]+0.5*KtS[t-1 ,1])*

184     (theta[t-1 ,2]+0.5*KtI[t-1 ,1])

185     KtI[t-1,2] <-  beta*weeklyPolicy[t-1]*(theta[t-1 ,1]+0.5*KtS[t-1 ,1])*

186     (theta[t-1 ,2]+0.5*KtI[t-1 ,1]) - gamma*(theta[t-1 ,2]+0.5*KtI[t-1 ,1])

187     KtR[t-1,2] <-  gamma*(theta[t-1 ,2]+0.5*KtI[t-1 ,1])

188

189     KtS[t-1,3] <- -beta*weeklyPolicy[t-1]*(theta[t-1 ,1]+0.5*KtS[t-1 ,2])*

190     (theta[t-1 ,2]+0.5*KtI[t-1 ,2])

191     KtI[t-1,3] <-  beta*weeklyPolicy[t-1]*(theta[t-1 ,1]+0.5*KtS[t-1 ,2])*

192     (theta[t-1 ,2]+0.5*KtI[t-1 ,2]) - gamma*(theta[t-1 ,2]+0.5*KtI[t-1 ,2])

193     KtR[t-1,3] <-  gamma*(theta[t-1 ,2]+0.5*KtI[t-1 ,2])

194
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195     KtS[t-1,4] <- -beta*weeklyPolicy[t-1]*(theta[t-1 ,1]+KtS[t-1 ,3])*

196     (theta[t-1 ,2]+KtI[t-1 ,3])

197     KtI[t-1,4] <-  beta*weeklyPolicy[t-1]*(theta[t-1 ,1]+KtS[t-1 ,3])*

198     (theta[t-1 ,2]+KtI[t-1 ,3]) - gamma*(theta[t-1 ,2]+KtI[t-1 ,3])

199     KtR[t-1,4] <-  gamma*(theta[t-1 ,2]+KtI[t-1 ,3])

200

201     alpha[t-1,1] <- theta[t-1 ,1]+( KtS[t-1 ,1]+2*KtS[t-1 ,2]+2*KtS[t-1 ,3]+KtS[t-1 ,4])/6

202     alpha[t-1,2] <- theta[t-1 ,2]+( KtI[t-1 ,1]+2*KtI[t-1 ,2]+2*KtI[t-1 ,3]+KtI[t-1 ,4])/6

203     alpha[t-1,3] <- theta[t-1 ,3]+( KtR[t-1 ,1]+2*KtR[t-1 ,2]+2*KtR[t-1 ,3]+KtR[t-1 ,4])/6

204

205        theta[t,1:3] ~ ddirch(k*alpha[t-1 ,1:3])

206        Y[t-1] ~ dbeta(lambdaY*theta[t,2], lambdaY*(1-theta[t,2]))

207        R[t-1] ~ dbeta(lambdaR*theta[t,3], lambdaR*(1-theta[t,3]))

208   }

209 }

210 ")

211

212 model.spec <-textConnection(model.string)

213 posterior <- jags.model(model.spec ,

214 data = list (’Y’=Y, ’R’=R, ’n_weeks’= n_weeks ,’weeklyPolicy ’=weeklyPolicy ,’state0 ’=state0 ,

215 ’gam0’=gam0 ,’initR0 ’=initR0), n.chains = nchain , n.adapt = nadapt)

216

217 adapt(posterior , nadapt ,end.adaptation=FALSE)

218 adapt(posterior , nadapt ,end.adaptation=FALSE)

219 adapt(posterior , nadapt ,end.adaptation=FALSE)

220 adapt(posterior , nadapt ,end.adaptation=FALSE)

221 adapt(posterior , nadapt ,end.adaptation=FALSE)

222 adapt(posterior , nadapt ,end.adaptation=FALSE)

223

224 update(posterior ,nburnin)

225 jags_sample <- jags.samples(posterior ,c(’theta’,’gamma’,’R0’,’beta’,’Y’,’R’,

226 ’lambdaY ’,’lambdaR ’,’k’), n.iter = M, thin = thn)

227

228 #clean up

229 remove(rec)

230 remove(weeklybb)

231 remove(Infected)

232 remove(Recovered)

233 remove(Death)

234 remove(BigPolicy)

235 remove(FR)

236 remove(n_days)

237 remove(i)

238 remove(weeklyInfected)
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239 remove(weeklyRecovered)

240 remove(model.spec)

241 remove(model.string)

242 remove(beta0)

243 remove(gamma0)

244 remove(gamma_var)

245 remove(gamma0_sd)

246 remove(gam0)

247 remove(R0)

248 remove(R0_sd)

249 remove(R0_var)

250 remove(initR0)

251 remove(state0)

252 remove(nadapt)

253 remove(nburnin)

254 remove(nchain)

255 remove(M)

256 remove(thn)

257 remove(lognorm_gamma)

258 remove(lognorm_R0)

259 remove(posterior)

260 remove(lognorm.parm)

261

262 #get some plots

263 #posterior true probabilities , instead of Y and R.

264 plot(as.mcmc.list(jags_sample$theta )[ ,(1:3)*(n_weeks )])
265 plot(as.mcmc.list(jags_sample$R0))
266 plot(as.mcmc.list(jags_sample$gamma ))
267 plot(as.mcmc.list(jags_sample$beta))
268 plot(as.mcmc.list(jags_sample$lambdaY ))
269 plot(as.mcmc.list(jags_sample$lambdaR ))
270 plot(as.mcmc.list(jags_sample$k))
271

272

273 #make array and get some statistics

274 R0_p <- unlist(as.mcmc.list(jags_sample$R0))
275 gamma_p <- unlist(as.mcmc.list(jags_sample$gamma ))
276 beta_p <- unlist(as.mcmc.list(jags_sample$beta))
277 lambdaY_p <- unlist(as.mcmc.list(jags_sample$lambdaY ))
278 lambdaR_p <- unlist(as.mcmc.list(jags_sample$lambdaR ))
279 k_p <- unlist(as.mcmc.list(jags_sample$k))
280

281 drawsize=length(R0_p)

282
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283 #stats on these posteriors (confidence intervals)

284 theta_p <- array(Reduce(rbind ,as.mcmc.list(jags_sample$theta)),
285 dim=c(drawsize ,n_weeks ,3))

286 theta_p_ci <- as.vector(apply(theta_p[,n_weeks ,],2,quantile ,

287 c(0.025 ,0.25 ,0.5 ,0.75 ,0.975)))

288 theta_p_mean <- apply(theta_p[,n_weeks ,],2,mean)

289

290 #theta mean across all simulation , for each time t: (beautiful)

291 theta_p_tS_mean <- apply(theta_p[,,1],2,mean)

292 theta_p_tS_SD <- mean(apply(theta_p[,,1],2,sd))

293

294

295 theta_p_tI_mean <- apply(theta_p[,,2],2,mean)

296 theta_p_tI_SD <- mean(apply(theta_p[,,2],2,sd))

297

298 theta_p_tR_mean <- apply(theta_p[,,3],2,mean)

299 theta_p_tR_SD <- mean(apply(theta_p[,,3],2,sd))

300

301 #Mean values at each time t for all the posterior draws

302 plot(datesweek [1:n_weeks],theta_p_tI_mean ,type="l",xlab="Time",

303 ylab="Proportion of cases",col="red")

304 lines(datesweek [1:n_weeks],theta_p_tR_mean ,col="blue")

305

306

307 #plot(datesweek [1:n_weeks],theta_p_tR_mean ,type="l",xlab="Time",

308 ylab="Proportion of Removal",col="blue")

309

310

311 #We can compare how the obtained Thetas fare against the actual measured data

312 plot(datesweek [2:n_weeks],theta_p_tR_mean [1:40] , type="l",xlab="Time",

313 ylab="Proportion of Removal",col="blue",ylim = c(0, max(R)))

314 lines(datesweek [2:n_weeks],R)

315

316 plot(datesweek [2:n_weeks],theta_p_tI_mean [1:40] , type="l",xlab="Time",

317 ylab="Proportion of Infections",col="red",ylim = c(0, max(Y)))

318 lines(datesweek [2:n_weeks],Y)

319

320

321 #Addional statistics

322 R0_p_mean <- mean(R0_p)

323 R0_p_ci <- quantile(R0_p,c(0.025 ,0.25 ,0.5 ,0.75 ,0.975))

324 R0_p_sd<-sd(R0_p)

325 gamma_p_mean <- mean(gamma_p)

326 gamma_p_ci <- quantile(gamma_p,c(0.025 ,0.25 ,0.5 ,0.75 ,0.975))
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327 gamma_p_sd<-sd(gamma_p)

328 beta_p_mean <- mean(beta_p)

329 beta_p_ci <- quantile(beta_p,c(0.025 ,0.25 ,0.5 ,0.75 ,0.975))

330 beta_p_sd<-sd(beta_p)

331

332 #Addtional results for appendix.

333 lambdaY_p_mean <- mean(lambdaY_p)

334 lambdaY_p_ci <- quantile(lambdaY_p,c(0.025 ,0.25 ,0.5 ,0.75 ,0.975))

335 lambdaY_p_sd<- sd(lambdaY_p)

336

337 lambdaR_p_mean <- mean(lambdaR_p)

338 lambdaR_p_ci <- quantile(lambdaR_p,c(0.025 ,0.25 ,0.5 ,0.75 ,0.975))

339 lambdaR_p_sd<- sd(lambdaR_p)

340

341 k_p_mean <- mean(k_p)

342 k_p_ci <- quantile(k_p,c(0.025 ,0.25 ,0.5 ,0.75 ,0.975))

343 k_p_sd <- sd(k_p)

344

345 #FORECAST#

346 theta_f <- array(0,dim=c(drawsize ,(T_fin -n_weeks ),3))

347 Y_f <- matrix(NA,nrow=drawsize ,ncol=(T_fin -n_weeks ))

348 R_f <- matrix(NA,nrow=drawsize ,ncol=(T_fin -n_weeks ))

349 weeklyPredNoPolicy <-rep(1,T_fin -n_weeks)

350 eps <-1e-10

351

352 percentagediff <-(11392352 -4276086)/N

353 single <-(-percentagediff)/9

354 #nine periods between 14th April and 9th June ,

355 then we interpolate vaccine roll -out for future period

356

357 #Vax Mod Prediction

358 VaccinesModPost <-rep(0 ,15)

359 VaccinesModPost [1] <-single

360 for (i in 2:15)

361 {

362 VaccinesModPost[i]<- VaccinesModPost[i-1]+ single

363 }

364 #continue lockdown for three first periods

365 PolCont <-rep(weeklyPolicy[n_weeks -1] ,15) of prediction sample (-+ 28th April)

366 StrictPol <-PolCont

367 NoPol <-rep (0.8 ,15)

368 NoPol [1:3] <-weeklyPolicy[n_weeks -1]

369

370 for (i in 1:12)
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371 {

372 PolCont[i+3] <-exp (0.04*i)-1+ weeklyPolicy[n_weeks -1]

373 }

374 plot(PolCont)

375 #Integrate vaccine effects in all Policy scenarios

376 for (i in 1:15)

377 {

378 PolCont[i]<-PolCont[i]+ VaccinesModPost[i]

379 StrictPol[i]<-StrictPol[i]+ VaccinesModPost[i]

380 NoPol[i]<-NoPol[i]+ VaccinesModPost[i]

381 }

382

383 plot(datesweek [(n_weeks +1):T_fin],PolCont ,xlab="Time",

384 ylab="Policy Intensity",col="red",type="l")

385

386 plot(datesweek [(n_weeks +1):T_fin],StrictPol ,xlab="Time",

387 ylab="Policy Intensity",col="red",type="l")

388

389 plot(datesweek [(n_weeks +1):T_fin],NoPol ,xlab="Time",

390 ylab="Policy Intensity",col="red",type="l")

391

392

393

394 for(i in 1: drawsize ){

395 thetalt1 <- theta_p[i,(n_weeks ),1]

396 thetalt2 <- theta_p[i,(n_weeks ),2]

397 thetalt3 <- theta_p[i,(n_weeks ),3]

398 beta_i <- c(beta_p)[i]

399 gamma_i <- c(gamma_p)[i]

400 k_i <- c(k_p)[i]

401 lambdaY_i <- c(lambdaY_p)[i]

402 lambdaR_i <- c(lambdaR_p)[i]

403 if(beta_i<0 |gamma_i<0 |thetalt1 <0 |thetalt2 <0 |thetalt3 <0) next

404

405 for(t in 1:(T_fin -n_weeks )){

406 KtS <-NULL

407 KtI <-NULL

408 KtR <-NULL

409 alpha_f<-NULL

410 Pol <-PolCont[t]

411

412 KtS[1] <- -beta_i*Pol*thetalt1*thetalt2

413 KtI[1] <- beta_i*Pol*thetalt1*thetalt2 - gamma_i*thetalt2

414 KtR[1] <- gamma_i*thetalt2
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415

416 KtS [2] <- -beta_i*Pol*(thetalt1 +0.5*KtS [1])*(thetalt2 +0.5*KtI [1])

417 KtI [2] <- beta_i*Pol*(thetalt1 +0.5*KtS [1])*(thetalt2 +0.5*KtI [1])

418 -gamma_i*(thetalt2 +0.5*KtI [1])

419 KtR [2] <- gamma_i*(thetalt2 +0.5*KtI [1])

420

421 KtS [3] <- -beta_i*Pol*(thetalt1 +0.5*KtS [2])*(thetalt2 +0.5*KtI [2])

422 KtI [3] <- beta_i*Pol*(thetalt1 +0.5*KtS [2])*(thetalt2 +0.5*KtI [2])

423 -gamma_i*(thetalt2 +0.5*KtI [2])

424 KtR[3] <- gamma_i*(thetalt2 +0.5*KtI [2])

425

426 KtS[4] <- -beta_i*Pol*(thetalt1+KtS [3])*(thetalt2+KtI [3])

427 KtI[4] <- beta_i*Pol*(thetalt1+KtS [3])*(thetalt2+KtI [3])

428 -gamma_i*(thetalt2+KtI [3])

429 KtR[4] <- gamma_i*(thetalt2+KtI [3])

430

431 alpha_f[1] <- thetalt1 +(KtS [1]+2*KtS [2]+2*KtS [3]+ KtS [4])/6

432 alpha_f[2] <- thetalt2 +(KtI [1]+2*KtI [2]+2*KtI [3]+ KtI [4])/6

433 alpha_f[3] <- thetalt3 +(KtR [1]+2*KtR [2]+2*KtR [3]+ KtR [4])/6

434

435 alpha_f[2] <-pmax(alpha_f[2],eps)

436

437 thetalt_tmp <- rdirichlet (1,k_i*c(alpha_f))

438 thetalt1 <-theta_f[i,t,1] <- thetalt_tmp[1]

439 thetalt2 <-theta_f[i,t,2] <- thetalt_tmp[2]

440 thetalt3 <-theta_f[i,t,3] <- thetalt_tmp[3]

441

442 Y_f[i,t] <- rbeta(1,lambdaY_i*thetalt2 ,lambdaY_i*(1-thetalt2 ))

443 R_f[i,t] <- rbeta(1,lambdaR_i*thetalt3 ,lambdaR_i*(1-thetalt3 ))

444 }

445 }

446

447 remove(thetalt1)

448 remove(thetalt2)

449 remove(thetalt3)

450 remove(beta_i)

451 remove(gamma_i)

452 remove(i)

453 remove(k_i)

454 remove(lambdaY_i)

455 remove(lambdaR_i)

456

457

458 Y_fmean <- c(colMeans(Y_f))
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459 R_fmean <- c(colMeans(R_f))

460

461 Y_fCI95 <- data.frame(t(apply(Y_f,2,quantile ,probs=c(0.025 ,0.975))))

462 Y_fCI50 <- data.frame(t(apply(Y_f,2,quantile ,probs=c(0.25 ,0.75))))

463

464 R_fCI95 <- data.frame(t(apply(R_f,2,quantile ,probs=c(0.025 ,0.975))))

465 R_fCI50 <- data.frame(t(apply(R_f,2,quantile ,probs=c(0.25 ,0.75))))

466

467

468

469 plot(datesweek [(n_weeks +1):T_fin],Y_fmean*N,type="l",col="black",lwd=1,

470 ylim = c(min(Y_fCI95 [,1])*N, max(Y_fCI95 [,2])*N),xlab="Time",

471 ylab="New weekly probable cases")

472

473 #plot(datesweek [(n_weeks +1):T_fin],Y_fmean*N,type="l",col="black",lwd=1,

474 ylim = c(min(Y_fmean*N), max(Y_fmean)*N),xlab="Time",

475 ylab="New weekly probable cases")

476

477 polygon(c(datesweek [(n_weeks +1):T_fin],rev(datesweek [(n_weeks +1):T_fin])),

478 c(Y_fCI95 [,1]*N,rev(Y_fCI95 [,2]*N)),col = rgb(0.5, 0, 0,0.2), border = NA)

479

480 polygon(c(datesweek [(n_weeks +1):T_fin],rev(datesweek [(n_weeks +1):T_fin])),

481 c(Y_fCI50 [,1]*N,rev(Y_fCI50 [,2]*N)),col = rgb(0.1, 0.8, 0.2,0.2) , border = NA)

482

483

484

485 thetaI_fmean <- c(colMeans(theta_f[,,2]))

486 #thetaI_fCI <- data.frame(t(apply(theta_p[,-1,2],2,quantile ,probs=c(0.025 ,0.975) ,

487 na.rm=T)))

488 #thetaR_fmean <- c(colMeans(theta_f[,,3]))

489 #thetaS_fmean <- c(colMeans(theta_f[,,1]))

490

491 #acquisition of key statistics (turning points , first derivatives) put mean from simulations in a decently sized vector init.

492 thetaS_mean <- c(colMeans(theta_p[,-1,1],na.rm = T),colMeans(theta_f[,,1],

493 na.rm = T))

494 thetaI_mean <- c(colMeans(theta_p[,-1,2],na.rm = T),colMeans(theta_f[,,2],

495 na.rm = T))

496 thetaR_mean <- c(colMeans(theta_p[,-1,3],na.rm = T),colMeans(theta_f[,,3],

497 na.rm = T))

498

499 plot(datesweek [1:T_fin],thetaI_mean [1:T_fin+1],type="l",xlab="Time",

500 ylab="Proportion of cases",col="red",ylim = c(0, 0.02))

501

502 #theta_p_tR_mean <- apply(theta_p[,,3],2,mean)
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503 #plot(datesweek [1:n_weeks],theta_p_tR_mean ,type="l",xlab="Time",

504 ylab="Proportion of Removal",col="blue")

505

506 lines(datesweek [1:T_fin],thetaR_mean [1:T_fin+1],col="blue")

507 abline(v=as.Date("2021 -04 -01"))
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