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Abstract

In many classification problems we are not only interested in the class to which an event
belongs, but also in the probability that the event belongs to the class. This paper stud-
ies whether logistic regression can produce calibrated class probability estimates in a high-
dimensional setup, both in the presence and absence of (rowwise or cellwise) contamination.
Using simulated data as well as real data, we compare multiple robust and non-robust logistic
regression estimators and investigate whether they can produce calibrated forecasts. Concur-
rently, we investigate whether there is a preferable variable selection method, as well as how
logistic regression performs compared to two popular machine learning classifiers. We find
that, in the absence of contamination, logistic regression can produce calibrated forecasts in
high dimensions and outperform the machine learning methods, as long as variable selection
is applied. However, when contamination is introduced, the non-robust methods break as
expected. We show that the robust and regularised alternatives currently available in the lit-
erature have unexpected behaviours, and provide simulation evidence explaining the behaviour
of one of them.
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1 Introduction

Prediction of binary outcomes is a commonly recurring problem in a plethora of disciplines

in inter alia the biomedical, economic and natural sciences. In many instances we are not

only interested in the class to which an event belongs, but also in the probability that the

event belongs to the class. In other words, we want to get an idea of how certain we are

about our predictions; if we think that an event will happen with probability 99%, then we

are much more certain about our prediction than if we assign a probability of 51%. As our

decision making may depend on how confident we are, being able to accurately predict these

probabilities is of paramount importance.

Logistic regression is among the most frequently used models to compute such proba-

bilities, if not the most used model (Hastie et al., 2009). In logistic regression, we assume

response yi follows a Bernoulli distribution with probability

P(yi = 1|Xi = x) ≡ σ(x′β) = (1 + e−x
′β)−1,

where x is a p-dimensional vector of predictors and β is the corresponding vector of regression

coefficients. β is then estimated by minimising the negative log-likelihood

`(β) =
n∑
i=1

(
−yi(X ′iβ) + log (1 + eX

′
iβ)
)
. (1)

By well-established results in classical statistics, it holds under suitable distributional as-

sumptions that for fixed p and sample size n→∞ the resulting maximum likelihood estimate

β̂ is asymptotically normal with mean β and variance 1
n
I−1(β), where I is the information

matrix. Further, the maximum likelihood estimator is efficient, meaning it is optimal for our

probabilistic forecasting purposes; we can obtain approximately unbiased class probabilities

with the smallest variance.

Two key assumptions underlying the preceding results are that Equation (1) is the correct

specification of the log-likelihood and that we have a large sample size n, which is much larger

than the dimension of the problem p. The former condition pertains to potential model

misspecification, which is an issue with any statistical model. The latter point, however,

concerns the data that we have available and is an issue which has risen to prominence with

the emergence of large, modern datasets. When the n � p regime is replaced with one

where p/n does not tend to zero as n→∞, classical results regarding the behaviour of the

maximum likelihood estimator fail (Sur and Candès, 2019).

The setting where the dimensionality is so large that we have p > n has received much

attention in the literature, see e.g. Bühlmann and van de Geer (2011) for an extensive
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overview. In this high-dimensional setting, the maximum likelihood estimate β̂ is undefined.

To resolve this, one generally assumes that among the entire set of p predictors only a

subset only belongs in the model, in which case the goal becomes to select the informative

predictors as well as accurately estimate the associated parameters. In other words, the

coefficient vector β is assumed to be sparse according to some structure. To obtain accurate

estimates of the class probabilities P(yi = 1|Xi = x) we must uncover that structure.

In this research, we are interested in our ability to accurately estimate class probabili-

ties using logistic regression when p/n is larger than classically assumed and in the high-

dimensional setting. We investigate this problem in the setting where all data are generated

by the same model distribution, as well as in the setting where the data is contaminated with

outliers. In doing so, we attempt to answer the following research question and subquestions:

Can logistic regression produce accurate class probability estimates when data is high-

dimensional?

• How does this result change when we contaminate the data with extreme predictor

values and with misclassified observations?

• Is there a variable selection method that is preferable for probabilistic forecasting?

• How does the performance of logistic regression compare to that of popular machine

learning classifiers?

To investigate these questions, we employ a simulation study and apply our results to real-life

data.

The rest of this paper is structured as follows. Section 2 provides an overview of sparse

logistic regression theory and prior work on robust regularised regression. Subsequently,

Section 3 introduces the methodology used in the simulation study of Section 4 and real

data analyses of Section 5. In Section 6 we discuss the results and their limitations, and

further provide some suggestions for future research. Section 7 then concludes.
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2 Theoretical Framework

In this section, we first formalise the notion of sparsity introduced in Section 1 and discuss

sparse logistic regression. Subsequently, we provide an overview of prior work on robust

regression with sparsity. Our discussion primarily focusses on the rowwise contamination

paradigm, as to the best of our knowledge no work has been published on logistic regression

methods that are robust against cellwise outliers. Instead, we provide an overview of de-

velopments pertaining to cellwise robust methods and how they may be applied to (sparse)

logistic regression.

2.1 Review of Sparse Logistic Regression

The following is an overview of developments in sparse regression and how they may be used

in logistic regression. We only discuss the lasso, the elastic net and best subset selection, but

several other (non-convex) variable selection methods have been proposed. See for example

Tibshirani (2011) for a summary of other sparse regression techniques and other extensions

of the lasso.

2.1.1 Sparsity and the Lasso

In the literature, sparsity is generally understood as parameter vector β consisting of some

set βA of non-zero coefficients and a remainder βAc of all-zero coefficients. A is called the

active set and recovery of the active set is referred to as consistency in variable selection (e.g.

Zou, 2006) or support recovery (e.g. Salehi et al., 2019). Clearly, if we knew A in advance

and the cardinality of A is less than n, the sparse regression problem reduces to an ordinary

regression problem. This hypothetical ideal leads to the notion of what is called an oracle in

the literature (Fan and Li, 2001; Fan and Peng, 2004). The oracle estimates βA as accurately

as possible, if A is known in advance. In our logistic regression setting, the oracle is given

by the maximum likelihood estimator using only the variables in A.

In practice, one does not know A and needs a selection procedure to choose the predictors

to include in the model. One commonly used selection procedure, the Least Absolute Shrink-

age and Selection Operator, abbreviated to lasso, was developed by Tibshirani (1996). The

lasso achieves variable selection by penalising the l1-norm of β, which is known to produce

sparse solutions (Hastie et al., 2009). Though the author primarily considered the linear

regression problem, the lasso is also broadly used for logistic regression. To this end, we

extend the objective function of Equation (1) with the lasso penalty to form a penalised

log-likelihood
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`lasso(β) = `(β) + nλ

p∑
j=1

|βj|, (2)

where `(β) is the negative log-likelihood of Equation (1), |βj| denotes the absolute value of

the j -th element of β, and λ is a tuning parameter to be chosen by cross-validation (CV)

or an information criterion (e.g. Zou, 2018). The objective in Equation (2) is convex and

there exist fast algorithms to minimise it. Further, under suitable regularity conditions on

the design matrix and the size of the non-zero coefficients, lasso recovers the support, which

helps explain the algorithm’s popularity. See Bühlmann and van de Geer (2011) for an

elaborate explanation of the conditions under which consistency in variable selection holds.

A drawback of the lasso is that it produces biased parameter estimates by design, which

may in turn affect model forecasts. This is because, even if lasso achieves support recovery,

the l1-norm penalty shrinks all p components of estimate β̂lasso, including our estimates

of coefficients βA. Since our class probability forecasts are given by σ(Xβ̂lasso), the lasso

produces biased forecasts.

2.1.2 The Adaptive Lasso

In addition to probabilistic forecasting, the bias of lasso severely complicates its use in

statistical inference. Zou (2006) showed that although the lasso estimator is consistent in

variable selection, it is not consistent in estimation of coefficients βA. For inference, one

requires an estimator that is consistent in both senses. An estimator that has this feature

is said to possess the oracle property. Zou (2006) proposed the adaptive lasso (Adalasso)

estimator. Adalasso replaces the lasso penalty in Equation (2) by a reweighted version,

which begets a log-likelihood of the form

`adalasso(β) = `(β) + nλ

p∑
j=1

wj|βj|. (3)

Here, `(β) is again the negative log-likelihood of Equation (1). Zou (2006) proved that for

suitable wj, the adalasso has the oracle property asymptotically (n → ∞). The author

suggested weights of the form wj = |β̂init,j|−1, where β̂init,j is an initial estimate of βj that

is
√
n-consistent in variable selection. The idea of this choice of weights is as follows. If we

find near-zero initial estimates for some coefficients, then we suspect that those coefficients

are true zeros and we want to fix them at zero. By using the reciprocal of a near-zero initial

estimate as a penalty factor, we assign large penalties to those coefficients, inducing adalasso

to shrink the coefficients towards zero much more quickly than the lasso does. Similarly, if
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we find larger initial estimates for the some parameters, we suspect they are part of βA and

belong in the model. We therefore do not wish to penalise them as heavily and assign the

coefficients a smaller penalty. The effect of shrinkage is less pronounced for these parameters

as a result. In this way, we may be able to eliminate the irrelevant coefficients before the

penalty meaningfully shrinks the relevant coefficients (Hastie et al., 2015).

Zou (2006) originally proposed to use the maximum likelihood estimator to compute the

wj for the generalised linear model, but when p > n the estimator is undefined. Huang

et al. (2008) instead suggest using the lasso estimator which minimises Equation (2), setting

βj = 0 if βlasso,j = 0. The authors call this approach the iterated lasso. The iterated lasso is

also advocated by Bühlmann and van de Geer (2011).

2.1.3 The Elastic Net

The adalasso was introduced as an alternative to the lasso that possesses the oracle property.

However, the lasso has another prominent shortcoming, whereby its coefficient shrinkage

paths are unstable when variables are highly correlated. Zou and Hastie (2005) proposed an

extension of the lasso which replaces the penalty in Equation (2) by a convex combination

of the l1 and (squared) l2 norms. For logistic regression, the objective function is then given

by

`enet(β) = `(β) + nλ

(
α

p∑
j=1

|βj|+
(1− α)

2

p∑
j=1

β2
j

)
, 0 ≤ α ≤ 1, (4)

which is still convex. Zou and Hastie (2005) called this the elastic net (EN). Through the

incorporation of the l2-norm used in ridge regression, the formulation in Equation (4) encour-

ages sharing of coefficients among highly correlated variables. This stabilises the coefficient

paths and further avoids lasso’s tendency to arbitrarily set one of multiple correlated vari-

ables to zero, while keeping another in the model. See Hastie et al. (2015) for an explanation

of these phenomena.

Note that the EN is essentially a generalisation of the unweighted lasso penalty shown

in Equation (2), hence logistic regression with the EN does not exhibit the oracle property.

Zou and Zhang (2009) introduced a natural extension of the EN that addresses this point

analogously to Adalasso, which they suitably named the adaptive elastic net (AdaEN). The

AdaEN makes a simple adjustment to Equation (4) in which each |βj| (but not the β2
j )

is multiplied by a weighting factor wj as in Equation (3). Weights are again chosen as

wj = |β̂init,j|−1. In the high-dimensional setting the EN is used as initial estimate. Zou and

Zhang (2009) show that adaEN asymptotically possesses the oracle property under weak

regularity conditions.
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2.1.4 New Developments in Best Subset Selection

The lasso is sometimes understood as a convex relaxation of best subset selection (Hastie

et al., 2017), which aims to find the subset of k regressors that best fits the data, e.g. in the

sense of smallest loss. In the context of logistic regression, the best subset selection (BSS)

operator minimises the log-likelihood with ‘l0’ penalty

`S∗(β) = `(β) + nλ

p∑
j=1

1{βj 6= 0}, (5)

where 1{·} is the indicator function, which equals unity when the argument is true and zero

otherwise. This approach directly controls the sparsity of the model by forcing a fit that only

uses k predictors and holds the benefit of not shrinking the non-zero parameters, possibly

resolving issues caused by the bias that the lasso penalty introduces.

Until recently, the practicality of best subset selection was severely inhibited by the fact

that minimising Equation (5) is NP-hard. For problems with p > 30, best subset selection

may entail unacceptably long computation times. New work in optimisation has resolved

this drawback to a great extent. An important result in this regard was derived by Bertsimas

et al. (2016), who show that minimising Equation (5) may be tackled as a mixed integer

programming problem. This means that advancements in mixed integer optimisation can

be used to fit best subset selection, making the estimator tractable in dimensions previously

considered infeasible. Research interest in the mixed integer optimisation approach has

grown quickly as a result, see for example Dedieu et al. (2020) and the references therein.

An extensive comparison of the predictive performance of best subset selection and the

lasso in linear regression is made in Hastie et al. (2017). The authors argue that the lasso

cannot simply be understood as a heuristic for best subset selection and that which procedure

is superior depends on the data. They compare simulations where the signal-to-noise ratio

(indirectly given by the R2 in linear regression) is high or low. In the high signal-to-noise

regime, best subset selection outperforms lasso, whereas in the more noisy regime best subset

selection overfits and lasso has greater predictive accuracy1. This behaviour leads Hazimeh

and Mazumder (2019) to consider an extended version of the l0-regularised estimator in

Equation (5), which uses a continuous shrinkage penalty to prevent overfitting. Dedieu et al.

(2020) subsequently introduce an equivalent estimator for the logistic regression case:

`S∗p (β) = `(β) + n
(
λ0‖β‖0 + λq‖β‖qq

)
, q ∈ {1, 2}. (6)

1Hastie et al. (2017) actually show that their version of the relaxed lasso (comparable to Adalasso) does
best overall, but we do not discuss that estimator here.
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2.2 (Rowwise) Robust Regularised Regression

As in the low-dimensional setting, the regression objective functions introduced in Section 2.1

may break when the data are contaminated with outlying observations. To develop estima-

tors that are applicable when p > n and are robust to such rowwise outliers, a new branch

of literature has emerged. In the following, we provide an overview of work on robust regu-

larised regression and discuss how this paper contributes to the literature.

2.2.1 The Linear Regression Case

Most work on robust regularised regression so far focusses on the linear regression case, see

Section 5.10 of Maronna et al. (2019). Early work on robust sparse linear regression includes

that of Khan et al. (2007), who develop a robust version of least angle regression (Efron

et al., 2004) for variable selection. Subsequent proposals replaced the quadratic loss of lasso

least squares by other convex functions (Wang et al., 2007; Li et al., 2011), but the resulting

estimators have unbounded influence functions (Maronna et al., 2019). Alfons et al. (2013)

take a different approach. Instead of ‘robustifying’ a regularised estimator, they start from

a robust regression estimator and extend it with a regularisation penalty. Specifically, the

authors consider the least trimmed squares (LTS) estimator of Rousseeuw (1984) with a

lasso penalty. Being an extension of LTS, this method is inefficient at the model distribution

(i.e. normal errors), however.

Research pertaining to robust regularised linear regression is ongoing. See Gijbels and

Vrinssen (2015), Smucler and Yohai (2017), Kong et al. (2018) and Amato et al. (2020) and

their references for some recent developments. However, these works have limited relevance

for this research, e.g. Gijbels and Vrinssen (2015) and Smucler and Yohai (2017) use the

MM-estimator of Yohai (1987), which is not applicable in logistic regression. We therefore

do not elaborate further on these papers.

2.2.2 The Logistic Regression Case

Research on robust regularised logistic regression is novel. An early study that addresses ro-

bust maximum likelihood methods with regularisation in a high-dimensional context is that

of Neykov et al. (2014), but they only consider multiple linear regression and Poisson regres-

sion. Two proposals explicitly addressing the case of logistic regression are made in Kurnaz

et al. (2018b) and Avella-Medina and Ronchetti (2017). In this section we briefly discuss

how their estimators fit in the robust logistic regression literature, but full implementation

details are deferred to Section 3.
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Kurnaz et al. (2018b) essentially extend the work of Alfons et al. (2013) on sparse least

trimmed squares in two ways. First, the authors generalise the use of the lasso penalty to the

EN. Second, and more importantly for this paper, they consider logistic regression as well as

linear regression. Starting from the estimator proposed by Bianco and Yohai (1996), which

was subsequently improved by Croux and Haesbroeck (2003), the authors develop a robust

and regularised logistic regression estimator which is fitted by minimising a robust deviance

measure over a trimmed subset of the training data. Analogous to Alfons et al. (2013)’s

treatment of sparse LTS for the linear regression case, a reweighting step is used to improve

the estimator’s efficiency. The authors provide an approximating algorithm to construct the

optimal subset of training data, which is outlined in Section 3. In a simulation study where

5% of training examples are contaminated, they show that the predictive performance of their

estimator is superior to that of classical logistic regression with elastic net regularisation.

When the data are not contaminated, the authors show that performance of the classical

and the reweighted robust estimators is comparable, indicating that the trimming procedure

does not lead to a large loss of efficiency so long as the reweighting step is used.

Avella-Medina and Ronchetti (2017) take a different approach, building on Cantoni and

Ronchetti (2001)’s robust quasi-likelihood estimator for the generalised linear model. The

authors use the same quasi-likelihood criterion as Cantoni and Ronchetti (2001), but penalise

it with a class of suitable functions to create an estimator that asymptotically possesses

oracle properties as well as being robust against leverage points and outliers in the response.

This class of penalty functions includes the lasso penalty, but also non-convex penalties

such as that proposed in Fan and Li (2001). Throughout their paper, they focus on the

adaptive lasso penalty, with the robust lasso estimator being used as an initial estimate.

The authors develop a coordinate descent algorithm to compute the solution path of the

initial estimate. In a simulation study that focusses on Poisson regression, the authors show

that their estimator outperforms its classical counterpart in all contamination scenarios,

though it becomes unstable when contamination exceeds 5% of the training examples. This

reflects the fact that the robustness of the quasi-likelihood estimator is only local, in the

neighbourhood of the model distribution.

Other work pertaining to robust regularised logistic regression is that of Sun et al. (2020).

The authors connect recent theoretical results due to Ali and Tibshirani (2019) regarding the

existence of the lasso-penalised maximum likelihood estimator to the notion of a breakdown

point for logistic regression, arguing that earlier work on this topic (specifically that of Croux

et al., 2002) does not extend to the case of lasso regularisation. We do not elaborate further

on this discussion here since it has no implications for the current research. Sun et al. (2020)

do this in the context of a lasso-penalised trimmed maximum likelihood estimator for logistic
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regression, which has an objective function is given by

`MTL
lasso (β) =

h∑
l=1

dl(β) + hλ

p∑
j=1

|βj|, (7)

where d1(β) ≤ d2(β) ≤ · · · ≤ dh(β) are the h smallest ordered deviances. The authors then

derive the breakdown point of their estimator, which is defined in accordance with the results

of Ali and Tibshirani (2019) and is increasing in the proportion of trimmed observations.

An important drawback of the estimator proposed by Sun et al. (2020) is that it relies

on ordinary likelihood which does not downweight outliers, such that it has an unbounded

influence function. We do not include this estimator in our study, because it is essentially a

less robust reformulation of the approach taken by Kurnaz et al. (2018b).

2.3 Cellwise Contamination and Robustness

An assumption made in the literature on robustness discussed thus far is that outliers are

as specified by the Tukey-Huber contamination model (Maronna et al., 2019); the data is

a mixture of ‘good’ observations generated from the model distribution and outlying obser-

vations which are generated from an arbitrary contamination distribution. Archetypically,

the model characterises observations as being either completely outlying or not outlying at

all. This abstraction may be unreasonable in the context of modern datasets, which tend

to have many features and are often created by combining multiple data sources, not all of

which may be reliable.

2.3.1 Cellwise Contamination

For the reasons mentioned above, it is likely that modern datasets have several observations

that contain mostly ‘good’ cells, but also some outlying cells. This may not be because the

observation as a whole does not match up with the rest of the data, but simply because

the observations combine information from many different sources of varying quality. For

example, in biomedical settings, one might imagine that an observation represents measure-

ments of thousands of sensors or markers, each of which is imperfect and may make faulty

measurements at random. Then, even if sensors have a small probability of making faulty

measurements, a large proportion of observations will qualify as outliers because of the sheer

number of variables2. This proportion may be greater than the breakdown point of even

2If cells have a probability ε of being outliers, a proportion 1− (1− ε)p of observations will be outlying
in expectation.
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robust estimators, which is bound by 50% under the Tukey-Huber contamination model.

New methods are thus needed to deal with cellwise outliers.

2.3.2 Cellwise Robust Two-Step Methods

The concept of cellwise outliers is formalised in the cellwise contamination model due

to Alqallaf et al. (2009). However, because of the novelty of the cellwise contamination

paradigm, research on estimators robust against cellwise outliers is nascent. In particular,

estimators should be robust against cellwise as well as rowwise outliers, which has proven

to be challenging (Öllerer et al., 2016). To overcome these difficulties, some authors sug-

gest handling cellwise and rowwise outliers as separate issues, which gives rise to two-step

procedures that address the two sequentially (Leung et al., 2016).

One such two-step procedure for handling the case where there are both cellwise and

rowwise outliers was suggested by Rousseeuw and Van Den Bossche (2018). The authors

introduce the DetectDeviatingCells (DDC) algorithm, which uses pairwise regressions among

the predictors to come up with an expected value for each cell in the data matrix. When a

cell deviates too much from its expected value, it is flagged as an outlier and a ‘corrected’

value must be imputed. Pairwise regressions are used because they avoid problems caused

by the dimensionality of the dataset (which inspired the cellwise contamination paradigm),

while simultaneously preserving part of the correlations among variables to more accurately

determine what exactly constitutes an outlier. The theoretical justification of this first step

is given by Rousseeuw and Van Den Bossche (2018). After outlying cells have been corrected,

the data should satisfy the rowwise contamination model. The second step therefore entails

using existing robust regression methods on the corrected dataset.

2.3.3 Rowwise and Cellwise Robust Regression

An argument against two-step procedures such as that of Rousseeuw and Van Den Bossche

(2018) is made by Filzmoser et al. (2020). They argue that whether a cell is outlying is

determined by the model used. In that case, the pre-processing of data, as in two-step

procedures, is likely to be inconsistent with the model. Instead, they advocate one-step

procedures which tackle cellwise and rowwise in a single, model-consistent way. To this end,

the authors propose the cellwise robust M-regression estimator for the low-dimensional (n�
p) linear regression case, which generalises the MM-estimator of Yohai (1987) to the setting

with cellwise and rowwise outliers. They develop an iteratively reweighted least squares

(IRLS) algorithm which detects and imputes outlying cells as part of the fitting process.

To detect outlying cells, they use the Sparse Directions of Maximal Outlyingness algorithm
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of Debruyne et al. (2019). Starting from a (rowwise) robust regression estimator such as

the MM-estimator, the IRLS algorithm iterates between detecting and imputing outlying

cells of ‘mostly good’ observations, downweighting outlying observations, and updating the

regression parameter estimates. This procedure is repeated until the regression estimates

converge.

The estimator of Filzmoser et al. (2020) could theoretically be extended to the high-

dimensional and potentially even logistic regression setting, but developing and implement-

ing such methods is beyond the scope of this paper. Instead, we consider a more broadly

applicable cellwise and rowwise robust regression procedure that was suggested by Machkour

et al. (2020). The authors develop an adaptive lasso estimator for high-dimensional linear

regression which robustifies the MM-estimator against cellwise outliers by making the adap-

tive weights a function of predictor outlyingness. In this way, the adaptive weights wj seen

in Equation (3) are replaced by weights of the form wj = |zj × β̂init,j|−1, where zj measures

the outlyingness of predictor j. This approach is conceptually different from that of Filz-

moser et al. (2020). Whereas the procedure of Filzmoser et al. (2020) explicitly addresses

the outlyingness of each cell and corrects individual cells where necessary, Machkour et al.

(2020) effectively treat cellwise outlyingness as a characteristic of the entire predictor and

downweights predictors accordingly. This is because the sole goal of the former authors is

to robustify the MM-estimator against cellwise contamination, whereas the latter seek to

simultaneously robustify the variable selection of lasso and extend the MM-estimator to the

case of cellwise contamination. Machkour et al. (2020) propose measuring predictor outly-

ingness using the Adjusted Stahel-Donoho Outlyingness of Van Aelst et al. (2011). They

first create an outlyingness matrix, which measures the outlyingness ri,j of each cell Xi,j as a

weighted average of the outlyingness of observation i and predictor j. For a given predictor

j, outlyingness measure zj is then computed by aggregating the ri,j across all i.

An advantage of the approach of Machkour et al. (2020) is that the predictor weights

used to robustify the lasso regression estimator are not dependent on the choice of regression

estimator. The authors apply their methodology to the MM-estimator because of its theo-

retical and empirical performance in low and high dimensions (Smucler and Yohai, 2017),

but the computation of the adaptive weights is not intrinsically linked to the estimator. Im-

peratively, the procedure is not even bound to the linear regression setting and can be used

in any estimator that is regularised using the adaptive lasso or elastic net. For this reason,

we include the procedure in our analysis.

14



2.4 Contribution of this Research

Logistic regression often serves as a benchmark against which classifiers are compared (Sur

and Candès, 2019). Yet, Sections 2.2 and 2.3 indicate that literature on regularised robust

regression is nascent, especially outside of the linear setting. Avella-Medina and Ronchetti

(2017) and Kurnaz et al. (2018b) develop estimators that exist in high dimensions and have

bounded influence functions. The authors compare the performance of their estimators to

their classical counterparts, but not to each other’s estimators. Further, their simulations

studies are completely focussed on out-of-sample classification accuracy and consistency in

variable selection and do not address probabilistic forecasting performance. To the best

of our knowledge, the literature generally provides no evidence on the impact of variable

selection and shrinkage on the forecasting performance of logistic regression, either in the

absence or in the presence of contamination. Similarly, while Hastie et al. (2017) compare

the predictive accuracy of least squares linear regression with best subset selection and lasso,

there are, to the best of our knowledge, no comparable studies investigating which feature

selection method is preferable for probabilistic forecasting.

This study contributes to the literature by answering the questions posited above, which

are especially interesting in the context of contaminated and high-dimensional data. She

and Owen (2011) and Donoho and Montanari (2016) investigate the connection between M-

estimators and penalised least squares estimators in the context of linear regression. They

show that if the objective functions are suitably formulated, the two approaches yield the

same solution. Avella-Medina and Ronchetti (2015) note that this finding has important

implications, as it means that developments in sparse modelling regarding non-asymptotic

theory and optimisation algorithms might be directly applicable to robust statistics. Per-

taining to the study at hand, it is worthwhile to investigate whether connections between

sparse regression and robust regression methods are reflected in the methods’ forecasting

performance when the data are contaminated.
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3 Methodology

In this section we provide implementation details of the methods used in the simulation

and real data studies. We discuss the regularised and robust logistic regression (RRLR)

estimators introduced in the previous section in detail and contrast these with the non-

robust benchmark estimators. Further, we give brief overviews of the machine learning

methods that are included in the study for comparison.

3.1 Robust and Sparse Logistic Regression

As outlined in Section 2.2, Kurnaz et al. (2018b) and Avella-Medina and Ronchetti (2017)

each propose a RRLR estimator. In this section, we discuss their estimators in turn and

compare them, starting with the approach of the former authors. We begin with the de-

viances

di(β) = −yi(X ′iβ) + log (1 + eX
′
iβ), (8)

which are just components of the log-likelihood in Equation (1). If we consider the terms

[yi − σ(X ′iβ)], yi ∈ {0, 1} as residuals, then the di(β) are essentially logarithms of these

residuals. Analogously to LTS for the linear regression setting, we may thus obtain a robust

version of logistic regression by trimming these deviances to construct a subset of observations

of size h.

A problem with the deviances in Equation (8) is that the function is highly influenced by

bad leverage points, which in this context are observations for which we observe a strongly

positive score (X ′iβ) but yi = 0, or a strongly negative score but yi = 1. If we make the

predictors arbitrarily anomalous, then di(β)→ +∞ unless β = 0. Robust logistic regression

therefore requires a robust deviance function. Pregibon (1981) proposed a class of estimators

in which di(β) are replaced by ρ(di(β)), for a function ρ(·) which increases slower than the

identity function. Bianco and Yohai (1996) showed that Pregibon (1981)’s proposal was

not Fisher consistent and suggested an adjusted, consistent alternative estimator based on

an alternative deviance measure ϕBY (X ′iβ; yi). Croux and Haesbroeck (2003) improved this

work further, defining a choice for ρ(·) that ensures that the robust estimator exists whenever

the maximum likelihood estimator exists. They also proposed a fast algorithm to compute

the resulting estimator. For our purposes, it is sufficient to state that the equation is zero

in expectation, such that the estimator is still Fisher consistent.

Croux and Haesbroeck (2003) further derive the influence function of their estimator

and show that it is unbounded, meaning the bad leverage points discussed earlier may still
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have an undue effect on the estimator. The authors propose to overcome this issue by

downweighting high-leverage observations, where leverage is determined using the squared

Mahalanobis distance

Mi = (Xi − X̄)′S−1(Xi − X̄).

Here, X̄, S are robust estimates of location and scatter obtained using the minimum co-

variance determinant estimator (Rousseeuw, 1985). As a weighting scheme, Croux and

Haesbroeck (2003) use a hard rejection rule of the form

W (Mi) =

1, if Mi ≤ χ2
p(.975),

0, else,

where χ2
p(·) denotes the corresponding quantile of the χ2 distribution with p degrees of

freedom. Using this approach, 2.5% of observations are expected to be flagged as outliers

under the model distribution.

Kurnaz et al. (2018b) use the deviance measure ϕBY (X ′iβ; yi) to define a robust objective

function with regularisation

Q(H, β) =
∑
i∈H

ϕBY (X ′iβ; yi) + hλ

(
α

p∑
j=1

|βj|+
(1− α)

2

p∑
j=1

β2
j

)
. (9)

In Equation (9), H denotes the subset of h ≤ n observations to be used in the fitting

procedure. For given choice of h, we wish to use the optimal subset Hh,opt which minimises

the sum of deviances. Finding Hh,opt is not trivial, however, as it entails a combinatorial

problem. Kurnaz et al. (2018b) propose an approximating algorithm much like that used

in Alfons et al. (2013) for linear regression, but altered to account for the fact that binary

logistic regression uses two distinct classes with a given class balance. α and λ are tuned

using a grid search, where the parameters are chosen such that the mean deviance

d̄(α, λ) =
1

h

∑
i∈Hh,α,λ

ϕBY (X ′iβ̂α,λ; yi)

is minimised, with Hh,α,λ the best subset of size h obtained with given values for α, λ. d̄(α, λ)

is computed by 5-fold CV, a procedure that is carried out twice for stability in case Hh,α,λ

is still contaminated. See Kurnaz et al. (2018b) for an outline of the full procedure.

As in Alfons et al. (2013), the authors use a reweighting step to improve efficiency of the

estimator. In doing so, they deviate from the rejection rule based on Mahalanobis distance

as proposed by Croux and Haesbroeck (2003) and instead use Pearson residuals
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ri =
yi − πi√
πi(1− πi)

, (10)

with πi = σ(X ′iβ). The weighting scheme is then based on the hard rejection rule

W (ri) =

1, if |ri| ≤ Φ−1(.9875),

0, else,
(11)

where |ri| is the absolute value of ri and Φ(·) denotes the cumulative distribution function

of the standard normal distribution.

The authors have implemented their estimator in the R package enetLTS (Kurnaz et al.,

2018a). We do not make any changes to their code and call the enetLTS fitting method

with default parameters. We exclusively consider the reweighted estimator in our analysis,

as it performs uniformly better in the authors’ simulations. The authors call their estimator

enetLTS (even in the context of logistic regression), but we refer to it as the Bianco-Yohai

estimator with elastic net regularisation (BY-EN)3 throughout this paper to avoid confusing

the estimator with the package that implements it. As a non-robust baseline against which

we can evaluate the performance of BY-EN, we use classical logistic regression with an elastic

net penalty.

The approach of Avella-Medina and Ronchetti (2017) extends the work of Cantoni and

Ronchetti (2001) on robust quasi-likelihood to the high-dimensional setting. We first sum-

marise the robust quasi-likelihood approach, starting from the quasi-likelihood estimators for

the generalised linear model of Wedderburn (1974). These estimators are defined implicitly

by the estimating equations

n∑
i=1

yi − µi√
V (µi)

µixi = 0, (12)

where µi and V (µi) denote the expectation and variance of yi|xi. Outliers in the response

and leverage points affect the estimators through yi and xi respectively, so to control the

influence of contaminated data Cantoni and Ronchetti (2001) apply weighting functions.

The estimating equations become

n∑
i=1

[
ψ(ri)√
V (µi)

∂µi
∂β

w(xi)− a(β)

]
= 0, (13)

where ri are Pearson residuals, which in are given by Equation (10) in case of logistic regres-

3For the remainder of the paper, BY-EN denotes the reweighted version of the estimator unless explicitly
stated otherwise.
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sion. Further, a(β) is shorthand for a term that ensures the equality holds in expectation,

i.e. Fisher consistency. The weighting functions are given by ψ(·) and w(·), where the former

is a bounded function such as the Huber function

ψ(ri) =

ri, if |ri| ≤ c,

c sgn(ri), else,
(14)

for some constant c > 0.

For a full specification of the quasi-likelihood function from which these estimating equa-

tions are derived we refer to Cantoni and Ronchetti (2001) or Avella-Medina and Ronchetti

(2017). Here, we will simply denote the function by ρ(β), whose robustness properties are

governed by ψ(·) and w(·). The authors extend ρ(β) with the adaptive lasso penalty intro-

duced by Zou (2006). As before, coefficient weights are determined as wj = |β̂init,j|−1. The

initial estimate β̂init,j is the lasso-penalised robust quasi-likelihood solution. To compute the

solution path, the authors develop a coordinate descent algorithm, which represents a robust

alternative to the IRLS algorithm used for the generalised linear model. The robustness of

the algorithm is ensured by the use of ‘pseudo-data’ vector z which replaces the response, as

well as observation weighting matrix W . For a complete specification of these weights and

pseudo-data we refer to Avella-Medina and Ronchetti (2017). The algorithm first selects the

optimal value of tuning parameter λ based on a robust information criterion. Subsequently,

the algorithm updates the pseudo-data and observations weights, after which it finally fits

parameters β based on the updated penalty term, weights and data. This procedure is

repeated until convergence. The initial value of tuning parameter λ is proportional to the

max-norm of the product WX ′z.

The authors provide an R implementation of their estimator for the cases of Poisson and

logistic regression in the Supplementary Material of their paper, which we use in our analysis.

The authors give the user the option to choose let weighting function ψ(·) be given by the

Huber function, Tukey’s biweight function or the (non-robust) identity function. In the latter

case, ‘ordinary’ likelihood is used and the algorithm of Avella-Medina and Ronchetti (2017)

reduces to the cyclical coordinate descent algorithm of Friedman et al. (2010). Throughout

our analysis, we use the Huber function in line with Avella-Medina and Ronchetti (2017)4.

We make some changes to the code to prevent bugs that the source code produced during

4Another reason to choose the Huber function is that the fitting procedure consistently fails to converge
for logistic regression when using Tukey’s biweight. Though the authors only consider Poisson regression in
their paper, they ostensibly encountered similar numerical problems. In the Supplementary Material, the
authors note that their algorithm was ‘not satisfactory’ for Tukey’s biweight function and yielded ‘a very
erratic solution path’.
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simulations, but note that the numerical stability of the code is still not guaranteed5. As a

non-robust baseline against which to compare the performance of the robust estimator, we

replace the Huber function with the identity function.

3.2 Non-robust Sparse Logistic Regression

As explained in Section 2, we wish to investigate how the elastic net penalty compares

to best subset selection in terms of probabilistic forecasting performance. To this end,

we include four regularised classical logistic regression (RCLR) estimators in the analysis.

The first two are classical logistic regression with elastic net penalty (CLR-EN) and with

the adaptive elastic net (CLR-AdaEN). We implement the two using the glmnet package.

Hyperparameters λ and α are chosen by cross-validation each time the models are trained,

with deviance (Equation (8)) as loss function. Candidate values for α are the same as those

used by enetLTS to ensure BY-EN can be compared with CLR-EN fairly. Candidate values

for λ are automatically chosen by glmnet, which is also the procedure that enetLTS follows

for the reweighted estimator (i.e. enetLTS imports and calls the cv.glmnet() function for

this step). The adaptive elastic net uses the elastic net solution as initial estimate.

The other two methods are variants of best subset selection. The first method, classical

regression with BSS (CLR-BSS), uses only the ‘`0-norm’ penalty as in Equation (5). The

second, classical regression with BSS and lasso penalty (CLR-BSSL), further adds shrinkage

and effectively implements Equation (6) with q = 1. These methods are implemented in

the L0Learn package (Hazimeh and Mazumder, 2021). Tuning parameters λ0 and λq are

automatically selected by fitting method L0Learn.cvfit(), which we call with default pa-

rameters. One exception is that we set the largest permitted model size k equal to p to avoid

biasing the fitting procedures with our knowledge of the true sparsity in the simulations.

3.3 Machine Learning Methods

3.3.1 Support Vector Machines

We add support vector machines (SVM) with a radial basis function (RBF) kernel K(x, x′) =

exp(−γ‖x−x′‖2) as a classifier. We choose SVM with RBF kernel on account of the method’s

ability to deal with high-dimensional data (Hastie et al., 2009). Further, the kernel is com-

monly employed in practice (Meyer et al., 2021). Though the SVM’s hinge loss implies

5The code primarily suffers from issues when evaluating derivative ∂µi/∂ηi, which is used to compute z
and W . The derivative entails multiplying and dividing by fitted probabilities πi, some of which become
numerically zero or one during the fitting process. To resolve some of the issues, we used logarithmic
transformations and constrained πi to be in the interval [10−8, 1− 10−8]. This reduced the number of errors
that occurs, but the estimator still performs poorly.
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that it has an unbounded influence function (Yang et al., 2010), the regularisation term of

the soft-margin SVM should improve its robustness similarly to the improved robustness of

penalised least squares.

We optimise the cost of constraint violation C and the RBF kernel parameter γ by cross-

validation each time we train the model. Herein, we consider values {0.01, 1, 10, 25, 50, 100}
for C and { 1

2p
, 1
p
, 2
p
} for γ. This choice of values is mostly as suggested by the authors of the

e1071 package (Meyer et al., 2021) that implements SVM in R.

It must be noted that the SVM is not naturally a probabilistic classifier and is there-

fore unsuited for the task of probabilistic forecasting if implemented naively. A method to

transform the output of a support vector into a posterior distribution over the classes was

introduced by Platt (1999) and is known as Platt scaling. We prefer Platt scaling over the

isotonic regression method of Zadrozny and Elkan (2002) per the study of Niculescu-Mizil

and Caruana (2005), who conclude that Platt scaling performs better when the posterior

distribution is sigmoidal and in small sample sizes, both of which apply in our study. As

explained in Section 4.1, we use small sample sizes throughout this paper to control the

computational burden of the robust methods.

Platt scaling entails fitting a logistic regression model on the output of the SVM. We

reserve part of the training data as a validation set to be used for this procedure, such that

the logistic regression is not trained on the same data as the SVM. The reason for this is

that fitting the logistic regression model on the same data that was used to train the SVM

leads to overfitting (Platt, 1999). Note that fitting the logistic regression model is feasible

regardless of p, as the model contains only two parameters, an intercept and a slope for

the output of the unscaled SVM. Nonetheless, the number of observations to be reserved

for scaling is a precarious choice when the training set is small. If too few observations are

used, the logistic regression model fit will be poor and the posterior probabilities will be

inaccurate, even if the SVM could have produced accurate forecasts. If too many are used,

few observations are left for training the SVM. However, this is an inherent drawback of

using an SVM for probabilistic forecasting.

To make the fitting procedure of the SVM as favourable as possible, we create a single

validation set from the training data that is used for hyperparameter tuning as well as Platt

scaling. This maximises the number of observations used for hyperparameter tuning without

leaking information of the validation set to the model. For each set of hyperparameters, we

train the SVM on the training set and estimate predictive accuracy based on the validation

set. We then select the optimal hyperparameter configuration and perform Platt scaling on

the same validation set. Although the SVM uses the validation set for prediction prior to

Platt scaling, it is never trained on it.
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3.3.2 Neural Networks

In addition to SVM we also include a feed-forward neural network (multilayer perceptron) in

our analysis. Unlike SVM, a neural network with sigmoid non-linearity at the output layer is

naturally a probabilistic classifier and therefore does not require calibration. Niculescu-Mizil

and Caruana (2005) show that neural networks without calibration produce some of the

most accurate posterior probabilities and are competitive with calibrated SVM.

We create a network with a single hidden layer using the RSNNS package (Bergmeir and

Beńıtez, 2019). The number of units in the hidden layer is a hyperparameter and is chosen

by cross validation. We consider 1
3
p, 2

3
p and p units, which is mostly in line with the rules

of thumb outlined in Heaton (2008). The sigmoid function is chosen as activation function

for all hidden units. Weights are initialised randomly and are updated by backpropagation,

using cross-entropy as a loss function. To prevent overfitting we apply weight decay, which is

equivalent to ridge regression for linear models (Hastie et al., 2009). As in ridge regression,

a tuning parameter λ must be chosen which determines how much shrinkage is applied. We

choose the optimal value among 0, 0.001, 0.01, 0.1 per the guidelines in Kuhn and Johnson

(2013).

3.4 Evaluation of Probabilistic Forecasting Performance

We are primarily interested in probabilistic forecasting performance, and therefore consider

the calibration (consistency) and sharpness (efficiency) of the forecasts. Generally, the goal

of probabilistic forecasting is to maximise sharpness subject to calibration (Gneiting and

Katzfuss, 2014). In our setting with a binary outcome, calibration may simply be investigated

by means of a calibration diagram. In a calibration diagram, we divide posterior probabilities

(usually for class y = 1) into q bins of width 1/q. We then plot the observed fraction of

observations with y = 1 in a bin against the predicted probabilities of those observations. If

predictions are calibrated, then they should be indistinguishable from random draws from

the true posterior distribution (Gneiting and Katzfuss, 2014). Visually, this means the

graph should follow the 45-degree line; predicted probabilities should coincide with empirical

probabilities. For example, if we set q = 20 and our forecasts are accurate, approximately

half of the observations with predicted class probabilities in the 50-54% bin should have

yi = 1. We set q = 20 throughout the paper, balancing the granularity of the bins with the

number of test observations available to accurately estimate the fraction of forecasts assigned

to each bin.

Sharpness of forecasts refers to the concentration of the predictive distribution. When

choosing between competing methods that are all calibrated, we prefer the method that
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produces the sharpest (most concentrated) forecasts, as these are the forecasts in which we

are most confident. Sharpness is evaluated by means of metrics called scoring rules, which

may be understood as being equivalent to loss functions in regression and classification tasks.

As with loss functions, an infinite number of scoring rules exists. To choose between them,

the literature encourages the use of proper scoring rules. Proper scoring rules ensure that

quoting the true posterior distribution as the forecast distribution is optimal (in terms of

‘smallest loss’) in expectation (Gneiting and Raftery, 2007). Essentially, proper scoring rules

encourage truth-telling when making forecasts (Gneiting and Katzfuss, 2014). Among a class

of proper scoring rules (with certain ‘loss’, e.g. quadratic or entropy), a scoring rule is further

said to be strictly proper if it assigns the best possible score only to a forecast which exactly

coincides with the realised value. Formally, if S(F,G) denotes the expected score obtained

with given forecast F when the true value is G, then S is proper if

S(G,G) ≤ S(F,G), (15)

where we implicitly assume that the objective is to minimise the score. Further, S is strictly

proper if the inequality in Equation (15) is strict whenever F 6= G (Gneiting and Katzfuss,

2014).

We employ the Brier score, a scoring rule which is proper for predictions of categorical

variables (Gneiting and Raftery, 2007). Other proper (strictly) scoring rules for categorical

variables are available (e.g. logarithmic score), but the main findings of this paper do not

depend on the scoring rule used. For the sake of brevity, we therefore only consider the Brier

score. Given a set of forecasted probabilities p̂ corresponding to m test set outcomes y, the

Brier score is computed as

BS(y, p̂) =
1

m

m∑
i=1

(yi − p̂i)2. (16)

The Brier score ranges from 0 to 1, with a lower score indicating greater sharpness. In

particular, the Brier score is 0 whenever yi = p̂i = 0 or yi = p̂i = 1. This means the rule is

strictly proper in our setting, as no other forecast than 0 or 1 can attain a score of 0.

If class y = 1 occurs with frequency f in the test data, guessing y = 1 with probability

f has a Brier score of f − f 2 in expectation. Equation (16) further shows that the Brier

score is symmetric, in the sense that an observation j with yj = 1 and p̂j = 0.3 inflates the

Brier score by the same amount as an observation k with yk = 0 and p̂k = 0.7. For some

forecasting settings this property may be undesirable. For example, in medical applications

one may prefer an asymmetric scoring rule that penalises poor forecasts of positive tests

more heavily than poor forecasts of negative tests.
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4 Simulation Study

In this section we study the probabilistic forecasting performance of the methods discussed

in Section 3 in a controlled setting. We first discuss the simulation setup, after which we

sequentially present the results of the scenarios studied.

4.1 Setup

We consider primarily two scenarios. In the first scenario, the dimensionality p = 50 is

relatively large compared to, but not larger than the training sample size n = 150. The

scenario investigates the importance of regularisation for probabilistic forecasting, when we

step outside of the classical paradigm where we have many observations of a few variables.

In the second scenario, the data is high-dimensional and the dimensionality p = 100 is larger

than the training sample size n = 50. This scenario is arguably more challenging and allows

us to inspect if calibrated probabilistic forecasting is feasible with high-dimensional data.

The two scenarios are comparable to the simulation studies in e.g. Maronna (2011) and

Kurnaz et al. (2018b).

In both scenarios, β is highly sparse, with only 10% of its entries being non-zero. For

simplicity, we set set all non-zero entries to 0.3, i.e. βA = [0.3, 0.3, . . . , 0.3]′. A value of 0.3

helps to control the distribution of the class probabilities, especially in the scenario where

p = 100. For values greater than 0.3, most probabilities σ(Xβ) become numerically close

to zero or one, even if the predictors in A have unit variance. Such an extreme distribution

where is arguably uninteresting for probabilistic forecasting and hence we wish to avoid it.

Design matrix X consists of two distinct submatrices XA and XAc , which respectively

correspond to the non-zero and zero elements of β. XA is drawn from a zero-mean mul-

tivariate distribution with covariance matrix ΣA, whose (i, j)-th entry ΣA,(i,j) is given by

0.9|i−j|. The informative variables are therefore highly correlated, warranting the use of the

elastic net penalty described in Section 2.1.3. The uninformative variables in XAc are drawn

from another zero-mean multvariate normal distribution with covariance matrix ΣAc , which

has entries ΣAc,(i,j) = 0.5|i−j|6. The informative variables are drawn independently of the

uninformative variables. We then construct X = [XA, XAc ] and sample the outcomes yi from

Bernoulli distributions with probability P(yi = 1|Xi = x) = (1 + e−x
′β)−1. Xi is symmetric

around zero, so the classes are balanced in expectation.

For both choices of p, we consider a setting where there is no contamination as well as

a setting where design X is contaminated. Here, we follow the procedure of Kurnaz et al.

6Further testing with ΣAc,(i,j) = 0.0|i−j| showed the correlation between uninformative variables is not
consequential for the performance of the estimators.
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(2018b), who select the first b0.1nc observations for which y = 0 and shift the mean of

the corresponding informative variables (but not the uninformative variables) by a value

of 20. Effectively, this means that the XA of the contaminated observations are drawn

from a N(20,ΣA) distribution, where we denote 20 = [20, 20, . . . , 20]′. The contamination

procedure implies that the data contains approximately 5% bad leverage points, since the

contaminated observations have a large, positive score but y = 0. We repeat each scenario

R = 100 times, balancing computational burden of the robust estimators with accuracy. The

runtime of a scenario is 10-12 hours on an Intel Xeon @ 2.00 GHz × 8 processors and, based

on experimentation, we are fully confident that the results do not change when R > 100.

4.2 Results when p < n, but p/n is large

4.2.1 No contamination

We start with the setting p = 50 and n = 150. Figure 1 shows that when there is no

contamination, several methods produce calibrated forecasts. Among the CLR estimators,

the non-regularised estimator is the only method that is distinctly uncalibrated. The data

is too noisy, and the non-regularised estimator overfits. Variable selection as performed by

best subset selection or the elastic net mostly resolves this problem, though in the case of

the non-adaptive elastic net this comes at the cost of an attenuation bias due to shrinkage.

β1 β2 β3 β4 β5 FPR(Ac)
CLR with elastic net 0.20 0.20 0.23 0.24 0.18 0.20

CLR with adaptive elastic net 0.30 0.28 0.31 0.35 0.25 0.20

CLR with best subset selection 0.16 0.33 0.46 0.36 0.11 0.01

CLR with best subset selection 0.18 0.29 0.34 0.30 0.15 0.04
and lasso

Robust oracle 0.36 0.29 0.27 0.32 0.37

Ground truth 0.30 0.30 0.30 0.30 0.30

Table 1: Mean estimates of parameters corresponding to the active set and mean false positive
rate for including uninformative variables in the model. CLR is classical logistic regression. p = 50,
n = 150 and there is no contamination.

Table 1 exhibits mean parameter estimates produced by the RCLR estimators. The CLR-

EN estimator visibly pulls the parameter estimates β̂ to zero, which pulls forecasts σ(Xβ̂)

to σ(0) = 50%. This explains the subtle sigmoidal pattern in the corresponding calibration

plot in Figure 1. The calibration plot stays slightly below the 45-degree line for predicted

probabilities below 50%, because the forecasting distribution of the elastic net has thin tails

compared to the true posterior distribution. As a result, few observations are assigned to
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bins of predicted probabilities such as [0, 5%) and [5%, 10%). For predicted probabilities

greater than 50%, the calibration plot stays above the 45-degree line because the forecasting

distribution is more dense around the mean of 50% than the true posterior distribution. Too

many observations are assigned to bins such as [45%, 50%) and [50%, 55%).

(a) CLR (b) Robust Oracle (c) SVM (d) Neural net

(e) CLR-BSS (f) CLR-BSSL (g) CLR-EN (h) CLR-AdaEN

(i) CR-Lasso
(Huber)

(j) CR-Adalasso
(Huber)

(k) CR-Lasso
(Identity)

(l)
BY-EN

Figure 1: Calibration plots for the p < n setting with 5% bad leverage points, all in the y = 0
class. Results are obtained across 100 simulation runs with 1000 test observations each. CLR, CR
and BY respectively denote classical logistic regression, the Cantoni-Ronchetti estimator and the
Bianco-Yohai estimator. (Ada-) EN and BSS (-L) stand for (adaptive) elastic net penalty and best
subset selection (with lasso penalty), while Huber and Identity respectively indicate that robust
quasi-likelihood with the Huber function or non-robust likelihood was used.
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Figure 2: Brier scores for p = 50, n = 150. Top: without contamination. Bottom: with 5% bad leverage points, all in class y = 0. Results
are obtained across 100 simulation runs with 1000 test observations each. In both plots, the vertical axis is truncated at 0.35, thereby
removing the largest scores for the logit. Except for the support vector machine (SVM), neural net and the 3 rightmost estimators,
all estimators are variants of classical logistic regression (CLR). (Lasso-) S∗ and (Ada-) EN respectively denote CLR with best subset
selection (and lasso penalty) and CLR with (adaptive) elastic net penalty. The 3 rightmost estimators are the Cantoni-Ronchetti (CR)
estimator with lasso penalty, CR estimator with adaptive lasso penalty and the Bianco-Yianco estimator with elastic net penalty.
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Table 1 further shows that the parameter bias is mostly overcome by CLR-AdaEN,

which produces mean parameter estimates that are more accurate those of the robust oracle

in terms of l2 loss ‖β − β̂‖2. This is desirable from the viewpoint of statistical inference on

those variables, though the calibration plot of CLR-AdaEN actually exhibits slightly greater

deviations from the 45-degree line than the robust oracle. As can be seen in Figure 3, this is

because the posterior distribution as estimated by CLR-AdaEN penalty is too dense at the

tails. When the forecasting distribution has fat tails, too many observations are assigned to

the smallest and largest predicted probability bins. We speculate this is a result of the high

false positive rate with which CLR-EN and CLR-AdaEN include uninformative variables

in the model, as shown by Table 1. If too many uninformative variables are assigned non-

zero coefficients, estimated class probabilities may become inflated. Best subset selection

performs much better in this regard and producer sparser models with a near-zero false

positive rate for the uninformative variables. However, this comes at the cost of far less

accurate parameter estimates for the informative variables.

(a) True posterior
(b) Fitted posterior

CLR-AdaEN

Figure 3: Comparison of the true posterior distribution in the uncontaminated p < n setting and
the estimates produced by classical logistic regression with the adaptive elastic net (CLR-AdaEN).
The horizontal axis shows the posterior probabilities. The vertical axis shows the number of times
a probability occurs and is measured on the same scale in the graphs.

Overall, all RCLR estimators perform comparably. All methods result in reasonably

calibrated forecasts and are competitive with the robust oracle in this regard. In terms of

forecast sharpness, the top panel of Figure 2 shows that again none of the methods is prefer-

able, with all achieving a median Brier score of just under 0.20. This makes the estimators

more efficient that the robust oracle, which has a median Brier score is approximately 0.24.

The RRLR methods perform poorly compared to their non-robust counterparts. We

expected a loss of efficiency was expected at the model distribution, but not such such a large
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difference in calibration. All three versions of the Cantoni-Ronchetti (CR) estimators as well

as BY-EN are completely uncalibrated. It appears the robust methods do not apply enough

shrinkage, though in the case of the CR estimators we note that numerical convergence

issues occurred during the simulations. This may indicate that its poor performance is

attributable to numerical properties, as opposed to theoretical properties of the estimator.

Nonetheless, all RRLR methods produce poor parameter estimates for the active set and

have high false positive rates for the uninformative variables. Though the adaptive step

improves the performance of the CR estimator in both aspects, the estimator still applies

insufficient shrinkage.

Although the robust methods perform poorly, our results are not contradictory with

Avella-Medina and Ronchetti (2017) and Kurnaz et al. (2018b). The former paper only

studies Poisson regression, so we cannot compare our results. The later paper focusses on

classification and finds that BY-EN performs comparably to CLR-EN in this regard in the

absence of contamination. These findings are corroborated by our simulation study. We find

that BY-EN attains a misclassification rate of 31.6%, compared to 29.6% for the classical

baseline7.

The machine learning methods perform poorly. The SVM is arguably better than the

neural net, though neither produces calibrated forecasts. Out of 150 training examples,

40 were reserved for Platt scaling. Experimentation shows that reserving a larger share of

observations for calibration is actually harmful to the performance of the SVM. Platt scaling

entails fitting a logistic regression with only an intercept and a single slope, for which 40

observations is ostensibly sufficient. The benefit of increasing the size of the validation set

does not outweigh the impact a further reduction of the number of training examples has on

the SVM.

4.2.2 Adding 5% bad leverage points

Figure 4 shows that all classical estimators break when the data are contaminated by 5%

bad leverage points. The relatively high degree of contamination and severity of the outliers

causes the estimators to produce extremely poor coefficient estimates in this setting, which

makes their forecasts completely uncalibrated.

7These misclassification rates are much higher than those observed in Kurnaz et al. (2018b), but that is
because the authors use βA = [1, 1, . . . , 1]′, which implies the test data in Kurnaz et al. (2018b) are much
closer to being perfectly separable. This improves the classification performance of all methods.

29



(a) CLR (b) Robust Oracle (c) SVM (d) Neural net

(e) CLR-BSS (f) CLR-BSSL (g) CLR-EN (h) CLR-AdaEN

(i) CR-Lasso
(Huber)

(j) CR-Adalasso
(Huber)

(k) CR-Lasso
(Identity)

(l)
BY-EN

Figure 4: Calibration plots for the p < n setting with 5% bad leverage points, all in the y = 0
class. Results are obtained across 100 simulation runs with 1000 test observations each. CLR, CR
and BY respectively denote classical logistic regression, the Cantoni-Ronchetti estimator and the
Bianco-Yohai estimator. (Ada-) EN and BSS (-L) stand for (adaptive) elastic net penalty and best
subset selection (with lasso penalty), while Huber and Identity respectively indicate that robust
quasi-likelihood with the Huber function or non-robust likelihood was used.

Among the robust estimators, two results are noteworthy. First, the robust oracle breaks.

At 5% contamination the breakdown point of the unregularised Cantoni-Ronchetti estimator

is exceeded8, which reflects the local character of the estimator’s robustness. Although we

cannot rule out that the results of the regularised CR estimators are at least partly driven by

8Further testing (not shown) confirmed that the estimator does not break when the contamination level
is reduced to 1-2%.
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numerical issues, it seems reasonable to assume that the regularised version of the estimator

also struggles with this degree of contamination. Avella-Medina and Ronchetti (2017) pro-

vide some evidence for this in the Poisson regression setting, as they show that parameter

inaccuracy of the estimator (measured by l2 loss) shoots up when the contamination level

exceeds 5%. Second, BY-EN is completely unaffected by the contamination. Though this

is in line with Kurnaz et al. (2018b), who showed that the classification performance of the

estimator is unimpeded in the same simulation setup, it means that the forecasts of the

estimator remain uncalibrated.

The machine learning methods outperform the RCLR estimators in this setting. Whereas

the classical estimators all break completely, the machine learning algorithms perform rea-

sonably for this level of contamination. The neural net now outperforms the SVM, which is

most easily explained by the fact that the SVM must be calibrated by Platt scaling. This

procedure entails fitting an ordinary logistic regression on a validation set and, in practice,

it is extremely hard to ensure that the validation set is uncontaminated. Though the SVM

may possess some inherent robustness through its implicit regularisation, its forecasts will

generally be highly uncalibrated if the validation set contains outliers. The neural net does

not require explicit calibration and therefore does not have this exposure.

4.2.3 Discussion

The results clearly indicate when p/n is larger than assumed in classical settings, regularisa-

tion is necessary if we wish to obtain calibrated forecasts. In the absence of contamination,

the RCLR estimators are vastly superior in terms of calibration, with the bias introduced

by regularisation having a negligible impact on calibration. The differences in calibration

between best subset selection and the elastic net are marginal. The estimators that per-

form variable selection by best subset selection produce sparser models, but exhibit a much

greater variance than the estimators that use the elastic net. For statistical inference, one

would clearly prefer the adaptive elastic net over best subset selection, despite the theoretical

benefits of the latter approach.

The RRLR estimator perform poorly, though in the case of the regularised CR estimators

numerical issues ostensibly play an important role. If these issues are resolved, better results

would probably be obtained. BY-EN produces uncalibrated forecasts, but has the benefit of

exhibiting a greater robustness. Whereas the robust oracle, which is just the unregularised

CR estimator, breaks at 5% bad leverage points, BY-EN remains unaffected. If the cali-

bration of BY-EN could be improved in the uncontaminated setting, the estimator could

serve as an excellent forecasting tool, though computational speedups are required to make

it viable for larger datasets. We investigate the behaviour of the estimator in more detail in
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Section 4.4.

4.3 Results when p > n

4.3.1 No contamination

We present calibration plots for the uncalibrated high-dimensional setting in Figure 5. A

few things stand out. First, the robust oracle now produces uncalibrated forecasts. With

p = 100, n = 50 and 90% sparsity, the robust oracle now entails fitting a robust estimator on

50 observations of 10 variables, such that p/n = 0.2. This is comparable to the performance

of classical logistic regression in Section 4.2.1, where p/n = 0.33. The non-regularised

estimators are unable to deal with such a large dimensionality and produce poor fits.

It is highly surprising that the calibration of BY-EN and the CR estimator with un-

weighted lasso penalty (CR-Lasso) is better in this scenario than when p = 50 and n = 150.

Distortions to the calibration plot of BY-EN are still greater than those observed for its

classical counterpart (CLR-EN), but deviations from the 45-degree line are much less grave

than in Section 4.2.1 and calibration is reasonably good. CR-Lasso now exhibits a distinct

sigmoidal distortion, but the calibration is undoubtedly better than in Section 4.2.1. The

sigmoidal pattern heavily pronounced, but could potentially be overcome by Platt scaling,

which is designed to resolve this type of distortion. Although Platt scaling is ordinarily

susceptible to outliers, we could use the robustness of the CR estimator to flag outliers. We

could, for example, use an initial robust estimate to downweight or remove outliers, and then

use the cleaned data to create a train/validation split that is free of outliers.

Calibration of the machine learning methods is comparable to the p < n scenario. Both

the SVM and the neural net produce a posterior distribution that is too heavy at the tails,

with the latter exhibiting greater distortions. Overall, the machine learning methods struggle

with the large p/n ratios used in our simulations and underperform compared to the study

of Niculescu-Mizil and Caruana (2005), who use 8 datasets with 4000 training examples

each and dimensionality ranging from 16 to 200. Although Niculescu-Mizil and Caruana

(2005) use real datasets, which tend to be much more complex than multivariate normal

data, our simulations indicate that the SVM and neural net struggle with the dimensionality

considered here.
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(a) Robust Oracle (b) SVM (c) Neural net

(d) CLR-BSS (e) CLR-BSSL (f) CLR-EN (g) CLR-AdaEN

(h) CR-Lasso
(Huber)

(i) CR-Adalasso
(Huber)

(j) CR-Lasso
(Identity)

(k)
BY-EN

Figure 5: Calibration plots for the p > n setting without contamination. Results are obtained
across 100 simulation runs with 1000 test observations each. Results are obtained across 100
simulation runs with 1000 test observations each. CLR, CR and BY respectively denote classical
logistic regression, the Cantoni-Ronchetti estimator and the Bianco-Yohai estimator. (Ada-) EN
and BSS (-L) stand for (adaptive) elastic net penalty and best subset selection (with lasso penalty),
while Huber and Identity respectively indicate that robust quasi-likelihood with the Huber function
or non-robust likelihood was used.
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Figure 6: Brier scores for p = 100, n = 50. Top: without contamination. Bottom: with 5% bad leverage points, all in class y = 0. Results
are obtained across 100 simulation runs with 1000 test observations each. In both plots, the vertical axis is measured on a log2 scale.
Except for the support vector machine (SVM), neural net and the 3 rightmost estimators, all estimators are variants of classical logistic
regression (CLR). (Lasso-) S∗ and (Ada-) EN respectively denote CLR with best subset selection (and lasso penalty) and CLR with
(adaptive) elastic net penalty. The 3 rightmost estimators are the Cantoni-Ronchetti (CR) estimator with lasso penalty, CR estimator
with adaptive lasso penalty and the Bianco-Yianco estimator with elastic net penalty.
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4.3.2 Adding 5% bad leverage points

When we introduce bad leverage points, all methods break, except for one. The same

robustness that BY-EN exhibited in the p < n setting is shown here and the estimator is

almost completely unaffected by the outliers. Figure 6 shows that the worst-case Brier score is

slightly higher after contamination, though median Brier scores of 0.161 (no contamination)

and 0.165 (contamination) are close to identical.

(a) Robust Oracle (b) SVM (c) Neural net

(d) CLR-BSS (e) CLR-BSSL (f) CLR-EN (g) CLR-AdaEN

(h) CR-Lasso
(Huber)

(i) CR-Adalasso
(Huber)

(j) CR-Lasso
(Likelihood)

(k)
BY-EN

Figure 7: Calibration plots for the p > n setting with 5% bad leverage points, all in the y = 0
class. Results are obtained across 100 simulation runs with 1000 test observations each. CLR, CR
and BY respectively denote classical logistic regression, the Cantoni-Ronchetti estimator and the
Bianco-Yohai estimator. (Ada-) EN and BSS (-L) stand for (adaptive) elastic net penalty and best
subset selection (with lasso penalty), while Huber and Identity respectively indicate that robust
quasi-likelihood with the Huber function or non-robust likelihood was used.
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Among the remaining methods, the neural net is closest to being calibrated. Though the

algorithm’s performance is worse in the contaminated setting than when there is no con-

tamination, the neural net is less affected than the other methods. In general, the machine

learning methods exhibit a greater degree of robustness than the RCLR methods, though the

SVM is inhibited by its reliance on Platt scaling. Given sufficient training data, the SVM

could benefit from replacing classical logistic regression by a robust alternative. In the set-

tings considered in this simulation study however, the relative inefficiency of robust methods

may instead inhibit the SVM’s performance. When there are only 50 training examples, the

size of the validation set for calibration is likely too small to effectively use robust regression.

4.3.3 Discussion

The most promising method when p > n is BY-EN. The estimator is approximately cal-

ibrated in the uncontaminated setting and is unaffected by the relatively high degree of

contamination considered in this study. The fact that the estimator performs much better

when p > n than when p < n makes us question what determines its behaviour, which is

what we investigate in the next section.

4.4 What governs the behaviour of the Bianco-Yohai estimator?

The simulations show that the robust methods produce uncalibrated forecasts, but do not

provide insight into what governs their behaviour. It is surprising that the robust estimators

do not produce calibrated forecasts at the model distribution, when their classical counter-

parts are calibrated. In this section, we try to explain this phenomenon for BY-EN. We

focus on this estimator for two reasons. First, among the two robust estimators it is closest

to being calibrated, with particularly strong performance in the p > n setting. Second,

experience with the enetLTS package lets us rule out that BY-EN’s behaviour governed by

numerical properties. This makes the estimator easier to investigate than the CR estimator,

which exhibits numerical erraticism during our simulations.

A reasonable guess as to why the robust methods are less calibrated than their classical

counterparts is the influence of shrinkage. We know that both the quasi-likelihood approach

of Cantoni and Ronchetti (2001) and the bounded deviance approach of Croux and Haes-

broeck (2003) are Fisher consistent and lead to calibrated forecasts when p� n. This is also

reflected in the performance of the robust oracle in Section 4.2.1, where it must estimate 5

coefficients (intercept is zero) based on 150 observations. Whether we construct the robust

oracle using the quasi-likelihood approach or the bounded deviance approach, it produces

calibrated forecasts. However, when the robust oracle must be fitted based on data where
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p = 10 and n = 50 in Section 4.3.1, it is no longer calibrated. This suggests BY-EN may be

uncalibrated simply because it applies insufficient shrinkage.

To test this hypothesis, we first compare the regularisation paths of the robust estimators

to their classical counterparts. For the classical estimators as well as the robust estimators,

the regularisation path (given α) entails a sequence of values λ in [0, λ0], or (0, λ0] when p > n

since the unpenalised estimator is undefined in the latter case. For the classical estimators,

λ0 is chosen such that αλ0 = 1
N

maxj∈{1,...,p}|Cor(xj, y)| and the interval [0, λ0] is subsequently

divided into a sequence of values on the log scale (Friedman et al., 2010). By tuning λ over

the corresponding interval for all relevant values of α, we obtain the optimal combination

of hyperparameters α̂ and λ̂. Kurnaz et al. (2018a) follow this approach almost exactly for

the reweighted version of BY-EN, as they compute its regularisation path using glmnet9. An

important difference with the classical estimator is that outliers, as determined by the raw

estimator, are excluded when computing the regularisation path. This implies a different

choice for λ0, which inevitably results in a different estimate of the optimal hyperparameter

λ̂. Further, to reduce the computational burden, the mixing parameter α is taken from the

raw estimator, as opposed to tuning it for the reweighted estimator. There are thus two main

differences between the tuning procedures for CLR-EN and BY-EN. First, λ is tuned for the

reweighted estimator using a data subset. Second, α is only tuned for the raw estimator,

which in fact relies on an even smaller subset of the data.

To inspect how tuning α and λ based on a subset of the data affects calibration, we revisit

our simulations. We inspect the calibration of BY-EN based using the same training and

test data, but override the tuning procedures of enetLTS. Instead of using the values α̂enetLTS

and λ̂enetLTS tuned by enetLTS, we force the reweighted BY-EN estimator to be fitted using

values α̂glmnet and λ̂glmnet tuned by glmnet for CLR-EN.

9For the raw estimator a completely different regularisation path is computed based on a robust correlation
measure.
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(a) p < n,
uncontaminated
α̂enetLTS , λ̂enetLTS

(b) p < n,
contaminated

α̂enetLTS , λ̂enetLTS

(c) p > n,
uncontaminated
α̂enetLTS , λ̂enetLTS

(d) p < n,
uncontaminated
α̂glmnet, λ̂glmnet

(e) p < n,
contaminated
α̂glmnet, λ̂glmnet

(f) p > n,
uncontaminated
α̂glmnet, λ̂glmnet

Figure 8: Calibration plots for the Bianco-Yohai estimator with elastic net penalty in multiple
scenarios. Results are obtained across 100 simulation runs with 1000 test observations each. Sub-
script enetLTS indicates that a hyperparameter was tuned by the enetLTS package, while subscript
glmnet indicates that the glmnet package was used.

The results in Figure 8 show that when using α̂glmnet and λ̂glmnet, BY-EN produces nearly

calibrated forecasts in the uncontaminated setting. The main drawback is a loss of robust-

ness, because the hyperparameters are no longer tuned based on cleaned training data. The

main question that arises from Figure 8 is why the use of hyperparameters selected by glmnet

improves calibration. Indeed, α̂glmnet and λ̂glmnet are not even optimised for BY-EN, yet im-

prove calibration compared to α̂enetLTS and λ̂enetLTS which were explicitly tuned for the (raw

or reweighted) BY-EN estimator. As the two cross-validation procedures seek to minimise

the same loss criterion, this result is highly counterintuitive.

Upon closer inspection of the objective functions based on which α and λ are tuned by

glmnet and enetLTS, it becomes clear that there is one considerable difference between the

two. If we abbreviate the elastic net penalty as P (β), the glmnet criterion may be written

as
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`glmnet(β) =
n∑
i=1

(
−yi(X ′iβ) + log (1 + eX

′
iβ)
)

+ nλP (β), (17)

which is of course equivalent to Equation (4). For the reweighted BY-EN estimator, on the

other hand, λ is tuned for an objective

`enetLTS(β) =
n∑
i=1

wi

(
−yi(X ′iβ) + log (1 + eX

′
iβ)
)

+
n∑
i=1

wiλP (β), (18)

where wi are weights that remove flagged outliers, which are determined by the rejection rule

in Equation (11) using the raw coefficient estimates. According to Kurnaz et al. (2018b),

the objective function in Equation (18) uses 97.5% of data in expectation under the model

distribution. If this claim is true, the criteria are virtually identical and should lead to nearly

identical solutions.

When the unregularised BY estimator is used in the low-dimensional setting and there is

no sparsity, this claim indeed holds true. In that case, we know the BY estimator is Fisher

consistent and the share of false positives is controlled under the model. However, for the

regularised estimator considered here the claim is false. The large dimensionality and elastic

net make the raw estimator biased. Though we have no formal proof, as Kurnaz et al. (2018b)

do not provide theory regarding the (asymptotic) consistency of their estimator, we find

strong simulation evidence that the raw estimator does not recover true class probabilities πi

in expectation under the model distribution. Then Pearson residuals ri from Equation (10)

are also distorted, which means that the expected fraction of data used in Equation (18) is not

97.5%. Depending on how the raw parameter estimates are distorted, too many observations

may be excluded from Equation (18). enetLTS may thus produce worse estimates of α and

λ than glmnet, at least in the absence of contamination, because it discards too much ‘good’

data and is thus much less efficient than suggested.

This is exactly what happens in our simulations. Across 100 repetitions, the raw BY-EN

estimator flags 17.1% of observations as outliers on average in the uncontaminated p < n

setting. In the uncontaminated p > n setting, this is 10.0% on average, which helps explain

why the two hyperparameter tuning methods lead to more similar results in this case than

when p < n. Even though much more than 2.5% of the training data is excluded on average,

less of the variation of X is removed from the data when p > n than when p < n. When

too much variation is removed from the data, as in our p < n setting, our estimate of the

optimal degree of shrinkage is biased towards zero. Much as Hastie et al. (2017) found that

the best subset selection operator (which essentially applies zero shrinkage) dominates lasso

in the high signal-to-noise regime because less shrinkage is required in this setup than in
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the noisy regime, the ‘clean’ data causes enetLTS to produce a solution with less shrinkage

than what is required for the more noisy data generating process. In other words, the outlier

rejection rule in Equation (11) removes so much of the variability in the training data that

it is no longer representative of the data generating process. BY-EN overfits the ‘clean’ data

and has poor out-of-sample performance, because the test data is drawn from the (more

variable) data generating process. To resolve this issue, one needs to either improve the raw

estimate or change the rejection rule. The current rule is valid if the Pearson residuals are

(asymptotically) normal, but clearly this assumption is unreasonable when the raw estimator

is used in its current form.

4.5 Cellwise Contamination

In this section we investigate the behaviour of the estimators in the presence of cellwise

contamination. We inspect only the CLR-EN, CLR-AdaEN, CLR-BSS and CLR-BSSL es-

timators as they produced calibrated forecasts in the uncontaminated setting. We further

include the robust oracle, to see if its robustness under the rowwise contamination paradigm

has any value in the presence of cellwise contamination. The simulation setup is identical to

that of Section 4.2.1, except we randomly replace 5% of cells in training design X by draws

from a N(20, 1) distribution.

4.5.1 No Robustness

We first inspect what happens when no robustness measures are taken. The results of this

scenario may be found in the subfigures of Figure 9 that are labelled Raw. The CLR-AdaEN

estimator performs best in this setting, but clearly none of the methods are robust. All

estimators, including the CLR-AdaEN, can be made uncalibrated by making the outliers

sufficiently extreme. We further observe that the robust oracle breaks in this scenario.

Although the estimator is able to handle 5% rowwise outliers, the propagation of outliers

under the cellwise contamination paradigm means that the breakdown point of the estimator

is exceeded in this scenario.

4.5.2 DDC

The subfigures of Figure 9 that are labelled DDC exhibit the results that are obtained

when the DDC algorithm is applied to the training data before the estimators are fitted.

Improvements can be observed in all regularised CLR methods, which are now roughly as

well calibrated as they were in Section 4.2.1. A notable exception to this improvement is the

robust oracle, which becomes completely uncalibrated when the DDC algorithm is applied.
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We speculate that this result is due to model inconsistency that arises when cellwise and

rowwise outliers are treated separately, as discussed by Filzmoser et al. (2020). If pre-

processing of the training data by DDC is inconsistent with the model assumed by the

robust oracle, then we may observe a worsening of results as seen here.

(a) CLR-BSS
(Raw)

(b) CLR-BSSL
(Raw)

(c) CLR-EN
(Raw)

(d) CLR-AdaEN
(Raw)

(e) CLR-BSS
(DDC)

(f) CLR-BSSL
(DDC)

(g) CLR-EN
(DDC)

(h) CLR-AdaEN
(DDC)

(i) Robust Oracle
(Raw)

(j) Robust Oracle
(DDC)

(k) CLR-AdaEN
(Robust weights)

Figure 9: Calibration plots for the p < n setting with 5% cellwise contamination. Results are
obtained across 100 simulation runs with 1000 test observations each. CLR denotes classical logis-
tic regression. (Ada-) EN and BSS (-L) stand for (adaptive) elastic net penalty and best subset
selection (with lasso penalty). Raw indicates no robustness measures were taken, while in plots la-
belled DDC the training data were pre-processed with the DetectDeviatingCells algorithm. Robust
weights indicates robust adaptive weights were used.
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4.5.3 Robust Adaptive Weights

The poor calibration of the robust oracle in the preceding section demonstrates the need for

methods that can simultaneously handle rowwise and cellwise outliers. As a first venture into

this topic, we inspect the behaviour of the CLR-AdaEN estimator when we compute robust

adaptive penalties as in Machkour et al. (2020). The calibration plot of this estimator may

be found in the last subfigure of Figure 9. Although the graph trails the 45-degree line fairly

closely, we still observe some deviations. The calibration plot is highly similar to that of the

CLR-AdaEN without robust adaptive weights (Section 4.5.1), though this may simply be a

matter of our choice of simulation parameters. If the fraction of contamination or the gravity

of the outliers was increased, we expect that the CLR-AdaEN with robust adaptive weights

outperforms the performs its non-robust equivalent. The relatively strong performance of the

non-robust CLR-AdaEN indicates that the adaptive elastic net penalty inherently possesses

some robustness. If outlying variables are penalised heavily by the initial estimator, the

non-robust adaptive weights should resemble their robust counterparts to some degree, even

if outlyingness is not explicitly incorporated into the adaptive weights.
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5 Real Datasets

In this section we investigate if the calibration results of the simulation study extend to real

datasets. We use two datasets, which we inspect in turn. For each dataset, we first describe

the data used and subsequently inspect calibration of the methods. As in Section 4, we

use calibration plots. If multiple methods are calibrated, we again use the Brier score to

determine which is most efficient.

5.1 Dataset 1: Molecule Classification

5.1.1 Data Description and Processing

We first consider a dataset from the field of chemistry, which was originally analysed in

Dietterich et al. (1994). The data describes the conformations (‘shapes’) of a series of 102

molecules, which must be classified as either being a musk or not being a musk. These

conformations are determined by measuring the position of each component of a molecule

(i.e. an atom) relative to the position of a ‘baseline’ molecule, which was chosen arbitrarily.

Predictors are therefore the distances between an atom’s positioning and the position of

the corresponding atom of the baseline molecule. Distances are measured in hundredths of

Angstroms (10−12 metres). Although this means the predictors are integer-valued, we treat

the data as being continuous on an arbitrary scale, per the recommendations of the authors.

The ground truth classification is determined by human experts, who have established

that 39 of the 102 molecules are musks and the remainder are non-musks. The dataset

consists of a total of 6,598 observations of 166 predictors and a class indicator. We remove

3 predictors that have a median absolute deviation of zero. The data are imbalanced, with

15.4% of observations being classified as musks. Further, the predictors exhibit a relatively

large variability for both classes. Though this is expected for the non-musk molecules, which

are likely more diverse in conformation, predictor values are highly variable even among the

class of musks. A simple check using robust Mahalanobis distances10 flags 2,383 observations

as suspect, of which 110 are in the class of musk molecules. This accounts for approximately

10% of all musk observations, which one might intuitively expect to be more alike. Overall,

the dataset appears to contain multiple observations whose location in the design space may

make them influential.

Although we are interested in probabilistic forecasting with high-dimensional data, the

fact that p < n in this dataset is actually an advantage. As there are considerably more

10We compute Mahalanobis distances using the median as location estimate and the MCD matrix as
scatter estimate. The 97.5th percentile of the χ2(163) distribution is used as cutoff.
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observations than predictors, we shuffle the data and split it into 10 datasets of 659-660

observations each. The split takes into account that the classes are imbalanced, approxi-

mately replicating this imbalance in each dataset. We then create a training/test split in

each smaller dataset, again taking into account class imbalance. This approach begets us

10 high-dimensional datasets which each have 163 predictors, 75 training observations and

584-585 test observations. Compared to a single train/test split with a large test set, our

approach has the advantage of fitting each estimator 10 times on independent datasets. This

helps alleviate the randomness of parameter estimates. A drawback of the approach is that

fewer observations are available for forecasting, as we need 10 times more training examples

than if we used a single split. However, we believe that the benefits of fitting the estimator

on more than one training set outweighs this cost.

(a) CLR-EN (b) CLR-AdaEN (c) CLR-BSS (d) CLR-BSSL

(e) BY-EN (glmnet) (f) SVM (g) Neural net

Figure 10: Calibration plots for the molecule classification data. Results are obtained by splitting
the original data into 10 smaller datasets, which are subsequently split into 75 training observations
and 584-585 test observations each. CLR denotes classical logistic regression, whereas (Ada)EN and
BSS(L) respectively indicate an (adaptive) elastic net penalty or best subset selection (with lasso
penalisation) was used for variable selection. The BY-EN estimator is the Bianco-Yohai estimator
with elastic net penalisation, using hyperparameters optimised for the CLR-EN estimator.
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5.1.2 Results

The calibration plots in Figure 10 show that CLR-EN attains the best results on this dataset.

The greatest deviations from the 45-degree line occur in the largest probability bins, where

the fitted forecasting distribution is less dense than the empirical distribution. This appears

to primarily be a result of too many test observations being assigned forecasted probabili-

ties of approximately 50%, a phenomenon that was already observed in the simulations in

Section 4 as a result of shrinkage. The main difference with the simulation results is that

deviations from the 45-degree line are now concentrated in a single tail, such that the distor-

tions to the calibration plots are no longer sigmoidal. This is attributable to class imbalance,

with the estimator only observing an average of b0.154 ∗ 75c = 11 musk molecules in each

training set. The difficulty that this imbalance presents is well-established in the literature

(e.g. Weiss, 2004) and is common to all RCLR estimators. Overall, results regarding the

RCLR estimator are in line with those found in the simulations of Section 4.3.1. As in

the simulations, the elastic net outperforms its adaptive counterpart. When the number of

training examples is small, the theoretical benefits of the adaptive penalty need not lead

to any improvement in forecasting performance. Among the methods based on best subset

selection, the penalised estimator clearly outperforms, illustrating the benefits of shrinkage.

Neither of the robust regularised estimators managed to converge on any of the datasets.

The BY-EN failed to achieve convergence within the time limit of 30 minutes, whereas all

versions of the CR estimator produced numerical errors during the integration step used to

compute the robust quasi-likelihood11. As a reference method, we instead include BY-EN

with hyperparameters selected by glmnet as discussed in Section 4.4. Figure 10 shows that

the estimator’s forecasts are highly uncalibrated and inferior to those of CLR-EN. Despite

the large variability of the predictors, the penalised classical estimators are clearly preferable

for this data.

Between the machine learning methods, the SVM’s performance stands out, especially

considering that the SVM learns based on fewer training examples than the other methods.

In each dataset, 30 training examples were reserved for Platt scaling, such that the SVM is

effectively trained on 45 observations. Nonetheless, the SVM can compete with the RCLR

estimators, in terms of calibration as well as sharpness. Both CLR-EN and the SVM attain

a Brier score of approximately 0.093, lower than any other method. The neural net is less

effective and is completely uncalibrated.

11Similar errors occurred when the code of Avella-Medina and Ronchetti (2017) was first used in the
simulation study, but minor changes to the code ensured that the errors never occurred again during the
simulations. We have not been able to figure out why the errors re-occur in this application.
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5.2 Dataset 2: Predicting Trisomy in Mice

5.2.1 Data Description and Processing

The second dataset is more recent and comes from the field of biology. The data were

originally studied by Higuera et al. (2015) and describe the expression levels of 77 proteins

that produced measurable signals in the brains of mice. The goal of the study was to

identify the subset of proteins that best distinguish between trisomic mice (i.e. mice with

Down syndrome) and non-trisomic mice.

The data consists of 15 measurements of 72 mice, for a total of 1,080 observations.

Per the recommendations of the authors, we treat these observations as describing 1,080

independent samples. The data originally describes 8 classes of mice, which were based

divided on the presence or absence of trisomy, whether the mice were drugged and whether

they were stimulated to learn. We reduce this to 2 classes, focussing only on the presence or

absence of trisomy. Among the 72 mice, 34 were trisomic, such that the resulting dataset is

approximately balanced (47.2% positive labels). We encode the data on whether the mice

were drugged and whether they were stimulated to learn as two additional, binary predictors.

We consider this approach more meaningful than removing this data. It is probable that

trisomic and non-trisomic react differently to these treatments, in which case the dummy

variables are informative predictors of trisomy and should be kept in the dataset. The

inclusion of the dummy variables begets us a total of 78 predictors, with the remaining 76

consisting of protein expression levels, which are continuous. As the expression of protein

pS6 N is perfectly collinear with the remaining predictors, we remove it from the data,

reducing the total to 77 predictors.

Among the 75 continuous predictors retained in the dataset, approximately 1.7% of

cells is missing values. In the absence of further information, we treat these cells as being

missing completely at random (Rubin, 1987) and impute them using multiple imputation by

chained equations, implemented in R using the mice12 package (Van Buuren and Groothuis-

Oudshoorn, 2021). To control the influence of potential outliers, we estimate each missing

value 10 times and impute the median.

As in the preceding section, we split the (imputed) data into multiple smaller datasets

instead of using a single train/test split. Because the dataset is smaller, we split the data

into 3 folds of 360 observations. Each fold is then split into 66 training observations and 294

test observations, such that we again create a high-dimensional problem.

12The irony was not lost on us.
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5.2.2 Results

The top two rows of Figure 11 show that the smaller number of test observations available in

this dataset leads to highly variable calibration plots. For this reason, we include smoothed

versions of the plots in the bottom two rows. Smoothing is performed using local (LOESS)

regression and we add the 95% confidence intervals of the regressions. The results as shown

in the smoothed calibration plots are quite impressive, with multiple methods trailing the

45-degree line closely. CLR-EN, CLR-BSSL and the SVM are arguably the best performers

and no longer exhibit large deviations at the right tail of the empirical distribution, now that

the classes are more balanced. Overall, the calibration plots suggest that balancing classes

may be highly beneficial to forecasting performance. One may exploit this knowledge by e.g.

oversampling the minority class, an approach that has already been shown to be effective in

practice (see e.g. Cerqueira et al., 2016).

Contrary to Section 5.1, the Bianco-Yohai estimator converges in under 30 minutes on

this dataset, as both the number of training examples and the dimensionality are now smaller

than in the preceding section. Figure 11 shows that the estimator’s calibration is mediocre

compared to that of its classical counterpart, with the estimated forecast distribution having

fatter tails than its classical counterpart. Nonetheless, the 45-degree line stays within the

95% confidence interval along the entire graph, which is acceptable. When we fit BY-EN

using hyperparameters α and λ as selected by glmnet for the classical counterpart, calibration

visibly improves. This is in line with our findings in the simulation study, which showed that

the estimator may be improved by using a less harsh outlier rejection rule. Too much of

the training data is removed using the threshold suggested by Kurnaz et al. (2018b), which

results in poorly optimised hyperparameters.

To round up our analysis of this dataset, we compare the sharpness of the calibrated

forecasting methods to see which method performs best. In terms of pure calibration perfor-

mance, one would choose CLR-BSSL based on the smoothed plots in Figure 11. The SVM

is also a viable candidate and has the advantage of its calibration being less uncertain. In

the scatterplots, the SVM exhibits the least variability, which is also reflected in the com-

paratively tight 95% confidence interval in the smoothed plots. This is not reflected in the

sharpness of the forecasts however, where the SVM (Brier score of 0.141) underperforms

the CLR-BSSL (0.091). Overall, one would likely prefer the CLR-BSSL for the forecasting

problem that was posed in this section.
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(a) CLR-EN (b) CLR-AdaEN (c) CLR-BSS (d) CLR-BSSL

(e) BY-EN (enetLTS) (f) BY-EN (glmnet) (g) SVM (h) Neural net

(i) CLR-EN (j) CLR-AdaEN (k) CLR-BSS (l) CLR-BSSL

(m) BY-EN (enetLTS) (n) BY-EN (glmnet) (o) SVM (p) Neural net

Figure 11: Calibration plots for the Trisomy data. The bottom two rows are smoothed versions
of the top two rows, shaded regions are 95% confidence intervals. Results are obtained across 3
datasets, which are split into 66 training observations and 294 test observations each. CLR and BY
respectively denote classical logistic regression and the Bianco-Yohai estimator, while (Ada)EN and
BSS(L) indicate an (adaptive) elastic net penalty or best subset selection (with lasso penalisation).
enetLTS and glmnet refer to the package used to tune hyperparameters BY-EN estimator.
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6 Discussion

In this section we summarise the main results of the paper and discuss important limitations

to which the results are subject. Subsequently, we provide some recommendations for future

research.

6.1 Results and Limitations

This study shows that probabilistic forecasting with high-dimensional data is a viable endeav-

our. Whether we use best subset selection or an elastic net penalty, the RCLR estimators

outperform the machine learning methods and produce calibrated forecasts with greater

sharpness in both uncontaminated simulation scenarios. This finding is not just applicable

to simulations where the logistic regression methods are correctly specified by design, as

the estimators that were viable in the simulations also perform well on the real datasets.

Pertaining to the robust estimators, it is important to note that our findings only reflect

the theoretical properties of the BY-EN estimator. The regularised Cantoni & Ronchetti

estimator was mostly inhibited by implementation issues and could not be thoroughly inves-

tigated as a result. Nonetheless, this drawback of the estimator as it is currently available

is imperative and implies that, in its current implementation, it cannot be used for logistic

regression.

To choose between estimators in practice, one would look at other crucial criteria such as

computation time, which we almost completely ignored in this paper. This is an important

limitation of our analysis. We deemed the BY-EN competitive with the classical estimators

in the high-dimensional setup, but its computation time is so much larger (minutes, even

in small datasets, as opposed to seconds for the classical methods) that the estimator is no

longer viable if p or n is increased meaningfully. Similarly, we treated best subset selection

and the convex elastic net penalty as equivalent because of their forecasting performance,

but for practical applications one would virtually always prefer the elastic net. Not only does

the convex penalty lead to a reduced computation time, convex optimisation algorithms are

implemented and freely available in virtually all popular programming languages. Optimi-

sation algorithms for the best subset selection operator, on the other hand, rely on mixed

integer programming solvers. These are typically only implemented in commercial software

packages.

Another important limitation of this paper was alluded to in our analysis of the Molecule

Classification data. The results clearly show that all methods struggle with class imbalance,

which is a feature of many real-world classification datasets. There is a large branch of

literature that focusses on classification with class imbalance, also for high-dimensional data,
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but probabilistic forecasting with such data has not yet been investigated to the best of our

knowledge. We expect that oversampling the minority class would prove useful, as it did for

classification tasks. Alternatively, one might consider gradient boosting techniques. These

can be either combined with a probabilistic classifier or used with classification trees which

are subsequently calibrated.

Pertaining to the performance of the machine learning methods, we emphasise that the

SVM performed better on the real-life Trisomy data than in our simulations. This could

point to an issue of our implementation of the SVM. Specifically, the simulations only test

the performance of the SVM with a Gaussian kernel. Though we optimised hyperparameters

in each iteration, it could be the case that better results were obtained if we tried multiple

kernels, which is what one would do in practice.

6.2 Future Research

Perhaps the most important result of this research pertains to the BY-EN estimator. Our

simulations indicate that it can serve as an effective probabilistic forecasting tool for contam-

inated, high-dimensional data, but that it is inhibited by its reweighting step. We show that

the outlier detection rule, which is successfully used by robust estimators such as LTS for

the low-dimensional setting, has unexpected effects in high-dimensional settings. In future

work, it would be worthwhile to investigate how one could deal with this challenge. A better

tuning approach could make the estimator a reliable probabilistic forecasting tool for all

settings. Computational speedups are required, but this is less of a challenge. For example,

there are hyperparameter tuning heuristics which are much faster than the brute-force grid

search used currently.
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7 Conclusion

This research investigated whether logistic regression can produce accurate class probability

estimates when the data are high-dimensional. Our simulations showed that this is the case.

As long as we employed suitable variable selection techniques such as the elastic net or best

subset selection, we could produce calibrated and sharp forecasts. This result also held up

when we applied the estimators to real datasets.

We further investigated the performance of the estimators in the presence of contami-

nation. We contaminated 5% of our simulated data, which was sufficient to break all esti-

mators based on classical logistic regression. We compared the performance of two different

approaches to robust logistic regression with high-dimensional data, which were respectively

introduced by Avella-Medina and Ronchetti (2017) and Kurnaz et al. (2018b). Due to nu-

merical issues, we were not able to investigate the performance of the former’s proposal in

depth, but the latter’s estimator proved promising. Surprisingly, our simulations showed that

their estimator was able to produce accurate forecasts when the data were high-dimensional

and contaminated, but not when the data are low-dimensional and uncontaminated. We

investigated this issue in more detail and found that the estimator struggles with poor opti-

misation of the hyperparameters of its elastic net penalty. This explained why the estimator’s

forecasting performance differed on a case-by-case basis in our simulations. Future research

may attempt to resolve this issue by improving the estimator’s reweighting step.

A final question that we sought to answer in this research is how the logistic regression

methods compared to that of popular machine learning methods. Based on the work of

Niculescu-Mizil and Caruana (2005), we used two machine learning algorithms, neural net-

works and support vector machines. Neural networks are naturally a probabilistic classifier

and therefore did not require any output processing, while support vector machines rely on

calibration techniques. In our simulations, neither method produced calibrated forecasts,

though neural networks exhibited a greater degree of robustness than support vector ma-

chines, which rely on maximum likelihood estimation for calibration. When we applied the

machine learning methods to real data, support vector machines proved competitive with

the regularised logistic regression estimators. This could indicate that the support vector

machines’ performance in the simulations was hampered by algorithm choices, specifically

the use of a Gaussian kernel. In practice, one should always try multiple kernel functions.
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A Appendix: List of Acronyms

AdaEN Adaptive elastic net. 8

Adalasso Adaptive lasso. 7

BSS Best subset selection. 9

BY-EN Bianco-Yohai estimator with elastic net penalty (enetLTS estimator). 18

CLR-AdaEN Classical logistic regression with adaptive elastic net penalty. 20

CLR-BSS Classical logistic regression with best subset selection. 20

CLR-BSSL Classical logistic regression with best subset selection and lasso penalty. 20

CLR-EN Classical logistic regression with elastic net penalty. 20

CR Cantoni-Ronchetti. 29

CR-Lasso Cantoni-Ronchetti estimator with lasso penalty. 32

CV Cross-validation. 7

DDC DetectDeviatingCells. 13

EN Elastic net. 8

IRLS Iteratively reweighted least squares. 13

LTS Least trimmed squares. 10

RBF Radial basis function. 20

RCLR Regularised classical logistic regression. 20

RRLR Regularised robust logistic regression. 16

SVM Support vector machines. 20
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