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Abstract

We consider a framework for large institutional investors, who deal with proportional transactions

costs as well as market-impact transaction costs. We consider a stock price model based on

Geometric Brownian Motion and derive the Hamilton-Jacobi-Bellman (HJB) equation and an

optimal turnover rate governed by this equation. Our model is a generalization of previously

considered models as we allow for multiple assets and a combination of proportional costs and

market-impact costs. To solve the HJB equation and the optimal turnover rate, we propose several

approximation methods. In a simulation study these approximation methods are compared to each

other and existing methods found in practice and literature. We find that an optimal policy is

described by a no-trade zone around the Merton point and (depending on costs structure) linear

trading towards this optimum outside the no-trade region. We also find that this policy helps with

decreasing downside risk and is quite robust to misspecification.

The content of this thesis is the sole responsibility of the author and does not reflect the view of the supervisor, second assessor, Erasmus

School of Economics, Erasmus University or APG Asset Management



Contents

1 Introduction 3

2 Literature 5

3 Optimal trading 8

3.1 Single-asset Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Multi-asset model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Small Costs Asymptotic Approximation . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Polynomial Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Simulation 19

4.1 Simulating Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Simulation findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Results for assets with negative correlation . . . . . . . . . . . . . . . . . . 21

4.3.2 Results for assets without correlation . . . . . . . . . . . . . . . . . . . . . . 22

4.3.3 Results for assets with positive correlation . . . . . . . . . . . . . . . . . . . 24

5 Discussion and conclusion 26

References 28

A HJB equation derivation for the single-asset with constant risk-free rate setting 30

B HJB equation derivation for the multi-Asset with O-U risk-free rate setting 33

C No-trade zones 36

2



1 Introduction

In the world of modern portfolio theory stylized approaches give well-understood and easily im-

plementable results, see for example Merton (1969). However, in practice these results are too

good to be true. An assumption that directly forfeits the results from a stylized setting is the

assumption of a perfect market. This assumption takes the form of information equilibria, infinite

market dept, and most importantly no transaction costs. For a small investor transaction costs

consist of a percentage of the traded amount or a fixed cost per trade. For larger investors we see

transaction cost in the form of market impact costs. The optimal allocation problem with fixed

or proportional transaction costs has been reviewed many times before, see Cadenillas (2000) for

a review.

We consider specifically how a large institutional investor, for example a pension fund, should

approach transaction costs. Two methods currently used in practice are a method where trading is

done to remain in a certain bandwidth around the optimum, and a method where trading is done

towards a target with trading speed proportional towards the target (see Gârleanu and Pedersen

(2013)). It is however unclear how the approaches differ in performance compared to each other,

as most literature is more focused towards solving the mathematical problem in different settings,

than to discuss the implications this has for practice.

The aim of this thesis is to make clear what the implications are for large (institutional) in-

vestors. We furthermore propose a new specification of transactions costs combining approaches

from previous literature. We set up a mathematical model for the transaction costs, which gen-

eralizes previous literature and we also extend this model to the setting for multiple risky assets

and cash. Our transaction costs structure consists of both proportional costs and market-impact

(power) costs. We consider the isoelastic utility in our optimization problem. By dynamic pro-

gramming and the Bellman principle, we find the non-linear dynamical system the value function

for this problem should adhere to. On top of this, we find an intuitive solution for the optimal

trading strategy depending on the value function. We use an asymptotic approximation also used

in literature and a Taylor approximation to circumvent solving the non-linear system.

We apply these trading strategies in a simulation setting and measure their performance against

other strategies found in literature and practice. We also simulate certain settings to check how

robust the strategies are for misspecification. In the simulation setting we look at the mean

performance and the performance in a tail-event. We find that our proposed trading strategies

perform well and outperform other methods. We also find that even if the costs are actually zero,

our strategies still perform near the optimal Merton strategy.

In Section 2, we provide a more extensive overview of past literature in the field of portfolio

theory with transactions costs. Building on these past approaches, we formulate the problem

mathematically, derive the dynamical system and discuss how to solve this equation numerically

for the single-asset and multi-asset formulation in Section 3. We also show some results for the
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value function and optimal trading strategy in this section. In Section 4, we discuss the methods

used in our simulation setting and also discuss their results. Concluding and summarizing in

Section 5, we discuss the results and propose possible further applications and advances that can

be made using this work for theorists and practitioners.
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2 Literature

The foundations of modern portfolio theory in a long-term setting date back to the very influential

work done by Merton (1969), Samuelson (1975) and Merton (1975). Although a stylized setting is

used, the conclusions that an agent should hold a single optimal portfolio is found over and over

again. This stylized setting mainly consist of a certain process for stock prices, assumptions on

utility preferences and most importantly assumptions that market-friction and transaction costs are

negligible. For an overview of previous literature on long-run portfolio theory without transaction

cost, see Campbell and Viceira (2002).

However, when transaction costs are incorporated, the nature of the problem changes tremen-

dously, as there now exists a trade-off between the rebalancing to the optimal allocation and the

transaction costs this trade has. A model including proportional transaction costs was first posed

by Magill and Constantinides (1976) and sequentially also considered by Constantinides (1986),

Taksar et al. (1988), Davis and Norman (1990) and Shreve and Soner (1994). Cadenillas (2000)

gives an overview of the accomplishments from this string of literature, Davis and Norman (1990)

is generally considered to be the first solution for proportional transaction costs. In Davis and

Norman (1990) a geometric Brownian motion is considered for stock prices in combination with

a power utility. Davis and Norman (1990) and the other literature above almost all form a free-

boundary problem based on (quasi-)variational inequalities and solve this for the optimal solution.

Gerhold et al. (2013) takes a different approach and solves the problem through a dual optimizer.

Even-though, the papers above consider different optimally criteria, it is concluded that rebalanc-

ing should only happen if the portfolio allocation falls outside a certain bandwidth around the

Merton-portfolio, the so-called no-trade (NT) zone. The models above solve the stochastic control

problem with proportional transaction costs, however the results are still not practically viable, as

rebalancing at the boundary still happens continuously to stay inside the boundary. To implicitly

solve this issue, one could consider fixed transaction cost in addition to proportional costs. Pliska

and Suzuki (2004) solve a settings with both fixed and proportional costs and find a NT zone

again, however if allocations exceed this zone rebalancing is done to some optimal portfolio inside

the NT zone. Results with fixed and proportional transaction costs are also derived in Korn (1998)

and Buckley and Korn (1998). As mentioned before from the above literature, it is often found

that the problem translates to a free boundary problem, numerical schemes based on finite element

methods are used in Muthuraman and Kumar (2006) to solve the problem numerically.

In a finite horizon setting, Liu and Loewenstein (2002) finds that the optimal trading strategy

is based on the horizon. They also consider a model with a random end-date and solve this.

Even with all the above results, applicability of the theorems is hard when the number of assets

increase. Therefore, Brown and Smith (2011) come up with heuristics and finds that these perform

near-optimal when used in simulations.

Despite the fact that the problem with proportional transaction costs could be declared solved
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as of Davis and Norman (1990) and the problem with fixed transaction costs proved to be solved

quite fast after that, other costs function have hardly been considered. It is however important

to also consider for example quadratic costs, because proportional costs imply costs caused by

the bid-ask spread, whereas quadratic cost imply cost for market impact. These market-impact

costs are of interest for larger investors. Gârleanu and Pedersen (2013) consider a discrete time

setting in which quadratic costs are implemented. They find that the optimal portfolio consists of

a weighted average of the current portfolio and a target portfolio, such that each time step you

move closer to the optimal portfolio. This is intuitive as it becomes more costly to trade if you

are far away from the optimal portfolio and thus we want to stay close, however trading each time

step directly to the optimal portfolio at this time will cause the portfolio at the next time step

to be less optimal, thus we take a weighted average of future optimal portfolios. Where Gârleanu

and Pedersen (2013) use a setting with prices driven by an arithmetic Brownian motion and direct

mean-variance preferences, Guasoni and Weber (2017) consider the problem in the usual portfolio

theoretical setting, namely with geometric Brownian motion and a terminal wealth problem with

isoelastic utility. Similar to Guasoni and Weber (2018), it is found that optimal trading takes place

towards a target portfolio. The latter 2018 paper even extends the result in a multi-asset market,

where market-impact also affects prices of other assets. The results from Gârleanu and Pedersen

(2013), Gârleanu and Pedersen (2016), Guasoni and Weber (2017) and Guasoni and Weber (2018)

seem to be along the same lines, this is confirmed in Moreau et al. (2017) where a general model

is presented, where the trading rate is dependent on the investors preferences, market volatility,

transaction costs and most importantly is proportional to the distance from frictionless target.

They also show that the case of fixed and proportional transaction costs has certain properties

found with quadratic transaction costs.

Extending on previous results with proportional transaction costs Rej et al. (2015) combines

proportional and (small) quadratic transaction costs and find that the solution consist of a mix of

the above mentioned solutions. That is, the optimal policy consist of some bandwidth and a target

portfolio outside this bandwidth. The bandwidth found is smaller than the bandwidth that would

be found in for example a Davis and Norman (1990) setting. The combination of these two makes

sense as we would like to model the proportional costs from for example the bid-ask spread and

the quadratic costs from market-impact. Liu et al. (2017) confirms this result and incorporates

proportional costs in the model of Guasoni and Weber (2017). The results is again a no-trade

zone and targeted trading outside this region, however it should be noted that both the no-trade

zone as well as the trading rate are both smaller than in models with solely proportional or solely

quadratic costs.

The above results are all found when using quadratic transaction costs as a proxy for market-

impact. The literature in market-impact started with Kyle (1985), who introduces a model to

measure market depth and liquidity. Guasoni and Weber (2020) derive asymptotic behavior which
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show that other specifications of market-impact costs lead to the same result. This result is also

fortified by the work by Gonon et al. (2021), who consider a specification for equilibrium asset

prices. They find that the use of quadratic costs is justified as the effects of other specifications are

rather similar. In all the above literature including quadratic costs (especially Guasoni and Weber

(2017), Liu et al. (2017) and Guasoni and Weber (2020)) a similar non-linear ordinary differential

equation (ODE) is found, which unfortunately has no closed-form solutions. We will continue

on these papers by extending the results with general power transaction costs from Guasoni and

Weber (2020) with proportional transaction costs in the same manner as in Liu et al. (2017). We

will also extend the equations from these papers with a risk-free rate process and in a multi-asset

settings as in Guasoni and Weber (2018). To summarize the significance of this thesis we look at

the following table.

Table 1: Important models in literature and their properties

Literature
Proportional

Costs
Market-impact

Costs
Single-
asset

Multi-
asset

Davis and Norman (1990)
Guasoni and Weber (2017)
Liu et al. (2017)
Moreau et al. (2017)
Guasoni and Weber (2018)
Guasoni and Weber (2020)
This thesis

The literature in this table describes models, we combine to make a new model that incorporates

both proportional costs and market-impact costs. Furthermore, we describe our model in a single-

asset setting and a multi-asset setting.
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3 Optimal trading

In this section, we will discuss how we attack the problem from different angles. We will start by

discussing the theoretically optimal solution in both a single-asset setting and a multi-asset setting

with asymptotic approximations that can made to ease calculation.

3.1 Single-asset Model

We model a financial market with two assets. One cash asset which is risk-free for which we

normalize the risk-free rate to zero. The second asset, a risky asset, follows a geometric Brownian

motion, such that
dSt
St

= µdt+ σ dWt, (1)

where Wt is a standard Brownian motion. µ > 0 is the expected excess return and σ > 0 denotes

the volatility. We assume that trading does not occur at the exogenous price St, but at S̃t which

is given by

S̃t = St

(
1 + ε sign(∆θ) + λ sign (∆θ)

∣∣∣∣St∆θXt∆t

∣∣∣∣α) , (2)

where ∆θ is the number of shares traded and ∆t is the execution time. We denote wealth by Xt

and use this as a proxy for the market capitalization. Here λ and ε (non-negative real numbers)

denote the costs parameters. We denote α ∈ (0, 1] as the elasticity of the price impact to the order

flow. If ε = 0 we find the model of Guasoni and Weber (2020). Likewise, if λ = 0, we find the

model with proportional costs comparable to the model in Davis and Norman (1990). If we set

α = 1, we find a model with proportional costs and linear price impact similar to Liu et al. (2017).

To make the model more tractable, we change to the continuous equivalent. Thus we define θ̇ as

the time derivative for θt, such that we can replace ∆θt
∆t . From the previous equation, we find that

the cash position of the investor evolves as

dCt = −St

(
1 + εsign(θ̇t) + λ

∣∣∣∣∣ θ̇tStXt

∣∣∣∣∣
)

dθt. (3)

Following Guasoni and Weber (2020), we define the wealth turnover as ut := θ̇St
Xt

and the risky

portfolio weight Yt := θtSt
Xt

. We can then use Ito’s rule to find

dXt

Xt
= Yt(µdt+ σ dWt)− ε|ut|dt− λ|ut|α+1 dt (4)

dYt =
(
Yt(1− Yt)(µ− Ytσ2) + ut + ε|ut|Yt + λYt|ut|α+1

)
dt+ Yt(1− Yt)σ dWt (5)

Due to the non-linear costs term the risky asset weight is no longer a control variable, but becomes

a state variable. We can influence the drift term by variable ut, which is now the control variable.

To be precise, we set up a probability space (Ω,F , (Ft)t≥0,P) with Brownian motion (Wt)t≥0 and
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(Ft) the augmentation of the filtration generated by (Wt)t≥0 as defined in Liu et al. (2017). We

define admissible strategies (ut)t≥0, which we require to be square integrable, such that (4) has a

unique solution for t ∈ [0,∞) and Y0 ∈ [0, 1]. We find

Xu
t = X0 exp

(∫ T

0

µYt −
σ2

2
Y 2
t − ε|ut| − λ|ut|α+1 dt+

∫ T

0

σYt dWt

)
(6)

And find optimal admissible strategy (ut)t≥0 if they maximize the equivalent safe rate.

Definition 3.1 The equivalent safe rate (ESR) is given by

ESRγ(u) := lim inf
T→∞

1

T
logE

[
(Xu

T )
1−γ
] 1

1−γ
, (7)

where γ > 0, γ 6= 1 is the relative risk aversion parameter. The ESR denotes the risk-free saving

rate needed to achieve a similar utility as the portfolio.

The equivalent safe rate as specified above implies a isoelastic utility function. We find that value

function for this problem is dependent on Yt and Xt and therefore should have the following form

by Îto’s lemma

dV (t, x, y) = Vt dt+ Vx dXt + Vy dYt +
Vxx
2

d〈Xt, Xt〉

+
Vyy
2

d〈Yt, Yt〉+ Vxy d〈Xt, Yt〉. (8)

By Bellman’s principle of optimality, we must have that the value function is a super-martingale

and furthermore for the optimal control it should be a martingale. Therefore, by filling in equation

(4) and equation (5), we find the following differential equation for the value function

0 = Vt + VxµXtYt + VyYt(1− Yt)(µ− σ2Yt) (9)

+ σ2

(
Vxx
2
X2
t Y

2
t +

Vyy
2
Y 2
t (1− Yt)2 + VxyXtY

2
t (1− Yt)

)
+ max

ut

{
XtVx(−ε|ut| − λ|ut|α+1) + Vy(ut + ε|ut|Yt + λ|ut|α+1Yt)

}
,

where we have to maximize over control variable ut to find the optimal control. When we use the

following ansatz for the solution we can simplify this differential equation.

Ansatz 3.2 As we make assumptions that the utility function is homogeneous of the first degree

and the limited influence time should have on the problem, we find that the value function should

have the following form

v(t, x,y) = U(x) exp

{
(1− γ)

(
β(T − t) +

∫ y

y0

q(ŷ) dŷ

)}
. (10)

In this ansatz U(x) = x1−γ

1−γ denotes the isoelastic utility function, β ∈ (0, µ2

2γσ2 ) denotes the ESR
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and the function q(y) : [0, 1] → R is unknown. The integration lower-bound y0 is unknown, but

irrelevant for our applications.

We find β, function q(y) exist that solve the ordinary differential equation

0 = −β + µy − γσ2

2
y2 + y(1− y)(µ− γσ2y)q (11)

+
σ2

2
y2(1− y)2(q′ + (1− γ)q2)

+ max
u

{
−ε|u| − λ|u|α+1 + (u+ ε|u|y + λ|u|α+1y)q

}
.

simplifying this and filling in the optimal control which we solve analytically, we find

Proposition 3.3 There exists a function q : [0, 1]→ R and constants β ∈ (0, µ2

2γσ2 ) and 0 ≤ y− ≤

y+ ≤ 1 which solve the equation

0 = −β + µy − γσ2

2
y2 + y(1− y)(µ− γσ2y)q (12)

+
σ2

2
y2(1− y)2(q′ + (1− γ)q2)

+


αλ−1/α(α+ 1)−

α+1
α

(q−ε(1−yq))
α+1
α

(1−yq)1/α , if y ∈ [0, y−)

0, if y ∈ [y−, y+]

αλ−1/α(α+ 1)−
α+1
α

(−q−ε(1−yq))
α+1
α

(1−yq)1/α , if y ∈ (y+, 1]

.

Where q′ = dq/dy and 0 ≤ y− ≤ y+ ≤ 1 define the no-trade region. On the boundaries the

function q and parameters β, y− and y+ adhere to the following

q(0+) = ε+ (α+ 1)
(
λβαα−α

) 1
α+1 , (13)

q(y−) =
ε

1 + y−ε
, (14)

q(y+) =
−ε

1− y+ε
, (15)

q(1+) =
d− ε

d− ε+ 1
with d = λ(α+ 1)

(
β − µ+

γσ2

2

)α
, (16)

where q(0+) and q(1−) denote limy↓0 q(y) and limy↑1 q(y), respectively. The optimal policy found

in this setting is given by

u± = max

{
0,

[
1

λ(α+ 1)

(
± q(y)

1− yq(y)
− ε
)]1/α

}
, (17)

where u+ (u−) is the optimal buy (sell) policy.

We see that the ODE is equal to equation (12) in Guasoni and Weber (2020) if ε = 0 and y− = y+.

If α = 1 the equation is similar to equation (3.1) of Liu et al. (2017). We also see that the optimal
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policy implies a no-trade zone around the optimum of the value function and weighs the trading

outside this no-trade zone dependent on market-impact costs.

3.2 Multi-asset model

We can also model a financial world with two risky assets and a riskless cash asset. The model we

describe is general enough to describe a model with cash and any number of assets, however as we

will use a two asset setting later, we will describe the model as such. We model these risky assets

by a geometric Brownian motion, such that

dSit
Sit

= (rt + λ′σi)dt+ σ′i dWt, (18)

where rt is the risk-free interest rate, λ is the market price of risk and σi denotes a quantity that

has properties similar to volatility, thus we will refer to it as volatility. dWt are the increments

in the uncorrelated multivariate Brownian motion Wt. As we have two assets we also use two

Brownian motions, such that all vectors are of length 2. We also write σ to denote the 2×2 matrix

of the stacked vectors σ1 and σ2. We define St = (S1
t , S

2
t )′. However, we assume that instead of

St we pay Ŝt, which is given by

Ŝt = St

(
1 + ε1 sgn(∆θt) + ε2

∣∣∣∣St∆θtXt∆t

∣∣∣∣α) , (19)

where ε1 and ε2 are the positive cost parameter vectors. θt denotes the amount of stocks, such

that a ∆ operator denotes the change in that amount. We again denote total wealth by the

scalar Xt, which we will define later. Products, absolute values and powers in this equation are

element-wise, that is Ŝit = Sit
(
1 + ε1,i sgn(∆θt,i) + ε2,i

∣∣(Sit∆θt,i)/(Xt∆t)
∣∣α). Generally, it will be

clear from context what kind of product is used. The first costs term denotes a linear costs term,

which resembles the costs often associated with a bid-ask spread (Guasoni and Weber (2020)). The

second costs term denotes the power costs, we associate with market impact. This formulation

uses the investors wealth as a proxy for the total wealth in the financial system. Such that a trade

of one million dollars will have less effect nowadays, when compared to 100 years ago, as would be

logical. Let ∆t be the time interval on which the trading takes place, when we buy a lot in a short

time this will cause more costs than when ∆t is bigger. This formulation is used in Guasoni and

Weber (2020) as well. We move to a setting with infinitesimal trading by taking a limit and thus

∆θt/∆t→ θ̇t. We also introduce ut = Stθ̇t/Xt, which denotes the wealth turnover. We now have

Ŝt = St + ε1|ut|+ ε2|ut|α+1 (20)
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We denote the total costs function as K(u) = ε′1|ut| + ε′2|ut|α+1. As the cash position is only

affected by the interest rate and the trading of stocks. We model the cash position as

dCt = rtCt dt− Ŝ′tθ̇t dt. (21)

We define the total wealth as Xt = θ′tSt + Ct and proportion of wealth in a risky asset as Yt =

θtSt/Xt. In a simpler setting Guasoni and Weber (2017) concludes that short selling or borrowing

is never optimal. As their arguments still hold for our setting Ct, Xt and Yt are all non-negative

and
∑
i Y

i
t ≤ 1. Using Îto’s lemma, we find

dXt

Xt
= rtdt+ Y ′t (σλdt+ σdWt)−K(ut)dt, (22)

dYt = (ut + Py(σλ−ΣYt) +K(ut)Yt) dt+ PyσdWt, (23)

where Py = diag(Yt) − YtY ′t and Σ = σσ′. Due to the non-linearity in the costs, we cannot use

the Yt as control variables as one would in a setting without transaction costs. However, we will

use the previously defined wealth turnover ut as a control variable. As we are looking at an infinite

time period, we wish to optimize the control variable over the equivalent safe rate (ESR) as we did

in the single variable problem as well. To solve this optimization problem, we use the principles of

Bellman and set up the requirements a value function for this problem should satisfy. We know

that the value function is dependent on both the current wealth and the proportion of wealth in

the risky assets.

Ansatz 3.4 Due to homogeneity and the limited influence time should have in such a setting we

can also take an ansatz for the value function to be

v(t, x,y) = U(x) exp(β(1− γ)(T − t))ϕ(y). (24)

In this ansatz U(x) = x1−γ

1−γ denotes the isoelastic utility function, β denotes the ESR and the

function ϕ : [0, 1]2 → [0, 1] is unknown.

We set up a Hamilton-Jacobi-Bellman equation for ϕ(y) by using Îto’s lemma on the value function

(with respect to wealth and risky asset proportion) and setting the drift to zero, as the value

function should be a martingale in the optimal scenario. Consequently, we find an optimal trading

policy based on the value function and the equation the value function should solve.

Proposition 3.5 Assuming ϕ 6= y′∇ϕ, ∀y in the domain the optimal trading policy is given by

u∗(y) = sgn(∇ϕ)


(
|∇ϕ|

ϕ−y′∇ϕ − ε1

)+

(α+ 1)ε2


1/α

, (25)

12



where (·)+ equals max(0, ·). Here ϕ(y) solves the following equation in the unit simplex.

0 = max
u

(
ϕ(y)(−(1− γ)β + (1− γ)(rt + y′σλ−K(u))− 1

2
γ(1− γ)y′Σy)

+ (∇yϕ)′((1− γ)(PyΣy) + u+ Py(σλ−Σy) +K(u)y)

+
1

2
Tr
[
PyΣPyD

2
yϕ(y)

])
, (26)

here we have omitted subscripts for time and lower-case characters are used to ease notation. ∇y
and D2

y denote the gradient and Hessian operator respectively.

The proof for this proposition can be found in the appendix and follows similar steps as the

single-asset setting. Again, we assume it is obvious where element-wise operations are used. The

interpretation behind this optimal value is also quite straightforward. The sgn(∇ϕ) term makes

sure the trading is in the right direction, that is, we buy when this has a positive effect on the

value function and sell when an increase in risky asset position leads to a worse value function.

The numerator of the term in brackets causes a no-trade zone when the the marginal gain in the

value function is less than the marginal costs caused by the linear transaction costs. When the

numerator is positive, the denominator influences the size of the trade. If ε2 is large, which would

imply larger costs for larger trades, we would trade in smaller steps. However this solution for

the optimal u is dependent on the unknown function ϕ, this makes the above equation not easily

solvable. However, we are able to intuitively comment about the form of the function. We expect

the function to have a maximum at the Merton proportion and to be decreasing moving away

from this proportion. Due to the increasing effect of quadratic costs, the further away from the

Merton proportion we are, we also expect the function to decrease faster further away from this

proportion. This would mean we have a parabolic shaped function with a peak at the Merton

proportion. When transaction costs are zero, that is the Merton problem, we know the solution

of the value function is not dependent on a function ϕ(y), which means this function equals the

multiplicative identity 1, due to our ansatz. Due to our ansatz it is also not possible that our

function is negative. Therefore, we conclude that our function has an upper bound of 1 and a

lower bound of 0.

The differential equation as described above is found to be hard to solve. Both forms, that

is the single-asset and multi-asset descriptions, have non-linear terms due to the optimal control.

To find a solution to this problem we have implemented algorithms to iteratively find a solution.

That is, we start by a given policy (for example, do not trade) and solve the equation numerically

for the value function, then use this value function to find a new policy. We could repeat this

process until convergence, however after a few steps of this algorithm the trading policy blows up

to non-sensible values. We have tried this for the single-asset as well as the multi-asset model. For

the single-asset have also implemented the Runge-Kutta method to solve the differential equation.

This method solves initial value problems starting at one boundary and integrating numerically,
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however we notice some extreme behavior at the boundaries making this method also unfit to

handle the problem. This extreme behaviour at the boundary is mainly caused by terms like

1/(y(1−y)), which explode near y = 0 and y = 1. Therefore, we propose two methods to solve this

equation. In both methods, we propose a certain Ansatz for the value function. In the first, we

assume that costs are small and that are value function can be approximated around the Merton

proportion. In the second method, we propose to take a Taylor polynomial around the Merton

proportion and minimize the error in the differential equation.

3.3 Small Costs Asymptotic Approximation

A method to find the value function instead of solving the above Hamilton-Jacobi-Bellman equa-

tion, is to approximate it for small costs. Reasonably, we would expect the value function to be

concave with a maximum value at the Merton proportion. This is also quite common in other

literature and a main example is Guasoni and Weber (2018), where an approximation is used for

small quadratic costs. In their work it is assumed that the costs function is of the form εu′Λu,

translating this to our specification of the cost function this would mean that our costs parameter

vector ε2 =
(
εΛ1,1

εΛ2,2

)
and the off-diagonal elements of Λ are zero. In this setting we would take

α = 1. They find that the value function is approximated by

ϕ(y) ≈ exp

(
−
(εγ

2

)1/2

(Ȳ − y)′C(Ȳ − y)

)
, (27)

where Ȳ is the Merton proportion and C is a known matrix dependent on Λ and the covariance

matrix of the risky assets. We see that this approximation has the expected form, it is a parabolic

shaped function with a maximum at the Merton proportion. Unfortunately, this approximation

is only applicable in presence of quadratic costs. This means that α must equal 1 and that

proportional costs are not taken into account. As the approximation is made when ε approaches

zero, we could argue that the proportional costs are of a higher order of ε than the quadratic

costs and that they disappear ’quicker’. As Equation (25) is given, we would still end up with the

two properties the optimal solution must have, that is the no-trade zone close to the target and

increased trading towards the target further away.

To illustrate our value function, we find below the value function in the unit simplex.
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Figure 1: Asymptotic approximation for the value function in the unit simplex with a marker at
the optimum which coincides with the Merton point

As the trading strategy depends directly on the value function and its derivatives, we find the

following trading strategies.
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(a) Optimal trading in the Merton scenario
without transaction costs. The red dot denotes
the Merton point which we would optimally like
to be in.
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(b) Optimal trading in a scenario with trans-
action costs. Notice the no trade zone around
the Merton point and the lower trading volume
compared to the other figure

Figure 2: The asymptotically optimal trading strategy according to the chosen value function and
the Merton trading strategy

It is very obvious that in both trading strategies trading is always towards the Merton propor-

tion. However, in the asymptotically optimal strategy we can see a no-trading zone around this

Merton point. This is caused by numerator of the formula for optimal trading. In the no-trade

zone the positive effect of trading (i.e. the increase in the value function) does not outweigh the

negative effect (i.e. the proportional trading costs). A plot clearly indicating the no-trade zone can

be found in the appendix. Furthermore, we see that the trading volume is much smaller at each
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point in the asymptotically optimal strategy. This is caused by the denominator of the optimal

trading formula, where we correct for the trading costs such that volume shrinks as costs increase.

3.4 Polynomial Approximation

Whereas the previous approach was a linear expansion, we could also imagine that the value

function has higher-order terms. In trading we often find ourselves close to but not immediately

on the Merton proportion, therefore this point is of most interest. We propose to estimate the

value function by a Taylor approximation of which the coefficients need to be found. This approach

allows us to keep the minimization problem feasible, while still allowing flexibility in the Ansatz.

In the single-asset case we assume that q(y) = ξ0 + ξ1(y − ȳ) + ξ2(y − ȳ)2 +O
(
(y − ȳ)3

)
. In the

following section we only mention the ξ1 and ξ2 values, as the other values are too low to have a

significant impact on the value function.

As we have mentioned before, applying numerical methods to solve the differential equation

directly does not lead to a solution. However, as we have now given the unknown equation a

specific form the problem is more well behaved. Thus, we set up a discretized model for the

differential equation (12) with the given boundary conditions using a central difference scheme.

We define yi = i/N , where N is the number of nodes on the domain and i ∈ {0, ..., N}. For

every yi, we fill in the Ansatz in the differential equation and for the yi closest the the known and

unknown boundaries we apply the boundary conditions. This approach gives us N equations, with

unknowns β, y−, y+, ξ0, ξ1 and ξ2. To make the problem a minimization problem, we take the sum

of the squares of the N equations.

To further make sure that β ∈ [0, µ2/γσ2], y− ∈ [0, ȳ] and y+ ∈ [ȳ, 1] we also add the squares

of the deviation of the constraint. For example to constraint y−, we add max(0,−y−)2 and

max(0, y− − ȳ)2 to the sum of squares.

To pose this approach in equations let differential equation (12) be denoted as Lq = 0, note

that this is not a linear operator. We can make a discreet version of this operator L(q) = 0, where

we use brackets to emphasize that this is not a matrix vector multiplication, however q and 0 are

vectors. Let the boundary conditions given by equations (13), (16), (14) and (15) be enforced as

above and call this boundary penalty Nb(q, β, y
−, y+). We minimize the total error in this problem

as follows

(ξ∗, β∗, y−∗, y+∗) = arg max
ξ,β,y−,y+

||L(q̃)||22 +Nb(q̃(y), β, y−, y+), (28)

where q̃(y) = ξ0 + ξ1(y − ȳ) + ξ2(y − ȳ)2 and ξ = (ξ0, ξ1, ξ2).

As this model is computationally simple and minimization is only done on a few variables, we

find that optimization can be done for large N . We optimize the model for N = 1000, but see that

for higher values of N the model still gives similar results. We see that for µ = 0.08, σ = 0.16 and

γ = 5 this gives the following functions q(y) and the following optimal trading strategies u(y)
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Figure 3: The optimal q(y) on the left and trading policy u(y) on the right for ε = 0.01, λ = 0.02
and α = 1

We see that the optimal polynomial approximation has a gradient which is a bit steeper than

the small costs approximation. We also notice that indeed the linear approximation seems to fit

well. Due to the steeper gradient, we also see a higher optimal turnover and smaller no-trade zone

in the right graph. For these costs parameters we get the following optimal values

Table 2

Parameter β y− y+ ξ1 ξ2
Value 0.019 0.49 0.74 -0.077 -0.005

We see that the values for y− and y+ are exactly as we see them in the graph. Furthermore, we

notice that indeed ξ2 has quite a small absolute value. With these parameters, we would expect

the return on the Merton portfolio (corrected for risk) to be 0.025. We thus see that for small costs

β is five basispoints lower. In the small costs approximation the gradient is -0.36, which is about

half as steep as the polynomial approximation.

As the small costs approximation is mainly concerned with the quadratic costs, we will also

show what happens to the model if we change other parameters ε and α
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Figure 4: The optimal q(y) on the left and trading policy u(y) on the right for ε = 0, λ = 0.02 and
α = 1

17



In the above graphs we assume no proportional costs. Thus we would expect the small costs

approximation and the polynomial approximation to be almost equal. However, we do still see a

difference in gradient en subsequently in trading policy. We still see that the polynomial approxi-

mation is practically linear.

Table 3

Parameter β y− y+ ξ1 ξ2
Value 0.019 0.63 0.63 -0.054 -0.011

When looking at the values in the above table, we notice that the β is almost the same as

before. We also see that the no-trade zone has vanished as was expected. Furthermore, we do see

that the gradient is less steep compared to the situation with proportional costs.
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Figure 5: The optimal q(y) on the left and trading policy u(y) on the right for ε = 0.01, λ = 0.02
and α = 0.5

In the above graphs we have changed the costs structure from quadratic to another power.

We see that the trading is now not linear anymore. We also see that the polynomial is almost

equivalent to the first one. Further away from the Merton proportion the trading explodes, which

is not very realistic. However, this is not problematic as the strategy itself would probably keep

us close to the optimum. This could also be explained as we approximate the function near the

optimum, so naturally it will deviate as we move further.

Table 4

Parameter β y− y+ ξ1 ξ2
Value 0.019 0.50 0.74 -0.074 -0.005

Looking at the above values, we see again a similar value for the ESR. We also see that the

no-trade zone has become marginally smaller than in the first setting. The value function is similar

as the first scenario.
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4 Simulation

To see how a rebalancing strategy as described above would act in a real-world scenario we simulate

multiple portfolios and calculate their performance. We will describe the simulation setting, the

performance measures we use and see the results of the simulation.

4.1 Simulating Strategies

We simulate five different strategies. We simulate a buy-and-hold portfolio as a benchmark. The

strategy in this portfolio holds the position we start with. This has as consequences that better

performing stocks represent a larger part of the portfolio after time. However, this could also imply

higher volatility and lead to more extreme positions. This strategy does also mean we do not incur

transaction costs. It is widely accepted in literature that when transaction costs are zero, that

the Merton proportion gives the optimal portfolio in terms of utility. Therefore, we simulate this

portfolio as well, however we calculate both portfolio value while considering transaction costs and

without considering transactions costs. In the former, bankruptcy is expected to happen quite

fast and we do not mention the results any longer as this is indeed the case, the latter can be

an (unbeatable) benchmark to check performance against. The last four portfolios we simulate

are the asymptotically optimal trading strategies, two considering transactions costs and another

two where we set transaction costs to zero in the simulation. The former will show how good the

performance is in the optimal scenario, the latter will be used to see if the strategy is also robust

in a misspecified trading scenario.

In the simulation, we need to choose certain parameters. We need to choose parameters for the

(co-)variance, market price of risk and risk-free rate. We also need to choose the costs specification.

As it is known from literature that the α-parameter for market impact costs is approximately one

and because our asymptotic approximation also uses this in its derivation, we will choose this

accordingly. We will furthermore test for a situation negative correlation, no correlation and

positive correlation. We will keep the proportional costs constant, as these costs are associated

with bid-ask spreads which we assume do not cause issues. We will also keep risk-free rate and the

market price of risk constant in all situations as we do not expect these parameters to influence

the results a lot. For all simulations we will use the following parameters. Due to the manner in

which we vary the correlation, we also increase or decrease the total asset price variation. This is

of interest as it affects the size of the no-trade zone and the speed of rebalancing outside this zone.
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Table 5: The parameters used for all simulations. Note: the σ does differ among simulations
to change the correlation of the stock prices. For extra clarity a description of the parameter is
repeated in the results.

Parameter Value Description
r 0.04 Risk less return rate
λ

(
0.5
0.5

)
Market price of risk

σ
(
0.6 0
0 0.5

)
γ 5 Risk-aversion parameter
ε1

(
0.05
0.05

)
Proportional costs

ε2
(

0.1
0.05

)
Market-impact costs

α 1 Market-impact parameter

The parameters are chosen such that they are not too far from a real world situation, similar

parameters were found in literature (see for example Liu et al. (2017)) and in conversation with

practitioners these seemed suitable. We have made sure that the Merton portfolio according to

these variables lies inside the unit simplex. We also make sure that the costs specification does

imply a non-trivial no trade-zone. The risk-aversion parameter is chosen to be 5 as this is generally

regarded as a good value for institutional investors.

4.2 Performance Measures

To measure performance of our different portfolios we consider two main routes to take. We can

evaluate the means of different criteria, but we can also look at tail events to measure risk with

certain portfolio. If the differences between a buy-and-hold strategy and a rebalancing strategy

are for example very small when comparing means, we would still expect a difference when looking

at tail events. Thus rebalancing could also be used as a sort of risk-management tool.

For overall statistics, we look at the mean or median of wealth and utility. Also we look at

the total amount spend on trading costs and the total turnover. Using these last two measure

to see what rebalancing method works best. We expect that rebalancing strategies outperform

buy-and-hold strategies in utility. We look at the mean utility by mentioning the empirical ESR,

which is calculated using the formula given in the definition of the ESR. We also report the increase

in utility with the buy-hold portfolio as a base case. Furthermore, we report return, volatility and

trading costs for the portfolios. Although trading costs is already considered within the other

measures, we can still see why certain portfolio’s might not work.

To measure tail events we look at the Value-at-Risk at the 95% for utility and wealth. Here, it

is logical that buy-and-hold is outperformed in terms of utility. However, it will be interesting to

see whether rebalancing methods will also work as a risk-management tool in terms of wealth. As

rebalancing makes sure there will be less outliers compared to the buy and hold, we expect this

will be the case.
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4.3 Simulation findings

We will now present results from the simulations, for each scenario we report two tables. We first

report the means of different performance measures, second we report the tail performance mea-

sures. We will start with the negative asset correlation results, secondly we will discuss independent

assets, lastly we will discuss assets with positive correlation.

4.3.1 Results for assets with negative correlation

To consider results with negative correlation between stock prices we set σ1,2 = −0.2. The other

parameters stay the same.

Table 6: Key portfolio performance measures when asset prices are generated with negative corre-
lation. The portfolios are a Buy-and-hold (BH) portfolio, the asymptotically optimal small costs
approximation (ASY - SC) portfolio, asymptotically optimal polynomial (ASY - PL) portfolio, a
monthly rebalanced Merton (mMRT) portfolio, and the Merton and asymptotically optimal port-
folios without taking costs into account (MRT NC, ASY - SC NC and ASY - PL NC, respectively).
We report the empirical value for the ESR (β), the increase in utility compared to the BH portfolio,
the mean return, volatility of return and the trading costs

Portfolio
Emperical
ESR
(%)

Increase
in
Utility
(%)

Mean
return
(%)

Volatility
of
return
(%)

Total
trading
costs
(% of
initial wealth)

BH 1.81 0 16.4 11.8 0
ASY - SC 3.16 41.75 14.59 6.89 1.008
ASY - PL 3.23 43.22 14.42 5.50 1.011
mMRT 1.49 -13.40 11.24 5.87 5.458
MRT NC 4.54 66.49 14.53 5.39 0
ASY - SC NC 3.34 45.88 14.32 7.77 0
ASY - PL NC 3.57 50.43 14.44 6.10 0

It is clear that the asymptotically optimal portfolios outperform all other portfolios when con-

sidering costs. And within these two asymptotic portfolios, the polynomial optimized version

performs best. It is also apparent that a buy-and-hold portfolio is better than a monthly rebal-

ance strategy. We see that the monthly rebalance strategy has a high number of costs, implying

this could be problematic. The asymptotically optimal strategy (ASY - PL) outperfoms BH by

approximately 43 percent. Furthermore, we note that when no costs are specified that the Mer-

ton portfolio, which should be optimal, has indeed very good performance. We also see that the

performance of the asymptotic portfolios is about a percent off in terms of ESR. Logically, the

asymptotic polynomial strategy is a bit closer to Merton as this has more aggressive rebalancing.

We furthermore see that the BH strategy has the highest return, however also the highest volatility

of return. Among other strategies this is more or less equal, expect the monthly strategy which

underperforms in terms of return.
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Table 7: Performance measures for tail events at the 95 percent level when assets have negative
correlation. The portfolios are a Buy-and-hold (BH) portfolio, the asymptotically optimal (ASY)
portfolio, a monthly rebalanced Merton (mMRT) portfolio, and the Merton and asymptotically
optimal without taking costs into account (MRT NC, ASY - SC NC and ASY - PL NC, respectively)

Portfolio
VaR95
ESR
(%)

VaR95
return

(%)

Total
trading
costs
(% of

initial wealth)
BH -2.43 3.11 0
ASY - SC -0.68 4.19 0.24
ASY - PL -0.43 4.54 0.55
mMRT -1.88 3.22 43.62
MRT NC 1.25 6.54 0
ASY - SC NC -0.52 4.33 0
ASY - PL NC -0.23 5.33 0

We see that the BH strategy performs very badly in tail events as is expected. We furthermore

see that the differences between the other strategies have become smaller. Especially for the

simulation without costs the difference is much smaller. We also see that the asymptotically optimal

with costs is quite close the the no costs specified simulations in terms of ESR. We furthermore

notice that the Merton portfolio performances a lot better than the other portfolios. Therefore,

in tail events the asymptotic portfolios are not necessarily close to the (unreachable theoretical)

optimum, but they may be the better option among others practically viable options. We note

that when compared to the previous table the costs for all strategies are much higher, this could

imply that in tail events costs play an even more important role.

4.3.2 Results for assets without correlation

For simulation without correlation we use the base parameters as given in the parameter table.
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Table 8: Key portfolio performance measures when asset prices are generated without correlation.
The portfolios are a Buy-and-hold (BH) portfolio, the asymptotically optimal small costs approxi-
mation (ASY - SC) portfolio, asymptotically optimal polynomial (ASY - PL) portfolio, a monthly
rebalanced Merton (mMRT) portfolio, and the Merton and asymptotically optimal without taking
costs into account (MRT NC, ASY - SC NC and ASY - PL NC, respectively). We report the
empirical value for the ESR (β), the increase in utility compared to the BH portfolio, the mean
return, volatility of return and the trading costs

Portfolio
Empirical
ESR
(%)

Increase
in
Utility
(%)

Mean
return
(%)

Volatility
of
return
(%)

Total
trading
costs
(% of
initial wealth)

BH 2.54 0 17.33 12.20 0
ASY - SC 3.39 28.97 14.33 6.99 0.85
ASY - PL 3.44 30.39 13.89 6.10 0.93
mMRT 2.11 -18.62 11.22 5.78 4.54
MRT NC 4.54 55.17 14.34 5.56 0
ASY - SC NC 3.49 31.72 14.40 7.45 0
ASY - PL NC 3.62 35.12 14.36 0 0

We see similar results in this case as we saw in the negative correlation setting. The Empirical

ESR has increased for all parameters. Although the ranking of the strategies remains similar, we

see that the monthly rebalancing strategy performs even worse. We also see that the asymptotic

strategies outperform the BH strategy a lot less by only around 30 percent. Theoretically, the

effect of adding covariance will have a linear effect on the expected return and a quadratic effect

on the variance. Thus the difference between adding covariance and simulating no covariance

has a difference on the increase in utility, possibly implying that the performance of rebalancing

strategies increases as covariance increases. However, it could also imply rebalancing strategies

perform better with higher total variance in the model, which is trivial.

Table 9: Performance measures for tail events at the 95 percent level when assets have no cor-
relation. The portfolios are a Buy-and-hold (BH) portfolio, the asymptotically optimal (ASY)
portfolio, a monthly rebalanced Merton (mMRT) portfolio, and the Merton and asymptotically
optimal without taking costs into account (MRT NC, ASY - SC NC and ASY - PL NC, respec-
tively)

Portfolio
VaR95
ESR
(%)

VaR95
return

(%)

Total
trading
costs
(% of

initial wealth)
BH -1.77 2.34 0
ASY - SC -0.62 4.14 0.12
ASY - PL -0.49 4.40 0.25
mMRT -1.25 3.20 27.22
MRT NC 1.24 6.11 0
ASY - SC NC -0.54 3.96 0
ASY - PL NC -0.10 4.86 0

We also notice here that in the tail events the differences have also become smaller. Their
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is almost no difference in the values for utility for the no-cost strategies and the asymptotically

optimal with costs. Although, this could be said already for the previous setting. We see that the

asymptotic strategies do improve the tail ESR and return, however when looking at the no-costs

specification, we see that the asymptotic strategies do not perform near the optimum. Thus when

a risk of misspecification is present, these asymptotic portfolios might not be a good method to

decrease portfolio risk.

4.3.3 Results for assets with positive correlation

To simulate stock prices with positive correlation we consider σ1,2 = 0.2. The other parameters

remain as in the above table.

Table 10: Key portfolio performance measures when asset prices are generated with positive cor-
relation. The portfolios are a Buy-and-hold (BH) portfolio, the asymptotically optimal small costs
approximation (ASY - SC) portfolio, asymptotically optimal polynomial (ASY - PL) portfolio, a
monthly rebalanced Merton (mMRT) portfolio, and the Merton and asymptotically optimal with-
out taking costs into account (MRT NC, ASY - SC NC and ASY - PL NC, respectively). We
report the empirical value for the ESR (β), the increase in utility compared to the BH portfolio,
the mean return, volatility of return and the trading costs

Portfolio
Empirical
ESR
(%)

Increase
in
Utility
(%)

Mean
return
(%)

Volatility
of
return
(%)

Total
trading
costs
(% of
initial wealth)

BH 2.77 0 20.21 15.34 0
ASY - SC 3.57 27.27 14.98 8.03 0.97
ASY - PL 3.67 29.88 15.21 7.80 1.02
mMRT 2.50 -11.36 11.91 5.43 3.91
MRT NC 4.50 50.00 14.34 4.93 0
ASY - SC NC 3.67 30.30 14.72 7.78 0
ASY - PL NC 3.84 34.12 14.53 7.21 0

We see that again the ranking of strategies on ESR is equal. The differences have again become

smaller with ASY - SC, ASY - PL and BH, where ASY - SC outperforms BH by only 27 percent.

Also the difference in standard deviation between the two is very small. However, the volatility of

return of BH is almost double that of ASY - PL. We see again that total costs are even smaller

than the independent assets scenario. What is noticeable is that even with higher total variance

the difference between models has again decreased. This could imply that rebalancing works best

against certain stock movements. In the 2D unit simplex, we could thus imagine that movement

towards the hypotenuse are harder to rebalance. An explanation for this could be that to rebalance

such a movement (to the hypotenuse) would require us to trade in both assets, whereas other

movements would only require trading in one asset.
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Table 11: Performance measures for tail events at the 95 percent level when assets have negative
correlation. The portfolios are a Buy-and-hold (BH) portfolio, the asymptotically optimal (ASY)
portfolio, a monthly rebalanced Merton (mMRT) portfolio, and the Merton and asymptotically
optimal without taking costs into account (MRT NC, ASY - SC NC and ASY - PL NC, respectively)

Portfolio
VaR95
ESR
(%)

VaR95
return

(%)

Total
trading
costs
(% of

initial wealth)
BH -1.68 2.99 0
ASY - SC -0.43 4.04 0.13
ASY - PL -0.41 4.09 0.15
mMRT -0.89 3.98 23.06
MRT NC 1.23 6.43 0
ASY - SC NC -0.37 4.23 0
ASY - PL NC -0.33 4.66 0

We see that the tail event results are marginally better in the positive correlation scenario when

compared to the other scenarios. However, we do not see a lot of change between strategies. It is

also noticeable that the total trading costs is fairly low in this last scenario.

25



5 Discussion and conclusion

In this thesis, we have investigated a portfolio problem where proportional costs and market impact

costs are considered. This problem arises when a trader, such as a pension fund, has trades of a

large enough size to cause influence on the price. We start on the foundations of modern portfolio

theory, which does not consider transaction costs. Cases with transaction costs proportional to the

trade size have previously been considered. In more recent literature quadratic costs are considered,

we continue this route. In literature approaches are taken for combinations of proportional costs

and market-impact costs, as well as, single-asset and multi-asset portfolios. We look into the case of

proportional and market-impact costs in a single-asset setting and also in a multi-asset setting. We

define the state-variables on which the problem relies and by a dynamic programming approach we

find a Hamilton-Jacobi-Bellman equation, which should be satisfied. This approach is used often

in recent research. From this equation we derive an optimal trading strategy depending on a value

function, which can be found by solving the equation. The equation we find is highly non-linear

and we see that it is hard to solve, either analytically or numerically. To approximate the solution

we continue on two roads. In literature a small costs approximation is found and we show that this

can be used in our case as well. We also optimize a polynomial on the domain to approximate the

value function. Both the small costs approximation and the polynomial approximation result in a

linear (reduced) value function. The optimal strategy, we find also has an understandable form.

We expect from the proportion costs setting that there is a no-trade zone and from the quadratic

costs we expect a correction in trading size, which we both see. We see that due to the linear value

function, that the trading strategy has a no-trade zone and is linear outside the no-trade zone for

proportional and quadratic costs. If instead of quadratic costs, we take 1.5-power costs, we see

trading change accordingly. We continue with these optimal strategies and make assumptions on

the form of the value function. Simulating different scenarios tells us how the new trading strategy

performs compared to other conventional strategies.

We find that the asymptotically optimal strategy outperforms both the buy-and-hold and a

monthly rebalancing strategy in every scenario. We see that as correlation between assets moves

form negative correlation to independence to positive correlation the differences become smaller.

This shift in differences is notable as with the shift from negative to positive correlation we im-

plicitly also increase the variation of the stock price, in turn this influences no-trade zones and

trading speed. We see that We see that our method also outperforms all methods in tail events.

Especially for positive correlation, but this was also seen in other scenarios, is that when costs

are not taken into account the asymptotically optimal strategy still performs remarkably good

compared to the optimal strategy, therefore we conclude that our proposed strategy is also quite

robust for misspecifications. We see especially for monthly rebalancing that the associated costs

really impact the performance.

Our proposed methods therefore provide a simple and intuitive trading strategy, which has
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good performance in a simulation setting. However, our method has not been proven for a non-

stylized setting. In our research we have optimized a polynomial to minimize the sum of squares

of the loss for the differential equation we have derived. However, we eventually look into how

this performs in a simulation setting. We could also imagine optimizing the polynomial in the

simulation setting. This approach is more suitable for future research for practitioners as it drifts

away from the theoretical discussion in this paper. The field of transaction costs, particularly

market-impact costs, still has lots of uncovered problems and the methods used in practice are

heuristic at best. As we see that using an approximation to a theoretical optimum improves utility

and returns drastically, there is still a lot to be gained in this field.
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Gârleanu, N. and Pedersen, L. H. (2013). Dynamic trading with predictable returns and transaction

costs. The Journal of Finance, 68(6):2309–2340.
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A HJB equation derivation for the single-asset with con-

stant risk-free rate setting

We use the process for wealth

dXt

Xt
= Yt(µdt+ σdWt)− ε|ut|dt− λ|ut|α+1dt (29)

and the process for risky asset weight

dYt =
(
Yt(1− Yt)(µ− Ytσ2) + ut + ε|ut|Yt + λYt|ut|α+1

)
dt (30)

+σYt(1− Yt)dWt

to set up Îto’s formula for the value function as follows

dV (t, x, y) = Vtdt+ VxdXt + VydYt +
Vxx
2
d〈Xt, Xt〉+

Vyy
2
d〈Yt, Yt〉+ Vxyd〈Xt, Yt〉 (31)

= Vtdt+ Vx
(
(µYtXt − ε|ut|Xt − λ|ut|α+1)dt+ σYtXtdWt

)
(32)

+ Vy
(
(Yt(1− Yt)(µ− σ2Yt) + ut + ε|ut|Yt + λ|ut|α+1Yt)dt+ Yt(1− Yt)dWt

)
+
Vxx
2
σ2X2

t Y
2
t dt+

Vyy
2
σ2Y 2

t (1− Yt)2dt

+ Vxyσ
2XtY

2
t (1− Yt)dt.

As argued in Liu et al. (2017) the value function must be a supermartingale for every admissible

strategy and a martingale for the optimal one by the martingale optimality principle of stochastic

control. Thus focusing on the drift of the above function we find

0 = Vt + VxµXtYt + VyYt(1− Yt)(µ− σ2Yt) (33)

+ σ2

(
Vxx
2
X2
t Y

2
t +

Vyy
2
Y 2
t (1− Yt)2 + VxyXtY

2
t (1− Yt)

)
+ max

ut

{
XtVx(−ε|ut| − λ|ut|α+1) + Vy(ut + ε|ut|Yt + λ|ut|α+1Yt)

}
By homotheticity of the power utility function and the assumption that in the long run utility

grows at a constant exponential rate, we take the following ansatz for the value function. This

ansatz is also used in the literature in Guasoni and Weber (2017), Guasoni and Weber (2018),
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Guasoni and Weber (2020) and Liu et al. (2017).

V (t, x, y) =
x1−γ

1− γ
exp

{
(1− γ)

(
β(T − t) +

∫ y

y0

q(z)dz

)}
(34)

combining this with (33) and dividing by (1− γ)V (t, x, y) (we also replace Xt and Yt by x and y,

respectively). We find the following ordinary differential equation of q(y)

0 = −β + µy − γσ2

2
y2 + y(1− y)(µ− γσ2y)q (35)

+
σ2

2
y2(1− y)2(q′ + (1− γ)q2)

+ max
u

{
−ε|u| − λ|u|α+1 + (u+ ε|u|y + λ|u|α+1y)q

}
.

If we split u into a positive and negative part, that is u = u+ − u−, we find

0 = −β + µy − γσ2

2
y2 + y(1− y)(µ− γσ2y)q (36)

+
σ2

2
y2(1− y)2(q′ + (1− γ)q2)

+ max
u+≥0

{
−εu+ − λuα+1

+ + (u+ + εu+y + λuα+1
+ y)q

}
+ max
u−≥0

{
−εu− − λuα+1

− + (−u− + εu−y + λuα+1
− y)q

}
.

Solving this we find that the optimal u+ and u− are given as follows

u± = max

{
0,

[
1

λ(α+ 1)

(
± q(y)

1− yq(y)
− ε
)]1/α

}
. (37)

Based on previous literature and following the methods of Liu et al. (2017), we assume a that

the no balancing region
{
y : −ε < q(y)

1−yq(y) < ε
}

is given by an interval [y−, y+]. The filling in the

optimal trading strategy and the no-trade region in the differential equation gives us

0 = −β + µy − γσ2

2
y2 + y(1− y)(µ− γσ2y)q (38)

+
σ2

2
y2(1− y)2(q′ + (1− γ)q2)

+


αλ−1/α(α+ 1)−

α+1
α

(q−ε(1−yq))
α+1
α

(1−yq)1/α , if y ∈ [0, y−)

0, if y ∈ [y−, y+]

αλ−1/α(α+ 1)−
α+1
α

(−q−ε(1−yq))
α+1
α

(1−yq)1/α , if y ∈ (y+, 1]

.

As there are four unknown elements in this equation, we will need an additional four conditions. We

find these by taking limits at the boundaries and imposing continuity restrictions at the no-trade
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boundary. We find the following conditions

q(0+) = ε+ (α+ 1)
(
λβαα−α

) 1
α+1 , (39)

q(y−) =
ε

1− y−ε
, (40)

q(y+) =
−ε

1− y+ε
, (41)

(−q(1+)− ε(1− q(1+)))
α+1
α

(1− q(1+))1/α
=

(
β − µ+

γσ2

2

)
αλ1/α(α+ 1)

α+1
α , (42)

where q(0+) and q(1−) denote limy↓0 q(y) and limy↑1 q(y) respectively.
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B HJB equation derivation for the multi-Asset with O-U

risk-free rate setting

The derivation of the differential equation used in the multi-asset setting is primarily the same as

the single-asset setting. We derive both the differential equation in a setting with wealth and a

setting with funding ratio. In essence the single-asset and multi-asset setting are similar, although

some terms from correlation between Brownian motions of assets and liabilities might arise in a

setting with funding ratio. We will denote K = K(ε,u) = ε′1|u| + ε′2|u|α+1, which should be

evaluated elementwise on some operations, as the transaction cost function. In the follow we will

assume two assets and all matrix dimensions to be such that the products work out. We assume

the risk-free rate follows an Ohrstein-Uhlenbeck process drt = κ(r̄−rt)dt+σrdW r
t . We assume the

ith risky asset follows
dSit
Sit

= (rt + σ′iλ)dt+ σ′idWt, where Wt is an independent two-dimensional

Brownian motion and 〈dW r
t , dWt〉 = ( ρ1ρ2 ) dt. We also introduce the liability process Lt as given

by a bond with maturity τL, this follows dLt
Lt

= (rt −DLσrλr)dt −DLσrdW
r
t . For simplicity we

denote σ as the matrix of individual σ′i stacked and we denote Σ = σσ′ The cash position follows

dCt = rtCtdt− S′tdθt −KXtdt, (43)

as derived in the single-asset case. Following from the above and defining the wealth as Xt =

θ′tSt + Ct and the risky asset weight yit =
θitS

i
t

Xt
, an application of Îto’s lemma shows that

dXt

Xt
= (rt + y′tσλ−K)dt+ y′tσdWt (44)

dyt = (ut + P (yt)(σλ−Σyt) +K(ε,ut)yt)dt (45)

+P (yt)σdWt.

With these processes for the state-variables of the value-function. We find

dVt = ∂tvdt+ ∂xvdXt + (∇yv)′dyt +
1

2
∂xxvd〈Xt, Xt〉+ ∂x(∇yv)′d〈Xt,yt〉+

1

2
〈dyt, D2

yvdyt〉 (46)

Using a similar ansatz as the single-asset case which is also seen in Guasoni and Weber (2018).

v(t, x, y) = x1−γ

1−γ exp {(1− γ) (−β(T − t) + w(y))}, setting q = ∇yw, and seeing that

d〈Xt, Xt〉 = X2
t y
′
tΣytdt

d〈Xt,yt〉 = XtP (yt)Σytdt

〈dyt, D2
yvdyt〉 = Tr

[
P (yt)ΣP (yt)D

2
yv
]
dt.
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We also see that the ansatz implies

Xt∂xv = (1− γ)v X2
t ∂xxv = −γ(1− γ)v

∇yv = (1− γ)vq D2
yv = (1− γ)v((1− γ)qq′ + Jq)

Xt∂x(∇yv) = (1− γ)2vq,

where Jq denotes the Jacobian operator. As we are only interested in the drift part of the process,

we can fill in the following:

dVt = (...)dWt +

(
− β + y′tσλ−K (47)

+ q′(ut + P (yt)(σλ−Σyt) +Kyt) (48)

+ (1− γ)q′P (yt)Σyt − γytΣyt

+
1

2
Tr[P (yt)ΣP (yt)((1− γ)qq′ + Jq)]

)
dt.

The process should be a martingale for the optimal value function and thus for an optimal u the

drift will be equal to 0. The optimal value for ut will be divided in the optimal buy u+
t and optimal

sell policy u−t . The optimal values are

u±it = max±

[
0,

(
−ε1i(1− q′y)± qi
(α+ 1)ε2i(1− q′y)

)1/α
]

(49)

This divides the optimal policy for every asset into three areas, in case of two assets we thus have

32 = 9 different areas. To incorporate this into the equation (47), we define

gi(qt,yt) =


qitu

+
it − (1− y′tqt)(ε1iu

+
it + ε2i(u

+
it)
α+1), if ε1i <

qit
1−y′tqt

0, if − ε1i ≤ qit
1−y′tqt

≤ ε1i

−qitu−it − (1− y′tqt)(ε1iu
−
it + ε2i(u

−
it)

α+1), if − ε1i >
qit

1−y′tqt

, (50)

. Then the PDE we must solve will be equal to (26).

If we were to extend the same to a setting with funding ratio, which equals Ft = Xt
Lt

. Where

Lt follows
dLt
Lt

= (rt −DLσrλr)dt+DLσrdW
r
t . (51)

We should replace all processes of Xt with Ft which follows

dFt
Ft

= (ytσλ−K(ε,ut) +DLσrλr +
1

2
D2
Lσ

2
0)dt+ y′tσdWt +DLσrdW

r
t . (52)

Possible correlation between the Brownian motion of bonds and risky assets causes extra terms, if
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we let 〈dW r, dWt〉 = rhodt, we see

d〈Ft, Ft〉 = F 2
t (ytΣyt +D2

Lσ
2
r + 2DLσry

′
tσρ)dt (53)

d〈Ft,yt〉 = Ft(P (yt)Σyt +DLσrP (yt)σρ)dt. (54)

Seeing that this does not affect the optimal ut, the previous optimal policy still holds. The equation

we have to solve is

0 = −β + y′σλ+DLσr(λr +
1

2
DLσr) (55)

+ (σλ− γΣy −DLσrσρ)′P (y)q

− 1

2
γ(y′Σy +DLσr(DLσr + 2y′tσρ))

+ Tr[P (y)ΣP (y)((1− γ)qq′ + Jq)]

+ g1(q,y) + g2(q,y),
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C No-trade zones
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Figure 6: The optimal trading strategy in terms of turnover with marked no-trade zones.

In the above plot we can see the no-trade zone specified for each proportion of assets held. We see

that the no-trade zone is approximately a square. This makes sense as we could look at the form

of q(y)/(1 − yq) in the single-asset case. This term can be found in the optimal trading strategy.

Filling in the asymptotic approximation leads to a linear term in the numerator and a quadratic

term in the denominator, due to the coefficients of these polynomial we get a function that is

almost linear around 0 and thus the no-trade zone will be of this square form.
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