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Abstract

We use the Poisson Optional Stopping Times (POST) algorithm to value American

options and compute early exercise boundaries. We examine extensions to the Black-Scholes

model such as Kou’s jump-diffusion model and the Heston stochastic volatility model and

analyse how different jump parameters influence the exercise boundaries. We find that POST

accurately values American options following a jump-diffusion process and that average

jump size and skewness are the most important factors influencing the exercise boundary.

Extending POST to stochastic volatility with jumps and American-type Asian options also

proved possible, although less accurate due to the added dimension.
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1 Introduction

In their seminal paper, Black and Scholes, 1973 laid down the fundamentals of option pric-

ing. Their contingent claims analysis of a vanilla (put/call) option on an asset following a

geometric brownian motion (GBM) led to a partial differential equation (PDE) with an ele-

gant analytical solution. Since then, a growing body of literature is devoted to extending their

techniques to price more complicated options following more complicated stochastic processes.

Minor changes in the option pay-off (such as the possibility of early exercise) or the stochastic

process of the asset price (such as time-varying volatility) quickly diminish the availability of

analytical solutions. Numerical methods face a trade-off between versatility and speed. The

universally applicable Monte-Carlo Simulation comes with a huge computational burden, espe-

cially for path-dependant options and faster specialized tools for specific option types require

arduous derivations. A new numerical method developed in Lange et al., 2020 presents a

middle ground: Poisson Optional Stopping Times (POST). Originally proposed to solve real

option valuation problems, the method combines traditional finite difference discretization with

a stochastic solution to the free-boundary problem that arises when pricing options with early

exercise conditions. They solve the problem by allowing the option to only be exercised at

random, Poisson distributed, stopping times. In financial terms this can be seen as imposing a

liquidity constraint. This provides a computationally simple and graspable numerical solution

to the difficult differential equations arising from expanded Black-Scholes models. This paper

demonstrates that POST can be used to compute exercise boundaries for a variety of option

types with minimal technical derivations, specifically options with characteristics that make

them difficult to value. The applications increase in complexity, starting with American options

following a jump-diffusion (JD) process, after which American options following a Stochastic

Volatility (SV) process and American-type Asian options following a JD process are examined.

We demonstrate how the algorithm can be used to quickly compare jump distributions and

model specifications, with few technical derivations.

Extensions to the Black-Scholes model are necessary because the empirical applications of

the Black-Scholes model show two major inconsistencies with the its theoretical assumptions.

The first is that the Black-Scholes model assumes constant variance, yet the volatility implied

from market prices of derivatives often shows a slight curve (the volatility ‘smile’ or ‘smirk’)

over time to maturity. The second inconsistency is that the assymetric leptokurtic features of

asset returns are inconsistent with the assumption that asset prices follow a geometric Brow-

nian motion. To explain the assymetric leptokurtic features a number of changes to the BS

model have been proposed. Kou, 2002 provides an extensive list, which is summarized as fol-
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lows: The first type of models are fractional Brownian motion (Rogers, 1997), Chaos theory

(Mandelbrot, 1963) and stable processes (Samorodnitsky and Taqqu, 1994). The second type

concern generalized hyperbolic models (Barndorff-Nielsen and Shephard, 2001, Blattberg and

Gonedes, 1974). The third type are time-changing Brownian motions (Clark, 1973, Madan and

Seneta, 1990, Heyde, 1999). To explain the the volatility smile five different types of models

have been proposed: 1) Stochastic volatility and ARCH models (Hull and White, 1987, Engle,

1995 and Fouque et al., 2000), 2) constant elasticity of variance models (Cox and Ross, 1976,

Davydov and Linetsky, 2001), 3) the original normal jump model by Merton, 1976, 4) affine

stochastic volatility and affine jump-diffusion models (Heston, 1993, Duffie et al., 1998) and 5)

Lévy processes (Geman et al., 2001). The majority of the presented models provide analytic

solutions for European options, whereas the numerical methods for path-dependent options are

often much slower, for a survey see Boyle et al., 1997.

Evidence that asset prices in stock markets and foreign exchange markets contain jumps is

presented in Jarrow and Rosenfeld, 1984, Ball and Torous, 1985, Jorion, 1988 and Bates, 1996.

While this provides a valid argument for the attention jump-diffusion models have received

over the past years, a comprehensive model proposed by Kou, 2002 sparked popularity in the

field. Merton, 1976 and Cox and Ross, 1976 started the field by deriving closed form solutions

for jump-diffusion and pure jump processes respectively. Modern literature on jump-diffusion

process mainly builds upon the double exponential jump-diffusion model proposed by Kou,

2002, which assumes the price process is a Brownian motion with a double exponential jump

component. An advantage of this model is that it produces ready to use expressions for path-

dependent options such as lookback, barrier, Asian and occupation-time-related options (see

Kou and Wang, 2004 and Cai et al., 2010). As these expression contain some approximations and

assumptions, they are called semi-analytic. A host of similar models have also been proposed,

which include the phase-type diffusion model (PHM) and the hyperexponential jump-diffusion

model (HEM), see Cai and Kou, 2011 for an overview.

The remainder of this article is structured as follows: Section 2 gives a brief overview

of Kou’s Jump-Diffusion model, section 3 provides a brief summary of the POST algorithm,

section 4 discusses how POST can be used to compute American put prices for Kou’s model,

gives a numerical validation and examines the effect of jumps on the exercise boundary, section

5 extends POST for American options following stochastic volatility, section 6 extends POST

for American-type Asian options and section 7 summarises our findings.
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2 Kou’s Jump-Diffusion Model for Option Pricing

The asset price dynamic introduced in Kou, 2002 consists of a Brownian motion and a jump

component. Under the physical measure P this is defined as

dS (t)

S(t−)
= µdt+ σdW (t) + d

N(t)∑
i=1

(Vi − 1)

 , (1)

where µdt+σdW (t) is the increment of a Brownian motion with drift µ, volatility σ andW (t) is a

standard Wiener process. The jump component
∑N(t)

i=1 (Vi − 1) can be interpreted as a sequence

of independent identically distributed (i.i.d.) jumps. The number of jumps is determined by

Poisson process N(t) with rate λJ , where J denotes it relates to the jump rate and not to the

POST rate defined later, and the magnitude of a jump is determined by i.i.d. random variables

Vi. Specifically in Kou, 2002 Vi is chosen such that Yi = log(Vi) has an asymmetric double

exponential distribution with the density

fY (y) = p η1 e
−η1y1{y≥0} + q η2 e

η2y1{y<0},

η1 > 1, η2 > 0,
(2)

where p, q ≥ 0 represent the probabilities of upward and downward jumps, respectively and

p+ q = 1. Treating upwards and downwards jumps as separate cases provides an intuitive way

to define Y as

log(V ) = Y :=


ξ1 with probability p,

−ξ2 with probability q,

(3)

where ξk is an exponential random variable with mean 1/ηk. The stochastic elements of the asset

price dynamic (W (t), N(t), Y ) are all assumed to be independent. In order to get analytical

results, Kou, 2002 assumes drift and volatility to be constant. Solving the stochastic differential

equation yields the asset price:

S (t) = S (0) exp

{(
µ− 1

2
σ2
)
t+ σW (t)

}N(t)∏
i=1

Vi, (4)

which displays the stock price as a product of the gains from the Brownian motion and the

cumulative gains from all jumps. The expected value of jump size V explains the restrictions

on η1 and η2: E(V ) = E(eY ) = pη1
η1−1 + qη2

η2+1 , which means η1 > 1, η2 > 0 are necessary to ensure

E(V ) <∞ and subsequently E(S) <∞. In practice this means the average jump cannot exceed

100%, which is a reasonable assumption to make.

The jumps in the asset price process have implications for the deriving the risk-neutral

probability measure. Due to the jumps it is impossible to use the risk-free hedging argument,
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which means the risk-neutral measure is not unique. Kou, 2002 shows that by assuming rational

expectations and HARA type utility it is possible to derive a probability measure P for which

the equilibrium price of an option is equal to the expectation of the discounted option pay-off

under said probability measure. The asset price process retains its double exponential jump-

diffusion form under this measure. The asterisks denote the value of the parameters under the

risk-neutral measure (see Kou, 2002 for the exact derivation of these parameters), in which case

equation 1 becomes:

dS (t)

S(t−)
= (r − λ∗ζ∗)dt+ σdW ∗ (t) + d

N∗(t)∑
i=1

Yi

 . (5)

The return process X(t) = log(S(t)/S(0)) under P has the following form:

X(t) = (r − 1

2
σ2 − λ∗ζ∗)t+ σW ∗(t) +

N∗(t)∑
i=1

Y ∗i , X(0) = 0, (6)

where W ∗(t) is a standard Brownian motion under P, N∗(t) is a Poisson process with intensity

λ∗J and log jump sizes Y ∗ are i.i.d. random variables with a double exponential distribution.

The density for the double exponential distribution under P is fY ∗(y) ∼ p∗η∗1e
−η∗1y1y≥0 +

q∗η∗2e
η∗2y1y<0. The term λ∗Jζ

∗ corrects the drift for the extra variance introduced by the jump

process, to ensure the process is risk-neutral under P. It can be interpreted as the expected

change over time due to the jumps, as λ∗J determines the jump intensity and ζ∗ is defined as

the expected value of the change in S(t) due to a jump:

ζ∗ := E∗[V ∗]− 1 =
p∗η∗1
η∗1 − 1

+
q∗η∗2
η∗2 + 1

− 1. (7)

Another important characteristic of the process which is necessary for option valuation is

the infinitesimal generator of X(t):

(LV )(x) :=
1

2
σ2V ′′(x) + (r − 1

2
σ2 − λ∗ζ∗)V ′(x) + λ∗

∫ ∞
−∞

[V (x+ y)− V (x)]fY (y)dy. (8)

Due to the jump term this takes the form of a partial integro-differential equation (PIDE).

From now on we will drop the asterisks in the notations, all parameters will refer to the risk-

neutral value.

3 Poisson Optional Stopping Times

POST was originally proposed in Lange et al., 2020 to solve real option problems. Such options

usually encompass a problem in which two or more stochastic processes (e.g. costs and revenues)

determine the future cash flows of a project. The owner of the project has the option to stop
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receiving the cash flow, receiving a one-time stopping gain in exchange. Take for example

owning a company; future cash flow f(X,Y ) is a simple function of costs X and revenues Y .

The stopping gain g(X,Y ) can be seen as selling the company for a lump sum, which depends

on the value of X and Y at the time of sale. This presents obvious parallels with option pricing.

Instead of a sale there is a pay-off at maturity, which depends on the stochastic asset price.

Assume the option can not be exercised continuously, only at certain moments generated

by an exogenous Poisson process with rate λ <∞ (not to be confused with λJ from the jump

process). Then denote the intrinsic value of the project Vλ(X,Y ). This value should reflect the

expected future cash flows as well as the option to receive the stopping gain. Receiving this

stopping gain is only possible at a generated stopping time. The intensity of the arrivals thus

affects the intrinsic value, which is reflected in subscript λ. We are interested in finding the

optimal exercise policy of the real option. To this end the state space is divided in two regions.

In the continuation region it is optimal to continue receiving the cash flow. The intrinsic value of

holding on to the option should exceed the stopping gain in this situation, Vλ(X,Y ) > g(X,Y )

for each (X,Y ) in the continuation region. In the stopping region the stopping gains should

exceed the value of holding on to the option, Vλ(X,Y ) ≤ g(X,Y ). The equation that should

hold for each possible value of V (X,Y ) is derived from contingent-claims analysis:

rVλ(X,Y ) = LVλ(X,Y ) + f(X,Y ) + λ[g(X,Y )− Vλ(X,Y )]+, (9)

for each (X,Y ) ∈ R. Here r > 0 is the risk-free rate, L is the infinitesimal generator of the

process (Xt, Yt) regarding small changes in t, hence the subscript, and [ · ]+ = max(0, · ). The

equation can intuitively be understood as follows: the discounted return rVλ(X,Y ) is equal to

expected change in Vλ(X,Y ) attributable to a change in (X,Y ), as measured by LVλ(X,Y ),

plus the cash flow f(X,Y ), plus the additional gain from exercising the option, which is active

when the project is in the stopping region. POST arrival rate λ reflects that opportunities to

exercise arrive at Poisson rate λ. A detailed explanation of this equation can be found in Lange

et al., 2020, in Appendix A, who explain the connection of the term λ[g(X,Y ) − Vλ(X,Y )]+

with penalty methods. For our application it is only necessary to know that it solves the

free-boundary problem encountered in liquidity-constrained stopping problems.

For standard diffusion processes, L takes the form of a partial differential equation (PDE).

If we take (Xt, Yt) to be a 2-dimensional Brownian motion L is given by:

L = µx
d

dX
+ µy

d

dY
+
σ2x
2

d2

dX2
+
σ2y
2

d2

dY 2
+ ρσxσy

d2

dXdY
, (10)

where µx and µy are the risk-neutral drifts, σ2x and σ2y are the variance coefficients and ρ

measures the correlation between Xt and Yt. Solving equation 9 then amounts to solving a
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PDE.

L measures the instantaneous change of Vλ(X,Y ) due to a change in (X,Y ). It does so

indefinitely, which means we assume an infinite horizon for this project. To tackle projects with

a finite horizon we can define one state variable to represent time and truncate the state space

to the interval we are interested in. Our approach remains virtually the same, as we simply set

the drift to 1 and variance to 0, to obtain a deterministic process. When we set Xt = t and Yt

a Brownian motion with drift, L becomes

L =
d

dX
+ µy

d

dY
+
σ2Y
2

d2

dY 2
. (11)

Here Xt is a deterministic process with drift 1. To find the optimal value Vλ(X,Y ) rewrite

equation 9 to a form that allows us to introduce the algorithm:

(r − λ− L)Vλ(X,Y ) = f(X,Y ) + λmax{g(X,Y ), Vλ(X,Y )}. (12)

The derivation of this equation can be found in Lange et al., 2020. It introduces Vλ(X,Y )

on the left-hand side as a fixed point that can be found by the following sequence:

(r + λ− L)V
(1)
λ (X,Y ) = f(X,Y ) + λg(X,Y ) (13)

(r + λ− L)V
(j)
λ (X,Y ) = f(X,Y ) + λmax{g(X,Y ), V

(j−1)
λ (X,Y )}, j = 1, 2, ..., J (14)

where J denotes the total number of iterations. In each iteration (r+ λ−L), f(X,Y ), g(X,Y )

and V
(j−1)
λ (X,Y ) are known. We obtain the new value by solving for V

(j)
λ (X,Y ). The random

arrival of stopping times provides an intuitive explanation for the algorithm. For the first

iteration, the owner of the option is forced to stop at the arrival of the first stopping time.

Every iteration after that adds a Poisson generated opportunity, whereby sub-optimal value

V
(j−1)
λ (X,Y ) takes into account that owner of the project has already had j − 1 opportunities

to exercise the option. If it is not optimal to stop at one of the j − 1 previous opportunities,

adding a jth stopping time increases Vλ(X,Y ). If it is optimal to stop before stopping time j,

an additional opportunity will neither increase nor decrease Vλ(X,Y ). Following this logic it

should hold that V
(j)
λ (X,Y ) is weakly monotonically increasing. Convergence of the algorithm

is then guaranteed when V
(j)
λ (X,Y ) is bounded from above. Lange et al., 2020 prove this indeed

holds and that V
(j)
λ (X,Y ) converges to Vλ(X,Y ) at geometric rate λ/(r+λ). The POST arrival

rate λ affects the algorithm in two ways. On the one hand a larger λ brings us closer to real

world applications with continuous exercise opportunities, while on the other hand a higher λ

means slower convergence.

The algorithm operates in function space. To actually use it we need to discretize (X,Y )

to a finite, bounded subspace of R2. We choose this subspace to contain M grid point. To
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illustrate this: When we choose a square grid with Ny different values of Y and Nx the number

of values for X, we get M = Nx · Ny grid points. For computational purposes we then put

the different combinations of X and Y for each grid point in two M × 1 vectors Mx and My,

together containing the different combinations of X and Y for all grid points. We then use

these vectors to compute the values of g(X,Y ) and f(X,Y ) for each grid point, which we call

f and g respectively. The discretized version of L becomes an M ×M matrix. See appendix B

for details on constructing the grid and L matrix. The values for V
(j)
λ (X,Y ) will be stored in

the M × 1 vector V
(j)
λ . The discretized version of the algorithm then becomes:

[(r + λ)I− L]V
(1)
λ = f + λg (15)

[(r + λ)I− L]V
(j)
λ = f + λmax{g,V(j−1)

λ }, j = 2, 3, ..., J. (16)

Here, I is an M ×M identity matrix and max{·, ·} is applied element-wise. Executing an

iteration of the algorithm comes down to solving a system of M linear equations. When L is

sparse, standard linear solvers suffice for fast computations. Convergence of the algorithm is

guaranteed when L is weakly diagonally dominant, and also monotone if L further contains

nonpositive diagonal entries and nonnegative off-diagonal elements.

4 Applying POST to American jump-diffusion options

In this section we explain how to value an American put option when the underlying asset

follows a double exponential jump-diffusion process. We will explain in detail what steps are

necessary to derive the algorithm for Kou’s (2002) model.

An American put with strike price K and maturity T has a pay-off at time t and stock price

St of [K − St]+, which can be exercised at any given time up until T . Other than the constant

K, the variables that determine the pay-off of an American put are the asset price and time to

maturity. For our state variables we choose Xt = t to represent time and Yt = log(St/S0) to

represent the log asset return. This transformation is equivalent to working with the asset price

but allows us to separate the jump component in the infinitesimal generator from the diffusion

as in log space these are additive instead of multiplicative. The pay-off (or one-time stopping

gain) function for this state space becomes g(t, Yt) = [K − S0eYt ]+ for t ≤ T . We truncate the

state space at t = T and impose a terminal boundary condition g(T, YT ) = [K − S0eYT ]+ to

replicate that the option expires after T (see appendix D). As there is no cash-flow coming

from an American option, all values of f(t, Yt) are set to 0.
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4.1 Deriving L

The asset price follows Kou’s double exponential jump-diffusion process. Recall equation 8 that

specifies the infinitesimal generator for a jump-diffusion process:

(LV )(x) :=
1

2
σ2V ′′(x) + (r − 1

2
σ2 − λJζ)V ′(x) + λJ

∫ ∞
−∞

[V (x+ y)− V (x)]fY (y)dy.

This infinitesimal generator can intuitively be understood as a second order Taylor expansion

that considers changes in V (x) due to the expected change in process Xt over some small dt.

The three terms have clear interpretations: The term containing V ′′(x) captures changes due

to the variance of Xt, the term with V ′(x) captures the drift and the integral term captures the

expected change in V (x) due to the occurrence of jumps. Discretizing the jump term will create

a dense matrix, which severely impacts computation times. To alleviate this computational

burden we employ an operator-splitting method, (Feng and Linetsky, 2008). This divides L in

an implicit (Limp) and explicit part (Lex), where the discretized jump term is handled explicitly

and the diffusion terms are handled implicitly.This changes equation 14 into (taking into account

the change from (X,Y ) to (t, Y )

(r + λ− Limp)V
(j)
λ (t, Y ) = f(t, Y ) + LexV

(j−1) + λmax{g(t, Y ), V
(j−1)
λ (t, Y )}. (17)

Discretizing the diffusion term using a central difference scheme and the drift term V ′(x)

yields the full discretization of L

(LV )(t, y) ≈
(
− 1

dy2
σ2 − 1

dy
(r − 1

2
σ2 − λJζ)− 1

dt

)
V (t, y)

+

(
1

2dy2
σ2 +

1

dy
(r − 1

2
σ2 − λJζ)

)
V (t, y + dy) +

1

2dy2
σ2V (t, y − dy) +

1

dt
V (t+ dt, y). (18)

Here dt and dy are assumed constant and, in slight abuse of notation denote our grid spacing.

A non-constant grid can easily be implemented, see appendix F.

The discretization finds it way into the algorithm through LimpV
(j)
λ . To capture above

equations in this format we construct Limp such that every row contains the right constants

corresponding to their place in V
(j)
λ . This is visualised in the stencil below, where the central

cell shows what value the element of Limp corresponding to V (t, y) should be. The cells above

and under show the values corresponding to V (t, y + dy) and V (t, y − dy), with left and right

corresponding to V (t− dt, y) and V (t+ dt, y).

Recall the stability condition on L requiring nonpositive elements on the diagonal. In

equation the stencil above it is guaranteed when the drift (r− 1
2σ

2−λJζ) is positive. If the drift

happens to be negative, backward difference can be used instead. An all-encompassing method

to code this into a stencil uses the maximum and absolute value operators, the notation for
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1
2dy2

σ2 + 1
dy (r − 1

2σ
2 − λJζ)

- 1
dy2

σ2− 1
dy (r− 1

2σ
2−λJζ)− 1

dt
1
dt

1
2dy2

σ2

this can be found in appendix C. Also note that above stencil assumes no correlation between

processes, this can be added in the corner elements of the stencil if necessary, which apply to

V (t+ dt, y + dy) and the other combinations.

The explicit part of L contains the term λJ
∫
R[V (y+ z)−V (y)]fz(z)dz, which is discretized

using a standard Riemann sum. Observe that jumps happen instantly and over Yt, such that

notation containing t can be dropped. As we have the same set of Y ’s for every t, computing the

discretization once suffices. Rewriting the equation slightly yields the following discretization,

which we computes the value of the integral at yi as a sum of functions of all grid points yj (see

appendix G for derivation):

∫
R

[V (yi + z)− V (yi)]fz(z)dz ≈
Ny∑
j=1

[Fz(yj+1 − yi)− Fz(yj − yi)]V (yj)− V (yi). (19)

Here Fz(z) is the cumulative density function (CDF) of the double exponential distribution on

R. The integral by definition measures the expected change in V (t, y) when a jump occurs at

y = yi. This is reflected in the discretization, where the sum on the right hand side can be seen

as a discrete expected value: the probability that a jump from yi to somewhere between yj and

yj−1 times the value of the option at yj . Lex can then be constructed in a similar manner to the

implicit discretization. We fill Lex such that each row enforces equation 19 for its corresponding

yi.

The jump distribution spans R, but our finite grid does not. This becomes especially prob-

lematic for values of y at the edge of the grid, where a large part of the integral falls outside of

the grid. In this case we enforce that jumps can only happen to existing grid points and any

jump outside the grid will end up at the edge of the grid instead. The boundary conditions we

enforce for the implicit part of the algorithm depend on whether put or call options are valued.

For call options we enforce Dirichlet boundary conditions (assume value is 0 outside grid) at

ymin and extrapolate the value at ymax. For put options these are reversed, see also appendix

E. We have now derived all the necessary steps to apply the algorithm to an American put

following a double exponential jump-diffusion process.
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4.2 Numerical validation

As a base scenario we value an American put option with strike K = 100, maturity T = 0.25

and asset price at t = 0, S0 = 100. The parameters for the base scenario are r = 0.05, σ = 0.2,

p = 0.6, η1 = 25 and η2 = 25. The grid consists of Nx = 250 equidistant gridpoints and

Ny = 1100 gridpoints centered in density around the strike. We vary the parameters one at

a time and compare the resulting valuation and exercise boundary at t = 0, S0 = 100 with

Kou’s approximation (details can be found in appendix J). The exercise boundary for Kou’s

approximation is part of the output and the exercise boundary can be found with POST by

checking for which S0 the exercise value becomes larger than the intrinsic value. In mathematical

terms finding the largest yi for which [K − S0]+ > V
(J)
λ (0, S0) holds.

Table 1: American Put value for Jump-Diffusion model with strike K = 100
Parameters Value at S0 = 100 Boundary at S0 = 100

σ λ P η1 η2 POST Kou ∆ ∆% POST Kou ∆ ∆%

0.01 3 0.6 25 25 0.906 0.949 -0.043 -4.48 97.43 97.19 0.25 0.25
0.2 3 0.6 25 25 3.878 3.871 0.006 0.17 85.30 85.87 -0.57 -0.66
0.5 3 0.6 25 25 9.567 9.545 0.021 0.22 62.50 65.06 -2.56 -3.93
0.7 3 0.6 25 25 13.439 13.410 0.028 0.21 50.16 53.11 -2.95 -5.55
0.2 3 0.6 25 25 3.878 3.871 0.006 0.17 85.30 85.87 -0.57 -0.66
0.2 7 0.6 25 25 4.386 4.368 0.018 0.41 82.94 83.77 -0.83 -0.99
0.2 3 0.1 25 25 3.870 3.884 -0.014 -0.37 85.98 86.30 -0.32 -0.37
0.2 3 0.3 25 25 3.862 3.878 -0.016 -0.40 85.81 86.13 -0.32 -0.37
0.2 3 0.5 25 25 3.882 3.873 0.009 0.23 85.38 85.96 -0.57 -0.67
0.2 3 0.6 25 25 3.878 3.871 0.006 0.17 85.30 85.87 -0.57 -0.66
0.2 3 0.9 25 25 3.874 3.868 0.006 0.15 84.96 85.59 -0.63 -0.74
0.2 3 0.6 5 25 7.627 7.612 0.016 0.21 54.88 57.15 -2.27 -3.97
0.2 3 0.6 15 25 4.206 4.209 -0.003 -0.07 83.03 83.60 -0.57 -0.68
0.2 3 0.6 25 25 3.878 3.871 0.006 0.17 85.30 85.87 -0.57 -0.66
0.2 3 0.6 50 25 3.720 3.705 0.015 0.39 86.16 86.78 -0.63 -0.72

POST closely approximates the value of the option in most scenarios. The difference in value

estimations is under 0.5% in most cases, the only exceptions being extreme case σ = 0.01. The

exercise boundary stays within a 1% margin for most scenarios. In situations with a low exercise

boundary (< 65), the difference becomes larger. This is mainly due to a coarse grid at these

points. Overall the value and exercise boundary computations are satisfactory. Computation

times are much longer for the algorithm as opposed to Kou’s approximation, but this was to be

expected given the difference in methods.

4.3 Examining the exercise boundary

One execution of the algorithm does give us the option price over the entire grid, which is not

the case for Kou’s method, which only provides the value and boundary at S0. This enables us

to immediately draw the exercise boundary with POST output for the different scenarios. In

figure 3 the exercise boundaries for different parameter values are pictured.

Jump intensity λJ influences the occurrence of jumps, p the direction and η1 the size of
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Figure 1: Exercise boundaries for varying λJ , p and η1
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upwards jumps. Note that an upward jump decreases the value of a put option and vice versa.

This is reflected in the exercise boundaries. In the base scenario the expectation of upwards and

downwards jumps is equal and relatively small (η1 = η2 = 25). As such changing p has little

influence on the exercise boundary. Increasing the arrival rate of jumps has a more noticeable

effect on the exercise boundary, the difference between λJ = 3 and λJ = 7 being 2.5. We

start seeing larger differences when we vary the expected value of jumps. When upward jumps

are large (η1 = 10) the exercise boundary shifts downward, suggesting that is better to hold

onto an option longer if the upward jumps become larger. The difference between the exercise

boundaries for η1 = 10 and η1 = 25 is much larger than the difference between boundaries for

η1 = 25 and η1 = 50. This is likely because at η1 = 25 the expected value of jumps is small

enough not to have a significant effect on the exercise boundary and at η1 = 50 this expected

value is even smaller. The pay-off of a put option becomes lower when an upward jump occurs,

making it counter intuitive to hold on to an option if the possibility of such a jump exists. In

search of a possible explanation we examine the two ways in which the jump process influences

the option price. The first is through Lex, which translates the direct effect of the jump process

to the asset price. The second is through a correction in the risk-neutral drift of the diffusion

process:(r−λJζ). To isolate the effect of the jump itself without changing the diffusion process

we keep θ = λJζ constant, while varying other parameters of the double exponential distribution

and examine the effect on the exercise boundary. We test the effect of three characteristics of

the jump: the intensity, the skewness and the variance. We can change these characteristics

and keep θ = λJ(pη1/(η1−1) + qη2/(η2 + 1)−1) constant by varying the parameters that affect

the characteristic and change the other parameters accordingly. Varying the jump intensity

means varying λJ . Varying the skewness is less straightforward. The constraint on θ means we

compare two situations: one with small downward jumps with a high probability (high p and

high η2) and large upwards jumps with a low probability (low q and low η1), and one with the

opposite jump sizes and probabilities. Adjusting the variance comes down to varying η1 and η2

simultaneously. Table 4.4 shows the combinations of parameters used. The resulting exercise

13



boundaries are shown in figure 4.3.

Table 2: Parameter combinations for computing exercise boundaries
Jump intensity Skewness Variance

λJ P η1 η2 λJ P η1 η2 λJ P η1 η2

0 0.5 25 25 6 0.136 5 25 6 0.5 6.94 5
3 0.5 25 25 6 0.804 25 5 6 0.5 26 25
6 0.5 26 25 6 0.5 48.15 50
12 0.5 26.47 25

Figure 2: Exercise boundaries for varying jump intensity, skewness and variance

00.050.10.150.20.25

Time to maturity, 

80

85

90

95

100

S
to

ck
 p

ri
ce

, 
S

 = 0

 = 3

 = 6

 = 12

00.050.10.150.20.25

Time to maturity, 

70

75

80

85

90

95

100
S

to
ck

 p
ri

ce
, 

S

p = 0.136

p = 0.804

00.050.10.150.20.25

Time to maturity, 

60

70

80

90

100

110

S
to

ck
 p

ri
ce

, 
S

2
 = 5

2
 = 25

2
 = 50

The exercise boundaries are indeed affected by the different parameter specifications. An

increasing jump intensity leads to a lower exercise boundary. We learn from this that the

increasing odds of a downward jump (resulting in a higher option exercise value) carry more

weight than the simultaneously increasing odds of an upward jump, making it optimal to hold on

to the option longer. By varying the skewness we look at it from a different angle. When there

are many small upward jumps and few large downward jumps we exercise early. Intuitively this

means that as we expect the asset price to jump up it is not worth waiting for a less likely large

downward jump. Changing the variance has a similar effect to changing the intensity. Larger

jumps make it optimal to hold on the option longer. From these insights we conclude that it

is optimal to hold on to the option when downward jumps occur more frequently and when

downward jumps become larger, but when there is a trade-off between frequently occurring

downward jumps and large downward jumps it is optimal to hold on when the jumps occur

frequently.

4.4 Changing the jump distribution

We have seen what happens when we change the parameters of the double exponential distribu-

tion, but we have yet to see what happens when we choose a different distribution altogether.

POST allows us to do so with minimal effort. Recall the condition for a risk-neutral jump-

diffusion process in equation 6, which holds equally for any distribution as long as E[V ] exists,

which is necessary to compute ζ := E[V ] − 1. For the normal distribution with parameters
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(µn, σn) this quantity is exp(µn + 0.5σn). Lex is constructed with the CDF of the jump distri-

bution. The normal CDF can be plugged into equation 19 without any further adjustments.

To compare the exercise boundary of a normal jump-diffusion with a double exponential jump-

diffusion, some way to match the jump distributions is needed. We match the parametrisation

of the distributions based on E[ez] and E[z], which is sufficient to identify µn and σn when the

parameters of the double exponential distribution are known. We examine similar scenarios as

before and adjust jump intensity, skewness and variance while keeping θ constant. The resulting

parameters and exercise boundaries are shown below.

Table 3: Parameter combinations for computing exercise boundaries
Jump intensity Skewness Variance

Double Exponential
λJ P η1 η2 λJ P η1 η2 λJ P η1 η2

0 0.5 25 25 6 0.136 5 25 6 0.5 6.94 5
3 0.5 25 25 6 0.804 25 5 6 0.5 26 25

Normal
λJ µ σ λJ µ σ λJ µ σ

3 0 0.057 6 -0.007 0.117 6 -0.028 0.245
6 -0.001 0.056 6 -0.007 0.135 6 -0.001 0.056

Figure 3: Exercise boundaries comparing normal jumps with double exponential jumps
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The exercise boundaries for normal jumps closely follow the DE boundaries when only the

jump intensity is changed. In these cases the normal and DE distribution do not differ too

much and it does not matter what distribution is chosen when it comes to exercise boundaries.

The results do differ when looking at the skewed DE distributions. As expected the non skewed

normal exercise boundary lies in between the two DE exercise boundaries. The takeaway is that

it is very important to take into account the skew of jumps when deciding what distribution is

appropriate to model exercise boundaries with a jump-diffusion process.

5 American options with Stochastic Volatility

Seeing that the algorithm works in the base-case jump-diffusion model, we test the algorithm

on a more complex stochastic process. Letting go of jumps for now, we focus on relaxing the
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constant volatility requirement. Following Chockalingam and Muthuraman, 2011 we focus on

pricing American put options with the Heston model. Here stock price S follows a familiar

GBM, but the volatility σt is no longer constant over time and follows a Brownian motion with

mean-reverting drift. The stochastic process for σt is defined as

dYt = κ(m− Yt)dt+ ν
√
YtdW

y
t , (20)

with σt =
√
Yt the volatility of the asset price process, κ > 0 the mean reversion coefficient,

m > 0 the long term average volatility, ν > 0 the diffusion of the asset price volatility and W y
t

a standard Brownian Motion that can be correlated with the BM driving the asset price, with

correlation coefficient ρ. The American option price now follows a three-dimensional PDE.

Extending the POST algorithm to three dimensions is straightforward and does not change

any convergence requirements. Instead of a two dimensional equation we now solve its three

dimensional equivalent:

(r − λ− L)Vλ(X,Y, Z) = f(X,Y, Z) + λmax{g(X,Y, Z), Vλ(X,Y, Z)}. (21)

We easily see this does not change the functional form of the algorithm. Discretizing f(X,Y, Z)

and g(X,Y, Z) is straightforward. We obtain infinitesimal generator L for the Heston model

from Chockalingam and Muthuraman, 2011. We take X as the return process, Y as the volatility

process and Z as time t:

L = (r− 1

2
σ2t )

d

dX
+

1

2
σt

d2

dX2
+ (κ(m− Y )− νσtΛ)

d

dY
+

1

2
ν2σ2t

d2

dY 2
+ ρνσ2t

d2

dXdY
+

d

dt
. (22)

Discretizing the new Y dimension follows the usual logic, applying forward difference for the

drift term and central difference for the diffusion term. The covariance term can be discretized

with a simple middle difference scheme as well, resulting in the following stencil (in X and

Y dimensions, as t is trivial). Note that the drift is once again assumed to be positive, see

appendix C for handling a negative drift.

−ρνσ2t 1
4dxdy (r − 1

2σ
2) 1

dx + σ2 1
2dx2

ρνσ2t
1

4dxdy

1
2ν

2σ2t
1

2dy2

−(r − 1
2σ

2) 1
dx − σ

2 1
2dx2
− (κ(m− y)−

νσtΛ) 1
dy −

1
2ν

2σ2t
1

d2y2
− 1

dt

(κ(m− y)− νσtΛ) 1
dy +

1
2ν

2σ2t
1

d2y2

ρνσ2t
1

4dxdy σ2 1
2dx2

−ρνσ2t 1
4dxdy

As V (X,Y, t) is not very sensitive to Y , the solution is not very sensitive to boundary

conditions on Y . For Y = 0, we impose Neumann boundary conditions and for Y = ymax

we extrapolate the option value. For a computational example we take K = 10, T = 0.25,

16



r = 0.1, κ = 5, m = 0.16, ν = 0.9 and ρ = 0.1. We compute the asset value and the exercise

boundary across X and τ and compare them with the true values given in Chockalingam and

Muthuraman, 2011. The grid consists of Nx = 30, Ny = 300, and Nt = 50 grid points.

Table 4: American put value for Heston model with strike K = 10
y = 0.0625 y = 0.25

X0 POST Chock. ∆ POST Chock. ∆

8 2.007 2.000 0.006 2.039 2.078 -0.039
9 1.067 1.108 -0.040 1.260 1.334 -0.073
10 0.483 0.520 -0.038 0.732 0.796 -0.064
11 0.189 0.214 -0.025 0.395 0.449 -0.053
12 0.073 0.082 -0.009 0.211 0.242 -0.031

Overall the approximation is fairly accurate. Due to the increased computational burden of

three dimensions the accuracy obtainable within a reasonable time frame is less than what can be

achieved with σ constant. The results are accurate enough to be used to compute an exercise

boundary, which is shown in figure 4. The exercise boundary acquired from POST closely

resembles the boundary presented in Chockalingam and Muthuraman, 2011. As somewhat of a

computational exercise we also check what happens to the exercise boundary if we add jumps to

the stock price. Without any technical derivation, we compute Lex exactly the same as with the

constant volatility case, as the jumps do not depend on the volatility of the diffusion process.

In Limp we only change the drift in the stencil, which then becomes the familiar r−0.5σ2−λJζ.

For the most part this should be technically correct, but we skip out on proving that there is no

change necessary in the stencil for possible covariance between jumps and the volatility process.

The parameters for the jump process are p = 0.6, η1 = η2 = 5 and λJ = 6.

Figure 4: Exercise boundary for American Put option following the Heston model without and

with jumps

Whereas this little exercise proved it is simple to add complex features to our model easily,

the shape of the exercise boundary with jumps hints that skipping out on deriving the proper

infinitesimal generator did not yield proper results. As expected the exercise boundary lowered

significantly, but the somewhat parabolic shape and the sharp angle when volatility nears zero
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have no logical explanation.

6 American-type Asian options with jump-diffusion

To test whether POST can handle path-dependent options we apply it to Asian options. The

pay-off of an Asian option depends on the arithmetic average of the underlying asset price.

We focus on continuously monitored Asian options, for which the average is defined as At =

1
t

∫ t
0 Sτdτ . The pay-off then becomes [At −K]+ for call options and [K −At]+ for put options.

From Cai and Kou, 2012 we obtain the infinitesimal generator for Asian options following a

jump-diffusion process.

L =
d

dt
+

1

2
σ2

d2

dx2
+(r− 1

2
σ2−λJζ)

d

dx
+

1

t
(St−At)

d

dA
+λJ

∫ ∞
−∞

[V (x+y)−V (x)]fy(y)dy. (23)

It has a familiar form. The added term 1
t (At − St)

d
dA represents the derivative in A direction.

Finite difference methods tend to struggle with this expression due to the lack of a diffusion

term. When the convergence requirements on the discretized L hold, this should pose no

problem. Discretizing the dAt term with forward (or backward, depending on the sign of

St−At) difference gives us the following stencil. Again the forward difference for the t dimension

is excluded as it is trivial.

1
2dx2

σ2 + 1
dx(r − 1

2σ
2 − λζ)

- 1
dx2

σ2 − 1
dx(r − 1

2σ
2 − λζ)−

1
t (St −At)

1
dA −

1
dt

1
t (St −At)

1
dA

1
2dx2

σ2

Adding in the jumps in at a later stage works the same as in the two-dimensional case. A

jump in S does not cause an immediate jump in At, rather it influences At through a jump

in dAt, which is already accounted for through Limp. Therefore our operator splitting method

works in the same way and we can apply our formulation of Lex in the same manner as the

two-dimensional case. To calibrate the grid and test convergence we replicate the European-

type Asian call prices without a jump component from 7 different scenario’s in Cai and Kou,

2012. The POST algorithm needs a small adjustment to do this, as it assumes the option

can be exercised at any point in the grid when an opportunity to do so arrives. To replicate

a European-style option we set the pay-off to zero (g(t, x,At) = 0) for every point in time

before maturity: t 6= T , which is equivalent to not being able to exercise the option until

maturity. Note that the POST algorithm then becomes a rather cumbersome finite difference

method and other methods handle these simpler problems more efficiently. These computations
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only serve to examine the accuracy of our grid before we compute exercise boundaries for the

more complicated American-type Asian options with a jump component. The grid consists of

Nt = 200, Nx = 132 and NA = 299 points.

Table 5: European-style Asian call following a jump-diffusion process
Parameters Value at S0 = 100

S0 K r σ t POST Kou ∆ ∆%

2.0 2 0.02 0.10 1 0.0571 0.0560 0.0011 1.9
2.0 2 0.18 0.30 1 0.2252 0.2184 0.0068 3.2
2.0 2 0.0125 0.25 2 0.1747 0.1723 0.0024 1.4
1.9 2 0.05 0.50 1 0.1996 0.1932 0.0064 3.3
2.0 2 0.05 0.50 1 0.2501 0.2464 0.0037 1.5
2.1 2 0.05 0.50 1 0.3103 0.3062 0.0041 1.3
2.0 2 0.05 0.50 2 0.3557 0.3501 0.0056 1.6

The grid gives reasonable accuracy, with fast computation times for the European-style

options. The accuracy seems not to depend on parameter values, as both situations with less

accuracy (> 3% deviation) have no mutual parameter deviation. The results for European-

style options provide enough confidence that we can use the method to compute an early

exercise boundary for Asian options with an American-style early exercise feature. To attain

the same level of accuracy the grid is kept the same. The only change necessary is to revert

g(t, x,At) to its original form, such that for every value of t it reflects the payoff for exercising:

g(t, x,At) = [At −K]+.

Figure 5: Exercise boundary for American-type Asian put option with jump-diffusion process

The exercise boundary implies that it is always optimal to exercise if St > At and At < K,

regardless of τ . If the stock price is higher than the average it is certain that the average will

rise and the exercise value will fall. It is therefore always optimal to exercise in that situation.
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7 Conclusion

Finding methods or models for option valuation requires facing an inherent dilemma. If the

usefulness of a model is measured as its ability to represent reality and the success of a method

to solve a model is measured in speed and accuracy, it is often necessary to choose between

those successes. For fast and accurate computations an oversimplified model is needed, whereas

a lifelike model usually requires intricate and hard to solve additions, hindering the applica-

bility. POST provides a middle ground between between those extremes. By solving a basic

option valuation problem we demonstrated that it provides a foundation for analysis, in our case

through computing exercise boundaries, and by extending to complicated models we showed its

versatility. It can be applied to any underlying asset pricing process, as long as an infinitesimal

generator is available or can be deduced. Additions such as a jump process, using whatever

jump distribution the researcher sees fit, are also straightforward to implement. We used this

to demonstrate the effects of double exponential and normal jump distributions on the exercise

boundaries of a number of options. POST handles path-dependent options relatively well com-

pared to equally versatile methods such as simulation. Herein lies the strength of the method.

The researcher does not need to adjust his models to accommodate a certain methodology,

but can analyse what model comes closest to reality. The flip side of this versatility is that

it does not beat methods specifically designed to solve specific models in speed or accuracy.

For applications that require very high accuracy the first-order convergence of POST might

need too much computation time for satisfactory results. Another noteworthy challenge in the

implementation is that it depends on two separate quantities to increase accuracy. For a given

grid the accuracy can be increased by increasing λ and the number of POST iterations NP ,

after which the overall accuracy can be increased by refining the grid through increasing NX ,

NY and Nt. A large part of this complexity can be alleviated by using iterative methods to

increase both quantities in a systematic way.
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A Constructing a grid

The true value Vλ(X,Y ) requires {(X,Y )} to operate in continuous space R2. For the discretized

approximation to approach the true value, we need only choose a grid that is dense enough for

this application. An advantage of POST is that we can choose to vary the density over the grid

and give the area around points of interest a denser grid. For the time dimension this turned

out not to be necessary. A linear grid between minimum and maximum values tmin = 0 and

tmax = T worked just as well as a grid which was denser around t = T . An obvious point of

interest for American options in the stock price dimension would be the strike price. Note that

approximating the integral that represents the jump probability in the infinitesimal generator

(equation 19) places stricter requirements on the density of the grid. When the X grid points

are spaced far apart, [Fy(xj+1 − xi)− Fy(xj − xi)] contains a large amount of probability mass

for each V (xj), making the total sum a bad approximation of the integral. Especially around

the edge of the grid, where the grid is spaced further apart, this poses a challenge. A somewhat

methodical approach to construct a grid has to ensure the grid is dense around the point of

interest and still dense enough when we move away from the point of interest. To somewhat

standardize the procedure a few quantities are defined: Minimum grid value xmin, maximum

grid value xmax and the point xmid, around which the grid should be dense. In the option

valuation case reasonable values are xmin = 0.001, xmax = 10 · K and xmid = K. Notice the

difference between xmin and xmid is much smaller than the difference between xmid and xmax,

therefore defining there should be an equal number of grid points in both ranges would lead to a

skewed grid. To alleviate this we construct a symmetrical grid around xmid, ranging from xmin

to 2xmid − xmin. Finding a methodical way to construct this grid posed a challenge, as taking

a grid where the difference is based on ex for example yielded a too dense grid around xmid

and too far spaced apart at the edges. We found the inverse normal CDF a versatile solution

to this. When we define normal distribution Y ∼ N(xmid,K/2) and take our grid points such

that the chance mass between each point is the same between each grid point we get a perfectly

spaced out grid, that can be further calibrated by changing σY = K/2. In the algorithm below

the CDF of the normal distribution with parameters µ and σ is denoted by Fµ,σ(x) and its

inverse as F−1µ,σ(x). Other distributions can also be used as the researcher sees fit. A predefined

number of grid points is then used to construct a tail from 2xmid−xmin to xmax, usually linearly.

The fraction of the total amount of grid points is defined as ntail. The complete algorithm to

construct a ‘normal’ grid then reads:
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ymin ← Fxmid,K/2(xmin)

ymax ← Fxmid,K/2(2xmid − xmin)

δy ← (ymax − ystart)/(dNx · (1− ntail)e − 1)

y← [ymin : δy : ymax]

x−tail ← F−1xmid,K/2
(y)

δtail ← (xmax − x−tail(end))/bNx · ntailc

xtail ← [x−tail(end) : δtail : xmax]

x← [x−tail,xtail]

B Constructing L

The constructed grid operates in two dimensions, every grid point has an x and y value. To use

this grid in the POST algorithm, it needs to be translated to a one dimensional vector, where

every element of the vector represents one grid point. It turns out that using a certain key to

construct this vector makes constructing matrices needed in other parts of the algorithm easier.

Take as graphical example a simple grid with Nx = 3 and Ny = 3, such that X = [1, 2, 3] and

Y = [1, 2, 3]. Construct the ‘key’ matrix in such a way that it cycles through all values of Y

first, after which it moves to the next value of X. This becomes clear when we represent it

visually and we number the different grid points 1 through 9 and write down the (x, y) values

for each grid point.

·3 ·6 ·9

·2 ·5 ·8

·1 ·4 ·7

⇒

point (x, y)

1 (1, 1)

2 (1, 2)

3 (1, 3)

4 (2, 1)

5 (2, 2)

6 (2, 3)

7 (3, 1)

8 (3, 2)

9 (3, 3)

Recall that L is then constructed such that every row represents one grid point and that

every column of that row connects it to another grid point to ensure the discretized equation of

the infinitesimal generator holds. Once again visualising makes it easier to understand. Below

a stencil and L corresponding to the constructed grid are shown. Note that the points such as

(3, 4) and (4, 3) seem to interrupt the pattern. This is because point 3 = (1, 3) in our grid is a
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boundary point. Yu should refer to (1, 4) for point 3, which does not exist in our grid and is

not point 4 = (2, 1).

Yu

Xd M Xu

Yd

⇒

1 2 3 4 5 6 7 8 9

1 M Yu Xu

2 Yd M Yu Xu

3 Yd M Xu

4 Xd M Yu Xu

5 Xd Yd M Yu Xu

6 Xd Yd M Xu

7 Xd M Yu

8 Xd Yd M Yu

9 Xd Yd M

Constructing L this way keeps the Y values of the stencils clustered together. This is especially

important when constructing Lex. When we choose Y to represent stock price all entries of L

that refer to grid points at the same time (same x value) are in submatrices on the diagonal. In

this example all grid points referred to by the entries in L[1, 2, 3; 1, 2, 3] have the same x value.

This allows us to create a single matrix for jump possibilities and repeat this Nt times along

the diagonal of Lex. Recall that every entry in Lex represents the chance the stock price jumps

from the row value to the column value. Say in this example the chance of a jump upwards once

is 0.1, twice is 0.05, jumping downwards is 0.2, twice is 0.15 and the chance of not jumping far

enough to reach the next grid point thus 0.5. When we assume jumps outside of the grid end

up at the boundary, we need to add the lost jump probabilities to the boundary point. Take

point 3 = (1, 3) where no more upward jumps can occur. The possibility of staying at (1, 3)

becomes 0.5 + 0.1 + 0.05 = 0.65. Lex then becomes

1 2 3 4 5 6 7 8 9

1 0.85 0.1 0.05

2 0.35 0.5 0.15

3 0.15 0.2 0.65

4 0.85 0.1 0.05

5 0.35 0.5 0.15

6 0.15 0.2 0.65

7 0.85 0.1 0.05

8 0.35 0.5 0.15

9 0.15 0.2 0.65
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Notice that for every time period the matrix is exactly the same. All we have to do to is

construct the unique part of Lex once and place it Nx times on the diagonal of a further sparse

matrix.

C Adaptive stencil for negative drift

When a parameter with a negative sign enters L outside of the diagonal, it violates the conver-

gence requirements. To ensure that a negative drift is handled in the correct way we can use a

backwards difference discretization instead of a forward difference. This ensures the sign of the

parameter (µ in the example below) is negative on the diagonal of L and positive everywhere

else. A way to represent this when the sign of µ is unknown is shown below.

max(µ, 0)

− | µ |

max(−µ, 0)

This stencil ensures a forward difference is applied when µ > 0, as the bottom of the stencil

becomes 0 and the top µ, and a backward difference is applied when µ < 0. This ensures the

convergence requirements are met.

D Boundary conditions for time dimension

At the left side of the grid (for t going to 0) no assumptions are necessary. The forward difference

scheme ensures values for t smaller than the grid are not taken into consideration. The right

side of the grid asks for a different approach. When the option nears expiry (t nears T ), we

observe three distinct phases. At t < T the usual dynamics between asset value and option

value follow their normal pattern. Then at t = T , the option value is fixed at its payoff, which is

(S−K)+ in the case of an American call. After expiry, the option is worthless. As the values of

t > T have no effect on the option value for t ≤ T (the option does not exist after it has expired)

we terminate the grid at t = T and set the option values at these points V
(1)
λ (S, T ) = (S−K)+.

To ensure this value is fixed for the other iterations V
(j)
λ (S, T ) = V

(j−1)
λ (S, T ) = (S − K)+

must hold. We derive the value of L for which this equation holds. We start at the algorithms

characteristic equation:

[(r + λ)I− L]V
(j)
λ = f + λmax(g,V

(j−1)
λ ). (24)
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In the American put application f = 0. At the grid points for which t = T holds g = V
(j−1)
λ ,

simplifying the equation to:

[(r + λ)I− L]V
(j)
λ = λV

(j−1)
λ . (25)

From above equation we easily see that setting L = rI ensures V
(j)
λ = V

(j−1)
λ (= (S −K)+).

[(r + λ)I− rI]V
(j)
λ = [λI]V

(j)
λ = λV

(j−1)
λ . (26)

To enforce the boundary conditions at the right side of the grid we thus fill all rows of L that

correspond with a grid point at the right side of the grid with r at the diagonal element and

zeroes anywhere else.

E Boundary conditions for dimensions affecting stock price

The boundary conditions in our case are dictated by the way Vλ behaves for extreme values

of the variables that it depends on. For American put options Vλ(t, Y ) depends on the stock

price. At the bottom of our grid St = S0e
Y approaches zero. As the pay-off of the option

then approaches K, we assume V (t, Y ) = K for Y = Ymin. In practice this means we fill in

V (t, Y − dx) = K for the bottom of the stencil. At the top the grid St becomes very large. As

St moves further away from K, the probability that the option remains out-of-the-money nears

1. We can safely assume Vλ(t, Y ) = 0 for Y > Ymax. For American put options with stochastic

volatility Vλ(X,Y, t) the value depends on asset price X and time-varying volatility Y . The

boundary conditions for the asset price process do not change with time-varying volatility. The

option value is not very sensitive to volatility, as such we extrapolate the option value using

Vλ(X, yend+1, t) = 2Vλ(X, yend, t)− Vλ(X, yend−1, t). For the Asian call options we extrapolated

the value at the boundaries for both A and X.

F Handling a non-uniform grid

To apply the difference schemes to varying dx, we define the upwards and downwards differences

at xi as dxu = xi+1−xi and dxd = xi−xi−1 respectively. We also define the average difference

dxave = 1
2(dxu +dxd). For a forwards or backwards difference this change is trivial. The central

difference for the second derivative is derived as follows:

f ′′(x) ≈
f(x+dxu)−f(x)

dxu
− f(x)−f(x−dxd)

dxd

dxave
,

=
f(x+ dxu)

dxudxave
+
f(x− dxd)

dxddxave
− f(x)

dxddxave
− f(x)

dxudxave
.
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The discretized covariance term can be handled as follows:

fxy(x, y) ≈ f(x+ dxu, y + dyu)− f(x+ dxu, y − dyd) + f(x− dxd, y + dyu)− f(x− dxd, y − dyd)

(dxu + dxd)(dyu + dyd)
.

G Approximation of the jump integral

Transforming the jump expression from the infinitesimal generator to a workable quantity for

the algorithm means finding an approximation that can be computed with the grid we use.

Start by dividing the integral in two and noting that the second term is an integral over a PDF.

As such we can reduce it to V (yi).∫
R

[V (yi + z)− V (yi)]fz(z)dz =

∫
R
V (yi + z)fz(z)dz −

∫
R
V (yi)fz(z)dz, (27)

=

∫
R
V (yi + z)fz(z)dz − V (yi). (28)

The remaining integral operates over z, whereas our grid ranges from y1 to yNy . Of the two

quantities we need to compute with z, V(yi + z) and fz(z), only V(yi + z) is restricted to our

grid as fz(z) is the PDF of the chosen jump distribution which is computable for all possible

values of z. We get the most accurate approximation of the integral when we use as many

grid points as possible, which means the discretization of V (yi + z) should use all available grid

points and yi + z should range from y1 to yNy . We thus transform the variables to yj = yi + z

and z = yj−yi, where yj = (y1, ..., yNy) is our grid. Splitting the integral in Ny−1 parts allows

us to estimate the parts using the CDF of fz(z).∫
R
V (yi + z)fz(z)dz − V (yi) =

∫
R
V (yj)fz(yj − yi)d(yj − yi)− V (yi), (29)

=

Ny−1∑
j=1

∫ yj+1

yj

V (yj)fz(yj − yi)d(yj − yi)− V (yi), (30)

≈
Ny−1∑
j=1

V (yj)

∫ yj+1

yj

fz(yj − yi)d(yj − yi)− V (yi), (31)

=

Ny−1∑
j=1

V (yj)[Fz(yj+1 − yi)− Fz(yj − yi)]− V (yi). (32)

Note that we discarded the tails in above derivation. When we assume jumps outside of the

grid end up at the boundaries of the grid these can be computed as V (y1)[Fz(y1 − yi)] and

V (yNj )[1− Fz(yNj − yi)].
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H Iterative procedure for refining grid and increasing POST

iterations

A major complexity of the POST algorithm is that it requires two different aspects of the

model to be tweaked to increase the accuracy of the outcome. On one side increasing POST

iterations j and POST arrival rate λ increases the accuracy for a given grid and on the other

hand choosing a finer grid increases the overall accuracy. There is a methodical way to tackle

this and it involves the starting value V
(0)
λ . Usually the researcher would set this to g and

start the algorithm. Setting it to a different value allows us to chop up the algorithm in

different stages and speed up convergence. To get quicker convergence start with a low λ1, run

the algorithm for some iterations and once convergence slows down run the algorithm again

with a higher λ2 and setting V
(0)
λ2

= V
(end)
λ1

. Instead of running the algorithm once with 1000

iterations and λ = 50, we can run it three times with λ = 5, 25, 50, with three times 100

iterations and get the same result. In our numerical applications we generally used the pairs

(λ, j) = (2, 10), (16, 20), (64, 40), (256, 80), (512, 200), (1024, 200). This proved to give consistent

results, increasing λ or j did not provide more accuracy. One could even go so far as to use an

iterative procedure to refine the grid. The same principle for refining λ applies. Start out by

running the algorithm, refine the grid and use the previous end value as a starting point for the

next run of the algorithm. This can be done with a different grid by interpolating the values of

V
(0)
λ at the new grid points. In our numerical applications this was not used, rather the amount

of grid points was chosen based on the time needed to run the algorithm. Anywhere between

10 to 30 minutes was deemed acceptable.

I Time as a discrete dimension

With a third dimension comes a large extra computational burden. Especially the dimensions of

L increase rapidly when the number of grid points increases. Recall the equation that enforces

the POST algorithm. In every infinitesimal generator t only enters the equation only through

−1/dt, which allows us to separate the grid points and run the algorithm separately for every

value of t, starting at t = T . This reduces the problem to Nt different Nx ·Ny problems instead

of one Nt ·Nx ·Ny problem. Due to the dimensions of L this actually saves a large amount of

time. To show this is computationally equivalent we zoom in on one specific grid point (x, y, t).

Keep in mind that the construction with L is only meant to enforce the POST equation for every

grid point at the same time. When we isolate V
(j)
λP

(x, y, t+ dt) we see that solving the problem

for each time step individually is computationally equivalent to solving it in one go. Denote
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Lx,y,t as the infinitesimal generator containing all terms and Lx,y as the infinitesimal generator

without the term 1/dt. As f(x, y, t) = 0 and g(x, y) does not depend on t the following equation

should hold:

(r + λ)V
(j)
λ (x, y, t)− Lx,y,tV

(j)
λ (x, y, t) = max[g(x, y), V

(j−1)
λ (x, y, t)],

(r + λ)V
(j)
λ (x, y, t)− Lx,yV

(j)
λ (x, y, t)

+
1

dt
(V

(j)
λ (x, y, t)− V (j)

λ (x, y, t+ dt)) = max[g(x, y), V
(j−1)
λ (x, y, t)],

(r + λ+
1

dt
)V

(j)
λ (x, y, t)− Lx,yV

(j)
λ (x, y, t) =

1

dt
V

(j)
λ (x, y, t+ dt) + max[g(x, y), V

(j−1)
λ (x, y, t)].

After (1/dt)V
(j)
λ (x, y, t+ dt) is isolated it becomes clear that the rest of the variables are no

further interrelated. Starting at t+dt = T we only have known quantities on the right hand side,

as V (x, y, T ) = g(x, y), independent of λ or j. This allows us to solve adjusted problem for each

period by iterating. Note that it can be incorporated in existing code by setting radj = r+ 1/dt

and fadj(x, y, t) = f(x, y, t) + (1/dt)V
(J)
λ (x, y, t+ dt).

J Kou’s analytical approximation

The approximation of an American put in Kou and Wang, 2004 revolves around finding the

exercise boundary v0 and computing the early exercise premium above that boundary. Both

computations utilise the approximation of a European put from Kou, 2002, which in turn

closely resembles the standard BSM specification. The standard normal CDF found in BSM is

replaced by a CDF that also takes the double exponential jumps into account. Boundary v0 is

then obtained as the solution to an equation that represents the free boundary problem. With

these quantities and some constants β1,...,4 that depend on the parameters of the jump-diffusion

process, the value of an American put can be computed as follows:

ψ(v, t) = f(x) =


EuP (v, t) +Av−β3 +Bv−β4 , if v ≥ v0

K − v, if v ≤ v0.
(33)

Here EuP (v, t) is Kou’s approximation of a European put with maturity t and strike K, and

with A and B constants:

A =
vβ30

β4 − β3
{
β4K − (1 + β4) [v0 + EuP (v0, t)] +Ke−rtP v0 [S (t) ≤ K]

}
> 0, (34)

B =
vβ40

β3 − β4
{
β3K − (1 + β3) [v0 + EuP (v0, t)] +Ke−rtP v0 [S (t) ≤ K]

}
> 0, (35)

with P v0 [S(t) ≤ K] the probability that S(t) ≤ K given S0 = v0.

30


