
The stockyard planning problem: heuristics for an efficient

management of stockyard capacity

Author: D.W.F. Boissevain (424964)

Supervisor: dr. D. Galindo Pecin

Second assessor: dr. W. van den Heuvel

Ab Ovo & Erasmus School of Economics

Erasmus University Rotterdam, The Netherlands

Master’s thesis Operations Research and Quantitative Logistics

December 11, 2020

Abstract

In this thesis, we consider the stockyard planning problem in which the goal is to find a
schedule for incoming vessels and stockpiles that minimises total vessel demurrage cost.
This problem is of relevance for planners in any dry bulk terminal environment, where the
available space on both the quay and stockyard needs be utilised to its maximum capacity.
We propose several heuristic approaches, which are evaluated by an exact model. Compu-
tational experiments using these methods shows that we are able to significantly reduce the
costs over traditional planning methods with competitive solutions for smaller instances.
Furthermore, an analysis is performed to find out which instance properties challenge the
heuristic methods and to see under what policy it is beneficial to split stockpiles.

Keywords: Stockyard planning, Dry bulk terminals, Berth allocation, Stockyard allocation,
Stacker-reclaimer scheduling, Construction Heuristic, Squeaky wheel optimisation, Genetic
algorithm, Ant colony optimisation, Valid inequalities

The content of this thesis is the sole responsibility of the author and does not reflect the view of the supervisor, second assessor, Erasmus
School of Economics or Erasmus University.

Contents

1 Introduction 3

2 Literature 5
2.1 Individual subproblems . 5
2.2 Sequential and integrated stockyard problems . 5
2.3 Contribution to the literature . 6

3 Problem description 8
3.1 A vessel and stockyard schedule . 8
3.2 Vessel arrival and cost structure . 9
3.3 Problem overview . 9
3.4 Splitting stockpiles . 10

4 Methodology 13
4.1 Notation . 13
4.2 Stockyard planning model . 14

4.2.1 Valid inequalities . 15
4.3 Construction heuristic . 17

4.3.1 Vessel insertion . 17
4.3.2 Stockpile insertion . 18

4.4 Local search - vessel order . 20
4.4.1 Squeaky Wheel Optimisation . 20
4.4.2 Genetic Algorithm . 21
4.4.3 Ant Colony Optimisation . 22

5 Data 24

6 Results 25
6.1 Settings . 25
6.2 Valid inequalities . 25
6.3 Heuristic performance validation . 26
6.4 Local search heuristics . 27

6.4.1 Local search - 30 vessels . 27
6.4.2 Local search - 75 vessels . 28

6.5 Instance evaluation . 29
6.6 Best practices . 31
6.7 Stockpile split analysis . 31

7 Conclusion 33

A Appendix 37
A.1 Total length increase when splitting stockpiles . 37
A.2 Sensitivity analysis . 37
A.3 Heuristics performance validation - further results 38
A.4 Instance evaluation - further results . 38
A.5 Stockpile split analysis - further results . 39

2

1 Introduction

Over the last fifty years, the consumption of coal has risen from 16,000 in 1965 to 44,000 TWh
in 2015 (World Bank, 2020). In this period, coal stayed the second-most consumed energy
resource just below oil and above natural gas. The importance of coal has persisted through
the years due to the fact that it is used as a primary resource in electricity production (US
Energy Information Agency, 2020a). More specifically, 40% of global electricity is produced
by coal plants, as it often obtains the lowest levelised cost of electricity in countries such as
Germany (Fraunhofer ISE, 2018). Moreover, coal is vital in large-scale steel manufacturing, as
alternatives to coal do not seem to possess the same capability as that of coal (Babich and Senk,
2013).

Although the importance of coal has remained the last fifty years, the US and countries in
the EU have decreased their production significantly (Eurostat, 2020; US Energy Information
Agency, 2011, 2020b). This results in coal being imported at an increasing scale, often from
far away countries and transported over sea in between ports. These ports, however, have
limited capacity and resources to handle incoming stockpiles. A port often has a limited quay
space to berth vessels and a small number of machines to store stockpiles. Moreover, due to
environmental and safety policies, stockyards next to the port are being limited in their capacity
(The Economist, 2020). Combined with the fact that vessels have a high opportunity cost when
leaving later than expected at an occupied port, the importance of efficiently using resources to
handle an increasing volume of coal rises.

Figure 1: Overview of the harbor terminal with pads, quay cranes (QC), stacker-reclaimers
(SR) and blast furnace (BF). The black solid line represents the conveyor belt and the solid
rectangles within the pads represent the stockpiles.

This work serves to address the issue for a need in efficiency in a steel factory terminal
port. In such a port, a production process of steel needs raw materials such as coal and iron
ore. These raw materials are supplied by vessel, stored on a stockyard and consumed in the
production process. An overview of this process is given in Figure 1. First, vessels arrive at a
quay unloading their materials via quay cranes. During the unloading process, the raw material
is moved from a harbor terminal to the stockyard by a conveyor belt, where it is stored as a
stockpile. The stockyard consists of a number of coal and iron pads, which are long narrow
inventory grounds on which stockpiles can be stored. Each coal and iron stockpile needs to be
inserted into a pad before it can be used in the blast furnace. Each stockpile is stored such that
the full width of a pad is used.

3

Stockpiles are built on and removed from the stockyard by a stacker-reclaimer. A stacker-
reclaimer is a big crane-like machine which moves alongside the coal pad to ‘stack’ (create) and
to ‘reclaim’ (remove) stockpiles to and from the stockyard. It can perform both these operations
as it both has a conveyor belt to drop coal and a water wheel-like shovel wheel to reclaim a
stockpile. When the blast furnace next to the stockyard requests coal or iron for its production,
a part of a pile can be reclaimed making room for other stockpiles coming in.

We identify some decisions we have to make within the given context, which we call the
stockyard planning problem (SPP). First, we have to decide where and when the vessels moor
at the quay. Next, we need to choose a pad, position, and duration a stockpile is assigned to
the stockyard. Lastly, we have to assign available stacker-reclaimers to a stockpile. Given these
decisions, we can identify three subproblems within the SPP:

• Berth Allocation Problem (BAP) to determine a berth and berthing time for each vessel,

• Yard Allocation Problem (YAP) to determine the stockpile location and duration for each
stockpile,

• Stacker-reclaimer Scheduling Problem (SRSP) to determine a schedule for each SR.

To solve the SPP, one could attempt to solve these three problems separately. First solving
the BAP, then the YAP and then the SRSP. These three problems, however, are strongly
interrelated. Stockpile placement strategies in the stockyard, for example, have a direct effect
on the berthing options of the incoming vessels and vice versa. Moreover, stacker-reclaimer
schedules dictate when and where stockpiles can be built, in turn affecting the time at which
vessels can leave. Therefore, it is sub-optimal to solve the three problems separately.

To fix this issue, one could solve the three problems sequentially per vessel or in an integrated
manner. This way, the partial solution of one subproblem affects the other two subproblems. In
this thesis, both an integrated and sequential planning approach is presented. The integrated
approach takes the form of a mixed integer linear program (MILP). For this problem, however,
solving the integrated model (to optimality) is intractable for real-world instances (Bierwirth
and Meisel, 2010). Therefore, the exact model is used in small instances to assess the quality
of the solutions of sequential approaches: a construction heuristic combined with different local
searches.

The rest of the thesis is organised in the following manner. First, we treat the literature
on the stockyard planning problem in Section 2. Then, in Section 3 we define the stockyard
planning problem. In Section 4 the integrated and sequential methods used in this thesis are
treated. The data is explained in Section 5. Then, the results of the exact formulation and
heuristics are treated in Section 6, as well as an analysis on stockpile splitting. Finally, we give
a conclusion and recommendations for future planners and further research in Section 7.

4

2 Literature

As discussed, the stockyard planning problem consists of three subproblems: the Berth Allo-
cation Problem (BAP), Yard Allocation Problem (YAP) and the Stacker-reclaimer Scheduling
Problem (SRSP). All three subproblems are well-known and studied problems, although they
may differ in implementation, which results in different solution techniques. We first discuss
the differences in modelling choices for each subproblem. Then we treat the methods by which
the SPP is solved in the literature as an effect of these differences. Lastly, we discuss the
contribution of this work to the literature.

2.1 Individual subproblems

The Berth Allocation Problem is a well-studied problem that mostly concerns container and
dry bulk shipping. It can be divided into three different categories: discrete (Imai et al., 2001),
hybrid (Nishimura et al., 2001) and continuous (Park and Kim, 2005). In discrete BAPs the
quay consists of a discrete number of berths at which a vessel can berth. In the hybrid instance,
vessels are assigned to discrete berths, but are also allowed to exceed it in case they are bigger
than the space of the berth. In the continuous case, the vessel can berth at any position
of the quay. Naturally, from a discrete to continuous model, the problem becomes harder and
computational time increases as found by Mauri et al. (2016). Moreover, the berthing times can
be discrete (Meisel and Bierwirth, 2009) or continuous (Cordeau et al., 2005). A recommended
survey on BAPs is the one from Bierwirth and Meisel (2015).

The Yard Allocation Problem can also be categorized into a continuous and discrete time
and space interval. Most of the time though, the YAP is used with a discrete space as otherwise
the solution space becomes infeasibly large. Moreover, YAPs either have the possibility to
increase the size of a yard item (Chen et al., 2002) or to decrease the size (Sun et al., 2020).
Some dry bulk yard problems also allow for splitting the stockpiles into two when one does not
fit (Lipovetzky et al., 2014) and requiring buffer zones between different stockpiles to ensure
raw material is not mixed (Kim et al., 2009).

The Stacker-reclaimer Scheduling Problem (SRSP) is the last subproblem that sometimes
is excluded from the stockyard planning problem. It has discrete or continuous time intervals,
depending on the choice of interval in the Yard Allocation Problem. Each stacker-reclaimer may
have availability times which are initial ready times, initial positions or account for the last po-
sition of the machine (Bierwirth and Meisel, 2015). Lastly, the SRSP may have a non-crossing
constraint, indicating that two cranes on the same track may not cross each other (Unsal and
Oguz, 2019).

2.2 Sequential and integrated stockyard problems

Now the differences in implementation details are known, we discuss the literature that solves the
stockyard planning problem. All the upcoming literature on the SPP include objective functions
minimising vessel delay. First we treat literature using sequential approaches and then we treat
the integrated approaches. Sequential approaches usually imply heuristic methods, but they
may also be used in combination with exact formulations.

The most well-known stockyard paper using a sequential approach is the one from Boland
et al. (2012). Here, a greedy construction heuristic is used to schedule incoming stockpiles
from trains towards incoming vessels in order of a vessel estimated time of arrival (ETA) and
‘time to start loading’ (TSL), which is updated based on the state of the system. They use
a discrete berth allocation and a continuous stockpile assignment. Furthermore, time-space
candidate pairs are used in an integer program to determine the best time and position for

5

the stockpile. They conclude that their TSL based heuristic significantly outperforms its ETA-
ordered counterpart, although TSL takes more computation time.

A similar work is the one from Babu et al. (2015), where again an ETA and, similar to TSL,
an ‘ETA-end of reclaiming time’ (ETA-ERT) combination is used in a greedy construction
heuristic. They use a discrete berth allocation and a continuous stockyard where stockpiles
can be cleared strategically to make room for new incoming vessel stockpiles. Their algorithms
achieve better results than the actual mean delay of the port. Also, they conclude that with
the right settings of the ETA-ERT method, the algorithm outperforms the ETA construction
heuristic.

Singh et al. (2012) combine sequential and integrated methods. They also use a construction
heuristic based on ETA. After the heuristic though, the order in which vessels are inserted into
the heuristic is adjusted by both a genetic algorithm (GA) and squeaky wheel optimisation
(SWO). As SWO consistently outperforms GA, this is used to then improve the solution by a
fix and optimize procedure. In this last step, an exact model improves the solution of the SWO
by fixing certain set of vessels and improving the remaining vessels. They conclude that the
fix and optimize procedure is able to improve the solutions of the SWO, although the last step
takes much running time. Therefore, they find that the SWO is most feasible in practice.

Continuing with the integrated approaches, Belov et al. (2014) use an exact model to place
stockpiles into continuous pads including non-crossing stacker-reclaimer movement. After ob-
taining a feasible solution, a fix and optimize procedure is performed on sets of vessels that
can be sorted in spatial and time based groups. A varying visibility horizon was tested on
the instances to enhance their evaluation of the performance. In this horizon, only a selected
number of vessels can be seen by the solution method. Their results indicated that the fix and
optimize procedure performed similar to a greedy approach.

Xin et al. (2018) also use a mixed integer linear program to solve a case with a limited
visibility horizon from berth to train. Their situation contains one vessel berth, stacker-reclaimer
and train loader and they partition the stockyard space into multiple stack rows to reduce the
solution space. The dynamic problem is solved using an exact model in a static way and
a predictive way using Monte Carlo simulation. The static approach resolves the problem for
each time interval within the prediction horizon, where the other predicts the future state of the
system by its current actions. They conclude that the predictive methods yielded significantly
better results.

Lastly, Unsal and Oguz (2019) propose to solve the three subproblems in an integrated
way by Benders decomposition. Using a mixed integer linear program as master problem for
the vessel and stockpile assignment and a constraint program for the reclaimer schedule as the
subproblem, they are able to solve the problem in relatively short time. Their formulation is
relatively rich, although it contains the assumption that stockpiles are stacked instantly. This
makes the problem of scheduling stockpiles towards the empty vessels considerably less hard.

2.3 Contribution to the literature

As the work in stockyard planning is not as extensive as for other problems, we try to contribute
to the research at hand, which we summarise now. First, to the best of our knowledge, this
thesis is the first to introduce partial reclaiming of stockpiles in this stockyard setting. Partial
reclaiming means that a pile is not reclaimed fully, but at different points in the schedule, making
the size of the pile dynamic in time. To incorporate the partial reclaiming, we introduce the
concept of a sub-stockpile as explained in Section 4.1. We also adapt the exact formulation and
the heuristic approaches for sub-stockpiles. Methods including these feature are compelling to
planners as they are much more applicable for real-world use.

Secondly, we notice from the literature that the work on integrated approaches is very
separated from the work on heuristics. In the case of Boland et al. (2012) and Babu et al. (2015)

6

an exact formulation is given, but it is never used as they argue that the problem demands
infeasible computation time. As other stockyard papers and others in similar fields such as
Meisel and Bierwirth (2009) conclude, the SPP is indeed so comprehensive that integrated
techniques are likely to be infeasible to use in real-life scenarios. Still, exact formulations might
serve well to assess the quality of their sequential counterparts. We will fill this gap by using
an exact formulation to evaluate the heuristics performance based on the exact results in small
instances.

Thirdly, in the work on sequential heuristics, we notice the detail in strategy in which
stockpiles are assigned within the stockyard. The efforts to then improve the solutions of
the construction heuristic, however, are marginal. The only follow-up methods that are used
successfully are TSL and ERT by Boland et al. (2012) and Babu et al. (2015) and a SWO by
Singh et al. (2012). Also, no work has compared the competitiveness of any other follow-up
method within the same context. A gap in the literature that this thesis therefore tries to
fill is to develop more follow-up techniques to improve the initial solutions. The goal is then
to compare their competitiveness within the same context to discover which follow-up method
works best for the SPP.

Lastly, the literature also neglects why some methods seem to work better. Therefore,
we also focus on what properties of the problem challenge these heuristics. By analysing the
results of the heuristics, we can potentially find strengths and weaknesses in the created follow-
up methods. With such an analysis, one could be be better equipped to improve the heuristics
weaknesses for future research.

7

3 Problem description

We now further define the stockyard planning problem at hand. First, the concepts of vessel and
stockpile schedules are explained in Section 3.1. Then, the arrival interval and cost structure
of vessel are treated in Section 3.2. The goal in the stockyard planning problem is given in
Section 3.3 by giving an overview of the problem. Lastly, Section 3.4 discusses the splitting of
stockpiles to more effectively make use of the stockyard.

3.1 A vessel and stockyard schedule

First, we define how we create a vessel schedule. As the relevant case concerns a small quay
and incoming vessels do not vary in size too much, we choose to use a discrete berth assignment
schedule. Moreover, this allows for more focus and computing time in the stockyard schedule
which is believed to be the largest bottleneck. An example of a vessel schedule can be seen
in Figure 2 and consists of eight vessels. The vertical axis represents which berth a vessel
is assigned to and the horizontal axis stands for the time. The width of each rectangle thus
represents the duration the vessel is berthed at the quay. Moreover, the height of each rectangle
is the maximum allowed vessel size in the specified berth. As can be seen in Figure 2, rectangles
at berth 3 and berth 4 have a smaller height, which means these berths only accommodate
vessels of a smaller size. As a berth can only serve one vessel at a time, the rectangles in this
schedule may not overlap.

Figure 2: Space-time diagram of vessels in a
discretely divided quay.

Figure 3: Space-time diagram of stockpiles.

When a vessel has berthed, we have to schedule the stockpiles from the vessel. For this
schedule, we choose to use space-time diagrams with a continuous space allocation. The reason
for this is that it allows to us to use the stockyard space as much as possible. Moreover, the
stockyard pads make use of freely rolling stacker-reclaimers, making it possible to store stockpiles
at any location. Figure 3 shows such a space-time diagram. The vertical axis represents the
length of a pad (the pad width is always fully utilized) and the horizontal axis stands for the
time. The height of a stockpile rectangle represents the space the stockpile takes within the
pad. The width of the rectangle is the duration the stockpile is assigned to the space in the
pad. In general, each stockpile is fully reclaimed in two or three times, as can be seen by the
two or three rectangles together representing the size of the stockpile throughout its life.

Moreover, each stockpile has a stacking and reclaiming time shown as the grey element of the
rectangle on left and right, respectively. The left element represents the duration of a stockpile
being built. The right element represents the duration the stockpile is being reclaimed after a
blast furnace requests the stockpile. For these two periods, at least one stacker-reclaimer has
to be available. The rectangles of the stockpiles may not overlap in space and time, as coal
of different types may not be mixed. Moreover, there needs to be buffer space between each
stockpile to ensure they are not mixed, as shown in the figure. Every pad has a space-time

8

diagram, together representing the schedule of the complete stockyard.

3.2 Vessel arrival and cost structure

When each vessel could arrive at its ETA, the scheduling in space-time diagrams would be
a straightforward process. During the scheduling though, planners often find a case where a
vessel might not fit in due to the fact that other vessels occupy the port or that there is no
space in the stockyard. In such a case, vessels are allowed to speed up or wait for capacity to
free up in the port or stockyard. To ensure that vessels cannot speed up over their speed limit
or wait indefinitely, a vessel is given an arrival time interval during which the vessel is able to
berth. This time interval is shown as the grey bar beneath the axis in Figure 4 from vessel
v ∈ V earliest starting time ESTv by speeding up to its limit to its latest arrival time LATv by
waiting. The ESTv is thus the earliest time a vessel can arrive by speeding up and the LATv is
the latest a vessel can arrive by slowing down or waiting. When the vessel does not speed up or
slow down, it arrives at its estimated time of arrival, ETAv. The time within the interval is the
only opportunity the vessel can berth. So when it is not possible to berth within this interval,
the vessel is infeasible and incurs cancellation cost cCv . In terms of costs, speeding up incurs a
cost cSP

v for vessel v ∈ V per hour it arrives earlier. Lastly, each vessel has a latest finishing
time LFTv after which a demurrage cost cDv is incurred per hour the vessel leaves after its LFT.
The resulting cost structure can also be seen in Figure 4.

cost

time0 EST ETA LFT

delay costspeedup cost

LAT

Figure 4: Vessel arrival interval as shown as the grey bar under the axis and cost structure.

3.3 Problem overview

Now the space-time diagrams and cost structure are treated, we continue with the main challenge
of the SPP. We first explain when vessel demurrage occurs and we illustrate this with an example.
Then, we are able to formulate the SPP problem.

When creating a vessel and stockpile schedule, the ETA of vessels is a given. The stockyard,
however, may not have room to accommodate the incoming stockpiles as it has limited capacity
to store stockpiles. This results in vessels having to wait for space to become available in the
stockyard, leading to demurrage cost. Due to high opportunity costs of vessels, we want to
minimise this demurrage. Demurrage cost can be avoided when the stockyard would have room
to store the stockpile. Therefore, we have to know what is the cause of the fact that some
stockpiles cannot be accommodated in the stockyard. First, it may happen when the stockyard
is fully utilized. In other words, every available position in the stockyard is used. Nevertheless,
vessel demurrage is mainly caused by a bad placement strategy. A bad placement strategy is
a set of decision rules that cause stockpiles to leave undesirably small spaces in both time and
space, in which future stockpiles are unable to fit. This effectively results in less usable capacity
within the space-time diagram as small spaces in between stockpiles cannot be used for new
stockpiles. In this way, such spaces act as unusable capacity.

To illustrate the problem, suppose in Figure 5 we only have this coal pad in the stockyard
and stockpile 4 is brought in by vessel 4. Each vessel brings one stockpile corresponding to its
vessel number. Vessel 4 has the same ETA as the vessels of stockpiles 1 and 3. Yet, stockpile

9

4 is just too long to fit at the large cross × after reclaiming of stockpile 3, so the stockpile can
only be scheduled after stockpile 1 is reclaimed. This results in the fact that the vessel has to
wait and finishes unloading at e4 after its latest finishing time LFT, leading to demurrage costs.
When stockpiles 1 and 2 had been placed higher in the stockyard, the stockyard would have
had more usable capacity at the bottom. In this way, stockpile 4 could have been inserted after
stockpile 3 at cross × at an earlier time. This would have led to less demurrage costs, as in this
case vessel 4 departs earlier.

Figure 5: Example of the challenge in the stockyard planning problem.

The example shows that due to the limited stockyard capacity and due to a bad place-
ment strategy, we have to shift a vessel later in time leading to unnecessary demurrage costs.
Therefore, the main challenge in the SPP is to optimise the placement strategy of the stockpiles.
Approaches to improve this strategy will be treated in Section 4. Also, splitting a stockpile when
there is no immediate fit will be discussed in Section 3.4 as an extension to these methods.

The stockyard planning problem can now be formulated as follows. The goal in creating a
stockyard schedule is to minimise vessel speed-up, demurrage and cancellation cost, such that
the schedule contains non-overlapping schedules for vessels and stockpiles. During the process of
stacking and reclaiming there should always be a sufficient number of available stacker-reclaimers
and there should be sufficient space in between the stockpiles.

Lastly and importantly, we note that no costs are given to any late reclaiming of stockpiles,
which results in late orders to the production process. As our efforts are more focused on the
overall fit of the stockyard, we disregard this problem element. This is not to say that this
element is not important in a planner’s schedule.

3.4 Splitting stockpiles

Lastly, to be able to fit larger stockpiles within a full stockyard, we now introduce the notion
of splitting stockpiles into two. By splitting a stockpile, the available capacity in the stockyard
could be used more effectively. Nevertheless, we should be careful to not split all stockpiles as
this would ask for more stockyard capacity. First, each stockpile will need a buffer space to
separate it from other stockpiles. Second and most importantly, a split stockpile collectively
needs more space to be placed than it needed without being split. This is explained in the
following section.

As the shape of the piles does not allow for simply splitting the length of the stockpile, we
may only split in terms of stockpile volume. Therefore, let us first define how the stockpile
volume is defined and how the length is computed for a given volume.

10

Figure 6: A longitudinal stockpile with two half cone sides and a triangular prism in the
middle.

The stockpile, as can be seen in Figure 6, is called a longitudinal stockpile and contains
two half cones at the sides and a triangular prism in the middle. This shape is often found in
longitudinal domes covering stockpiles that limit the width a stockpile can take. Each cone has
width r and height h as does the prism with length d. The pile has a volume approximated by

V = hrd+
π

3
r2h. (1)

To eliminate height h let us first look at what is called the angle of repose. The angle of repose
α for coal piles is the angle at which the pile is stable and lays between 24° and 30° depending
on the type of coal. As this is given we can express the height as h = tan(α)r, so the volume
can be re-written as

V = r2tan(α)d+
π

3
r3tan(α). (2)

As we want to know the length li = 2r + d of stockpile i ∈ S, the width r and prism length d
need to be computed. For width r, we first assume the stockpile i ∈ S is a cone with d = 0 and
volume Vi = π

3 r
3tan(α). Then by using equation (2) we can compute the width r:

r̂ = 3

√
3Vi

πtan(α)
. (3)

If width 2r̂ is smaller than the pad width wp, the pile is indeed a cone, d = 0 and the length
of the stockpile equals its width li = 2r̂. When width 2r̂ is greater than the pad width wp, the
stockpile is longitudinal, d > 0 and r̂ =

wp

2 . What remains is computing prism length d. The
volume of this prism VP equals the volume of the whole pile Vi minus the volume of the two half

cones VP = Vi − π
3 r

3tan(α) = Vi − π
3

w3
p

23 tan(α) = Vi − π
24w

3
ptan(α), where r has been replaced

by known wp. As we concluded in (1) and (2), the volume of the prism also can be written as

VP = r2tan(α)d =
w2

p

4 tan(α)d, where again r has been replaced by wp. Therefore, the length of
the prism can be computed by

d̂ =
Vi − π

24w
3
ptan(α)

w2
p

4 tan(α)
, (4)

in which case the length of stockpile i ∈ S equals li = wp + d̂.
When we split a stockpile, we do not split the length, but we split the volume Vi of the

stockpile i ∈ S. With the previous computations, we are now able to compute the new length
li of stockpile i ∈ S for the volume divided by two. In this way, the stockpile can still be fit in
the stockyard. Nevertheless, splitting a stockpile also results into relatively more space being
used within the space-time diagram. To illustrate this result, Figure 7 shows the length each

11

stockpile would take up in the pad from a birds-eye-view when we would lay them side by side.
Note that this is not comparable to the space-time diagram. What can be seen is that each time
the stockpile is split into one more stockpile, the space they take up collectively increases. This
is due to the fact that the two cones at the side can hold less coal than the triangular prism,
due to the nature of its shape. What can be shown, is that the total length of these n split
piles grows linearly. This is due the fact that the total length increase ∆SL(n) as a function of
n splits follows

∆SL(n) = (1− π

6
)wp(n− 1). (5)

Therefore, it does not take a large amount of extra space to split the piles and it is reasonable to
split the pile into two stockpiles, as the summed length increases by the (1− π

6)(2− 1) ≈ 0.476
times the pad width wp. The proof for this relation can be found in Appendix A.1.

Figure 7: Top view example of a stockpile with prism length d split into two and three with
resulting prism lengths c and b and half-cone lengths of r.

12

4 Methodology

In this section, the mathematical formulation of the stockyard planning problem is given and
the heuristic techniques are presented. In Section 4.1, the problem parameters and decision
variables are given. Then, an exact model is formulated in Section 4.2, which is enhanced by
valid inequalities presented in Section 4.2.1. Section 4.3 develops the construction heuristic,
which will form the basis of the heuristic methodology. Follow-up techniques are discussed in
Section 4.4, in the form of a squeaky wheel optimisation (Section 4.4.1), a genetic algorithm
(Section 4.4.2) and an ant colony optimisation procedure (Section 4.4.3).

4.1 Notation

Relevant parameters are now given for the mathematical formulation. Each vessel v ∈ V has an
earliest starting time ESTv, estimated time of arrival ETAv, latest arrival time LATv and a latest
finishing time LFTv. Moreover, each vessel has a length lv, a speed-up cost cSPv , demurrage cost
cDv for leaving after its latest finishing time LFTv and a cancellation cost cCv for infeasibility by
not being able to start before LATv. The speedup and demurrage cost are incurred per hour,
while the cancellation cost is a fixed penalty. Then, each vessel v has stockpiles s ∈ Sv and
what we will coin as ‘sub-stockpiles’ i ∈ Is. These sub-stockpiles are the rectangles in Figure 3
and together represent the stockpile throughout its life. The term ‘sub-stockpile’ will only be
used in the context of the exact model. Each sub-stockpile i ∈ Is has a duration to unload dUi ,
transport dTi , stack dSi and reclaim dTi the stockpile. A sub-stockpile i ∈ Is has a time ti when
it is requested to be partially or completely reclaimed for the blast furnace. Moreover, each
sub-stockpile i ∈ Is has a volume Vi, length li in the stockyard as the pad width is always fully
utilized and a number ni. This number equals one when it represents the complete stockpile
and each following number represents the stockpile rectangle in Figure 3 throughout its life.
Next, each pad p ∈ P has a width wp and length Lp. Finally, the length of the buffer zone
between each stockpile is lbuffer and time horizon of the vessel and stockpile schedule is T days.

Table 1: An overview of the input data and decision variables.

Input data Decision variables

V set of vessels ∆ETAv speed up in hours of vessel v ∈ V
B set of berths ∆LFTv demurrage in hours of vessel v ∈ V
S, I set of stockpiles, set of sub-stockpiles uv 1 when vessel v is cancelled, zero o.w.

Sv, Is stockpiles, sub-stockpiles carried by vessel v ∈ V , stockpile s ∈ Sv sv start/mooring time of vessel v ∈ V
P set of pads ev end/departing time of vessel v ∈ V
SRp stackers-reclaimers used by pad p ∈ P Zbv 1 when vessel v is moored at berth b, zero o.w.

ESTv earliest starting time of vessel v ∈ V Xbvw 1 when vessel w is moored later than vessel v at berth b, zero o.w.

ETAv estimated time of arrival of vessel v ∈ V Zpi 1 when stockpile i is placed in pad p, zero o.w.

LATv latest arrival time of vessel v ∈ V Xpij 1 when stockpile j is placed later than stockpile i at pad p, zero o.w.

LFTv latest finishing time of vessel v ∈ V Ypij 1 when stockpile j is placed higher than stockpile i at pad p, zero o.w.

lv length of vessel v ∈ V si stacking start time of stockpile i ∈ I
cSPv , cDv , c

C
v speed-up, demurrage and cancellation cost of vessel v ∈ V ei end time of reclaiming stockpile i ∈ I

dUi unloading duration of stockpile i ∈ I in minutes bi position of stockpile i ∈ I
dTi transport duration to stockyard of stockpile i ∈ I in minutes

dSi stacking duration of stockpile i ∈ I in minutes

dRi reclaiming duration of stockpile i ∈ I in minutes

ti time at which stockpile i ∈ I is requested for the blast furnace

Vi, li volume and length of stockpile i ∈ I
wp, Lp width and length of pad p ∈ P
lbuffer Length of the buffer zone between each stockpile

T Time horizon of the schedule

ni The number of the sub-stockpile i ∈ Is within stockpile s ∈ S

Given these parameters, the decision variables can now be defined. The amount of time
units that the vessel is sped up is ∆ETAv, the time units after the vessel is expected to depart
is ∆LFTv and uv equals 1 when a vessel is cancelled, which all determine the objective value.
These are influenced by the decision when to berth sv and the departure time ev of vessel v ∈ V .
For the exact model we formulate Zbv that equals 1 when vessel v is moored at berth b and zero

13

otherwise. Variable Xbvw equals 1 when vessel w is moored later than vessel v at berth b and
zero otherwise. The same variables apply for the sub-stockpiles, but with the location variables
added as Ypij , which equals 1 when sub-stockpile j is placed higher than sub-stockpile i at pad
p and is zero otherwise. Lastly, each sub-stockpile i ∈ I has a start time si, and ending time ei
and a position in the pad bi.

4.2 Stockyard planning model

Using the parameters and decisions variables as defined in Section 4.1, we present the following
integrated SPP model including the BAP and YAP. As the model is computationally expensive
to solve as a result of the abundance of binary variables and big-M type constraints, the model
is only used on small instances. The formulation is therefore not applicable for real-world
instances. Still, it gives a comprehensive overview of the problem and most importantly, we
are able to check the quality of the heuristic based approaches in small use cases. Solving
the model and comparing exact and heuristic solutions for smaller instances namely gives us
some indication on how well the heuristics perform in larger instances. The model excludes the
stacker-reclaimer scheduling problem.

min
∑
v∈V

(cSPv ∆ETAv + cDv ∆LFTv + cCv uv) (6)

s.t. ∆ETAv ≥ ETAv − sv ∀v ∈ V (7)

∆LFTv ≥ ev − LFTv ∀v ∈ V (8)

sv ≥ ESTv ∀v ∈ V (9)

sv ≤ LATv ∀v ∈ V (10)

ev ≥ si − dTi ∀v ∈ V, s ∈ Sv, i ∈ Is : ni = 1 (11)∑
b∈B

Zbv = 1− uv ∀b ∈ B, v ∈ V : lv ≤ Lb (12)

sw + T (1−Xbvw) ≥ ev ∀b ∈ B, v, w ∈ V : v 6= w (13)

Xbvw +Xbwv ≤
Zbv + Zbw

2
∀b ∈ B, v, w ∈ V : v 6= w (14)

Xbvw +Xbwv ≥ Zbv + Zbw − 1 ∀b ∈ B, v, w ∈ V : v 6= w (15)

si ≥ sv + dUi + dTi ∀s ∈ S, i ∈ Is : ni = 1 (16)

ei ≥ ti ∀s ∈ S, i ∈ Is (17)

ei ≥ si + dSi + dRi ∀s ∈ S, i ∈ Is : ni = 1 (18)

ei ≥ si + dRi ∀s ∈ S, i ∈ Is : ni > 1 (19)

ei ≤ T ∀s ∈ S, i ∈ Is : ni = |Is| (20)∑
p∈P

Zpi =
∑
b∈B

Zbv ∀s ∈ S, i ∈ Is : ni = 1 (21)

bi + li − Lp(1− Zpi) ≤ Lp ∀p ∈ P, s ∈ S, i ∈ Is : ni = 1 (22)

bj + Lp(1− Ypij) ≥ bi + li + lbuffer ∀p ∈ P, s ∈ S, i, j ∈ Is : i 6= j (23)

sj + T (1−Xpij) ≥ ei ∀p ∈ P, s ∈ S, i, j ∈ Is : i 6= j (24)

Xpij +Xpji + Ypij + Ypji ≤
Zpi + Zpj

2
∀p ∈ P, s ∈ S, i, j ∈ Is : i 6= j (25)

Xpij +Xpji + Ypij + Ypji ≥ Zpi + Zpj − 1 ∀p ∈ P, s ∈ S, i, j ∈ Is : i 6= j (26)

bj = bi ∀s ∈ S, i ∈ Is : nj = ni + 1 (27)

sj = ei ∀s ∈ S, i ∈ Is : nj = ni + 1 (28)

14

Zpj = Zpi ∀s ∈ S, i ∈ Is : nj = ni + 1 (29)

Zbv, Xbvw, Zpi, Xpij , Ypij ∈ {0, 1} ∀b ∈ B, v, w ∈ V,∀p ∈ P, i, j ∈ S (30)

∆ETAv,∆LFTv, sv, ev, si, ei, bi ≥ 0 ∀v ∈ V, s ∈ Sv, i ∈ Is (31)

Here, the objective function (6) minimises the total speed-up, demurrage and cancellation cost
over all vessels. Constraints (7) and (8) define the speed-up and demurrage duration respectively.
Constraints (9) and (10) simply ensures that a vessel berths between its earliest starting and
its latest starting time. Constraints (11) indicate that the end time of a vessel is later than
the start time of any of its stockpile minus the transport time to the pad. Constraints (12)
states that a vessel can moor on at most one berth and allows for vessels not to berth when uv
equals 1. Moreover, vessels with a length exceeding the length of the berth are excluded from
the berth in the same constraint set. Constraints (13) indicates that the start time of vessel w
should be later than the end time of vessel v, when vessel w is scheduled later than vessel v
within the same berth b. Constraints (14) and (15) link the decision variables Zbv and Xbvw.
Moreover, they decide the order between two vessels v and w within the same berth. This is
due to the fact that when the berth b is the same, Xbvw +Xbwv = 1 must hold, indicating that
either vessel v should be moored before w or vice versa. When in the constraints (15) the two
vessels have a different berth, the right hand side becomes zero and the order does not matter.

Continuing with the constraints of the stockpiles, constraints (16) are associated with the
start time of a sub-stockpile i ∈ I. The start time of the complete sub-stockpile should be
later than the mooring time of its vessel plus unloading and transport time. Constraints (17)
ensure that the end time of a sub-stockpile is later than its requested time to the blast furnace.
Also, in (18) the end time of the complete sub-stockpiles should always be greater than its
start time added with the stacking and reclaiming time, as every stockpile cannot skip the
stockyard. This also holds for the other sub-stockpiles in (19), but here they do no have to be
stacked. Furthermore, sub-stockpiles need to end before the time horizon in constraints (20).
Constraints (21) determines that a stockpile can be allocated to exactly one pad whenever the
vessel is berthed and not cancelled. Constraints (22) imposes that the stockpile cannot exceed
the limit of the pad. Then, constraints (23) indicates that the lowest position of stockpile j
should be greater than the highest position stockpile i takes plus a buffer zone lbuffer when
stockpile j is placed above stockpile i. The constraint set (24) is the stockpile counterpart of
constraint set (13) preventing stockpiles from overlapping in time. Furthermore, the constraints
in (25)-(26) work the same as in the vessel case, but now for stockpiles locations as well due
to the Ybij variable. Both Xbij and Ybij variables can be placed in one constraint as stockpiles
following each other in time do not have to be placed above or below each other and vice versa.

Then, the sub-stockpiles that originate from the complete stockpile should have the same
starting position, the correct start time and be in the same pad as the complete stockpile
described in (27)-(29). Lastly, constraints (30) and (31) define the binary and continuous
domain of the decision variables.

4.2.1 Valid inequalities

As the goal of the exact formulation is to validate the performance of the heuristics, we are
interested in finding the best and lowest integer solutions. An evident and clear-cut approach to
achieve the best upper bound is the use of valid inequalities. Valid inequalities are constraints
that are violated by fractional solutions while they remain valid for integer solutions. In this way,
valid inequalities cut off a fractional part of the polyhedron, potentially reducing the number
of cuts that need to be made by the solver and steering the bounds towards integers solutions.

The first valid inequalities we consider concerns the symmetry of two solutions using the
two pads. As the transport time to the two pads and the pad lengths are equal, a solution
where the first stockpile is inserted into the first pad is equivalent to one where the stockpile is

15

inserted into the second pad. Therefore, for the first stockpile we can exclude a possibility of
the second pad.

Zi1 = 0 ∀i ∈ Is : s = 0 (32)

The second inequality is in the form of a cover inequality as described by Gu et al. (1998).
We note that there must be some set of stockpiles C that need to be in the stockyard at the
same time for which the pad capacity is exceeded by one stockpile. More specifically, let us
define C as the set of stockpiles which length jointly exceed the pad capacity including buffer
zone lbuffer by one of the stockpiles. Moreover, let the duration between latest arrival time
(LATv) of the vessels of the stockpiles and the request times ti overlap with each other. This
makes sure that even when the vessel would arrive at its latest time, each stockpile s ∈ C must
be in a pad at the same time. As the stockpiles jointly exceed the pad capacity, a maximum of
|C| − 1 stockpiles may be in the pad at the same time. Therefore, we can define our first cover
inequality with cover C as ∑

i∈C
Zpi ≤ |C| − 1. (33)

With this inequality the bounds of the problem are stronger, because
∑

i∈C Zpi, ∀p ∈ P
cannot be fractional anymore between |C| − 1 and |C|. To strengthen it as much as possible,
all possible combinations of set C are searched for to increase the probability that a given
constraint will be violated.

The same cover C can be used to construct a valid inequality for the decision variables Ypij ,
which is inspired by vessel cover constraint (20) from Correcher et al. (2019). Here, the authors
use the same left hand side of their cover constraint on a non-ordered set of variables similar to
Ypij . For the right hand side they use (|C|2−|C|)

2 − 1 for which we note that the constraint can
be strengthened by using a tighter bound. We illustrate this with an example.

Figure 8: Illustration of the valid inequality (34) with four stockpiles

Consider a maximum of three stockpiles that can fit in a pad, which is the case for all cover
sets C in our problem. As can be seen in Figure 8, for these stockpiles a maximum of three
Ypij can be activated at the same time as stockpile l does not fit in the pad. For these variables
in this situation, the activated ones are indicated as the bold arrows. When we would use the

bound of Correcher et al. (2019) we would arrive at (|4|2−|4|)
2 − 1 = 5 and we would indeed

exclude one variable and with it a fractional part of the polyhedron. We can improve it though
by excluding two other variables as well to arrive at a sum of three. In general, we can write

this right hand-side as (|C|2−|C|)
2 − |C| + 1 to arrive exactly at the maximum number of Ypij

16

variables that can be activated at the same time, given that |C| ≥ 3. Therefore, we use the
same cover set C to add a valid inequality in the form of

∑
i∈C

∑
j∈C,i6=j

Ypij ≤
|C|2 − |C|

2
− |C|+ 1, |C| ≥ 3. (34)

4.3 Construction heuristic

To be able to provide quick and efficient solutions, we now propose a sequential construction
heuristic. The construction heuristic consists of two parts. First we schedule a vessel by the
procedure in Figure 9 as explained in Section 4.3.1 and then directly schedule the stockpiles of
the vessel with the procedure in Figure 12 in Section 4.3.2. Stockpiles of vessels are scheduled
along with each vessel, as the placement of stockpiles has direct influence on when other vessels
can berth.

4.3.1 Vessel insertion

Starting with the vessel insertion procedure in Figure 9, we initialize the first berthing time sv
equal to its ETAv in step (a). For the selected berthing time sv, we find all free berths in step
(b). If there are no free berths, we select a new time berthing time sv in step (g). Selecting a
new berthing time sv is done using the possible berthing interval [ESTv, . . . ,ETAv, . . . ,LATv]
as discussed in Section 3.2. When we pick a new time sv, we first go back in time to the earliest
starting time ESTv of vessel v ∈ V and then continue with times after the ETAv until the latest
arrival time of vessel v ∈ V LATv. The reason for first speeding up the vessel is that speeding
up is less costly than obtaining a demurrage cost.

When a free berth has been found, all the stockpiles on the vessel are inserted into the
stockyard in step (c) according to the procedure in discussed in the next section. The stockpiles
are inserted in an order that is specified by the vessel v ∈ V . The stockpile procedure returns
an end time ev for the vessel given by the the stacking time of the stockpile with the latest
starting time si′ minus the transport time, ev = si′ − dTi′ , which is set in step (d). In the same
step, the vessel start time sv is adjusted by the start time of the first inserted stockpile i′′ minus
the transportation and unloading time, sv = si′′ − dTi′′ − dUi′′ . In this way, the vessel is scheduled
only for unloading stockpiles, which leaves more space for other incoming vessels.

If these assignments are successful and result in a non-overlapping schedule without any
vessels on the same berth, we have found a feasible assignment and we save it if it was the best
found solution. When the stockpile insertion results in an end time that overlaps with another
vessel in time, we pick a new berth bv for vessel v ∈ V in step (e). If no berth has been found,
we pick another berthing time sv from the known berth time list in step (g). When selecting a
new berthing time sv, we check for two conditions. First if the list is exhausted, we terminate
the procedure. Secondly, we also stop if the next starting time sv is greater than ETAv and we
have already found a solution. This is done to prevent any unnecessary assignments incurred
with delay to speed up the heuristic.

Finally, if there was a successful vessel insertion, the vessel is inserted into berth bv with
start time sv and end time ev and we update the state of the system. If no feasible assignment
has been found, the vessel is cancelled for cost cCv .

17

(a) sv := ETAv

(b) Find free
berth(s)

(c) Stockpile_assignment(v, sv , bv)

Successful and non-
overlapping ?

(e) Select new bv

(g) Select new sv

No sv left or (sv > ETA
and solutionFound ?

bv found ?

(h) Return:
found solution

yes

yes
no

no yes

Free berth(s) found? no

yes

no

(d) Set start and end time sv, ev

(f) Save best
found solution

Figure 9: Insertion heuristic for the vessels

4.3.2 Stockpile insertion

As each vessel is inserted through the previous procedure, the stockpile procedure in Figure 12
inserts the stockpiles of its vessel into the stockyard. The procedure is thus repeated for each
stockpile s ∈ Sv when inserting a vessel v ∈ V in the previous procedure. The logic is the same
although here, continuous contact points are considered instead of discrete starting times and
berthing locations. Moreover, we terminate the search in a pad as soon as a stockpile location
has been found, as no demurrage costs can be evaluated here.

First, we search for a location for stockpile i in the first pad pi. We search for all contact
points (bip, sip) with position bip and start time sip for stockpile i in pad p ∈ P in the space-time
diagram. These contact points serve as a way to minimise the search space in the diagram, but
also to schedule in the stockpiles as compactly as possible.

An example of the generation of contact points can be seen in Figure 10. In this example,
for simplicity purposes each stockpile is reclaimed fully in one action. The logic works the
same with stockpiles being reclaimed in two or three times. As can be seen in the figure, both
scheduled stockpiles get four contact points: upper-left , upper-right, lower-left and lower-right
(1, 2, 3′, 4′). For the upper-left and lower-right corners, the new stockpile always gets connected
with the lower-left corner. For the lower-left and upper-right corner, the new stockpile always
get connected with its upper-left corner. This is done to maximise the vertical contact with other
stockpiles in the space-time diagram, resulting in maximising the left-over available space in the
pad. Moreover, for each stockpile’s end time we add a contact point at other time-overlapping
stockpiles with the same end time of the original stockpile at the top and bottom (1′, 2′). In
this case the top and bottom of stockpile 2 gets a contact point on top with the same end time
as stockpile 1. Lastly, we add a contact point on the bottom and top of all stockpiles, (1′′, 2′′)
which are already located at the time at which the stockpile arrives, svi + dUi + dTi , with that
time. In the figure this is the dashed vertical line and stockpile 2 thus gets two contact points
added. The faded diamonds represent infeasible and the circles are feasible contact points.

18

Figure 10: Small example of the contact
points

Figure 11: Large example where stockpile 5
is inserted

All these contact points together are sorted based on proximity to the arrival time of the
stockpile, ETAvi + dUi + dTi . When multiple points have the same time, we distinguish between
different priority rules. First, top-left has priority over bottom-left (1 over 2 in Figure 10) as
we build up from the bottom. Secondly, for contact points on the right-end and end-times on
top and bottom of other stockpile we prioritise the contact points of the other stockpiles, first
top then bottom (1′ over 2′) for the same reason as before. The rationale behind first selecting
other stockpiles is to maximise the left-over space in the stockyard. Moreover, we select the
contact point of a stockpile with the most resulting overlapping contact. For the end-points of
the original stockpiles, we prioritise bottom over top (3′ over 4′) as we build from the bottom.
Lastly, for the contact points with the arrival time, we again prefer top over bottom (1′′ over
2′′) and we give priority to the stockpile that gives the most overlapping time contact with the
inserting stockpile or the bottom of the stockyard.

In this way, we try to fit in the stockpile such that the vessel has to wait as little as possible.
All these contact points not only make sure that a stockpile can be fitted as compactly as
possible in both time and space, but they also ensure we minimise the search space. A bigger
example where the best feasible contact point is evaluated is shown in Figure 11. In this example,
stockpile 5 is inserted at the shown contact point as a result of the priority rules previously
discussed.

(a) Initialize: pad pi = 0

(b) SearchContactPoints(i, pi, sv),
pick first time-feasible (sip, bip) pair

(c) SR_assignment(i, sip , bip)

Non-overlapping?

(d) Select new (sip, bip) pair

(sip, bip) pair found ?

(f) Return: found solution

yes

no

no (e) Select new pad
pi = pi +1 All pads checked ?

yes

no

yes

SR assignment
successful?

no

yes

Figure 12: Insertion heuristic for the stockpiles

When the allocation is non-overlapping in both time and space, we continue with the stacker-
reclaimer assignment in step (c) in Figure 12. For this, it holds that for the stacking and the

19

reclaiming duration, one stacker-reclaimer needs to be available. We schedule the stacking as
soon as possible while satisfying si ≥ svi + dUi + dTi (stacking can start after unloading and
transport to the stockyard). When a stacking time has been found, we continue with the
reclaimer assignment. For this, we look at the time ti at which the stockpile is needed for an
order. This is used to get an end time for the stockpile that satisfies ei ≥ ti (the end time is
after the time of the order) and the fact that the end time should be later than the start time
plus any stacking time and reclaiming happening in the mean time. Again, we schedule the
available reclaimers as soon as possible.

If the stacker-reclaimer assignment is successful, we succeeded in placing the stockpile and
we terminate the procedure for the current pad pi. In case of an overlap or failed stacker-
reclaimer allocation, we pick a new space-time pair (bip, sip) in step (d). If a pair is found or
when all pairs have already been evaluated, we start the search in a new pad in step (e). If the
pads are exhausted we terminate the procedure and we give an end time ev to vessel v ∈ V . A
feasible allocation can always be found as it is always possible to place a stockpile later in time
in the stockyard.

4.4 Local search - vessel order

As the construction heuristic inserts each vessel one at a time, the algorithm needs an order in
which the vessels are inserted. The order in which the vessels are inserted uses what is called
a vessel priority list x. Particularly, a standard approach to make up the list x would be to
order the vessels based on ETA. Still, we might be able to improve the solution by altering the
priority list x by moving some vessels up in priority before the execution of the construction
heuristic. The idea behind giving some vessels more priority is that they get a better stockpile
placement in the stockyard such that vessel demurrage is avoided as explained in Section 3.3.
By giving priority to high-cost vessels in the vessel order, the cost of the prioritized vessel can
be significantly reduced, while the other vessels moving down in priority list only have a small
or no cost increase, leading to lower overall demurrage cost. Note that a higher priority does
not mean the vessel arrives earlier in the terminal, but we only insert the vessel before other
vessels in the algorithm.

As a vessel list of a few dozen vessels can be ordered in n! number of ways, it is unrealistic
to evaluate all possible orderings. And although the construction heuristic might perform
quickly, the given computation time will limit the amount of evaluations we can make with
the heuristic. Moreover, one can imagine that with vessels arriving in separate time windows,
the latest arriving vessel does not have to be inserted first to obtain a good solution. The
improvement in cost might already by achieved by giving the vessel more priority over vessels
that arrive around the same time. This is due to the fact that their stockpiles are in the
stockyard around the same time. Therefore, we refrain from searching for the best insertion
order in big solution spaces and we focus on elementary swaps between two vessels. This means
we only shift vessels one place up in priority.

The following local searches to improve upon the construction heuristic are presented. A
squeaky wheel optimisation in Section 4.4.1 as inspired by Meisel and Bierwirth (2009), a genetic
algorithm in Section 4.4.2 and an ant colony optimisation procedure developed to challenge these
methods in Section 4.4.3.

4.4.1 Squeaky Wheel Optimisation

A commonly used method in this type of setting is called squeaky wheel optimisation (SWO).
The benefit of SWO is that it is able to quickly improve solution orders by looking at individual
vessel costs making up the overall solution. The term ‘squeaky wheel’ comes from the fact that
we try to fix individual ‘squeaky wheels’ within the solution to come up with a better overall
solution. To do this, we make use of the fact that the objective can be decomposed into the

20

costs of each vessel. Therefore, each high-cost vessel can be compared to a squeaky wheel in
the analogy. When SWO detects a vessel with high cost, it prioritizes this vessel such that the
solution’s ‘squeakiness’ is resolved.

The general algorithm is listed in Algorithm 1. First, the vessel list in order of ETA is
evaluated by the construction heuristic to obtain the best starting cost z∗. Then, we intensify
the solution by only moving one vessel up in priority by starting with the highest-cost vessel and
moving down in vessel cost. We continue the intensification process until no better solution can
be found by moving one vessel up in priority. When the intensify method is finished, we diversify
the solution until a better starting solution with objective z < z∗ has been found to diversify
with or if the diversification has not yielded a better starting solution for Ndiv diversifications.
Furthermore, before we diversify we always revert to the best found solution order x∗. This
is done to best utilise the short given computation time relative to the time the construction
heuristic takes. A diversification consists of also moving one vessel up in order. This seems
to resemble the intensification step, but the difference here is that the vessel swap is always
carried out even with a resulting worse solution objective. When a diversified solution has been
accepted, we continue with the intensification and diversification thereafter until the time limit
has been reached. During the algorithm, we keep track of the best found vessel order x∗.

Algorithm 1 Squeaky wheel optimisation

1: procedure SqueakyWheelOptimisation(vesselOrder xETA)
2: z∗ ← constructionHeuristic(xETA)
3: while Time limit not reached do
4: x← intensify(x)
5: while z ≥ z∗ OR diversificationFailed < Ndiv do
6: x← revert(x∗)
7: x← diversify (x)
8: z ← constructionHeuristic(x)
9: end while

10: end while
11: return x∗ . During the algorithm, we keep track of the best found order
12: end procedure

4.4.2 Genetic Algorithm

The second method is a genetic algorithm (GA). An unknown variant of GA is used by Singh
et al. (2012), but they conclude that the GA is ineffective in finding good solutions. Although
their problem slightly differs and their specific implementation settings are not presented, it
still might be interesting to add the method to our list of comparison. Another reason for our
inclusion of GA is its potential to find quick but also very diverse solutions by using cross-over
of two solutions and parallel evaluation of multiple solutions in the population.

The idea behind a genetic algorithm is using the concept of ‘survival of the fittest’ and
apply it to optimisation problems by generating a lot of potential solutions in a population.
The implementation is described in Algorithm 2. First, we create a population N of npopulation

random vessel orders by moving one random vessel up in priority from the ETA order. Then, for
each individual in the population we evaluate its fitness as the objective value of the construction
heuristic. When the whole population N has been evaluated, GA selects the best half of the
population to form random pairs of parents. For each parent, we create two offspring solutions
by applying cross-over.

Cross-over works by first selecting one parent and taking its order for between 25% and 75%
of the vessels and adding it to the child. After the first parent, the remaining vessels that are
not yet added to the child’s order are added in the order of the second parent. For example,

21

parent 1 (1,4,3,2,5) and parent 2 (1,5,3,2,4) with a cut between the third and fourth vessel
produces offspring as (1,4,3,5,2) as the first three vessels in bold are a direct copy of the first
parent. The second half is in the order of the second parent. For the second child, the parents
get swapped and another random cutoff point is determined.

Lastly, some children are mutated randomly with probability pmutate by moving one random
vessel one place to the front. These children are added to the population N and the worst half
of the population is removed. For each individual, again the objectives are determined, parents
are created and we continue until the time limit has been reached. The best settings in terms
of population size and mutation rate are determined by sensitivity analysis.

Algorithm 2 Genetic algorithm

1: procedure GeneticAlgorithm(vesselOrder x)
2: Create a child population of size npopulation random vessel orders
3: while Time limit not reached do
4: for each child c do
5: zc ← constructionHeuristic(xc)
6: end for
7: Select n

2 of best children and form pairs randomly
8: for each pair p do
9: x′, x′′ ← formOffSpring(p) . We create two children as offspring

10: Apply mutation with probability pmutate

11: N ← N ∪ {x′, x′′}
12: end for
13: Remove half of the worst population
14: end while
15: return x∗ . During the algorithm, we keep track of the best found order
16: end procedure

4.4.3 Ant Colony Optimisation

Lastly, we propose an ant colony optimisation (ACO) procedure to improve the objectives of
the construction heuristic. A benefit of ACO is the parallel evaluation of very diverse solutions
just as in the genetic algorithm. A potential useful difference here though is that each ant is
vastly more diverse in each iteration than in GA, as the ant builds a random path each iteration.
Therefore, it might outperform GA in terms of diverse solutions. The basic idea behind ACO
is using pheromone levels to guide the solution into low-cost solution spaces. Pheromones are
used by blind ants to communicate to other ants where they have been. Ants smelling paths
with high amounts of pheromone have a high probability of following a previously made path,
reinforcing the paths that a set of ants collectively follow. The trick in ACO is to only create
pheromone levels for low cost paths.

The way we do this for our SPP is described in Algorithm 3. The procedure first creates
|A| ants and initializes the pheromone levels evenly. Then, while the time limit has not been
reached we randomly perturb the order of the given vessel list x, which will be explained after
the algorithm. The perturbation for each ant is based on the pheromone levels τ and we check
its objective za by using the construction heuristic. When this has been done for all ants
a ∈ A, we update the pheromone levels based on the found objectives z. This is done such that
low cost orders of vessels obtain a higher pheromone level and high cost orders do not obtain
pheromone. Based on these new pheromone levels, we again randomly create orders and we
continue until the time limit has been reached. Throughout the algorithm, we keep track of the
best performing vessel order x∗.

22

Algorithm 3 Ant colony optimisation

1: procedure AntColonyOptimisation(vesselOrder x)
2: Create |A| ants and initialize the pheromone levels
3: while Time limit not reached do
4: for each ant a do
5: x′a ← perturbOrder(x, τ) . Randomly change order based on pheromone levels
6: za ← constructionHeuristic(x′a)
7: end for
8: τ ′ ←updatePheromone(τ , z) . Change pheromone based on objectives z
9: end while

10: return x∗ . During the algorithm, we keep track of the best found order
11: end procedure

We will now extend on how the vessel order is perturbed and how the pheromone levels
are updated. To follow the notion elementary swaps as discussed in Section 4.4, we define the
pheromone levels as τvi for vessel v ∈ V and i ∈ {0, 1}, where i is 1 when we move vessel v
forward one place in priority over the original ETA order and 0 when we do not. The main
drawback of this approach is therefore that a vessel can only be moved one place forward or
back instead of multiple places in priority as compared to in the SWO and GA. The probability
then that vessel v ∈ V gets priority based on value i ∈ {0, 1} can be defined as

pvi =
τvi∑
j τvj

. (35)

The probabilities pvi and pheromone levels τvi are the same for each ant a ∈ A. When each
ant a’s random vessel order has been evaluated by the construction heuristic, the ACO updates
the pheromone levels such that for both low-cost and often used vessel orders, the pheromone
τvi increases. This is done by using

τvi = (1− ρ)τvi +
∑

a∈A(vi)

(Q− za)+. (36)

Here, A(vi) is the set of ants that use priority level i for vessel v and za is the objective of
ant a ∈ A. Then, ρ and Q defined as α times the best found objective throughout the ant colony
search Q = αz∗ are chosen by experimentation. By defining Q in this way, low-cost solutions
obtain higher pheromone, while solutions above Q get no pheromone. Using this equation, part
of the previous pheromone evaporates by (1 − ρ)τvi and for both low-cost and often used ants
that use priority i, τvi increases. This is due to (Q − za)

+ increasing when za is small and∑
a∈A(vi)(Q − za)

+ increasing as ant a can more often be found in the set of ants that use
priority i for vessel v, A(vi).

23

5 Data

To test both the exact model and heuristic methods, four sets of instances are generated con-
taining 10, 15, 30 and 75 vessels. The first two sets will exclusively be used for the exact
formulation and contain 20 instances. The sets of size 30 and 75 vessels consist of 30 randomly
generated instances to ensure the performance of each heuristic method is thoroughly tested.
In each instance three vessel classes are used: HandySize, HandyMax and SupraMax, which
account for roughly 60%, 30% and 10% of the vessels respectively. The technical specifications
of these vessel classes are listed in Table 2. As can be seen, each vessel has a specific length
lv to specify for the size of the accommodating berth and the volume of each carried stockpile
Vi, which is uniformly distributed. As the vessel classes differ in capacities, the HandyMax and
SupraMax are able to carry more stockpiles |Sv| which is binomially distributed with p = 0.5.
Moreover, each vessel class has a different cost for speeding up cSP

v and for delay cD
v per hour.

We note that the larger the vessel, the greater its opportunity costs and the greater the cost
of speeding up due to the mass of each vessel class. The cancellation cost for a vessel is 0.1
times the total volume in tonnes on board plus 10,000 (cCv = 0.1 ·

∑
i∈Sv

Vi + 10, 000) to have
vessels with more cargo have a higher penalty. We refrain from unitizing costs as we focus on
the relative costs and to decrease the size of the found objectives.

For each instance, every two days one vessel with an ETA distributed uniformly over the
day is generated. Moreover, the earliest starting time is exactly one day before a vessel’s ETA.
The latest arrival time LAT is always three days after a vessel’s ETA and its latest finishing
time LFT five days after the ETA. Each ‘sub-stockpile’ has a reclaim duration of two times
the volume in thousands of tonnes in hours (dRi ∝ 2Vi) and a stacking duration as the volume
in thousands of tonnes in hours (dSi ∝ Vi). Here, the stacking duration is shorter as stacking
takes less time than unloading and reclaiming. Each stockpile is either a two-time reclaimed
stockpile or reclaimed in three times with probability p = 0.5. Moreover, the request time ti for
the final and last reclaim of a stockpile is uniformly distributed between the vessel’s LFT and
20 days after the LFT. The request times in between are uniformly distributed and U(0.4, 0.6)
times the sampled last request time for a two-time reclaimed stockpile and U(0.2, 0.3) and then
U(0.4, 0.6) times the sampled final request time for a three-time reclaimed stockpile.

Finally, there is one small, one medium and two large berths. The stockyard consists of two
pads with a width wp = 50m and a length Lp = 700m and two stacker-reclaimers nSR

p = 2 for

each pads p ∈ P . The transport time dTi equals five minutes, the angle of repose α = 28° and
for the exact model the time horizon T consists of 60 days for the instances of 10 and 15 vessels.

Table 2: Technical specifications of the different vessel classes. For each vessel class, a length
lv, stockpile volume Vi, number of stockpiles |Sv|, speed-up cSP

v and demurrage costs cD
v are

given.

Class lv Vi (x1000 tonnes) |Sv| cSP
v cD

v

HandySize small U[15,25] 1 10 20

HandyMax medium U[15,25] B[1,2] 20 40

SupraMax large U[15,25] B[2,3] 30 50

24

6 Results

In this section, we present the results from the proposed exact model and the heuristic ap-
proaches. First, the settings of the computational experiments are listed in Section 6.1. Then,
the valid inequalities are tested on the exact model in Section 6.2. The exact model is used to
assess the performance of the heuristic approaches in Section 6.3. In Section 6.4, the compet-
itiveness of each local search in vessel order is tested against the benchmark of first come first
serve. To verify what problem properties challenge the heuristic’s objectives, we evaluate the
instances in Section 6.5. With this analysis we search for methods that might be a best practice
in certain conditions in Section 6.6. Finally, in Section 6.7 we extend the problem by evaluating
when it is optimal to split stockpiles when they do not fit in the stockyard.

6.1 Settings

For all results, the exact model is implemented in CPLEX 12.6.3 Java 12 and the construction
heuristic and local searches are written in DELMIA Quintiq 2020 refresh 2. The CPLEX model
was run on an Intel i7 7700HQ and the DELMIA Quintiq solutions were produced by an i7
5600U for 30 vessels and by a Xeon E5-2690 for 75 vessels. Various tests indicated that Xeon
and the 5600U performed similarly, so we neglect the possibility of a performance gap between
the two computers. The exact model is limited to an hour of solution time. All local search
heuristics of 30 vessels are run for 60 seconds and for an hour for 75 vessels. The construction
heuristic is able to produce a solution in a fraction of a second.

Several computational experiments are conducted to obtain the optimal local search settings,
which can be found in Section A.2. Here, each parameter is chosen which scores the lowest
objective over all 30 instances of size 30. For SWO, a diversification limit Ndiv of ten tries is
found to be optimal. For the GA, a population size of 30 is chosen and a mutation probability
for each child of pmutate = 0.8. For the ACO the population size is set to 20 to obtain more
iterations, which is necessary to converge. Furthermore, an α of 2.1 and a ρ of 0.4 was found
to yield the best results.

6.2 Valid inequalities

To evaluate the influence of the proposed valid inequalities on the exact model, we run the
model for 20 instances of 15 vessels. First we use the model without valid inequalities, then
with inequalities (32), (33) and (34) separately and then with all the inequalities. Instances of
15 vessels are chosen as this size is challenging enough while allowing for some optimal solutions
to be found. We limit the solution time of the model to one hour and indicate zero cost solutions
with a dash. Only zero cost solutions were found within the time limit.

The results listed in Table 3 show that all valid inequalities decrease the average upper
bound. For valid inequalities (32) and (33) this was not significant with a t-test indicating
different means with a p-value of 0.15 and 0.24. For valid inequalities (34) and (32)+(33)+(34)
the reduction was significant with a p-value of 0.01 and 0.04 respectively. Although all three
inequalities seem to have (some) effect on the obtained upper bound, the bundling of them
therefore does not seem to help considerably. Nevertheless, adding all three inequalities does
improve the average upper bound by around 13%. The effect seems to be mixed as for four
instances the upper bound increases over the original formulation, as indicated in bold. For
other instances such as i2n15 and i16n15 the inequalities seems to work much better, which
highlights the arbitrariness of using an exact solver. Nevertheless, the formulation with all
inequalities added is able to obtain the optimal zero cost solutions much quicker. Where the
original formulation obtained these solutions in 1200 seconds on average, all inequalities helped
to reduce this number to 680 seconds on average. Therefore, the use of these inequalities can
bring serious practical benefits for quickly obtaining low cost solutions.

25

Table 3: Results of the valid inequalities added to the model.

(32) (33) (34) (32)+(33)+(34) Maximum share

Instance Objective Objective Objective Objective Objective of valid inequalities

i1n15 10,065 19,817 19,011 9,682 19,585 5%

i2n15 24,699 16,144 23,684 7,585 8,671 0%

i3n15 34,483 24,792 32,817 21,533 31,935 1%

i4n15 - - 1,932 - - 0%

i5n15 9,346 7,651 9,920 7,149 9,846 3%

i6n15 8,460 10,218 4,304 8,154 14,765 1%

i7n15 27,828 33,871 34,179 32,894 22,584 1%

i8n15 2,021 7,495 2,518 2,598 1,487 2%

i9n15 - - - 523 - 0%

i10n15 18,395 22,833 21,864 22,378 15,389 2%

i11n15 - - - - - 0%

i12n15 31,858 19,238 23,014 23,150 26,458 0%

i13n15 51,077 43,266 59,704 40,076 48,069 2%

i14n15 - - - - - 1%

i15n15 23,918 32,897 22,878 20,188 18,007 3%

i16n15 37,597 27,491 16,992 25,103 21,270 1%

i17n10 20,953 18,488 18,268 17,833 15,181 1%

i18n15 69,829 39,183 52,124 50,107 64,440 1%

i19n15 3,329 4,437 5,241 4,179 2,449 0%

i20n15 8,031 10,756 9,675 10,345 11,012 1%

Average 19,094 16,929 17,906 15,174 16,557

To validate that not too many rows are added to the problem, we included the share all
three valid inequalities take up in the model. For all instances, these remained limited to only
a few percent of the total number of rows. Therefore, any potential negative side-effects of
newly added rows on the performance might not be a problem. As we suspect that bundling
the inequalities results in a stronger formulation and the difference between adding (34) and
(32)+(33)+(34) is not significant, we use the model with all three valid inequalities in the next
section.

6.3 Heuristic performance validation

We now turn to the performance of the heuristics. As these heuristics are not guaranteed to
find the optimal solution due to the way the construction heuristic works, we want to validate
its performance. We therefore now continue to compare the quality of the heuristic solutions
to solutions of the exact model including valid inequalities. The heuristics are used without
stacker-reclaimer scheduling as the exact model does not include this element. Instances of ten
vessels are used as this size allows some instances to be solved to optimality while remaining
challenging enough for the heuristics.

The results of the exact model with valid inequalities and the three local searches are listed
in Table 4. The solution time of the optimal instances solved within an hour are indicated in
bold. Moreover, we list the difference between the average of the SWO, GA and ACO solutions
and the best integer solution of the model. What can be seen is that for most instances with
an optimal solution, the heuristics find a competitive solution often equal or very close to the
optimal solution. For harder instances such as i8n15, i11n15 and i12n15 the difference was
kept limited by the heuristics by around 1000 to 2000. For the other instances, the average
difference can be somewhat larger with a maximum of 5450 for instance i15n15. We neglect
the comparison for instances with a negative difference, as the exact model was not able to
find a good solution within the time limit. Nonetheless, we can conclude that using the exact
model in these instances is less competitive than using the heuristics. In the end, we see an
average 27%, 20% and 14% objective increase over the exact model for the SWO, GA and ACO
respectively. Whether this performance gap translates into larger instances is hard to say, but
for these instance sizes, the gap between the model and heuristics seems to stay limited.

Lastly, we observed that the reason for the performance gap was mostly the cause of a bad

26

Table 4: Results of the squeaky wheel optimisation (SWO), genetic algorithm (GA) and ant
colony optimisation (ACO) compared to the exact model solutions. The percentages in the
average row are the increase over the exact model objective.

CPLEX Model SWO GA ACO

Instance Objective Time (seconds) Objective Objective Objective Average difference

i1n10 - 7 - - 295 98

i2n10 11,504 3,600 16,876 16,591 13,373 4,109

i3n10 27 3,600 2,390 4,231 4,231 3,591

i4n10 12,732 3,600 10,573 10,573 16,306 (248)

i5n10 - 11 343 343 753 479

i6n10 461 3,600 1,668 832 2,060 1,059

i7n10 - 31 - - - 0

i8n10 138 742 2,565 1,560 1,560 1,757

i9n10 - 125 473 473 1 316

i10n10 12,757 3,600 12,479 14,431 15,281 1,306

i11n10 - 499 2,264 2,264 2,264 2,264

i12n10 922 857 3,367 1,618 1,618 1,279

i13n10 - 42 31 31 31 31

i14n10 - 13 - - - 0

i15n10 5,044 3,600 11,201 11,201 9,080 5,450

i16n10 - 38 - - 89 30

i17n10 - 20 - - - 0

i18n10 5,856 3,600 11,760 11,130 10,109 5,143

i19n10 33,762 3,600 27,872 23,419 16,015 (11,327)

i20n10 1,572 3,600 4,063 3,362 3,362 2,024

Average 4,239 1,741 5,396 (+27%) 5,103 (+20%) 4,821 (+14%) 868

stockyard fit. In the heuristics, a bad stockpile placement often caused an arriving vessel to
wait, incurring demurrage costs. Further analysis Appendix A.3 confirms these observations.
This analysis points out that the reason for a large average difference in some instances could be
the number of stockpiles carried per vessel. The more a vessel brings in, the more the heuristics
seems to struggle relatively compared to exact model solutions. This indicates that instances
with more stockpiles per vessel require a better fitting strategy within the stockyard. Clearly,
exact solvers benefit from an integrated approach to fit in the stockpiles while these sequential
search heuristics are limited in the way the construction heuristic develops the stockyard fit and
the schedule.

6.4 Local search heuristics

In this section, we leave the exact model and discuss the main results of SWO, GA and ACO for
instances of 30 vessels and 75 vessels. The local searches are compared to the principle of first
come first serve (FCFS). This means the vessels are inserted in the order of their ETA, which
is typical for a real-life planner to do. First, the average computation time and the number
of iterations are listed. Then the total, vessel cancellation, demurrage and speedup costs are
listed. Furthermore, more detail is given about the number of cancelled vessels, the number of
delayed vessels, the total delay over all vessels and the average delay per vessel.

6.4.1 Local search - 30 vessels

The results for instances of 30 vessels are listed in Table 5. SWO, GA and ACO are all able to
significantly improve the FCFS solutions, all achieving around a 30 percent cost saving. SWO
obtains the lowest average cost and with that the best improvement over FCFS. A one-sided
t-test for differing means shows that SWO performs significantly better than the ACO. For
the difference between SWO and GA, this hypothesis is not proven at a five percent level at a
p-value of 0.10. Moreover, SWO performs best for half of the instances, while GA and ACO
perform best each in a quarter of the instances. As can be seen in Table 5, the total costs of all
solutions are mainly demurrage and vessel cancellation. Speedup of vessel is rarely used as this

27

Table 5: Average results of squeaky wheel optimisation (SWO), genetic algorithm (GA) and
ant colony optimisation (ACO) for instances of 30 vessels.

FCFS Squeaky wheel optimisation Genetic algorithm Ant colony optimisation

Time (seconds) 0.32 60 60 60

Iterations 1 23.7 8 7.9

Cost

Total 69,093 46,980 47,993 48,990

Cancellation penalty 25,332 16,194 14,246 20,426

Demurrage 43,707 30,786 33,747 28,537

Speedup 53 0 0 27

Improvement over FCFS -32% -31% -29%

Shipping delays

Vessels canceled 2.0 1.1 1.0 1.4

Vessel delayed 18.1 17.0 18.0 15.9

Total delay (hours) 1,399 1,202 1,151 1,110

Average delay (hours) 46.6 40.1 38.0 37.0

is only better to do when its stockpile can fit just before another stockpile in time, so to the
left in a space-time diagram. More specifically, we notice that in all instances delayed vessels
have to wait with unloading, because first space needs to be freed up in the stockyard. These
vessels unload their stockpiles later at a berth, which causes other vessels having to wait for
these vessels, creating a chain of delayed vessels and making a speed-up action useless.

More specifically, the local search objectives are smaller than the FCFS objectives due to the
number of cancelled and delayed vessels decreasing. Most significantly, the number of cancelled
vessels decrease for all local searches from 2 vessels with FCFS to an average of 1.1 for SWO.
Cancellations contribute more than a third to the objective as can be seen in the table, so the
significant drop in cancellations contribute around 13% points to the average SWO cost saving
over FCFS. The other 19% points are a result of a drop in total vessel delay. This reduction can
be described by a slight decrease in total vessel delay. However, the reduction is also a result of
a more limited vessel delay for large vessels with high demurrage cost. To illustrate, in FCFS
the average hour delay costed 43,707

1399 ≈ 31 while in SWO it costed 30,786
1202 ≈ 26, which is a result of

reducing the delay of larger, more expensive vessels. All three local searches obtain very similar
service levels, although ACO achieves significantly less total delay than SWO with a p-value of
0.03. When one would prioritise delay over cancelled vessels, we would thus recommend ACO
for these instances.

Lastly, we see that SWO obtains far more iterations than the GA and ACO. This is a
consequence of the workings of the algorithms. We should thus only compare the iterations of
GA with ACO. We also note that the low iteration count for the GA and ACO may seem low,
although the time limit still allowed for both local searches to converge. The low iteration count
is therefore not a problem for the workings of these local searches.

6.4.2 Local search - 75 vessels

For instances of 75 vessels, we see in Table 6 that in this case, all follow-up methods are able
to improve the solutions of the FCFS significantly as well. With a lower average improvement
though, the local searches perform a little bit less well. This could be a a result of the fact
that the parameters are tweaked to instances of 30 vessels, but it could also be that the sizes
of these instances are harder to improve. The ACO is the method that takes the biggest hit in
performance for these larger instances. We suspect that this is the result of the value of α, as
ACO often turns into a random search when this parameter is not set correctly. More specifically,
we note that vessel orders with high costs take longer to evaluate for the construction heuristic.
This is a consequence of cancelled vessels taking longer to be inserted or cancelled than other
vessels. Therefore, difficult vessels orders containing cancellations take longer for the algorithm,

28

Table 6: Average results of squeaky wheel optimisation (SWO), genetic algorithm (GA) and
ant colony optimisation (ACO) for instances of 75 vessels.

FCFS Squeaky wheel optimisation Genetic algorithm Ant colony optimisation

Time (seconds) 3.59 3600 3600 3600

Iterations 1.0 52.6 47.5 36.6

Cost

Total 184,932 137,409 133,526 153,660

Cancelation penalty 72,946 47,752 45,119 66,302

Demurrage 111,947 89,632 88,335 87,302

Speedup 40 24 72 56

Improvement over FCFS -26% -28% -17%

Shipping delays

Vessels canceled 5.5 3.4 3.2 4.8

Vessel delayed 47.8 49.5 50.0 46.4

Total delay (hours) 3,558 3,446 3,247 3,367

Average delay (hours) 47.4 46.0 43.3 44.9

which is the reason why ACO obtains considerably less iterations than GA. Moreover, for these
instances the GA is the best performing method, which could be a consequence of the larger
instances. It could be that the GA benefits from a more general search instead of the SWO
that has to go through a longer list of vessels in the intensification step. Finally, as the GA
performs best in total delay and average number of cancelled vessels, this method works the
best for these instances.

6.5 Instance evaluation

In Section 6.3 it became clear that in some instances the heuristics yield significantly higher
objectives and may thus be harder to solve. To evaluate what problem properties challenge the
heuristics, we now proceed with an analysis starting with three main problem properties that
might increase the complexity of the problem. First, we recognize the total average stockpile
load on each vessel as a potential candidate for making an instance more challenging. Inserting a
vessel that has more load on board might be more challenging because all its content need to fit
within the stockyard to not cancel the vessel. Secondly, we see instances with stockpiles having
a long request time as a contender, as these piles take more usable space within the space-time
diagram and thus cause a bottleneck. Thirdly, it might be that vessels arriving closely next each
other might cause problems not only at the berths, but also within the stockyard, because their
stockpiles need to be in the stockyard at the same time. Therefore, we also include a measure
of vessel ETA proximity in our analysis.

To test whether these three instance properties make the problem harder, we plot the average
value of each property against the average objective obtained by SWO, GA and ACO for each
instance. The average of all local searches are taken to flatten out any incidental positive or
negative results of a local search. Moreover, we add a trend line to the plot using a least square
regression to see if the relation is significant.

As can be seen in Figure 13, for all three properties, the trend line is sloping up and down as
expected: higher objectives when a vessel contains more load and when stockpiles need to dwell
in the pad for longer. Likewise, a lower objective when the vessels arrive relatively far away from
each other. As can be seen, the significance of the relation is not visible for stockpile request
time and vessel proximity. Further tests in Appendix A.4 are performed with more varying
instances to search for any possible significance. These indicate further insignificance, which
is not the result of limited variability in both the stockpile request time and vessel proximity.
The only visible relation is the stockpile load with an R2 = 0.65 and a p-value for the slope
estimator of 7.53E-08. To further investigate what causes a higher objective we proceed with
making a further distinction within the total vessel load. A total vessel load can be divided into

29

an average stockpile volume and an average number of stockpiles per vessel. Hence, we proceed
with the same analysis for these properties.

20 22 24 26 28 30 32
0

2

4

6

8

·104

Average load volume (x1000 tonnes)

A
ve

ra
ge

ob
je

ct
iv

e

−147476 + 7496.8x

R2 = 0.65

9 9.5 10 10.5 11 11.5
0

2

4

6

8

·104

Average final stockpile request time (days)

A
ve

ra
g
e

o
b

je
ct

iv
e

−51080 + 9764.8x

R2 = 0.07

0.98 0.99 0.99 1 1 1.01 1.01 1.02
0

2

4

6

8

·104

Average vessel ETA proximity

A
ve

ra
ge

ob
je

ct
iv

e

427224− 380009x

R2 = 0.02

Figure 13: Average of the SWO, GA and ACO objectives versus the average stockpile load
per vessel, final stockpile request time and vessel ETA proximity of each instance.

In Figure 14 we plot the average stockpile volume and the average number of stockpiles per
vessel against the average objective value. For both relations we see a positive and significant
trend with a p-value of 0.03 and 7.63E-09 for the average stockpile volume and average number
of stockpiles per vessel respectively. We note that the average stockpile volume has a less clear
trend than the average number of stockpiles per vessel, although the cause of this lays within
the problem data: the stockpile volume is much more concentrated around the average volume
within the problem than the number of stockpiles that need to be inserted. For instance, the
maximum stockpile volume is only 6% away from the average value, while the maximum number
of stockpiles per vessel is 14% away for these instances. Therefore, the effect of the number of
stockpiles per vessel is much more pronounced within the instances.

Nevertheless, we can conclude that main drivers for higher heuristic objectives within the
instances seem to be the average stockpile volume and the number of stockpiles per vessels.
This does not come to surprise as we already concluded in Section 6.4 that a main cost driver is
delayed vessels due to a stockyard bottleneck. Clearly, more and larger stockpiles that need to
be fitted within the stockyard seem to complicate the problem for the heuristics. The question
whether this is due to a bad placement strategy or due to the stockyard being full without any
useless spaces was partly answered in Section 6.3 for smaller instances. Indeed, for instances
with more stockpiles, the exact model was able to produce better results, thus hinting at a
inferior placement strategy of the heuristics instead of the stockyard being full.

19 19.5 20 20.5 21 21.5
0

2

4

6

8

·104

Average stockpile volume (x1000 tonnes)

A
ve

ra
ge

ob
je

ct
iv

e

−232717 + 13958x

R2 = 0.16

1 1.1 1.2 1.3 1.4 1.5
0

2

4

6

8

·104

Average number of stockpiles per vessel

A
ve

ra
g
e

o
b

je
ct

iv
e

−202003 + 192993x

R2 = 0.70

Figure 14: Average of the SWO, GA and ACO objectives versus the average stockpile volume
and average number of stockpiles per vessel of each instance.

30

6.6 Best practices

Now we know what complicates instances for the heuristics, we are finally interested to see if
any of the three methods is able to cope with these properties in the best way. To know which
method produces relatively good results, we subtract the average objective of the SWO, GA
and ACO from a method’s found objective for each instance. In this way, negative differences
indicate a better result for the local search method and a positive difference a relatively worse
result. Again, we plot each instance along with a trend line.

The results for the number of stockpiles can can be seen in Figure 15. Although the fitted
lines might indicate a relation, none of the relations are deemed to be significant. With a low
R2 and a p-value of 0.12, 0.47 and 0.56 for SWO, GA and ACO respectively, we conlcude that
no local search is significantly better equipped in scenarios with more or less stockpiles per
vessel. For the instance property of average stockpile volume, the relations were also found to
be insignificant.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.5

0

0.5

1
·104

Average number of stockpiles per vessel

S
W

O
ob

je
ct

iv
e

d
iff

er
en

ce

10652− 9001x

R2 = 0.08

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.5

0

0.5

1
·104

Average number of stockpiles per vessel

G
A

ob
je

ct
iv

e
d
iff

er
en

ce

−5775 + 4462.3x

R2 = 0.02

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.5

0

0.5

1
·104

Average number of stockpiles per vessel

A
C

O
ob

je
ct

iv
e

d
iff

er
en

ce

−4876.7 + 4538.6x

R2 = 0.01

Figure 15: Difference between each method’s objective and average of the SWO, GA and ACO
objectives versus the average number of stockpiles per vessel of each instance.

Although all three local searches possess unique characteristics, these are therefore not
enough to make a difference in performance in differing scenarios. To find a best practice for
different scenarios one might thus have to step away from searching in vessel order and look
at other ways in which we optimise the problem. For heuristics methods, these may include
searching for a good stockpile placement strategy by searching for the best priority rules as
discussed in Section 4.3.2. These priority rules could be stockpile specific, which opens the
possibility of looking for the best placement for each given stockpile. For now, we confirm the
result of Section 6.4.1 that the local searches are similar in performance for different instances.

6.7 Stockpile split analysis

In Section 3.4 we discussed the possibility of splitting stockpiles into two. The idea behind this
is that by splitting piles that would otherwise not fit in the stockyard and placing them at two
different locations, we are better able to use the stockyard available capacity. Two cautionary
notes were made on splitting stockpiles in that section. First, the resulting two stockpiles each
need to be separated by buffer space lbuffer. Secondly, as a result of the shape of the stockpile,
splitting a pile results in collectively more used space in the stockyard.

To analyse whether it is advantageous to split stockpiles, we use the construction heuristic
based on ETA order on all instances of 30 vessels. With this method, we gather the average
objective, computation time and average number of split stockpiles over the instances. Addi-
tionally, we need to decide when to split a stockpile into two. As the stockpile insertion is always
able to find a place in the space-time diagram by moving a stockpile allocation later in time,
we need to decide in which conditions a split will be attempted. To limit vessel demurrage, we
choose to split a stockpile based on when it would depart without splitting its piles. For this,

31

we first insert the vessel without splitting, which gives us an end time ev. With this insertion,
we measure the number of days nv after a vessel’s LFTv at which the vessel v ∈ V would depart
without a split, nv = ev − LFTv. If a vessel departs nv days after its LFT without splitting,
nv should not be greater than a chosen amount of days nmax. When nv ≥ nmax, we split its
stockpiles to limit its demurrage.

0 2 4 6 8 10

0.5

0.6

0.7

0.8

0.9

1
·105

nmax

O
b

je
ct

iv
e

0

0.5

1

1.5

C
om

p
u
ta

ti
on

ti
m

e
(s

ec
on

d
s)

0

5

10

15

20

N
u
m

b
er

of
st

o
ck

p
il
e

sp
li
ts

Figure 16: Effect of the maximum number of days after the LFT after which a vessel is
allowed to depart without a stockpile split on the average instance objective, computation time
(seconds) and number of split stockpiles

The effect of varying nmax from zero to eleven days is given in Figure 16. When splitting
a stockpile when the vessel departs at or after its LFT at nmax = 0, the average objective is
much higher than the standard 69,093 baseline achieved by FCFS without splitting. The cause
for this cost are the two reasons mentioned before, but also the stacker-reclaimers becomes a
limiting factor as now two stockpiles need to be reclaimed and stacked at some point. When
limiting possibilities of splitting to more days after the LFT, we see that the average objective
drops down significantly below the baseline of FCFS. From the figure, it is most beneficial to
split stockpiles when vessels would depart more than six days after its LFT without splitting.
With this policy, on average two stockpiles are split. We also notice under this policy, that in
some instances it appears that a small number of split stockpiles are placed next to each other.
Although this uses costly stacker-reclaimer time, it also brings the benefit that both stockpiles
are stacked and reclaimed twice as fast, which helps stockpiles to be fit more tightly.

When we limit the possibility of splitting even more, we see that the average objective
increases and converges to the baseline cost of FCFS at exactly 69,093. The reason for the
objective to converge to the average objective of FCFS is that with a more restricted splitting
policy we see that a decreasing number of stockpiles are split. At ten and eleven days after
the LFT, the number of stockpiles that are split is zero and the procedure is equivalent to the
FCFS approach without splitting. Lastly, we notice that the average computation time of the
construction heuristic also decreases with a more restricted split policy. This is due to the fact
that less stockpiles have to be split and inserted into the stockyard for a second time, which
uses computation time in the form of the insert stockpile procedure.

Further analysis in Appendix A.5 indicate that the optimal policy of six days is beneficial to
implement also within the local searches. Interestingly, SWO obtains a lower average objective
than without splitting, but the GA and ACO do not. We suspect that is due to the fact that
the average computation time increases from 0.31 to 0.62 seconds for each evaluation of a vessel
order. This prohibits a large number of evaluation of large populations for these methods.

32

7 Conclusion

In this thesis we considered the stockyard planning problem, which consists of several well-known
problems. In the SPP defined in this study, the goal was to create a berth allocation, stockpile
assignment and stacker-reclaimer schedule which minimises the cancellation, demurrage and
speed-up costs over all vessels. In this schedule, the stockpiles were not allowed to overlap or
mix and we had to respect the maximum number of stacker-reclaimers that were available at
any time. High quality heuristics for the SPP is of great value for stockyard planners as it not
only contains several problems, but also because the need for efficient use of limited quay and
stockyard space is rising due to increasing dry bulk import and environmental restrictions.

Due to its increasing demand, some research has been performed on tackling the stockyard
planning problem. Nevertheless, we identified four shortcomings in the literature which we try
to address. First, we added the concept of partial reclaiming to stockpiles, which considerably
increases the applicability of the problem. Secondly, we noticed a clear distinction between
work focused on exact solutions and heuristic approaches. While we concluded that the SPP
creates quite a challenge to solve without any mathematical programming techniques, we found
that using an exact formulation can be beneficial for two reasons. Not only did the the exact
model help to evaluate the performance of heuristic approaches, it also gave us insight into the
strengths and weaknesses of the presented heuristics. Secondly, we saw the current efforts to
improve construction heuristic solutions as marginal, so several follow-up methods were tested
to compare their competitiveness within the same context with each other. Lastly, we tried to
analyse which instance properties make the problem harder to better verify the challenge in the
SPP and to find strength and weaknesses in our presented follow-up methods.

To use the exact formulation, first valid inequalities were introduced and tested to see whether
they had an impact on the best found upper bound of the problem. All three inequalities
together were able to decrease average integer objective significantly, which led us to adding the
valid inequalities for the heuristics evaluation. When comparing the results of the heuristics with
the solutions of the exact model, we saw that for instances with an optimal values, the heuristics
performed remarkably well. For harder instances, we concluded that there is a performance gap
for some instances between the heuristics and the MILP. Further research in the performance
gap indicated that the number of stockpiles in each instance could be the main cause for the
heuristic to perform relatively worse. This indicated that the resulting stockpile placement
strategy of the heuristics can be further improved.

Furthermore, we tested the performance of the follow-up methods between each other on
larger instances of 30 and 75 vessels. All methods achieved a significant objective reduction with
the SWO being the best for 30 vessels. To then test why some instances resulted in a higher
objective than other instances, we performed an analysis on a handful of instance properties.
These indicated that the average stockpile size and the number of stockpiles were related with
the average objective, pointing at a possible causal relationship. We argued that therefore, the
heuristics could benefit from an improved stockpile placement strategy as also confirmed by the
results from the exact model.

With the trouble-making instance property in hand, we finally tried to see if some methods
were better able to cope with a large number of stockpiles to be inserted. In the end, no local
search was able to benefit from more or less stockpiles in an instance. We argue that therefore,
one should look at other optimisation approaches such that the improvements are achieved in a
different way. For example, focusing on improving stockpile priority rules and fitting strategies.
Lastly, we analysed whether and when it is beneficial to split stockpiles into two. We concluded
that there indeed is a policy for which the construction heuristic obtains a lower average ob-
jective value. Moreover, with this policy a better average objective with SWO than without
splitting was found.

33

We now discuss the key recommendations for stockyard planners and further research. First,
for any future heuristic around stockyard planning, we stress the importance of using an exact
formulation for comparison. This study was be able to quantify the performance gap between the
model and heuristic approaches. And as the SPP is a complex problem due to the entanglement
of vessel delay and stockpile placement strategy, it is essential to validate the outcome of heuristic
methods. Secondly, to improve traditional planning solutions based on first come first serve, we
prescribe the use of a follow-up method in terms of a local search in vessel order. As all local
searches were able to significantly reduce the overall objective, it is worthwhile to invest time
in such search procedures. As results varied depending on the instance size, we also suggest to
invest sufficient time in the tweaking of the parameters depending on the instances. Thirdly,
as our analysis indicated that the heuristic are challenged by scenarios with more and larger
stockpiles, we suggest to also investigate what can be done to further improve the stockpile
placement strategy in these instances. Lastly, for ports in which stockpile splitting is routine,
we strongly suggest to investigate at what policy a split has to be performed, to avoid a scattered
stockyard field. Moreover, depending on the heuristic implementation, computation times of the
construction heuristic may vary. Therefore, one should be careful that an increased computation
time should not result in a decrease in objective within the follow-up methods.

In the mean time, we also address three shortcomings in this study. First, we note that
this problem is mainly focused on the costs of the incoming vessels. This SPP can thus mainly
be characterised as an inbound stockyard planning problem. As the stockyard connects two
processes at both ends, future research should thus also consider the outbound costs from the
stockyard. This not only increases the potential of the developed methodology, but it also
equalises the different SPPs within the literature. In all research either the SPP is inbound or
outbound focused, which leads to a division within the problem. Secondly, regarding the results,
the performance validation using small instances with the exact formulation is only an indication
of how the performance gap will be in larger instances. Therefore, further development is needed
in either exact formulations or in an alternative approach such as column generation, using for
instance a set covering problem. This enables to obtain competitive lower bounds for comparison
with heuristic approaches. Lastly, we noticed that the stockpile placement strategy is the biggest
challenge for the heuristics. Therefore, a promising direction seems to be to further improve
the stockpile placement strategy by optimising the priorities of the stockpile contact points
within the procedure. More specifically, the problem can be optimised by searching for the
best stockpile placement for each stockpile individually, jointly increasing the stockyard fit and
decreasing the total vessel demurrage.

Acknowledgements

I would like to thank Ab Ovo for giving me the opportunity to write my thesis even when the
future was unknown. In particular, I would like to thank Martin van Meerkerk for the freedom
and flexibility he weekly offered me during the writing process. Without his feedback and sharp
eye for detail I could not have completed the thesis in its final form. Also, I thank everyone at
Ab Ovo for welcoming me and helping with answering any (unrelated) questions. In addition,
I want to thank dr. D. Galindo Pecin for his supervision and charging me with new ideas to
further improve my work.

34

References

Babich, A. and Senk, D. (2013). Coal use in iron and steel metallurgy. In The coal handbook:
towards cleaner production, pages 267–311. Elsevier.

Babu, S. A. I., Pratap, S., Lahoti, G., Fernandes, K. J., Tiwari, M. K., Mount, M., and Xiong,
Y. (2015). Minimizing delay of ships in bulk terminals by simultaneous ship scheduling,
stockyard planning and train scheduling. Maritime Economics & Logistics, 17(4):464–492.

Belov, G., Boland, N., Savelsbergh, M. W., and Stuckey, P. J. (2014). Local search for a cargo
assembly planning problem. In International Conference on AI and OR Techniques in Con-
striant Programming for Combinatorial Optimization Problems, pages 159–175. Springer.

Bierwirth, C. and Meisel, F. (2010). A survey of berth allocation and quay crane scheduling
problems in container terminals. European Journal of Operational Research, 202(3):615–
627.

Bierwirth, C. and Meisel, F. (2015). A follow-up survey of berth allocation and quay crane
scheduling problems in container terminals. European Journal of Operational Research,
244(3):675–689.

Boland, N., Gulczynski, D., and Savelsbergh, M. (2012). A stockyard planning problem. EURO
Journal on Transportation and Logistics, 1(3):197–236.

Chen, P., Fu, Z., and Lim, A. (2002). The yard allocation problem. In AAAI/IAAI, pages 3–8.

Cordeau, J.-F., Laporte, G., Legato, P., and Moccia, L. (2005). Models and tabu search heuris-
tics for the berth-allocation problem. Transportation science, 39(4):526–538.

Correcher, J. F., Alvarez-Valdes, R., and Tamarit, J. M. (2019). New exact methods for the
time-invariant berth allocation and quay crane assignment problem. European Journal of
Operational Research, 275(1):80–92.

Eurostat (2020). Coal production and consumption statistics. https://ec.europa.eu/

eurostat/statistics-explained/index.php/Coal_production_and_consumption_

statistics.

Fraunhofer ISE (2018). Studie: Stromgestehungskosten erneuerbare en-
ergien. https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/

studie-stromgestehungskosten-erneuerbare-energien.html.

Gu, Z., Nemhauser, G. L., and Savelsbergh, M. W. (1998). Lifted cover inequalities for 0-1
integer programs: Computation. INFORMS Journal on Computing, 10(4):427–437.

Imai, A., Nishimura, E., and Papadimitriou, S. (2001). The dynamic berth allocation problem
for a container port. Transportation Research Part B: Methodological, 35(4):401–417.

Kim, B.-I., Koo, J., and Park, B. S. (2009). A raw material storage yard allocation problem for
a large-scale steelworks. The International Journal of Advanced Manufacturing Technology,
41(9-10):880–884.

Lipovetzky, N., Burt, C. N., Pearce, A. R., and Stuckey, P. J. (2014). Planning for mining
operations with time and resource constraints. In Twenty-Fourth International Conference
on Automated Planning and Scheduling.

Mauri, G. R., Ribeiro, G. M., Lorena, L. A. N., and Laporte, G. (2016). An adaptive large
neighborhood search for the discrete and continuous berth allocation problem. Computers
& Operations Research, 70:140–154.

35

https://ec.europa.eu/eurostat/statistics-explained/index.php/Coal_production_and_consumption_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php/Coal_production_and_consumption_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php/Coal_production_and_consumption_statistics
https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/studie-stromgestehungskosten-erneuerbare-energien.html
https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/studie-stromgestehungskosten-erneuerbare-energien.html

Meisel, F. and Bierwirth, C. (2009). Heuristics for the integration of crane productivity in the
berth allocation problem. Transportation Research Part E: Logistics and Transportation
Review, 45(1):196–209.

Nishimura, E., Imai, A., and Papadimitriou, S. (2001). Berth allocation planning in the public
berth system by genetic algorithms. European Journal of Operational Research, 131(2):282–
292.

Park, Y.-M. and Kim, K. H. (2005). A scheduling method for berth and quay cranes. In
Container terminals and automated transport systems, pages 159–181. Springer.

Singh, G., Sier, D., Ernst, A. T., Gavriliouk, O., Oyston, R., Giles, T., and Welgama, P.
(2012). A mixed integer programming model for long term capacity expansion planning:
A case study from the hunter valley coal chain. European Journal of Operational Research,
220(1):210–224.

Sun, D., Meng, Y., Tang, L., Liu, J., Huang, B., and Yang, J. (2020). Storage space allocation
problem at inland bulk material stockyard. Transportation Research Part E: Logistics and
Transportation Review, 134:101856.

The Economist (2020). The travails of “ex-ilva”, europe’s largest
steel plant. https://www.economist.com/europe/2020/02/27/

the-travails-of-ex-ilva-europes-largest-steel-plant.

Unsal, O. and Oguz, C. (2019). An exact algorithm for integrated planning of operations in
dry bulk terminals. Transportation Research Part E: Logistics and Transportation Review,
126:103–121.

US Energy Information Agency (2011). Coal production, selected years, 1949-2011. https:

//www.eia.gov/totalenergy/data/annual/pdf/sec7_7.pdf.

US Energy Information Agency (2020a). Coal explained: use of coal. https://www.eia.gov/

energyexplained/coal/use-of-coal.php.

US Energy Information Agency (2020b). U.s. coal production, 2014 - 2020. https://www.eia.
gov/coal/production/quarterly/pdf/t1p01p1.pdf.

World Bank (2020). World development indicators online database. https://datacatalog.

worldbank.org/dataset/world-development-indicators.

Xin, J., Negenborn, R. R., and Van Vianen, T. (2018). A hybrid dynamical approach for
allocating materials in a dry bulk terminal. IEEE Transactions on Automation Science
and Engineering, 15(3):1326–1336.

36

https://www.economist.com/europe/2020/02/27/the-travails-of-ex-ilva-europes-largest-steel-plant
https://www.economist.com/europe/2020/02/27/the-travails-of-ex-ilva-europes-largest-steel-plant
https://www.eia.gov/totalenergy/data/annual/pdf/sec7_7.pdf
https://www.eia.gov/totalenergy/data/annual/pdf/sec7_7.pdf
https://www.eia.gov/energyexplained/coal/use-of-coal.php
https://www.eia.gov/energyexplained/coal/use-of-coal.php
https://www.eia.gov/coal/production/quarterly/pdf/t1p01p1.pdf
https://www.eia.gov/coal/production/quarterly/pdf/t1p01p1.pdf
https://datacatalog.worldbank.org/dataset/world-development-indicators
https://datacatalog.worldbank.org/dataset/world-development-indicators

A Appendix

A.1 Total length increase when splitting stockpiles

When we assume the stockpile is always longitudinal (d > 0, c > 0) and we look at Figure 7,
we can see that the increase in length ∆SL(n) due to splitting into n piles can be written as

∆SL(n) = (2r + c)n− (2r + d) = (wp + c)n− (wp + d).

The first part is two times the width of each half cones 2r = wp plus the new length of the
prism c times the number we split the stockpile n. The second part is the length of the stockpile
without splitting. When we write out the expression and then substitute the expressions for c
and d as we found in Section 3.4, we get

∆SL(n) = (nwp + nc)− (wp + d) = (n− 1)wp + nc− d

= (n− 1)wp + n

(
Vi
n −

π
24w

3
ptan(α)

w2
p

4 tan(α)

)
−

(
Vi − π

24w
3
ptan(α)

w2
p

4 tan(α)

)
.

When we simplify the expression we arrive at

∆SL(n) = (n− 1)wp + n

(
Vi
n −

π
24w

3
ptan(α)

w2
p

4 tan(α)

)
−

(
Vi − π

24w
3
pw

3
ptan(α)

w2
p

4 tan(α)

)

= (n− 1)wp −
(n− 1) π24w

3
ptan(α)

w2
p

4 tan(α)
= (n− 1)wp − (n− 1)

π

6
wp

= (1− π

6
)wp(n− 1) ≈ 0.476wp(n− 1).

We conclude that the an extra total length of 0.476wp(n−1) in the stockyard is needed to insert
the stockpile when splitting the pile n times.

A.2 Sensitivity analysis

In Section 6.1 the optimal paramaters of the three local searches are noted. These parameters
are found by using the local searches on all 30 instances of 30 vessels and choosing the parameter
which obtains the lowest average objective. The results of this analysis can be found in Figure
17 and Figure 18.

20 30 40 50 60 70 80

4.66

4.68

4.7

4.72

·104

Times to obtain new diversification Ndiv

A
ve

ra
g
e

S
W

O
ob

je
ct

iv
e

(a) Squeaky wheel optimisation.

20 30 40 50 60

4.85

4.9

4.95

5

5.05

5.1
·104

Population size

A
ve

ra
ge

G
A

ob
je

ct
iv

e

(b) Population size GA.

0.2 0.4 0.6 0.8 1

4.8

4.9

5

5.1

5.2

·104

Child mutation probability pmutate

A
ve

ra
ge

G
A

o
b

je
ct

iv
e

(c) Child mutation probability
GA.

Figure 17: Effect of different Squeaky wheel optimisation (SWO) and Genetic algorithm (GA)
parameters on the average objective of all 30 instances of size 30.

37

1 1.2 1.4 1.6 1.8 2 2.2

4.6

4.8

5

5.2

·104

2
α

A
ve

ra
ge

A
C

O
ob

je
ct

iv
e

(a) α in ACO.

20 30 40 50 60

4.8

4.9

5

·104

Population size

A
ve

ra
ge

A
C

O
o
b

je
ct

iv
e

(b) Population size ACO.

0.2 0.4 0.6 0.8 1

4.7

4.75

4.8

4.85

·104

ρ

A
ve

ra
ge

A
C

O
o
b

je
ct

iv
e

(c) ρ in ACO.

Figure 18: Effect of different ant colony optimisation (ACO) parameters on the average ob-
jective of all 30 instances of size 30.

A.3 Heuristics performance validation - further results

In Section 6.3 we see that for some instances relatively higher objectives are obtained for the
heuristics compared the exact model solutions. To investigate what causes this gap between
heuristic and model in some cases, the relation between the difference between average objective
of SWO, GA and ACO and the objective of the exact model versus various instance properties
as the ones described in Section 6.5 is tested. In this case, only the average number of stockpiles
per vessel yields a slight significant relation as seen in Figure 19. The more stockpiles are carried
by a vessel, the gap between the objectives of the heuristics and the model are on average higher.
With a p-value for the slope estimator of 0.03 the relation deemed to be significant.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1,000

2,000

3,000

4,000

5,000

6,000

Average number of stockpiles per vessel

A
ve

ra
g
e

o
b

je
ct

iv
e

d
iff

er
en

ce

−5549.3 + 5496.9x

R2 = 0.255

Figure 19: Difference between the average objective of SWO, GA and ACO and the objective
of the exact model versus the average number of stockpiles per vessel for each instance

A.4 Instance evaluation - further results

In Section 6.5 the relations between the average heuristics objective and the average stockpile
request duration and vessel ETA proximity was not significant. To test if this is due to the low
variance of the independent variable, we make more extreme instances for the two properties.
This is done by increasing the dwell time of the stockpiles and by increasing the variance in
which ships arrive. Again, we plot the results and make a trend line in Figure 20. Although
the effect of a longer stockpile request time is more significant with a p-value of 0.08, both
relations are still not significant with a more diverse independent variable. Therefore, there

38

is no further evidence of any significant relation between the average objective and these two
instance properties.

22 23 24 25 26 27 28
0

0.5

1

1.5

2

2.5

3
·105

Average final stockpile request time (days)

A
ve

ra
ge

ob
je

ct
iv

e

−31362 + 6973.9x

R2 = 0.11

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08
0

2

4

6

8

·104

Average vessel ETA proximity
A

ve
ra

ge
o
b

je
ct

iv
e

154858− 104601x

R2 = 0.03

Figure 20: Average of the SWO, GA and ACO objectives versus the extreme final stockpile
request time and vessel ETA proximity of each instance.

A.5 Stockpile split analysis - further results

To see if the stockpile splitting in Section 6.7 was useful in the follow-up methods, we generated
results of the three local searches with splitting of stockpiles turned and nmax = 6 for the
instances of 30 vessels. Most importantly, only SWO is able to improve with stockpile splitting
such that we obtain the lowest average objective of 43,722, which is lower than the SWO without
splitting. For the other two methods, we do not see a significantly better average objective value
than without splitting. We suspect that this is due to the fact that one construction heuristic
takes more time on average with stockpile splitting turned on (0.62 vs 0.31 seconds). This limits
the evaluation of large populations within the GA and ACO.

Table 7: Average results for of squeaky wheel optimisation (SWO), genetic algorithm (GA)
and ant colony optimisation (ACO) for splitting stockpiles with nmax = 6 with instances of 30
vessels.

FCFS Squeaky wheel optimisation Genetic algorithm Ant colony optimisation

Time (seconds) 0.62 60 60 60

Iterations 1 18.8 8.0 4.2

Cost

Total 62,981 43,722 47,993 48,651

Cancelation penalty 22,105 13,495 14,246 17,582

Demurrage 40,860 30,227 33,747 31,069

Speedup 17 0 0 0

Improvement over FCFS -31% -24% -23%

Shipping delays

Vessels canceled 1.7 0.9 1.0 1.2

Vessel delayed 18.2 17.3 18.0 15.6

Total delay (hours) 1,307 1,127 1,151 1,093

Average delay (hours) 43.6 37.6 38.0 36.4

39

	Introduction
	Literature
	Individual subproblems
	Sequential and integrated stockyard problems
	Contribution to the literature

	Problem description
	A vessel and stockyard schedule
	Vessel arrival and cost structure
	Problem overview
	Splitting stockpiles

	Methodology
	Notation
	Stockyard planning model
	Valid inequalities

	Construction heuristic
	Vessel insertion
	Stockpile insertion

	Local search - vessel order
	Squeaky Wheel Optimisation
	Genetic Algorithm
	Ant Colony Optimisation

	Data
	Results
	Settings
	Valid inequalities
	Heuristic performance validation
	Local search heuristics
	Local search - 30 vessels
	Local search - 75 vessels

	Instance evaluation
	Best practices
	Stockpile split analysis

	Conclusion
	Appendix
	Total length increase when splitting stockpiles
	Sensitivity analysis
	Heuristics performance validation - further results
	Instance evaluation - further results
	Stockpile split analysis - further results

