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Abstract

In this paper, we replicate the results obtained by Kozak et al. (2020) and extend their meth-

ods. We evaluate the performance two different dimensionality reduction techniques, namely

principal component analysis (PCA) and kernel principal component analysis (KPCA), for the

estimation of the factor coefficients of a characteristics-based stochastic discount factor (SDF).

For this, we use many different factor returns and compare the cross-sectional out of sample

performance in terms of explanatory power. We impose different levels of shrinkage and sparsity

on the factor coefficients, where the shrinkage is based on prior economic beliefs. We find that

characteristics-sparse SDFs for which we use PCA and KPCA for the SDF coefficients, perform

well for higher levels of sparsity. This is not the case when we do not use one of these meth-

ods. We find that KPCA performs worse than PCA when there is much redundancy between

the different factor returns and shows a similar performance to PCA when there is almost no

redundancy. A higher dimensionality might improve the performance of KPCA relative to PCA.

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second assessor,

Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

In previous years, the availability of data has largely increased. For many applications, there is

a lot of data, which means it can be used to improve previous outcomes of research. This also

holds for asset pricing. There is however one large problem that occurs with the growing amount of

available data, namely dimensionality. Models using a large amount of data need very high compu-

tational power, which is not always possible. Therefore, dimensionality reduction techniques exist

to counter this problem. A well-known asset pricing model is the three factor model introduced by

Fama and French (1993). However, as mentioned, there are many more factors available today to

possibly improve asset pricing models. As mentioned by Kozak et al. (2020), there are many more

cross-sectional characteristics to improve the predictions of such models. Evaluating the explana-

tory power of characteristics sparse models is the main focus of their research, specifically with the

use of a Stochastic Discount Factor (SDF) they construct. They do this by using a large number

of characteristics to then examine the amount of sparsity and shrinkage of the characteristics and

the corresponding SDF loadings for which the model is still sufficiently explanatory, meaning the

explanatory power does not differ too much compared to without sparsity and shrinkage. Fur-

thermore, they apply a dimensionality reduction technique, namely Principal Component Analysis

(PCA), to compare this with the characteristics based model. Their findings indicate that PCA is

a useful method to reduce the dimensionality of the model, while still considering a large number

of characteristics.

This paper will largely follow the research by Kozak et al. (2020) with an additional focus on

dimensionality reduction techniques. There exist multiple dimensionality reduction techniques, of

which Van Der Maaten et al. (2009) give a good overview. In previous research by Ince and Trafalis

(2007), one of these different techniques, specifically Kernel PCA (KPCA) is used for stock price

prediction, however not for the approach of an SDF. Besides this, there is not a lot of literature

on different dimensionality reduction techniques used specifically for an SDF approach. Kozak

(2019) does have a working paper on this subject, however there the kernel is applied to the raw

characteristics, while in this paper we apply the kernel directly to the factor returns, which will be

explained in more detail in this paper. Therefore, it would add to the existing literature to evaluate

different techniques to attempt to improve the current SDF approach. Dimensionality reduction has

the potential of becoming more important in the future, as more data becomes available. The main

idea of this research will be how the cross-sectional performance of an SDF in a case of somewhat
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high dimensionality can be improved with the use of different dimensionality reduction techniques.

In addition to this, a comparison between these techniques will be made and the model will be

compared with different data sets. The dimensionality reduction technique that will be considered

is KPCA with different kernels.

This research could provide beneficial results for both scientific as practical applications. If

these dimensionality reduction techniques work well for this specific application, future research

could focus on applying these techniques to different dimensionality problems within the financial

sector. Furthermore, not only is high dimensionality a problem for research, but also for companies

that perform large analyses. Should these dimensionality reduction techniques prove to be useful,

they could be applied in practical financial applications, or even outside the financial sector.

Previous research by Kan and Zhou (1999) gives some critique to the SDF method. They find

that the risk premium estimate of the SDF performs worse in terms of standard error compared to

traditional asset pricing methods, as the standard errors corresponding to the SDF are far higher.

Besides this, they also find that in specification tests, the traditional methods, which in this case

are linear factor models, perform better than the SDF method. Overall, they have a higher power,

specifically for the rejection of incorrectly specified models.

In contrast to this, Jagannathan and Wang (2002) show us that the SDF method is a useful

method to be considered in asset-pricing models. They compare this method to the well-known

beta method used for the estimation of risk premiums. Their findings suggest that for this purpose,

the SDF method is equally efficient and as powerful, based on specification tests. The research by

Kozak et al. (2020) however, focuses on the estimation of risk prices rather than risk premia. The

reason for this is that they want to focus on characterizing the SDF.

In a more recent and slightly different study by Lettau and Pelger (2020), an improved adaptation

of PCA is created for the application of asset pricing. As normal PCA is very good in finding factors

that have a large variance and contribute strongly through this variance, there might be some factors

that have a small variance, yet contribute strongly to the asset pricing. The estimator created by

Lettau and Pelger (2020) is able to identify these factors and is for this specific application and

improvement on PCA. Even though this method is not used for characteristics based SDF and

the goal of sparsity and shrinkage, it is a relevant finding. The problem that normal PCA has,

namely that the empirical estimate of the covariance function might be poor, is of importance for

this research. The use of different versions of PCA might overcome this problem in this case.

The rest of this paper is structured as follows. In Section 2, the methodology will be explained,
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both the theoretical framework as the estimation for the replication of the research by Kozak et al.

(2020), and the extension. After this, in Section 3, data will be briefly touched upon. Following

this, in Section 4, the results will be given and discussed. Finally, the conclusion and a discussion

will be provided in Section 5.

2 Methodology

The basis of the methods will be the same as the methods used by Kozak et al. (2020). For

this research, I will briefly mention the main steps in their methodology. Following this, their

methodology will be discussed, both theoretical framework as estimation method. Finally, both the

theoretical framework and estimation method of the extension will be explained.

2.1 Replication

With the data described in the Section 3, the following steps are taken by Kozak et al. (2020).

First, using the assumption that the covariance matrix is known and prior economic knowledge, the

distribution of both the mean of the portfolios and the Sharpe ratios of the principal components

(PCs) are obtained. This allows us to estimate the estimator b of the SDF coefficients. This

in turn lets us construct two penalties to implement in the maximization of the cross-sectional

R2. These penalties are in place for shrinkage and sparsity. Using K-fold cross-validation, the

parameters corresponding to the penalties can be estimated. The results which follow from the

shortly described steps can then be analysed.

2.1.1 Theoretical framework

In this section, the necessary explanation of the theories used in this research will be given. The

first important theory is that of the fundamental pricing equation. Kozak et al. (2020) mention

the conditional and unconditional asset pricing equations, however, these are derived from the

fundamental pricing equation. This equation is as follows.

St = e−r(T−t)Et(Mt,TST ) and Et(Mt,T ) = 1. (1)

In this equation, St is an N × 1 vector consisting of stock prices of N stocks (N is thus the

number of stocks) at time t, r is the annual risk-free rate, continuously compounded, Et is the

expectation with the information available up until time t and Mt,T is the stochastic discount
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factor. This discount factor is intertemporal between time t and T . From this equation, the

following conditional pricing equation can be derived. The derivation can be found in the Appendix

in Equation (33), in which st is the discounted stock price.

Et(Mt,TRt,T ) = 0. (2)

Here, Rt,T is the return in excess of the risk-free rate, which is an N ×1 vector for the N stocks.

This equation is also given by Kozak et al. (2020) with slightly different notations. To find the

SDF Mt,T , we must use the assumption that this SDF spans the linear space of the stocks’ excess

returns. This is shown in the following equation.

Mt,T = 1− b′t(Rt,T − Et(Rt,T )). (3)

Here bt, which is an N × 1 vector, is time-varying and denotes the SDF coefficients for Rt,T .

This equation can be found in the paper by Kozak et al. (2020), however, the notation is slightly

different. Now that the linear SDF formula is given, the following step is transforming this to a

characteristics-based SDF.

If we have the N ×H matrix of characteristics Zt, we can compute the H × 1 vector of factor

returns Ft,T . Let H be the number of characteristics for each stock. We do assume in this case that

the observable factors are the same as the characteristics-based factors. This simplifies the problem,

as the characteristics can simply be observed. The following equations show the factor returns in

relation to the excess returns and characteristics.

Ft,T = Z ′tRt,T ←→ Rt,T = (ZtZ
′
t)
−1ZtFt,T . (4)

The following assumption must also be made to complete the characteristics-based SDF model.

Namely, that the SDF coefficients depend on the stock characteristics. For this, we must introduce

new SDF coefficients b for the factor returns Ft,T . These coefficients are not time-varying and is

thus a vector of dimensions K × 1, where K is the number of factors. In this case, H equals K.

The following equations show the relation between the two different SDF coefficients.

bt = Ztb ←→ b′t = b′Z ′t. (5)
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Now we can rewrite Equation (3) as follows;

Mt,T = 1− b′(Ft,T − E(Ft,T )). (6)

It should be noted that for this, we use that Z ′t(ZtZ
′
t)
−1Zt = 1. We can also rewrite Equation

(2) into the following, as Kozak et al. (2020) do.

E(MtFt) = 0. (7)

Using Equations (6) and (7) and the assumptions made, we can find the estimate of the SDF

coefficients b. Now the following holds for each factor h ∈ {1, ...,H}.

Et([1− b′(Ft,T − Et(Ft,T ))]F ht,T ) = 0. (8)

Rewriting this Equation will result in the following matrix notation for all h, for which the full

derivation can be found in the Appendix in Equation (34) and Equation (35).

µ = b′Vt(Ft,TF
′
t,T ) = ΣF b which gives b = Σ−1F µ. (9)

For the derivation of these equations, we also use that µ = Et(Ft,T ). From Equation (9),

we can see that the mean and the variance of the SDF depend on the first two moments of the

factors’ returns, µ and ΣF respectively. Furthermore, for this derivation, the assumption that the

conditional first two moments of the factors are constant must be made.

Following this, Kozak et al. (2020) move on to sparsity in characteristics-based factor returns,

however, they do not find convincing reasons for sparsity in the characteristics of the SDF. The idea

they give is instead of imposing sparsity, allowing sparsity and then evaluating the level of sparsity

empirically. Their next step is to turn to PCA, driven by the findings of Kozak et al. (2018).

2.1.1.1 Principal Component Analysis

Kozak et al. (2020) give two conditions taken from Kozak et al. (2018) as to why they explore the

possibility of a PC sparse SDF instead of a characteristics sparse SDF. First, the absence of near-

arbitrage opportunities, from which Kozak et al. (2018) take away that factors connected to high

risk largely influence covariation. Second, a few principal components (PCs) with a high variance

are leading in the factors of asset returns. In this case, the few PCs with the high variance should
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be able to account for the largest part of the cross-sectional variation in the expected returns.

The equations which follow are from Kozak et al. (2020). For the first step of PCA, we apply

eigendecomposition to the H ×H covariance matrix Σ of the factors’ returns.

Σ = QDQ′ with D = diag(d1, d2, ..., dH). (10)

As eigendecomposition already says, the covariance matrix Σ is decomposed into anH×H matrix

Q consisting of the eigenvectors of Σ, and a diagonal matrix D consisting of the H eigenvalues in

decreasing order. Now we construct the H × 1 vector Pt,T of PC factors and express the SDF in

terms of PC factors, from which we can clearly see that the PC factors are linear combinations of

the factor returns.

Pt,T = Q′Ft,T , (11)

Mt,T = 1− b′p(Pt,T − E(Pt,T )), with bp = D−1E(Pt). (12)

The next point of interest is shrinkage and the family of priors Kozak et al. (2020) construct in

combination with the assumption that Σ is known. They give the following.

µ ∼ N (0,
κ2

τ
Ση). (13)

Here, τ is the trace of the covariance matrix Σ, τ = tr[Σ], and κ and η are constants. These

constants determine the scale and shape respectively of the prior. From Harvey and Zhou (1990),

we know that in the Bayesian approach, belief plays a big role in defining the probability.

In terms of PCA, we can write Equation (13) as follows, as done by Kozak et al. (2020).

µp ∼ N (0,
κ2

τ
Dη). (14)

Furthermore, we can easily modify this so we get the distribution of Sharpe ratios with respect

to the PCs.

D−
1
2µp ∼ N (0,

κ2

τ
Dη−1). (15)

Regarding the choice of the value for the parameter η controlling the shape, Kozak et al. (2020)
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provide the interpretation of different values and their implications based on previous research.

Their choice falls on the setting η = 2.

Based on the assumption of the value of η, Kozak et al. (2020) obtain the following prior on

SDF coefficients, namely b ∼ N (0, κ
2

τ I). This is independent and identically distributed.

As Kozak et al. (2020) do, we can now use the prior beliefs to get to the following posterior mean

and variance of b. For this, we must assume a multivariate-normal likelihood and use its sample

means µ, where the sample size is T .

b̂ = (Σ + γI)−1µ and var(b) =
1

T
(Σ + γI)−1, where γ =

τ

κ2T
. (16)

For a better economic interpretation, Kozak et al. (2020) modify this to fit the space of PCA.

From Kozak et al. (2020), we know that the sample form of the b in Equation (9), is as follows.

b̂ = Σ
−1
F µ, which results in b̂OLS

P,j =
µP,j
dj

for the PCs. (17)

However, rotating this into the space of PCs and using Equations (16) and (11) with b̂P = Q′b̂,

we get the following.

b̂P,j = (
dj

dj + γ
)
µP,j
dj

. (18)

The shrinkage of the SDF coefficients can now clearly be seen, as we already set γ > 0, resulting

in
dj

(dj+γ)
< 1, which in turn shrinks the coefficients. From this shrinkage equation, we can clearly

see that it shrinks PCs with lower eigenvalues more than those with high eigenvalues. This means

low eigenvalue PCs contribute less to the volatility of the SDF.

2.1.2 Estimation

In the estimation, Kozak et al. (2020) make use of a dual-penalty method, namely the following.

b̂ = arg min
b

(µ− Σb)′Σ−1(µ− Σb) + γ2b
′b+ γ1

H∑
i=1

|bi|. (19)

This method consists of three parts, namely the minimization of the model HJ-distance from

Hansen and Jagannathan (1991) and two penalties, one L1 norm penalty and one L2 norm penalty.

This equation is in essence a single-penalty method containing only the L2 norm penalty γ2b
′b, to

which an L1 penalty γ1
∑H

i=1 |bi| has been added. Kozak et al. (2020) note that the single-penalty
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method would result in the same solution as in Equation (16). Furthermore, they provide us with

the intuition behind the L2 norm penalty. Since we know that PCs with low eigenvalues have a

rather low contribution to the volatility of the SDF, if we shrink the corresponding coefficient b̂P,j ,

only a small source of the volatility of the SDF will be removed, while we do reap the benefits of

shrinking the coefficient. If we shrink a coefficient corresponding to a PC with a high eigenvalue

by the same amount, we would obtain the same benefits in terms of the penalty. However, as we

know that PCs with a high eigenvalue contribute a lot to the volatility of the SDF, shrinking the

corresponding coefficient would remove a rather big source of the volatility of the SDF. This means

that this penalty will shrink coefficients corresponding to PCs with lower eigenvalues more, which

is what we want, as these only have a small contribution to the volatility of the SDF.

Besides the L2 norm penalty, which imposes shrinkage, sparsity must still be imposed in some

way. This is where the L1 norm penalty comes from. Kozak et al. (2020) choose to add this penalty

to impose sparsity, motivated by Zou and Hastie (2005). The L1 norm penalty is able to set some

of the coefficients equal to zero because of the way it is constructed. The benefit of setting the

coefficient equal to zero is in that case bigger than the cost of keeping the coefficient on a non-zero

value. To implement this method, Kozak et al. (2020) make us of an algorithm provided by Zou

and Hastie (2005).

The amount of shrinkage or sparsity imposed is thus dictated by the strength of the L1 and L2

norm penalties. Kozak et al. (2020) also mention the importance of both of the penalties together

as opposed to only the L1 norm penalty. Even only the L2 norm penalty would perform better than

the L1 norm penalty, especially in cases where there is a high correlation between the explanatory

variables. This is rather straightforward, as the L2 norm penalty will shrink each coefficient, while

still conserving the joint explanatory power. The L1 norm penalty would disregard this and set all

coefficients to zero except for one.

Now for the estimation of the penalty parameters, Kozak et al. (2020) explain that since this

method uses two different penalty parameters γ1 and γ2, which are also different than the penalty

parameter γ specified in Equation 16, these values must be set beforehand. Using a method with

only an L2 norm penalty would result in only one penalty parameter γ, which would then simply

be the parameter as specified in Equation 16.

Kozak et al. (2020) show that because of their choice of η = 2 and the family of priors in

Equation 13, the following equation of the root expected maximum squared Sharpe ratio is very
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useful in terms of interpretation.

E[µΣ−1µ]
1
2 = κ. (20)

Here, µ and Σ are taken from the family of priors in Equation (13) and κ now represents the root

expected maximum squared Sharpe ratio. Kozak et al. (2020) proceed to show that from Equation

(16), we know that γ = τ
κ2T

, which gives us a better interpretation. If we expect the Sharpe ratio

to be very high, hence a high value for κ, the parameter γ is then low, indicating a low amount

of shrinkage. The reverse also holds. The prior beliefs dictate this reasoning, which could thus be

altered depending on the beliefs. This makes this method rather complicated and therefore, Kozak

et al. (2020) choose a different approach, which is the following. They choose to estimate γ through

K-fold cross-validation. It should be noted that Equation (20) is used to indicate the strength of

the L2 norm penalty, for interpretation purposes.

This estimation method works as follows, as explained by Kozak et al. (2020). The data set is

divided into K samples of equal size. Then, the b̂ is estimated. As mentioned before, we must set

the values of parameters γ1 and γ2, thus the estimation of the b̂ is done for each possible value of

those parameters. For the estimation, Equation (16) is used for each sample except for one, thus

to K - 1 samples. Now, with the resulting model, the out of sample (OOS) R2 of the sample that

was not included in estimating b̂, can be computed with the following equation as defined by Kozak

et al. (2020).

R2
OOS = 1− (µ2 − Σ2b̂)

′(µ2 − Σ2b̂)

µ′2µ2
. (21)

Here, R2
OOS is the out of sample R2 and the sample moments with a subscript 2 are those

corresponding to the excluded sample. Since only one of the K samples was excluded, this method

must be repeated K times, excluding a different sample each time. To choose the optimal values

for the parameters γ1 and γ2, we must average the values found in Equation (21) across all of the

K repetitions of the method and choose the parameter values that maximize this average. This

average is the OOS R2 which has been cross-validated. We base our choice of K on the value chosen

by Kozak et al. (2020), which is K = 3.

Furthermore, Kozak et al. (2020) mention the OOS R2 bias this method produces. However,

for their research, this does not matter, as the OOS R2 is compared between different models and

different values of shrinkage and sparsity. The bias is present for each of these different models and
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penalties, thus they can still compare the performance between these differences. The same holds

for our research.

Finally, to compare the different methods, we compare the Sharpe ratios of the mean-variance

efficient (MVE) portfolios obtained. Kozak et al. (2020) use the SDF coefficients as weights for

the MVE portfolio, which we will also do. For the comparison, we determine the optimal value for

the L2 norm penalty when no sparsity is imposed, and with this, we determine the corresponding

Sharpe ratio.

For the estimation, we use the MATLAB code provided by Kozak et al. (2020), where we added

some code to be able to produce certain figures.

2.2 Extension

2.2.1 Theoretical framework

The central theme Kozak et al. (2020) address is dimensionality reduction. To achieve dimension-

ality reduction and sparsity, they consider PCA, which is a very popular method for dimensionality

reduction. There are however multiple dimensionality reduction techniques. A very clear review of

different techniques is provided in the paper by Van Der Maaten et al. (2009). Here they consider

only convex techniques and make a distinction between methods that work if there is a full matrix

available and methods that function if there is only a sparse matrix available. A full matrix is a

matrix with values for each entry, even if the value is zero, while a sparse matrix does not store

values of zero, instead, the entry will be empty. For simplicity, I will consider only the methods

that make use of a full matrix.

The dimensionality reduction technique additional to PCA that will be used in this research

is Kernel PCA (KPCA). This is very similar to the method used by Kozak (2019), which is still

a working paper. In this method, the principal components are not of the covariance matrix, but

rather of the kernel matrix (Van Der Maaten et al., 2009). As Van Der Maaten et al. (2009) and

Ince and Trafalis (2007) mention, KPCA is a nonlinear version of PCA. This is nonlinear in the

following way. For KPCA, the eigenvalues and eigenvectors are calculated based on a kernel matrix,

which consists of non-linear dependencies between the different factor returns. The factor returns

are thus combined in a nonlinear manner through a kernel function, resulting in a kernel matrix.

Once we have this kernel matrix, the principal components of this matrix are computed in a linear

manner. Nothing changes in the data generating process of the factor returns, only after we have
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the factor returns, are these kernelized and used for PCA. For normal PCA, the eigenvalues and

eigenvectors are calculated based on either the covariance matrix or correlation matrix. These are

both linear dependencies between the different stock returns. The non-linearity of KPCA is the

motivation of Kozak (2019) for using KPCA. The most important implication of using KPCA is

the ability to overcome the curse of dimensionality. This is especially useful when interactions of

characteristics are used, such as Kozak et al. (2020) do. While Kozak (2019) apply the kernel to

the characteristics, which means that the SDF stays linear in terms of the individual stock returns,

we apply the kernel directly to the portfolio factor returns. We thus create kernel matrix through

nonlinear combinations of these portfolio factor returns and then apply PCA to this matrix, from

which we can create the PCs, which in turn are linear combinations of the factor returns. The

weights of these linear combinations thus come from nonlinear combinations of the factor returns.

This is further explained in Section 2.2.1.1. Following Van Der Maaten et al. (2009), first, the kernel

matrix of the data points must be computed in the following way.

kij = κkernel(Rt,i, Rs,j). (22)

This equation gives the entries for the kernel matrix by using the kernel function κkernel. Here

we use the subscript ”kernel”, to distinguish this κ from the previously introduced κ in Equation

(13). This is a function where the input consists of two vectors. From these vectors, a nonlinear

transformation is created, where the output is a single constant. In some cases, the transformation

can be simply linear. It thus maps the data to a new data space. Furthermore, Rt,i and Rs,j are the

returns of stocks i and j in excess of the risk-free rate at time t and s, thus part of the earlier defined

matrix Rt,T . In our case, we can plug in the factor returns Ft,T for each portfolio in Equation (22).

If this is done for each combination of factor returns, we have an entry kij for all i and j, which

means we can create the H ×H kernel matrix K. Equation (22) can be written in matrix form in

the following way, where we already use Ft,T as input instead of Rt.

K = K(Ft,T , Fs,S). (23)

Here, the function K is actually a matrix consisting of the functions κkernel, which create each

entry kij of the kernel matrix K. This can be done for any kernel function, as each entry of the

matrix consists of the same kernel function. The entries of the H × H kernel matrix K are thus

kij = κkernel(Ft,T,i, Fs,S,j) as noted by Kozak (2019), where i and j denote the portfolio and both
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t, T and s, S denote the time. There exist multiple kernel functions, I will use multiple kernels

to also compare these, namely the linear kernel, the Gaussian kernel, the Polynomial kernel and

possibly more. The linear kernel is added to evaluate whether the KPCA works correctly because,

as mentioned by Van Der Maaten et al. (2009), the use of this kernel in KPCA is equivalent to

normal PCA.

2.2.1.1 Kernel operations

As given by Amari and Wu (1999) and slightly modified to fit our notations, the kernel functions

are defined as follows. We define fi and fj to be vectors of values of factor returns for portfolios i

and j, where we omit the subscripts t, T and s, S for simplicity.

First, we have the Gaussian Radial Basis Function (Gaussian RBF):

κkernel(fi, fj) = exp(−c ‖ fi − fj ‖2). (24)

Here, c = 1
2σ2 for the Gaussian RBF, however, Kozak (2019) choose to define c as a constant

with the value 0.5. We will do the same. The Polynomial kernel of degree d is as follows.

κkernel(fi, fj) = (c+ 〈fi, fj〉)d. (25)

In this case, Amari and Wu (1999) choose c = 1, however Kozak (2019) define c as a free

parameter. We will use c = 1 for simplicity. The Linear kernel should be the Polynomial kernel

with d = 1, thus resulting in the following.

κkernel(fi, fj) = c+ 〈fi, fj〉. (26)

Weinberger et al. (2004) however, do not include the constant c in the Linear kernel. From Van

Der Maaten et al. (2009), we can reason that setting c = 0 would result in what was mentioned

before, namely that this kernel in KPCA would give the same results as normal PCA. Therefore,

we set c = 0. We will also test for c = 1.

Van Der Maaten et al. (2009) then proceed to modify the kernel matrix in order to obtain a

zero mean kernel function space. They do this with the following function:

kij = −1

2
(kij −

1

n

∑
l

kil −
1

n

∑
l

kjl −
1

n2

∑
lm

klm). (27)
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The intuitive interpretation of Equation 27 is as follows. The kernel function κkernel defines

a space, this space is visualized in the kernel matrix. This kernel space has a mean, and thus in

Equation 27, the mean of this space is subtracted from the kernel matrix. This is done individually

for each entry.

Now that the kernel matrix is computed, the eigenvalues and eigenvectors of this matrix need

to be computed. This is rather straightforward, as this is done in the same way as for normal PCA,

except we now have a different matrix. Before, we applied eigendecomposition to the covariance

matrix Σ, however, now we apply this to the kernel matrix K. This results in the following.

K = Q∗D∗Q∗′ with D∗ = diag(d∗1, d
∗
2, ..., d

∗
H). (28)

Here, we obtain different eigenvectors and eigenvalues compared to normal PCA. In the equation

above, we have the H ×H kernel matrix K, which is decomposed into an H ×H matrix Q∗ and a

diagonal matrix D∗. The matrix Q∗ consists of the eigenvectors and D∗ consists of the H eigenvalues

in decreasing order. This now gives us PC factors, which we can use to express the SDF in terms

of these new PC factors P ∗t,T .

P ∗t,T = Q∗′Ft,T , (29)

Mt,T = 1− b′p(P ∗t,T − E(P ∗t,T )), with bp = D−1E(P ∗t ). (30)

Furthermore, the unconditional fundamental pricing equation, Equation (7), remains the same.

As mentioned before, we can now see how the SDF has not changed much, only in terms of how

the PCs are constructed. Only the characteristics have been used for the kernel function and this

function, in turn, created the kernel matrix, which was used for creating the PCs. The SDF in

terms of the individual stock returns changes slightly, where there is some non-linearity. This is

shown in the following equivalent equations, for which we have used equations (4), (29) and (30).

Mt,T = 1− b′p(P ∗t,T − E(P ∗t,T )) ←→ Mt,T = 1− b′p(Q∗′Ft,T − E(Q∗′Ft,T ))

←→ Mt,T = 1− b′p(Q∗′Z ′tRt,T − E(Q∗′Z ′tRt,T )).
(31)

At first glance, the last part of Equation 31 seems linear in terms of the returns Rt,T , however
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this is not completely correct. The matrix Q∗ consists of the eigenvectors of the kernel matrix K.

Multiplying Rt,T with Q∗′ is a linear operation in terms of the returns, however the kernel matrix

K, from which we obtain Q∗, consists of nonlinear dependencies between the factors returns Ft,T .

These factor returns are linear combinations of the returns Rt,T , as can be seen in Equation (4).

Therefore, in the construction of the SDF for which we have used KPCA, there is one nonlinear

part in terms of the factor returns. This is because we apply the kernel to the factor returns,

creating nonlinear dependencies between the factor returns. To summarize, the SDF itself is a

linear operation on the returns Rt,T , however in the steps taken to obtain the eigenvectors, which

are in Q∗, nonlinear operations are applied to the factor returns Ft,T . In terms of the implications

this has, it should not change much for the interpretability of the SDF. In the end, the operation

performed on the returns Rt,T in the SDF is linear, meaning that a linear combination of different

stock returns can easily be constructed to obtain a well performing portfolio. The nonlinear part

is only necessary in determining the values for Q∗, which is the part of the linear operation in the

new SDF.

Kozak (2019) provide us with the algorithm containing the previous theoretical information.

The steps we will take are slightly different. First, we use kernel functions to move from the current

data space to the kernel space. After this, change the current kernel space to be zero mean. Now

apply PCA to the new zero mean kernel space. This gives us PCs and we further follow the previous

steps in terms of SDF explained in Section 2.1.1.

2.2.2 Estimation

The estimation for the extension does not differ much from the estimation for the replication.

The same methods are used as those explained in Section 2.1.2. The only difference is in the

theoretical framework, which has influence on the implementation of those methods, not necessarily

on the estimation. In terms of implementation, we do exactly what we explained in Sections 2.2.1

and 2.2.1.1. This means, first applying different kernels to the factor returns, then centering the

resulting kernel matrices, and finally applying PCA. Furthermore, we compare the Sharpe ratios in

the same way as explained in Section 2.1.2. Finally, with regards to the code we use, we implement

the methods of the extension, however the framework of the rest of the code is still the MATLAB

code provided by Kozak et al. (2020).
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3 Data

For dimensionality reduction to be fruitful, the data for this research must be of large dimensionality.

There should be a high amount of characteristics on which the factors will be based. Kozak et al.

(2020) use multiple data sets to perform their research. First, they use 25 ME/BM-sorted portfolios

which originate from Fama and French (1993), then they use their own set of 50 characteristics which

are tied to anomalies and finally they use 68 financial ratios from Wharton Research Data Services

(WRDS) in combination with 12 portfolios. The first two of these data sets are made available

by Kozak et al. (2020) and are also used in this research. For the 25 Fama and French (1993)

portfolios, the daily returns are available ranging from July 1926 to December 2017. Furthermore,

Kozak et al. (2020) orthogonalize this data. For this, they use the Center for Research in Security

Prices (CRSP) value-weighted index return in combination with the β values obtained from the full

sample. They do this with the following equation.

Ft,T = F̃t,T − βRm,t,T . (32)

Here, Ft,T is the H × 1 vector of abnormal factor returns, F̃t,T is the H × 1 vector of the raw

portfolio returns and Rm,t,T is the CRSP value-weighted index return at that specific point time

interval between times t and T , which is just a 1 × 1 value. Furthermore, β is the K × 1, which

is equivalent to H × 1 in our case, vector consisting of the β values obtained from the full sample.

After this orthogonalization, Kozak et al. (2020) proceed to modify the portfolio returns in terms

of the standard deviations. This rescaling makes the new standard deviations the same as ”...the

in-sample standard deviation of the excess return on the aggregate market index.” (Kozak et al.,

2020, p.280). Besides the 25 Fama and French (1993) portfolios, we also have the set of 50 anomaly

portfolios, for which daily data is available from November 1973 to December 2017. Kozak et al.

(2020) take a few steps with regards to processing the raw data. We will take the same steps, which

are mainly a rank transformation and a normalization. These operations ensure a correct data set

for the purpose of the research of Kozak et al. (2020) and thus also this paper. Namely, the focus

on the cross-section with regards to the predictions of returns. Furthermore, more obvious reasons

are the removal of the effects of outliers and the conservation of the same leverage with regards to

all the portfolios. Finally, the factor returns are again orthogonalized with respect to the CRSP

value-weighted index return in the same way as previously explained. We do not deviate from

Kozak et al. (2020) with regards to these transformations. Finally, the definitions of the variables
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are explained very clearly by Kozak et al. (2020) and can be found in their Internet Appendix,

together with the annualized mean returns.

4 Results

4.1 Replication

First, we replicated the results found by Kozak et al. (2020). For this, we considered two data sets,

namely the daily returns of the 25 ME/BM-sorted portfolios originating from Fama and French

(1993) and their own set of 50 anomaly portfolios. These results can be found in the following two

sections. As this part is a replication, the figures provided are almost exactly the same as those

provided by Kozak et al. (2020). Furthermore, the comparison of the Sharpe ratios can be found

in Section 4.2, as we evaluate the results of the replication and the extension simultaneously for

convenience.

4.1.1 25 Fama and French (1993) portfolios

For the following figures, Figure 1 and Figure 3, either the raw characteristics are used or PCA is

applied to both data sets. These figures show a mapping of the OOS R2 values corresponding to

different levels of shrinkage and sparsity. This means that the dual-penalty method has been used

here, and the levels of shrinkage and sparsity actually correspond to certain values of the penalty

parameters γ1 and γ2. These levels of shrinkage and sparsity can be seen on the horizontal axis and

the vertical axis respectively, which have a logarithmic scale. For the horizontal axis, the far left

corresponds to a very high amount of shrinkage, while the far right corresponds to no shrinkage.

The vertical axis is similar, where values low on the axis correspond to a high amount of sparsity,

while values high on the axis correspond to a low amount of sparsity. This is expressed in the

number of nonzero coefficients.

In Figure 1a, we see the mapping obtained from the raw 25 Fama and French (1993) portfolios.

Here we see that the section with the highest OOS R2 values is diagonal, indicating sparsity and

shrinkage substitute each other. If there is no shrinkage, we can see that a high amount of sparsity

reaches high OOS R2 values. If there is no sparsity, we can see there must be a substantial amount

of shrinkage to reach high OOS R2 values. Furthermore, when no shrinkage is imposed, including 2

or 3 portfolios is a combination that reaches one of the highest OOS R2 values. This is as expected,

as Kozak et al. (2020) already mention that they know the following from Lewellen et al. (2010).
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(a) 25 Fama and French (1993) portfolios
(b) Principal Components of the 25 Fama and French
(1993) portfolios

Figure 1

Mappings of the OOS R2 from the dual-penalty method for the Fama and French (1993) 25 ME/MB-
sorted portfolios (full sample from July 1926 to December 2017), where either no PCA is applied,
or PCA is applied. The x-axis specifies the amount of shrinkage through the root expected SR2, or
κ. The y-axis specifies the sparsity, thus the number of nonzero coefficients. For each combination
of shrinkage and sparsity, the value of the OOS R2 is given in colour, for which the scale is on the
right side of the figure.

The structure of the 25 Fama and French (1993) portfolio returns is such that a linear combination

of only a few portfolios, which differ in SMB and HML factor loadings, could span the SDF. This

is what we see in Figure 1a. Furthermore, the worst OOS R2 values are obtained when there is no

sparsity or shrinkage imposed (top right).

For the case in which PCA is used, the expectation based on Kozak et al. (2020) and Kozak

et al. (2018), is that even more sparsity can be found. Kozak et al. (2018) found that the first two

PCs are almost the same as the SMB and HML factors. Figure 1b shows us the results for the case

in which PCA is applied. We can clearly see that including only 1 PC, already results in a OOS

R2 value close to the maximum, if the right amount of shrinkage is applied. Furthermore, including

2 PCs in combination with the right amount of shrinkage is able to obtain the highest OOS R2.

Furthermore, the area with the highest OOS R2 values is nearly vertical, meaning that adding more

PCs does not necessarily decrease the OOS R2 and the amount of shrinkage stays rather constant

along this area of high OOS R2 values. As Kozak et al. (2020) mention, this is because the L2

norm penalty, which indicates the shrinkage, shrinks the PCs that already have a low variance. For

PCA, the idea is that only a few PCs account for most of the variance, so all the other PCs have

a low variance, and if these are shrunk, their value is even closer to nothing. Therefore, adding or
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removing these PCs does not make a noticeable difference.

(a) Fixed on no sparsity (b) Variable sparsity, optimal shrinkage
Figure 2

Optimal sparsity (L1) and shrinkage (L2) for the 25 Fama and French (1993) portfolios (full sample
from July 1926 to December 2017). In the left figure, the values of the in-sample cross-sectional R2

(blue dashed line) and the OOS cross-sectional R2 (obtained from cross-validation) on the y-axis
(red solid line) are plotted corresponding to each value of shrinkage (L2) on the x-axis. In this case,
no sparsity is imposed. Furthermore, two lines representing one standard error above and below
the OOS R2 from the cross-validation are provided (red dotted lines). In the right figure, the OOS
cross-sectional R2 on the y-axis is plotted again, however now against the sparsity on the x-axis. In
this case, the shrinkage (L2) differs for each point, as for each value of sparsity, the optimal value
of shrinkage is chosen to obtain the highest OOS R2. These lines are given for the both the raw
characteristics (blue solid line) and the PCs (red dashed line). Furthermore, two lines are added
representing one standard error below the OOS R2 (red and blue dotted lines).

In Figure 2a, we focus specifically on the case of no sparsity, thus the top edge of Figure 1a. Here,

we see the optimal OOS R2 is found for a shrinkage indicator κ value of approximately 0.25, slightly

higher than the value found by Kozak et al. (2020) (higher κ value means less shrinkage). The most

important part, as Kozak et al. (2020) mention, is that this figure illustrates how the in-sample

cross-sectional R2 differs from the OOS cross-sectional R2. With no shrinkage, the in-sample values

would indicate a wrong explanatory power of the SDF for the expected returns out of sample. In

Figure 2b, we focus on the optimal OOS R2 values per variable included in the SDF. This means

that for each variable included, the highest OOS R2 is chosen across all possible shrinkage values

(optimal L2). These are thus the values in Figure 1a and Figure 1b along the optimal (most yellow)

area. Now we can clearly see that including only 1 PC results in a very high OOS R2. Furthermore,

including 2 portfolios for the raw characteristics case, already obtains a high OOS R2, but including

3 portfolios almost reaches the highest OOS R2. Clearly, the method used by Kozak et al. (2020)
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performs well in imposing sparsity where it is possible and applying the right amount of shrinkage.

Furthermore, these findings are in line with Fama and French (1993).

4.1.2 50 anomaly portfolios

(a) 50 anomaly portfolios (b) Principal Components of the 50 anomaly portfolios
Figure 3

Mappings of the OOS R2 from the dual-penalty method for the 50 anomaly portfolios of Kozak et al.
(2020) (full sample from November 1973 to December 2017), where either no PCA is applied, or
PCA is applied. The x-axis specifies the amount of shrinkage through the root expected SR2, or κ.
The y-axis specifies the sparsity, thus the number of nonzero coefficients. For each combination of
shrinkage and sparsity, the value of the OOS R2 is given in colour, for which the scale is on the
right side of the figure.

In Figure 3a, we see the mapping obtained from the 50 anomaly portfolios. This figure is a lot

different than Figure 1a obtained for the 25 Fama and French (1993) portfolios. The only similarity

is that if no sparsity or shrinkage is imposed, the worst OOS R2 values are obtained. Figure 3a shows

us that for the 50 anomaly portfolios, the area with the highest OOS R2 values is slightly diagonal,

however, it is very small. This means that shrinkage and sparsity are not as interchangeable as for

the 25 Fama and French (1993) portfolios and that almost no sparsity should be imposed for high

OOS R2 values. For these high values, there should be a substantial amount of shrinkage. If we

increase the sparsity, the OOS R2 values will decline rapidly. This tells us something about the

structure of the 50 anomaly portfolios. The structure is the opposite of the structure of the 25 Fama

and French (1993) portfolios. For these 50 anomaly portfolios, we need almost all the portfolios

to capture the SDF, indicating each portfolio substantially contributes to the OOS R2 of the SDF.

Imposing sparsity is therefore not a good idea, so for this data set, a characteristics-sparse SDF
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would not work in terms of pricing performance.

—

(a) Fixed on no sparsity (b) Variable sparsity, optimal shrinkage
Figure 4

Optimal sparsity (L1) and shrinkage (L2) for the 50 anomaly portfolios (full sample from November
1973 to December 2017). In the left figure, the values of the in-sample cross-sectional R2 (blue
dashed line) and the OOS cross-sectional R2 (obtained from cross-validation) on the y-axis (red
solid line) are plotted corresponding to each value of shrinkage (L2) on the x-axis. In this case,
no sparsity is imposed. Furthermore, two lines representing one standard error above and below
the OOS R2 from the cross-validation are provided (red dotted lines). In the right figure, the OOS
cross-sectional R2 on the y-axis is plotted again, however now against the sparsity on the x-axis. In
this case, the shrinkage (L2) differs for each point, as for each value of sparsity, the optimal value
of shrinkage is chosen to obtain the highest OOS R2. These lines are given for the both the raw
characteristics (blue solid line) and the PCs (red dashed line). Furthermore, two lines are added
representing one standard error below the OOS R2 (red and blue dotted lines).

Similar as for the 25 Fama and French (1993) portfolios, we now focus specifically on the case

of no sparsity and on the optimal OOS R2 values per value of sparsity. The two figures in Figure

4 are the same as the figures previously in Figure 2 with respect to the construction of the figures,

the only difference is the data set used. In Figure 4a we see a similar difference between in-sample

and OOS as we found in Figure 2a. Again, the in-sample cross-sectional R2 is misleading in terms

of explanatory power OOS of the SDF for the expected returns. We do see that the highest OOS

R2 is obtained for a shrinkage indicator κ value of approximately 0.28, slightly lower than the value

found by Kozak et al. (2020). In the right figure, Figure 4b, we can clearly see the poor performance

of the characteristics based SDF for different levels of sparsity. Including 10 characteristics-based

factors does not even reach half the maximum OOS R2. For the PCs, including 2 already gives a

decent OOS R2 and including 4 PCs almost reaches the maximum OOS R2.
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Table 1

The 11 largest (most contributing) SDF factors for the 50 anomaly portfolios, both raw characteris-
tics based factors and the Principal Components. Given are the coefficient estimates b and the abso-
lute values of their t-statistics. These values are obtained for the optimal value of shrinkage (prior
root expected SR2). A distinction is made between the values obtained for the characteristics-based
SDF (the raw 50 anomaly portfolios) and the values obtained for the PC based method. Furthermore,
as Kozak et al. (2020) do, the values are sorted on the t-statistics in a descending order.

50 anomaly portfolios Principal Components of
the 50 anomaly portfolios

b t-stat b t-stat

Industry relative reversals (low vol.) -0.879 3.527 PC 4 1.014 4.249
Industry momentum-reversals 0.483 1.945 PC 1 -0.537 3.081
Industry relative reversals -0.425 1.705 PC 2 -0.556 2.653
Seasonality 0.322 1.292 PC 9 0.635 2.514
Earnings surprises 0.323 1.291 PC 15 -0.324 1.265
Value-profitability 0.297 1.184 PC 17 0.303 1.182
Return on market equity 0.299 1.183 PC 6 -0.287 1.176
Investment/Assets -0.238 0.948 PC 11 0.189 0.744
Return on equity 0.238 0.947 PC 13 0.166 0.654
Composite issuance -0.240 0.947 PC 23 0.146 0.564
Momentum (12m) 0.227 0.906 PC 7 -0.140 0.561

Table 1 provides the SDF factors that contribute the most to the SDF for the 50 anomaly

portfolios. In Table 1 we can see a few points of interest. First, the most important coefficients for

the characteristics-based SDF do not differ much in value. Also, only the t-statistic corresponding

to the Industry relative reversals (low vol.) is quite large, the rest is much lower and not very

different from each other. This shows what we already found in Figures 3 and 4, that only a few

of these portfolios would not be enough to obtain a high OOS R2 for the SDF. As Kozak et al.

(2020) mention, the joint significance almost all of the 50 anomaly portfolios is what has a good

explanatory power for the SDF. Furthermore, as mentioned previously, we can see that 4 PCs have

significantly different values from 0 based on the t-statistics at a significance level of 5%. These are

PC4, PC1, PC2 and PC9, which as mentioned before, can obtain a very high OOS R2 if only these

PCs are included in the SDF. That these PCs have high coefficients and contribute the most to

the explanatory power of the SDF comes from what was mentioned before in Section 2.1.1. More

shrinkage is imposed on low eigenvalue PCs, which do not contribute much to the volatility of the

SDF, which means that the remaining high coefficient PCs, are those PCs that contribute much

to the volatility of the SDF. Besides, since PCs are linear combinations of the factor returns, it is

not unexpected that only a few PCs have a large explanatory power, as the different factor returns

corresponding to the 50 anomaly portfolios have a large joint significance. A linear combination
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would then be much better in terms of explanatory power, which are thus the PCs. Lastly, there are

some small differences with the results found by Kozak et al. (2020) regarding the sign corresponding

to the PC based SDF coefficients. For PC9, PC15, PC17, PC11, PC13 and PC7, we have a different

sign. This does not have any implications for the optimal OOS R2 that was obtained, as we know

that we have the same findings as Kozak et al. (2020).

4.2 Extension

For this part, we use the exact same data, however, the method has slightly changed. Instead of

PCA, Kernel PCA is used to obtain the results. For the following figures, Figure 5 and Figure 6,

the Gaussian kernel, the Polynomial kernel with d = 2 and the Linear kernel are used for both data

sets, the Fama and French (1993) 25 ME/MB-sorted portfolios and the 50 anomaly portfolios of

Kozak et al. (2020). These figures show a mapping of the OOS R2 values corresponding to different

levels of shrinkage and sparsity. Again, the dual-penalty method has been used here, and the levels

of shrinkage and sparsity actually correspond to certain values of the penalty parameters γ1 and γ2.

4.2.1 25 Fama and French (1993) portfolios

In Figure 5 we can see the OOS R2 values for the Fama and French (1993) data set. First, in

Figure 5a, the Gaussian kernel has been used to obtain these values. Here, the highest OOS R2

can be found when 3 or more PCs are included and when there is some shrinkage. For higher of

lower amounts of shrinkage, the OOS R2 rapidly decreases. We do see however, that if only 2 PCs

are included, a decrease in the amount of shrinkage does not nearly as much decrease the OOS R2

as when 3 PCs are included. Furthermore, the yellow area is rather vertical, indicating a constant

degree of shrinkage, regardless of the number of PCs included, except for 1 or 2 PCs included.

Similar results are found for the Polynomial kernel with d = 2, which can be seen in Figure 5b.

The only difference is that the most yellow area is slightly shifted to the right and more narrow.

Furthermore, the Polynomial kernel with d = 5 in Figure 5c yields improved results in terms of

sparsity, where including 2 PCs can already obtain the highest OOS R2. In this case, less shrinkage

variation is possible to obtain this high OOS R2. If we compare these two figures with Figure 1b,

the results are not as expected. The use of KPCA increased the number of PCs needed to obtain

a similar OOS R2. The amount of shrinkage however, is rather similar in both cases. Furthermore,

we included the Linear kernel, Figure 5d, which should in theory obtain the same results as regular

PCA. Note that c = 1, as the mapping obtained for c = 0 seemed to perform worse in terms of
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(a) Gaussian kernel (b) Polynomial kernel d = 2

(c) Polynomial kernel d = 5 (d) Linear kernel c = 1
Figure 5

Mappings of the OOS R2 from the dual-penalty method for the Fama and French (1993) 25 ME/MB-
sorted portfolios (full sample from July 1926 to December 2017), where the Gaussian kernel, the
Polynomial kernel (d = 2 and d = 5) and the Linear kernel (c = 1) are used. The x-axis specifies
the amount of shrinkage through the root expected SR2, or κ. The y-axis specifies the sparsity, thus
the number of nonzero coefficients. For each combination of shrinkage and sparsity, the value of the
OOS R2 is given in colour, for which the scale is on the right side of the figure.

OOS R2 when shrinkage and sparsity are imposed. The mapping for c = 0 can be found in Figure

7 in the Appendix. There are large similarities between Figure 5d and Figure 1b. In both cases,

including only 1 PC obtains one of the highest OOS R2 values and increasing the number of PCs

included, does not change the OOS R2 much. There are however some small differences. In Figure

1b, the area containing the highest OOS R2 values is nearly exactly vertical. In Figure 5d this

area is also quite vertical, but not nearly as vertical. This means that as the number of included

PCs increases, the amount of shrinkage must be increased to obtain similar OOS R2 values. This
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difference could be due to the regularization of the covariance for the regular PCA. Regular PCA

makes use of the covariance matrix to obtain the eigenvectors and eigenvalues. KPCA uses the

kernel matrix to obtain the eigenvectors and eigenvalues. We have followed the method of Kozak

et al. (2020) for the estimation of regular PCA, in which they do not use the covariance matrix,

but a regularized covariance matrix. This could be a reason for the differences between Figure 1b

and Figure 5d.

We expected that KPCA would improve the results in terms of sparsity and shrinkage. These

results do not necessarily confirm these expectations, as we find slightly worse results with respect

to normal PCA. An important reason could be that KPCA works very well in cases of high dimen-

sionality. As mentioned in Section 2.2.1, KPCA is able to overcome the curse of dimensionality.

In this case, the dimensionality might not be large enough, meaning KPCA would not necessarily

perform better in terms of obtaining a high OOS R2 when shrinkage and sparsity are imposed.

Because KPCA is meant for high dimensionality, this could even mean that the results in a low

dimensionality case could be worse, as we are accounting for high dimensionality, which might not

be the case.

Additionally, we know from Lettau and Pelger (2020) that for regular PCA, including the mean

of the factor returns could improve the results with regards to explanatory power, specifically for

those factors that do not contribute much to the variance. For the regular PCA in this research, we

make use of the covariance matrix, which demeans the factor returns. For the KPCA, we demean

the kernel matrix to create a zero mean kernel function space, as mentioned before in Section 2.2.1.1.

This is however slightly different, as we demean the information in the kernel matrix, which consists

of the nonlinear kernel functions with the factor returns as input. The results obtained when we

omit the demeaning operation can be found in the Appendix in Figure 5, and provide slightly better

results regarding the values of the OOS R2 for higher levels of sparsity. Especially the Polynomial

kernel with d = 5 performs very good. However, for consistency and comparison with the results of

Kozak et al. (2020), our focus is on the results obtained from a demeaned kernel matrix.

Furthermore, we compared the Sharpe ratios obtained from the different methods used, namely

with and without PCA and with the different kernels. Here, we do not impose sparsity and determine

the optimal amount of shrinkage, for which we then compute the Sharpe ratio obtained from the

resulting MVE portfolio, as explained in Section 2.1.2. We estimate the L2 norm penalty based on

the entire sample, as explained in Section 2.1.2, but also on only a part of the entire sample. Kozak

et al. (2020) also do this for their asset pricing tests, however we will only do this for the comparison
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of the Sharpe ratios. The withheld sample is the data from the January 2005 to December 2017.

Kozak et al. (2020) withhold a sample, because this would create a ”...pure OOS test.” (Kozak

et al., 2020, p.289). The optimal amount of shrinkage in the sample for which it is estimated, is

not necessarily the optimal value for a different sample Kozak et al. (2020) point out. The results

can be found in Table 3 in the Appendix, since the results are almost identical for the different

methods. We do see that the values for the Sharpe ratio, the OOS R2 and the κ increase (shrinkage

decreases) when we use a withheld sample. To test whether the Sharpe ratio estimation was not

independent of the method used, we increased the value of d to 20 for the Polynomial kernel, which

resulted in slightly lower values. However, these differences are not noteworthy. An explanation

for the almost identical values for each of the different methods could be that because there is no

sparsity imposed, the different methods do not necessarily distinguish themselves from each other.

PCA and KPCA perform well when sparsity is imposed, but in this case, no sparsity is imposed.

4.2.2 50 anomaly portfolios

In Figure 6 we can see the OOS R2 values for the 50 anomaly portfolios data set of Kozak et al.

(2020). Here, we can clearly see that for each kernel used, the results are very similar. For each

kernel, the Gaussian kernel in Figure 6a, the Polynomial kernel with d = 2 and d = 5 in Figures

6b and 6c, and the Linear kernel with c = 0 in Figure 6d, the amount of shrinkage needed for high

values of OOS R2 is very similar. There are however some differences, for instance the number

of PCs that must be included to obtain the highest OOS R2 value. For the Gaussian kernel and

the Linear kernel in Figures 6a and 6d, 11 PCs with the right amount of shrinkage can obtain the

highest OOS R2. For the Polynomial kernels in Figures 6b and 6c, 12 PCs are needed. Furthermore,

for the Gaussian kernel and the Linear kernel, 4 PCs can obtain a rather high OOS R2 with respect

to the highest OOS R2 that can be obtained. For the Polynomial kernel with d = 2, a similar

value can be obtained if 5 PCs are included, and when d = 5, this even increases to 6. Comparing

these results with the results found in Figure 3b, the differences are very small. The use of KPCA

does not necessarily improve the results compared to regular PCA. If we compare the results of

the Linear kernel in Figure 6d with the results obtained with regular PCA in Figure 3b, which

in theory should be the same, the differences are very small. These differences mainly manifest

themselves for the lower OOS R2 values and the corresponding amount of sparsity and shrinkage.

As mentioned before, this could be because instead of using the covariance matrix for PCA, a

regularized covariance matrix is used.

26



(a) Gaussian kernel (b) Polynomial kernel d = 2

(c) Polynomial kernel d = 5 (d) Linear kernel c = 0
Figure 6

Mappings of the OOS R2 from the dual-penalty method for the 50 anomaly portfolios of Kozak
et al. (2020) (full sample from November 1973 to December 2017), where the Gaussian kernel, the
Polynomial kernel (d = 2 and d = 5) and the Linear kernel (c = 0) are used. The x-axis specifies
the amount of shrinkage through the root expected SR2, or κ. The y-axis specifies the sparsity, thus
the number of nonzero coefficients. For each combination of shrinkage and sparsity, the value of the
OOS R2 is given in colour, for which the scale is on the right side of the figure.

Besides these figures, Table 2 provides the SDF factors that contribute the most to the SDF for

the 50 anomaly portfolios. The values found in Table 2 are similar to those found for the PCs in

Table 1 in Section 4.1.2, especially for the Linear kernel, which was as expected. These values are

almost identical, the small differences could be because of, as already mentioned, the regularization

of the covariance matrix for normal PCA. For each kernel, we find that the b coefficients of the 4 PCs

with the highest t-statistic are statistically different from 0 based on the t-statistics at a significance

level of 5%, as we also found for the case of normal PCA. The 4 PCs for which this holds do differ
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Table 2

The 11 largest (most contributing) SDF factors for the 50 anomaly portfolios, for each of the different
kernels used (Gaussian kernel, Polynomial kernel with d = 2 and with d = 5, Linear kernel with
c = 0). Given are the coefficient estimates b and the absolute values of their t-statistics. These
values are obtained for the optimal value of shrinkage (prior root expected SR2). Furthermore, the
values are sorted on the t-statistics in a descending order.

Gaussian Poly d = 2 Poly d = 5 Lin c = 0
b t-stat b t-stat b t-stat b t-stat

PC 5 0.913 3.848 PC 5 0.972 4.099 PC 5 -0.811 3.408 PC 5 1.005 4.245
PC 2 0.589 3.372 PC 2 -0.546 3.132 PC 3 0.512 2.343 PC 1 -0.552 3.166
PC 12 -0.647 2.588 PC 3 0.485 2.227 PC 2 -0.430 2.313 PC 2 -0.505 2.344
PC 3 0.494 2.258 PC 11 -0.482 1.927 PC 18 -0.505 1.993 PC 10 -0.537 2.147
PC 20 0.333 1.310 PC 12 0.410 1.635 PC 15 -0.400 1.585 PC 7 0.353 1.438
PC 8 0.282 1.148 PC 17 -0.344 1.358 PC 11 -0.373 1.482 PC 11 0.317 1.266
PC 14 -0.259 1.030 PC 7 -0.225 0.915 PC 14 0.351 1.405 PC 17 0.298 1.176
PC 6 -0.235 0.962 PC 10 0.227 0.903 PC 4 -0.299 1.325 PC 4 0.227 1.037
PC 21 -0.179 0.702 PC 4 -0.189 0.856 PC 13 0.304 1.198 PC 15 0.202 0.800
PC 22 -0.168 0.661 PC 20 0.201 0.789 PC 10 -0.299 1.187 PC 23 0.157 0.613
PC 7 0.139 0.567 PC 18 -0.182 0.714 PC 16 0.257 1.024 PC 8 -0.141 0.572

for each different kernel used. Furthermore, we know that for each of the kernels used, including 4,

5 or 6 PCs can already obtain a very high OOS R2. Similar as we reasoned in Section 4.1.2, this

corresponds with the expectations of the application of PCA and the contribution of each PC to the

volatility of the SDF. This also holds for KPCA, as the kernel does not change the interpretation

of the PCs in the SDF, as these are still linear transformations of the original stock returns.

Again, our expectations regarding the performance of KPCA are not confirmed. Again, as

mentioned in Section 4.2.1, the focus of KPCA on a high dimensionality situation could be a

possible explanation. The KPCA results found for this data set, the 50 anomaly portfolios, are

almost identical to the results found with normal PCA. This is better than what we found for the

25 Fama and French (1993) portfolios. This could be because there is less redundancy between

the different anomaly portfolios than for the 25 Fama and French (1993) portfolios, or because

the dimensionality is higher, which would be beneficial for KPCA. The redundancy between the

25 Fama and French (1993) portfolios could mean that applying a non-linear kernel unnecessarily

complicates the relations between the different portfolios, while normal PCA does not do this.

Furthermore, we include the OOS R2 mappings obtained from KPCA where we do not demean

the kernel matrix in the Appendix in Figure 9. The results do not change as much as they did for

the 25 Fama and French (1993) portfolios. This could again be because of the redundancy between

the 25 Fama and French (1993) portfolios, which makes it beneficial to add the mean in the kernel.
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However, as mentioned in Section 4.2.1, our focus is on the results obtained when we demean the

kernel matrix.

Finally, we compared the Sharpe ratios obtained from the MVE portfolios in the same way as

explained in Section 4.2.1. Here, we do find different values, as we make use of a different data set,

however, the relative results between the different methods are the same as found in 4.2.1. The

values are almost identical across all methods and they increase in the case of a withheld sample. We

do see a slight change in the case of the entire sample for the PCs, however, this is not a noteworthy

change (magnitude of 0.0001). Furthermore, we tested the Polynomial kernel with d = 20 again,

resulting in slightly different values, in this case slightly higher values.

5 Conclusion and discussion

The main idea of this paper was to test whether the cross-sectional performance of an SDF could

be improved with the use of different dimensionality reduction techniques, taking into account the

dimensionality of the data. Kernel PCA has been applied in addition to the already used regular

PCA by Kozak et al. (2020). Different kernels, specifically the Gaussian kernel, the Polynomial

kernel and the Linear kernel, have been applied to two data sets provided by Kozak et al. (2020).

We replicated the results provided by Kozak et al. (2020) and thereby come to the same conclusion

regarding their findings. Imposing sparsity on a characteristics-based SDF does not work well,

unless there is redundancy amongst the characteristics-based factors. This is the case for the 25

Fama and French (1993) portfolios. Imposing sparsity on the SDF for the 50 anomaly portfolios

does not prove to perform well, as there is not much redundancy between those portfolios. When

PCA is applied, an SDF sparse in PCs does perform well out of sample in terms of R2. As Kozak

et al. (2020) mention, the problem still makes use of all the portfolio factor returns to estimate the

PCs, however, a PC-sparse SDF could help with regards to the interpretation of the SDF.

Regarding the application of KPCA, the results are not entirely as expected. This method

either obtains worse results in terms of the OOS R2, or in the best case similar results, depending

on the data set it is applied to. We do find that for the portfolios that exhibit redundancy, namely

the 25 Fama and French (1993) portfolios, KPCA provides us with worse results than for the 50

anomaly portfolios. For the 50 anomaly portfolios, the results are almost identical to those obtained

with regular PCA. Depending on the redundancy between the different factor returns in the data

set, KPCA thus performs rather good in terms of OOS R2, however not better than regular PCA.
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A possible reason could be that the dimensionality of the data set is not high enough for KPCA

to perform as expected. As mentioned, KPCA is able to overcome the curse of dimensionality.

Furthermore, we find that the Gaussian kernel and the Polynomial kernel exhibit very similar

results. For the 25 Fama and French (1993) portfolios, the Polynomial kernel with d = 5 does

distinguish itself from the Gaussian kernel, however these differences almost completely disappear

for the 50 anomaly portfolios. Again, the dimensionality of the data could be a possible explanation.

A higher dimensionality could show larger differences between these two kernels. KPCA with the

Linear kernel was added to test the method, as in theory, this should produce the same results

as for regular PCA. The results were very similar, however not identical. The regularization of

the covariance matrix for regular PCA could be the reason for this. Finally, the MVE portfolios

constructed for the optimal L2 norm penalty with no sparsity give almost identical results in terms

of Sharpe ratio for each method. This is reasonable, as regular PCA and KPCA improve the OOS

R2 compared to the raw characteristics-based SDF when we do impose sparsity.

For future research, there are multiple limitations which give possibilities for improvements.

First, in this paper, interactions between different characteristics have not been included when esti-

mating the SDF. This would increase the dimensionality, and possibly improve the results obtained

with KPCA. Second, the kernel has been applied to the factor returns, but could be applied to the

raw characteristics data, as Kozak (2019) do, to compare the differences. Furthermore, regarding

the kernel matrix, more focus could be directed to including the mean and not demeaning the kernel

matrix. Third, the Sharpe ratios could be compared in a characteristics- and PC-sparse SDF model

instead of only an SDF with shrinkage applied. Finally, a method which has not been used here,

but is interesting to examine in future research, is Maximum Variance Unfolding, as found in Van

Der Maaten et al. (2009) and applied by Weinberger et al. (2004). This method does not simply

choose a kernel for KPCA, but fits (learns) a kernel specifically designed to fit the data, which could

provide improved results.
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Appendix

.5
Figure 7

Mapping of the OOS R2 from the dual-penalty method for the Fama and French (1993) 25 ME/MB-
sorted portfolios (full sample from July 1926 to December 2017), where we use the Linear kernel with
c = 0. The x-axis specifies the amount of shrinkage through the root expected SR2, or κ. The y-axis
specifies the sparsity, thus the number of nonzero coefficients. For each combination of shrinkage
and sparsity, the value of the OOS R2 is given in colour, for which the scale is on the right side of
the figure.
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(a) Gaussian kernel (b) Polynomial kernel d = 2

(c) Polynomial kernel d = 5 (d) Linear kernel c = 1
Figure 8

Mappings of the OOS R2 from the dual-penalty method for the Fama and French (1993) 25 ME/MB-
sorted portfolios (full sample from July 1926 to December 2017), where the Gaussian kernel, the
Polynomial kernel (d = 2 and d = 5) and the Linear kernel (c = 1) are used. For these mappings,
we have not demeaned the kernel matrix in the estimation. The x-axis specifies the amount of
shrinkage through the root expected SR2, or κ. The y-axis specifies the sparsity, thus the number of
nonzero coefficients. For each combination of shrinkage and sparsity, the value of the OOS R2 is
given in colour, for which the scale is on the right side of the figure.
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(a) Gaussian kernel (b) Polynomial kernel d = 2

(c) Polynomial kernel d = 5 (d) Linear kernel c = 0
Figure 9

Mappings of the OOS R2 from the dual-penalty method for the 50 anomaly portfolios of Kozak
et al. (2020) (full sample from November 1973 to December 2017), where the Gaussian kernel, the
Polynomial kernel (d = 2 and d = 5) and the Linear kernel (c = 0) are used. For these mappings,
we have not demeaned the kernel matrix in the estimation. The x-axis specifies the amount of
shrinkage through the root expected SR2, or κ. The y-axis specifies the sparsity, thus the number of
nonzero coefficients. For each combination of shrinkage and sparsity, the value of the OOS R2 is
given in colour, for which the scale is on the right side of the figure.

34



Table 3

The Sharpe ratio, OOS cross-sectional R2 and the κ for the MVE constructed per method for the 25
Fama and French (1993) portfolios. This is done for the entire data sample (July 1926 - December
2017) and for the true out of sample performance, where we withhold a sample (January 2005 -
December 2017).

Entire Withheld
sample test sample
SR OOS CS R2 κ SR OOS CS R2 κ

Raw 0.4044 0.4462 0.2481 0.4758 0.4948 0.2913
PC 0.4044 0.4462 0.2481 0.4758 0.4948 0.2913
Gauss 0.4044 0.4462 0.2481 0.4758 0.4948 0.2913
Poly d = 2 0.4044 0.4462 0.2481 0.4758 0.4948 0.2913
Poly d = 20 0.4044 0.4462 0.2481 0.4751 0.4946 0.2964
Lin c = 1 0.4044 0.4462 0.2481 0.4758 0.4948 0.2913

Table 4

The Sharpe ratio, OOS cross-sectional R2 and the κ for the MVE constructed per method for the
50 anomaly portfolios. This is done for the entire data sample (November 1973 - December 2017)
and for the true out of sample performance, where we withhold a sample (January 2005 - December
2017).

Entire Withheld
sample test sample
SR OOS CS R2 κ SR OOS CS R2 κ

Raw 1.3321 0.2383 0.2829 2.0721 0.2795 0.3330
PC 1.3320 0.2384 0.2860 2.0721 0.2795 0.3330
Gauss 1.3321 0.2383 0.2829 2.0721 0.2795 0.3330
Poly d = 2 1.3321 0.2383 0.2829 2.0721 0.2795 0.3330
Poly d = 20 1.3321 0.2383 0.2829 2.0760 0.2782 0.3450
Lin c = 0 1.3321 0.2383 0.2829 2.0721 0.2795 0.3330

Derivations

St = e−r(T−t)Et(Mt,TST ) and Et(Mt,T ) = 1

−→ 1 = Et(Mt,T
ST e

−rT

Ste−rt )

= Et(Mt,T (1 + ST−st
st

))

= Et(Mt,T (1 +Rt,T ))

= Et(Mt,T ) + Et(Mt,TRt,T )

= 1 + Et(Mt,TRt,T )

−→ 0 = Et(Mt,TRt,T )

(33)
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The tilde on variables indicates demeaned variables, for example:

F̃t,T = Ft,T − Et(Ft,T )Ft,T − µ for µ = Et(Ft,T )
(34)

Et([1− b′(Ft,T − Et(Ft,T ))]F ht,T ) = 0

Et((1− b′F̃ ht,T )) + Et(Mt,TEt(F
h
t,T )) = 0

Et((1− b′F̃ ht,T )) + Et(Mt,T )Et(F
h
t,T ) = 0

Et(F̃
h
t,T − b′F̃t,T F̃ ht,T ) + Et(F

h
t,T ) = 0

Et(F
h
t,T − b′F̃t,T F̃ ht,T ) = 0

Et(F
h
t,T ) = b′Et(F̃t,T F̃

h
t,T )

µh = b′Covt(Ft,TF
h
t,T )

thus

µ = b′Vt(Ft,TF
′
t,T ) = ΣF b −→ b = Σ−1F µ

(35)
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