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1 Introduction

Neural networks are nowadays a popular field of research and machine learning overall seems to

be more visible in everyday life. A well-known example of a neural network is pattern recognition,

or face recognition to be more specific. The research field of self-driving cars is quite known for

using pattern recognition, since nowadays cars already have neural network based assistance with

for example road detection. An adaptive real-time road detection system based on neural networks

was already studied by Foedisch and Takeuchi back in 2004. Currently, researchers even apply

neural networks to let cars drive fully autonomously as described by Bojarski et al. (2016).

Neural networks can be utilized in a wide range of research fields, that are less common and

visible for most people, in health care for example. In 2002, Sordo reported how neural networks

could help making clinical diagnosis and later in 2009, Temurtas et al. did the same for diagnosing

diabetes. The performance of these methods is proper, but questions arise about reliability, since

these models are hard to interpret and understand. As Dayhoff and DeLeo (2001) pointed out, the

neural networks are often considered to be black boxes. This might invoke suspicion, which is often

very undesirable.

In this paper we study neural networks that are modeled as a 0-1 Mixed Integer Linear Program

(0-1 MILP). We will utilize the model as introduced by Fischetti and Jo (2018). As indicated earlier,

the difficulties with interpreting a neural network can interfere with utilization of neural networks.

Therefore Erhan et al. (2009) started to visualize higher-layer features of a Deep Neural Network

(DNN), because visualization might play an important role in enhancing interpretability. One of

the applications of the 0-1 MILP in this paper is therefore feature visualization.

Furthermore, we use the 0-1 MILP to produce so called “adversarial examples”, as introduced

by Szegedy et al. (2013). Adversarial examples can be of great interest to find weaknesses of the

proposed DNN model. In this paper, we will also introduce a new application of our constructed

adversarial examples. We will retrain the DNN, using a new data set that includes both the original

data set and a set of created adversarial examples. We will analyze the new performance of the

DNN model with the L1 norm determining the nearest distance to an adversarial example. In our
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applications we will be using the MNIST database on handwritten digits.

In the remainder of this paper we will give relevant background information on familiar studies

in Section 2. In Section 3 the methodology is presented after a brief introduction in neural networks.

The results are given in Section 4. Finally, we discuss our results and draw a conclusion in Section

5. A small description of the used programming files is given in Appendix A.1

2 Literature Review

Neural networks became a desired field of interest over the last decades, since applications of

neural networks such as facial recognition, for example the You Only Look Once (YOLO) system

by Redmon et al. (2016), became increasingly visible in everyday life. However, research in this

field already had its first substantial breakthrough in 1986 by Rumelhart et al., who introduced

back-propagating to train the networks.

Another big milestone in neural network history was the introduction of the AlexNet by

Krizhevsky et al. (2012). With the AlexNet, big data sets became remarkably more manage-

able. Nowadays, computers can dominate the games of chess or Go, as by Silver et al. (2016), with

the use of neural networks. The opportunities of these techniques seem limitless, but as mentioned

before, in some fields, questions arise.

As Wang et al. (2020) pointed out, Artificial Intelligence (AI) have proved itself useful in

health care, but they emphasize the aim to clarify black box models. Wang et al. also want to

raise awareness for good pilots and testing before utilization in a clinical environment, and proper

monitoring when AI is implemented. Liability issues are not unlikely, since there is a lack of model

interpretability.

To improve interpretability of neural networks, visualization of the network features could be

useful. Back in 2009, Erhan et al. visualized higher-layer features of a DNN using a geedy ascent

method. One problem that may occur using such methods, is getting trapped in a local minimum.

Our 0-1 MILP, which is introduced in Section 3 prevents us from getting stuck in a local minimum

and is therefore very capable to visualize higher-layer features.
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Adversarial examples are also a topic of high interest, after Szegedy et al. (2013) elaborated on

them. Those examples are capable of tricking the network to produce an improper outcome with

only a slight modification of the input. In 2014, Goodfellow et al. introduced a set of methods to

generate adversarial examples. In this paper we address adversarial examples generated by our 0-1

MILP model as done by Fischetti and Jo (2018). The adversarial examples can be used to show

weaknesses and test robustness of the DNN. Tjeng et al. (2017) also evaluated robustness of neural

networks with mixed integer programming, but used another approach. Our method will be further

elaborated in Section 3.5 and could be considered to be more hands on.

3 Methodology

3.1 Neural Network

A neural network is a set of neurons in a network communicating in different layers, in which there

is an input and an output layer, and one or more hidden layers. Since we address only networks

with multiple hidden layers, we speak of Deep Neural Networks, whereas networks with one hidden

layer are often referred to as simple hidden layers. The architecture of a DNN is given in Figure 1,

this example has three hidden layers. Neural networks are named after the human brain, where we

have an input, like seeing or hearing, and an output like thinking or doing. In our brains all neurons

are connected in some way between the input and the output layer, but what exactly happens is

still quite unclear. Humans for example are very capable to distinguish cats and dogs, although

there is a wide variation within those animal species. So, there is no clear set of visible separators

between those two.

In our study we have DNNs consisting of K+ 1 layers where layer 0 is the input layer and layer

K is the output layer. Consequently, there are K − 1 hidden layers. Each layer k ∈ {0, 1, ...,K}

consists of nk nodes, or so called neurons. We define each node j ∈ {0, 1, ..., nk} in layer k as

NEURON(j, k). Let xkj be the output of NEURON(j, k). As can been seen in Figure 1, all neurons

in the hidden layers are connected with all neurons in the preceding and successive layers. This
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Figure 1: Deep neural network architecture from RSIPVision (2015)

connection is made by an activation function. In this paper we will use the Rectified Linear Unit

(ReLU) function, where ReLU(y) = max{0, y}. With given weight matrix W and a vector of biases

b, the following activation is found for the vector of outputs xk:

xk = ReLU(wk−1xk−1 + bk−1), k = 1, ...,K (1)

Note that the weights and biases are obtained in the training-phase of the DNN, therefore we

can use them as fixed values after the DNN has been trained. We can now write Equation 1 to the

following linear conditions:

nk−1∑
j=1

wk−1
ij xk−1

i + bk−1
j = xkj − skj , xkj ≥ 0 skj ≥ 0 k = 1...K, j = 1...nk (2)

This way, the positive and negative part of the ReLU are dealt with in one formula, but since

there is no unique solution for this equation, i.e. if xkj becomes larger, skj can become larger to

cancel this out. Therefore we introduce binary variable zkj to ensure either xkj or skj is equal to zero.

In this paper, we use five different DNNs. An overview can be found in Table 1. All networks

will have in input layer of 784 entries for all pixels and an output layer with 10 neurons to classify

all digits. The models are trained through using Stochastic Gradient Descent (SGD), using 50
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epochs. All models achieved an accuracy higher than 90% on the validation set. The training set

consisted of 60000 images and the validation set had a size of 10000. Note that the notation used

above as well as the DNNs we use are strongly correlated to Fischetti and Jo (2018).

Table 1: DNN overview

Name Neurons per hiddden layer

DNN1 8/8/8

DNN2 8/8/8/8/8/8

DNN3 20/10/8/8

DNN4 20/10/8/8/8

DNN5 20/20/10/10/10

3.2 0-1 MILP

The full formulation of the 0-1 MILP is given below.

min
K∑
k=0

nk∑
j=1

ckjx
k
j +

K∑
k=1

nk∑
j=1

(γkj z
k
j + λkj s

k
j ) (3.1)

s.t.

nk−1∑
j=1

wk−1
ij xk−1

i + bk−1
j = xkj − skj k = 1...K, j = 1...nk (3.2)

xkj , s
k
j ≥ 0 k = 1...K, j = 1...nk (3.3)

zkj ∈ B k = 1...K, j = 1...nk (3.4)

zkj = 1→ xkj ≤ 0 k = 1...K, j = 1...nk (3.5)

zkj = 0→ skj ≤ 0 k = 1...K, j = 1...nk (3.6)

lb0j ≤ x0
j ≤ ub0j j = 1...n0 (3.7)

lbkj ≤ xkj ≤ ubkj k = 1...K, j = 1...nk (3.8)

lbkj ≤ skj ≤ ubkj k = 1...K, j = 1...nk (3.9)
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Here, Constraints (3.2) ensure the ReLU connectivity in the network, where Constraints (3.3)

set the non-negativity of xkj and skj . Constraints (3.4) - (3.6), also known as indicator constraints,

regulate the 0-1 MILP to get unique solutions. More specific, these constraints result in the fact

that if zkj = 1 then xkj = 0 and if zkj = 0 then skj = 0 for k = 1, ...,K, j = 1, ..., nk. This ensures that

the xkj and skj can not cancel each other out. These indicator constraints tend to have very weak

relaxations during the Branch and Bound optimization, which is used while solving for this problem.

This may lead to a enormous increase in computing time. Namely, the indicator constraints are

converted to Big M constraints: xkj ≤Mx(1−zkj ) and skj ≤Msz
k
j . Defining proper upper bounds to

the continuous variables x and s can tighten this formulation and consequently reduce computing

time and is therefore of great importance. This was already emphasized by Camm et al. back in

1990.

3.2.1 Bounds

Constraints (3.7) set limits for the input layer. Since we use normalized pixels, those lower bounds

(lb) and upper bounds (ub) are set as 0 and 1, but those bounds are only convenient for the input

layer. To further improve the usability of the model, upper bounds on all neurons in the hidden

layers and output layer are necessary. Therefore we come up with a smart pre-processing phase,

typically suitable for our DNN instances. Bounds (3.8) and (3.9) are determined with this pre-

processing phase, which works as follows. First we use our objective function (3.1) n1 times to

independently maximize activity of all xkj with k = 1, so for all xkj in the first hidden layer. Since

there is no connection between neurons within a single layer, we are allowed to calculate these in

parallel. The outcomes of this max. activation are the upper bounds for those x variables. Now we

do the same for all skj with k = 1, this gives us the upper bounds for those s variables of the first

hidden layer. Next we add both the upper bounds for xkj and skj to the model and repeat those step

for the next layer. Repeat this procedure K − 1 times, such that you have created, layer by layer,

upper bounds for all hidden layers and the output layer. Note that is procedure is possible since

the activation of a neuron is only dependent on its predecessors and there is also no connection
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between the neurons within a single layer.

Since this pre-processing phase can be time consuming in bigger models, we introduce a time

limit of 1.0 second on the bound of each variable. This way the bounds will be less tight, which

most likely results in longer computation times for the 0-1 MILP, but the pre-processing time

is acceptable. The importance of these bounds will be investigated while calculating adversarial

examples, on which we elaborate later on in Section 3.4. We will compare the differences between

the model with or without exact bounds and between the the exact and weaker bounds. Since the

bounds will tighten the formulation, feasible solutions are expected to be found earlier and faster

within the Branch and Bound procedure, which shall lead to better computation times.

3.3 Feature visualization

The first application of our 0-1 MILP is feature visualization. Since neural networks are often

considered to be black boxes, feature visualization can be feasible to get more insight in what a

neural network is or does and what the meaning of a certain neuron is. Since we use the MNIST

data set of handwritten digits, hidden nodes may represent a part of a digit, such as a horizontal

line in a certain section of the image. Besides neurons in hidden layers, also neurons in the output

layer can be viewed. By maximizing the activity of a neuron, we generate input that would activate

this neuron as much as possible and then investigate whether or not we can identify a pattern.

3.4 Adversarial examples

Now we will discuss adversarial examples and how they are generated by the 0-1 MILP. This

application is the core of this research. An example of an adversarial example can be found in

Figure 2. Figure 2a is a five that is correctly classified, while in Figure 2b only certain pixels have

changed, the DNN classifies this image as a zero. Next, we will explain how we adjust and utilize

the 0-1 MILP to produce such examples.
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(a) Correctly classified 5 by DNN1 (b) Adversarial example, classified as an 0 by DNN1

Figure 2: Example of adversarial examples

Given a set of correctly classified digits d, we try to modify these pictures as little as possible

such that they will be classified wrongly. To do so, we modify each picture in order to make

sure that the output will become d̃ = d + 5 mod 10. To make sure the activation of the wrong

classification is at least 20% higher than the activation of all other nodes we add the following

equations to our 0-1 MILP:

xk
d̃
≥ 1.2xkj , j ∈ {0, ..., 9} \ {d̃} (4)

In order to minimize the number of pixels changed, we define distance variable dj which must

satisfy the following constraints, where x̃0
j represents the pixels of the adversarial example and x0

j

the pixels from the original picture:

−dj ≤ x̃0
j − x0

j ≤ dj , dj ≥ 0, j = 1, ..., n0 (5)

Next, we introduce a new objective function that minimizes the L1-norm distance between the

original picture and the newly created adversarial example. This new objective becomes:
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min

n0∑
j=1

dj (6)

Finally, we consider the case were pixels can not be changed by more than 0.2 (on a scale from

0 to 1). This can easily be done by adding the restriction dj ≤ 0.2 for j = 1, ..., n0 to the 0-1 MILP.

We use the calculation times and the number of nodes in the Branch and Bound tree of the

adversarial examples to investigate the importance of the bounds of our 0-1 MILP. While producing

those adversarial examples, we set a time limit of 5 minutes on all runs. Furthermore, we will check

the performance when we use weaker bounds on our model. Finally, we investigate the case where

we use a 1% optimality gap as a stopping criteria for our 0-1 MILP. This way we ensure to have

solutions within 1% range of optimality, so that the quality of the solutions does not suffer a lot,

but hopefully the computation time decreases.

3.5 Improving the DNN using adversarial examples

In this section we will use the adversarial examples to try to improve our DNN. Using the previously

described methods to create adversarial examples, we now produce 4 sets of adversarial examples.

These sets have a size of 5 up to 20 percent of the size of the original data set. In our case this means

we create sets of 3000, 6000, 9000 and 12000 adversarial examples. After doing so, we will add them

to the original data set on which the DNN was trained, with the correct output. Now will we train

a new network based on the extended data set. Since weak spots are addressed by the adversarial

examples, we expect the new DNN to be more robust. The robustness will be measured by the

L1-distance norm to create new adversarial examples using the new DNN. So after we trained our

new DNNs with extended data sets, again with an accuracy higher than 90%, we let them produce

100 adversarial example each to calculate the average distance. Due to computational reasons, this

is examined with the DNN1 model.
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4 Results

4.1 Feature visualisation

After visualizing several neurons in our networks no visual patterns could be found. Two examples

of those features can be found in Figure 3. These examples show that visualizing the hidden nodes

does not provide us the help we searched for in understanding and interpreting DNNs.

(a) Hidden neuron in third layer of DDN1 (b) Hidden neuron in third layer of DDN4

Figure 3: Two examples of feature visualisation

4.2 Adversarial examples

Figure 4 shows us ten adversarial examples made by the 0-1 MILP based on DNN3. As can be

seen, in some cases, for example in Figures 4b and 4j, only a few pixels need to be changed to

trick the DNN. Where in other cases such as in Figures 4d and 4f, clearly more pixels need to

be modified in order to create an adversarial example. Overall the 0-1 MILP is very capable of

producing adversarial examples, but the amount of pixels that needs to be changed seems somewhat

case dependent.

In Figure 5 the adversarial examples are presented, where eacht pixel could only be modified

by 0.2 (on a scale from 0 to 1, where 0 corresponds with a black pixel and 1 with a white pixel).

The main difference between Figure 4 and Figure 5 is clearly the fact that in the latter, many more
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pixels need to be modified, which expected since each pixel was only allowed to be less modified.

To further clarify this difference, we can view Figure 6. In this figure the pixels that are modified

are shown on. The upper four pictures represent the pixel changes when there are no limitations to

the modification of each pixel and the bottom four pictures represent the pixel changes for the same

images where each pixel is only allowed to change by 0.2. To improve readability of the bottom four

pictures, the pixel changes are rescaled such that if a pixel changes by the maximum of 0.2, it is a

black pixel. Figure 6 clearly illustrates that more pixels need to change when adding a restriction

on the allowed change per pixel.
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(a) Classified as 5 (b) Classified as 6

(c) Classified as 7 (d) Classified as 8

(e) Classified as 9 (f) Classified as 0

(g) Classified as 1 (h) Classified as 2

(i) Classified as 3 (j) Classified as 4

Figure 4: Adversarial examples from DNN3
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(a) Classified as 5 (b) Classified as 6

(c) Classified as 7 (d) Classified as 8

(e) Classified as 9 (f) Classified as 0

(g) Classified as 1 (h) Classified as 2

(i) Classified as 3 (j) Classified as 4

Figure 5: Adversarial examples from DNN3 with dj ≤ 0.2
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(a) Classified as 5 (b) Classified as 6

(c) Classified as 7 (d) Classified as 8

(e) Classified as 5 (f) Classified as 6

(g) Classified as 7 (h) Classified as 8

Figure 6: Scaled pixel changes without (a-d) and with dj ≤ 0.2 (e-h)
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4.3 Importance of bounds

The results of the DNNs producing adversarial examples with and without exact bounds can be

found in Table 2. We look at the percentage of solved cases (%solved), the average gap to optimality

(%gap), the average number of Nodes in the Branch and Bound tree en the average Time in seconds

needed to calculate the adversarial examples. The importance of bounds can be seen in all models.

The number of nodes and the computing time of the examples clearly shrink.

Table 2: Results on DNN performances with and without exact bounds with 5 minute time limit

Basic Model Improved Model

%solved %gap Nodes Time (s) %solved %gap Nodes Time (s)

DNN1 100 0.0 228 0.3 100 0.0 6 0.3

DNN2 100 0.0 30211 20.8 100 0.0 1214 0.9

DNN3 97 0.5 153144 94.8 100 0.0 16961 10.2

DNN4 69 11.2 413533 182.4 100 0.0 72046 39.2

DNN5 0 87.2 405668 294.1 45 18.5 567199 75.0

In Table 3 the time of pre-processing (t.pre.) is given for all models, this is the time to calculate

the bounds. We see that the weak bounds clearly are faster to determine, especially when the

models become more comprehensive. In all cases the weaker bounds perform quite good, but in

DNN5 we see that exact bounds prove their value, since including those to the model raises the

percentage of solved cases by 16 percentage points.
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Table 3: Results of weak bounds compared to exact bounds, both with 5 minute time limit

Improved model

Exact bounds Weaker bounds

t.pre. (s) %sol. %gap Nodes Time (s) t.pre. (s) %sol. %gap Nodes Time (s)

DNN1 30 100 0.0 6 0.3 30 100 0.0 3 0.3

DNN2 169 100 0.0 1214 0.9 106 100 0.0 1274 0.9

DNN3 765 100 0.0 16961 10.2 91 100 0.0 22755 13.7

DNN4 1845 100 0.0 72046 39.2 92 100 0.0 85107 35.8

DNN5 10096 45 18.5 567199 75.0 154 29 26.3 561593 257.4

In Table 4 the results of the DNN performances in creating adversarial examples using a 1%

optimality gap can be found. The %sol. column is in this table replaced by the number of times

the time limit is reached (#timlim), since we do not actually solve the instances when using gaps.

Once more, the importance of bounds is proven by this table, both the number of times the time

limit is reached as well as the computation time support this. Furthermore if we compare, we can

notice some minor differences between the performances when we solve to optimality or with a 1%

gap, but only one big difference stands out. In DDN5, 33 more cases of the problem were solved

within a 1% gap than when solving to optimality. Hence, gaps might be helpful for large instances.
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Table 4: DNN performances with 1% gap on optimal solution with 5 minute time limit, weaker

bounds are used on DNN4 and DNN5

Basic Model Improved (weaker bounds)

#timlim Time (s) Nodes %gap #timlim Time (s) Nodes %gap

DNN1 0 0.3 228 0.1 0 0.3 6 0.0

DNN2 0 20.0 30311 0.9 0 0.9 1208 0.6

DNN3 0 55.5 155108 1.3 0 10.6 17326 0.8

DNN4 30 173.2 426505 10.7 0 35.2 83481 0.9

DNN5 100 296.3 268495 90.8 22 269.8 411978 31.0

4.4 Improving the DNN using adversarial examples

In Table 5 the results of adding adversarial examples to DNN1 can be found. No significant

differences or trends can be found by adding adversarial examples to the data set. This might be

the result of using the most simple DNN we have, namely DNN1. The fact that all cases with

added adversarial examples seem to slightly perform worse concerning robustness than the original

model might suggest that the added adversarial examples mainly focus on the same limited set of

pixels. If this is truly the case, adding adversarial examples repeatingly might solve for this issue.

Table 5: Results of adding adversarial examples to the data set on the DNN-norm distance

Original dataset Size added

5% 10% 15% 20%

Mean(distance) 6.11513645 5.067735 4.706737 5.667457 4.477385

St.Dev(distance) 3.758042328 3.365881 1.771677 3.097223 2.055303
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5 Conclusion

In this paper we investigated a 0-1 MILP model based on DNNs. We have seen that for smaller

DNNs these MILPs can be solved to optimality, but computational problems occur when larger

networks are considered. Even though the importance of adding bounds to the 0-1 MILP is undis-

puted, bounds can not always help out with computational limit in bigger networks. Furthermore,

we noticed that feature visualisation is not really helpful in our case, perhaps in other data sets or

in larger models a better pattern can be recognized.

Creating adversarial examples with the 0-1 MILP performs well for smaller networks but has

some computational difficulties with larger instances. The adversarial examples can be useful to

point out weaknesses of the DNN, but adding them to a data set to create a new network did not

improve the robustness of the network. This might be because of over fitting on those models or

might possibly work with bigger models. Also adding and retraining iteratively could be considered,

as this might address different important pixels each iteration.

Further research might also address the computational problems that occur by using other bigger

networks. Furthermore, since retraining was not that effective on the robustness of our DNNs, using

adversarial examples where pixels can only be changed with a certain percentage gives better results,

since it is likely that more pixels will have to change in that case. Experimenting with different

gap sizes for calculating bounds as well for solving bigger models might be very insightful since

computational issues still seems to be the greatest challenge for the 0-1 MILP.
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A Appendix

A.1 Code explanation

Writing this thesis, 5 programming files are used. First there are two python files, ‘create dnn.py’ is

used to load the MNIST data set, create the DNN, export the weights and biases and export a list

of correctly classified pictures that can be used later on for generating adversarial examples. This

file also contains a method which is used later on to repeat the process, but then with the extended

data set. The second python file is ‘plot mnist from cplex.py’. This file is used to plot neurons

and adversarial examples after the 0-1 MILP returns a list of pixels. The three java programs are

very similar and all contain the 0-1 MILP solver but used for different purposes, to prevent an

overload of parameters each time we use the 0-1 MILP differently, 3 copies were made. First of

all, ‘MILP.java’ is used to calculate the bounds per layer for either the x or s variables, and export

those. Next, ‘MILPadvex.java’ is used to solve the model for a hundred adversarial examples and

export the time, gap, and number of nodes. ‘MILPadvexprinter’ is used to export a large set of

adversarial examples, used to retrain the model.
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