
Erasmus Universiteit Rotterdam

Bachelor Thesis Project

Traczilla: Dynamic Workflow Management

“Using Software Configuration Management Tools, to
manage the dynamic behaviour of business processes.”

Author:
Shawn Mclaren

Supervisor:
Emiel Caron

Co-reader:
Flavius Frasincar

Economie & Informatica
Monday 31st August, 2009



Abstract

Today organisations are facing growing pressures to be able to respond quickly to change.
With the emergence of a global recession the need for agility has never been more present.
As businesses continue to become more distributed and face-to-face contact becomes less
frequent there has arisen a need for robust work flow tools that can handle the demands
of today’s dynamic businesses. It is also evident that nowadays businesses often rely on
communication tools such as email to drive work flow, and there is much research which
presents the drawbacks and limitations of heavy reliance on email. The aim of this re-
search is to utilise the lessons learnt from the field of Software Configuration Management
to support the Business Process Management field. The major objective for this thesis is to
redesign current Issue Tracking Tools (predominantly used in Software Configuration Man-
agement) into a new workflow system known as Traczilla, which is capable of supporting
more generic and dynamic business processes.

i



Contents

I Introduction 1

1 Problem Definition 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Research Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II Theoretical Background 9

2 Business Process Management 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Workflow Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 BPM Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Evaluation of BPM Technology . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Software Configuration Management 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Traditional SCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Developer-oriented SCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Agile Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Bridging SCM to BPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III Design 33

4 Traczilla Design 34
4.1 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 User Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ii



4.3 Database Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Backend Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Requirements Specification 43
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Non-functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 58

IV Analysis 59

6 Traczilla Analysis 60
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Plugin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4 WorkflowEditor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

V Summary 75

7 Conclusion 76
7.1 Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Implications of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

VI Appendix 81

A BPM Semantics 82
A.1 Business Process Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2 Evolution of Workflow Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B SCM Tools 87
B.1 Bugzilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.2 Trac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
B.3 JIRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

C Traczilla Database Schema 97

iii



Part I

Introduction

1



Chapter 1

Problem Definition

1.1 Introduction

Software Configuration Management (SCM) has long been a significant area of research
for developers. There are numerous challenges that software developers face in handling:
feature requests, change requests, bug requests, versioning issues, and prioritisation of said
issues. These challenges recently lead to the emergence of the ‘Agile Manifesto’ [13]. This
Agile movement touted that “facilitating change is more effective than attempting to pre-
vent it”. From this, a new methodology for developing software was born. This agile
methodology was used to great affect in promoting a configuration management process
that encourages frequent inspection and adaptation, a leadership philosophy that encour-
ages teamwork, self-organization and accountability, a set of engineering best practices that
allow for rapid delivery of high-quality software, and a business approach that aligns devel-
opment with customer needs and company goals. In addition, the emergence of this agile
methodology resulted in the birth of a new set of Issue Tracking Tools that are designed
to help Software companies keep track of and also prioritise their work1. These tools have
proved to be most effective in streamlining the development of software and raising the
overall quality of software.

Business Process Management (BPM) is another field which has garnered a significant
growth in research in recent years. Organisations are realising the value in optimising their
business processes. BPM promotes innovation, flexibility and integration with technology.
As shown in Figure 1.1 below, one of the key building blocks of BPM is the Workflow
Tool - also known as the Workflow Management System (WFMS). A WfMS is integral
in stream-lining the business operations. A well designed WfMS is capable of driving the
entire process from design to enactment and thereafter management or analysis. However,
one of the drawbacks of using a Traditional WfMS is that they are generally limited in
their ability to support “dynamic business processes”. Dynamic business processes are best
characterised by their un-structured, ad hoc nature, and often require human collaboration.

1E.g. Most notably, Trac (http://trac.edgewall.org/), Jira (http://www.atlassian.com/software/jira/)
and Bugzilla (http://www.bugzilla.org/)

2



CHAPTER 1. PROBLEM DEFINITION 3

This problem has lead organisations to utilise a variety of workflow tools to suit their needs.
Hence, despite widespread use of WfMS’s, there are a wide range of businesses that have
preferred to stick with more traditional workflow tools such as email. The motivation
behind this is that many business processes are executed on an as needed or ad-hoc basis.
Thus, flexible workflow tools such as email are ideally suited for this purpose. However
there is much research which presents the drawbacks and limitations of heavy reliance on
email [41, 19, 11].

Figure 1.1: Business Process Management Suite, NIH (2007).

For the purposes of this paper, the definition and purpose of Traczilla is to build a
workflow tool, that is an application that manages the process of passing information,
documents and tasks from one employee (or system) to another. Looking at SCM we can
see that Issue Tracking tools are in essence ‘lightweight’ workflow tools that can integrate,
distribute and prioritise work (e.g. software bugs and issues). Helpdesks and Call Cen-
ters have been able to utilise similar Ticketing systems in order to handle the process of
creating, updating, and resolving reported customer issues2. This adaptation immediately
shows the broader applicability of theses systems. The major drawback that has prevented
total adoption of these systems is the radical change it represents to customary work proce-
dures. As many organisations grow accustomed to their way of doing business, it becomes
difficult to change. For example, email is a workflow tool used by many organisations,

2E.g. OmniNet’s OmniTracker Software (http://www.omnitracker.nl/) or Target Software’s Internal
Helpdesk (http://www.targethelpdesk.com)



CHAPTER 1. PROBLEM DEFINITION 4

and the incentives in drastically changing the way these businesses operate are simply not
enough. An additional feature that would make these Issue Tracking tools more suitable
would be to add Collaboration components to allow knowledge workers to interact and
communicate whilst executing these dynamic business processes. Thus, businesses with
dynamic processes could reap the benefits of traditional WfMS’s by collecting structured
data on each issue or ticket raised. The main challenge involves creating a tool that is not
too heavy to slow down the process, whilst still being robust and lightweight enough to
trace information on the entire process.

1.2 Research Relevance

1.2.1 Relevance to business

Today organisations are facing growing pressures to be able to respond quickly to change.
With the emergence of a global recession the need for agility has never been more present.
Many businesses are seeing rapid shifts in supply and demand, and this places further
pressure on adjusting business processes. This demand for agility has been a necessity for
quite some time. Organisations that find themselves unable to respond to change are left
behind by the competition. The result is a need for robust Business Process Management
Tools that can handle the demands of today’s dynamic businesses. The emerging need
for more and more businesses to be agile is not dissimilar from the events that sparked
the Agile Manifesto. This represents an opportunity to explore the possibility of adapting
Issue Tracking tools used in SCM to support more generic and dynamic business processes.

1.2.2 Relevance to science

The attempt to support dynamic business processes with SCM tools represents a venture
into the unknown, and presents a difficult prospect that has not been effectively solved by
modern-day Workflow Management Systems. While these systems have been a heavy re-
search area for many businesses in recent years [37, 14, 3], there is still a prevailing problem,
that is their inability to deal with the high volume of exceptions that arise in workflows
within many of todays dynamic businesses. For example, many businesses today allocate
resources based on incoming work/projects, which often means personnel need to be re-
allocated and resources redistributed (creating exceptions for modeled workflow). Thus,
organisations using these very dynamic business models often find it difficult to accurately
model all workflow possibilities and create an effective WfMS. Hence, a significant scientific
contribution resulting from this thesis will illustrate how SCM technology can be utilised
in order to manage these dynamic business processes.



CHAPTER 1. PROBLEM DEFINITION 5

1.3 Research Objective

The aim of this thesis will be to build a workflow tool, that is capable of managing the
process of passing information, documents and tasks from one employee (or system) to
another. Such a solution would provide organisations with a means to manage dynamic
business processes where workflows cannot be cost effectively modeled accurately. Of course
it should be noted that the immediate adaptation of Issue Tracking tools to business does
not represent a new frontier in the research. As stated above, attempts have been made
in the past which seek to directly utilise Issue Tracking tools within businesses, but the
application of such attempts has been limited to very static businesses such as help desks
and call centers. Therefore, a major aim of this thesis will seek to broaden the market
model for these Issue Tracking tools by investigating the area of built-in collaboration tools.

Research Objective: Develop a novel workflow management tool capable of
supporting dynamic business processes, by adapting tools and techniques from
software configuration management.

In order to accomplish the research objective, the following research questions shall be
answered.

RQ I. Why is current BPM Technology inadequate for managing dynamic business pro-
cesses?

1. What characteristics embody dynamic business processes?

2. What problems exist when handling dynamic workflow in current BPM Tools?

3. What are the limitations regarding Email communication?

4. What makes SCM Tools suitable for managing dynamic business processes?

RQ II. What is the design criteria for a system supporting dynamic business processes?

1. What functionality is available within current SCM Tools?

2. What additional functionality is needed to manage dynamic business processes?

3. What are the other design decisions regarding UI design, Database design and
Back-end architecture?

RQ III. What are the functional and non-functional requirements for the Traczilla Sys-
tem?

1. What are the typical usage scenarios of Traczilla?

2. How does Traczilla accomplish the task of managing dynamic business pro-
cesses?



CHAPTER 1. PROBLEM DEFINITION 6

1.4 Research Methodology

1.4.1 Research

As stated the main aim in this thesis project is to design and build a novel Workflow Tool,
which is robust to the exceptions generated by modern day dynamic business processes. In
order to build an effective and unique solution, the initial research will involve synthesising
the reputable research in the areas of SCM and BPM, thereby exposing any similarities or
differences between the two fields. After evaluating the current landscape of literature in
the BPM field, a synthesis of the main issues, concerns and open research questions will
be used to narrow the design focus, and to establish those key SCM components that can
be utilised within the BPM field.

1.4.2 Design

Secondly, exploration and testing will be performed on a wide range of Off the Shelf
(OTS) Issue Tracking Tools. An examination of the various strengths and weaknesses
will be used to gauge which tool is the most suitable or the most adaptable for business
purposes. Ultimately one tool will be chosen, adapted and extended for the purposes of
this Thesis. From here, iterative modeling activities will be used to design-build-test each
SCM component needed for the final system. Part of the design shall involve designing a
scalable system. Therefore allowing smaller businesses to adopt Traczilla in place of current
email driven work flow, and also allowing larger organisations to implement Traczilla to
handle anomalies/exceptions not covered by their traditional WfMS. All code will be made
available under an open source BSD license, to allow the community of open source software
developers to extend and improve Traczilla. All modeling will be drawn in UML notation.

1.4.3 Develop

Finally, a hybrid development approach will be adopted for the purposes of developing
Traczilla. A core focus will be on Agile principles to allow better adaptation to change.
This agile approach will involve working iteratively through each phase of development and
research. Testing will be done side-by-side development, this process will incorporate the
idea of a continuous process, such that: code is developed in small releases, continuously
integrated, and re-factored when necessary. However traditional procedures will also be
adopted in that there will be a mandate for the production of a requirements document
before code is written. This is to ensure that the design and scope of the system is set,
before writing any code. This process will also incorporate a Review stage into each phase
of development, such that bugs in the software can be removed earlier in the development
process and thereby minimise maintenance work and eliminate big-bang testing processes
from the end of development.



CHAPTER 1. PROBLEM DEFINITION 7

1.5 Research Scope

The description above gives a broad overview of the thesis. Obviously there is quite a bit
of room for scope creep. This section will explain what the main focus of this research
will be, and what will be considered outside of the research scope. The main research area
will surround BPM with a focus on WfMS’s. Background information on SCM and Agile
methods will also be explored and explained. Additionally, research regarding CSCW
(Computer Supported Collaborative Workware) and Email will be presented, as these
elements offer key relevance for businesses.

On the development side, the workflow tool to be developed is intended to be a complete
WFM solution. Thus, Traczilla will be a robust, light weight and stand alone support tool
for businesses - allowing execution of business processes without getting in the way. The
Collaboration tools used will be quite rudimentary most likely. The main idea is to explore
the possibilities of what kind of communication is need by such a tool. As such it may be
that not all Communication components will go into development.

After development is complete, an analysis of Traczilla will be performed in order to
evaluate how Traczilla compares to previous solutions. However, due to the limited time
available, and the lack of reliable real world data to test on it is unlikely that this analysis
phase will be completely robust. A complete set of testing techniques will be performed
in order to verify the correctness of the program. However, validating its suitability for
business purposes will be left for a later study.

1.6 Research Outline

The thesis is structured in five parts and seven chapters, the first chapter and part being
this Introduction and Problem Definition. In Part 2, we present Theoretical Background
information in order to illustrate the wide-ranging literature and opinions in the fields
of SCM and BPM. This part will be used to answer our first research question: “Why is
current BPM Technology inadequate for managing dynamic business processes?”. Chapter
2 will layout the conceptual framework for BPM. Here we will establish the characteristics
that embody dynamic business processes. In addition, a survey of reputable, scholarly
work on BPM tools will be given in order to establish the main issues, concerns and
open research issues that exist in this field. Part of this chapter will present how many
businesses utilise email as a complete WFM solution nowadays. In particular, a focus will
be on establishing a number of the limitations of using Email, and how ineffective email is
for the purpose of workflow management. In chapter 3, a synthesis of research on Software
Configuration Management will be presented, in order to establish a conceptual framework
on how business processes behave in Software development. An elaboration of research in
the field of Agile Methods will also be presented for the purpose of detailing the factors
that lead to this movement, which will be later compared with the factors pushing many
of todays businesses towards the need for agility.

The Design of Traczilla will be illustrated in part 3, where we will answer: “What is the



CHAPTER 1. PROBLEM DEFINITION 8

design criteria for a system supporting dynamic business processes?”. The design firstly
aims to examine current SCM software and explore the functionality currently available.
A summary of the main advantages and disadvantages we perceive will be shown in order
to understand how these tools can be best adapted in order to support dynamic business
processes. From here we will present the requirements that have been established for
Traczilla, which will follow partly from the testing phase, and the conclusions from the
literature review. Finally, a complete schematic design will be shown to visualise the
database schema, UML modeling will be used to characterise the different methods and
situations for which Traczilla might be used. For completeness, the back-end architecture
will also be shown.

In part 4, we perform the analysis of Traczilla. Here we will answer the research ques-
tion: “How does Traczilla accomplish the task of managing dynamic business processes?”.
In this part we will test Traczilla in order to firstly explore the underlying mechanisms
of Traczilla, and to extrapolate any advantages and disadvantages compared to current
workflow tools used in all fields. This will include system testing, and unit testing each
newly developed component. Then we will closely examine one particular component in
order to illustrate the key benefits we perceive for Traczilla. In part 5, the final part, we
will summarise our findings and results. The implications of the research for both business
and science will be given. Lastly, further research avenues will be highlighted.



Part II

Theoretical Background

9



Chapter 2

Business Process Management

This chapter illustrates the broad scope of Business Process Management and summarises
the current landscape of applications available in the BPM front. We firstly define typical
BPM terminology, and then highlight the essential goals of BPM. Thereafter, we narrow
the scope and discuss a number of key workflow concepts. Following which, we present a
series of workflow classifications. Finally, the current BPM technology will be introduced,
along with the associated limitations in this technology.

2.1 Introduction

Business Process Management (BPM) is a “hot topic” within a number of modern-day
research fields. BPM addresses the topic of process support from a broad perspective
by incorporating different types of analysis (namely: simulation, verification, and process
mining). Current research into BPM is divided between two communities: business ad-
ministration, and computer science [39]. Business administration tends to focus on the
ideas of increasing customer satisfaction, reducing costs, and increasing the efficiency of
operations. Within the computer science community there are two factions. There are the
researchers who have investigated formal methods for structuring and modeling real world
business processes. Then there is the software community who have focused on providing
robust and scalable software systems. We follow the latter research focus as we seek to
implement a robust and scalable workflow tool based on SCM technology. However, within
this chapter, we highlight the main contributions towards the entire BPM field.

2.1.1 Definitions

The basic concepts of workflow management can be best introduced using the definitions
provided by the Reference Model of the Workflow Management Coalition, WfMC [20]. In
spite of the efforts of the Workflow Management Coalition, the term workflow is still very
fuzzy and used in many different contexts. Moreover, it is generally associated with the
concept of business processes, which is also not very precise.

10



CHAPTER 2. BUSINESS PROCESS MANAGEMENT 11

According to the WfMC, workflow is defined as “the automation of a business process,
in whole or part” [20]. However, according to Davenport [9], a workflow is merely “a
representation of the business process in a machine readable format”. Where, a business
process is “a set of one or more linked procedures or activities which collectively realise a
business goal” [20].

A workflow management system (WfMS) is “a system that defines, creates and manages
the execution of workflows through the use of software, running on one or more workflow
engines, which is able to interpret the process definition, interact with workflow participants
and, where required, invoke the use of IT tools and applications” [20].

Business Process Management (BPM) is a general term describing a set of services
and tools that provide for explicit process: analysis, definition, execution, monitoring and
administration. As such, BPM includes methods, techniques, and tools to support the
design, enactment, management, and analysis of operational business processes. It can be
considered as an extension of classical WfMSs and approaches [37].

Another important definition is that of a knowledge worker, which is a process partici-
pant that uses software systems to perform activities required to fulfil a business process.
Equipped with detailed knowledge of the application domain, they perform the necessary
activities which can not be automated [39].

2.1.2 Goals

BPM tools provide business users with the ability to model their business processes, im-
plement and execute those models, and refine the models based on as-executed data. As
a result, BPM tools are designed to provide transparency into business processes, and to
centralise business process models in order to reveal execution metrics.

Thus, the most important goal of BPM is a better understanding of the operations
a company performs and their relationships [21]. However, presently, business process
flexibility is a strong driving force behind BPM. Flexibility is the ability to adapt to
different circumstances. Where, “different circumstances” may be induced by changes in
the market environment of the company [39].

2.1.3 Business Process Lifecycle

The BPM lifecycle concerns aligning processes with the organization’s strategic goals, de-
signing and implementing process architectures, establishing process measurement systems,
and educating and organizing managers so that they can manage processes effectively [42].

The business process lifecycle starts with a definition of organizational and process
goals, and an assessment of environmental factors and constraints that have an effect
on the business processes of an organization. The iterative activities which constitute the
business process lifecycle can be grouped into five categories: design, modeling, enactment,
monitoring, and evaluation (refer to appendix A.1 for further details).



CHAPTER 2. BUSINESS PROCESS MANAGEMENT 12

2.2 Workflow Classifications

In this section, we explore the different workflow classifications in the literature in order
to determine the characteristics that define a “dynamic business process”. The different
workflow classifications will be discussed from a classical, and control-oriented view point.
In order to demystify the confusion surrounding workflow terminology, we firstly present a
widely accepted workflow classification which distinguishes between administrative, ad hoc,
collaborative, and production workflows [28]. The basic parameters of this classification
are task complexity and task structure as shown in Figure 2.1 below.

Figure 2.1: Classical Workflow Taxonomy, [3].

2.2.1 Classical Workflow Taxonomy

In general, administrative workflows refer to bureaucratic processes where the steps to
follow are well established and there is a set of rules known by everyone involved [3].
Examples include: sending a report, authorising a request, or forwarding a work assignment
- such workflows activities can be automated quite easily using document centered systems.

Ad hoc workflows are processes where the procedure is not completely defined in advance
[14]. Ad hoc workflows typically require a rapid workflow solution, e.g., supporting the
process of putting together the program of a professional conference. Ad Hoc workflows
often have less repeatability, because some of the parameters needed to define the process
are only known at run-time. This dynamic character causes many difficulties for traditional
WfMSs in modeling and execution.

The third class of workflows, collaborative, is mainly characterized by the number of
participants involved and the interactions between them. Unlike other types of workflows,
which are based on the premise that there is always forward progress, a collaborative
workflow may involve several iterations over the same step until some form of agreement



CHAPTER 2. BUSINESS PROCESS MANAGEMENT 13

has been reached. Moreover, collaborative workflows tend to be very dynamic in the sense
that they are defined as they progress. Since most of the coordination is done by humans,
the workflow system is limited to the role of providing a good interface to communicate
and record interactions, usually provided by e-mail [3].

Production workflows involve repetitive and predictable business processes, such as loan
applications or insurance claims. Production workflows are highly structured processes
with almost no variation. Traditional WfMS functionality is well suited to supporting
production workflows [3].

2.2.2 Control-based Workflow Classification

Another characterization of workflow can be done based on collaboration and control - along
a continuum from human-oriented to system-oriented [14]. On the one extreme, human-
oriented workflow involves supporting human collaboration in order to perform the tasks of
the business process. The requirements for WfMSs in this environment are to support the
coordination and collaboration of humans. On the other extreme, system-oriented workflow
involves automating software tasks with little or no human intervention. In addition to
being highly automated, system-oriented workflows are very process-oriented.

2.2.3 Conclusion

In conclusion, from the literature above we find the dimensions along which workflow can
be described, are as follows:

� repetitiveness and predictability of workflows and tasks;

� initiation and control of workflow, e.g., from human-controlled to automated;

� collaboration required between workflow participants;

� structured nature of the business process and associated activities.

This leads us to conclude that the characteristics that define a “dynamic business process”
are: relatively in-frequent repetition, involving large amounts of human collaboration, and
a generally unstructured nature.

2.3 BPM Technology

There is a lot of old, familiar technology that has contributed to the development of modern
BPM systems. Many products in the IT arena support workflow functionality, including
imaging systems, document management, electronic mail, groupware applications, legacy
systems, and Business Process Reengineering (BPR) tools (see appendix A.2 for a more
detailed overview).



CHAPTER 2. BUSINESS PROCESS MANAGEMENT 14

In this section, we examine the current blend of workflow tools available to end-users and
managers. These can be divided into four categories: Computer Supported Collaborative
Workware (CSCW), Ad Hoc WfMS, Case Handling System, and Production WfMS. Each
of these are shown in Figure 2.2 and discussed in detail below.

Figure 2.2: Four categories of Workflow Systems, [32].

2.3.1 CSCW

Computer Supported Collaborative Workware (CSCW), has received a significant amount
of interest over the past decade. CSCW attempts to capture the inherent complexities of
collaboration between people. It encompasses a broad listing of synchronous and asyn-
chronous technologies including email, shared whiteboards, meeting schedulers, collabora-
tive desktops, video conferencing, and other shared electronic media (as shown in Figure
2.3). In this type of system, users are allowed to perform their work in an ‘ad hoc’ way
where solutions and goals are accomplished with whatever tools and data are immediately
available [14]. The most successful has been the original technology of electronic mail.

As such, email has become an integral tool for many of todays organisations, and
provides powerful facilities for distributing information between individuals within an or-
ganisation or between organisations. As a result, many businesses have now turned to
“mail-centric” workflow technology, to handle ad hoc and collaborative workflow. This was
postulated to be highly successful in its early days, because in these types of workflows,
the WfMS is limited to providing a good interface to communicate and record interactions,
making email an appropriate solution [3]. Especially when most of the coordination is done
by humans . However, as we discuss in section 2.4.2 there are numerous undesirable side
effects for utilising email in this unintended manner.



CHAPTER 2. BUSINESS PROCESS MANAGEMENT 15

Figure 2.3: CSCW Matrix, adapted from [4].

2.3.2 Production WfMS

On the other end of the spectrum, production or traditional workflow management systems
control the execution of business processes according to predefined (explicitly structured)
workflow models. This approach is well suited to supporting static business processes
that can be modelled once and thereafter executed in a routine fashion. However, in
highly dynamic environments, there is a need to respond to new market requirements, not
anticipated at build time, leading to new requirements regarding the flexibility of WfMSs.

It should still be noted that dynamic adaptations have been developed for traditional
WfMSs. Exception handling was one such technique developed for the purpose of handling
ad hoc deviations occurring at run time [37, 17]. Exceptions cover cases that deviate from
the standard process definition. For example, an exception may occur when prerequisites
for authorising a task are not met, or when there is incomplete or erroneous information in
the task inputs/outputs [31]. However, since dynamic adaptability was not traditionally
a topic in workflow management, the respective functionality currently available does not
adequately support dynamic workflows [39].

2.3.3 Ad hoc Workflow Systems

Ad hoc WfMSs are new emergents in the workflow arena. They extend traditional WfMS
functionality by allowing for dynamic changes of a single process instance. Such that, at
any time the process definition for a case is structured, but the model can be changed while
the case is being handled [32]. In Figure 2.2, this is referred to as ad hoc structured.

Ad hoc workflow systems allow for the on-the-fly creation and modification of process
definitions. This functionality permits a workflow process to be instantiated without the
complete process definition. Therefore, the traditional problems encountered when a pro-



CHAPTER 2. BUSINESS PROCESS MANAGEMENT 16

cess definition changes can be avoided. Newer systems1 also support workflow design by
discovery such that, the routing of any completed process instance can be used to cre-
ate a new template. This way, actual workflow executions can be used to create process
definitions [29].

2.3.4 Case Handling Systems

On the Dutch workflow market, a new and interesting workflow system named case han-
dling is emerging. The goal of a case handling system (CHS) is to overcome the limitations
of traditional WfMSs. CHSs support implicitly structured processes. Moreover, they allow
a case to move automatically through a subsequent state if all mandatory data elements
are present [38].

The intention of a case handling system is to empower human actors in two ways.
Firstly, it aims to give knowledge workers insight into completed and future activities. This
limits the “context tunneling” effect, which is encountered by actors when a WfMS only
provides a knowledge worker with the work items they are required to do. Secondly, a case
handling system simplifies the handling of deviations from the regular process execution,
which traditional WfMSs do not support adequately [35].

2.4 Evaluation of BPM Technology

In this section, we evaluate each of the above mentioned workflow technologies, and discuss
some of their limitations - regarding their workflow classification applicability. Figure
2.4 illustrates the trade-off each system must make between flexibility and support, thus
limiting the effectiveness of each individual system.

2.4.1 CSCW

CSCW systems offer a lot of flexibility but hardly any support for the processes. CSCW
supports the execution of individual activities, but not the management and enactment
of processes. Thus, when it comes to the support of work processes, we can rule out this
technology. Pure CSCW systems are unaware of the processes taking place and, therefore,
cannot be expected to offer effective process support. Hence, while these technologies are
useful for overcoming communication problems over time and collaboration problems over
distance, they lack the guidance and automation mechanisms needed to perform structured
tasks [7].

1Such as InConcert (http://www.inconcertsw.com/prodinfo/welcome.htm), Ensemble and TeamWARE
(http://www.teamware.us.com/) Flow



CHAPTER 2. BUSINESS PROCESS MANAGEMENT 17

Figure 2.4: Business Process: Flexibility Vs Support, [32].

2.4.2 Email

As stated in the previous section, email is one of the most successful CSCW technologies,
and indeed internet applications yet devised. However, empirical data shows that although
email was originally designed as a communications application, it is now being used for
additional functions, that it was not designed for, such as task management and personal
archiving (information management). This usage has resulted in email overload [41].

Characteristics

Today, email has replaced the telephone as the main communication channel in the work-
place [19]. Due to individual behaviors and workplace pressures, email has migrated from
an asynchronous communication channel to a nearly synchronous communication channel.
Many email messages are a manifestation of a user’s participation in a business process.
For instance, an employee in an organization with a centralized hiring process may receive
automatically generated messages reminding them of an upcoming interview, requesting
feedback on the candidate after the interview, and notifying them of the final decision.
This has resulted in companies implementing email free holidays and employees filing for
email bankruptcy2. These 21st century practices indicate a state of frustration with email
so acute that users and organizations risk missing information [19].

While users may see this as a perfectly natural extension of the email client, the software
was designed to function as an asynchronous communication channel, not as a “habitat”
for personal information [11]. Using the email client for multiple functions has degraded
the quality of the email communication channel and the user experience [41].

2Email free holidays (or bans) limit email traffic by asking employees to avoid email during a given
time period, while email bankruptcy refers to individuals who are so overwhelmed by email that they can
not read all of their email messages.



CHAPTER 2. BUSINESS PROCESS MANAGEMENT 18

Email Overload

The main issue of using email in this fashion relates to email overload. When email overload
occurs, email users have less time to spend on each individual email. Resulting in more
emails to go through, more emails to action, and more information and tasks to manage.
This vicious cycle increases the likelihood of missing an important email. In addition, email
responses are typically less complete. Thus, the responses typically do not fully answer the
correspondents’ questions. As a result emails often have to be interpreted, increasing the
possibility of miscommunication - as illustrated in Figure 2.5.

Figure 2.5: Circular effects of email overload, [19].

Email overload also creates problems for personal information management, because
users often have cluttered inboxes containing hundreds of messages, including outstanding
tasks, partially read documents and conversational threads. In addition, research shows
that users experience major problems in generating appropriate folder labels when filing
longer term information for later retrieval, and in reconstructing these labels when they
engage in later retrieval. Furthermore, user attempts to rationalise their inboxes by filing
are often unsuccessful. Consequently, important messages often get overlooked, or “lost”
in archives [41].

2.4.3 Production WfMS

On the other end of the spectrum, production WfMSs offer a lot of process support but
can only deal with situations that have been modeled explicitly. This creates numerous



CHAPTER 2. BUSINESS PROCESS MANAGEMENT 19

challenges that remain for traditional WfMS, not least of which is the ability to deal with
change. However, as this section points out, other limitations provide quite a hindrance
also, including the lack of adequate support for knowledge workers they provide, as well
as the limited process support for unstructured, human-oriented processes.

Dealing with Change

Adaptability has become one of the major research topics in the area of workflow man-
agement. As previously mentioned, today’s workflow management systems have problems
dealing with both momentary changes and evolutionary changes. As a result, traditional
workflow management systems are not used to support dynamically changing workflow
processes; or if they are, the workflow process is supported in a rigid manner, i.e. changes
are not allowed or handled outside of the workflow management system [37].

Lack of adequate support for knowledge workers

Often the active selection of personnel by the WfMS has been deemed inadequate, for not
taking into account the skills of the user, their competences, or their organisation posi-
tioning [39]. Structured process can in some ways streamline operations, but often process
participants who have the experience and competence to decide on the required working
procedures can perform the necessary business process activities in the most efficient way
possible. For example, by skipping certain process activities the knowledge worker does
not require or executing activities concurrently.

In addition, WfMSs provide very little room for creativity from the knowledge worker.
Typical WfMS prescribe the process flow and ensure that the workflow is performed just
as described, meaning any process instance that has not been envisioned by the process
designer cannot be realised [39].

2.4.4 Ad hoc WfMS

Ad hoc WfMSs are attractive from a flexibility point of view. However, there are two
important requirements for the successful application of ad hoc WfMSs. The first require-
ment is that actors are aware of the processes they are dealing with. This means that the
processes should only be defined or modified by actors having a good overview of the whole
process. The second requirement is that actors have the ability to use advanced modeling
tools and have a good understanding of process definition techniques. It is essential that
modelers can think in terms of sequential, parallel, conditional, and iterative routing. The
two requirements often inhibit the application of this technology [37].

2.4.5 Case handling systems

Case handling systems (CHSs) aim at balancing process flexibility with data orientation
(structure) to control the execution of business processes. Case handling takes into account



CHAPTER 2. BUSINESS PROCESS MANAGEMENT 20

the active role of the knowledge worker by accepting their expertise and experience to drive
and control the case. Whereas traditional workflow technology can be quite restrictive in
this sense, by merely prescribing the activities required and their execution ordering. Thus,
case handling offers much more flexibility to knowledge workers, while still providing well
structured process support in order to maintain consistency and integrity [39].

2.4.6 Conclusion

Therefore, there is much overlap between the different workflow classifications and workflow
technologies. As such, the following hierarchical classification is provided to illustrate this
overlap:

� System workflows, typically implemented via a Traditional WfMS, incorporate:

– Production Workflows: encompassing process-based systems; and

– Administrative Workflows: encompassing document-centric systems.

� Human-oriented workflows, typically implemented via email, incorporate:

– Ad hoc Workflows: encompassing ad hoc WfMSs and CHSs; and

– Collaborative Workflows: encompassing CSCW technology.

The overlap between production workflows and system workflows, shows that these
workflows are presently the easiest for traditional WfMSs to handle - because of their
structure, automation, and repetitive nature. Secondly, the overlap between: ad hoc,
collaborative, and human-oriented workflows, has lead many businesses to rely on email
as a key workflow tool - because of their lack of structure, in-frequent repetition, and
collaborative nature. Ad hoc WfMSs and Case handling systems lie some-where in the
middle, with CHSs supporting more structure, automation, and repetition, while Ad hoc
systems tend to support more in-frequent process instances with more collaborative and
unstructured nature.

2.5 Summary

In summary, BPM is an iterative activity involving process: definition, analysis, execution,
administration, and monitoring. However, an understanding of the nature of workflow can
assist in understanding which of the business process lifecycle activities will add the most
value. Presently, BPM tools are typically used for automating, measuring and optimizing
business processes. However, as stated, the dynamic nature of todays workflows is pushing
more organisations towards flexibility, transparency and traceability.

As a result, there have been a number of recent developments leading to new BPM tech-
nology that has overcome some of these problems. Case Handling systems in particular
have overcome one of the most plaguing problems in the workflow management field - that



CHAPTER 2. BUSINESS PROCESS MANAGEMENT 21

of an inability to handle complexly structured, non-repetitive - human-oriented workflows.
Ad hoc WfMSs have also provided a step forward through the introduction of customisable
workflows, allowing improved handling of ad hoc workflows. In addition, recent develop-
ments in CSCW has lead to a number of useful tool introductions that are now better able
to handle collaborative workflows. However, a successful integration of such technologies
has not yet been achieved to allow for complete support of dynamic business processes:
i.e. ad hoc and collaborative (human-oriented, unstructured) processes. Thus, we examine
the field of Software Configuration Management in the next chapter, in the search for a
solution.



Chapter 3

Software Configuration Management

In this chapter, we present an introduction to the topic of software configuration man-
agement. As it is understood that readers may have limited knowledge about SCM and
Software Engineering in general, the content to follow provides a broad overview of SCM,
how it fits into the software development process, what its benefits are, and how it has
evolved over time. We separate and highlight the traditional aspects of SCM, which are
more aimed towards management, from the developer oriented aspects. The recent agile
software movement in the software development community is also discussed, along with
the repercussions this methodology had on SCM practices. After the background of these
concepts has been established, further analysis about how these techniques can be utilised
in BPM is illustrated in the final section.

3.1 Introduction

Software engineering is mainly concerned with the life cycle of software development. No
matter what life cycle is chosen, be it: Waterfall, Iterative, Agile, etc., change is a con-
stant feature of software development. To eliminate change is to remove the opportunities
to take advantage of lessons learned, to incorporate advanced technology, and to better
accommodate a changing environment.

Configuration Management (CM) is the discipline of controlling the evolution of com-
plex systems [34]. CM first came into existence in the U.S. defence industry [25], where
it was used to control manufacturing processes. Gradually, computers and software also
evolved to the stage, where people were constrained to find ways to control their software
development processes. Hence, SCM emerged in order to apply CM to the development
of software systems [40]. Two ways in which SCM differs from general CM are: software
is easier and faster to change than hardware, and second, SCM can (potentially) be more
automated.

22



CHAPTER 3. SOFTWARE CONFIGURATION MANAGEMENT 23

3.1.1 Definition

While there is no single definition of SCM, there are three widely disseminated views from
three different sources: the Insititute of Electrical and Electronics Engineers (IEEE), The
International Organization for Standardization (ISO), and the Software Engineering Insti-
tute (SEI). The most widely used description of the practices associated with configuration
management is found in the IEEE Standard 828-1990, Software Configuration Management
Plans [1]. It defines SCM as follows:

“Software CM is a discipline for managing the evolution of computer program
products, both during the initial stages of development and during all stages
of maintenance.”

The objective of SCM, is to ensure a systematic and traceable software development process
in which all changes are precisely managed, so that a software system is always in a well-
defined state at all times.

3.1.2 History

SCM emerged as a separate discipline in the late 1970s soon after the so called “software
crisis1” was identified. SCM was adopted in Software Engineering (SE), in order to handle
issues that were hampering SE development, like architecture, building, evolution, and
version control [12]. The 1980’s brought about the advent of tools such as SCCS (Source
Code Control System), RCS (Revision Control System), Make (Automated Build Manage-
ment), and Sablime (CM System). These tools targeted on specific functionality that is
now known as either “version control” or “build management”.

Figure 3.1: Evolution of SCM Systems.

As illustrated in Figure 3.1, the context and use in which SCM systems operate has
changed significantly. First, SCM systems were originally used by a single person (the con-
figuration manager) for managing critical software. The problem with early SCM systems
is that they “helped the configuration manager, but annoyed everyone else” [12]. After
considering the programmer as a major customer, a lot more useful tools started to emerge

1Period spanning the 1960s, 1970s, and 1980s, in which many software projects consistently ran over
budget and schedule.



CHAPTER 3. SOFTWARE CONFIGURATION MANAGEMENT 24

that actually began to help developers. This resulted in the emergence of versioning and
build support, which was typically provided by some homegrown system. Use of SCM
systems then changed to primarily supporting large-scale development and maintenance
by groups of users. This resulted in a need for workspace management, which was quickly
provided by newer, more ad-hoc SCM systems. Now, SCM systems manage the evolution
of any kind of software by many different people in many, perhaps distributed locations
utilizing many kinds of machines. This often requires explicit process support, which to-
day’s advanced, off-the-shelf SCM systems integrally provide. In fact, SCM is one of the
few successful applications of automated process support [12].

3.1.3 Purpose and Benefits

SCM is a critical element of software engineering. SCM is needed because of the increased
complexity of software systems, increased demand for software and the changing nature
of software [25]. In addition, supressed visibility during the overall system evolution can
result in a corresponding lack of management control [6]. It is also purported that SCM
can be used as a strategic weapon that will give the organization an edge over those who
are not using SCM or using it less effectively [25]. When used effectively during a product’s
whole life-cycle, SCM identifies software items to be developed, avoids chaos when changes
to software occur, provides needed information about the state of development, and assists
the audit of both the software and the SCM processes. Therefore, its purposes are to
support software development and to achieve better software quality. As it can be seen in
Figure 3.2, SCM is one of the major elements leading to better software quality.

Figure 3.2: Achieving Software Quality, [30].



CHAPTER 3. SOFTWARE CONFIGURATION MANAGEMENT 25

Practicing configuration management in a software project has many benefits, including
increased development productivity, better control over the project, better quality assur-
ance, easier handling of software complexity, reduction in errors and bugs, faster problem
identification and bug fixes, and improved customer goodwill.

3.2 Traditional SCM

In this section we discuss Traditional SCM activities. Traditional SCM is mostly about
keeping control over the project; ensuring that it progresses according to schedule and
that its delivery contains all the right parts. These activities are aimed more towards
management. As stated above, the IEEE Standard 828-1990 is the authoritative standard
on SCM, and it goes on to list specific activities associated with SCM:

“SCM activities are traditionally grouped into four functions: (1) configuration
identification, (2) configuration control, (3) status accounting, and (4) config-
uration audits and reviews.”

Figure 3.3: IEEE Traditional SCM Activities.

3.2.1 Configuration Identification

According to the IEEE standard, Identification involves: identifying, naming, and de-
scribing the documented physical and functional characteristics of the code, specifications,
design, and data elements to be controlled for the project (Paragraph 2.3.1).

A more general and applicable description of Configuration Identification is the activity
where a system is divided into uniquely identifiable components, called Configuration Items



CHAPTER 3. SOFTWARE CONFIGURATION MANAGEMENT 26

(CI), for the purpose of making them unique and accessible [30]. Examples of CI may
include: project plan, specifications, design documents, source code, test plans and test
data, executables, make files, tools and the SCM Plan.

3.2.2 Configuration Control

According to the IEEE standard, Control involves: requesting, evaluating, approving or
disapproving, and implementing changes (Paragraph 2.3.2).

Configuration Control is about handling changes in a controlled way through formal
change control procedures, including: evaluation, coordination, approval or disapproval and
implementation of changes to configuration items. A change request (CR) is a document
containing a call for an adjustment of a system. Change can occur in the form of a change
in: requirements, funding, schedule, customer expectations, or correction of an error/defect
[18]. Given that software is something which is particularly easy to change, configuration
control provides means to manage software changes in a structured, orderly and productive
manner [24].

3.2.3 Status Accounting

According to the IEEE standard, Status Accounting involves: recording and reporting the
status of project configuration items [initial approved version, status of requested changes,
implementation status of approved changes] (Paragraph 2.3.3).

The aim of Configuration Status Accounting (CSA) is to keep managers, users, devel-
opers, and other project stakeholders informed about the various configuration stages and
their evolution. This implies three basic tasks: data capture, data recording, and report
generation [26]. Recording and reporting on the change process, requires traceability for
all changes, this in turn requires the storage and maintenance of information about the:

� Product’s configuration (such as part numbers or changes install in a given unit);

� Product’s operational and maintenance documentation;

� SCM process (such as the status of change requests).

Status accounting reports include change logs, progress reports, CI status reports and
transaction logs [25]. The information provided by the status accounting function is useful
in determining the performance characteristics of the project, such as number of change
requests, approval rate, number of problem reports, average time for a change resolution,
average implementation time, and cost of implementing a change. This information will
help when evaluating the performance of the project an when comparing difierent projects.
Also, these details will help fine-tune the estimation and costing procedures of the orga-
nization, and may also help in identifying bottlenecks in the process or under-performing
employees.



CHAPTER 3. SOFTWARE CONFIGURATION MANAGEMENT 27

3.2.4 Auditing

According to the IEEE standard, Auditing involves: performing audits and reviews to
determine to what extent the actual configuration item reflects the required physical and
functional characteristics (Paragraph 2.3.4).

The objective of the Configuration Audit is to verify that the software system matches
the configuration item description (requirements and standards) and that the system is
complete [26]. Test reports and documentation are typically used to perform the audit.
The process can be divided into three parts; Functional-, Physical-, and In-process Con-
figuration Audit.

� A functional configuration audit aims to ensure that the software product has been
built according to specified requirements. This process often involves testing of var-
ious kinds.

� A physical configuration audit determine whether all the items identified as a part
of CI are present in product baseline.

� An in-process audit ensures that the defined SCM activities are bring properly applied
and controlled.

3.3 Developer-oriented SCM

Developer-oriented SCM focuses on the developer and attempts to assist developers by
automating the Traditional SCM tasks via specialised tools [25]. Automating manual SCM
tasks provides more time to do the actual development work, leading to improved speed and
productivity. A typical modern software configuration management tool provides primary
services in the following areas [12]:

� Product Support:

– Management of repository of components;

– Release management.

� Engineer Support:

– Workspace management;

– Build management;

– Version control.

� Process Support:

– Change management;

– Audit support;



CHAPTER 3. SOFTWARE CONFIGURATION MANAGEMENT 28

– Generic process support.

A number of these tools are clearly irrelevant outside of the software development
process. However, in the next section we will expand on those tools that have broader
applicability. Firstly, showing how these tools support SCM activities.

3.3.1 Engineer Support

Workspace management

Given their critical role in the software development process, SCM systems must provide
facilities through which other tools (and users) can interact with and manipulate the given
artifacts. SCM systems implement workspaces to provide users with an insulated place in
which they can perform their day-to-day tasks of editing and using external tools to ma-
nipulate a set of artifacts. Important considerations are whether workspaces must support
distributed (or even disconnected) users, and how activities in independent (“parallel”)
workspaces are eventually integrated back in the SCM repository.

Version Control

The main purpose of version control is to manage different versions of configuration objects
that are created during the software engineering process [30]. A Version Control System
offers many advantages to both teams and individuals. It allows multiple developers to
work on the same code base in a controlled manner, and it keeps a record of the changes
made over time. The system also allows support for multiple releases (branches) of your
software at the same time as you continue with the main line of development. All of which
offers synonymous benefits associated with document control.

3.3.2 Process Support

Audit Support

As explained earlier, configuration auditing is the validation of the completeness of a prod-
uct. SCM tools can automate most of the auditing, because they can generate the neces-
sary information for verification purposes. For example, one person might need a history
of all changes and another a log containing details about work completed. This data is
organically collected by modern-day SCM tools.

Generic Process Support

Modern, high-end SCM systems push process support even further. They do not just
support change control, but allow organizations to design and enforce general development
processes throughout the enterprise. Exactly how this support is provided and integrated
with SCM functionality is the subject of chapter 5.



CHAPTER 3. SOFTWARE CONFIGURATION MANAGEMENT 29

3.4 Agile Methods

In this section we discuss, agile software development in general and how agile software
development methods implement SCM. Many practitioners rejected traditional SCM sys-
tems because they were helping the configuration manager, and bothering everybody else.
A common problem with traditional SCM is that there is is “too much process”. Meaning
the process can tend to slow down development, frustrate developers, limit customer op-
tions, and make for long integration times. A revolutionary step in the SCM field occurred
with the emergence of the Agile Manifesto. The agile movement has gained significant
popularity in recent years due to its “lightweight” low fuss approach [13].

Agile methods offer a number of benefits over traditional methods. By implementing
a lightweight, customisable change request workflow, it allows traceability from business
request to implementation [25]. In addition, agile methods are able to handle unstable
requirements, and can deliver products in shorter time frames. Lastly, there is easier scope
management, enhanced response to customers, better productivity, and increased quality
[13]

3.4.1 Agile Manifesto

The term “agile” was coined in 2001, when seventeen process methodologists held a meeting
to discuss future trends in software development. An agile process is said to be both light
and sufficient. “Lightness” being a means of staying manoeuvrable. “Sufficiency” being a
matter of supporting the people not the process. In consequence of this meeting, the “Agile
Alliance” and its manifesto for agile software development emerged. The manifesto states
that “experience has taught us we should value: individuals and interactions over processes
and tools; working software over comprehensive documentation; customer collaboration
over contract negotiation; responding to change over following a plan” [13].

3.4.2 Agile SCM

Agile SCM acknowledges the reality of change, but suggests a change in methodology
to deal with the uncertainty. As explained above, traditional SCM activities focus on
control, and approach change in a prescriptive manner, setting detailed procedures and
processes. Agile SCM takes the focus away from the process and focuses on boundaries
and simple rules [13]. In essence, agile SCM is a well designed, light form of SCM that
can be used as a less intrusive approach to SCM for software development projects. The
approach requires direct involvement and interaction between users and customers, plus a
development approach where functionality is delivered in small iterations. An iteration is
a cyclical process that first involves the team negotiating new features or change requests
with customers, and subsequently prioritise all work required. This process can however
create what is known as a ‘backlog’, where any features or requests that have not been
implemented are kept together and re-prioritised. In the next section we discuss the newly
emerged Issue Tracking tools that promote Agile methods.



CHAPTER 3. SOFTWARE CONFIGURATION MANAGEMENT 30

3.4.3 Issue Tracking Tools

Out of all the SCM tools introduced thus far, Issue tracking systems, which emerged
as an Agile support tool, were one of the first to integrate the core features demanded
by software developers. An issue tracking system (also called trouble ticket system, bug
tracking system, or incident ticket system) is a computer software package that manages
and maintains lists of issues, as needed by an organization. An issue tracking system often
also contains a knowledge base containing information on each customer, resolutions to
common problems, and other such data. These issue tracking tools, offer the potential to
easily support ad hoc workflows. As they can support dynamic workflow which changes at
run-time, and they allow on-the-fly creation of process definitions.

Issue tracking tools are currently used to great effect in software development. One of
the major benefits to using such problem tracking tools is the analysis and reporting ability
presented. Robert Grady’s paper on Software Failure Analysis famously states that:

“Software defect data is the most important available management information
source for software process improvement.”[15]

Grady of Hewlett Packard also points out that defect data can enable organizations to
determine the weaknesses in their development processes and decide what changes they
need to make and where. Another report on using web-based issue tracking tools for large
software projects revealed that issue reports are extremely useful as they can be later
analysed to reveal valuable info about why a decision was made on a particular issue [8].
In addition statistical reports can also be used to obtain useful information, e.g. regression
analysis can often reveal the significant variables affecting the time to close off an issue
[22]. This clearly represents useful business intelligence which could be used to make more
informed decisions as well as improve work flow processes within any organisation. Using
specialised software to manage problem reports, change requests etc has also been shown
to be less error prone (as things can no longer “slip through the cracks” [16]) and the
managing of such problems is also simplified by centralising all issue reports. A sample set
of tools is further examined in Appendix B.

3.5 Bridging SCM to BPM

In this section, we illustrate how SCM concepts can be applied in a BPM context, and
discuss some of the underlying business benefits of adapting SCM technology.

The “gap” as it stands in current BPM systems, surrounds supporting: ad-hoc, collab-
orative, human-oriented workflows in a manner that provides an underlying awareness of
the business process. Whilst, still allowing improved flexibility, structure and transparency
throughout the process. In the previous chapter, we examined the usage of email and found
that many businesses now utilise email as a BPM tool. However, a number of limitations
were also found in email, preventing sufficient support of the above mentioned workflows.



CHAPTER 3. SOFTWARE CONFIGURATION MANAGEMENT 31

It is this problem that introduces a key area where SCM tools can be utilised to assist in
the field of business process management, as is explained in the following paragraphs.

Firstly, the emergence of developer-oriented SCM tools brought about a surge of useful
communication, collaboration and automation tools, capable of supporting dynamic and
adaptive tasks. The introduction of these tools also moved the focus away from the man-
ager and towards the developer. By moving the focus away from the manager, it removed
the need for developers to complete redundant or irrelevant work items, and motivated
a position of control. This in essence is analogous to many modern day WfMSs which
focus on the manager as the key customer, by focusing on the “knowledge worker” (in this
case) one can remove the burden of completing unnecessary tasks and can empower knowl-
edge workers to take control of unstructured processes, whilst still providing automation,
structure, and transparency to the manager.

Secondly, from the Agile Manifesto era, emerged a number of key support tools which
now form the basis of many software development projects. Version control and workspace
management first emerged as an engineers support tool for managing source code and de-
velopment artifacts, these tools are also widely applicable in the areas of document/artifact
management. Thereafter process support tools came into wide existence with capabilities
for supporting process definition and mechanisms for verifying conformance, these tools
are once again widely applicable in BPM. Change management tools followed, offering
the ability to track changes with their associated impact on the system. Thereafter, Issue
Tracking systems implemented an integration of these tools - thereby improve the handling
of ad hoc and collaborative (human-oriented, unstructured) processes.

Lastly, the increased usage of SCM tools by larger teams who are in many cases in
distinct locations has pushed the capabilities of SCM tools even further. The distributed
usage of these tools governs another general concept that can be useful to a number of
businesses, particularly as we see many organisations continue to globalise and distribute
or outsource work. In addition, the primary objective of tracking business requirements
from concept through implementation to customer delivery, is clearly shared among SCM
and BPM.

3.6 Summary

In this final section, we summarise the main concepts behind SCM. CM emerged as a
field for dealing with change and focused on control and discipline as two mechanisms for
handling change. The evolution of SCM over the past three decades has moved the state
of SCM away from strict control and discipline, and towards flexibility, traceability and
tool automation. Traditional SCM activities include: configuration identification, change
control, status accounting, and auditing. The onset of developer-oriented SCM brought
about tools which offered the potential to automate these typical SCM activities. These
tools came in the form of: Version control; Workspace management; Change management;
Audit support; and Generic process support.

Each of these tools and principles aligns with the needs currently found in modern day



CHAPTER 3. SOFTWARE CONFIGURATION MANAGEMENT 32

BPM Tools. That is, difficulty in handling: human-oriented, collaborative, and ad hoc/-
dynamic workflows. Nowadays, SCM tools have expanded their usefulness and capabilities
towards supporting responsiveness to customers, unstable requirements, generic process
support and traceability from business request to implementation. In essence these goals
are shared in common with many of todays businesses who demand agility and flexibility.
In the Design chapters to follow we utilise a number of these tool features in order to build
a BPM tool capable of supporting dynamic business processes.



Part III

Design

33



Chapter 4

Traczilla Design

In this chapter, we integrate the knowledge we have gained from previous chapters, in order
to formulate a set of design criteria for Traczilla. We firstly gather together the commentary
and criticisms on current BPM technology to establish the needs and trade-offs. We then
explore the necessary user interface, database, and architectural aspects.

4.1 Design Decisions

To initiate the design considerations, we re-consider the current state of BPM solutions.
After examining the limitations of current WfMS technology in chapter 2, we established
four dimensions on which business processes can be distinguished: repetitiveness, collabo-
ration, task automation and process structure. This allows us to classify a process as either
system-centric or human centric. The current framework for systems supporting BPM is
shown under this classification in Figure 4.1.

From the discussion in previous chapters, it is clear that current support for highly struc-
tured (production) processes (shown in the upper right-hand shaded corner) has evolved to
a state where little advancement is possible. However, there is potential to solve problems
in handing ad hoc and collaborative business processes (shown in the lower left). This
has been accomplished in part through ad hoc WfMSs and Case handling systems. How-
ever, this support is still very limited and scalability can also be a problem as systems get
exponentially more complex.

As such, the lower left corner has been predominantly supported by email - for which
we have already established many limitations. The aim of Traczilla is to focus on the
bottom left corner, i.e. design a new system intended for managing un-structured processes
requiring large amounts of collaboration and human-centric behaviour. An approach which
we purport is to integrate current technolgy used in CSCW and SCM. Therefore, a large
part of the Traczilla design centers around combining various communication and workflow
technologies into a single solution well suited to handling ad hoc, collaborative, human-
oriented, unstructured processes.

34



CHAPTER 4. TRACZILLA DESIGN 35

Figure 4.1: Current design centers in BPM, [10].

4.1.1 Workflow Support

According to Georgakopoulos [14], when designing a human-oriented workflow system, the
main issues to address are:

� human-computer interaction;

� matching human skills to task requirements;

� changing office culture, i.e., how people need or prefer to work.

Human Interaction Workflows, require humans to be actively involved and to interact
with information systems [39]. Flexibility is often required at run-time, because a person
can be offered to work on a respective activity, and another person may in-fact select the
activity and start working on it. Human interaction workflows require a work item list,
where knowledge workers can then interact with the system using work item lists. These
aspects will be directly considered in designing Traczilla.

4.1.2 Trade-offs

The design of any workflow system will require a number of trade-offs. Provided below is
a list of the most significant trade-offs adapted from [33], along with the balance Traczilla
seeks to achieve and the motivation for achieving this balance:



CHAPTER 4. TRACZILLA DESIGN 36

Support vs. Dictate

The workflow system must address the trade-off between supporting a user activity versus
dictating the activity to them. The less leeway a worker has to improvise because of quality
assurance, work standards, or artifact dependencies, the more the workflow system dictates
the worker’s activities. Given that, systems that dictate or automate, tend to clash with
expert or knowledgable participants - Traczilla will act as a support tool for knowledge
workers. Thereby, allowing knowledge workers to impart their knowledge on the process
at hand and avoid “context tunneling”.

Structure vs. Flexibility

Highly structured representations encourage automation, making it easier to maintain con-
sistency. However, tolerating inconsistency increases flexibility in the evolution of the sys-
tem because multiple competing or irreconcilable representations can be accommodated.
Given that tightly constraining human activities may reduce the ability to accomplish
tasks in a timely and appropriate manner - Traczilla will sacrifice some structure in order
to provide added flexibility.

4.1.3 External Tool Integration

Tool integration is crucial for the design of Traczilla. Given that, a workflow system
should specialize in delivering the right information to the right person at the right time.
Once a person has the data artifacts at hand, the tools to produce, consume, manipulate,
translate, annotate, or augment should be easily within reach as well. The goal of Traczilla
is to seamlessly integrate the following knowledge worker tools.

Communication and Collaboration Tools

Execution of a workflow process involving many people inherently requires managing the
interaction and communication between the individuals. Completion of ad hoc and collab-
orative activities often requires both formal and informal communication channels, which
is beyond the scope of traditional workflow technologies. Thus, integrating CSCW tools
such as: virtual whiteboards, wiki, workflow, and version control technology - should en-
courage participants to reach agreement on issues and to quickly communicate rationale
and reasoning. The technologies of interest are categorised in Table 4.1 below.

Same Time/Different Place Different Time/Different Place
Remote Interaction:
- Video-conferencing
- Virtual whiteboards
- Messaging (Instant messaging, Email,
and chat)

Communication + Coordination:
- Wiki
- Blogs
- Workflow
- Document/Version control

Table 4.1: CSCW Distributed Technologies.



CHAPTER 4. TRACZILLA DESIGN 37

Configuration Management Tools

Configuration management should be pervasive, but decoupled, in the Traczilla workflow
system. As such, we examine three such tools from the SCM field: Trac, Bugzilla and
Jira; in order to find which system can address current problems in handling dynamic and
adaptable workflow most effectively.

The SCM Tools reviewed are among the most widely used in the software develop-
ment community. All of which provide the following benefits: improved communication;
increased product quality; improved customer satisfaction; status accountability; and in-
creased productivity. Bugzilla, with an uninspiring user interface, is rich in features, but
undeniably cumbersome to install and to maintain. Trac is a good, lightweight solution
that combines excellent usability with plenty of flexibility. JIRA is a solid, powerful so-
lution, providing almost all of the features of Bugzilla, and more, in an eminently more
usable (and more productive) form - but at a cost. Table 4.2 below summarises the results
of our examination (a complete review can be found in Appendix B):

Bugzilla Trac JIRA
Synopsis Open-source, power-

ful, flexibile, difficult
to use

Open-source,
lightweight, wiki-
based, easy to use

Commercial, scalable,
highly configurable

Search
Functionality

Advanced query tool Intuitive query
builder

Full-text search

Change
Management

Bug tracking, com-
munication with
team-members

Ticket system (bug-
tracking, tasks, etc.)

Create and track any
kind of issue in sec-
onds

Workflow
Support

Hard-coded Minimal Customisable work-
flow

Reporting Simple bar/pie charts Roadmap, Timeline
for all recent activity

Real-time, relevant is-
sue tracking reports

Miscellaneous Excellent security,
Optimised database
for performance and
scalability

Environment exten-
sibility (via plugins),
RSS feeds, iCal ex-
port

Designed with both
business and techni-
cal users in mind

Table 4.2: Summary of features for each SCM Tool.

Upon review of the above tools, we selected Trac as a base for Traczilla development.
Ultimately the decision as to which product to base the development of Traczilla on weighed
up the following factors: availability (i.e. cost), usability (agile/flexible), and extinsibility.
On the basis of this criteria Trac was the obvious choice, primarily because: 1) It is open
source; 2) Motivates a collaborative approach rather than a more structured, traditional
approach; and 3) Trac is easily extensible via plugins. In addition, Trac already integrates
a number of the CSCW tools mentioned in the previous section (i.e. wiki, workflow, and
version control technology).



CHAPTER 4. TRACZILLA DESIGN 38

4.2 User Interface Design

While the navigation interface provided by Trac is in general clean and minimalistic, some
problems of redundancy and inconsistency can be identified. The goal of this section is to
propose a clean-up to unify the navigation interface, and ultimately to establish guidelines
for how Traczilla modules should hook into the navigation, so that they integrate nicely
with the rest of the system. Trac currently provides the following navigational elements:

1. Project link: The project logo in the top left corner of every page;

2. Quick search: The search box in the top right corner of every page;

3. Meta navigation: The horizontal list of links just above the main navigation bar;

4. Main navigation: Primary means for switching between modules (Wiki, Timeline,
Browser, etc);

5. Module navigation: Often rendered as horizontal list of links directly beneath the
main navigation bar;

6. Local navigation: Navigational elements specific to the page currently being viewed.
One example is the “Last change” in the Wiki module, another example are the
“Previous/Next” links in the changeset module or ticket module;

7. Help links: Links to help documents (i.e. Wiki pages) relevant to the page currently
being viewed;

8. Alternate formats: Links to alternate formats of the current page, such as the RSS
feed for the timeline, or the comma-delimited text option for a report;

9. Footer links: Links to Edgewall and Trac.

Of this list, items 1, 2, 3, 4 and 9 are together referred to as the Global Navigation. The
global navigation obviously should never change between different modules. The module-
and/or page-specific navigation elements: 5 and 6, can together be referred to as the
“Context Navigation”. However, they are currently not clearly defined and their use is not
consistent throughout the different modules.

For instance, in the Wiki, the module navigation (item 5 in the list above), contains
the links Start Page, Index by Title, Index by Date and Last Change. These links are
available independent of whether a page is being viewed or edited. While the first three
of these links are “real” module navigation links, the fourth is actually page-specific, and
is thus a local navigation link. Secondly, while browsing a directory or a file through the
repository browser, the module navigation is empty, and the local navigation contains a
link to the Revision Log and to the Last Change for the path being browsed. However,
there should be a form that allows switching to a different revision by entering the revision
number. Lastly, when viewing the list of available reports, two module navigation links



CHAPTER 4. TRACZILLA DESIGN 39

are available: Available Reports and Custom Query. Both remain available when opening
a specific report. However, when viewing the report list or the custom query, only the
alternative view remains selectable.

Possible Solutions:

Therefore, there is a need to fix the inconsistencies in the navigation for the release of
Traczilla. Apart from layout details (such as the different look of local navigation links in
the browser than in the reports module), there are three different options for resolving this
problem:

� Draw a strong line between module-level and page-level navigation links. Develop a
layout that helps the user understand the conceptual difference, so that he/she can
learn to automatically look at the right place when searching for a specific link.

� Merge module-level and page-level navigation, as the conceptual difference may not
be clear to the occassional user. Especially, given that more places to look for navi-
gational elements generally means more confusion/frustration.

� Provide a user interface that will accept the knowledge worker as an important source
to improve and control the process, by providing more user acceptance.

4.3 Database Design

4.3.1 Overview

The Traczilla database schema is largely built on the existing Trac database schema. The
table below describes the tables utilised, rows highlighted in red represent additions or
modifications required by Traczilla:

Table Name Purpose
attachment Descriptions of attachments (the files themselves are stored on disk).
auth cookie User login cookies.
component Values that can be used in a ticket’s “component” field, e.g. System

(Accounting, HR, IT). The owner of a component is used as the de-
fault assignee for new tickets, if not overridden at the time of ticket
submission.

enum Maps integer IDs for issues’ priorities, severities, etc. to human-
readable names.

milestone Used to specify Business processes/requirements along with the due
dates.

milestone struct Milestone hierarchy to allow, business users to specify business pro-
cesses at different levels.



CHAPTER 4. TRACZILLA DESIGN 40

node change 1st half of the repository cache: for every changeset (as identified
by the revision number), this table contains the nodes (i.e. files or
directories) that have been added/modified/deleted.

permission Text-based permissions specifying Username/action pairs. This table
also stores the permission groups (e.g. Authenticated or anonymous).

report Stores the SQL to generate canned database reports.
revision 2nd half of the repository cache: changesets, containing the revision

number, author, time, and log message. The list of files and directories
modified by a changeset can be found by joining with node change on
the rev column.

session Last user visit time.
session attribute Information about user settings, including name, email, and diff op-

tions.
system System information such as the database version and repository cache

metadata
tkt links TicketDependency table used to link dependent tickets.
ticket Ticket table storing all ticket related fields (e.g. Priority, owner, de-

scription, etc.).
ticket change Changes to tickets, on a field-by-field basis. The comment field asso-

ciates a comment with a set of field changes.
ticket custom The values of custom ticket fields (e.g. Business Value or complexity).
wiki Wiki pages (including old revisions).

Table 4.3: Traczilla database tables, adapted from [27].

Note: Please refer to Appendix C for the relational database schema.

4.4 Backend Architecture

Given that, Traczilla is based on the open source Issue Tracking Tool - Trac. In this section,
we discuss Trac’s architectural configuration. Trac uses a model-view-controller approach
[2]. The controller is a Python class called a “module” which inherits from the Component
class implementing the IRequestHandler interface. The controller reacts on user requests
and prepares the data that will be used by a template engine to fill the adequate template,
in order to render the view which will be sent back to the user.

4.4.1 Component Architecture

At the heart of Trac is a minimal component kernel that allows components to easily
extend each others’ functionality. At the same time, this component kernel also provides



CHAPTER 4. TRACZILLA DESIGN 41

a “meta-plugin-API” such that every component can easily offer its own plugin API by
declaring “extension points” - as shown in Figure 4.2.

Figure 4.2: UML Trac Component Architecture, [2].

Public classes

The public classes for trac.core are defined below:

trac.core.ComponentManager Manages component life cycle, instantiating registered
components on demand.

trac.core.Component Abstract base class for components.

trac.core.ExtensionPoint Declares an extension point on a component that other com-
ponents can plug in to.

trac.core.Interface Every extension point specifies the contract that extenders must con-
form to via an Interface subclass.

4.4.2 Components

A Component is the basic building block in the Trac architecture. It is an object that
provides a certain type of service within the context of the application. There can be
at most one instance of any component. This implies that a component does not map
to an entity of the application’s object model; instead, components represent functional
subsystems.

Components can declare “extension points” that other components can “plug in” to.
This allows one component to enhance the functionality of the component it extends,
without the extended component even knowing that the extending component exists. All
that is needed is that the original component exposes (and uses) one or more extension
points - as shown in Figure 4.3.



CHAPTER 4. TRACZILLA DESIGN 42

Figure 4.3: UML Trac Extension Points, [2].

A component can extend any number of other components and still offer its own ex-
tension points. This allows a plugin to offer its own plugin API (i.e. extension point).
This feature is the basis of the plugin-based architecture employed by Trac. Meaning the
actual functionality and APIs are defined by individual components. The component ker-
nel provides the “magic glue” to hook the different subsystems together - without them
necessarily knowing about each other.

4.5 Summary

The primary purpose of Traczilla is to inform users of the current problems, issues, and
data needed to accomplish their particular tasks. Given that Traczilla is a tool designed for
distributed organisations, allowing participants the ability to address outstanding issues
with communication, collaboration, and remote interactions tools should aid in averting
and resolving potentially work stopping issues. Therefore, integration of these tools into a
workflow environment should aid continuous workflow progression and prevent bottlenecks
to workflow. Hence, Traczilla will look at integration of messaging, wiki, version control
and workflow technology.

In order to support dynamic and adaptive workflow Traczilla will allow tasks to progress
at their natural pace while maintaining a model of the work being performed. It will also
keep track of the status of workflows in order to maintain data and control transparency as
well as keep assignments immediately viewable within the system via a Virtual Whiteboard.
As with other policies, Traczilla will be decoupled from the implicit configuration man-
agement environment to allow for improved flexibility and customisability. Therefore, in
order to provide the most robust and scalable solution, we perceive that the best approach
is to combine existing technologies whilst striving to eliminate the drawbacks/limitations
of each individual technology.



Chapter 5

Requirements Specification

5.1 Introduction

This is the requirements document for the Traczilla system. The requirements will be re-
vised in the beginning of each iteration and when there is a need for it. The development of
requirements can be seen at: http://smclaren.dyndns.org:8080/traczilla/. There is located
the code base and test environment for the periodically updated requirements. The code
base for this project is to be released under the open source BSD license.

5.1.1 Business Goals

The purpose of this project is to create a workflow system, which is pervasive enough to
guide knowledge workers through predefined business processes, but lightweight enough
to provide workspaces which merely support a knowledge workers activities. The system
will operate as a web application so that users may access the system from distributed
locations. Initially, the system is intended as a tool for small to medium sized businesses,
but there are also applications in larger organizations. The goal is to create a workflow
tool that is lightweight, dynamic, flexible and good looking like Trac itself.

The major benefits that this system provides are:

� Creates an environment in which knowledge workers can easily assign and delegate
work items, and thereby formulate work models on the basis of successful execution;

� Capable of guiding knowledge workers through activities based on historical data;

� Allows creation of on-the-fly business processes (user stories), that can either be
enforced to ensure structure and consistency, or relaxed to allow flexibility;

� Allows creation of events/tickets that are displayed on shared screens (Whiteboard),
which can then be dynamically re-alocated to other users;

� Provides full workspace support to isolate each users work items.

43



CHAPTER 5. REQUIREMENTS SPECIFICATION 44

5.1.2 Scope of Project

The intended project outcome is an integrated CSCW tool & workflow system, the main
functionalities of which are shown in Figure 5.1, and listed below:

� Workspace management;

� Process support;

� Status accounting;

� Audit support;

� Search functionality;

� Administration and customisation ability;

� Communication and collaboration tools.

5.1.3 Main Domain Concepts

The main domain concepts from BPM and SCM that must be understood to gain a true
context for the system, are shown below:

Concept Description
Admin system Web-interface to control the system.
Artifacts One of many kinds of tangible byproducts produced during the

execution of a business process. E.g., hand-off documents, budget
projections, requirements, and design documents.

Authentication Authentication is some kind of user authentication mechanism (e.g.
IP, username & password).

Back-end The part of the system that is not visible to the user (see front-end).
Backlog Features, tasks or requests that have not been implemented or as-

signed (see triage).
Front-end The part of the system that is visible to the user (see back-end).

Also referred to as UI.
Issue A ticket that is assigned to a person who must resolve it or reassign

it to someone else.
RSS Really Simple Syndication, an XML format which allows users to

subscribe and easily monitor changes
Ticket A file contained within an issue tracking system which contains

information about a change, defect, issue, or improvement required.
Timeline Historical audit trail of all changes made to the system.
Triage Activity involving analysing a backlog of tickets in order to: group,

discard, annotate, assign tickets.



CHAPTER 5. REQUIREMENTS SPECIFICATION 45

User User is the one who uses the system in some way. The user identity
has been verified by authentication system.

User group Different users can be grouped together based on common criteria
(e.g. finance users).

User Story Ad hoc business process formulated as a ticket in everyday business
language.

Wiki A database of pages that can be collaboratively edited using a web
browser.

Workspace Workspace is an isolated room, separating users different function-
alities and work items.

Table 5.1: Domain concept definitions.

5.1.4 User Groups

Table 5.2 below, describes the intended users of the system:

User group Importance of
group

Description

Sysadmin Medium Highest level of administrator, can edit screen, ed-
it/create users, and configure system settings.

Buinsess admin High Manages ticket system, including: workflow defi-
nitions and routing, ticket types, milestone defini-
tions etc.

Knowledge
worker

Very High Uses the system to guide and direct work activities
as well as to find information (a.k.a employee).

Manager High Uses the system to drill down and discover infor-
mation.

Visitor Low Users who have not yet authenticated.

Table 5.2: Users of the system.

Note: there are two types of administrators: sysadmins who have full rights to every-
thing and business admins who have full rights to customise the ticket & workflow system.
By default, the visitor user group has no rights to perform or view any actions within the
system. The “importance of group” refers to the frequency and criticality of each user
groups intended actions.

5.2 System Overview

Building a workflow system for the purpose of structuring ad hoc and collaborative tasks
requires a number of different technologies. Simply creating a single piece of software that



CHAPTER 5. REQUIREMENTS SPECIFICATION 46

fulfills only the requirements of one workflow dimension would be ineffective in solving
the underlying problems. By combining different existing technologies with new elements,
this kind of system can truly help organizations add some structure and coherence to
their unstructured processes. We recognize that users may not have all the required skills
to utilize each particular technology effectively, therefore we concentrate on developing a
system that is easy to use, customizable to suit the needs of any organization, and flexible
enough to promote efficiency and guidance.

5.2.1 Workspace Management

The main purpose of workspace management is to provide the facilities through which
other tools (and users) can interact with and manipulate given artifacts. This component
shall provide users with an insulated place in which they can view and perform their
assigned tasks, whilst allowing teams to assign tasks/tickets to fellow knowledge workers.
Collectively, workspace management is made up of the following interacting sub-systems:

Ticket system

Provides simple but effective tracking of issues. As the central element of Trac, tickets are
used for project tasks, feature requests, bug reports and software support issues. However,
as the central element of Traczilla, tickets shall be used for collaborative tasks, user stories,
and ad hoc issues. This subsystem shall be re-designed with the goal of making user
contribution and collaboration as simple as possible. It should be as easy as possible to
assign tickets, ask questions and suggest improvements.

Version Control

The Trac Repository Browser shall be used to browse directories and specific revisions of
files stored in the repository of the configured version control system. This Trac component
will be leveraged in Traczilla in order to provide built-in functionality for visualising “diffs”
- changes to files.

5.2.2 Process Support

The main purpose of process support is to provide the tools and techniques to allow process
definition and discovery:

Process definition

This shall create the process description in a computer processable form. The process def-
initions themselves should be flexible enough to enable partial process definition and exe-
cution. This requires information about user tasks to be undertaken, constituent activities
and rules for navigating between them. These process definitions should be programmable



CHAPTER 5. REQUIREMENTS SPECIFICATION 47

in multiple ways. That is, both visually and textually depending on the abstractions and
level of expertise of the user.

Process discovery

Users shall be able to learn the structure of a business process from workflow log data.
This learned structure should then be implementable as an efficient business process.

5.2.3 Status Accounting

The main purpose of the status accounting system is to keep managers, knowledge work-
ers, administrators, and other stakeholders informed about the various stages of business
processes and their evolution. This implies three basic tasks: data capture, data recording,
and report generation.

Roadmap

Trac provides a view on the ticket system that helps planning and managing future software
development milestones. Basically, the roadmap is just a list of future milestones. As part
of Traczilla, the roadmap shall be used to provide a view on the ticket system that helps
planning and managing of existing business processes (user stories). Hierarchical milestones
will be added to enable organizations to sub-divide and aggregate tickets at different levels.

Statistics

Basic statistics based on usage and log data shall also be developed. This should illustrate:
Ticket, Wiki, and SVN activity on a per user basis. Thereby indicating under-performing
employees, and cumbersome or complex business requirements.

5.2.4 Audit Support

Trac supports logging of system messages using the standard logging module that comes
with Python. The embedded audit support for Traczilla is designed to allow organizations
to view the historical sequence of activities that have taken place. This requires traceability
for all changes, which in turn requires the storage and maintenance of information from
the: change logs, progress reports, transaction logs, and the underlying business process.
To enable this support, Traczilla will utilize the:

Timeline

This Trac module provides a historic view of the project in a single report. It lists all
events that have occurred in chronological order, a brief description of each event and if
applicable, the person responsible for the change.



CHAPTER 5. REQUIREMENTS SPECIFICATION 48

5.2.5 Search Functionality

Trac provides a simple but powerful full-text search functionality, which lets users search
not only tickets, but also wiki pages and change-sets. The search also allows users to go
directly to a change-set, ticket or report simply by entering its number. Another way to
find information is through the creation of custom queries, which can be built using an
intuitive query builder. This search functionality should be sufficient for the purposes of
Traczilla.

5.2.6 Administration

The administration component of Trac is quite rudimentary. This functionality will be
enhanced in Traczilla to provide supervisory functions which allow:

� Customisation: to enable business admin’s to customize all components to suit or-
ganizations needs;

� User admin: to enable sysadmin’s to create and manage fine-grained permissions for
all users;

� Workflow admin: to enable managers to alter work allocation rules, to identify par-
ticipants for specific organisational roles within a process, and to trace the history of
a particular process instance.

5.2.7 Collaboration Tools

Traczilla shall utilise the following built in collaboration tools:

Wiki engine

Used for text and documentation throughout the system. This allows for formatted text
and hyperlinks in and between all Traczilla modules. Editing wiki text is easy, using
any web browser and a simple formatting system, rather than more complex markup
languages like HTML. The reasoning behind its implementation is that HTML, with its
large collection of nestable tags, is too complicated to allow fast-paced editing, and distracts
from the actual content of the pages. Thus, the main goal of the wiki is to make editing
text easier and encourage people to contribute and annotate knowledge for an organisation.

Virtual whiteboard

A 3rd Party plugin, which provides shared screen in which users can dynamically reassign
tasks to other users, update the status of tickets, and “triage” backlogged tickets in order
to add necessary data and assign to an appropriate individual. The whiteboard can also
be used: to visualize and track progress; to group tickets according to their status; or to
assign meta-information directly to items.



CHAPTER 5. REQUIREMENTS SPECIFICATION 49

Figure 5.1: High-level Use Case Diagram.



CHAPTER 5. REQUIREMENTS SPECIFICATION 50

5.3 Functional Requirements

This section describes the functionality of the system with use cases instead of a typical
requirements list. The idea is that a working prototype will be produced in the first
iteration and that prototype will be refined in later iterations.

5.3.1 Use Cases

We have used use cases to document the functional requirements. For additional details
see section 5.3.2.

UC-001: Managing collaborative business processes

ID UC-001
Name Manage collaborative business process
Goal in Context Allow knowledge workers to collaborate on tasks or business

processes, by simultaneously manipulating artifacts, whilst allowing
management to monitor and maintain control of progress through
milestones.

Actors Knowledge worker (Employee)
Pre conditions Employees have appropriate access rights to Traczilla, and are able to

access the Admin view in order to create milestones, submit tickets,
and create artifacts.

Basic Sequence

Step Action
1 Create milestone detailing Business Goal/Requirement (e.g.

Increase profit margin by 20%) with due date.
2 Create sub-milestone detailing the organisational process (e.g.

Minimise overhead costs).
3 Create child milestone detailing the operational process (e.g.

Utilise JIT Inventory management).
4 Create ticket [#1] with milestone set to “JIT Inv Mgmt”.
5 Employee accepts ticket and begins work.
6 Artifact created (e.g. Purchase order), added to Subversion

repository and linked to ticket [#1].
7 Employee completes ticket, status changed to closed.

Post conditions All milestones setup within Traczilla and linked to appropriate tickets,
all artifacts maintained under version control and linked to appropriate
ticket.

Extensions

Step Branching Action
ALL Utilise Whiteboard to review overall ticket and user story

progress.
ALL Re-allocate tickets and update status of tickets as needed.

Sub-Variations
Step Branching Action
5’ Employee sets task status as pending/dependant on comple-

tion of another ticket [#2] (e.g. Sales order).



CHAPTER 5. REQUIREMENTS SPECIFICATION 51

5” Search for dependant ticket, wiki item, or artifact.
5”’ Drag and drop dependant items.

RELATED
INFORMATION:
Frequency of Use Very High
Priority Must (Rank = 1)
Effort Very Large

UC-002: Supporting ad hoc business processes

ID UC-002
Name Support ad hoc business process
Goal in Context Minimise number of emails sent, and improve employee efficiency by

allocating and prioritising ad hoc business processes (user stories).
Actors Employees, Managers
Pre conditions Employees have appropriate access rights to Traczilla, and are able to

view and submit tickets to other employees.

Basic Sequence

Step Action
1 Employee creates ticket of type User Story (with milestone

defaulted to none).
2 Ticket automatically entered into Story Backlog .
3 Employee reviews and updates Backlog, necessary tickets

added to user story - via Whiteboard.
4 Employee annotates information onto story (e.g. business

value and complexity), and assigns story to an operational
business process (milestone).

5 Traczilla prioritises work and employee changes status of each
user story to reflect the work being done, and annotates ap-
propriate information.

6 Story follows its own lifecycle as per workflow configuration
(see UC-004).

7 Employee completes user story and adds final notes to the
ticket.

8 Status of ticket/user story changed to closed.
Post conditions All stories set up through Traczilla, all tickets linked to user story, with

tasks annotated and information disseminated as necessary.

Extensions

Step Branching Action
5a Employee rejects task
6a Management requests report on all user stories that are in

progress at the moment (see UC-006)
8a Manager reviews complexity and business value points of User

Story compared to child tasks.
8b Due lessons learned annotated as comment to the user story.

Sub-Variations
Step Branching Action



CHAPTER 5. REQUIREMENTS SPECIFICATION 52

6’ Employee sets story status as pending on completion of an-
other user story.

7’ All user stories can be edited, annotated, re-assigned, priori-
tized and discussed at any time via Whiteboard.

RELATED
INFORMATION:
Frequency of Use High
Priority High (Rank = 2)
Effort Large

UC-003: Supporting execution of work items

ID UC-003
Name Support execution of individual work items
Goal in Context Increase efficiency of administrative processes/work items by

collectively assigning tickets and automatically prioritizing tasks.
Actors Employees, Managers
Pre conditions Employees have appropriate access rights to Traczilla, and are able to

view and submit tickets to other employees.

Basic Sequence

Step Action
1 Employee creates ticket of type Work Item (with milestone

defaulted to none).
2 Ticket automatically entered into Task Backlog.
3 Employee reviews and updates backlog (tickets assigned to

employees).
4 Employee annotates information onto ticket (e.g. Business

value and complexity), and assigns task to a user story.
5 Traczilla prioritises work and employee changes status of ticket

to reflect the work being done, and annotates appropriate in-
formation.

6 Ticket follows its own lifecycle as per workflow configuration
(see UC-004).

7 Employee completes ticket and adds final notes to the task.
8 Status of ticket/task changed to closed.

Post conditions All tickets assigned through Traczilla, all work appropriately priori-
tised, with tasks annotated and information disseminated as necessary.

Extensions

Step Branching Action
5a Employee rejects task
6a Management requests report on all tickets that are in progress

at the moment (see UC-006)

Sub-Variations
Step Branching Action
6’ Employee sets task status as pending on completion of another

task.
7’ All tickets can be edited, annotated, re-assigned, prioritized

and discussed at any time via Whiteboard.



CHAPTER 5. REQUIREMENTS SPECIFICATION 53

RELATED
INFORMATION:
Frequency of Use High
Priority Must (Rank = 3)
Effort Minimal

UC-004: Process support

ID UC-004
Name Process support
Goal in Context Provide tools and techniques to manage process definition and

discovery.
Actors Business admin
Pre conditions Business admin has appropriate access rights to Traczilla’s Admin view

and can create ticket types, and workflow definitions.

Basic Sequence

Step Action
1 Create new Ticket type to house workflow definition (e.g. ad

hoc process).
2 Define workflow for “ad hoc process” (states, transitions, per-

missions, default actions).
3 Create new ticket of type “ad hoc process”.
4 Ticket follows lifecycle as defined by workflow definitions.
5 Ticket completed, status changed to closed.

Post conditions Ticket follows pre-defined workflow definition, however knowledge
worker may deviate from process if required.

Extensions

Step Branching Action
3’ Knowledge worker deviates from workflow definition in order

to accomplish process more efficiently.
3” Appropriate notes annoted to ticket, with reason for deviation.

Sub Variation

Step Branching Action
1a Create new user story.
1b Create tickets associated with user story.
1c Create dependency between tickets and user story.
1d Examine dependency graph to discover implicit business pro-

cess.
RELATED
INFORMATION:
Frequency of Use Medium
Priority Intermediate (Rank = 5)
Effort Large



CHAPTER 5. REQUIREMENTS SPECIFICATION 54

UC-005: Customise system

ID UC-005
Name Customise or Administer system
Goal in Context Customisation of all possible components, allowing drop in and

removal of fields.
Actors sysadmin
Pre conditions sysadmin has TRAC ADMIN permissions to Traczilla, and are able to

access the Admin view and customize all system settings.

Basic Sequence

Step Action
1 Create custom ticket field (e.g. Client).
2 Customise UI navigation (e.g. Logo, Navigation links, etc).
3 Define more/less Business Process levels i.e. Milestones.

Post conditions All customizations made through Traczilla’s web interface.

Extensions
Step Branching Action
1 User administration activities (add/remove users, assign/re-

voke permissions etc.).
2 Change log level settings.

RELATED
INFORMATION:
Frequency of Use Low
Priority Medium (Rank = 6)
Effort Intermediate

UC-006: Generate management reporting data

ID UC-006
Name Generate management reporting data
Goal in Context Keep managers, knowledge workers, administrators, and other

stakeholders informed about the various stages of business processes
and their evolution.

Actors Managers
Pre conditions Manager has REPORT VIEW permissions to Traczilla, and are able

to access the Statistics view.

Basic Sequence

Step Action
1 View progress of each business process/milestone.
2 Aggregate tickets targeted for each milestone, and calculate

the ratio between active and resolved tickets - displayed as a
milestone progress bar.

3 Group progress by: Business Value, Ticket Completion, Com-
plexity.

4 Filter on Ticket type and Milestone type.
Post conditions Managers are aware of any bottlenecks within various business pro-

cesses, and where the most value add is being gained.



CHAPTER 5. REQUIREMENTS SPECIFICATION 55

Extensions
Step Branching Action
1 Create interactive charts showing: Ticket/Wiki/SVN activity

per user.
2 Manager creates custom statistical charts based on tickets per

milestone/user/status.
RELATED
INFORMATION:
Frequency of Use Medium
Priority Medium (Rank = 4)
Effort Intermediate

5.3.2 Attributes for Entities

The following properties are information that the user can enter or interact with when using
the system. Some of these attributes are in close relation with the overall architecture or
with the contents. Also, some of the following information is optional for the basic system
functionality but it is put here to ensure the system’s extensibility.

Ticket attributes

� Related use cases: UC-001, UC-002, UC-003, UC-006

� Required information:

– Reporter - The author of the ticket.

– Assigned to/Owner - Principal person responsible for handling the issue.

– Summary - A brief description summarizing the problem or issue.

– Description - The body of the ticket, should be specific, descriptive and to the point.

– Type - The nature of the ticket (for example, user story or work item)

– Status - Current status of issue, one of: new, assigned, closed, reopened.

– Priority - The importance of this issue, ranging from trivial to blocker.

� Optional information:

– Business Value - Numeric estimation of the business value added by ticket.

– Complexity - Numeric estimation of complexity in resolving ticket.

– Milestone - When this issue should be resolved at the latest.

– Component - The department or subsystem this ticket concerns (e.g. Accounting).

– Keywords - Keywords that may be useful for searching and report generation.

– Cc - A comma-separated list of other users to notify. (Note: this does not imply
responsiblity.)

– Resolution - Reason for why a ticket was closed. One of fixed, invalid, wontfix,
duplicate, worksforme.

– Blocking/Blocked By - Comma separated list of dependent tickets



CHAPTER 5. REQUIREMENTS SPECIFICATION 56

Milestone attributes

� Related use cases: UC-001, UC-002

� Required information:

– Name - Unique name to identify milestone.

– Due - Deadline date to accomplish milestone.

� Optional information:

– Parent - High-level milestone to which this milestone relates (blank if Business Goal).

– Type - Implicit variable based on level of milestone (either: Business Goal, Organisa-
tional Process, or Operational Process).

Whiteboard attributes

� Related use cases: UC-001, UC-002, UC-004

� Required:

– Name of the ticket, description, dependant milestone.

– State (New/Assigned/Accepted/Closed): display as swimlane.

– User story view: aggregate on business process level.

– Work item view: aggregate on milestone.

� Optional:

– Display as a movable sticky note field

– Color coding or iconic flags shall be applied to items to distinguish them.

Permission attributes (for the authentication support)

� Related use cases: ALL

� Required information:

– User: Username which permission applies

– Permission: Text-based permission in the form MODULE PRIVILEGE. For example:

* TICKET CREATE: Create and assign new tickets
* WIKI MODIFY: Change wiki pages
* REPORT VIEW: View reports and statistics
* TRAC ADMIN: Perform any operation

� Optional information:

– Group: User group which permission applies (e.g. Authenticated or Anonymous)



CHAPTER 5. REQUIREMENTS SPECIFICATION 57

Log attributes (for audit support)

� Related use cases: UC-001, UC-002, UC-003, UC-004, UC-006

� Logging methods: can be set via web interface (log method)

– none: Suppress all log messages.

– file: Log messages to a file, specified with the log file option in trac.ini.

– stderr: Output all log entries to console (standalone server only).

– syslog: (UNIX) Send all log messages to the local syslogd via named pipe /dev/log.
By default, syslog will write them to the file /var/log/messages.

– eventlog (Windows) Use the system’s NT Event Log for Traczilla logging.

� Log levels: can be set via web-interface (log level):

– CRITICAL: Log only the most critical (typically fatal) errors.

– ERROR: Log failures, bugs and errors.

– WARN: Log warnings, non-interrupting events.

– INFO: Diagnostic information, log information about all processing.

– DEBUG: Trace messages, profiling, etc.

� Changeset messages: (artifact management)

– Timestamp - When the changeset was commited

– Author - Who commited the changeset

– Message - A brief description from the author (the commit log message)

– Files - A list of files affected by this changeset

Timeline attributes (for audit support)

� Related use cases: UC-001, UC-002 UC-003, UC-006, UC-007

� Required information:

– Outline - brief excerpt of the actual event (comment or text, if available).

– Hyperlink - to the specific event in question

– Wiki page events - Creation and changes.

– Ticket events - Creation and resolution/closing.

– Artifact changes - Repository check-ins.

– Milestone - Business process completed

– Status - What is the current status? One of new, assigned, closed, reopened.

– Priority - The importance of this issue, ranging from trivial to blocker.

� Optional information:

– Ticket events - Other ticket changes, such as comments, status change, owner change.



CHAPTER 5. REQUIREMENTS SPECIFICATION 58

5.4 Non-functional Requirements

Non-functional requirements are documented in this section, based on [7].

ID Requirement Importance Effort Related
Use Cases

N1 Adoptability - system should integrate eas-
ily without burdening existing work cul-
tures or technical infrastructures.

Medium Low UC-001,
UC-005

N2 Flexibility - workflow system should al-
low for on-the-fly definition of business
processes. Artifact routing should allow
knowledge workers to drive process, or use
the system for guidance. UI should pro-
vide different views for different stakehold-
ers.

High High UC-002,
UC-005

N3 Extensibility - system at large should be
extensible to encourage and allow new
components after deployment - allowing
on-going applications in new domains.
Workflow infrastructure should also be ex-
tensible, by providing the ability to exe-
cute empty process definitions or map out
complete process definitions.

Must Medium UC-004 ,
UC-005

N4 Search-ability - system should allow users
to quickly find information that is relevant
to their task or activity.

High High UC-003,
UC-006

N5 Lightweight - User interface components,
workflow infrastructure, and artifact tools
should be maneuverable to encourage cus-
tomisation and provide incremental scal-
ing from small to large organisations.

Must High ALL

N6 Business Process Discover - Dependencies
between tasks/artifacts/wiki pages should
be possible to allow users to discover im-
plicit business processes or patterns.

Must Low UC-001,
UC-002,
UC-004



Part IV

Analysis

59



Chapter 6

Traczilla Analysis

6.1 Introduction

In the previous chapter, we discussed the high-level functionality and requirements of
Traczilla at large. We described the pre-existing Trac components that would be directly
utilised in Traczilla. In this chapter we provide a deeper analysis of each plugin developed
specifically for the purpose of enhancing Traczilla’s functionality. We focus our testing
effort on these newly developed Traczilla plugins. We also provide a real world scenario in
which Traczilla would be a suitable tool to manage a dynamic business process. We start
with a description of each plugin, along with the use cases to which they relate. After
which we run unit tests on each component/system implementing new features. In the last
section, we provide a detailed analysis of the WorkflowEditor plugin.

6.2 Plugin Descriptions

In order to understand where and how each plugin is utilised within Traczilla - we first
present a functional hierarchy showing the underlying arrangement of each component.
In total, we developed 6 plugins for the Traczilla system: IniAdminPlugin, TicketDe-
pendencyPlugin, WorkflowEditor, CustomFieldPlugin, MultipleWorkflowPlugin, and the
StatisticsPlugin. Figure 6.1 below shows how each of these plugins fits into the system at
large.

6.2.1 IniAdminPlugin

This plugin allows a sysadmin to customise Traczilla via the Web Admin API. It uses
the Administration panel available in Trac 0.11 to allow modification to any field ex-
posed through the trac.ini configuration file. This currently includes all core Trac set-
tings including: UI navigation, database settings, log levels, etc. It builds on the fol-
lowing trac extension points: trac.admin.api, trac.util, trac.web.chrome, and trac.config.

60



CHAPTER 6. TRACZILLA ANALYSIS 61

Figure 6.1: Traczilla functional hierarchy.

Implementing the: ITemplateProvider, and IAdminPanelProvider - through the meth-
ods: get admin panels(self, req) and render admin panel(self, req, cat, page,

path info).

6.2.2 WorkflowEditorPlugin

The Trac issue database provides a hard-coded workflow that all tickets must follow. In
order to overcome this limitation, the WorkflowEditorPlugin was developed to allow busi-
ness users to customize the workflow of tickets to their organizations needs. This plugin
provides a simple web interface that allows users to edit the ticket workflow. Thereby,
providing a means to define on-the-fly business processes. This plugin also utilizes the
3rd party component: GraphViz to draw the workflow graph. It implements the IAdmin-
PanelProvider, and IRequestHandler from the trac.admin and trac.web API’s respectively.
Further examination of this plugin is provided in section 6.4.

6.2.3 TicketDependencyPlugin

This plugin adds “Refers to” and “Referred by” fields to each ticket, enabling users to
express dependencies between tickets, wiki pages, and artifacts stored in the Repository
browser. It also implements a graphviz-based dependency-graph feature, allowing users
to visually understand the inter-dependencies between tickets - thereby providing a step
towards Business Process Discovery. The dependency graph is viewable by clicking ‘dep-



CHAPTER 6. TRACZILLA ANALYSIS 62

graph’ in the context (in the upper right corner) menu when viewing a ticket that refers
to or is referred by another ticket.

This plugin utilizes the 3rd party component: GraphViz to draw the ticket dependency
graph (as shown in Figure 6.2). And adds the table: tkt links to the Traczilla database
schema. It implements the IRequestFilter, and IRequestHandler from the trac.web API,
through the following methods: post process request(self, req, template, data,

content type, process request(self, req), and build graph(self, req, tkt id).

Figure 6.2: TicketDependencyPlugin Screenshot.

6.2.4 WhiteboardPlugin

The Whiteboard plugin is a 3rd party plugin which provides a shared screen in the form
of a Virtual Whiteboard. It can be used by Knowledge workers to drag-n-drop tickets
across statuses, team members, business requirements and user stories (ad hoc business
processes) - i.e. ticket “triage” activities. See screenshot below in Figure 6.3:

Figure 6.3: WhiteboardPlugin Screenshot.



CHAPTER 6. TRACZILLA ANALYSIS 63

6.2.5 StatisticsPlugin

The Statistics module is a modified 3rd party plugin designed to estimate recent user
activity. It can be used by Management to generate useful reporting charts gauging:
Wiki/Ticket/SVN activity. This plugin utilises the Open source FlashChart utility, for
generating the line and pie graphs.

Figure 6.4: StatisticsPlugin Screenshot.

6.2.6 CustomFieldPlugin

This plugin provides a Web Admin panel for administrating custom fields - adding, modi-
fying and deleting them without editing the trac.ini configuration file directly. It extends
the TicketSystem model by adding the class CustomFields(Component) with methods to
get, create, verify, update, and delete: custom field(self, env, customfield).

6.2.7 MultipleWorkflowPlugin

This MultipleWorkflowPlugin replaces the ConfigurableTicketPlugin used by Trac to con-
trol what actions a ticket can do. With this plugin, Traczilla can define a workflow based
on the type of ticket. Thus, customised workflow can be setup for certain types of is-
sues/tickets/business processes. However, if there is no workflow defined for the ticket
type in question, than Traczilla will use the default workflow. This plugin builds on the
trac.ticket API and implements the following ITicketActionController methods:

get ticket actions(self, req, ticket): Returns a list of (weight, action) tuples that
are valid for this request and this ticket.

get all status(self): Return a list of all states described by the Ticket workflow.

render ticket action control(self, req, ticket, action): Render the valid ticket
actions based on the Ticket types workflow.

get ticket changes(self, req, ticket, action): Enumerate all ticket changes.

has perms for action(self, req, action, resource): Verify that the user has the
appropriate permissions to perform the required action.



CHAPTER 6. TRACZILLA ANALYSIS 64

6.3 Test Cases

In the following section, we focus our testing effort on the core Traczilla functionality. That
is, on its ability to manage and support “dynamic business processes” - i.e. Collaborative
and Ad hoc business processes (as explained in Chapter 2). The activity diagrams below
visualise the potential usage patterns for Traczilla. In addition, unit tests are provided
herewith, to verify correct underlying plug-in functionality.

6.3.1 UC-001: Collaborative Business Processes

Figure 6.5 below, shows the UML Activity diagram for UC-001. The paths that can
be followed integrate elements from UC-004 (Process support) and UC-005 (Management
reporting), to provide a more realistic and complete usage scenario.

Figure 6.5: Collaborative UML Activity Diagram



CHAPTER 6. TRACZILLA ANALYSIS 65

Paths and Tests

Purpose To test that businesses can use Traczilla for Collaborative Business
Processes

Use Case/s UC-001, UC-004, UC-005
Pre-condition Administrator has TRAC ADMIN, Manager has WORK-

FLOW ADMIN, and Employee has TICKET ADMIN rights
# Path Description Component/s Outcome
1 [A1, C1, A4, C2,

A7, C3, A12, A8,
A13, A9, A14,
A15, C4, END]

Document collaboration for a
business requirement with a
predefined process and simulta-
neous management reporting.

- Repo Browswer
- Statistics Plugin

PASS

2 [A1, C1, A2, A3,
C1, A3, C1, A4,
C2, A5, A6, C3,
A11, A14, A15,
C4, END]

Wiki collaboration for an oper-
ational business process (more
detail) defined at run-time.

- Wiki Module
- WorkflowEditor

PASS

3 [A1, C1, A4, C3,
A10, A14, A15,
C4, END]

Collaboration involving inter-
dependant work items, allo-
cated at run-time.

- TicketDependency
Plugin

PASS

4 [A1, C1, A4, C2,
C3, A12, A13,
A14, A15, C4,
A7, A8, A9, C3,
A10, A14, A15,
C4, END]

Document and wiki collabora-
tion involving inter-dependant
work items, and simultaneous
management reporting.

- Repo Browser
- Statistics Plugin
- Wiki Module
- Ticket Dependency

PASS

IniAdmin Unit Tests

ID Input Purpose Expected Output Actual Output
IA-1 LOG LEVEL: de-

bug
Legal test case Confirmation of change, ini

file updated.
As expected

IA-2 LOG LEVEL: as-
dghr

Invalid entry Error shown, ini file not
updated

FAIL (file up-
dated)

IA-3 LOG LEVEL set
through File and
WEB UI simulta-
neously

Race case In-determinant As expected



CHAPTER 6. TRACZILLA ANALYSIS 66

Statistics Plugin Unit Tests

ID Input Purpose Expected Output Actual Output
SP-1 Default settings Legal test case Generate 3 month activity

report
As expected

SP-2 Weeks Back =
’abc’

Invalid entry Error shown PASS (input ig-
nored)

SP-3 Default User Re-
port

Legal test case Generate charts for the
most active user

As expected

TicketDependency Plugin Unit Tests

ID Input Purpose Expected Output Actual Output
TD-1 Refers To: ‘#1’,

‘#3’
Legal test case Dependency graph with all

3 nodes shaded red (in
progress)

As expected

TD-2 Refers To = ‘abc’ Invalid entry Should not be possible to
reach this state

As expected

TD-3 Refers To: ‘#1’
[completed]

Boundary case Dependency graph shows
relationship with ticket #1
(related ticket) in green

As expected

DS-1 Search = ‘work-
flow’

Legal test case Return results As expected

DS-2 Search = “’ SE-
LECT * FROM
permission”

Illegal en-
try (SQL
injection)

No results shown As expected

DS-3 Search = ‘’ Boundary case Return error PASS (No results)



CHAPTER 6. TRACZILLA ANALYSIS 67

6.3.2 UC-002: Ad hoc Business Processes

Figure 6.6 below, shows the UML Activity diagram for UC-002. To provide a more realistic
and complete usage scenario, the paths that can be followed also integrate elements from
UC-002 (Work item support), UC-004 (Process support) and UC-006 (Customisation).

Figure 6.6: Ad hoc UML Activity Diagram



CHAPTER 6. TRACZILLA ANALYSIS 68

Paths and Tests

Purpose To test that businesses can use Traczilla for Ad hoc Business Pro-
cesses

Use Case/s UC-002, UC-003, UC-004, UC-006
Pre-condition Administrator has TRAC ADMIN, Manager has WORK-

FLOW ADMIN, and Employee has TICKET ADMIN rights
# Path Description Component/s Outcome
5 [A1, A2, C1, C2,

A13, A14, C3,
END]

Individual (administrative)
work items defined at run-time,
with all work assigned through
ticket system.

- Ticket System PASS

6 [A1, A3, A2, A4,
C1, A6, A7, A8,
A9, A10, C2,
A13, A14, C3,
END]

Ad hoc process defined at run-
time, utilising the Whiteboard
to annotate and assign tickets.

- Ticket System
- WorkflowEditor
- MultiWorkflow
- Whiteboard

PASS

7 [A1, A2, C1, A5,
C2, A11, A12, C3,
C2, A13, A14, C3,
END]

Ad hoc process customised
with additional ticket fields,
also involving management re-
assignment of tickets.

- Ticket System
- CustomField
plugin

PASS

8 [A1, A2, C1, [[A6-
A10]], C2, A13,
A14, C3, , [[A6-
A10]], C2, A13,
A14, C3, END]

Ad hoc process involving sev-
eral iterations, using White-
board to monitor and re-
allocate issues at run-time.

- Ticket System
- Whiteboard

PASS

WorkflowEditor Unit Tests

ID Input Purpose Expected Output Actual Out-
put

WF-1 Create new ticket, TYPE =
”Task” (workflow already de-
fined)

Legal case Use ‘Task’ workflow
definition.

As expected

WF-2 Create ticket, TYPE = ”En-
hancement” (no workflow de-
fined)

Boundary case Use default workflow
definition

As expected

WF-3 Set DEFAULT workflow defi-
nition to: NULL

Illegal case Display error PASS (Reject
input)

WF-4 Set TASK workflow definition
to: NULL

Boundary case Revert to default
workflow definition

FAIL (Input re-
jected)

WF-5 Set DEFAULT workflow def-
inition to: ”asdfasd; asdfjk
dsf”

Illegal case Display error PASS (Reject
input)



CHAPTER 6. TRACZILLA ANALYSIS 69

WF-6 Set TASK workflow definition
to: ”close = new - ¿ closed”

Legal case Update workflow
definition

As expected

WF-7 View graph for created work-
flow definition

Legal case Workflow graph
shown in GraphViz
notation

FAIL
(GraphViz
timeout)

CustomField Plugin Unit Tests

ID Input Purpose Expected Output Actual Output
CF-1 Create new field Legal test case Field added to all tickets As expected
CF-2 Create existing

field
Illegal test case Error shown, field not

added
As expected

CF-3 Remove custom
field

Legal test case Field removed from ticket
display (underlying data
kept)

As expected

6.3.3 Scenario

A real world scenario in which Traczilla would be a suitable tool to manage a dyanmic
business process, would be in an organisation where there is a need to develop an annual
budget (e.g. a Hotel company). Developing an annual budget requires a number of par-
allel and collaborative tasks, including: historical data collection; financial projections;
authorisation of projections; and manipulation of artifacts (such as Budget spreadsheets).
In this scenario, one could use Traczilla by firstly creating a Milestone: “Develop Annual
budget” (this way all activities relating to the budget can be aggregated in the formation
of management reports). Secondly, managers would then assign a ticket (type: user story)
to an employee/team titled: “Collect historical data”. One employee would then take
ownership of this user story and delegate specific tickets (type: task), such as: “Balance
sheet figures”, “Income statement figures”, and “Cashflow statements”.

After delegation of tickets has occurred, the employees who have been assigned tick-
ets, would update the status of the ticket as work is done, and add any artifacts (such
as spreadsheets), to the Repo browser (via SVN), and then link these artifacts to the
ticket. By adding these artifacts through SVN, it also allows other employees who need
to contribute to the the spreadsheet to manipulate the file at the same time, and commit
their changes, without waiting on another employee. A similar process would occur for
“Financial projections”.

The “Authorisation of projections”, would require delegating tickets to management
for authorisation or confirmation that the Budget figures are suitable. One of the major
benefits to utilising Traczilla in this manner is that, once the Annual budget is complete,
management can get detailed statistics on which users performed which tasks, and where
the biggest bottlenecks were in the process. Thus, allowing improvement during the devel-
opment of next years annual budgets.



CHAPTER 6. TRACZILLA ANALYSIS 70

6.4 WorkflowEditor Analysis

Listing from source file workfloweditor.py

# -*- coding: utf -8 -*-

# Created by Shawn McLaren on 2009 -06-24.

# Copyright (c) 2009 Shawn McLaren. All rights reserved.

from trac.core import *
from trac.web.chrome import ITemplateProvider , add_stylesheet , add_script
from trac.admin import IAdminPanelProvider
from trac.web.api import ITemplateStreamFilter , IRequestHandler
from trac.web.chrome import Chrome
from trac.web.href import Href

class WorkflowEditorAdmin(Component):
implements(ITemplateProvider , ITemplateStreamFilter , IAdminPanelProvider)

# ITemplateProvider method

def get_htdocs_dirs(self):
from pkg_resources import resource_filename
return [('workfloweditor ', resource_filename(__name__ , 'htdocs '))]

# ITemplateProvider method

def get_templates_dirs(self):
from pkg_resources import resource_filename
return [resource_filename(__name__ , 'templates ')]

# ITemplateStreamFilter method

def filter_stream(self , req , method , filename , stream , data):
return stream

# IAdminPanelProvider method

def render_admin_panel(self , req , cat , page , path_info):
req.perm.assert_permission('TRAC_ADMIN ')
add_script(req , 'workfloweditor/js/jquery.jqGrid.js')
add_script(req , 'workfloweditor/js/grid/jqModal.js')
add_script(req , 'workfloweditor/js/grid/jqDnR.js')
add_script(req , 'workfloweditor/js/grid/jquery.tablednd.js')
add_script(req , 'workfloweditor/js/ui/ui.core.js')
add_script(req , 'workfloweditor/js/ui/ui.tabs.pack.js')
add_script(req , 'workfloweditor/js/workfloweditor.js')
add_stylesheet(req , 'workfloweditor/css/grid.css')



CHAPTER 6. TRACZILLA ANALYSIS 71

add_stylesheet(req , 'workfloweditor/css/jqModal.css')
add_stylesheet(req , 'workfloweditor/css/ui.tabs.css')
add_stylesheet(req , 'workfloweditor/css/workfloweditor.css')

# Determine the type of workflow

png = ''

url_path = req.path_info.split('/')
if req.path_info.endswith('workfloweditor '):

type=''
else:

type = url_path[3]

if type in ('enhancement ', 'defect ', 'task ', 'testing '):
page_template = 'workfloweditor_admin -%s.html ' % type

else:
page_template = 'workfloweditor_admin.html '

if req.method == 'POST ':
self._update_config(req ,type)

page_param = {}
self._create_page_param(req , page_param , type)

return page_template , {'template ': page_param}

class WorkflowChangeHandler(Component):
implements(IRequestHandler)

# IRequestHandler method

def match_request(self , req):
match = False
if req.path_info.startswith('/admin/ticket/workfloweditor '):

match = True

return match

# IRequestHandler method

def process_request(self , req):
req.send_response(200)
req.send_header('Content -Type ', 'content=text/html; charset=UTF -8')
req.end_headers()
req.write("OK")



Listings

The fragment above, shows the code necessary to render the WorkflowEditor in the Admin
Panel, as shown below in Figure 6.7.

Figure 6.7: WorkflowEditor Screenshot

This workflow definition can be edited in the Grid view, providing a user friendly
interface for rawactions defined by trac. The syntax for these workflow definitions involves
the following operations:

� del owner: Clear the owner field.

� set owner: Sets the owner to the selected or entered owner.

� set owner to self: Sets the owner to the logged in user.

� del resolution: Clears the resolution field

� set resolution: Sets the resolution to the selected value.

� leave status: Displays “leave as current status” and makes no change to the ticket.

72



LISTINGS 73

Example:

resolve_new = new -> closed

resolve_new.name = resolve

resolve_new.operations = set_resolution

resolve_new.permissions = TICKET_MODIFY

resolve_new.set_resolution = invalid,wontfix

There are a couple of hard-coded constraints to the workflow. In particular, tickets
are created with status new by default, and tickets are assumed to have a closed state.
Furthermore, the default reports/queries treat any state other than closed as an open state.
Shown below in Figure 6.8 is the default workflow model used (in graph notation), if no
other definition is provided

Figure 6.8: Default workflow definition.



LISTINGS 74

6.5 Summary

In summary, a total of 30 test cases were executed on the Traczilla system. Of these 30
test cases, 3 defects were found and 21 test cases were closed off immediately with no
bugs found. This is equivalent to a 10% defect rate. However, the defects found did not
affect the execution of the use cases, and as such the core functionality that Traczilla was
designed for is unaffected by these defects. Most of the defects found relate to boundary
cases or illegal cases. For instance, the first defect found in the IniAdmin plugin (IA-2), was
because user input was not validated before updating the ini configuration states, leading
to the possibility of illegal states. However, the effort required to remedy this bug did not
appear to be worth the benefit.

The second bug was found in the WorkflowEditor plugin (WF-4), whereby it was not
possible to delete an existing workflow definition for a ticket type. This is is a boundary
case, because the only time a user would need this is if they would need to revert to
the Default workflow. Nonetheless a workaround is still possible, whereby the user can
manually delete the workflow definition from the Ini file, and thereby revert to the default
workflow definition.

The final bug found was also in the WorkflowEditor plugin (WF-7), whereby the graph
component would display intermittant behaviour. That is, some-times working, some-times
not, a diagnosis revealed that the root cause of the problem was a timeout occurring in
the 3rd party utility - GraphViz. No workaround could be found to remedy this problem.
Despite these bugs, the underlying Traczilla functionality is still supported, and the core
features provided in each plugin work as intended.



Part V

Summary

75



Chapter 7

Conclusion

In this final chapter, we summarise our main findings, provide answers to our initial research
questions, and any added insight gained throughout the research, design, and development
phases. We also highlight any implications emerging from the research and development
presented herewith, and end by discussing potential future research avenues.

7.1 Main Findings

The main findings of this Thesis, relate back to the initial research questions, presented
in chapter 1. We provide these research questions below, as well as the answers we have
derived.

7.1.1 Research Question I

Why is current BPM Technology inadequate for managing dynamic business processes?

As stated in chapter 2, the main goals of BPM are traceability, flexibility, and a better
understanding of operations. This understanding and flexibility can be easily supported
in the case of static, well structured business processes. However, these goals are far more
difficult to support when trying to manage dynamic business processes.

The four main categories of BPM technology are: CSCW, Production WfMS, Ad hoc
WfMS, and CHS. Each technology approaches the problem with different sets of tools im-
plemented from different perspectives. Each manages the dependencies between activities
differently in addition to making different philosophical assumptions about how the system
should be used to accomplish work. However, usage has shown that no single system brings
together all the features needed to address the level of flexibility and evolution required to
manage dynamic, real world business processes [7].

76



CHAPTER 7. CONCLUSION 77

What characteristics embody dynamic business processes?

To answer this question, we return to our classification of business processes presented
in chapter 2. Here it was shown that a process may be system-centric, (i.e. performed
automatically by an application); or human centric (i.e., manual tasks involving human
judgment, or manual processing of documents). In addition, a process can be classified
as: production/administrative (i.e. highly-structured); ad hoc (i.e. semi-structured); or
collaborative, where there exists no repeatable patterns or sequences among the tasks, and
participants often need to collaborate to perform the work (i.e. unstructured).

These classifications lead to the conclusion that dynamic business processes can be
characterised as in-frequent and ad hoc, involving unstructured human collaboration.

What problems exist when handling dynamic workflow in current BPM Tools?

CSCW is a technology that is primarily designed with flexibility in mind, and as such
there is at times insufficient structure to maintain clarity and awareness of the underlying
business process. Traditional WfMSs support static workflows, and minor exceptions that
cause variation from pre-defined models well, but this support is not scalable and flexibility
is still deemed insufficient. Ad hoc WfMSs and CHSs, provide a good balance in providing
support and flexibility. However, while these systems represent a promising approach to
coordination, they have yet to be widely adopted.

What are the limitations regarding Email communication?

Email has been the emergent solution to this thorny problem of handling dynamic workflow.
As such, email has evolved from a mere communication system to a means of organizing
workflow, storing information and tracking tasks. However, the vast increase in email
volume and use of email as a multi-functional tool now threatens the productivity gains
once created. As a result, professionals now spend an uncomfortable amount of time
simply organizing and storing email; creating problems for emails involving critical business
processes.

What makes SCM Tools suitable for managing dynamic business processes?

Support for dynamic change in a workflow infrastructure, requires the ability to dynam-
ically change a process’s definition, and the execution model at run-time. This kind of
functionality is built-in to many modern day SCM tools implicitly. Thus adopting such
technology would allow for better adaptation to changing requirements. In addition, the
convenience of artifact tracking and hand-off tools provided by SCM technology, allows
complex, multi-person, ongoing workflow, to be supported without defining all task re-
quirements up-front.

Furthermore, the synonymous goals: flexibility, transparency and control (i.e. struc-
ture). The fact that these tools are used in distributed locations, and that they can provide
traceability from business request to implementation - also support this premise.



CHAPTER 7. CONCLUSION 78

7.1.2 Research Question II

What are the design criteria for a system supporting dynamic business processes?

What functionality is available within current SCM Tools?

Traditional CM is largely focused on change control procedures associated with evaluation,
co-ordination, approval, and implementation of changes. Good status accounting is another
element, providing data capture, data recording, and report generation - useful for gauging
performance characteristics, fine tuning estimation, or identifying bottlenecks. Lastly,
auditing is provided to verify that all issues are solved, and that the proper process has
been followed and proper activities have been applied in solving a particular issue.

This functionality has been best enabled through modern-day developer-oriented SCM
tools, which moved the focus towards: workspace management, version control, and generic
process support. Further advancements were made with the invent of Agile methods, and
the Issue Tracking tools that ensued. In the Trac system for example, users can use
the ticket system to assign tasks, make comments and to discuss issues. This makes
understanding the motivation behind a decision- or implementation choice easier, when
returning to it later.

What additional functionality is needed to manage dynamic business processes?

A more balanced trade-off between flexibility and support was the main functionality,
which came in the form of the WorkflowEditor plugin and the TicketDependency plugin. In
addition, functionality was needed for facilitating human co-ordination and collaboration,
which came in the form of integrating a Wiki, and a Virtual Whiteboard.

Different levels of business process also needed to be identifiable, ranging from high-level
business strategies describing long-term strategic goals, to implemented business processes
prescribing the execution of process activities. This was implemented by adding a milestone
hierarchy to Traczilla.

What are the other design decisions regarding UI design, Database design and
Back-end architecture?

A number of these design decisions were made after the decision to base all development
on the fully functional Trac Issue Tracking solution. This decision was motivated by two
main factors: 1) Trac is a tried and tested solution, offering a higher degree of confidence
in its functionality; and 2) the Back-end component architecture of Trac is easily extended
via plugins.

Thereafter, the design decisions regarding the UI design, involved accepting the knowl-
edge worker as an important source, and allowing total configuration of the Traczilla sys-
tem. The database design was largely based on the Trac database model with only minor
changes needed to make Traczilla more applicable to business users.



CHAPTER 7. CONCLUSION 79

7.1.3 Research Question III

What are the functional and non-functional requirements for the Traczilla System?

A summary of the core requirements and Traczilla implementations is given below:

Design Trait Traczilla Implementation

Run-time dynamism WorkflowEditor, supports binding ticket behaviors and
process elements at run time. Allows on-the-fly compo-
sition and change of workflow definitions.

Configurable execution MultipleWorkflowPlugin, allows execution model to be tai-
lored to individual workflow needs. WhiteboardPlugin, al-
lows execution to be reflexively controlled by human par-
ticipants.

Limits Legal Liability Timeline module & TicketDependencyPlugin, allows for
traceability from business request to implementation.
StatisticsPlugin, visualises reporting data allowing en-
hanced metrics, and measurements for detecting bottle-
necks etc.

Logically decomposable
models

IniAdminPlugin, allows process to be hierarchically decom-
posed into sub-milestones, providing abstraction and sep-
aration of responsibilities and ownership.

Reusable fragments/
components

Development of generalised plugins (e.g. CustomFieldPlu-
gin), with customisable field definitions and coding stan-
dards. N.B: Traczilla plugins may be manipulated and
reused in other components.

Adoption/ Integration Highly componentized open system, supporting adoption
in pieces and integration with tools in different fields.
Views may be tailored to individual participants. Use of
standard protocols and tools for distribution limits buy-in
cost (adoption).

Support for participant
communication

Integration with third party CSCW tools: whiteboard,
wiki, and workflow technology.

Table 7.1: Traczilla design considerations and implemen-
tations.



CHAPTER 7. CONCLUSION 80

7.2 Implications of Research

The main findings of this research, highlight three key points. Firstly, managing dynamic
business processes with current BPM technology (particularly email) is currently ineffec-
tive. Secondly, the main reason behind this ineffectiveness is that a successful integration
of BPM tools has currently not been found. Meaning, lastly, there is a definite potential
to apply SCM tools in the BPM field, as they provide an integration of tools that would
allow businesses to push for further agility - as motivated by the Agile manifesto.

If successful, the implications for this research could be very important for businesses,
as it would represent a new way of communicating and executing work flows for both small
and large companies alike. It would also lower the importance of email communication,
and help businesses to better track issues so that things do not “slip through the cracks”.

7.3 Further Research

There are numerous future research avenues that this study reveals. First and foremost,
is that of simulating a Traczilla case study, in order to gauge exactly how useful this
technology could be for businesses, and also to identify any weak design points that may
need improvement. Gathering information on whether the right balance has been made
between flexibility and structure is also critical. As, in the words of Kammer [23]: “the
most successful technologies are ones where a balance is maintained between unobtrusive
work models and lightweight, lowcost of adoption and usage versus structured, managed
work and reconfigurable collaboration technologies.”

Furthermore, additional research is needed on what is required to enable businesses to
adopt the Traczilla technology. One of the major stumbling blocks is clearly moving organ-
isations away from email communication, which is currently one of the staple components
of any businesses infrastructure. This opens up further research into examining what kind
of preparation and planning is required to enable a successful Traczilla implementation.
At the top of the list is clearly obtaining management support for such a system. However,
there are other barriers to over come as well, such as: technical, cultural, political, risk-
related etc. All of these areas require further examination to determine the exact market
model for Traczilla.

Lastly, the area of business intelligence, is another which offers significant potential for
future Traczilla implementations. Investigation and development in the areas of Process
Mining, Statistical Analysis, and OLAP are key to expanding the market usability and
suitability of Traczilla in the workplace.



Part VI

Appendix

81



Appendix A

BPM Semantics

In this appendix item, we expand on a number of semantic details concerning Business
Process Management. This is included for the interested reading seeking further clarity on
certain aspects of BPM.

A.1 Business Process Lifecycle

The complete BPM lifecycle is shown in figure A.1.

A.1.1 Design

Process Design encompasses both the identification & review of existing processes and the
design & validation of “to-be” processes [39]. Areas of focus include: representation of the
process flow, the actors within it, alerts & notifications, escalations, Standard Operating
Procedures, Service Level Agreements, and task hand-over mechanisms. The purpose of
the process design phase is the identification of those processes an organization wishes to
analyze, redesign, and/or automate [42]. Good design reduces the number of problems
over the lifetime of the process.

A.1.2 Modeling

Modeling (and implementation) takes the theoretical design and firstly maps them using
(semi-)formal modeling methods. Thereafter, simulation techniques are utilised by intro-
ducing combinations of variables, for instance, changes in the cost of materials or increased
rent, that determine how the process might operate under different circumstances 1.

1It also involves running “what-if analysis” on the processes: e.g. “What if I have 75% of resources to
do the same task?” or “What if I want to do the same job for 80% of the current cost?”

82



APPENDIX A. BPM SEMANTICS 83

Figure A.1: Business process management lifecycle, [42]

A.1.3 Enactment

During the process enactment phase the specified process models are transferred into the
operational environments which can either be manual (e.g. via procedure handbooks) or
automated (e.g. via BPM or workflow software) [42]. Process enactment encompasses the
run-time behaviour of business processes, such that instances are initiated at the correct
times to fulfil the business goals of a company. Process enactment ensures that all process
activities are performed according to the execution constraints specified [39].

During business process enactment valuable execution data can also be gathered. One of
the ways to subsequently automate processes is to implement an application that executes
the required steps of the process. However, in practice, these applications rarely execute all
the steps of the process accurately or completely. Another approach is to use a combination



APPENDIX A. BPM SEMANTICS 84

of software and human intervention; however this approach is more complex, making the
documentation process difficult.

As a response to these problems, software has been developed that enables the full
business process (as developed in the process design activity) to be defined in a computer
language which can be directly executed by the computer. The system will either use
services in connected applications to perform business operations (e.g. calculating a re-
payment plan for a loan) or, when a step is too complex to automate, will ask for human
input. Alternatively, business rules can then be used by systems to provide definitions for
governing behavior, and a business rule engine can be used to drive process execution and
resolution. Compared to either of the previous approaches, directly executing a process
definition can be more straightforward and therefore easier to improve. However, automat-
ing a process definition requires flexible and comprehensive infrastructure, which typically
rules out implementing these systems in a legacy IT environment.

A.1.4 Monitoring

Monitoring encompasses the tracking of individual processes, so that information on their
state can be easily seen, and statistics on the performance of one or more processes can
be provided. Monitoring is necessary in order to visualise the status of business process
instances [39]. An example of the tracking is being able to determine the state of a customer
order (e.g. ordered arrived, awaiting delivery, invoice paid) so that problems in its operation
can be identified and corrected. Examples of the statistics are the generation of measures
on how quickly a customer order is processed or how many orders were processed in the
last month. These measures tend to fit into three categories: cycle time, defect rate and
productivity. The degree of monitoring depends on what information the business wants
to evaluate and analyze and how business wants it to be monitored, in real-time or ad-hoc.

A.1.5 Evaluation

During process evaluation, the audit trails produced during the process enactment and
monitoring stages are used for the purpose of process control and improvement. During this
stage data from multiple process instances are aggregated to discover temporal trends and
design flaws. Feedbacks and contingency plans for process improvement can be formulated
based on the results of process measurement and evaluation. [42].

Information extracted from the monitoring phase is evaluated using business activity
monitoring and process mining. Business activity monitoring (BAM) is used to identify
activities that take too long due to a shortage of resources. Process mining is a collection of
methods and tools related to process monitoring. The aim of process mining is to analyze
event logs extracted through process monitoring and to compare them with an ’a priori’
process model. Process mining allows process analysts to detect discrepancies between the
actual process execution and the a priori model as well as to analyze bottlenecks [36].

Ultimately, process evaluation boils down to: retrieving process performance informa-
tion from modeling or monitoring phase; identifying the potential or actual bottlenecks



APPENDIX A. BPM SEMANTICS 85

and the potential opportunities for cost savings or other improvements; and then, applying
those enhancements in the design of the process. Overall, this creates greater business
value.

A.2 Evolution of Workflow Tools

Many types of product in the IT market have supported aspects of workflow functionality
for a number of years, yet it is only comparatively recently that its importance has been
recognised in its own right. The evolution of workflow as a technology has thus encom-
passed a number of different product areas. The following section present a wide range of
the familiar technology that has contributed to the development of modern-day workflow
systems [20].

A.2.1 Image Processing

Workflow has been closely associated with image systems for many years and nowadays
many image systems have workflow capability either built-in or supplied in conjunction
with a specific workflow product. Today there are countless business procedures that in-
volve interaction with paper-based information, which may need to be captured as image
data as part of an automation process. Once paper based information has been captured
electronically as image data, it is often required to be passed between a number of different
participants for different purposes within the process, possibly involving interaction with
other IT applications, thereby creating a requirement for workflow functionality. Image
processing systems were thus one of the early success stories of workflow management tech-
nology, and have been used to great effect in improving the efficiency of many production
workflows.

A.2.2 Document Management

Document management technology was one the first driving forces behind document-centric
workflows (as discussed above). This technology is concerned with managing the lifecycle
of electronic documents, and includes facilities for: managing document repositories dis-
tributed within an organization, routing documents (or even separate parts of documents)
to individuals or; updating documents according to their specific roles relating to a spe-
cific document. Given that a document may form part of a particular business procedure,
“document-centric” workflow technology have proved useful in enhancing the efficiency of
many administrative workflows.

A.2.3 Electronic Mail

Email is an integral tool for many of todays organisations, and provides powerful facil-
ities for distributing information between individuals within an organisation or between



APPENDIX A. BPM SEMANTICS 86

organisations. Thus, email systems have themselves been progressing towards workflow
functionality through the addition of routing commands to define a sequence of recipients
for particular types of mail items in response to some form of identified business procedure.
In the next chapter we return to these “mail-centric” systems, and illustrate the limitations
and drawbacks of utilising email for workflow and task management purposes.

A.2.4 Database Applications

From the early days of databases, emerged support for certain classes of business proce-
dures, i.e. “transactions”. From organisations initial centralised style of working, database
application software has increasingly enabled the distribution of transaction based appli-
cations across a number of computer platforms. Transaction based applications typically
exhibit important characteristics of robustness and support for “atomic” properties of the
transaction; however, they do not typically exhibit a separation between the business pro-
cedure logic and the invocation of the various application tools which may be required to
support individual activities within the business process. Over time, this is leading to a
requirement to consolidate workflow capabilities to control the business procedures with
the ability to invoke traditional transaction application programs for appropriate parts of
the business process. Nonetheless database applications are still one of the firm building
blocks of workflow evolution.

A.2.5 Project Support Software

As discussed in the previous chapter, project support software can be used to handle
complex IT applications and project development. More recently, this technology has
started to provide a form of workflow functionality within the project environment, for
“transferring” development tasks between individuals and routing information between
individuals to support these tasks. In any case this type of software can still be generalised
to support a wider, business-oriented view of processes and a wider range of application
tools - offering a more general workflow capability. As such, a number of the SCM tools
discussed in the previous chapter will be utilised in guiding the design of Traczilla.

A.2.6 BPR and Structured System Design Tools

Business Process Re-engineering tools have provided IT based support for the activities of
analysing, modelling and (re-)defining the core business processes of an organisation and
the potential effects of change in such processes or organisational roles and responsibilities
associated with such processes. This may include analysis of the process structure and
information flows supporting it, the roles of individuals or organisational units within the
process and actions taken in response to different events, etc. A natural extension of such
tools is to facilitate the implementation of the process with IT support infrastructure to
control the flows of work and associated activities within the business process.



Appendix B

SCM Tools

It is an eternal truth that newly written software packages will contain bugs. To track
bugs, many organizations still rely on Word documents and Excel spreadsheets, but these
tactics are inefficient and error-prone to say the least. Issue tracking tools emerged as a
tool which can be used to great effect in software development. As a step towards the
design criteria for Traczilla, we examine Current Off-the-shelf (OTS) SCM software.

In the following sections, we look at three issue-tracking solutions: Bugzilla, Trac, and
JIRA. These products were chosen, as they are among the most widely used issue-tracking
tools in the development community today. Bugzilla is probably the most well-known
of the open source issue-tracking solutions and is used by many high-profile open source
projects such as Mozilla, Apache and Eclipse. It is a mature, feature-rich open source issue-
management solution well-adapted for use in large projects. Trac is another open source
issue-tracking system, but with a different approach. Trac is a lightweight, minimalistic
solution, designed to allow effective issue management with as little overhead as possible. It
also boasts excellent integration with Subversion. And JIRA is a well-regarded commercial
product widely used in the Java community, especially among open source products.

B.1 Bugzilla

Bugzilla is one of the original Web-based general-purpose bugtracking and testing tools,
and is probably the most well-known of the open source issue-management tools. It is used
on many open source projects such as Mozilla, Eclipse, and many Linux distributions, and
is well-adapted to large, open projects. It is designed to allow individuals or groups of
developers to keep track of outstanding bugs in their product effectively. In its standard
form, Bugzilla has arguably one of the ugliest and most convoluted Web sites. However,
it is functional.

87



APPENDIX B. SCM TOOLS 88

B.1.1 Synopsis

Bugzilla is powerful and flexible, and fits well into a multi-project environment. It allows
management of multiple products, optionally grouping related projects. To assist project
management and quality assurance, one can also define components, versions, development
milestones and release versions. Given Bugzilla’s origins as an issue-management system
for open source projects, it is, by default, quite open about security: users can usually
create an account themselves and create and access bugs for any project. If need be,
however, it does allow one to restrict user rights to certain projects or create groups so
that certain products or bugs can only be seen by certain people.

Figure B.1: The Advanced Search in the Eclipse Bugzilla database.

B.1.2 Search functionality

Given that Bugzilla is a product that manages systems containing literally hundreds of
thousands of bugs, Bugzilla has powerful, if not particularly user friendly, search features.
Users can search for existing issues using either a simple and convenient keyword-based
search with optional filtering by product or by status, or by using the more sophisticated
Advanced Search, where you can filter on virtually any field in the database (see Fig-
ure B.1).



APPENDIX B. SCM TOOLS 89

B.1.3 Change management

Although the interface is rudimentary and lacks many of the niceties of more recent tools,
entering a new issue in Bugzilla is relatively straightforward. After selecting the buggy
product, the bug details screen appears. Out of the numerous fields, only the Summary
and Component fields are actually mandatory. Other details can be optionally provided,
such as a version number (the version of the product in which the bug was found), severity
of bug, platform, a target milestone, and so on. Users can also assign a bug directly to
a developer (if it is known who will be working on it), or wait for it to be picked up by
some-one.

B.1.4 Workflow support

Bugzilla supports a fairly complete, albeit hard-coded workflow model (see Figure B.2).
The typical life of a bug goes something like this: A tester (or user) creates a new bug.
New bugs are created either as unconfirmed, new, or assigned. Typically, a developer will
accept a bug (or assign it to someone else). Once the developer has corrected the bug, he
or she can mark it as resolved, specifying how it was resolved: fixed, invalid (not a bug),
duplicate, won’t fix, and the (in)famous “works for me”. A resolved bug isn’t officially
closed until someone from QA (quality assurance) checks it out. Once QA has confirmed
the correction, the bug becomes verified. It remains in this state until the product release
containing the fix actually ships, at which point, it is closed. Although this workflow model
cannot be customized in Bugzilla, it usually proves sufficient for most organizations.

B.1.5 Reporting

Bugzilla provides some reporting and charting features. Users can generate tables, and
simple bar or pie charts using a screen similar to the Advanced Search screen. However,
to display graphs of data over time, users need to set up special “data sets” that collect
the data on a regular basis.

B.1.6 Summary

Bugzilla is a powerful tool that can help a team get organized and communicate effectively.
It is a tried-and-true solution that supports large projects and user bases. Its workflow
features are more than sufficient for most organizations. On the downside, Bugzilla is
particularly complicated to install and maintain, and the user interface wouldn’t win any
prizes for design or usability. Its reporting features are sufficient, though they are not
particularly user friendly.



APPENDIX B. SCM TOOLS 90

Figure B.2: The Bugzilla life cycle model, [5].

B.2 Trac

Trac is a lightweight open source, web-based project management tool that integrates
a Wiki, Issue tracking, and Software Configuration Management. It is developed and
maintained by Edgewall Software. Trac uses a minimalistic approach to web-based software
project management, emphasising: ease of use and low ceremony. Hence, Trac is designed
to impose as little as possible on a team’s established development process and policies. It
does not provide as many features as Bugzilla, but it is easy and intuitive to use.

B.2.1 Synopsis

Compared to other issue-management solutions, Trac takes a different approach in several
areas. The first, and possibly the most striking, is that Trac is in fact a wiki1 - meaning
any page can be modified by users with appropriate rights. Wikis are a powerful tool in
today’s corporate world, providing vital support for knowledge management - indeed, with
a minimum of communication and training, every modern organisation could probably put

1A Built-in documentation server



APPENDIX B. SCM TOOLS 91

a wiki to good use. Trac is an excellent wiki for a development team, as it provides seamless
integration between issue and release management, agile team communication techniques
and the source code repository. This leads to the other big innovation in Trac: its close
integration with Subversion2. This allows one to browse the source code repository directly
from within Trac, displaying both the actual source code and the modification history.

Figure B.3: Example of a Trac ticket.

B.2.2 Search functionality

Trac provides a simple but powerful full-text search functionality, which lets users search
not only tickets, but also wiki pages and change-sets. The search also recognizes the Trac
wiki syntax, so users can go directly to a change-set, ticket or report simply by entering its
number. Another way to find tickets is to use the View Tickets view, which contains many
useful predefined reports, such as Active Tickets, My Tickets, or All Tickets by Milestone.
It allows creation of custom queries, which can be built using an intuitive query builder.

B.2.3 Change management

The ticket system is the central element of Trac. Tickets can be used for project tasks,
feature requests, bug reports, and software support issues. Trac also allows users to easily
reconcile overlapping tickets (where more than one person reports the same thing). Enter-
ing a new ticket in Trac is easy (see Figure B.4). As mentioned earlier, Trac’s wiki-based
architecture eases the insertion of links to other tickets, change-sets, or to files in the source
code repository. Once the ticket has been created, it can be viewed and updated by other
users.

2A Version control program used in software development



APPENDIX B. SCM TOOLS 92

Figure B.4: Entering a new ticket in Trac.

B.2.4 Workflow support

The workflow support in Trac is lightweight. Once a ticket is created, a ticket can be
assigned to (or accepted by) a user. Once it has been fixed, it is marked as “resolved”.
There is no provision for customised workflow, nor is there a state between “resolved” and
“closed”, where quality assurance can verify the correction, as found in Bugzilla and JIRA.

B.2.5 Reporting

Trac gives users a number of convenient ways to stay on top of events and changes within
a project. Users can set milestones, and view a roadmap of progress towards them (as
well as historical achievements) in summary. There is a timeline of individual changes so
users can see the order of events, starting with the most recent. Trac also supports RSS
for content syndication: allowing people to subscribe to those changes outside Trac itself.

Trac provides many views that make daily issue-management activities easier as well,
so users can easily navigate through the project, going from tickets to revisions to source
code, and so on. The Timeline view is a powerful means of keeping tabs on all changes
and updates. Any activity by users displays here, including activity involving tickets and
changes to the source code repository (see Figure B.5).

The Roadmap view lets users track project progress through milestones (which can
be synonymous with iterations, sprints or cycles). The Roadmap view gives a graphical
view of the number of tickets closed compared to the total number of tickets for each



APPENDIX B. SCM TOOLS 93

Figure B.5: The Trac timeline view.

milestone. Because tickets can represent tasks as well as bugs, this can also be a useful
way to coordinate and track team activity and progress. More sophisticated reporting
features are limited in Trac; there are no fancy graphs or charts, nor can users track ticket
data over time.

B.2.6 Extensionsibility

An added bonus of Trac is that it is easily extensible via extension points provided within
trac.core. The various extension points for the plugin functionality supported by trac are
defined below:

trac.env.IEnvironmentSetupParticipant Allows plugins to participate in the creation
and upgrade of the environment. Can be used to setup additional database tables or
directories needed for the plugin to operate

trac.web.api.IRequestHandler Allows plugins to add handlers for HTTP requests.

trac.web.api.IRequestFilter Allows plugins to add filters to the HTTP requests.

trac.web.chrome.INavigationContributor Allows plugins to extend the navigation
menus of the web interface.



APPENDIX B. SCM TOOLS 94

trac.web.chrome.ITemplateProvider Extension point interface for components that
provide their own ClearSilver templates and accompanying static resources.

trac.perm.IPermissionRequestor Plugins can use this extension point to define addi-
tional ”actions” for the permission system.

trac.timeline.ITimelineEventProvider Allows plugins to contribute events to the time-
line.

trac.mimeview.api.IHTMLPreviewRenderer Allows plugins to provide support for
rendering specific content of a specific type as HTML (used for TracSyntaxColoring
and image preview)

trac.wiki.api.IWikiChangeListener Allows plugins to observe creation, modification
and deletion of wiki pages.

trac.wiki.api.IWikiMacroProvider Allows plugins to contribute WikiMacros to Trac.

trac.wiki.api.IWikiSyntaxProvider Plugins can extend this extension point to add
custom syntax rules to the wiki formatting system. In particular, this allows regis-
tration of additional TracLinks types.

trac.ticket.api.ITicketChangeListener Extension point interface for components that
require notification when tickets are created, modified, or deleted.

B.2.7 Summary

Trac is a solid lightweight issue-management solution well adapted to small teams, espe-
cially when Subversion is used. Trac is fully customisable. Because it’s a wiki, users can
modify the content of every page providing a possibility for knowledge management. Users
can also tailor the look and feel by customizing the main ticket fields such as priorities,
severities and ticket types and adding corporate logos. This customisability added with
the plugin support - makes Trac a very functional and flexible solution.

B.3 JIRA

JIRA is a proprietary enterprise software product, developed by Atlassian, commonly used
for bug tracking, issue tracking, and project management. JIRA is a widely used and
well-regarded commercial issue-management tool used to manage bug tracking for many
large scale open source and public projects. JIRA allows users to prioritise, assign, track,
report and audit their ’issues’: providing support for - software bugs, help-desk tickets,
project tasks or change requests.



APPENDIX B. SCM TOOLS 95

B.3.1 Synopsis

Like Bugzilla, JIRA is well adapted to large projects. JIRA handles multiple projects and
project categories with ease, and allows users to set up permissions and various levels of
security to limit who has access to particular projects, or even particular issues. JIRA
is highly configurable - from directly within the administration screens, users can modify
everything from issue types and priorities to the look and feel of the Web site.

B.3.2 Search Functionality

The JIRA search functionality (see Figure B.6) lets users perform full-text searches with
filtering on key fields such as issue type, status, affected or fix versions, reporter, assignee,
and priorities, as well as by date. The JIRA search is simpler and less cluttered than the
equivalent Bugzilla Advanced Search screen. Search results are displayed in tabular form,
with many visual cues.

Figure B.6: Searching for issues in JIRA.

B.3.3 Change management

Creating new issues in JIRA is easy and requires minimum fuss. The workflow resembles
that used for Bugzilla issues, though with a few minor differences. An “In Progress” bug,
for example, is a bug that has been assigned to someone and is being actively worked on.
Users can also tailor the workflow to their specific needs, by adding or removing steps in
the workflow.



APPENDIX B. SCM TOOLS 96

B.3.4 Workflow support

JIRA makes it easy to follow the entire life of a bug, issue, defect or feature request. The
workflow engine lets users customise the path a bug takes. Using JIRA’s customisable
workflow engine, users can define individual workflows for departments, projects and even
task types. Each workflow can have as many (or as few) steps as required.

B.3.5 Reporting

Reporting in JIRA is limited to search results: there are no graphs or bar charts, and there
is no easy way of keeping track of time-related data such as the number of resolved issues
over time. However, the JIRA user interface is a pleasure to use, and is intuitive. The
home screen contains numerous graphical reports designed to give users a quick overview
of the project’s current status: the list of issues assigned to them, the “in-progress” issues,
the number of open issues grouped by priority, and so on (see Figure B.7). A rich set of
predefined issue filters and reports also eases the discovery of information.

Figure B.7: The JIRA dashboard.

B.3.6 Summary

Jira is more than just an issue tracker, it is an extensible platform that users can customise
to match to their business processes. JIRA lets users manage versions and product releases
in a simple, intuitive manner. Users can define versions, track version releases and release
dates, and generate release notes for a particular version with the list of all fixed and
unresolved bugs for that release. However, as mentioned, JIRA, unlike Bugzilla and Trac,
is a commercial tool. JIRA comes in three versions: standard, professional and enterprise,
with some of the more advanced features such as project categories, configurable workflow
and issue-level security reserved for the higher-level products. Prices range from $1,200 to
$4,800 for a server license.



Appendix C

Traczilla Database Schema

97



APPENDIX C. TRACZILLA DATABASE SCHEMA 98

Figure C.1: Traczilla Database Schema, adapted from [27].



Bibliography

[1] IEEE Std 828-1990. Ieee standard for software configuration management plans.
Spring Software Engineering Standards Collection, April 5 1991. 245 E. 47th St.,
New York, NY.

[2] Dave Abrahams. Trac Component Architecture, July 2007.
http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture.

[3] G. Alonso, D. Agrawal, A. El Abbadi, and C. Mohan. Functionality and Limitations
of Current Workflow Management Systems. IEEE Expert, 12(5):105–111, 1997.

[4] R.M. Baecker. Readings in human-computer interaction: Toward the year 2000. Mor-
gan Kaufmann, 1995.

[5] Matthew P. Barnson. Anatomy of a bug, October 2006.
http://www.bugzilla.org/docs/2.18/html/lifecycle.html.

[6] E.H. Bersoff, V.D. Henderson, and S.G. Siegel. Software configuration management.
ACM SIGSOFT Software Engineering Notes, 3(5):9–17, 1978.

[7] G.A. Bolcer and R.N. Taylor. Advanced workflow management technologies. Software
Process: improvement and practice, 4(3):125–171, 1998.

[8] J. R. Callahan, R. R. Khatsuriya, and R. Hefner. Web-based issue tracking for large
software projects. IEEE INTERNET COMPUTING, 2(5):25–33, Sept.–Oct. 1998.

[9] T.H. Davenport. Process innovation: reengineering work through information tech-
nology. Harvard Business School Press, 1993.

[10] U. Dayal, M. Hsu, and R. Ladin. Business process coordination: State of the art,
trends, and open issues. In Proceedings of the 27th Very Large Databases Conference
(VLDB 2001), 2001.

[11] N. Ducheneaut and V. Bellotti. E-mail as habitat: an exploration of embedded per-
sonal information management. interactions, 8(5):30–38, 2001.

[12] J. Estublier. Software configuration management: a roadmap. In Proceedings of the
conference on The future of Software engineering, pages 279–289. ACM New York,
NY, USA, 2000.

99



BIBLIOGRAPHY 100

[13] M. Fowler and J. Highsmith. The agile manifesto. Software Development, 9(8):28–35,
2001.

[14] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow management:
From process modeling to workflow automation infrastructure. Distributed and parallel
Databases, 3(2):119–153, 1995.

[15] R.B. Grady. Software Failure Analysis for High-Return Process Improvement Deci-
sions. HEWLETT PACKARD JOURNAL, 47:15–24, 1996.

[16] V. Gruhn and J. Urbainczyk. Software process modeling and enactment: an experience
reportrelated to problem tracking in an industrial project. In Software Engineering,
1998. Proceedings of the 1998 International Conference on, pages 13–21, 1998.

[17] C. Hagen and G. Alonso. Exception handling in workflow management systems. IEEE
Transactions on software engineering, 26(10):943–958, 2000.

[18] Brian Hermann and Jim Marshall. Are you ready to deliver? to ship? to test?
Software Technology Support Center, The Defense Journal of Software Engineering,
1998.

[19] J.D. Hole. Email overload in academia. Unknown, 2008.

[20] D. Hollingsworth et al. The workflow reference model. Workflow Management Coali-
tion, 1995.

[21] M. Jansen-Vullers and M. Netjes. Business process simulation–a tool survey. In
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools,
Aarhus, Denmark, October, 2006.

[22] GE Kaiser, IZ Ben-Shaul, SS Popovich, and SE Dossick. A metalinguistic approach
to process enactment extensibility. In Software Process, 1996. Proceedings., Fourth
International Conference on the, pages 90–101, 1996.

[23] P.J. Kammer, G.A. Bolcer, R.N. Taylor, A.S. Hitomi, and M. Bergman. Techniques
for Supporting Dynamic and Adaptive Workflow. Computer Supported Cooperative
Work (CSCW), 9(3):269–292, 2000.

[24] J. Keyes. Software configuration management. Auerbach Publications, 2004.

[25] A. Leon. A Guide to software configuration management. Artech House, Inc. Norwood,
MA, USA, 2000.

[26] A. Leon. Software configuration management handbook. Artech House, Inc. Norwood,
MA, USA, 2004.

[27] Johans Marvin and Taboada Villca. Overview of Trac 0.10 and 0.11 Database Schema,
July 2007. http://trac.edgewall.org/wiki/TracDev/DatabaseSchema.



BIBLIOGRAPHY 101

[28] S. McCready. There is more than one kind of workflow software. Computerworld,
2:86–90, 1992.

[29] C. Mohan. Recent Trends in Workflow Management Products, Standards and Re-
search. NATO ASI SERIES F COMPUTER AND SYSTEMS SCIENCES, 164:396–
409, 1998.

[30] R.S. Pressman and D. Ince. Software engineering: a practitioner’s approach. McGraw-
Hill New York, 1982.

[31] M. Reichert and P. Dadam. ADEPT flexsupporting dynamic changes of workflows
without losing control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.

[32] H.A. Reijers, JHM Rigter, and W.M.P. van der Aalst. The case handling case. Inter-
national Journal of Cooperative Information Systems, 12(3):365–392, 2003.

[33] K.D. Swenson and K. Irwin. Workflow technology: trade-offs for business process re-
engineering. In Proceedings of conference on Organizational computing systems, pages
22–29. ACM New York, NY, USA, 1995.

[34] Walter Tichy, editor. Configuration Management (Trends in software), volume ISBN
0-471-94245-6. John Wiley, 1994.

[35] W.M.P. van der Aalst and T. Basten. Inheritance of workflows: an approach to
tackling problems related to change. Theoretical Computer Science, 270(1-2):125–203,
2002.

[36] WMP van der Aalst, HT de Beer, and BF van Dongen. Process mining and verification
of properties: An approach based on temporal logic. Lecture notes in computer science,
3760:130, 2005.

[37] WMP van der Aalst and S. Jablonski. Dealing with workflow change: identification
of issues and solutions. COMPUTER SYSTEMS SCIENCE AND ENGINEERING,
15(5):267–276, 2000.

[38] W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case handling: A new paradigm
for business process support. Data & Knowledge Engineering, 53(2):129–162, 2005.

[39] M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag Berlin Heidelberg, 2007.

[40] D. Whitgift. Methods and tools for software configuration management. John Wiley
& Sons, Inc. New York, NY, USA, 1991.

[41] S. Whittaker and C. Sidner. Email overload: exploring personal information man-
agement of email. In Proceedings of the SIGCHI conference on Human factors in
computing systems: common ground, pages 276–283, 1996.



BIBLIOGRAPHY 102

[42] M. Zur Muehlen and D.T.Y. Ho. Risk Management in the BPM Lifecycle. In BPM,
pages 454–466. Springer, 2005.


