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Abstract

Inflation is one of the most important indicators of economic activity. An adequate
forecasting model, however, still remains to be found. This paper extends the work of
Medeiros, Vasconcelos, Veiga, et al. (2021) and studies the performance of tree-based ML
methods in forecasting US inflation using high-dimensional data. The data set used consists
of a large number of macroeconomic variables obtained from the FRED-MD database. We
compare and contrast the performance of the standard RF to honest RFs, local linear forests
(LLFs) and macroeconomic random forests (MRFs). Furthermore, we investigate whether
our results hold for two smaller out-of-sample periods. The comparison is based on the
RMSE, MAE and MAD in combination with Diebold-Mariano tests and Model Confidence
Sets. Our results suggest that the forecasts obtained by the LLF are similarly accurate to the
RF forecasts. The MRF, on the contrary, provides less accurate results. These results also
hold for the two alternative samples investigated. The honest RFs only provide forecasts
that are similarly accurate to the RF for one of the subsamples. Even though the tree-
based methods considered in this paper do not outperform the standard RF, their ability to
capture complex interactions of high-dimensional data sets makes them a promising approach
to further improve prediction accuracy for forecasting inflation.

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second
assessor, Erasmus School of Economics. or Erasmus University Rotterdam.
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1 Introduction

Finding an adequate model for forecasting inflation is a recurrent problem in macroeconomics.
Inflation forecasting is especially key for policy makers and economic agents as inflation is an im-
portant measure for economic performance. For central banks, for example, being able to predict
future inflation is crucial for adjusting their monetary policy in order to control inflation. This
high demand for accurate inflation forecasts, has led many economists to search for an accurate
model. Stock and Watson (1999), for example, have investigated the predictive performance
of the Philips curve, Aron and Muellbauer (2013) have evaluated various vector autoregressive
(VAR) models and Banerjee et al. (2014) have used factor-augmented error correction models
to forecast inflation. However, due to the complex dynamics of inflation, a universally reliable
model still remains to be found.

As Medeiros, Vasconcelos, Veiga, et al. (2021) have shown that the random forest (RF) model
outperforms many other machine learning (ML) models in forecasting inflation, we investigate
whether an adjustment to this model leads to improvements in forecasting accuracy. More
specifically, we focus on tree-based methods which were not used in Medeiros, Vasconcelos,
Veiga, et al. (2021), but have recently received increasing attention in the field of economics.
We compare and contrast the predictive performance of three different extensions of the RF
model, namely honest RFs, local linear forests (LLFs), as proposed by Friedberg et al. (2020),
and macroeconomic random forests (MRFs), as proposed by Goulet Coulombe (2020).

As stated by Araujo and Gaglianone (2020), the literature on the use of ML methods for
macroeconomic forecasting is relatively new and rather limited. While the MRF has already
been considered in the context of forecasting inflation, the LLF has not yet been used in this
context to our knowledge. Therefore, this paper adds to existing literature by broadening the
range of ML methods considered for forecasting inflation. We also extend the existing research
concerning the MRF for forecasting inflation by using a substantially larger data set.

The main research question this paper considers is whether the LLFs and the MRFs can out-
perform the standard RF approach in forecasting inflation. Furthermore, we investigate whether
the obtained results hold for different sample periods. We use a high-dimensional data set that
consists of 122 monthly macroeconomic variables, originating from the FRED-MD database pre-
sented by McCracken and Ng (2016). In order to compare the different models, we compute the
root mean squared error (RMSE), the mean absolute error (MAE) and the mean absolute devi-
ation (MAD) for various forecasting horizons. Furthermore, we perform Diebold-Mariano (DM)
tests and construct the Model Confidence Sets (MCSs) as described by Hansen et al. (2011).

Our results suggest that the LLF performs similarly to the standard RF model, but is slightly
less accurate. The forecasts obtained from MRFs are not as accurate as the RF forecasts.
However, as a result of their ability to forecast using large data sets and both the LLF and
the MRF appear to be a promising approach for forecasting inflation using a large number of
macroeconomic covariates. These results also hold for the two subsamples we have investigated.

The outline of the paper is as follows. In Section 2 we present a literature review, followed
by a description of our data set in Section 3. Section 4 provides an extensive description of the
forecasting models and the comparison methods. In Section 5, we present our results and we
terminate our paper with a conclusion and discussion of our results in Section 6.
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2 Literature

As recently highlighted by Goulet Coulombe et al. (2020), ML methods are very useful for macroe-
conomic forecasting due to their ability to capture important nonlinearities. While Ang et al.
(2005) state that the four main methods to forecast inflation are time-series models, structural
models, asset price models and methods using survey-based measures, some promising recent ad-
vances have been made in the area of forecasting inflation using ML methods. Ülke et al. (2018),
for example, show that ML methods beat various time series models in prediction accuracy when
forecasting the core personal consumption expenditure (PCE) inflation. In their analysis, they
use neural networks (NN), artificial neural networks (ANN) and support vector machines (SVM).
Furthermore, Medeiros, Vasconcelos, and Freitas (2016) and Garcia et al. (2017) both show that
the least absolute shrinkage and selection operator (LASSO) model performs well for forecasting
Brazilian inflation. Cheng et al. (2021) uses ML in order to aggregate individual forecasts for
improving US inflation predictions.

A key advantage of ML methods is their ability to capture nonlinearities in large data sets.
Many methods have been proposed to capture nonlinearities in data, such as threshold autore-
gressive models (Hansen, 2011), smooth transition models (Teräsvirta, 1994) and random-walk
time-varying parameters (Primiceri, 2005). However, most of the proposed methods only per-
form well for little data. As stated by Fortin-Gagnon et al. (2018), the use of regression trees is
one of the most promising approaches to introduce nonlinearity in the predictive equation in a
data-rich macroeconomic context.

One of the most popular ML methods for regression and classification problems, is the RF
approach as proposed by Breiman (2001). This tree-based method randomizes both the training
set and the splitting directions. RFs have been investigated extensively over the last decade,
mainly due to their ability to perform well for high dimensional data and their good predictive
performance. Additionally, RFs are convenient to construct as they only depend on few tuning
parameters which can be configured by sensible heuristics (Scornet, 2017 and Liaw and Wiener,
2001). Olson and Wyner (2018) have shown that with a sufficient number of randomly sampled
parameters available for splitting at each node, the RF model is able to adapt well to sparsity
and can successfully eliminate useless predictors. This is in alignment with Friedman et al.
(2001), who state that RFs are relatively immune to the effects of including a large number of
irrelevant features. Moreover, Chen et al. (2019) and Goulet Coulombe et al. (2020) have shown
that the model performs well for macro data in general. However, most of the the theoretical
papers require assumptions that restrict the number of covariates relative to the number of
observations. The paper by Medeiros, Vasconcelos, Veiga, et al. (2021), who have proven RFs to
be very successful in forecasting US inflation, does include a large number of covariates.

One of the key weaknesses of RFs, however, is their inability to capture smoothness. Also
Zhang, Nettleton, et al. (2019) note several drawbacks to the use of RFs. They state that as
RFs are a fully nonparametric predictive algorithm, they lack in incorporating known relations
between the response and the predictor variables. Another shortcoming of the RF model is their
inability to extrapolate. RFs may be unable to accurately predict if predictions are required at
values that fall outside the range of the training data, as the RF predictions are an average of
the previously observed values.
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Since the introduction of the RF model, there have been many methodological and theoretical
advances in this approach, such as quantile regression forests (Meinshausen, 2006), multivariate
random forests (Segal and Xiao, 2011), extremely randomised regression forests (Geurts et al.,
2006) and regression-enhanced s (Zhang, Nettleton, et al., 2019).

Another extension of the RF is the LLF model, which elaborates on the view of RFs as
an adaptive kernel method, as originally proposed by Breiman (2000). This link between RFs
and kernel methods has been studied by many others. Hothorn et al. (2004), for example, have
proposed using weights from survival trees resulting in interesting simulation results, and Athey
et al. (2019) have suggested to use generalised RFs in order to solve heterogeneous estimating
equations. Scornet (2016) provides empirical evidence that estimates obtained through kernels
based on RFs show improvements over RF estimates. LLFs expand this literature by taking the
kernel to estimate a linear model.

While local linear regressions can capture smoothness in low-dimensional models, they have
shown to lose their functionality for high-dimensional data. RFs, on the contrary, perform
particularly well in high-dimensional environments. Banfield et al. (2007) have shown that RFs
provide accurate predictions for high dimensional data. Friedberg et al. (2020) argue that the
combination of local linear regressions and RFs results in a method in which both the adaptivity
of RFs and the smoothness capturing ability of linear regressions is combined. They find that
local linear forests improves substantially over RFs in both predictive performance and accuracy.

Friedberg et al. (2020) state that honesty may increase predictive performance when working
with large sample sizes and weak signals due to its ability to stabilise forests. This is further
substantiated in Appendix B of Wager and Athey (2018), which states that the traditional tree
construction approach may over-represent outliers in the corners of the predictor space when
separating outliers from the data, resulting in a bias especially for large data sets. Honest
prediction avoids this bias by splitting the predictor space into two samples. As macroeconomic
data sets are often available in large sample sizes and are likely to contain weak signals due to
their high dimensionality, honesty could be very well suited for this type of data. However, in
practice, honesty can also worsen predictions. Denil et al. (2014) have shown this for a number
of data sets from the UCI repository.

Another ML model that uses trees with a linear part is the MRF, as proposed by Goulet
Coulombe (2020). This extension to the traditional RF that does not only provide gains in
forecasting accuracy, but also has the benefit of delivering an output that can be easily inter-
preted. Goulet Coulombe has shown this method to outperform many alternative models and
to perform particularly well for inflation. The key difference between the MRF and the RF is
that the plain RF only contains an intercept in each leaf, while the MRF also includes a linear
part. Other economic researchers have also considered incorporating linear parts in trees before,
such as Alexander and Grimshaw (1996) and Wang and Witten (1996). However, these papers
only use the linear part as a way to improve the efficiency of nonparametric estimation, whereas
the linear part of the MRF shows to be much more meaningful when viewing the regression
coefficients as a combination of nonlinear time series models.
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3 Data

Similarly to the research of Medeiros, Vasconcelos, Veiga, et al. (2021), we use the monthly
variables from the FRED-MD database as presented by McCracken and Ng (2016). This data
set is updated in real-time by means of the FRED database and can also be obtained from
McCracken’s website.1

From this data set, only the variables that have no missing observations have been used and
all variables have been treated to obtain stationarity using the transformations as described in
Medeiros, Vasconcelos, Veiga, et al. (2021). The used data set ranges from January 1960 to
December 2015, of which only the variables without missing observations have been taken into
consideration (122 variables). Moreover, this data set is extended by including the correspond-
ing four principal component factors, four lags of each variable and four autoregressive terms.
Therefore, the resulting data set includes 508 variables with 671 observations. A more detailed
explanation of the used variables and their corresponding transformations can be found in Ta-
bles S.1-S.8 of the Supplementary Material of Medeiros, Vasconcelos, Veiga, et al. (2021). The
out-of-sample period extends from January 1990 to December 2015. The inflation in month t,
denoted by πt, is computed as πt = log(Pt)− log(Pt−1), where Pt denotes the CPI price index in
period t. The course of the CPI monthly inflation for the sample of January 1960 to December
2015 is given in Figure 1. Noteworthy are the high peak in August 1973, reaching a value of
1.79%, which DeLong (1996) states to be a result of the memory of the Great Depression. This
memory caused the left and centre to be strongly averse to risking unemployment and eliminated
any mandate the Federal Reserve had for controlling inflation that formed a risk to the unem-
ployment rate. Without this interference of the Federal Reserve, the inflation reached very high
levels during the 1970s. After this period, however, the Federal Reserve regained its mandate
to control inflation by risking unemployment. Figure 1 shows that the inflation slowly declines
again, with the exception of the peak during the recession of 1982. The most prominent outlier
we observe, is the is the sharp decline during the financial crisis of 2008.

Figure 1. Monthly CPI inflation in percentages from January 1960 to 2015 December.

1https://research.stlouisfed.org/econ/mccracken/fred-databases/
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Similar to the methods described by McCracken and Ng (2016), we treat the outlier of
November 2008 by including a dummy variable for November 2008 in all models estimated after
that date. From the graph in Figure 1 it is evident that the inflation volatility during the years
1990 to 2000 is much lower than during the years 2001 to 2015. This is supported by the standard
deviation, which is equal to 0.17% during the first period and 0.32% during the second period.
With this dummy, our data contains a mixture of continuous and categorical variables, for which
tree-based methods perform well. Following McCracken and Ng (2016), the 122 variables used
can be divided into eight groups, each containing variables that are closely related: (1) output
and income; (2) labor market; (3) housing; (4) consumption, orders and inventories; (5) money
and credit; (6) bond and exchange rates; (7) prices; and (8) stock market. As many of the
variables are closely related, local regression adjustments might be useful as stated by Friedberg
et al. (2020).

4 Methodology

Following Medeiros, Vasconcelos, Veiga, et al. (2021), we consider the following model for the
relation between inflation and other macroeconomic variables:

πt+h = Gh(xt) + ut, for h = 1, ...,H, t = 1, ..., T. (1)

Here, πt+h denotes the inflation in month t+h, xt = (x1t, ..., xnt)
′ an n×1 vector of independent

variables and Gh(·) denotes the function describing the relation between the predictors and the
future inflation. Furthermore, ut+h denotes an error term with a mean of zero. For each forecast
horizon h, the mapping Gh(·) differs. Moreover, the function Gh(xt) can be either a single model
or an ensemble of different models. The forecasts are computed using a rolling-window of fixed
length. The inflation forecasts are specified by

π̂t+h = Ĝh,t−Rh+1:t(xt), (2)

where Ĝh,t−Rh+1:t denotes the target function that is estimated based on observations from time
t − Rh + 1 to time t. The variable Rh denotes the size of the window, which depends on the
forecasting horizon and the number of lagged variables that are included in the model.

For all methods, the sample is split into two subsets. The first subset, which doesn’t include
a dummy variable for the observation of November 2008, ranges from January 1960 till December
2000. From this subset, predictions are made for the sample 1990-2001, using a rolling-window
of size Rh = 360−h−p−1, where p denotes the number of lags in the model. The second subset
ranges from January 1960 till December 2015 and predicts inflation for the sample 2001-2015,
using a rolling-window of size Rh = 492− h− p− 1.

As a part of this paper, a replication is done of the results of Medeiros, Vasconcelos, Veiga, et
al. (2021). Of the three benchmark models that they use, we investigate the random walk (RW)
and the autoregressive (AR) model. Furthermore, the shrinkage methods investigated in this
paper are the ridge regression (RR), the least absolute shrinkage and selection operator (LASSO),
the adaptive LASSO (adaLASSO), the elastic net (ElNet) and the adaptive ElNet (adaElNet).
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The factor models considered, in addition to the traditional factor model, are models that use
target factors (T. Factor) and boosted factors (B. Factor). Moreover, we evaluate the averaging
ensemble methods bagging and complete subset regressions (CSR). Lastly, we investigate the
performance of the RF, the honest RF, three types of the LLF, and the MRF. For each model,
we consider twelve forecasting horizons, taking h = 1, ..., 12, and compute the 3-, 6- and 12-
month ahead accumulated forecasts. In order to compute the accumulated inflation forecast over
the following h-months, the individual forecasts are aggregated similarly for all models except
the random walk. All models and methods have been implemented using R.

4.1 Benchmark models

The two benchmark models we investigate are the RW and the AR model. The random walk
forecasts are simply computed as π̂t+h|t = πt, where h denotes the forecasting horizon. The AR
model takes the inflation forecasts to depend on a linear combination of the previous inflation
values and a stochastic term and is often used as a benchmark model when forecasting inflation.
(Stock and Watson, 2008, Hanif and Malik, 2015 and Zhang, Chan, et al., 2020). The order p
of the AR model is determined by evaluating the Bayesian Information Criterion, after which
the model is estimated by ordinary least squares (OLS). A more detailed description of the
benchmark models can be found in Appendix B.2.

4.2 Shrinkage models

Following the approach of Medeiros, Vasconcelos, Veiga, et al. (2021), five different shrinkage
models have been considered. The first is the ridge regression (RR), as proposed by Hoerl
and Kennard (1970). The second and third models are the least absolute shrinkage and selec-
tion operator (LASSO), which was introduced by Tibshirani (1996), and the adaptive LASSO
(adaLASSO), which was proposed by Zou (2006). The adaLASSO model was introduced with
the aim of achieving consistency in model selection, wherefore it includes a weighting parame-
ter originating from a first-step estimation. The fourth shrinkage model is the ElNet approach,
which was introduced by Zou and Hastie (2005) and is a combination of the LASSO and the
RR. Lastly, we consider the adaElNet method. A more detailed description of the benchmark
models can be found in Appendix B.3.

4.3 Factor models

In addition to the traditional factor model approach, as thoroughly explained in Bai (2003), two
adapted factor models have been considered in this paper. The first approach was introduced
by Bai and Ng (2008) and uses a subset of the predictors used in the traditional factor model
approach, such that only the variables with high prediction power are used for forecasting. An
extensive description of the procedure can be found in Medeiros and Vasconcelos (2016), who
have shown that the use of target factors slightly increases the forecasting performance of CPI
inflation relative to the standard factor model. The second adaptation of the factor model, aims
at finding an optimal selection of factors for the predictive regression. We follow the procedure
proposed by Bai and Ng (2008), which uses a boosting algorithm to select both the factors and
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the number of lags and in the model. A detailed description of the factor models can be found
in Appendix B.4.

4.4 Ensemble methods

The ensemble methods that we used are bagging and CSR. The bagging approach was introduced
by Breiman (1996) and combines predictions from models in different bootstrap samples. The
CSR approach was proposed by Elliott et al. (2013) and Elliott et al. (2015) with the aim of
finding a more efficient way to select an optimal subset of the regressors. A more detailed
description of these methods can be found in Appendix B.5.

4.5 Random forests

The RF model has first been proposed by Breiman (2001) as an extension on his prior work on
bagging (Breiman, 1996). For this tree-based method, all trees depend on a collection of random
variables. That is, the forest is grown by combining many randomly constructed regression
trees that form an ensemble, a process called bootstrap aggregating (bagging). This process
reduces variance and also helps to avoid overfitting. The regression trees used are nonparametric
models constructed by a binary recursive partitioning of the predictor space that approximate
an unknown nonlinear function.

In order to understand how the regression tree works, we refer to the example of Hastie et al.
(2001) as reproduced and adjusted by Medeiros, Vasconcelos, Veiga, et al. (2021), which is shown
in Figure 2. Here, a regression problem is displayed, where X1 and X2 are the predictor variables
and the dependent variable is given by Y . In this example, the predictor space is split into two
regression regions at X1 = s1, followed by a split at X2 = s2 in the region to the left of X1 = s1

and a split at X1 = s3 in the region to the right of X1 = s1. Lastly, a split at X2 = s4 divides
the regression region to the right of X1 = s3 into two regions, resulting in a partitioning of five
regions in total, denoted by Rk, for k = 1, ..., 5. The aim of the RF is to estimate a prediction
function f(x) = E[Y |X = xt]. In each of the k regions, the dependent variable Y is assumed to
be predicted by the sample average of its realisations that are contained in region Rk, denoted
by ck.

This recursive binary partition can be represented as a tree, as shown in Figure 2. Here, the
root node is made up of the entire predictor space and the leaves form the final partition of the
predictor space.

Figure 2. Visualisation of a regression tree. Reproduction by Medeiros, Vasconcelos, Veiga, et al.
(2021) of part of Figure 9.2 in Hastie et al. (2001).
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The splits are determined by considering a random subset of m predictors and then selecting
the split that minimizes the sum of squared residuals of the following regression model:

πt+h =
K∑
k=1

ckIk(xt;θk), (3)

where πt+h denotes the dependent variable, xt a set of predictor variables and K the number of
terminal nodes. The indicator function Ik(xt;θk) is defined as

Ik(xt;θk) =

1 if xt ∈ Rk(θk),

0 otherwise.

Here, θk denotes the set of parameters included in the k-th regression. The construction process
of RFs contains two elements of randomness. As discussed in this section, the first element of
randomness manifests itself in the splitting of the nodes, as a random subset of m predictor
variables is considered, which is seperately drawn for each split. Secondly, the RF is constructed
as a collection of regression trees that are all grown from an independent bootstrap sample of the
original data set. We denote the number of bootstrap samples by B. Then for a random subset
of the original covariates, a tree with Kb regions is estimated for each sample b, with b = 1, ..., B.
Applying the forecasts of each tree to the original data and taking the average, gives the final
forecast of the RF, which is specified as

π̂t+h =
1

B

B∑
b=1

[
Kb∑
k=1

ĉkIk(xt;θk,b)

]
. (4)

For the RF, there are three tuning parameters that can be adjusted to improve its performance.
These are the the number of randomly sampled predictor variables available for splitting at each
node, denoted by m, the number of trees grown in the forest, B, and the tree size.

4.6 Local Linear Forests

The local linear forests (LLF) as proposed by Friedberg et al. (2020) are an extension on the
RFs that adapts to smoothness, where the RFs are considered as an adaptive weight genera-
tor. This method, deviating from the traditional approach viewing RFs as an ensemble method,
complements the preceding literature by Athey et al. (2019), Hothorn et al. (2004) and Mein-
shausen (2006). Suppose we have training data (X1, Y1), ..., (Xn, Yn), with Xi the set of predic-
tor variables and Yi the inflation realisations, and we want to estimate the prediction function
πt+h(xt) = E[Y |X = xt]. For each tree b = 1, ..., B in a forest, we define Lb to be the set of
training data that falls in the same leaf as xt. Whereas we had for the RF that the average
prediction was equal to π̂t+h = 1

B

∑B
b=1 π̂b,t+h, this alternative approach uses RF as an adaptive

weight generator. Instead of taking the average of predictions made by individual trees, we
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specify the RF predictions as

π̂t+h =
n∑
i=1

αi(xt)Yi, (5)

in which the forest weight represents the frequency with which the i-th training data point falls
into the same leaf as xt. This weight ai(xt) is equal to

αi(xt) =
1

B

B∑
b=1

Ib(Xi)

|Lb(xt)|
, where Ib(Xi) =

1 if Xi ∈ Lb(xt),

0 otherwise.
(6)

Here, n denotes the number of observations in the training data and Ib(Xi) is an indicator
function. From this formulation follows that 0 ≤ αi(xt) ≤ 1. These weights sum to 1 when given
that there exists a nonempty cell containing x and are all equal to zero otherwise. A derivation
of Equation 5 can be found in Appendix B.6.1.

In order to obtain local linear forests, the weights ai(xt) are used in a local linear regression
model, which was first introduced by Stone (1977). In this paper, we specify the local linear
regression model as follows:(

π̂t+h(xt)

θ̂(xt)

)
= argminπ,θ

{ n∑
i=1

αi(xt)(Yi − πt+h(xt)− (Xi − xt)θ(xt))2 + λ||θ(xt)||22
}
. (7)

Here, the parameter π̂t+h(xt) estimates the prediction function πt+h(xt) and the parameter θ̂(xt)
estimates the correction θ(xt) for the local trend in Xi − xt, for i = 1, ..., n. The last term in
this regression model, λ||θ(xt)||22, represents the ridge penalty, where || · ||22 denotes the squared
Euclidean norm. This ridge penalty shrinks the coefficients, reducing overfitting to the local
trend. If this parameter is parameter is not set to a constant, but tuned automatically, its value
gives an indication whether the smoothness assumption is satisfied for the used data. If λ is very
small, the local regression step is necessary. If it is very large, the squared term in Equation 7 is
zeroed out and a standard RF is returned.

Solving Equation (7) provides a closed-form solution, which can be written as(
π̂t+h(xt)

θ̂(xt)

)
= (∆TA∆ + λJ)−1∆TAY (8)

in matrix form. Here, A is a diagonal matrix with the values of ai(xt) on its diagonal and J

denotes a (d + 1) × (d + 1) diagonal matrix, for which holds that J1,1 = 0 and Ji+1,i+1 = 1.
∆ denotes a regression matrix that is centered and includes an intercept, with ∆i,1 = 1 and
∆i,j+1 = xi,j − xt,j .

In this paper, we investigate three types of LLFs. The first type (LLF1) uses the same
Classification and Regression Trees (CART) splitting procedure as the traditional RFs, which
was proposed by Breiman et al. (1984). To improve the performance of this first local linear forest
model, the procedure of obtaining the weights αi(x0) is adjusted. This tree-splitting procedure
is modified in such a way that it accounts for the use of the estimate of πt+h(xt) from the local
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linear regression. Whereas for the first type of LLF we use the CART procedure, in which the
splits are chosen to minimize the sum of squared errors of the regression in Equation (3), we use
a different procedure for the other two LLFs. In the root node P , the inflation πt+h is estimated
using a ridge regression, as introduced by Hoerl and Kennard (1970), and can be specified as

π̂t+h = α̂P + xTi β̂P , (9)

where α̂P denotes the intercept in the parent node and β̂P is computed as β̂P = (xTPxP +

λJ)−1xTPYP . The residuals Yi − π̂t+h are taken to find the split and construct two child nodes,
using a CART splitting procedure. Afterwards, the resulting child nodes are taken as parent
nodes and for each of these, the ridge regression in Equation 9 and the subsequent CART
procedure are repeated. This procedure regresses out any signal that hypothetically would be
covered by the ridge regression performed in the prediction step.

The difference between the second and third LLFs manifests itself in the ridge penalty λ in
the prediction step in Equation 7. Whereas the ridge penalty for prediction is set to λ = 0.1

for the second LLF (LLF2), it is left unrestricted and tuned automatically for the third LLF
(LLF3). For the first LLF, with weights αi(x0) determined by a CART splitting procedure, the
ridge penalty λ is also left unrestricted.

4.7 Honest Random Forests

In addition to building the RFs using the traditional binary recursive way of sub-sample split-
ting as described in Section 4.5, we also grow trees using an alternative procedure described in
Procedure 1 of Wager and Athey (2018) called honesty. In contrast to the CART splits, the trees
obtained by this double-sample algorithm use a different set of data points from the training data
for constructing the splits and predicting the response Y in each leaf. For each tree, the training
sample is divided into two sub-samples; Ib and Jb. Subsequently, the splits are chosen based on
any data in Jb, but only the covariates X in Ib. For the first step in this splitting procedure, the
tree Tb is chosen based on data from the Jb sample, writing the boolean indicating whether the
points xt and x′ fall into the same leaf of Tb as xt ↔b x

′. Secondly, we define the set of training
data that falls in the same leaf as xt to be equal to Lb(xt) = {i ∈ Ib : xt ↔b Xi} and determine
the forest weights with Equation 6. Finally, the inflation predictions are made using only the
sample Ib. While the LLFs can also be constructed without honestly, we follow the approach of
Friedberg et al. (2020) and grow all LLFs investigated in this paper using honesty.

4.8 Macroeconomic random forests

4.8.1 General Specification

The MRF has been proposed by Goulet Coulombe (2020) as a new model with time-varying
parameters (TVP) to forecast macroeconomic variables. The general model is specified as

Yt = Xtθt + εt, (10)

βt = F(St). (11)
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Here, Yt is a dependent variable and θ a time-varying coefficient. Whereas we set Xt = 1 for the
standard RF, we now specify Xt to determine the time-varying linear model. Xt is taken such
that Xt ⊂ St and is substantially smaller than St. Furthermore, St denotes a set of observed
state variables and F denotes a random forest. If we let J − be a subset of prediction variables,
and l the parent node containing the full sample, the splits in the trees can be determined by
solving the following problem:

min
j∈J−, c∈R

{
min
θ1

∑
{t∈l|Sj,t≤c}

(Yt −Xtθ1)
2 + λ||θ1||22

+ min
θ2

∑
{t∈l|Sj,t>c}

(Yt −Xtθ2)
2 + λ||θ2||22

}
.

(12)

The solution to this problem provides an optimal j∗ and c∗ that determine the optimal predic-
tor variable Sj for splitting and the corresponding split value c of this variable. Afterwards,
the parent node l is split into two child nodes containing a subsample of the predictor space,
denoted by l1 and l2. For each child node, the next split is determined using Equation 12. By
recursively repeating this process, a tree is grown. As proposed by Breiman (2001), we consider
“decorrelated” trees, meaning that at each step in the recursion, a different set of regressors is
taken as potential candidates for the split. This prevents the algorithm from repeatedly choosing
the same optimization route, which further diversifies the trees and reduces computation times.

This recursive splitting of θ0 into θ1 and θ2 eventually results in θt. However, due to the
fact that θt has very few neighbours in its terminal leaf, it has a very low bias, but a very high
variance in a single tree. Therefore, we consider a sufficiently diversified ensemble of trees using
the bagging method of Breiman (1996) in order to avoid overfitting. This approach, in which
the trees are all grown from an independent bootstrap sample of the original data, can result
in large improvements, as has been shown by Breiman (1996) and Grandvalet (2004). Similarly
to the RF approach, the simple average of the single trees can be taken to construct the MRFs.
The bagging method used for the construction of the MRFs is the nonparametric bootstrap as
proposed by MacKinnon (2006). However, to correct for the dependence inherent to time series
data, the bootstrapping procedure is slightly adjusted. As first proposed by Taddy, Chen, et al.
(2015) and Taddy, Gardner, et al. (2015), we view a RF as a sample from a posterior over trees
obtained by a Bayesian bootstrap. From this perspective, the RF predictions are the approximate
posterior mean of a tree functional T , where T is viewed as a Bayesian nonparametric statistic.
However, since this approach requires that the assumption that Zt = [yt Xt St] is an independent
and identically distributed random variable is satisfied, we follow Goulet Coulombe (2020) by
using a block extension in order to be able to use this approach. This block extension is called
the Block Bayesian Bootstrap (BBB) and redefines Z such that it is plausibly independent and
identically distributed. The new variable Z is specified as Zb = [yb:b Xb:b Sb:b], wherefore it holds
that the B blocks are fixed and non-overlapping and B = T

block size . A more detailed description
of the BBB procedure can be found in Appendix A.2 of Goulet Coulombe (2020).
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4.8.2 Model adjustments

The Ridge shrinkage used in Equation 12 causes each time-varying coefficient to be shrunk to
zero at every time t. However, shrinking θt to zero can provoke a substantial bias when, for
example, a process is highly persistent. Therefore, we transform Equation 12 such that the
coefficients change smoothly over time, by shrinking θt to be in the neighbourhood of θt−1
and θt+1 instead of zero. As noted by Goulet Coulombe (2020), this is in alignment with the
view that macroeconomic states, denoted by θt, stay approximately constant for at least a few
consecutive periods. This regularisation transformation is done by, instead of solving many small
ridge problems in each tree, solving many weighted least squares (WLS) problems that include
close-by observations. Close-by observations are in the neighbourhood, with regard to time,
of observations within the current leaf. These observations are included in the estimation of
the WLS problem, but are assigned a smaller weight. This approach has also been recently
investigated by Giraitis et al. (2018) and Petrova (2019) to estimate large VAR models with
TVPs. The details on this regularisation transformation procedure can be found in Appendix
B.6.2.

4.8.3 Choice of Xt and St

In order to construct St, we partly follow the approach of Goulet Coulombe (2020). In addition
to all 508 variables used by Medeiros, Vasconcelos, Veiga, et al. (2021), which includes principal
component factors, lags and autoregressive terms of a set of variables, we also add a time trend
t in order to construct St. As setting X = 1, Yt−1, Yt−2 has shown to produce accurate results in
Goulet Coulombe (2020), we also choose this as our Xt.

4.9 Hybrid linear-random forests

The hybrid linear-random forest models considered are the RF/OLS model and the adaLAS-
SO/RF model. Following Medeiros, Vasconcelos, Veiga, et al. (2021), we use these combined
approaches to be able to make a distinction between the effects of variable selection and nonlin-
earity in forecasting US inflation. The RF/OLS approach is used to test whether nonlinearity
plays a role in the predictive performance of the RF model. In the first step of this method,
the forecasts π̂bt+h are determined for each bootstrap sample b = 1, ..., B. This is done by first
growing a tree with k nodes for each sample b, while saving the N ≤ k split variables, and
then performing OLS on the selected variables. Following Medeiros, Vasconcelos, Veiga, et al.
(2021), we use k = 20 nodes. In the second step of the RF/OLS method, the final forecasts are
determined with π̂t+h = 1

B

∑B
b=1 π̂

b
t+h.

If the results of the RF/OLS model are very similar to the RF model, nonlinearity shows
to be irrelevant, the performance of the RF model can be explained by variable selection and
nonlinearity shows to be irrelevant. However, if the RF/OLS performs better than other linear
models such as bagging, but worse than the nonlinear RF approach, both nonlinearity and
variable selection are important justifications for the performance of the RF model. For the
adaLASSO/RF model, the adaLASSO is used to select the variables and then the forecasts
are estimated by running a RF model on these selected variables. If the results of this hybrid
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approach are very close to those of the RF, this indicates that the variable selection in RF is not
very important, whereas nonlinearity plays an important role.2

4.10 Comparison Criteria and Tests

In order to compare the performance of all models, we used three different comparison criteria:
the root mean squared error (RMSE), the mean absolute error (MAE) and the median absolute
deviation from the median (MAD). These RMSE and MAE are specified as

RMSEm,h =

√√√√ 1

T − T0 + 1

T∑
t=T0

ê2t,m,h and MAEm,h =
1

T − T0 + 1

T∑
t=T0

|êt,m,h|.

As the effect of each error on the RMSE is proportional to the size of the squared error, it
gives errors with large absolute values more weight than errors with small absolute values. By
definition, the MAE is smaller than the RMSE. Therefore, evaluating not only the RMSE, but
also the values of the MAE and MAD gives a more complete representation of the forecasting
accuracy and prevents the results to depend solely on a few large forecasting errors. The MAD,
which is robust to outliers and asymmetric data properties, is specified as

MADm,h = median[|êt,m,h −median(êt,m,h)|].

Following the approach of Medeiros, Vasconcelos, Veiga, et al. (2021), we use the model
confidence sets (MCS) proposed by Hansen et al. (2011) to test whether the forecasts of the
models differ. For each forecasting horizon, we compute the MCSs based on both the tmax and
the tmax statistic as described by Hansen et al. (2011). The MCS procedure orders all models
on forecasting accuracy and, where the model with the highest p-value performs best. Similar
to the application of our paper, Hansen et al. (2011) also apply the MCSs to inflation forecasts.
Furthermore, we evaluate the relative forecasting accuracy between different models through
the Diebold-Mariano (DM) test, introduced by Diebold and Mariano (1995) and a correction
on this test for small samples proposed by Harvey et al. (1997). The DM test has also been
used by Goulet Coulombe (2020), who uses ML methods and Castañeda-Fuentes et al. (2018)
and Gneiting and Thorarinsdottir (2010), who both use this test for evaluating the predictive
performance of models in forecasting inflation.

4.11 Alternative forecasting samples

To evaluate if our results are stable over time and for different sample sizes, we follow Medeiros,
Vasconcelos, Veiga, et al. (2021) by comparing the predictive performance of the above models for
two different forecasting samples. In existing literature, this difference in performance has often
been observed. Stock and Watson (2008), for example, show that Philips curve predictions show
to be more accurate than the UCSV during periods of high volatility, while it is outperformed
in periods of low volatility. d’Agostino et al. (2008) have shown a similar change in results over

2As the RF and the LLF are similar in approach, we did not repeat this experiment for the LLF case, as the
results are likely to be the same.
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different time periods. Similarly to the methods of Medeiros, Vasconcelos, Veiga, et al. (2021),
for which they included the results in Tables S.10 and S.11 of the supplementary material, we
split the full out-of-sample period into two. We compare a period of low inflation volatility,
namely January 1990 to December 2000, to a period with high inflation volatility, namely from
January 2001 to December 2015, and evaluate whether the relative performance of each of the
models stays the same and our results are robust to periods of high volatility.

5 Results

Table 1 shows the forecasting results of the RW model, the AR model, two RFs constructed using
different packages3, a RF constructed using honest estimation, the hybrid linear RF models, the
three types of LLFs and the MRFs constructed with 1 and 8 trees respectively. All values
are obtained by first forecasting inflation over the two out-of-sample periods 1990-2000 (132
predictions) and 2001-2015 (180 predictions)4 and then computing the three evaluation criteria
using all 312 predictions. The first three columns show the average RMSE, MAE and the MAD
of the inflation forecasts over forecasting horizons h = 1, ..., 12 and of the 3-, 6- and 12-month
ahead accumulated forecasts. Columns (4), (5) and (6) show the maximum RMSE, MAE and
MAD over the 15 forecasting horizons and columns (7), (8) and (9) report the minimum RMSE,
MAE and MAD. All values displayed in columns (1)-(9) have been normalised such that the
values of the RW are equal to one. The lowest values for the criteria are shown in bold. Columns
(10), (11) and (12) display the frequency with which each model achieved the lowest value for
the RMSE, the MAE and the MAD respectively. The last two columns report the average p-
values for the MCSs of Hansen et al. (2011) based on the tmax statistic for absolute and square
losses respectively. The results of the MCSs based on the tR statistic can be found in Table 7 in
Appendix A.1, which provide similar findings as the MCSs based on the tmax statistic.

Table 1

Forecasting results for the out-of-sample period from 1990-2015.

Average Maximum Minimum # Minimum MCS
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Model RMSE MAE MAD RMSE MAE MAD RMSE MAE MAD RMSE MAE MAD abs sq
RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 0 0 0.02 0.03
AR 0.84 0.86 0.78 1.22 1.22 1.16 0.75 0.76 0.60 0 0 0 0.14 0.12
RF 0.74 0.74 0.70 0.85 0.81 0.84 0.69 0.67 0.58 0 4 4 1.00 0.68
RF grf 0.72 0.73 0.70 0.85 0.81 0.86 0.67 0.67 0.53 7 7 4 1.00 0.89
Honest RF 0.79 0.83 0.70 1.03 1.17 0.81 0.72 0.72 0.58 0 0 6 0.77 0.25
RF/OLS 0.76 0.78 0.81 0.94 0.97 1.08 0.71 0.71 0.66 1 1 0 0.89 0.54
adaLASSO/RF 0.75 0.75 0.73 0.85 0.82 0.87 0.70 0.68 0.58 0 1 0 0.90 0.57
LLF1 0.72 0.75 0.76 0.88 0.89 0.88 0.66 0.67 0.63 7 2 0 0.95 0.82
LLF2 0.74 0.78 0.82 0.90 0.90 1.06 0.70 0.72 0.67 0 0 0 0.58 0.41
LLF3 0.73 0.77 0.81 0.91 0.92 1.05 0.67 0.70 0.65 2 0 0 0.88 0.55
MRF (B=1) 1.03 1.09 1.07 1.94 1.81 1.79 0.83 0.88 0.79 0 0 0 0.31 0.19
MRF (B=8) 0.77 0.79 0.75 0.94 1.00 1.02 0.72 0.72 0.58 0 0 1 0.70 0.38

When looking at columns (1), (2) and (3), we find that both standard RFs and LLF1 perform
3We use both packages in order to be able to make an adequate comparison of the standard RF and the honest

RF, which is also implemented with the grf package. The RF constructed with the RandomForest package is
denoted by “RF” in Table 1 and the RF constructed using the grf package is denoted by “RF grf”.

4For the second sample (2001-2015), a dummy is added for the observation in November 2008.
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best in terms of the average of the three evaluation criteria. The RF grf model performs best for
all three criteria, closely followed by the RF and the LLF1 model. The minimum of the criteria
over all horizons, which is reported in columns (7), (8) and (9), shows a similar, but slightly
different pattern. Again we find that the RF and the RF grf perform very similar and that LLF1
performs best in terms of RMSE. When we look at the maximum of the comparison criteria over
all 15 horizons, we find that both standard RFs and the adaLASSO/RF perform best. Again,
the RFs are approximately equally accurate for all three criteria.

Furthermore, it is notable that the honest RF achieves the lowest value of the MAD when
looking at the average and the maximum MAD over all models and all 15 horizons. Moreover,
it has a relatively low value for the minimum MAD and achieves the lowest minimum MAD for
6 of the 15 horizons. This might be caused by the fact that the MAD is more robust to outliers
than the RMSE and the MAE, indicating that the honest RF forecasts contain a substantial
amount of outliers and are probably less biased.

Whereas the RF and the RF grf perform very similar over all criteria, we find from columns
(11)-(14) that the RF grf gives slightly more accurate results, closely followed by the RF and the
LLF1 model. The RF grf achieves the minimum value for each of the three evaluation criteria
over all 15 horizons with the highest frequency and has the highest p-values for the MCSs for
both absolute and square losses. The RF achieves the minimum MAE and MAD for 4 out of 15
horizons, and belongs to the three best models indicated by the MCS tests, with a p-value of 1.00
for the MCSs for absolute losses and a p-value of 0.68 for square losses. While LLF1 performs
very well in terms of the average and minimum RMSE, MAE and MAD, it has relatively high
maximum values. With a p-value of 0.95 for the MCSs for absolute losses and a p-value of 0.82
for square losses, the LLF1 model also belongs to the three best models according to the MCSs.

The MCSs also indicate that both LLF2 and LLF3 perform worse than LLF1. The LLF3
model, in which the ridge penalty for prediction is left unspecified and tuned by the forest,
performs slightly better than the LLF2 model with a ridge penalty λ set to 0.1. That the models
with local linear splits based on ridge residuals performs worse than the LLF with CART splits
suggests that the local linear regression step is not necessary for obtaining accurate results.

Looking at the performance of the two MRFs, we find that the forecasting accuracy improves
substantially as the number of trees increases. Both models perform worse than most of the
other models investigated, which could have been expected since the LLFs and RFs are built
using 2000 and 500 trees respectively, while the MRFs are built using a maximum of 8 trees.

Lastly, we find that, based on the average p-values for the MCSs in columns (13) and (14),
all models perform better than the two benchmark models as they all have higher p-values.

Tables 2 and 3 show the average p-values of the standard Diebold Mariano tests for all 15
horizons. If the null hypothesis of equal forecasting accuracy between two models is rejected at
a 95% confidence interval, this is indicated by one asterisk. If the null hypothesis is rejected at a
99% confidence interval, this is indicated by two asterisks. In Tables 24 and 25 in Appendix A.3,
the values of the Diebold Mariano test with a Harvey, Leybourne and Newbold (HLN) correction
can be found. As these results do not differ substantially from the results in Tables 2 and 3, the
same conclusions can be drawn as from the standard Diebold Mariano tests.
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Table 2

The p-values of the Diebold Mariano tests for absolute losses.

Model RW AR RF RF grf honest RF RF/OLS adaLASSO/RF LLF1 LLF2 LLF3 MRF(B=1)
AR 0.02*
RF 0.00** 0.01**
RF grf 0.00** 0.01** 0.41
honest RF 0.04* 0.14 0.06 0.10
RF/OLS 0.03* 0.06 0.20 0.21 0.64
adaLASSO/RF 0.00** 0.02* 0.43 0.36 0.25 0.39
LLF1 0.00** 0.10 0.65 0.48 0.33 0.33 0.47
LLF2 0.00** 0.31 0.11 0.09 0.51 0.47 0.23 0.10
LLF3 0.01** 0.18 0.27 0.16 0.56 0.52 0.30 0.28 0.38
MRF (B=1) 0.06 0.52 0.02 0.02 0.33 0.27 0.06 0.15 0.30 0.45
MRF (B=8) 0.07 0.12 0.07 0.21 0.59 0.40 0.23 0.24 0.49 0.57 0.20

Table 3

The p-values of the Diebold Mariano tests for square losses.

Model RW AR RF RF grf honest RF RF/OLS adaLASSO/RF LLF1 LLF2 LLF3 MRF(B=1)
AR 0.05*
RF 0.01* 0.05*
RF grf 0.01* 0.07 0.39
honest RF 0.03* 0.14 0.07 0.18
RF/OLS 0.03* 0.10 0.24 0.21 0.69
adaLASSO/RF 0.01* 0.09 0.40 0.42 0.32 0.34
LLF1 0.02* 0.13 0.49 0.44 0.38 0.33 0.39
LLF2 0.02* 0.26 0.63 0.49 0.63 0.49 0.59 0.36
LLF3 0.02* 0.23 0.68 0.61 0.57 0.49 0.57 0.49 0.53
MRF (B=1) 0.04* 0.38 0.04 0.04 0.31 0.58 0.17 0.13 0.24 0.31
MRF (B=8) 0.02* 0.14 0.16 0.21 0.52 0.64 0.25 0.26 0.40 0.49 0.34

The results in Table 3 suggest that the forecasts of all models are significantly more accurate
than the forecasts of the RW with a 95% confidence level. The p-values based on absolute errors
provide slightly different results. With p-values of 0.06 and 0.07 respectively, the null hypothesis
of equal accuracy is not rejected for the MRF built with 1 tree and the MRF built with 8
trees. Furthermore, we find that the only model that performs significantly better than the AR
model for both the absolute and square losses, is the RF. Between all other models than the two
benchmarks and the RF, the null hypothesis of equal forecasting accuracy can not be rejected
for the test for square losses, indicating that the forecasts of these models are equally accurate.
Furthermore, Table 2 suggests that the LLF1 forecasts are very similar to the RF and RF grf
forecasts, as the DM test provides relatively high p-values when comparing these models.

5.1 Alternative forecasting samples

Tables 4 and 5 show the forecasting results over a period with low inflation volatility (1990-2000)
and high inflation volatility (2001-2015) respectively. From columns (10), (11) and (12) we find
that the RF grf achieves the minimum value of the RMSE, MAE and MAE 7, 11 and 6 times
respectively for the first sample, while it only achieves the minimum 5, 8 and 1 times for the
second sample. This decrease in the number of times the model reaches the mimimum RMSE,
MAE and MAD also holds for the RF. This suggests that the improved performance of the the
RFs over the other models is more evident for periods of low inflation volatility compared to the
other models. However, we do still find for both samples that the RF grf and the RF provide
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the best results. Furthermore, we find that the honest RF and the LLF3 model perform better
relative to the other models during periods of high inflation volatility than during the first sample
period with low inflation volatility as the number of times these models achieve the minimum
RMSE, MAE and MAD increases. This finding is supported by the p-values for the MCSs, which
increase from 0.15 and 0.16 to 0.91 and 1.00 for the absolute and square losses respectively for
the honest RF and from 0.81 and 0.89 to 0.93 and 0.96 for the LLF3 model. This might suggest
that the RF and the LLF3 perform better for periods of high volatility than for periods of low
volatility. However, further research is needed to validate this hypothesis as there are many other
possible explanations for the observed difference in performance between the two samples. It
might also be related to the small size of the sample, resulting in too many parameters to be
estimated relative to the number of number of observation.

We do find that the LLF2 and LLF3 perform better for the two subsamples than for the
full sample in Table 1. The relatively weak performance of the LLF2 and LLF3 model for
the full sample compared the the two subsamples might be caused by the fact that this LLF
extrapolates in cases where it shouldn’t. This extrapolation could be less of an issue for smaller
samples, causing the forecasting accuracy to be higher.

Table 4

Forecasting results for the out-of-sample period from 1990-2000.

Average Maximum Minimum # Minimum MCS
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Model RMSE MAE MAD RMSE MAE MAD RMSE MAE MAD RMSE MAE MAD abs sq
RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 1 0 0.40 0.32
AR 0.90 0.96 0.76 1.24 1.36 1.26 0.78 0.80 0.59 0 0 1 0.60 0.70
RF 0.81 0.85 0.67 0.98 1.15 0.88 0.71 0.75 0.56 2 1 4 1.00 1.00
RF grf 0.79 0.83 0.69 0.93 1.09 0.89 0.72 0.72 0.55 7 11 6 1.00 1.00
honest RF 0.96 1.10 0.64 1.41 1.82 0.80 0.80 0.91 0.53 0 0 2 0.15 0.61
RF/OLS 0.84 0.90 0.87 1.06 1.23 1.15 0.74 0.76 0.70 0 0 0 0.84 0.86
adaLASSO/RF 0.83 0.87 0.72 1.00 1.16 0.88 0.72 0.74 0.54 0 0 0 0.94 1.00
LLF1 0.80 0.86 0.77 0.94 1.13 1.09 0.72 0.75 0.63 5 2 0 1.00 1.00
LLF2 0.86 0.92 0.83 1.04 1.26 1.15 0.74 0.80 0.66 0 0 0 0.89 0.96
LLF3 0.84 0.90 0.88 0.91 1.09 1.35 0.74 0.79 0.75 1 0 0 0.81 0.89
MRF (B=1) 0.93 0.99 0.80 1.21 1.47 1.18 0.80 0.81 0.65 0 0 1 0.29 0.34
MRF (B=8) 0.89 0.95 0.80 1.17 1.40 1.21 0.77 0.82 0.64 0 0 1 0.50 0.55

Table 5

Forecasting results for the out-of-sample period from 2001-2015.

Average Maximum Minimum # Minimum MCS
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Model RMSE MAE MAD RMSE MAE MAD RMSE MAE MAD RMSE MAE MAD abs sq
RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 0 0 0.63 0.89
AR 0.84 0.82 0.80 1.21 1.17 0.94 0.73 0.70 0.62 0 0 0 0.31 0.43
RF 0.72 0.70 0.70 0.87 0.81 0.94 0.68 0.63 0.50 0 1 0 1.00 1.00
RF grf 0.71 0.69 0.68 0.87 0.81 0.84 0.69 0.63 0.53 5 8 1 1.00 1.00
honest RF 0.77 0.74 0.66 0.94 0.95 0.81 0.70 0.65 0.52 0 3 2 0.91 1.00
RF/OLS 0.75 0.74 0.69 0.92 0.89 0.83 0.70 0.67 0.54 1 1 3 0.97 0.91
adaLASSO/RF 0.74 0.71 0.69 0.86 0.81 0.89 0.69 0.65 0.54 1 1 2 1.00 0.98
LLF1 0.71 0.71 0.69 0.91 0.90 0.99 0.78 0.74 0.84 6 0 2 0.93 0.99
LLF2 0.72 0.74 0.71 0.92 0.92 0.97 0.66 0.63 0.49 1 0 2 0.74 0.95
LLF3 0.72 0.72 0.70 0.92 0.91 0.93 0.65 0.66 0.58 1 1 3 0.93 0.96
MRF (B=1) 0.78 0.76 0.70 0.91 0.89 0.80 0.72 0.69 0.52 0 0 0 0.62 0.63
MRF (B=8) 0.76 0.74 0.70 0.88 0.87 0.83 0.71 0.68 0.53 0 0 0 0.86 0.91
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The Diebold Mariano test results for the two different samples can be found in Tables 20-23
in Appendix A.2.

We also included the Diebold Mariano with HLN correction for the two different subsamples
in Tables 26-29 Appendix A.3. Again, we find that the results do not differ substantially from
the results of the standard Diebold Mariano test.

5.2 MCS per horizon

Tables 8-19 in Appendix A.1 show the results of the MCSs per horizon based on both the
tmax and tR statistics for absolute and square losses for the out-of-sample period 1990-2015, the
sample period 1990-2000 and the sample period 2001-2015. These results provide insights in
the difference in performance of the models over different horizons. From Tables 8-11 we find
that the adaLASSO/RF performs best for the 8-month ahead forecasts for the full out-of-sample
period 1990-2015. Furthermore, it is notable that the hybrid linear random forests RF/OLS and
adaLASSO/RF provide the most accurate 1-month ahead forecasts for this sample. Overall, we
find that the RF grf and the RF provide the most accurate forecasts most often, closely followed
by the LLF1 model.

The results for the out-of-sample period 1990-2000, shown in Tables 12-15, indicate that the
LLF1 model performs best for the 3-month ahead accumulated forecasting horizon and the RW
model performs best for the 6-month accumulated forecasting horizon. Again, we find that the
RF grf and the RF provide the most accurate results for most horizons, followed by the LLF1
model.

The out-of-sample period of 2001-2015 provides different results, which are shown in Tables
16-19 of the Appendix. Whereas the honest RF did not provide the most accurate forecasts for
any of the horizons for the other two out-of-sample periods, it does provide the most accurate
results for several horizons for the out-of-sample period 2001-2015, which is in line with the
improved performance of the honest RF found in Table 5. The LLF2 model performs best for
the 12-month accumulated forecasts during the out-of-sample period of 2001-2015. Furthermore,
similar to the findings for the forecasting period 1990-2015, we find that the two hybrid linear
random forests provide the best forecasts for the 1-month ahead horizon.

None of the horizon-specific results found for the full out-of-sample period 1990-2015 is also
true for both subsamples, except for the results that the RF grf and the RF provide the most
accurate forecasts most often, closely followed by the LLF1 model.

5.3 Performance analysis

As also found by Medeiros, Vasconcelos, Veiga, et al. (2021), the forecasting results of the two
hybrid linear random forests in Table 6 of Appendix A show that the RF/OLS forecasts are
more accurate than bagging and less accurate than the RF. Therefore, both variable selection
and nonlinearity play important roles in the performance of the RF.

The performance of the LLF models is dependent on whether the assumption that the data
contains smoothness is satisfied. If this assumption is satisfied, the local regression step could
potentially improve forecasting accuracy. The ridge penalty λ of Equation 7 gives an indication
for the amount of smoothness in our data. Whereas we set λ to 0.1 for LLF2, we left it unspecified
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and automatically tuned for LLF1 and LLF3. For LLF1, the average ridge penalty λ of Equation
7 over all horizons is equal to 0.14. For LLF3, λ has a mean value of 0.18. This value is not
large enough to cancel out the squared term in Equation 7. This is an indication that the local
regression step could potentially be useful and that the data contains a substantial amount of
smoothness.

6 Conclusion

In this paper, we extend the work of Medeiros, Vasconcelos, Veiga, et al. (2021) by analysing the
relative ability of various ML methods to forecast US inflation in a data-rich environment. The
main aim was to investigate whether adaptations to the RF model could improve forecasting
accuracy relative to the standard RFs, providing an extensive overview and comparison of these
methods. Our results suggest that the LLF1 model gives similar, though slightly less accurate
forecasts than the standard RF model, based on on a comparison of the RMSE, MAE and MAD,
the DM test and the MCSs. As the LLF2 and LLF3 model perform worse, our results imply
that the ridge regression for estimation is not necessary in order to obtain accurate results. The
good performance of the LLF1 model could be explained by the fact that the data contains a
substantial amount of smoothness.

From our results we find that the forecasts of the MRF are less accurate than the standard
RF. This can be explained, however, by the fact that we used a very small number of bootstrap
samples B to build the MRFs. Whereas we use B = 8 trees for the MRF, we use B = 500 for the
standard RF, possibly explaining the difference in forecasting accuracy between the two models.
We expect that increasing the number of trees used to build the forests will improve forecasting
accuracy. From this, in combination with the fact that both models can capture complex interac-
tions of large data sets, we conclude that the LLF and the MRF are both promising approaches
that have high potential to further improve forecasting accuracy in a data-rich environment.

This same conclusion that the LLF performs similar to the RF and the MRF produces
relatively weak forecasts holds for the two alternative subsamples investigated.

We find that the forecasting performance of the honest RF is relatively weak compared to
the performance of the standard RF. This weak performance is especially evident during periods
of low inflation volatility. For the period 2001-2015, with higher inflation volatility, we show the
honest RF to perform better, though still slightly worse than the RF.

Improvements to our paper could be made in regard to the tuning parameters of the LLF
models. If the tuning parameters model are set perfectly, the efficiency as well as the forecasting
accuracy of the used models could be improved. For the LLF, alterations to the split cutoff
parameter could potentially increase performance. Although decreasing this parameter results
in a loss of efficiency, it causes the tree to run a regression in smaller leaves instead of using the
regression coefficients of the full data set, which could possibly provide more accurate predictions.
Moreover, the LLFs could have been tuned in such a way that the ridge penalty is standardized
by covariance instead of penalizing all covariates equally.

The MRFs could also be improved by setting the tuning parameters differently. For the
MRF, a larger number of bootstrap samples will very likely result in more accurate predictions.
Furthermore, Goulet Coulombe (2020) highlights that the gains from using MRF are a result
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of a correct specification of Xt for a complex DGP. Therefore, the relatively weak performance
of the MRF could also be caused by a misspecification in Xt. Investigating MRFs with other
specifications of Xt and a larger number of bootstrap samples, could potentially provide better
forecasting results.

That the honest RFs did not perform as well as the standard RFs may be a result of the
tuning parameters used. Especially increasing the number of parameters used for determining
the splits could potentially increase the predictive ability of this method. The fact that local
linear forests do perform well under honest prediction can be explained by the ability of its local
linear corrections to reduce the loss of expressive power caused by honesty.

What should be noted is that our results particularly hold for this data set and sample.
Forecasting inflation using different covariates could lead to very different results. The use of
different intervals, data sets, inflation measures or comparison criteria could also result in a
different outcome. Even though Medeiros, Vasconcelos, Veiga, et al. (2021) have also shown
the results to be similar for the inflation CPI, PCE and CPI core inflation, other research, such
as Fisher et al. (2002), suggests the contrary. Furthermore, other data frequencies could be
investigated. In this paper, we used monthly data, but other results could be obtained from
high frequency data or quarterly data. For making a more general comparison between the
performance of the different forecasting models in forecasting inflation, a multitude of data sets,
data samples and data frequencies should be analysed.

We expect further research in the field of RFs as adaptive kernel methods or other variations
on the RF model to provide promising results that could potentially improve the predictions of the
RF model. Moreover, other methods that can capture smoothness and linear functions could be
investigated. Soft Bayesian Additive Regression Trees (soft BART), for example, which have been
introduced by Linero and Yang (2017), can capture smoothness and sparsity. Other variations
on BART, such as the Model Trees BART, proposed by Prado et al. (2021), or the BART
with Targeted Smoothing of Starling et al. (2020) can also capture local linearities and could
be interesting to further investigate in the context of inflation forecasting with high-dimensional
data.

Further research that could also be insightful is to consider and compare variable importance
for each of the models in order to form a better understanding of the performance results.

The difference in results in this paper and the paper of Medeiros, Vasconcelos, Veiga, et al.
(2021) can be explained by the fact that the codes provided by Medeiros, Vasconcelos, Veiga,
et al. (2021) were not entirely complete. The default settings of the randomForest package have
been used to estimate the RFs. As these default parameter settings might change over time, this
could explain the difference between our results and those of Medeiros, Vasconcelos, Veiga, et al.
(2021). Furthermore, the random seed has not been specified, allowing for deviations in results
due to randomness. Medeiros, Vasconcelos, Veiga, et al. (2021) have used a dummy variable for
the observation of November 2008. However, this could give an inaccurate representation of the
forecasting ability of the models as forecasters would not have known before the event that it
was important. This might make the trained forest less able to predict events. To make sure
that this is not the case, this research could be repeated without the inclusion of the dummy
variable.
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Appendices

A Additional results

Table 6

Forecasting results for the out-of-sample period from 1990-2015.

Average Maximum Minimum # Minimum
Model RMSE MAE MAD RMSE MAE MAD RMSE MAE MAD RMSE MAE MAD
RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 0 0
AR 0.84 0.86 0.78 1.22 1.22 1.16 0.75 0.76 0.60 0 0 0
LASSO 0.78 0.80 0.74 0.98 1.05 0.90 0.72 0.73 0.61 0 0 0
adaLASSO 0.78 0.79 0.76 0.95 0.96 0.98 0.72 0.71 0.63 0 0 0
ElNet 0.78 0.8 0.73 0.98 1.06 0.89 0.73 0.72 0.60 0 0 2
adaElNet 0.78 0.78 0.76 0.96 0.98 0.97 0.73 0.71 0.61 0 0 2
RR 0.76 0.77 0.79 0.89 0.93 1.03 0.70 0.71 0.67 0 0 0
BVAR 0.80 0.82 0.80 1.07 1.09 1.14 0.74 0.73 0.64 0 0 0
Bagging 0.79 0.84 0.89 0.83 0.90 1.16 0.74 0.78 0.74 0 0 0
CSR 0.82 0.82 0.80 1.13 1.11 1.09 0.76 0.74 0.67 0 0 0
Factor 0.84 0.87 0.87 1.17 1.21 1.25 0.78 0.78 0.71 0 0 0
T. Factor 0.83 0.88 0.89 1.17 1.23 1.26 0.77 0.80 0.70 0 0 0
B. Factor 0.83 0.90 0.99 1.17 1.32 1.60 0.74 0.75 0.73 0 0 0
RF 0.74 0.74 0.70 0.85 0.81 0.84 0.69 0.67 0.57 11 13 8
RF/OLS 0.76 0.78 0.81 0.94 0.97 1.08 0.71 0.71 0.66 1 1 0
adaLASSO/RF 0.75 0.75 0.73 0.85 0.82 0.87 0.70 0.68 0.58 3 1 3

A.1 Results Model Confidence Sets

Table 7

The average p-values for the MCSs based on the tR statistic over all horizons.

Out-of-sample period
1990-2015 1990-2000 2001-2015

Model abs sq abs sq abs sq
RW 0.02 0.11 0.28 0.28 0.34 0.84
AR 0.10 0.34 0.23 0.29 0.17 0.39
RF 0.68 0.90 0.56 0.70 0.75 0.98
RF grf 0.87 0.99 0.99 0.97 0.91 0.97
honest RF 0.25 0.40 0.00 0.04 0.80 0.83
RF/OLS 0.57 0.79 0.47 0.57 0.78 0.75
adaLASSO/RF 0.59 0.73 0.67 0.66 0.72 0.84
LLF1 0.79 0.90 0.86 0.92 0.77 0.92
LLF2 0.33 0.70 0.42 0.38 0.43 0.88
LLF3 0.52 0.83 0.58 0.65 0.71 0.97
MRF (B=1) 0.15 0.23 0.15 0.16 0.35 0.39
MRF (B=8) 0.33 0.39 0.20 0.28 0.56 0.55
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Table 8

The p-values for the MCSs based on the tmax statistic for absolute losses obtained from forecasts
over the out-of-sample period from 1990-2015.

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
RW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00
AR 0.22 0.00 0.19 0.23 0.00 0.18 0.33 0.59 0.19 0.21 0.00 0.00 0.00 0.00 0.00
RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
RF grf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
honest RF 0.17 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 0.67 0.99 0.50 0.27 0.00
RF/OLS 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.80 0.68 1.00 0.97 0.00
adaLASSO/RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.43
LLF1 0.26 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LLF2 0.00 0.27 0.33 0.43 0.68 0.80 0.43 0.49 1.00 1.00 0.45 0.47 0.33 1.00 1.00
LLF3 0.00 1.00 1.00 0.80 0.66 0.75 0.97 0.98 1.00 1.00 1.00 1.00 0.99 1.00 1.00
MRF (B=1) 0.46 0.00 0.26 0.99 0.00 0.89 0.27 0.97 0.15 0.59 0.00 0.00 0.00 0.00 0.00
MRF (B=8) 1.00 0.58 0.95 1.00 0.62 1.00 1.00 0.80 1.00 1.00 1.00 0.15 0.30 0.11 0.00
Best model RF RF RF RF grf RF grf RF RF grf RF RF RF grf RF grf RF RF RF grf RF grf

Table 9

The p-values for the MCSs based on the tR statistic for absolute losses obtained from forecasts
over the out-of-sample period from 1990-2015.

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
RW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00
AR 0.00 0.00 0.06 0.05 0.00 1.00 0.07 0.26 0.03 0.06 0.00 0.00 0.00 0.00 0.00
RF 0.80 0.45 1.00 0.52 0.63 1.00 0.23 0.45 1.00 1.00 1.00 1.00 0.14 0.90 0.03
RF grf 1.00 0.45 0.96 1.00 1.00 1.00 1.00 1.00 0.86 1.00 1.00 0.61 0.14 1.00 1.00
honest RF 0.00 0.45 0.84 0.10 0.14 1.00 0.07 0.45 0.17 0.24 0.08 0.08 0.12 0.00 0.00
RF/OLS 1.00 0.45 0.96 1.00 0.74 1.00 0.23 0.45 0.80 0.93 0.37 0.38 0.14 0.06 0.00
adaLASSO/RF 1.00 0.45 0.96 1.00 0.74 1.00 0.23 1.00 0.86 0.05 0.00 0.61 0.14 0.82 0.00
LLF1 0.02 1.00 0.96 1.00 0.74 1.00 0.23 0.45 0.86 1.00 1.00 0.61 1.00 0.90 1.00
LLF2 0.00 0.00 0.03 0.02 0.33 1.00 0.07 0.16 0.73 0.93 0.37 0.20 0.01 0.06 1.00
LLF3 0.00 0.45 0.96 0.10 0.14 0.07 0.07 0.45 0.86 1.00 1.00 0.61 0.14 0.90 1.00
MRF (B=1) 0.09 0.00 0.03 0.52 0.00 1.00 0.06 0.45 0.02 0.08 0.00 0.00 0.00 0.00 0.00
MRF (B=8) 0.02 0.18 0.54 1.00 0.06 1.00 0.23 0.35 0.54 0.24 0.81 0.00 0.04 0.00 0.00
Best model RF/OLS LLF1 RF RF grf RF grf RF RF grf adalasso/RF RF RF grf RF grf RF LLF1 RF grf RF grf

Table 10

The p-values for the MCSs based on the tmax statistic for square losses obtained from forecasts
over the out-of-sample period from 1990-2015.

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
RW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.20 0.00 0.00 0.37 0.26
AR 0.13 0.00 0.39 0.41 0.34 0.30 0.39 0.67 0.65 0.84 0.65 0.00 0.11 0.12 0.00
RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF grf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
honest RF 0.92 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.86 0.82 0.00
RF/OLS 1.00 1.00 1.00 0.82 0.79 0.83 0.78 0.96 0.94 1.00 1.00 0.93 1.00 1.00 0.12
adaLASSO/RF 1.00 0.90 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LLF1 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LLF2 0.25 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.59 1.00 1.00 1.00
LLF3 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83 1.00 1.00 1.00
MRF (B=1) 0.48 0.35 0.21 0.77 0.16 0.18 0.00 0.74 0.00 1.00 0.64 0.00 0.29 0.61 0.00
MRF (B=8) 1.00 0.74 0.93 0.84 0.51 0.96 0.99 0.35 0.27 1.00 1.00 0.00 0.58 0.83 0.00
Best model adalasso/RF RF RF RF grf RF grf RF LLF1 adalasso/RF LLF1 RF RF RF RF RF RF grf
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Table 11

The p-values for the MCSs based on the tR statistic for square losses obtained from forecasts over
the out-of-sample period from 1990-2015.

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
RW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.36 0.00 0.00 0.67 0.32
AR 0.04 0.00 0.53 1.00 0.11 0.37 0.51 0.56 0.71 0.74 0.09 0.00 0.13 0.28 0.00
RF 0.90 0.94 1.00 1.00 0.98 1.00 0.78 1.00 1.00 1.00 0.99 0.58 1.00 1.00 0.35
RF grf 1.00 1.00 1.00 1.00 1.00 0.99 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
honest RF 0.27 0.69 0.79 1.00 0.48 0.42 0.31 0.58 0.40 0.65 0.10 0.13 0.17 0.04 0.00
RF/OLS 1.00 0.88 0.91 1.00 0.84 0.75 0.94 0.90 0.90 1.00 0.96 0.58 0.69 0.28 0.17
adaLASSO/RF 0.87 0.72 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.32 0.14 0.58 0.69 0.53 0.09
LLF1 0.04 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.58 1.00 1.00 1.00
LLF2 0.03 0.04 0.24 1.00 0.48 0.99 0.94 1.00 1.00 0.99 0.96 0.48 0.69 0.67 1.00
LLF3 0.00 0.94 1.00 0.11 1.00 0.99 1.00 1.00 0.90 1.00 1.00 0.58 1.00 1.00 1.00
MRF (B=1) 0.04 0.54 0.15 1.00 0.01 0.09 0.00 0.25 0.00 0.84 0.43 0.00 0.16 0.00 0.00
MRF (B=8) 0.18 0.83 0.76 1.00 0.12 0.46 0.37 0.09 0.11 0.99 1.00 0.00 0.01 0.00 0.00
Best model RF/OLS RF grf RF grf LLF1 LLF1 LLF1 LLF1 adalasso/RF LLF1 RF grf RF grf RF grf RF grf LLF1 RF grf

Table 12

The p-values for the MCSs based on the tmax statistic for absolute losses obtained from forecasts
over the out-of-sample period from 1990-2000.

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
RW 0.16 0.00 0.52 0.00 0.00 0.17 0.00 0.00 0.57 0.83 0.93 0.00 0.89 1.00 1.00
AR 1.00 0.96 1.00 0.71 0.67 1.00 1.00 1.00 0.85 0.62 0.00 0.00 0.19 0.00 0.00
RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF grf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
honest RF 0.88 0.42 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.00 0.00
RF/OLS 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.21 1.00 0.49 0.10
adaLASSO/RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.15 1.00 1.00 0.99 1.00
LLF1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LLF2 1.00 1.00 0.98 0.62 0.85 0.99 0.83 0.90 0.96 1.00 1.00 0.99 1.00 0.46 0.76
LLF3 0.30 0.99 1.00 0.60 0.48 1.00 0.72 0.13 0.87 1.00 1.00 1.00 1.00 1.00 1.00
MRF (B=1) 0.21 0.00 0.41 0.00 0.54 0.44 0.32 0.56 0.61 0.89 0.34 0.00 0.00 0.00 0.00
MRF (B=8) 1.00 0.36 1.00 0.17 0.44 1.00 0.36 0.00 1.00 0.40 1.00 0.25 0.45 0.00 0.00
Best model RF RF RF grf RF grf RF grf RF RF grf RF grf RF grf RF grf RF RF LLF1 RW RF grf

Table 13

The p-values for the MCSs based on the tR statistic for absolute losses obtained from forecasts
over the out-of-sample period from 1990-2000.

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
RW 0.02 0.00 0.49 0.00 0.00 0.10 0.00 0.00 0.10 0.30 0.35 0.00 0.92 1.00 1.00
AR 0.02 0.57 0.76 0.16 0.03 0.55 0.18 1.00 0.02 0.00 0.00 0.00 0.21 0.00 0.00
RF 0.04 0.83 0.76 0.16 0.25 0.55 0.18 1.00 0.10 0.98 0.99 1.00 0.99 0.60 0.01
RF grf 1.00 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00
honest RF 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RF/OLS 0.04 0.42 1.00 0.16 1.00 0.55 0.18 1.00 0.10 0.85 0.56 0.12 0.51 0.56 0.00
adaLASSO/RF 0.04 0.83 0.76 1.00 1.00 0.55 0.18 1.00 1.00 0.00 0.01 0.98 0.96 0.99 0.69
LLF1 0.04 1.00 0.76 1.00 1.00 1.00 0.18 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00
LLF2 0.04 0.14 0.33 0.05 0.18 0.00 0.18 1.00 0.10 1.00 0.96 0.56 0.92 0.11 0.69
LLF3 0.04 0.83 0.76 0.16 0.25 0.55 0.18 0.00 0.10 1.00 0.99 0.98 0.92 0.99 1.00
MRF (B=1) 0.02 0.00 0.28 0.00 0.18 0.02 0.13 1.00 0.01 0.30 0.24 0.00 0.00 0.00 0.00
MRF (B=8) 0.04 0.06 0.76 0.06 0.19 0.55 0.15 0.00 0.10 0.00 0.91 0.04 0.09 0.00 0.00
Best model RF grf LLF1 RF grf RF grf RF grf RF grf RF grf RF grf RF grf RF grf RF grf RF LLF1 RW RF grf
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Table 14

The p-values for the MCSs based on the tmax statistic for square losses obtained from forecasts
over the out-of-sample period from 1990-2000.

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
RW 0.00 0.00 0.36 0.00 0.00 0.13 0.00 0.00 0.47 0.25 0.60 0.00 0.95 1.00 0.97
AR 0.78 0.96 1.00 0.95 0.98 1.00 1.00 1.00 1.00 0.99 0.33 0.00 0.48 0.00 0.00
RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF grf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
honest RF 0.89 1.00 0.92 0.61 0.57 1.00 0.96 0.29 0.87 0.94 0.49 0.00 0.60 0.00 0.00
RF/OLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.40 1.00 0.29 0.28
adaLASSO/RF 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.98 1.00
LLF1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LLF2 1.00 1.00 0.90 0.80 0.91 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.86 0.95
LLF3 0.20 1.00 1.00 0.99 1.00 1.00 0.88 0.42 0.91 1.00 1.00 1.00 1.00 1.00 1.00
MRF (B=1) 0.10 0.19 0.95 0.72 0.50 0.23 0.22 0.27 0.38 1.00 0.39 0.00 0.11 0.00 0.00
MRF (B=8) 1.00 0.49 1.00 0.89 0.23 1.00 0.27 0.00 1.00 0.41 1.00 0.18 0.72 0.00 0.00
Best model RF RF RF RF grf RF grf RF RF grf RF RF grf RF grf RF RF RF RF grf RF grf

Table 15

The p-values for the MCSs based on the tR statistic for square losses obtained from forecasts over
the out-of-sample period from 1990-2000.

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
RW 0.00 0.00 0.42 0.00 0.00 0.14 0.00 0.00 0.37 0.22 0.42 0.00 0.91 0.87 0.86
AR 0.03 0.10 0.94 0.45 0.05 0.95 0.64 0.35 0.37 0.22 0.01 0.00 0.18 0.00 0.00
RF 0.09 0.73 0.94 0.91 0.75 1.00 0.66 0.21 0.56 1.00 0.99 1.00 1.00 0.53 0.09
RF grf 1.00 0.73 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.87 1.00
honest RF 0.00 0.10 0.03 0.07 0.03 0.19 0.13 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
RF/OLS 0.09 0.53 0.94 0.45 1.00 0.95 0.66 0.35 0.56 0.98 0.88 0.35 0.70 0.08 0.07
adaLASSO/RF 0.09 0.73 0.45 1.00 1.00 0.95 0.58 1.00 1.00 0.11 0.59 0.97 0.90 0.48 0.07
LLF1 0.09 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.87 0.86
LLF2 0.09 0.53 0.11 0.01 0.02 0.00 0.05 0.21 0.56 1.00 0.88 0.46 0.90 0.14 0.68
LLF3 0.09 0.10 0.94 0.45 0.75 0.95 0.21 0.11 0.37 1.00 0.99 0.97 1.00 1.00 0.86
MRF (B=1) 0.06 0.10 0.50 0.06 0.01 0.01 0.21 0.11 0.21 0.98 0.10 0.00 0.08 0.00 0.00
MRF (B=8) 0.09 0.03 1.00 0.45 0.03 0.95 0.10 0.00 0.56 0.04 0.88 0.01 0.09 0.00 0.00
Best model RF grf LLF1 RF grf LLF1 RF grf RF LLF1 RF grf RF grf RF grf LLF1 RF LLF1 LLF3 RF grf

Table 16

The p-values for the MCSs based on the tmax statistic for absolute losses obtained from forecasts
over the out-of-sample period from 2001-2015.

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
RW 0.00 0.43 0.61 0.46 0.71 0.79 0.81 0.71 0.67 0.62 0.71 0.76 0.64 0.90 0.69
AR 0.00 0.00 0.11 0.51 0.25 0.18 0.29 0.58 0.46 0.55 0.31 0.44 1.00 0.00 0.00
RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF grf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
honest RF 0.19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.44
RF/OLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.56
adaLASSO/RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LLF1 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LLF2 0.00 0.44 0.48 0.93 1.00 1.00 0.64 0.40 1.00 1.00 0.69 0.84 0.73 1.00 1.00
LLF3 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MRF (B=1) 0.50 0.66 0.93 1.00 0.13 1.00 0.78 1.00 0.51 1.00 0.48 0.14 0.77 0.40 0.00
MRF (B=8) 0.48 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.43 0.10
Best model RF/OLS RF honest RF RF grf RF grf adaLASSO/RF RF grf RF RF RF grf RF RF RF RF RF grf
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Table 17

The p-values for the MCSs based on the tR statistic for absolute losses obtained from forecasts
over the out-of-sample period from 2001-2015.

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
RW 0.00 0.36 0.39 0.34 0.35 0.55 0.51 0.59 0.45 0.14 0.12 0.25 0.69 0.31 0.11
AR 0.00 0.00 0.01 0.36 0.12 0.07 0.13 0.23 0.27 0.53 0.02 0.03 0.77 0.00 0.00
RF 0.43 1.00 0.98 0.87 0.89 0.59 0.70 0.99 1.00 0.97 0.82 0.87 0.77 0.31 0.11
RF grf 1.00 1.00 0.98 1.00 1.00 0.59 1.00 0.94 0.97 1.00 1.00 1.00 1.00 1.00 0.11
honest RF 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.77 0.31 0.01
RF/OLS 1.00 1.00 0.98 0.87 0.78 0.59 0.70 0.87 0.97 1.00 1.00 0.87 0.77 0.22 0.11
adaLASSO/RF 1.00 1.00 1.00 1.00 0.64 0.59 0.70 1.00 1.00 0.78 0.12 0.87 0.77 0.31 0.01
LLF1 0.00 1.00 0.98 1.00 1.00 0.59 1.00 0.98 1.00 1.00 1.00 0.87 0.77 0.31 0.11
LLF2 0.00 0.04 0.08 0.75 0.86 0.59 0.36 0.23 0.98 0.55 0.26 0.38 0.10 0.31 1.00
LLF3 0.00 1.00 0.98 0.87 1.00 0.59 0.70 0.99 1.00 1.00 1.00 0.38 0.77 0.31 0.11
MRF (B=1) 0.21 0.58 0.13 1.00 0.01 0.59 0.47 0.92 0.25 0.77 0.06 0.00 0.21 0.00 0.00
MRF (B=8) 0.02 0.89 0.62 1.00 0.65 0.59 0.70 0.98 0.75 1.00 0.81 0.08 0.24 0.00 0.00
Best model RF/OLS honest RF honest RF RF grf RF grf honest RF RF grf adaLASSO/RF RF RF grf RF grf RF grf RF grf RF grf LLF2

Table 18

The p-values for the MCSs based on the tmax statistic for square losses obtained from forecasts
over the out-of-sample period from 2001-2015.

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
RW 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.44 1.00 0.97
AR 0.27 0.17 0.44 0.50 0.44 0.31 0.51 0.68 0.59 0.68 0.63 0.60 0.17 0.25 0.16
RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF grf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
honest RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.98
RF/OLS 1.00 1.00 1.00 0.81 0.75 0.70 0.87 0.92 0.94 1.00 1.00 1.00 1.00 0.91 0.79
adaLASSO/RF 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 0.99 0.81 1.00 1.00 1.00 1.00
LLF1 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LLF2 0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LLF3 0.34 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MRF (B=1) 0.91 0.71 0.54 0.94 0.51 0.62 0.32 0.91 0.00 0.94 0.66 0.13 0.83 0.63 0.73
MRF (B=8) 1.00 0.98 0.87 0.97 0.96 0.95 1.00 0.87 0.45 1.00 1.00 0.99 1.00 0.70 0.85
Best model adalasso/RF RF RF RF grf RF grf RF LLF1 LLF1 LLF1 RF grf RF RF RF RF grf RF

Table 19

The p-values for the MCSs based on the tR statistic for square losses obtained from forecasts over
the out-of-sample period from 2001-2015.

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m
RW 0.00 0.95 1.00 0.98 0.93 0.97 0.97 0.91 0.94 0.96 1.00 0.82 0.42 0.95 0.77
AR 1.00 0.21 0.32 0.61 0.16 0.30 0.57 0.57 0.68 0.67 0.12 0.11 0.13 0.29 0.16
RF 1.00 1.00 1.00 1.00 1.00 1.00 0.84 1.00 1.00 1.00 1.00 0.82 1.00 1.00 0.98
RF grf 1.00 1.00 1.00 1.00 1.00 0.68 0.87 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.98
honest RF 1.00 0.99 1.00 0.99 0.98 0.92 0.87 0.98 1.00 0.96 0.66 0.82 0.78 0.33 0.19
RF/OLS 1.00 0.98 0.73 0.58 0.68 0.58 0.87 0.89 0.94 0.96 0.99 0.82 0.46 0.39 0.43
adaLASSO/RF 1.00 0.92 1.00 1.00 0.96 0.99 0.97 1.00 1.00 0.90 0.36 0.82 0.97 0.53 0.16
LLF1 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.99 0.82 1.00 1.00 0.98
LLF2 1.00 0.15 0.61 0.99 1.00 1.00 0.87 0.98 1.00 1.00 0.99 0.68 1.00 0.95 1.00
LLF3 1.00 1.00 1.00 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.82 1.00 0.95 0.98
MRF (B=1) 1.00 0.79 0.05 0.87 0.18 0.38 0.08 0.81 0.00 0.58 0.57 0.05 0.52 0.01 0.02
MRF (B=8) 1.00 0.97 0.37 0.84 0.64 0.51 0.97 0.55 0.25 1.00 1.00 0.08 0.08 0.00 0.02
Best model RF/OLS RF grf adalasso/RF LLF1 LLF1 LLF1 LLF1 LLF3 LLF1 RF grf RF grf RF grf RF grf LLF1 LLF2
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A.2 Results Diebold Mariano tests

Table 20

The p-values of the Diebold Mariano tests for absolute losses for the out-of-sample period from
1990-2000.

Model RW AR RF RF grf honest RF RF/OLS adaLASSO/RF LLF1 LLF2 LLF3 MRF(B=1)
AR 0.24
RF 0.07 0.04*
RF grf 0.04* 0.05 0.32
honest RF 0.31 0.21 0.00** 0.01**
RF/OLS 0.16 0.31 0.32 0.22 0.10
adaLASSO/RF 0.18 0.27 0.47 0.30 0.08 0.47
LLF1 0.20 0.33 0.65 0.52 0.05 0.51 0.62
LLF2 0.25 0.53 0.26 0.20 0.34 0.47 0.38 0.15
LLF3 0.26 0.46 0.21 0.18 0.33 0.27 0.48 0.31 0.69
MRF (B=1) 0.28 0.41 0.02 0.01 0.50 0.14 0.13 0.10 0.40 0.42
MRF (B=8) 0.20 0.48 0.10 0.22 0.25 0.36 0.24 0.30 0.47 0.51 0.27

Table 21

The p-values of the Diebold Mariano tests for square losses for the out-of-sample period from
1990-2000.

Model RW AR RF RF grf honest RF RF/OLS adaLASSO/RF LLF1 LLF2 LLF3 MRF(B=1)
AR 0.14
RF 0.08 0.13
RF grf 0.04* 0.14 0.38
honest RF 0.15 0.53 0.00** 0.02*
RF/OLS 0.15 0.34 0.37 0.29 0.13
adaLASSO/RF 0.14 0.38 0.46 0.35 0.24 0.52
LLF1 0.13 0.30 0.75 0.76 0.09 0.45 0.57
LLF2 0.23 0.47 0.36 0.27 0.53 0.57 0.44 0.08
LLF3 0.12 0.47 0.25 0.24 0.52 0.39 0.35 0.20 0.49
MRF (B=1) 0.16 0.36 0.05* 0.03* 0.51 0.10 0.15 0.93 0.37 0.36
MRF (B=8) 0.12 0.50 0.13 0.29 0.44 0.34 0.29 0.22 0.46 0.45 0.20

Table 22

The p-values of the Diebold Mariano tests for absolute losses for the out-of-sample period from
2001-2015.

Model RW AR RF RF grf honest RF RF/OLS adaLASSO/RF LLF1 LLF2 LLF3 MRF(B=1)
AR 0.58
RF 0.04* 0.02*
RF grf 0.05* 0.03* 0.42
honest RF 0.07 0.06 0.51 0.44
RF/OLS 0.34 0.12 0.33 0.35 0.46
adaLASSO/RF 0.06 0.04* 0.41 0.32 0.48 0.40
LLF1 0.06 0.10 0.65 0.63 0.59 0.44 0.45
LLF2 0.38 0.29 0.16 0.19 0.25 0.50 0.22 0.17
LLF3 0.12 0.16 0.45 0.43 0.52 0.61 0.45 0.48 0.32
MRF (B=1) 0.52 0.34 0.14 0.16 0.18 0.50 0.17 0.27 0.35 0.56
MRF (B=8) 0.71 0.09 0.31 0.35 0.35 0.63 0.42 0.44 0.56 0.44 0.34
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Table 23

The p-values of the Diebold Mariano tests for square losses for the out-of-sample period from
2001-2015.

Model RW AR RF RF grf honest RF RF/OLS adaLASSO/RF LLF1 LLF2 LLF3 MRF(B=1)
AR 0.41
RF 0.55 0.06
RF grf 0.41 0.09 0.39
honest RF 0.75 0.13 0.48 0.42
RF/OLS 0.74 0.12 0.32 0.25 0.58
adaLASSO/RF 0.61 0.10 0.44 0.43 0.48 0.35
LLF1 0.40 0.18 0.49 0.44 0.53 0.39 0.42
LLF2 0.39 0.25 0.59 0.54 0.61 0.44 0.60 0.54
LLF3 0.31 0.24 0.64 0.59 0.60 0.43 0.54 0.56 0.55
MRF (B=1) 0.56 0.36 0.09 0.11 0.29 0.52 0.22 0.22 0.27 0.35
MRF (B=8) 0.73 0.13 0.23 0.25 0.48 0.59 0.31 0.30 0.43 0.39 0.39

A.3 Results Diebold Mariano tests with HLN correction

Table 24

The p-values of the Diebold Mariano tests with HLN correction for absolute losses for the out-of-
sample period from 1990-2015.

Model RW AR RF RF grf honest RF RF/OLS adaLASSO/RF LLF1 LLF2 LLF3 MRF(B=1)
AR 0.02*
RF 0.00** 0.00**
RF grf 0.00** 0.01** 0.40
honest RF 0.04* 0.13 0.05 0.09
RF/OLS 0.03* 0.05* 0.19 0.19 0.63
adaLASSO/RF 0.00** 0.02* 0.42 0.35 0.23 0.38
LLF1 0.00** 0.09 0.64 0.47 0.31 0.32 0.46
LLF2 0.00** 0.30 0.10 0.08 0.50 0.46 0.22 0.09
LLF3 0.01** 0.17 0.26 0.14 0.54 0.50 0.29 0.26 0.36
MRF (B=1) 0.06 0.50 0.02* 0.02* 0.32 0.25 0.06 0.14 0.29 0.43
MRF (B=8) 0.07 0.11 0.07 0.19 0.58 0.58 0.22 0.23 0.47 0.56 0.19

Table 25

The p-values of the Diebold Mariano tests with HLN correction for square losses for the out-of-
sample period from 1990-2015.

Model RW AR RF RF grf honest RF RF/OLS adaLASSO/RF LLF1 LLF2 LLF3 MRF(B=1)
AR 0.04*
RF 0.01** 0.04*
RF grf 0.01** 0.06 0.37
honest RF 0.02* 0.13 0.06 0.17
RF/OLS 0.02* 0.09 0.22 0.19 0.68
adaLASSO/RF 0.01* 0.08 0.39 0.41 0.31 0.33
LLF1 0.01* 0.12 0.47 0.43 0.36 0.31 0.37
LLF2 0.02* 0.25 0.62 0.48 0.62 0.48 0.58 0.35
LLF3 0.02* 0.21 0.67 0.59 0.56 0.48 0.56 0.47 0.52
MRF (B=1) 0.04* 0.36 0.03 0.04 0.30 0.39 0.16 0.12 0.23 0.29
MRF (B=8) 0.02* 0.13 0.15 0.19 0.51 0.63 0.24 0.25 0.39 0.38 0.33
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Table 26

The p-values of the Diebold Mariano tests with HLN correction for absolute losses for the out-of-
sample period from 1990-2000.

Model RW AR RF RF grf honest RF RF/OLS adaLASSO/RF LLF1 LLF2 LLF3 MRF(B=1)
AR 0.22
RF 0.06 0.03*
RF grf 0.03* 0.05* 0.30
honest RF 0.29 0.19 0.00** 0.00**
RF/OLS 0.14 0.29 0.29 0.19 0.07
adaLASSO/RF 0.16 0.25 0.45 0.29 0.06 0.45
LLF1 0.17 0.31 0.63 0.50 0.04* 0.49 0.61
LLF2 0.22 0.52 0.23 0.17 0.32 0.44 0.34 0.13
LLF3 0.23 0.43 0.20 0.16 0.30 0.24 0.29 0.29 0.68
MRF (B=1) 0.26 0.38 0.01* 0.01** 0.48 0.10 0.11 0.08 0.38 0.40
MRF (B=8) 0.17 0.47 0.09 0.19 0.23 0.34 0.26 0.27 0.44 0.48 0.27

Table 27

The p-values of the Diebold Mariano tests with HLN correction for square losses for the out-of-
sample period from 1990-2000.

Model RW AR RF RF grf honest RF RF/OLS adaLASSO/RF LLF1 LLF2 LLF3 MRF(B=1)
AR 0.12
RF 0.07 0.12
RF grf 0.03* 0.12 0.35
honest RF 0.13 0.51 0.00** 0.01*
RF/OLS 0.14 0.32 0.34 0.26 0.10
adaLASSO/RF 0.12 0.36 0.44 0.33 0.23 0.49
LLF1 0.10 0.27 0.74 0.75 0.07 0.42 0.56
LLF2 0.20 0.44 0.32 0.24 0.50 0.55 0.40 0.07
LLF3 0.10 0.44 0.22 0.21 0.49 0.36 0.32 0.17 0.47
MRF (B=1) 0.14 0.34 0.04* 0.02* 0.64 0.08 0.13 0.09 0.35 0.43
MRF (B=8) 0.10 0.48 0.11 0.26 0.42 0.32 0.22 0.20 0.43 0.43 0.18

Table 28

The p-values of the Diebold Mariano tests with HLN correction for absolute losses for the out-of-
sample period from 2001-2015.

Model RW AR RF RF grf honest RF RF/OLS adaLASSO/RF LLF1 LLF2 LLF3 MRF(B=1)
AR 0.57
RF 0.03* 0.01*
RF grf 0.04* 0.02* 0.39
honest RF 0.53 0.05 0.50 0.41
RF/OLS 0.31 0.10 0.30 0.32 0.43
adaLASSO/RF 0.04* 0.03* 0.33 0.30 0.32 0.38
LLF1 0.05 0.08 0.63 0.62 0.58 0.42 0.43
LLF2 0.36 0.27 0.14 0.17 0.23 0.49 0.20 0.15
LLF3 0.11 0.14 0.43 0.41 0.50 0.59 0.42 0.47 0.30
MRF (B=1) 0.50 0.31 0.13 0.15 0.17 0.48 0.15 0.25 0.33 0.53
MRF (B=8) 0.62 0.07 0.30 0.32 0.33 0.61 0.39 0.42 0.54 0.41 0.33
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Table 29

The p-values of the Diebold Mariano tests with HLN correction for square losses for the out-of-
sample period from 2001-2015.

Model RW AR RF RF grf honest RF RF/OLS adaLASSO/RF LLF1 LLF2 LLF3 MRF(B=1)
AR 0.38
RF 0.53 0.05
RF grf 0.39 0.07 0.36
honest RF 0.06 0.11 0.45 0.40
RF/OLS 0.73 0.10 0.29 0.23 0.56
adaLASSO/RF 0.60 0.09 0.42 0.42 0.48 0.33
LLF1 0.39 0.16 0.46 0.41 0.52 0.37 0.40
LLF2 0.36 0.22 0.57 0.52 0.59 0.42 0.57 0.53
LLF3 0.29 0.21 0.63 0.57 0.58 0.41 0.52 0.53 0.54
MRF (B=1) 0.52 0.33 0.08 0.09 0.27 0.51 0.21 0.20 0.25 0.32
MRF (B=8) 0.71 0.11 0.22 0.23 0.46 0.57 0.29 0.28 0.41 0.24 0.38

B Model specification

B.1 Tuning parameters and packages

For all replication models shown in Table 6, we used the tuning parameters as described in
Medeiros, Vasconcelos, Veiga, et al. (2021). In order to obtain similar results for the RF obtained
from the grf package as for the RF obtained from the RandomForest package, we set the
number of trees used for each forest to 500, the number of trees grown on each subsample equal
to 1 and the number of variables tried for each split equal to the number of covariates divided
by 3. These same settings were used for the honest RF. For the LLFs, we used the default
parameters of the grf package for the LLF1 model. For the LLF2, we set the tuning parameters
such that the model remained efficient for the large data set we used. Therefore, we set the
ridge penalty for prediction to λ = 0.1 and the split cutoff parameter to 50. For LLF3, we also
set the split cutoff parameter to 50, but we set the. Setting the split cutoff parameter to 50
means that when leaves reach a size of 50, regression coefficients of the full data set are used for
splitting. For the other tuning parameters, the default settings were used. The MRF package
by Goulet Coulombe (2020) was used for the MRFs. We set the trend.push parameter to 4,
as Goulet Coulombe (2020) states that this is sensible for macro data. Furhtermore, we set
the fraction of all variables in St considered for each split to 0.15, as this is useful for efficient
estimation when St contains many correlated variables. We also increase efficiency by setting
the quantile.rate variable to 0.3, such that one out of every three splitting points is considered
for splitting instead of all splitting points.

B.2 Benchmark models

B.2.1 Random walk model (RW)

The first benchmark is given by the random walk (RW) model, which is defined as π̂t = πt−h+ut.
Here the error terms ut are an independent and identically distributed white noise series with
a mean of zero. The forecasts of the RW model are specified as π̂t+h|t = πt, for h = 1, ..., 12.
Here, π̂t+h is the h-month ahead inflation forecast and πt represents the inflation at time t.
The cumulative h-month ahead forecast is given by π̂t+1:t+h|t = πt−(h−1):t, with πt−(h−1):t the
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accumulated inflation over the h months preceding month t.

B.2.2 Autoregressive model (AR)

As a second benchmark model, an autoregressive (AR) model is used with lag order p. This
model is specified as follows:

πt = c+ φ1,hπt−1 + ...+ φp,hπt−p + εt, for h = 1, ..., 12. (13)

The residuals εt are assumed to follow a white noise process. In order to determine the number
of lags p, ordinary least squares (OLS) is performed and the values of the Bayesian Information
Criterion (BIC) are compared for different lags. The inflation forecasts of the AR model for
each horizon are specified as π̂t+h|t = c+ φ1,hπt + ...+ φp,hπt−p+1. Aggregating these individual
forecasts gives the accumulated forecasts.

B.3 Shrinkage models

For the shrinkage models, we formulate Gh(xt) from Equation 1 as a linear combination of
covariates, thus Gh(xt) = β′hxt. We specify the estimate of the parameter β as

β̂h = arg min
βh

[
T−h∑
t=1

(yt+h − β′hxt)2 +

n∑
i=1

p(βh,i;λ, ωi)

]
, (14)

where horizon h takes on values h = 1, ..., 12, T denotes the total number of observations and n
the number of covariates. Moreover, p(βh,i;λ, ωi) denotes a penalty function depends on both a
penalty parameter λ and a weight ωi > 0.

B.3.1 Ridge regression (RR)

For the RR, proposed by Hoerl and Kennard (1970), the penalty is specified as

p(βh,i;λ, ωi) = λ
n∑
i=1

β2h,i. (15)

The advantages of the RR are that it has an exact solution that can be easily computed and
that has to ability to shrink the coefficients of less-relevant variables to almost zero.

B.3.2 Least absolute shrinkage and selection operator (LASSO)

The LASSO model proposed by Tibshirani (1996) is given by

p(βh,i;λ, ωi) = λ

n∑
i=1

|βh,i|. (16)

LASSO has the advantage of shrinking irrelevant variables to zero. A disadvantage, however, is
that the consistency of the model selection only applies under very strict conditions.
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B.3.3 Adaptive least absolute shrinkage and selection operator (adaLASSO)

The adaLASSO was proposed by Zou (2006) as a way to achieve consistency for model selection.
To obtain this consistency, a weight parameter originating from a first-step estimation is added
to the LASSO penalty. This results in the following penalty:

p(βh,i;λ, ωi) = λ
n∑
i=1

ωi|βh,i|, (17)

where ωi = |β∗h,i|, with β∗h,i the the first-step estimation coefficient. According to Medeiros
and Mendes (2016), advantages of the adaLASSO over the LASSO method are that it can
handle a larger amount of variables than observations and that it performs well in non-Gaussian
environments and under heteroskedasticity.

B.3.4 Elastic net (ElNet)

ElNet is a generalization that combines both the RR and the LASSO, forming a convex com-
bination of the `1 and `2 norms as described by Zou and Hastie (2005). The penalty is given
by

p(βh,i;λ, ωi) = αλ

n∑
i=1

β2h,i + (1− α)λ

n∑
i=1

|βh,i|, (18)

where α ∈ [0, 1]. The penalty of the adaptive ElNet approach works similar to the adaLASSO.

B.4 Factor models

Bai (2003) provide an extensive theory for factor models. Factor models reduce the dimension
of the model by combining the common terms from all covariates into common factors. These
factors are constructed by computing the principal components of the set of variables t, such that
Pt = Azt. Here, Pt denotes a vector of principal components and A denotes a rotation matrix.
If we use this for the model in Equation 1, we get that xt is equal to πt−j , for j = 0, 1, 2, 3, plus
ft−j , for j=0,1,2,3. Here, ft is defined as a vector containing the first four principal components
of zt.

B.4.1 Target factors

Target factors were proposed by Bai and Ng (2008) as a method to improve the prediction
ability of factor models. The key concept of this model is that it does not include all variables
in zt in order to construct the factors, but selects only the relevant variables with a substantial
forecasting power. In Section 4.3.1 of Medeiros, Vasconcelos, Veiga, et al. (2021), the forecasting
algorithm of this model is described in detail.

B.4.2 Factor boosting

Bai and Ng (2008) also describe a factor model called factor boosting. This model selects the
relevant factors instead of the relevant variables in zt. Following the approach in Section 4.3.2
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of Medeiros, Vasconcelos, Veiga, et al. (2021), we take the boosting procedure of Bai and Ng
(2008) for selecting both the factors and the number of lags in the model.

B.5 Ensemble methods

The term ensemble methods includes all models that compute forecasts as a (weighted) average
of the forecasts of several methods.

B.5.1 Bagging

Bootstrap aggregating, or bagging, has been introduced by Breiman (1996) as a way to combine
the forecasts of an ensemble of methods. In the algorithm, three steps are carried out for B
bootstrap samples. As a first step, OLS is performed with all candidate variables and only
the variables with an absolute t-statistic above threshold c are selected. Secondly, the selected
variables are used to perform an OLS regression. Thirdly, the OLS coefficients from the second
step are used to compute forecasts on the original data set.

As the number of variables is larger than the number of observations, performing OLS in the
first step is unfeasible. To account for this, we follow Medeiros, Vasconcelos, Veiga, et al. (2021)
by, for each sample B, dividing the variables into randomly created groups and carrying out the
first step for each of the groups.

B.5.2 CSR

In order to select an optimal subset of predictors in a computationally efficient way that did
not require testing all possible combinations of regressors, Elliott et al. (2013) and Elliott et al.
(2015) proposed the CSR method. The key concept is to select a number qn and run regressions
with all possible combinations with size q of the n variables. The final prediction is constructed
as an average of the forecasts of these regressions with q covariates. Since this algorithm loses
efficiency for a large number of covariates, an adjustment is necessary. We follow Medeiros,
Vasconcelos, Veiga, et al. (2021) and add two steps prior to performing the CSR algorithm.
First, the t-statistic for the regression of each of the candidate covariates is determined. Second,
the covariates are ranked based on the absolute t-statistics and the ñ most relevant are selected.

B.6 Derivations

B.6.1 LLF weight equation

The predictions of the RF are computed by firstly determining the sum of all values of Yi that
correspond to a training data point Xi that falls into the same leaf as x and dividing this by the
total number of training data points falling in the same leaf as x. Secondly, we take the mean of
all forests b = 1, ..., B, which results in the following final formulation for the RF predictions:

π̂t+h =
1

B

B∑
b=1

n∑
i=1

Yi
Ib(Xi)

|Lb(x)|
=

n∑
i=1

Yi
1

B

B∑
b=1

Ib(Xi)

|Lb(x)|
=

n∑
i=1

αi(x)Yi, (19)
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where the indicator function Ib(Xi) is specified as

Ib(Xi) =

1 if Xi ∈ Lb(x),

0 otherwise.

B.6.2 Regularisation Transformation

The kernel used by WLS assigns a weight of 1 to observation t, a weight of ζ < 1 to observations
t − 1 and t + 1 and a weight of ζ2 to observations t − 2 and t + 2. All other observations are
assigned a weight of zero. As some t’s might qualify to be assigned multiple weights, we take
the maximal allocated weight as the final weight. For a given subsample in leaf l, final weights
w(t; ζ) can thus be specified as

w(t; ζ) =



1, if t ∈ l,

ζ, if t ∈ (l+1 ∪ l−1)/l,

ζ2, if t ∈ (l+2 ∪ l−2)/(l ∪ (l+1 ∪ l−1)),

0, otherwise.

Here, l−1 denotes the set containing each observation from l, but lagged one time period. l+1

denotes the set containing the one step forwarded observations from l. l−2 and l+2 denote
the two-steps lagged and forwarded observations respectively. Furthermore, the parameter ζ
indicates the degree of time-smoothness, for which it holds that ζ < 1. Whereas we had the two
splitting sets l1(j, c) ≡ {t ∈ l|Sj,t ≤ c} and l2(j, c) ≡ {t ∈ l|Sj,t > c} in Equation 12, we expand
these for regularisation by introducing the following two splitting sets:

lRi (j, c) ≡ li(j, c) ∪ li(j, c)−1 ∪ li(j, c)+1 ∪ li(j, c)−2 ∪ li(j, c)+2,

with lR1 (j, c) and lR2 (j, c) the splitting sets after regularisation. The splits can be determined by
solving the following problem:

min
j∈J−, c∈R

{
min
θ1

∑
t∈lR1 (j,c)

w(t; ζ)(Yt −Xtθ1)
2 + λ||θ1||22

+ min
θ2

∑
t∈lR2 (j,c)

w(t; ζ)(Yt −Xtθ2)
2 + λ||θ2||22

}
.

Note that this problem is equal to the problem in Equation 12 when ζ → 0 and equal to the
standard RF when Xt = ι and λ = ζ = 0. That is, the standard RF does not have within-leaf
shrinkage and only regresses on a constant.
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