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Abstract 

This research explores a potential model of bitcoin transaction fees. The model attempts to 

link price movement of transaction fees to congestion in the blockchain infrastructure and 

is tested in an empirical setting. Insight from the model is used to construct a one-day 

ahead forecast through an autoregressive distributed lag model. To find the optimal lag 

length for each independent variable from the initial congestion model, a rolling window 

approach is applied in combination with a mean squared error as the selection criterion. 
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1. Introduction 

Cryptocurrency is a new financial asset that has developed from an open-source code, not taken 

serious to a financial asset gaining acceptance by the mainstream financial markets. However, 

cryptocurrency is still a young and volatile asset, characterized by intense price speculation. As 

such, the media focus has been put on price development and modern versions of the American 

Dream from racks to riches. However, a topic that has received less interest by the mainstream is 

the development of blockchain based currencies into every day online payment methods. As such, 

the ECB report on a digital euro (2020) proposes to utilize the blockchain technology for issuance 

and trading purposes. Although, the report highlights that the digital euro will not be a crypto-

asset, the statement provides incentive to further investigate fundamentals underlying the 

blockchain based currencies.   

One of those fundamentals in the infrastructure in a blockchain based currency is the presence 

of transaction fees. Considering the potential start of a new stage in the blockchain development, 

the entrance into government-controlled currencies, all variables around existing blockchain 

based currencies will have to be evaluated, to propose a system that combines government 

controlled and issued currencies with the deregulated peer-to-peer blockchain nature. In the 

following, an investigation of transaction fees in the blockchain infrastructure is conducted based 

on the bitcoin, as the largest current blockchain based asset type.  

 

1.1. Research objective  

This thesis is aimed at diagnosing transaction fees in cryptocurrencies in the market. The market 

is proxied by the bitcoin network and to obtain comparable insight, the transaction fees are 

broken down to a per byte scale. More specifically, this study attempts to construct a model for 

transaction fees constituting of indicators taken from the bitcoin network and the bitcoin price.  

Additionally, the second objective is to assess whether the insight of the model can be used to 

forecast transaction fees in a on day ahead time interval, through an autoregressive distributed 

lag model. Both objectives attempt to provide insight into the transaction fees of cryptocurrencies 

in the market, useful for introducing a government affiliated blockchain based currency.  
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1.2. Academic and social relevance  

The research will add to the increasing numbers of papers investigating transaction fees in 

cryptocurrency networks. This research will extend the analysis of equilibrium transaction fees 

and game theoretical focus (Huberman, Leshno, and Moallemi, 2017; Easley, O'Hara, and Basu 

2019) to utilizing insight in developing a one day ahead forecast model. Thereby, this research 

adds to the current stock of knowledge on cryptocurrency transaction fees by attempting to 

provide market insight on cryptocurrency transaction fees for a potential government issued 

currency based on the blockchain infrastructure. Further, a bridge into practical appliance is 

provided by the suggested model to forecast transaction fees, helpful to predict and smoothen 

out fluctuations of transaction fees.  

While the last primarily is intended to provide governments with a tool to understand and 

predict transaction fees in a cryptocurrency network, it holds similar relevance for financial 

markets and companies involved in cryptocurrencies and potentially users of new type of FIAT 

currency based on the blockchain. Following current trends of cryptocurrencies and other 

blockchain based appliances becoming more mainstream, it is beneficial for society to 

participate in markets that are capable of potentially preventing friction from high and 

unexpected transaction fees.  

 

1.3. Research question and hypotheses 

The market only relatively recently has been introduced to cryptocurrencies through its first 

representation in form of the bitcoin, a decentralized, peer-to-peer based online payment 

method (Nakamoto, 2008). Regardless, academic research has been since investigating the 

bitcoin. Initially, academic research has been focused on discussing whether bitcoin is in fact a 

real currency (Yermack, 2013; Maurer, Nelms, and Schwartz, 2013) and bitcoins and 

cryptocurrencies legality concerns and design issues (Grinberg, 2012; King, & Nadal, 2012; Eyal, 

& Sirer, 2014). Furthermore, methods and techniques have been analyzed to improve bitcoin as 

a currency (Barber, Boyen, Shi, and Uzun, 2012). With the development of bitcoin to a mainstream 

financial asset accepted by institutional investors (Reuters, 2021), research extended to 
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components of the bitcoin such as transaction fees, that are investigated in different stages of 

equilibriums through game theory (Huberman, et al., 2017; Easley et. al., 2019). Their research 

on equilibrium transaction fees provides incentives to investigate anomalies in transaction fees 

and gives rise to the following question;  

Are there driving factors of transaction fees in the bitcoin network and can fluctuations in fees 

be forecasted? 

To test and provide a possible answer to the question two hypotheses are formulated and further 

investigated. The first hypothesis constructed is:  

(1) Are there factors that drive transaction fees in the bitcoin network? 

The second hypothesis is constructed with the recent spike in bitcoin transaction fees in April 

2021 in mind. The spike resulted in the largest transaction fee yet present in bitcoin network. The 

hypothesis follows the bitcoin leading up to the event including the spike in transaction fees in 

2017 and states: 

(2)  Can a forecast model for transaction fees predict an exogenous spike in bitcoin 

transaction fees? 

The accumulated answer to both hypotheses is later discussed and based on the obtained insight 

a potential answer of the research question formulated. In the remaining, first the literature 

preceding and related to this thesis will be reviewed in Section 2. Thereafter, in Section 3 the 

conceptual framework will be presented leading up to the research methodology in Section 4. 

Lastly, Section 5 concludes this research.   

 

 

2. Literature review 

The research is part of a growing academic interest into digital decentralized currencies based on 

the blockchain. Pioneered by the introduction and publication of the open-source program for 

bitcoin based on the blockchain through Nakamoto Satoshi, an unknown individual or group in 

2008. Specifically, this research joins recent investigation on transaction fees in the bitcoin 
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network. Huberman et al. (2017) strive to answer the question how the bitcoin system raises 

revenue and pays for its infrastructure. Specifically, they discuss transaction fees in the presence 

of diminishing mining rewards. The mining process, essential for the functioning of the bitcoin 

network and further discussed under 3.1. is partially incentivized through the mining reward. This 

reward is diminishing under a predetermined rate by the bitcoin protocol. Huberman et al. (2017) 

express concern on the long-term viability of the mining process and hence the bitcoin 

infrastructure as a whole, if equilibrium transaction fees are too low. They determine equilibrium 

fees in a congestion queueing game. They determine congestion in transaction processing as an 

essential factor to raise revenue to maintain the infrastructure and thereby a key driver of 

transaction fees. Following the findings of Huberman et al. (2017), congestion and its relationship 

with factors in the bitcoin network are among other indicators later adopted in this research to 

potentially constitute and predict changes in transaction fees.  

 

Esaley et al. (2019) conduct a similar equilibrium investigation of transaction fees. However, they 

examine the bitcoin system, while the mining reward is still present, and has not reached zero or 

neglectable levels. Therefore, instead of discussing the prevalence of bitcoin in a long run steady 

state, they discuss whether such a steady state is feasible to reach in the first place. In their 

research, they determine waiting time as the key driver of transaction fees. Further, they are 

concerned that waiting times and transaction fees resulting of congestion are too high in 

equilibrium and thereby discourage participants to utilize bitcoin as a payment system. A different 

assumption compared to Huberman at al. (2017).  

 

This research does not investigate a steady state bitcoin network and therefore follows the 

assumptions of Esaley et al. (2019), that increasing congestion in the bitcoin network is a key 

driver of transaction fees. The following investigation however differs from Esaley et al. (2019), 

considering that absolute transaction fees are broken down to a per byte scale are investigated 

compared to the percentage of zero cost transaction fees in Esaley et al. (2019). With the focus 

of this research being to model current and near future levels of transaction fees, mining rewards 

are proposed to influence transaction fees, further elaborated, and empirically tested under 4.4. 
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This is different compared to Huberman et al. (2017) and Esaley et al. (2019), finding that 

transaction fees are determined in equilibrium regardless and independent of the mining reward. 

 

 

3. Conceptual framework 

To follow the later investigation of transaction fees in the bitcoin network, a fundamental 

understanding of the system underlying bitcoin and cryptocurrencies in general is beneficial. 

Assuming different levels of expertise among readers on this topic, a summary of the the bitcoin 

network follows based on Nakamoto (2008) initial publication on the peer-to-peer electronic cash 

system. Further, a brief introduction of the factors influencing transaction fees follows the 

introduction of the bitcoin and is leading up the terminology of data utilized in this research.   

 

3.1. Transaction in bitcoin network   

Nakamoto motivates the bitcoin with the need for an electronic payment system that is based on 

cryptographic proof instead of trust. This allows any two willing parties to transact directly with 

each other, without the need for a trusted third party. To do so an electronic coin, a chain of 

digital signatures, is proposed. To participate, an individual needs to open an account called a 

bitcoin wallet, that generates a private key, a randomly generated string of letters. The owner of 

a wallet transfers coins, by signing a transaction with his or her private key. Specifically, an output 

referred to as hash of the the previous transaction is signed, which transferred the coins into his 

or her wallet. The new owner, shows acknowledgment of the transaction by signing with a unique 

public key, derived from his or her private key (see Figure 1).  
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Figure 1: Signing transaction in the blockchain with the private key 

 

Note: Each block represents one transaction, with owner 1 being the reciprocate of transaction 1 and owner 0 being the payee in 

transaction 1 and so for. Each new owner of a bitcoin is verified by the previous owner’s public key and signed by the previous 

owner’s private key. Thereby a chain of ownership is established and used to verify the ownership of the bitcoin. A private key is 

a random string of letters that through a cryptographic algorithm forms the public key in a on way manner. This means retrieving 

the private key based on the public key is virtually impossible. The private key is created once a wallet, an account for a bitcoin 

broker has been opened.  

 

A public key can be interpreted as an IBAN in common FIAT currency system and is a mathematical 

function of the private key. The function (hash function) is a cryptographic algorithm1 that enables 

an easy link from the private key to the public key. On the other hand, the function makes it 

virtually impossible to retrieve the private key, if only the public key is known. The payee in the 

transaction can verify the signature to prove the chain of ownership but is unable to verify if one 

of the previous owners did not double spend coins.   

Instead of relying on a trusted central authority like a central bank, that checks every transaction 

for double spending, Nakamoto proposes to record a public history of all transaction. Therefore, 

next to payee and payer, a further entity takes part in the transaction, the node, who records and 

saves all transaction and thereby all previous owners of each bitcoin to provide the network 

consensus.   

 
1 The cryptographic algorithm in bitcoin is called: Secure Hash Algorithm 2, short: SHA-256 (Nakamoto, 2008) 



8 
 

 

The consensus is established by first, broadcasting new transactions to all nodes (nearby in the 

network). The nodes store the pending new transaction in the mempool, a virtual waiting line in 

form of a block. Now, nodes pick up the transactions and compete on finding a solution for the 

block, referred to as proof-of-work. Nodes that do this are also called miners. The task of mining 

requires nodes to utilize the cryptographic hash function (SHA-256) on the input of the block of 

new transactions, the proof-of-work of the previous block (Hash) and nonce, last being random 

letters and digits. The task is complete when a certain nonce, an alpha-numeric string, is found 

that gives a 32 characters outcome of the hash function that starts with a certain number of 

trailing zeros (Badev, & Chen, 2014).   

Finding these strings is random and therefore looking for them involves a computational 

workload. The work required to obtain the required hash is exponential in the number of trailing 

zeros and the success rate is referred to as hash rate. In adjusting the number of trailing zeros, 

the system can modify the difficulty2 and therefore the hash rate of the mining process. The 

algorithm sets the difficulty to a level such that on average a block is added to the blockchain 

every ten minutes (Easley et al., 2019). Once a miner completes the proof-of-work and finds the 

required hash, it broadcasts the block to all other nodes in proximity. Other nodes accept the 

block if each individual transaction in the block is valid and not already spent. To verify the proof-

of-work, only a single hash, the outcome, needs to be executed and checked. To control the 

computational effort of a block, once the hash is given, is very easy but vice versa is difficult, 

similar to the process of retrieving the public key from the private key. Now, all transaction that 

are worked into the block are accepted and other nodes express their acceptance by working on 

creating the next block in the chain using the hash of the accepted block as the previous hash (see 

Figure 2).  

 

 

 
2 The difficulty of the proof-of-work is determined by a moving average, to compensate for increasing hardware speed and 
varying interest in running nodes over time (Nakamoto, 2009). The first block started with the difficulty of 1.   
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Figure 2: Simplified visualization of the blockchain.  

 

Note: Each block contains a hash function (Prev Hash), that is based on a cryptographic function from the previous block. With 

the hash function the transaction in the previous block can be verified. Next, it contains all new transaction (Tx) that were received 

by a node at a certain time. In addition, it contains random strings of numbers (Nonce) that are solved based on random 

computation in the so-called proof-of-work process, otherwise known as the mining process. The node responsible for the block 

can only broadcast the block to the blockchain, if a new hash  is found that can be used as the Prev Hash for the next block by 

other nodes to verify all new transaction in the block. 

 

3.2. Transaction fees in Bitcoin network  

The computational effort nodes exert to solve the nonce into the required outcome to include a 

block into the blockchain is financially rewarded. In the following, this reward is referred to as 

mining reward. The Mining reward is by convention only issued for the first transaction in each 

block and given to the node that embedded this transaction and hence the creator of the block. 

Nakamoto (2008) states the steady addition of new coins is analogous to gold miners adding gold 

to the circulation. However, the pool of available bitcoins for issuance is limited to 21 million. 

Hence, the block reward is set to decline and therefore halved after every 210.000 blocks that are 

mined3. The current mining reward stands at 6,25 bitcoins per mined block and resulted from the 

most recent reduction on May 11th, 2020.   

The bitcoin and its issuance structure therefore is designed to be deflationary. Notably, a rising 

bitcoin price could counteract or even offset any mining reward declines and deflationary 

properties, if the increase in the value of the bitcoin is larger than the decrease in absolute 

bitcoins rewarded. In addition, the rate at which new bitcoins are mined depends on the difficulty 

level explained in 3.1., which can reduce the incentives for miners to participate and enable the 

 
3 The initial mining reward per block of 50 bitcoins was first reduced in November 2012 to 25 bitcoins.  
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bitcoin infrastructure (Huberman et al., 2017). Therefore, there is need for a second incentive for 

miners. Here transaction fees enter the bitcoin system. Transaction fees describe an input value 

for a transaction that exceeds the output value: “the difference is (the) transaction fee that is 

added to the incentive (…) of the block containing the transaction” (Nakamoto, 2009, p. 4).   

 

The duality of incentives for participation in the blockchain network implies two aspects. Fristly, 

a possible model of transaction fees can be described, in which transaction fees dependent next 

to the market demand and supply of transactions on mining revenue and the rate at which blocks 

are mined. This model is further investigated in the next section. Secondly, the incentive structure 

of cryptocurrencies can transition entirely to transaction fees and neglect mining revenue. This 

long run equilibrium is discussed further in Huberman et al. (2017) research. Therefore, a system 

is feasible that does not add inflation though unexpected levels of currency issuance through the 

mining process, which in turn is appealing to central banks planning to utilize the blockchain. Not 

introducing uncontrolled inflation in government issued currencies is in the interest of central 

banks as it ensures that monetary policy sovereignty is not affected by a government issued 

currency based on the blockchain. 

 

 

4. Research Methodology  

In order to examine transaction fees in the bitcoin network, in the following, the data collected is 

introduced, the historical development of transaction fees over the sample period visualized and 

lastly both hypotheses further investigated. 

 

4.1. Data  

To investigate and forecast transaction fees in the bitcoin a sample is constructed that contains 

daily data from July 25th of 2016 until May 24th of 2021. The data is retrieved from satoshi.info, 

coinmetrics and blockchain.com. All three data providers, collect the data by running a node in 
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the bitcoin network, that records bitcoin system specific data.   

The dependent variable in this research, daily mean transaction fee, is recorded in two ways, once 

per successful transfer and second per byte, both in USD. On the on hand, fees per successful 

transfer are considered, given that they represent an intuitive overview, that resembles the 

classical illustration of transaction fees. On the other hand, a per byte scale is considered, as 

transaction can differ in their computational effort even if constituting to the same amount of 

value transferred. The computational effort depends on the size of the transaction in byte, which 

in return depends on the number of previous owners of the transferred bitcoin(s)4. Hence, recent 

mind bitcoins have less previous owners and require less computational effort to control. A closer 

comparison between both will proceed in the next section.   

Furthermore, the dataset contains the estimated mean daily hash rate. The hashing power is 

estimated based on the blocks mined in a certain interval and the corresponding difficulty of the 

bitcoin network5. In addition, the dataset contains the mean daily size of the mempool, the daily 

Bitcoin price in USD reported at 23:00:00 and the daily mean mining reward per byte. The last is 

estimated by considering the network specified reward per mined block relative to the mean daily 

transaction per block. The obtained mining reward per transaction is then taken relative to the 

mean daily byte size of each transaction6. 

 

4.2. Historical transaction fee development  

The sample period starts in July 2016, thereby capturing the turbulent and chaotic time during 

fall of 2017, when bitcoin reached its first peak at above 19.000 USD per coin. In addition, the 

sample captures the extreme rise in 2020 and 2021, with bitcoin prices above 60.000 USD, 

 
4Individual A and B both want to transfer one bitcoin to individual C. Individual A owns a bitcoin that he purchased 
from 10 previous owner (each owned 0,1 bitcoin), while induvial B received her bitcoin from only one previous 
owner. If both A and B now transfer their bitcoin, miners have to control the ownership for 10 previous owners for 
the transaction of owner A, compared to only 1 previous owner under transaction B. Therefore, the computational 
effort measured in bytes for transaction A is larger.  
5 Ozisik, A. P., Bissias, G., & Levine, B. N. (2017) elaborate on different estimation techniques. They differentiate 
between network Hash-rate and miner´s hash rate and provide empirical evaluation accuracy. But this goes beyond 
the scope of this analysis.  
6 The mean daily byte size of transaction is retrieved from the mean daily number of transactions per block and the 
mean daily byte size of a mined block in the blockchain.  
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followed by the volatile May of 2021, induced through the ban of cryptocurrency related services 

in China (Reuters, 2021), that lead to a decline of the bitcoin price. Especially important relating 

to transaction fees are the Chinas power shortages in April 2021. The shortages were caused by 

mandatory closings of mines in China, that impacted the energy supply of the large miner network 

located in China and hence the transaction fees. The first rise and spike of the bitcoin price and 

the power shortages in China are clearly visible in Graph 1, which visualizes the development of 

transaction fees. The turbulent bitcoin price during 2020 and 2021 and the power shortage in 

China are a partial explanation for the largest daily mean transaction fee in the sample, at above 

60 Euros in April 2021.   

Graph 1: Historical transaction fee per transaction 

 

Note: data is taken from coinmetrics and represents the mean fee in USD per transaction on a daily interval. Transaction represents 

a bundle of intended actions the bitcoin ledger initiated by a user (bitcoin wallet). Changes to the bitcoin ledger mandated by the 

bitcoin protocol (not by users) or new issuance issued by controlling entity are not included under transaction, to proxy only the 

activity of active users. However, in case a transaction is not executed, or does not result in a transfer of native units it is still 

counted in the daily transaction count, which potentially induces minor measurement errors.  

While Graph 1 is intuitive to understand, one issue is that it does not allow to make 

interpretations on the computational effort exerted and paid for by miners. The representation 

oversimplifies all transaction as of equal size. However, the size of transaction differs, hence, the 
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computational effort involved in transaction varies. Therefore, Graph 2 visualizes the transaction 

fee per byte over the sample period.  

Graph 2: Historical transaction fee per byte 

  

Note: date taken from coinmetrics and representing the mean transaction fee per byte. Estimated through daily sum of mean 

transaction fees relative to daily mean byte size of a single transaction. Last, obtained though daily mean byte size of a block on 

the bitcoin blockchain and the daily mean number of successfully mined transaction per block.   

 

The development of transaction fee per byte is mostly equal to the development of Graph 1. 

Nevertheless, slight differences persist, with the most obvious one being the transaction fee per 

byte during the fall of 2017 exceeding the fee per byte paid in April 2021. The reason underlying 

the difference is in the development of the mean block size in the bitcoin network. An increase in 

the mean bytes per block is caused by individual transaction that constitute more inputs and 

outputs resulting from added previous owners.   

To provide comparable insights and results among different cryptocurrencies for potential future 

research of the underlying components of transaction fees, the following research adopts 

transaction fee per byte as the dependent variable scale.   
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4.3. Data transformation  

Each individual variable is controlled for stationarity. If non-stationarity is detected, the series 

suffers from persisting shocks, that never die away. Thereby, the current value of the variable 

would be just an infinite sum of past shocks and a starting value at the beginning of the time 

interval (Brook, 2008). In other words, the best prediction of non-stationary process is its most 

recent past value. To prevent this first, the integer of order one is taken from the bitcoin price 

(BTCP), meaning its current value is deducted by its most recent lagged value. In addition, the 

natural logarithm is taken to stabilize the residual variance and take advantage of adaptive 

returns, a process based on Box and Jenkins´ (1976) proposition to utilize logs in constructing 

forecasting models. The same transformation is applied to the hash rate. Further, the mining 

reward is expected to contain a trend, therefore the first order integer is applied.   

To test whether the transformation has been successful and whether the not transformed 

variables are stationary, an augmented Dickey Fuller test is applied. The result of the test is 

represented in Table A in the appendix. The null hypothesis is rejected in favor of a stationary 

process for both not transformed variables, transaction fee per byte and mempool size and for 

all three transformed variables.  

 

4.4. Transaction fee model specification and empirical analysis  

Establishing why there is a need for computational effort in the transaction mechanism of bitcoin 

in 3.1. and the duality of incentive for nodes to participated in the network under 3.2., I proceed 

with a potential model describing the transaction fees. The model attempts to proxy a demand 

and supply estimation through cryptocurrency specific factors.    

The model proxies the total demand for transaction in the bitcoin network though all the 

transaction saved in the mempool in a daily interval. Recall from 3.1., new transactions are stored 

in the mempool by nodes after being shared publicly. The mempool however proxies a further 

indication in the bitcoin network. The inflow of new transactions compared to the outflow of 

transactions. Pending transaction leave the mempool either when posted to the blockchain or 

dropped from the pool, typically after three days (Easley et al., 2019). If more transactions enter 
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the mempool compared to leaving the mempool, longer waiting times are the result and the 

network suffers from congestion.   

The change in the supply for transaction processing power in the network is included through the 

hash rate. Recall from 3.1., the hash rate indicates the computational power in the bitcoin 

network necessary for the mining process, which verifies transactions. An increase in the hash 

rate for instance can prevent congestion of transaction in the mempool by accelerating the 

outflow. Moreover, the return of bitcoin is included, to proxy for exogenous variation in the 

transaction fees from speculation of the bitcoin and other exogenous events represented through 

bitcoin price changes. Additionally, the mining reward per byte is added to the model. Figure 3 

provides a visualization of the described time series OLS regression in a daily interval.  

Figure 3: time series OLS regression of transaction fee per byte with daily intervals 

𝑓𝑒𝑒௧,௣௘௥௕௬௧௘,௖௘௡௧

=  𝛽ଵ𝑚𝑒𝑚𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒௧ + 𝛽ଶ∆Ln (ℎ𝑎𝑠ℎ𝑟𝑎𝑡𝑒௧) + 𝛽ଷ∆𝐿𝑛(𝐵𝑇𝐶𝑃௧,௎ௌ஽)

+ 𝛽ସ∆𝐿𝑛(𝑚𝑖𝑛𝑖𝑛𝑔𝑟𝑒𝑤𝑎𝑟𝑑௧,௣௘௥௕௬௧௘,௎ௌ஽) 

𝑡:     time series indicator, daily interval 

𝑓𝑒𝑒௧,௣௘௥௕௬௧௘,௖௘௡௧:   daily mean transaction fee per byte in the bitcoin network at time t in USD  

𝑚𝑒𝑚𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒௧: daily mean number of transactions saved in the mempool of nodes in the bitcoin network 

at time t 

∆𝐿𝑛 (ℎ𝑎𝑠ℎ𝑟𝑎𝑡𝑒௧): first order integer of the daily mean natural logarithm of the hash rate at time t   

∆𝐿𝑛(𝐵𝑇𝐶𝑃௧,௎ௌ஽): first order integer of the natural logarithm of the daily mean price of bitcoin at time t in 

USD, equal to the natural logarithm of daily return of bitcoin at time t in USD  

∆𝐿𝑛(𝑚𝑖𝑛𝑖𝑛𝑔𝑟𝑒𝑤𝑎𝑟𝑑௧,௣௘௥௕௬௧௘,௎ௌ஽): first order integer of the daily mean natural logarithm of the mining reward per byte in 

USD at time t 

 

The empirical analysis of the above-described model focuses on endogenous daily observable 

factors of the bitcoin system and additionally the bitcoin price. Therefore, the mean waiting time 

for the conformation of transaction is not included. Considering that the data sources of this 

research only report an average waiting time every three days, which potentially includes 

measurement or estimation errors and limits the sample size. However, the findings of Easley et 
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al. (2019), who determined waiting time as the key driver for transaction fees in their model, are 

assumed to be adequately proxied though the mempool size, which is expected to represent most 

of the movement in average transaction time and congestion in the bitcoin network. This 

relationship of the mempool size is another finding of Easley et al. (2019). Mempool size can be 

easily overserved and reported by nodes and therefore, is expected to yield more exact indication 

compared to a three-day average waiting time factor. Table 1 shows the outcome of the OLS 

regression described in Figure 3.  

Table 1: Outcome of time series OLS regression on transaction fee per byte in daily intervals  

Transaction fee per byte in cent 
 Independent variable  coefficient  t-statistic 
mempoolsize 0,358*** 

[0,029] 
12,28 

∆Ln(hashrate) 0,336** 
[0,158] 

2,13 

∆Ln(BTCP) (1,723)** 
[0,791] 

(2,18) 

∆miningreward 
 
 
Constant 

2,3 
[4,749] 

 
0,011 

0,48 
 
 

0,27 
 

Number of Observation  
 

R-squared 
 

 

1.765 
 

0,464 

 

Note: Scale adjustment; fee per byte in cent; mempoolsize per 10000 to adjust increase by absolute increase by one closer to 
average value in the sample, ∆miningreward per cent. ∆Ln(hashrate) and ∆Ln(BTCP) no adjustment given percentage change effect 
of Ln. Number in [ ] equals the robust standard error, and numbers in regular brackets () are negative.. * Indicate the significance 
level: *** p<.01, ** p<.05, * p<.1; 

 

Table 1 adjusts the scale of the variables for visual purpose. Changing the scale of dependent and 

independent variables does not make a difference to the overall results, since the coefficient 

estimates will change by an off-setting factor to leave the overall relationship between them 

unchanged (Gujarati, & Porter, 1999). Hence, there are only relative change to the betas that are 

relative to the scale adjustment but there are no absolute changes. 

Table 1 shows, that the mining reward does not have a significant relationship with transaction 

fees per byte. Easley et al. (2019) and Huberman et al (2017) provide a similar interpretation in 

their derivation of equilibrium transaction fees. Fees are not affected by block reward-based 
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levels of mining revenue even if investigated in absolute form. Table 1, however does provide an 

indication of a significant relationship between the mempool size at one percent. As expected, a 

larger mempool size has an increasing relationship with the transaction fee per byte. Further, a 

significant relationship between a one percent change in bitcoin returns and one percent change 

of the first order integer of hash rate is found at the five percent significant level.   

In the sample, an increase of mempool size by 10.000, all else equal, increases transaction fees 

per byte by 0,358 cent.  Furthermore, a one percentage change in the difference of the hash rate 

indicates a 0,336 increase in fees per byte. This indicates, if governments attempt to keep 

transaction fees small a constant hash rate and thereby computational power in the blockchain 

network is beneficial and should be encouraged. Lastly, a one percent change in the bitcoin 

returns, all else equal, relates to a 1,723 Euro decrease in the transaction fees.   

Considering the significant relationship in Table 1, a possible answer for hypothesis one is 

formulated. The empirical test of the model motivated by economic reason of transaction fees 

contains factors that show a significant relationship to the level of transaction fees. A similar 

answer to the first hypothesis, is discussed and empirically tested in Easley et al. (2019). They find 

factors that as well relate to transaction fees. Therefore, In the next step all significant 

independent variables are considered in predicting and forecasting changes in the bitcoin 

transaction fees.  

 

4.5. ADL forecast model specification    

The focus of the forecast model is to provide a prediction of the conditional expectation as good 

as possible. Therefore, an autoregressive distributed lag model (ADL) is considered, which enables 

inclusion of the dependent variables previously discussed. For simplicity, only the one-step ahead 

forecast is considered.    

To estimate coefficients of the ADL model, a rolling window analysis is applied. The method 

ensures, that if parameters change at some point during the sample, the rolling estimates capture 

the instability, and the lag length chosen considers potential instability. A rolling window size of 

1.386 days is taken, based on the change in the mining reward per block in the sample (after 1386 
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days), a potentially endogenously caused break in the bitcoin fee structure7. The objective is to 

forecast transaction fees for the current block reward of 6,25 bitcoins per block. Hence, the 

decision of which lag length to use is made after the break. In addition, the larger rolling window 

size is expected to result in smoother estimations compared to a shorter window size and allows 

to capitalize on the large set of data available in the sample. For each variable subsequently 

investigated, lags up to two weeks are considered in determining the best performing forecast 

model. The two-week consideration period is applied, following that in the sample on average 

every two weeks (13,6 days) the endogenous difficulty level for mining a block in the blockchain 

system is adjusted. To compare the predictive performance of rival models (different lag lengths), 

the mean square error (MSE) is considered as a measure of accuracy. For each set of variables 

and lag lengths, the rolling window analysis conducts a pseudo-out of sample forecast in a 

subsample one-step ahead forecasts. In total 833 of these pseudo-out of sample forecasts are 

constructed for each rolling window. The forecasts are compared to the actual transaction fees 

and the MSE is retrieved.  

The base model and default option for the performance comparison is an auto regressive model 

of up to seven lags, determined by the lowest MSE in the rolling window analysis. Table 2 shows 

the MSE for all lag lengths of each independent variable. Each model stage includes next to the 

investigated independent variable the independent variable(s) and lag(s) of the previous model 

stage. In total, Table 2 includes all the MSE´s of the progressively added independent variables 

and their distributed lags and shows the final chosen ADL model at the last model stage.  

 

 

 

 

 

 
7 On the 11th of May 2020, the mining reward per block was again halved from 12,5 to 6,25 bitcoin per block.  
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Note: all values are in 1000; e^-03.  Lag1 indicates the the variable at t, while Lag (1-2) indicates inclusion of variables at time; t-1 

and t-2 to predict transaction fee per byte at time; t. Bolt numbers 111 represent the minimum MSE for the specified model stage. 

Each model stage, takes on the previously determined number of lags that obtained the minimum MSE; in following order:

 *: 8 lags of transcation fee per byte  

  **:   8 lags of transcation fee per byte, 13 lags of mempool size  

  ***:  8 lags of transcation fee per byte, 13 lags of mempool size , 8 lags of ∆ln(hash rate)  

    

The selected ADL model, includes an autoregressive term of eight lags from the dependent 

variable, transcation fee per byte. The distributed lag term constitutes of thirteen lags from the 

mempool size, eight lags of the hash rate and five lags of the bitcoin returns. The final model has 

an MSE of 9,701e-0,3  for the one day ahead forcast. Figure 4, shows the final suggested ADL model 

regression term to predict the one day ahead forecast of transcation fees per byte in cent at time 

t. The one day ahead forecast is at time time t, hence, it is predicted soley based variable lags 

from time t-1 or further in the past. Otherwise, the model would use infomration from the period 

attempted to be predicted.  

 

 

 

Table 2; Mean squared errors for different stages of the ADL model   

  MSE 

Model stage lag1  lag(1-2)  lag(1-3)  lag(1-4)  lag(1-5)  lag(1-6) lag(1-7) 

AR 11,534 11,955 12,076 12,208 12,006 12,047 12,155 
ADL1* 11,024 10,538 10,243 10,255 10,281 10,298 10,237 
ADL2** 9,831 9,775 9,780 9,787 9,793 9,797 9,768 
ADL3*** 9,732 9,731 9,737 9,712 9,701 9,726 9,745 

  MSE 

Model stage lag(1-8)  lag(1-9)  lag(1-10)  lag(1-11)  lag(1-12)  lag(1-13)  lag(1-14) 

AR 11,295 11,313 11,456 11,488 11,501 11,577 12,046 
ADL1* 10,253 10,261 10,279 10,311 10,104 10,023 10,035 
ADL2** 9,728 9,734 9,740 9,749 9,752 9,751 9,764 
ADL3*** 9,747 9,744 9,763 9,769 9,769 9,783 9,790 
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Figure 4: ADL model; one day ahead forecast of transcation fee per byte in USD  
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𝑓𝑒𝑒௧,௣௘௥௕௬௧௘,௖௘௡௧:  transaction fee per byte at time t in cent  

𝛽௟
௡:   OLS beta coefficient at, n = variable (1-5) and 𝑙 = lag of variable 

𝑡:   time series indicator, daily interval 

𝑙:    timeindicating variable that takes on the value per variable defined in operator ∑. 

𝐿.௧ି௟ 𝑓𝑒𝑒௣௘௥௕௬௧௘:  the lag of transcation fee per byte, the time of the lag = 𝑡 − 𝑙 

𝐿.௧ି௟ 𝑚𝑒𝑚𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒: the lag of once differenced mempool size, the time of the lag = 𝑡 − 𝑙 

𝐿.௧ି௟ ∆ ln(ℎ𝑎𝑠ℎ𝑟𝑎𝑡𝑒): the lag of once differenced natural logarithm of the hash rate, the time of the lag = 𝑡 − 𝑙  

𝐿.௧ି௟ ∆ln (𝐵𝑇𝐶𝑃):  the lag of once differenced natural logarithm of the Bitcoin price, the time of the lag = 𝑡 − 𝑙  

 

 

4.6. ADL forecast model analysis  

Next, the chosen ADL model is analyized to provide a possible suggestive answer for the second 

hypothesis, whether a forcast model could be used to predicte bitcoin fees in a one day ahead 

interval.  In addition, the question is raised whether such insight could have predicted the spike 

in bitcoin transction fees in April of 2021. Therfore, the performance of the ADL forecast model 

is further investigated in two ways.   

First, the predicted fees are compared to the observed fees and visulaized in Graph 3, over the 

forecasted sample period. In addition, Graph 3 indicates the absolute difference between forecast 

and observed fees. Secondly, the beta coefficients of the ADL model (see Figure 4) are estimated 

to forecast transcation fees for the 19.04.2021 in Table B, Appendix. 
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Graph 3 visualizes, that the combination of autoregressive terms and blockchain specific 

distributed lag indicators provide a prediction of the rise in transaction fee in April of 2021. The 

inital increase is adequatly forecasted. However, an increase in the absolute deviation is observed 

that persisted for several days even after the inital spike as passed. A similar increase in absolute 

deviation is observed in other smaller spikes in trancation fee per bytes previous to April 2021. 

Graph 3:  ADL Forcast performance  

 

 

 

Note: forecasted values retireved from rolling window prediction for selected (final) ADL model. Absolute difference equals the 

absolute differnece between observed and forecasts transcation fee per byte in cent.  

 

The deviations during shocks can be partially explained by examining the coefficient estimations 

of Figure 4, in Table B Appendix. The estimation conducted for the 19th of April is choosen as an 

example given that from the 18th of April to the 19th of April transcation fee (per transcation) 

increased by 14,2 Euros to 58,58 Euros, the largest increase in a single day for the transcation fees 

in the bitcoin network. Figure 4 indicates, that the forecast predomiantly emerges of the 

autoregressive term. Specifically 88,92 percent of the forecast value for April the 19th equals to 

the forecast of the autoregressive term. Hence, the recognition of exogenous shocks is lagging 
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behind. Graph B in the Appendix visualizes this lagging of the forecast by focusing on the 2021 

April forecast values.   

Follwing the two investigations of the ADL model, a mixed answer for the second hypothesis is 

proposed. On the one hand, the transcation fees per byte can be forecasted. On the other hand, 

the forecast is predominantly based on autoregressive properties of transcation fees and the 

prediction of exogenous shocks is therefore only limited. The resulting deviations can have large 

accumulated implications, considering the daily scale of transcations in a government controlled 

and issued currency system.  

 

 
5. Conclusion 

The paper shows, that a model of factors influencing transaction fees can be determined. The 

model investigated under the first hypothesis, follows the findings of Huberman et al. (2017) and 

Easley et al. (2019), that transcation fees are determined and emerge in the absence of the mining 

reward. Furthermore, internal congestion proxied through the hash rate and the mempool drives 

transcation fees in the absence of exogenouse shocks modeled through the bitcoin price 

movements. A government issued currency distributed through the blockchain technology 

should, to minimize transcation fees and thereby market friction, aim to prevent congestion on 

the blockchain.   

The market is not oblivious to the issue of congestion on the blockchain and the resulting 

limitation to scalability. A possible solution discussed is to increase in the absolute bitcoin block 

size (Easley et al. 2019), or the introduction of a lighenting network that facilitates an 

instantaneous transfer of coins (Miraz, & Donald, 2019). The compatibility of such methods in a 

government affiliated currency based on the blockchain and its effect on congestion is required 

to be further researched.  

Moreover, this paper proposes a forecast model for transaction fees in a one-day ahead interval. 

While the applied ADL model, provides a general indication of the transcation fee development, 

its performance is limited considering the prediction of exogenouse shocks. This is due to a strong 

reliaance on the autoregressive term in the forecast. Further research, could attempt to construct 
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either another linear prediction model including moving average terms (e.g. ARIMAX) or a non-

linear lag selection process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

6. Appendix 

 

Table A: Augmented Dickey Fuller test  
Dickey fuller test with trend 

 test statistic Dickey-Fuller 1% critcal value  
fee per byte (5,38) (3,96) 
mempool size  (8,79) (3,96) 
∆mining reward (58,32) (3,96) 
∆Ln(hash rate) (69,30) (3,96) 
∆Ln(BTCP) (44,09) (3,96) 
Dickey Fuller with 14 lags  

 test statistic Dickey-Fuller 1% critcal value  
fee per byte (5,23) (3,42) 
mempool size  (4,87) (3,42) 
∆mining reward (11,23) (3,42) 
∆Ln(hash rate) (15,31) (3,42) 
∆Ln(BTCP) (10,16) (3,42) 

Note: Dickey fuller test to test for unit root process H0: not-stationary process with a unit root. If test statistic < critical value, here 
1%, H0 is rejected in favor of stationary process. The augmented Dickey Fuller test can control for trend (adjust critical values) and 
for lags in variable that is to be tested. 14 lags are included, considering that later in the forecast a test period of 14 days is 
considered, see Section 7. Numbers in regular brackets () are negative values. 

 

Table 3: Linear regression of ADL coefficients  
dependent variable: fee per byte USD   

Coefficient  Standard Error t-statistic 
fee per byte USD 
L1 0,996*** [0,030] 33,37 
L2 (0,158)*** [0,043] (3,71) 
L3 0,099** [0,043] 2,30 
L4 (0,129)*** [0,043] (2,99) 
L5 (0,004) [0,043] (0,10) 
L6 0,049 [0,043] 1,13 
L7 0,294*** [0,042] 6,93 
L8 (0,274)*** [0,029] (9,37) 
Mempoolsize  
L1 1,36E-07*** [1,13E-08] 12,05 
L2 (1,66E-07)*** [1,55E-08] (10,65) 
L3 8,25E-08*** [1,64E-08] 5,02 
L4 7,25E-09 [1,66E-08] 0,44 
L5 (1,40E-08) [1,66E-08] (0,85) 
L6 3,17E-08* [1,65E-08] 1,92 
L7 (4,15E-08)** [1,65E-08] (2,51) 
L8 5,04E-09 [1,62E-08] 0,31 
L9 (2,71E-09) [1,60E-08] (0,17) 
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L10 6,68E-09 [1,48E-08] 0,45 
L11 (1,78E-08) [1,46E-08] (1,22) 
L12 5,69E-09 [1,40E-08] 0,41 
L13 4,25E-08*** [9,75E-09] 4,36 
∆Ln(Hashrate) 
L1 3,59E-03*** [9,77E-04] 3,67 
L2 (1,68E-03) [1,21E-03] (1,39) 
L3 7,02E-04 [1,34E-03] 0,52 
L4 1,66E-03 [1,40E-03] 1,18 
L5 1,69E-03 [1,40E-03] 1,21 
L6 2,79E-03** [1,34E-03] 2,09 
L7 4,30E-03*** [1,21E-03] 3,55 
L8 2,74E-03*** [9,73E-04] 2,82 
∆Ln(BTCP) 
L1 (2,42E-04) [2,08E-03] (0,12) 
L2 (1,81E-03) [2,10E-03] (0,86) 
L3 5,49E-04 [2,10E-03] 0,26 
L4 4,09E-03* [2,10E-03] 1,95 
L5 5,84E-03*** [2,09E-03] 2,79     

Constant (3,42E-04)*** [1,26E-04] (2,71) 
Number of 
observations  

1.387 

R-squared  0,954 
Note: estimation of beta coefficient of selected ADL model to forecast 19.04.2021. Sample period considered is 1366 days with a 
daily interval. Number in [] equal the robust standard error, while number in regular brackets () are negative. * Indicate the 
significance level: *** p<.01, ** p<.05, * p<.1;    
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Graph B: ADL performance for April 2021 

 

 

 

 

Note: forecasted values retireved from rolling window prediction for selected (final) ADL model. Absolute difference equals the 
absolute differnece between observed and forecasts transcation fee per byte in cent. 

 

 

 

 

 

 

 

 

 

 

 



27 
 

7. Bibliography  

Badev, A. I., & Chen, M. (2014). Bitcoin: Technical background and data analysis. Retrieved from 

https://cointhinktank.com/upload/bitcoin%20technical%20background%20and%20data

%20analysis.pdf 

Barber, S., Boyen, X., Shi, E., & Uzun, E. (2012, February). Bitter to better—how to make bitcoin a 

better currency. In International Conference on Financial Cryptography and Data Security 

(pp. 399-414). Springer, Berlin, Heidelberg. 

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting         

and control (Fifth Edidtion). John Wiley & Sons. 

Brooks, C. (2019). Introductory Econometrics for Finance (Fourth Edition). Cambridge University 

Press. DOI: 10.1017/9781108524872 

Easley, D., O'Hara, M., & Basu, S. (2019). From mining to markets: The evolution of bitcoin 

transaction fees. Journal of Financial Economics, 134(1), 91-109. 

European Central Bank (2020) Report on a digital euro. ECB Research & Publication. Retrieved 

from 

https://www.ecb.europa.eu/pub/pdf/other/Report_on_a_digital_euro~4d7268b458.en.

pdf#page=4  

Eyal, I., & Sirer, E. G. (2014, March). Majority is not enough: Bitcoin mining is vulnerable. In 

International conference on financial cryptography and data security (pp. 436-454). 

Springer, Berlin, Heidelberg. 

Grinberg, R. (2012). Bitcoin: An innovative alternative digital currency. Hastings Sci.& Tech. LJ, 4, 

159. 



28 
 

Gujarati, D. N., & Porter, D. C. (1999). Essentials of econometrics (Vol. 2). Singapore: 

Irwin/McGraw-Hill. 

Huberman, G., Leshno, J., & Moallemi, C. C. (2017). Monopoly without a monopolist: An economic 

analysis of the bitcoin payment system. Bank of Finland Research Discussion Paper, (27). 

Irrera, A., & Lewis, B. (2021, July) More institutional investors expect to buy digital assets, study 

finds. Thomson Reuters. Retrieved from https://www.reuters.com/business/most-

institutional-investors-expect-buy-digital-assets-study-finds-2021-07-20/  

King, S., & Nadal, S. (2012). Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-

published paper, August, 19(1) 

Maurer, B., Nelms, T. C., & Swartz, L. (2013). “When perhaps the real problem is money itself!”: 

The practical materiality of bitcoin. Social Semiotics, 23(2), 261-277.  

Miraz, M. H., & Donald, D. C. (2019, April). LApps: technological, legal and market potentials of 

blockchain lightning network applications. In Proceedings of the 2019 3rd International 

Conference on Information System and Data Mining (pp. 185-189). 

Ozisik, A. P., Bissias, G., & Levine, B. N. (2017). Estimation of miner hash rates and consensus on 

blockchains. arXiv preprint arXiv:1707.00082. 

Shen, S., & Siu, T. (2021, April) China bans financial, payment institutions from cryptocurrency 

business. Thomson Reuters. Retrieved from 

https://www.reuters.com/technology/chinese-financial-payment-bodies-barred-

cryptocurrency-business-2021-05-18/ 

Yermack, D. (2015). Is Bitcoin a real currency? An economic appraisal. In Handbook of digital 

currency (pp. 31-43). Academic Press 


