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2 Abstract

This paper investigates the relative performances in volatility forecasting of the

standard GARCH, EGARCH, GJR-GARCH and TGARCH models in times of crisis.

The data analyzed are the daily price indices of the S&P500, NASDAQ and Dow-Jones.

The testing periods consist of the dot-com bubble, the financial crisis and the

COVID-19 crisis. The forecasts are done over a five-year rolling window and are tested

against each other using two evaluation measures and Diebold-Mariano tests. For all

four models, forecasts assuming a normal-, t-, and skewed t-distribution are tested

against each other. The results show that the t-distribution performs best for all but

one combination of model and data set. To test between the models, the forecasts

assuming a t-distribution are compared across the four models. The results show that

none of the asymmetric models outperforms the GARCH model. The GARCH model

even significantly outperforms the GJR-GARCH and TGARCH models on all data sets.
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3 Introduction

When one takes a quick look at the CBOE Volatility index (VIX) it immediately

becomes apparent that crises cause massive spikes in volatility. In March 2020 the

world experienced a massive shock as stock prices plunged, initiated by the COVID-19

crisis. Even though this shock was set off by an unprecedented public health crisis, a

good volatility prediction model should be able to detect these spikes early. Being able

to predict big negative shocks is one of the main objectives of risk managers around the

globe. Volatility is used as a measure to indicate the frequency and magnitude of

shocks. It has numerous uses in the financial world ranging from risk management to

pricing options to calculating Sharpe ratios. As it is not directly observable estimating

it poses one of the biggest challenges in finance. Because of this, volatility is among the

most widely researched topics in the financial literature, as well as in private businesses

and financial institutions.

Before 1982 the traditional econometric models generally assumed a constant

one step ahead volatility. The models assumed that there was no autocorrelation

between the variance and its lags. To relax this assumption of homoskedasticity Engle

(1982) introduced the AutoRegressive Conditional Heteroskedastic (ARCH) model. In

this model, the conditional variance is dependent on past innovations and therefore

adjusts itself over time. After the release of the paper, innumerable extensions have

been made that build on the ARCH model. One of the most influential extensions is the

Generalized AutoRegressive Conditional Heteroskedastic (GARCH) model introduced

by Bollerslev (1986). This extension has grown out to be the most popular used model

in empirical volatility modelling according to Li, Ling, and McAleer (2002). The

GARCH model adds an autoregressive component to the ARCH process by letting the

conditional variance be dependent on both past innovations and its lags. Briefly after

the introduction of the GARCH model Akgiray (1989) showed that both the ARCH and

GARCH model outperformed traditional homoscedastic models. This research proved

that the assumption of homoskedasticity of traditional models needed to be relaxed and

more research needed to be done to provide accurate volatility forecasts.
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Like the ARCH model, the GARCH model has many extensions developed in

later research. One of the problems of GARCH volatility forecasting for stock returns is

the existence of excess kurtosis. The original ARCH and GARCH processes assume a

Gaussian distribution. Part of this problem was alleviated by changing the underlying

distribution assumption. Baillie and DeGennaro (1990) found that a GARCH model

assuming a student’s t-distribution (t-distribution) outperformed the GARCH model

assuming a Gaussian distribution.

Another problem in GARCH volatility forecasting for stock returns is symmetry.

The GARCH model requires symmetry in its estimates. Many papers have documented

that stock returns display a so-called ‘leverage effect’ (Bouchaud, Matacz, & Potters,

2001; Poon & Granger, 2003). This effect was first introduced by Black (1976) and is

widely accepted as a stylized fact of stock returns. The leverage effect implies that stock

returns generally have negatively skewed distributions. As the GARCH model is unable

to produce asymmetric estimates this would mean the predictions would be biased. One

possible solution to the issue is changing the assumed distribution to a skewed student’s

t-distribution (skewed t-distribution). Other possible solutions are new models that

were specifically designed to accommodate asymmetry. The three asymmetric models

used in this paper are the Exponential GARCH (EGARCH) model, proposed by Nelson

(1991), the GJR-GARCH model introduced by Glosten, Jagannathan, and Runkle

(1993) and the Threshold GARCH (TGARCH) model by Zakoian (1994).The

EGARCH model uses a conditional variance equation in logarithmic form, making it

able to relax the parameter restrictions on GARCH models. On top of that, it

introduces a new component that allows the model to react more or less to negative

shocks. The GJR-GARCH and TGARCH model are very similar to each other. They

both use an indicator function to allow the model to react more to negative shocks.

These three models are among the most widely used volatility prediction models

and numerous papers have shown that they produce good predictions for stock returns

(Alberg, Shalit, & Yosef, 2008; Brailsford & Faff, 1996; Hansen & Lunde, 2005; Pagan &

Schwert, 1990; Poon & Granger, 2003). Many of these papers also suggest that the
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asymmetric models outperform the standard GARCH model for stock returns.

Most of the relevant highly cited papers stem from the 1990s and 2000s, meaning

much of the relevant research in the literature is relatively old. We have since then

experienced three major crises in a relatively short period of time: the dot-com bubble

around 2000, the financial crisis of 2008/2009 and the ongoing COVID-19 crisis. All

crashes are characterized by a sharp spike in volatility and a relatively fast recovery

compared to previous crises. The financial markets have become increasingly

computerized and countless new volatility forecasting models have been created.

Despite these new models, ARCH family models are still used by financial institutions

and taught in universities. This paper uses the new data available on the last three

major stock market crashes to investigate and evaluate the performance of four models

of the ARCH family. The standard GARCH model will be tested against three

asymmetric GARCH models: the EGARCH model by Nelson (1991), the GJR-GARCH

model by Glosten et al. (1993) and the TGARCH model by Zakoian (1994). Each

model is used to forecast over the time periods of the three crises. Subsequently, the

forecasts are compared to each other with two evaluation measures. Afterwards, the

difference in evaluating measures is tested using a Diebold-Mariano test.

This paper updates the current literature on the relative performances of the

four models. On top of that, it researches the assumed distributions and tests which of

these distributions provide the best forecasts for all four models. According to most of

the literature, the asymmetric models are expected to outperform the GARCH model.

This should especially hold in times of crisis, as these time periods are generally

characterised by big negative shocks. The EGARCH, GJR-GARCH and TGARCH

models should be able to adjust to these shocks better than the standard GARCH

model. Additionally, as the literature has documented the fat tails and the leverage

effect in stock returns the t and skewed t-distribution are expected to outperform the

normal distribution. The skewed t-distribution is expected to perform best.

The paper is split up into sections. First, in section 4 a brief elaboration on the

data sets used is given. In section 5 the empirical modelling and forecasting scheme are
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specified. Section 6 will display the results found from the forecasts and tests. The final

section will conclude and discuss points for future research.

4 Data

The data used in this paper consists of four data sets. The first three data sets

contain daily price indices of the S&P500 (SPX), NASDAQ (IXIC) and Dow Jones

(DJI). The time period spans from January 1, 1990, to May 11, 2021. The data is

collected from the Thomas Reuters Eikon Datastream database. The last data set used

contains the daily indices of the CBOE Volatility Index (VIX) from January 2, 1992,

until May 11, 2021. The data is taken from Yahoo finance.

The return series of the S&P500, NASDAQ and Dow-Jones are presented in

Figure 1, Figure 2 and Figure 3. The dot-com bubble, financial crisis and COVID-19

are easily recognizable in all three index series by their big spikes in returns.

Figure 1

S&P500 returns over 1990-2021

Figure 2

NASDAQ returns over 1990-2021
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Figure 3

Dow-Jones returns over 1990-2021

Table 1

Descriptive statistics of the S&P500, NASDAQ and Dow-Jones returns

Dataset

Statistics S&P500 NASDAQ Dow-Jones

Mean 0.00030 0.00041 0.00031

Variance 0.00013 0.00021 0.00012

Skewness -0.41536 -0.21356 -0.40820

Kurtosis 11.84366 7.49756 13.54714

The descriptive statistics of the S&P500, NASDAQ and Dow-Jones returns are

reported in Table 1. The data shows that all three indices have high excess kurtosis and

have negatively skewed distributions. This supports the previous literature studies that

argue that stock returns have heavy tails and a leverage effect. Simply looking at Table

1 would suggest that the models would perform best if a skewed t-distribution is

assumed.

5 Methodology

In this section the models are specified and the forecasting scheme is defined.

The forecasting scheme is set up as follows. First, the testing data and rolling window

length are defined. Afterwards, the evaluating measures are described and finally, the

test statistic used for testing the relative performances is specified.
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Model specification

In this paper for each data set the price indices are used to calculate the daily

financial returns. Log returns are used, which are computed as follows:

yt = 100 ∗ (ln(It+1)− ln(It)) (1)

yt is defined as the daily return, It is defined as the stock index on time t and

It+1 is defined as the stock index at time t+ 1.

The first forecasting model used is the linear GARCH(1,1) model. The

GARCH(1,1) model is specified below:

yt = µt + ut (2)

σ2
t = ω + αu2

t−1 + βσ2
t−1 (3)

ut = σtεt, εt ∼ N(0, 1) (4)

In these equations yt is the daily return. ω and α and β are constant parameters.

Equation 2 describes the conditional mean equation. The µt in this model can be a

constant, an ARMA process or any other type of mean calculation process. In this

paper, a constant mean is assumed. The choice of µt does not affect the volatility

estimates. As this paper strictly focuses on the volatility estimation of the GARCH

models, any choice of µt suffices. ut contains the residuals of the conditional mean

equation.

Equation 3 describes the conditional variance equation with an autoregressive

and a moving average component. The autoregressive component is captured by σ2
t−1

and the moving average component is captured by u2
t−1. Some additional restrictions

are added to the model to prevent negative variances. The first restriction is that the

parameters α, β and ω must be nonnegative. The second restriction is as follows:

α + β < 1 (Bollerslev, 1986).
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As seen in equation 4, the distribution of the residuals ut is dependent on σ2
t ,

which contains the conditional variance, and εt, the innovation at time t. In this model

specification, the innovations are assumed to follow a standard normal distribution.

ut and yt are symmetric time series, which is why a standard linear GARCH

model is not able to capture the asymmetric properties of the return series. The three

asymmetric GARCH models that will be used to try to capture the asymmetric

properties are the GJR-GARCH(1,1), TGARCH(1,1) and the EGARCH(1,1) model.

The GJR-GARCH(1,1) is similar to the GARCH(1,1) model. The conditional

mean equation is equal to that of the GARCH(1,1) model, equation 2. The

GJR-GARCH model differs in its conditional variance equation. The addition of an

indicator function to the conditional variance equation allows for asymmetric properties

to be modelled. The conditional variance equation is specified as follows:

σ2
t = ω + αu2

t−1 + βσ2
t−1 + γu2

t−11[ut−1<0] (5)

σ2
t denotes the conditional variance and u2

t−1 denotes the lagged squared residuals

. ω α, β and γ are constant parameters. The indicator function 1[ut−1<0] is equal to 1 if

the past residual is negative and equal to 0 if the past residual is nonnegative. If the γ

coefficient is equal to zero, the GJR-GARCH model is identical to a GARCH(1,1)

model. If gamma is positive, negative shocks will have a bigger impact on the

conditional volatility than positive shocks. If gamma is negative the inverse is true. The

indicator function allows the model to fit itself to returns with asymmetric properties.

The TGARCH(1,1) model is very much alike the GJR-GARCH model but uses

absolute residuals instead of squared residuals. The conditional variance equation is

specified below:

σ2
t = ω + α|ut−1|+ βσt−1 + γ|ut−1|1[ut−1<0] (6)

A more general model can be used to describe both models in one equation:

σκt = ω + (α + γ1[ut−1<0])|ut−1|κ + βσκt−1 (7)
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κ is the power of the model. The conditional variance is (σκt ) 2
κ . This more

general model is very similar to the A-PARCH model, introduced by Ding, Granger,

and Engle (1993). If κ equals 2 the model is equal to the GJR-GARCH model. If κ is

equal to 1 the model is equal to a TGARCH model. In this paper, only the

GJR-GARCH and TGARCH models are used to forecast.

The last model used to forecast is the nonlinear EGARCH(1,1) model. Once

again the conditional mean equation is equal to those of the previous models. The

model is however fundamentally different from the three previous models as it does not

put restrictions on its parameters to ensure nonnegative variances. The conditional

variance equation is specified as follows:

ln(σt) = ω + α
ut−1√
σt−1

+ β( |ut−1|√
σt−1

−
√

2
π

) (8)

The natural logarithm on the left side of the equation ensures that the variance

is nonnegative as the exponential function is strictly positive. This allows the model to

drop the restrictions on its parameters. ω, α, and β are constant parameters. The α

coefficient allows the model to capture asymmetry. If α = 0, positive shocks have the

same impact as negative shocks; if α > 0 positive shocks increase the conditional

variance; if α < 0 positive shocks reduce the conditional variance. The coefficient

determines whether positive or negative shocks have a greater impact on the conditional

variance.

Underlying distributions

In all four models the innovations are assumed to be normally distributed. As

Cont and Bouchaud (2000) show that stock returns generally have fat tails and

asymmetric properties this assumption is relaxed. All four models are tested separately

assuming a normal-, t- and skewed t-distribution.

Forecasting scheme

The S&P500, the NASDAQ and Dow-Jones data sets are all analysed separately

using the following forecasting scheme: All four models are used to forecast the one step

ahead volatility for each day in the testing period. For each day in the testing period,
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the model is trained on a five-year rolling window and used to predict the volatility for

the following day.

Time periods

Figure 4

VIX volatility in the dot-com bubble

For the dot-com bubble analysis, the testing period consists of the data on the

interval between July 8, 1997, and May 12, 2003. These dates were selected by visually

inspecting the VIX. The VIX index around this time period is shown in Figure 4, the

starting- and ending points are indicated by the vertical lines. When looking at the

VIX, July 1997 is one of the last months before a time period of continuous high

volatility up until May 2003. In this paper, this time frame will therefore be considered

as the dot-com bubble.

Figure 5

VIX volatility in the financial crisis

For the financial crisis analysis, the testing period consists of the data in-between

July 1, 2007, and January 23, 2012. Once again the testing period is selected by
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inspecting the VIX. The VIX index around this time period is shown in Figure 5. July

2007 is one of the last months before the high volatility period that lasted until 2012.

Figure 6

VIX volatility in the COVID-19 crisis

For the COVID-19 crisis the analysis, the testing period consists of the data

from February 1, 2020, until May 11, 2021. The VIX index around this time period is

shown in Figure 6. The big spike in volatility in February is used as the starting point

of the crisis.

Evaluating measures

As volatility cannot be observed it must be estimated as well. As Poon &

Granger (2003) state: “In finance, volatility is often used to refer to the standard

deviation”. The benchmark used for volatility estimation in this paper is the moving

average of the last trading month, which generally contains 21 days. As a robustness

check, the predictions are also compared to the moving average of the last trading week,

which generally consists of five days. The five-day moving average and 21 day moving

averages are calculated as follows:

σ̂2
t = 1

5

5∑
k=1

(yt−k − ȳt)2 (9)

σ̂2
t = 1

21

21∑
k=1

(yt−k − ȳt)2 (10)

Where σ̂2
t denotes the estimated variance, yt−k denotes the lagged returns and ȳt

denotes the mean of the observation of the rolling window. The daily volatilities are
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then multiplied by a factor of
√

252 to annualize the results.

To test the accuracy of the prediction series the Mean Squared Error (MSE) is

used. The MSE is calculated as follows:

MSE = 1
n

n∑
t=1

(σt − σ̂t)2 (11)

Where σt denotes the benchmark volatility value at time t and σ̂t denotes the

predicted value at time t.

The Mean Squared Error (MSE) is chosen as the accuracy measure because it

can be rewritten as the sum of the variance and the bias of the estimator (Wackerly,

Mendenhall, & Scheaffer, 2008):

MSE(θ̂) = V arθ(θ̂) +Bias(θ̂, θ)2 (12)

The θ denotes the true population and the θ̂ denotes the estimator. In this

paper, the benchmark volatility σt will be set as the true population θ and the predicted

series σ̂t will be set as the estimator θ̂. It will therefore test both the variance and the

bias of the predicted series compared to the benchmark volatility.

As the mean squared error punishes large forecasting errors very heavily, a

second evaluating measure is added. The Mean Absolute Error (MAE) is very much like

the MSE, but uses absolute errors instead of squared errors. The MAE is calculated as

follows:

MAE = 1
n

n∑
t=1
|σt − σ̂t| (13)

To compare the MSE of two different combinations of model and distribution a

two-sided Diebold-Mariano (DM) test is performed, first introduced by Diebold and

Mariano (1995). The hypotheses are described below:

H0 : MSE1 −MSE0 = 0 versus H1 : MSE1 −MSE0 6= 0 (14)

Where H0 denotes the null hypothesis and H1 denotes the alternative hypothesis.
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The MSE0 is the MSE of the benchmark model and the MSE1 is the MSE of the model

being compared. The Diebold-Mariano (DM) test statistic is calculated as follows:

DM = 1√
n

1√
Ŝ2

T2∑
t=T1

((σt − σ̂1,t)2 − (σt − σ̂2,t)2) ∼ N(0, 1) (15)

Where n denotes the number of observations in the sample period. T1 and T2

denote the starting point and the ending point of the predicted series, respectively. Ŝ2

denotes the heteroscedasticity and autocorrelation consistent (HAC) robust covariance

matrix. This matrix is estimated using the Newey-West procedure (Newey & West,

1987). σt denotes the benchmark volatility on time t. σ̂1,t denotes the volatility

predictions by the model being compared. σ̂2,t denotes the benchmark model. For each

day in the sample, the DM-statistic compares the squared errors of the competing

models.

Comparing prediction series

At first, all mean squared errors and mean absolute errors are calculated and

summarized. Afterwards, Diebold-Mariano tests are done to test the significance of the

differences found in MSE. All tests were performed using the 21-day moving average as

the volatility benchmark. The tests were repeated using the five-day moving average

volatility benchmark as a robustness check. The results were nearly identical.

Each model will compare between its assumed distributions. A DM-test is

performed between the predictions made by the normally distributed model and the

t-distributed model and between the normally distributed model and the skewed

t-distributed model. Lastly, the t-distributed model is compared to the skewed

t-distributed model. These tests are repeated for all four models on all three data sets.

After analysing the results of the test for each model, the best performing assumed

distribution is used to compare the different models. The remaining distributions are

put aside. Once again a DM-test is performed to compare the performance of the

models. All four models are tested against each other.
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6 Results

Table 2

MSE and MAE of the forecasts of all combinations and distributions

S&P500 NASDAQ Dow-Jones

Model - Distribution MSE MAE MSE MAE MSE MAE

GARCH Normal 0.01087 0.08352 0.01722 0.10922 0.01015 0.07958

GARCH t 0.00989 0.08061 0.01598 0.10625 0.00939 0.07734

GARCH Skewed t 0.00995 0.08098 0.01616 0.10706 0.00944 0.07774

EGARCH Normal 0.01194 0.08476 0.01892 0.11189 0.01129 0.08090

EGARCH t 0.01003 0.07947 0.01708 0.10763 0.00959 0.07646

EGARCH Skewed t 0.01028 0.08052 0.01724 0.10830 0.00982 0.07743

GJR-GARCH Normal 0.01168 0.08521 0.01868 0.11221 0.01101 0.08095

GJR-GARCH t 0.01086 0.08257 0.01819 0.11088 0.01041 0.07963

GJR-GARCH Skewed t 0.01093 0.08298 0.01787 0.11046 0.01050 0.08012

TGARCH Normal 0.01220 0.08697 0.01957 0.11465 0.01153 0.08254

TGARCH t 0.01164 0.08541 0.01845 0.11212 0.01100 0.08153

TGARCH Skewed t 0.01171 0.08575 0.01850 0.11242 0.01110 0.08192
Notes: MAE and MSE of the forecasts of all combinations of models and distributions. The best-performing

forecasts are denoted in bold.

Table 2 shows the MSE and MAE of all combinations of models and their

assumed distributions for all three data sets. The combination with the lowest MSE or

MAE is denoted in bold for each data set. When the MSE is used as evaluating

measure the GARCH model with a t-distribution delivers the best forecasts. When

using the MAE the results differ across data sets. For the NASDAQ data set the

GARCH model with a t-distribution performs best, but for the S&P500 and Dow-Jones

data sets the model is outperformed by the EGARCH model with a t-distribution.

Both the t- and the skewed t-distribution outperform the normal distribution for all

models on all data sets. For the GARCH, EGARCH, and TGARCH models the

t-distribution slightly outperforms the skewed t-distribution. Only the GJR-GARCH

model on the NASDAQ data set provides better forecasts assuming a skewed

t-distribution over a t-distribution. Overall, Table 2 shows that the GARCH and
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EGARCH models with t-distribution provide the best forecasts.

As many of these results differ only slightly, Diebold-Mariano tests are done to

test the significance of these differences.

Testing between distributions

Table 3

GARCH model distributions compared on the

S&P500 data set

Base

Test Normal Student’s t Skewed t

Normal X
1.000

(-12.54)

1.000

(-11.70)

Student’s t
0.000***

(12.54)
X

0.000***

(-15.08)

Skewed t
0.000***

(11.70)

1.000

(15.08)
X

Notes: Diebold-Mariano tests p-values and test statistics.

Test statistics are denoted in brackets. Base indicates the

benchmark distribution. Test indicates the distribution

that is being tested against the benchmark distribution. *

indicates the significance level. ’*’ is significant on a 90%

confidence level, ’**’ is significant on a 95% confidence

level,’***’ is significant on a 99% confidence level.
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Table 4

GJR-GARCH model distributions compared on

the NASDAQ data set

Base

Test Normal Student’s t Skewed t

Normal X
1.000

(-4.02)

1.000

(-6.62)

Student’s t
0.000***

(4.02)
X

1.000

(-11.88)

Skewed t
0.000***

(6.62)

0.000***

(-11.88)
X

Notes: Diebold-Mariano tests p-values and test statistics.

Test statistics are denoted in brackets. Base indicates the

benchmark distribution. Test indicates the distribution

that is being tested against the benchmark distribution. *

indicates the significance level. ’*’ is significant on a 90%

confidence level, ’**’ is significant on a 95% confidence

level,’***’ is significant on a 99% confidence level.

To test which distribution assumption delivers the best predictions the normal,

t- and skewed t-distributions are tested against each other. The distributions are tested

separately on all four models on all three data sets. In Table 3 the results of the

GARCH model on the S&P500 data are presented. As seen in the table both the t and

the skewed t-distribution outperform the normal distribution on a 99% confidence level.

Surprisingly, however, the t-distribution significantly outperforms the skewed student’s t

distribution.

The tests from the EGARCH, GJR-GARCH, and TGARCH models all show

very similar results. The t- and skewed t-distribution outperform the normal

distribution and the t-distribution outperforms the skewed t-distribution, all on a 99%

confidence level. The same holds when the tests are repeated over the NASDAQ and

Dow-Jones data sets. The only outlier is the GJR-GARCH model on the NASDAQ
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data set. These results are reported in Table 4.

As for nearly all combinations of models and data sets the student’s t assumed

distribution performs best, the comparison between models will be done assuming a

t-distribution.

Model comparison

Table 5

The GARCH, EGARCH, GJR-GARCH and TGARCH models

compared on the S&P500 data set

Base

Test GARCH EGARCH GJR-GARCH TGARCH

GARCH X
0.113

(1.59)

0.000***

(6.58)

0.000***

(10.87)

EGARCH
0.887

(-1.59)
X

0.000***

(5.35)

0.000***

(9.84)

GJR-GARCH
1.000

(-6.58)

1.000

(-5.35)
X

0.000***

(8.72)

TGARCH
1.000

(-10.87)

1.000

(-9.84)

1.000

(-8.72)
X

Notes: Diebold-Mariano tests p-values and test statistics. Test statistics are

denoted in brackets. Base indicates the benchmark model. Test indicates the

model that is being tested against the benchmark model. * indicates the

significance level. ’*’ is significant on a 90% confidence level, ’**’ is significant

on a 95% confidence level,’***’ is significant on a 99% confidence level.
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Table 6

The GARCH, EGARCH, GJR-GARCH and TGARCH models

compared on the NASDAQ data set

Base

Test GARCH EGARCH GJR-GARCH TGARCH

GARCH X
0.000***

(9.16)

0.000***

(12.65)

0.000***

(12.95)

EGARCH
0.887

(-9.16)
X

0.000***

(6.36)

0.000***

(9.39)

GJR-GARCH
1.000

(-12.65)

1.000

(-5.35)
X

0.057*

(1.91)

TGARCH
1.000

(-12.95)

1.000

(-9.84)

0.943

(-1.91)
X

Notes: Diebold-Mariano tests p-values and test statistics. Test statistics are

denoted in brackets. Base indicates the benchmark model. Test indicates the

model that is being tested against the benchmark model. * indicates the

significance level. ’*’ is significant on a 90% confidence level, ’**’ is significant

on a 95% confidence level,’***’ is significant on a 99% confidence level.

Table 7

The GARCH, EGARCH, GJR-GARCH and TGARCH models

compared on the Dow-Jones data set

Base

Test GARCH EGARCH GJR-GARCH TGARCH

GARCH X
0.030**

(2.18)

0.000***

(7.15)

0.000***

(9.79)

EGARCH
0.970

(-2.18)
X

0.000***

(5.67)

0.000***

(9.26)

GJR-GARCH
1.000

(-7.15)

1.000

(-5.67)
X

0.057*

(7.37)

TGARCH
1.000

(-9.79)

1.000

(-9.26)

0.943

(-7.37)
X

Notes: Diebold-Mariano tests p-values and test statistics. Test statistics are

denoted in brackets. Base indicates the benchmark model. Test indicates the

model that is being tested against the benchmark model. * indicates the

significance level. ’*’ is significant on a 90% confidence level, ’**’ is significant

on a 95% confidence level,’***’ is significant on a 99% confidence level.
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The results of the Diebold-Mariano tests between models are presented in Table

5, Table 6, and Table 7. Table 5 presents the model comparison of the S&P500 data set.

Table 6 and Table 7 present the model comparison of the NASDAQ and Dow-Jones

data sets, respectively. Somewhat surprisingly the GARCH model seems to produce the

best predictions on all data sets. It outperforms the GJR-GARCH and TGARCH

models on all three data sets on a very significant level. On the S&P500 data set the

GARCH model fails to significantly outperform the EGARCH model, but it does on the

NASDAQ and Dow-Jones data sets. It outperforms the EGARCH model on a 99%

confidence level on the NASDAQ data set and outperforms it on a 95% confidence level

on the Dow-Jones data set. The GJR-GARCH model outperforms the TGARCH model

on a 90% or higher confidence interval on all data sets. Both the GARCH and the

EGARCH model outperform the GJR-GARCH, and therefore the TGARCH, model on

a 99% confidence interval on all data sets. Overall based on MSE, the GARCH model

seems to perform best, the EGARCH model second, and the GJR-GARCH and

TGARCH model third and fourth, respectively.

7 Conclusion

To conclude, the results will be set out against the outstanding literature. The

fat tails and leverage effect that were documented in previous literature are present in

all three data sets. All data sets exhibit a negative skewness and high excess kurtosis.

The results confirm the findings of previous literature in the fact that an assumed

t-distribution fits the data better than a normal distribution. Somewhat surprisingly,

however, the skewed t-distribution fails to outperform the t-distribution on all but the

GJR-GARCH model on the NASDAQ data set. Studying the literature reviewed in this

paper and looking at the descriptive statistics of the data sets would lead one to assume

the skewed t-distribution to perform best.

Additionally, according to the majority of the literature stemming from the

1990s and 2000s, the EGARCH, GJR-GARCH, and TGARCH models are expected to

outperform the GARCH model. Many researchers attribute this superiority over the

standard GARCH model to the ability of these models to capture the asymmetric
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properties of stock returns. As seen in the descriptive statistics the negative skewness of

the data implies the presence of asymmetry in all data sets. Especially in times of crisis,

the asymmetric models are expected to be able to forecast more accurately as they

should be able to model the big negative shocks that are typically associated with stock

market crashes. Once again the results conflict with the expectations. None of the three

asymmetric models manage to outperform the standard GARCH model. The GARCH

model even manages to significantly outperform the GJR-GARCH and TGARCH

model on all three data sets.

The results are conflicting with the outstanding literature. As much of the

research on the four models was done in the 1990s and 2000s, it could mean the

literature is dated. All models, however, are still frequently used, as they are easy to

apply and understand. Managers deciding on what model to use could base their

decisions on dated research, which would lead them to choose one of the asymmetric

models. As the accuracy of volatility forecasts is the most important in times of crisis,

using one of the asymmetric models over the standard GARCH model could result in

poor performances. The results of this paper show that, out of the four models, the

most accurate forecasts in times of crisis are provided by the GARCH model assuming a

t-distribution, contrary to prior belief.

The data analyzed in this paper strictly focuses on times of crisis. Financial

managers deciding on what models to use will most likely want to base their decisions

on the performance of a model on a data set broader than solely in times of crisis. The

relative performance could differ when looking at data including time periods with

stable market conditions. Research analyzing data from stable periods could find

opposing results. The findings do, however, allow managers to prepare for financial

crises by selecting models that perform well in them. Managers could choose to switch

between models in stable periods and times of financial turmoil or risk-averse managers

could choose to always use crisis robust models. More research should be done on the

subject to accurately uncover the relative performances of the models and distributions.

The research could be repeated on different indices, specific stocks, or industries.
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Testing periods could be expanded with older crises, switched to stable periods, or

combine the two. The models in this paper are all estimated on a five-year rolling

window. Changing the rolling window length could also affect the relative performance

of the models and distributions. Finally, as there are constantly new models being

developed, adding different models could find better-performing models. Strictly

focusing on these four models in times of financial crises, however, the results show that

the asymmetric models do not significantly outperform the GARCH model. Providing

motivation for future research into the relative performances of these popular volatility

forecasting models.
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