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Abstract

In this paper, I examine whether or not incorporating the different stylized facts associated

with volatility provides better insights in asymmetric volatility spillovers between the oil market

and three global stock markets. This is done by using a VAR and a VHAR model, which is able

to capture the stylized facts, in combination with the DAG technique. Both models show that

over the sample period, bad volatility spillovers dominate the markets which implies a pessimistic

market sentiment and the presence of uninformed traders on the market. Moreover, during and

after the global financial crisis volatility spillovers from the oil market to the stock markets are

predominantly positive implying that oil futures can be used as a hedge against such crises.

Furthermore, the results show that asymmetries in volatility spillovers are highly influenced by

the economic and political events between 2002 and 2014. However, incorporating the stylized

facts associated with volatility by means of a VHAR model does not lead to new useful insights.
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1 Introduction

The financial and economic turbulence during the financial crisis of 2007-2008 has made it apparent

once again that the global markets are highly interdependent. The subprime mortgage fears that

began in the United States and peaked with the fall of Lehman Brothers in September 2008 spread

across the markets, resulting in a global financial crisis, whose ramifications are the United States

and European sovereign debt crises (Fengler & Gisler, 2015). By February 2009, stock markets had

declined over 40%, the crude oil price by more than 60% and implied volatilities of equities and

oil spiked to crisis levels. According to Fengler and Gisler (2015), crises like these generally come

along with a regular pattern where the most notable signal of this pattern is the significant surge

in volatility, reflecting the increased uncertainty in the markets. Moreover, volatility tends to spill

over between markets. Especially relevant are the spillovers between the crude oil market and stock

markets, as crude oil has been proven to have a significant influence on the global economy as well

as financial markets (Chen et al., 1986; Ji et al., 2018; Wen et al., 2012).

So, what effects do shifts in the oil market’s and stock markets’ volatility have on each other?

Decomposing the overall volatility into two separate components, ‘good’ volatility and ‘bad’ volatil-

ity, yields a much simpler answer to this question (Segal et al., 2015). On the one hand, a market’s

return volatility may be higher because better diversification opportunities and more productive use

of inputs allow investors to take on more risk, resulting in increased market growth (Acemoglu &

Zilibotti, 1997; Obstfeld, 1994). On the other hand, a market’s return volatility may be higher due

to risks that are hard to eliminate like political threats, pandemics or natural disasters (Bartram et

al., 2012; Corbet et al., 2021; Kliesen & Mill, 1994). In the former case, high volatility is beneficial

because it results from positive shocks that enable markets to function more efficiently. However,

in the latter case, high volatility destabilizes and stagnates the market (Wang & Wu, 2018).

Similar to Wang and Wu (2018), I explore the asymmetries in volatility spillovers between the

oil market and three global stock markets that emerge due to the aforementioned good and bad

volatility. Wang and Wu (2018) do this by constructing volatility spillovers with vector autoregres-

sive (VAR) models. However, a disadvantage of this approach and many other standard volatility

models, such as generalized autoregressive conditional heteroskedasticity (GARCH) models, is that

they are not able to capture the different stylized facts associated with financial time series. For

example, these models are unable to take into account the stylized fact that the autocorrelations of

absolute and squared returns exhibit long-term persistence, even months after (Corsi, 2009). Addi-
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tionally, the probability density functions of returns exhibit fat tails that take on different shapes

depending on the time scale considered (e.g. daily returns versus weekly returns). As the time scale

increases, the probability distributions of returns show a slow and steady convergence to the normal

distribution (Corsi, 2009). The VAR model is unable to capture all these stylized facts.

In this paper, I therefore examine whether or not taking into account the stylized facts of

volatility provides a better insight in the asymmetric volatility spillovers between the crude oil and

three global stock markets (Europe, Japan and the United States) than when using the VAR model

approach by Wang and Wu (2018). The analysis is performed by using the aforementioned VAR

model and the multivariate extension of the heterogeneous autoregressive (VHAR) model proposed

by Corsi (2009), which is able to capture the aforementioned stylized facts associated with volatility.

The VAR and VHAR models are used in a refined structural framework in combination with the

DAG technique. Then, based on the DAG and structural VAR and VHAR results, the static and

dynamic characteristics of asymmetric volatility spillovers are examined using forecast error variance

decompositions and volatility spillover indices that are based on the ones introduced by Diebold

and Yilmaz (2014), which capture the transmission of volatility from and to markets.

The main findings of this paper show that both models indicate bad volatility spillovers dominate

the market, which implies that a pessimistic market sentiment dominates between 2002 and 2015.

Moreover, this also indicates that the majority of the market is dominated by uninformed traders

who tend to raise volatility. Prominent bidirectional positive spillovers between the oil market and

the other markets were found during and after the global financial crisis, indicating that oil futures

can be used as a hedge against financial crises in an investor’s portfolio. However, incorporating the

stylized facts associated with volatility using the VHAR model did not provide a better insight into

the asymmetric volatility spillovers as the results found are inconsistent with previous research.

The findings of this paper have important implications for portfolio diversification strategies

and risk valuation as it shows whether or not a portfolio is well balanced in terms of good and bad

volatility spillovers. If not, investors can lower risks and increase opportunities of their portfolio by

decreasing the portfolio weight of bad volatility stocks and increasing the portfolio weight of good

volatility stocks. Moreover, this paper adds to the existing literature by being the first to compare

the VAR model with a VHAR model and by using a VHAR model in combination with the DAG

technique. Previous research mainly used the Cholesky decomposition to identify the system.

The paper is organized as follows. Section 2 provides a more elaborate literature review on

the research topic. The data set is described in Section 3. Section 4 details the methods used in
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modelling the volatility dynamics, volatility spillover indices and model diagnostics. The empirical

results are presented and discussed in Section 5. Finally, Section 6 concludes the research and

limitations and suggestions for future research are given in Section 7.

2 Literature

In the 2000s the crude oil market experienced extreme price fluctuations. Such price fluctuations are

not without consequences as crude oil has been proven to have a major impact on the economy and

stock markets (Hamilton, 1983; Kilian & Park, 2009). Consequently, volatility spillovers between

the oil and stock markets are crucial for energy policymakers, energy risk management, market

participants and portfolio diversification (Xu et al., 2019). As a result, this connection between the

oil and stock markets has drawn increased attention around the world in the scientific literature.

For example, in Middle Eastern and North African countries, Maghyereh and Awartani (2016)

and Malik and Hammoudeh (2007) find significant volatility spillovers from the oil market to stock

markets and not the other way around. The only exception is Saudi Arabia, where significant

spillovers are found from the Saudi market to the oil market. Arouri et al. (2011) find significant

volatility spillovers between the oil market and stock markets in the United States and Europe.

However, they find that in Europe the spillovers are usually unidirectional from the oil market to

the stock markets whereas in the United States, spillovers are bidirectional. Bouri (2015) examines

the role oil price volatility has on predicting stock market volatility in two small oil-importing

countries neighbouring oil-exporting countries. Significant unidirectional volatility spillovers from

the oil market to the Jordan stock market were found whereas volatility spillovers between the

oil market and Lebanese stock market were insignificant. Furthermore, Maghyereh et al. (2016)

examine the directional connectedness between the oil market and 11 major international stock

markets. They find that the bulk of volatility spillovers is largely dominated by spillovers from the

oil market to stock markets and not vice versa. Hence, overall the direction of volatility spillovers

between oil and stock markets seems to be an open question.

This is not surprising as early literature mainly focused on return spillovers between the oil

and stock markets, instead of volatility spillovers. The conventional VAR or vector correction

error models (VECM) were the common econometric methodologies applied to examine the return

spillovers between the oil and stock markets (Wang & Wu, 2018). Huang et al. (1996), for example,

investigate the relationship between U.S. stock returns and oil futures returns with a VAR model.
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They discover that oil futures returns are uncorrelated with U.S. stock market returns, except in the

case of individual oil companies’ returns. Maghyereh (2006) examines the relationship between oil

price returns and stock market returns in 22 emerging economies. He finds that, contrary to previous

research on return spillovers in developed economies, oil price shocks do not have a significant effect

on stock market index returns in emerging economies. To analyze the long-run relationship between

the crude oil market and international stock markets, Miller and Ratti (2009) use a VECM over a

period of about 38 years. They find that over the long-run, stock market returns decrease (increase)

as the oil price increases (decreases).

Furthermore, most research that addresses the issue of volatility spillovers between oil and stock

markets employs the widely used econometric methodologies of multivariate GARCH-type models

(Xu et al., 2019). For example, Hammoudeh et al. (2010) use GARCH models to account for

asymmetric shocks caused by world, country, and sector-specific variables on stock return volatility

of 27 U.S. sectors in the short- and long-run. Filis et al. (2011) and Guesmi and Fattoum (2014)

examine the dynamic volatility spillovers between oil prices and both oil-exporting and oil-importing

countries using a multivariate DCC-GARCH-GJR. Filis et al. (2011) find that the conditional

volatility of oil and stock prices does not differ for both oil-exporting and oil-importing countries.

Moreover, they show that aggregate oil demand shocks have a much larger influence on volatility

spillovers than aggregate oil supply shocks that result from the OPEC reducing their production.

Both Filis et al. (2011) and Guesmi and Fattoum (2014) find that the oil market cannot be considered

a strong ‘safe haven’ for insurance against stock market losses during times of uncertainty.

However, standard volatility models, such as the GARCH models described above, lack the

ability to quantify volatility spillovers (Baruńık et al., 2016). Therefore, Diebold and Yilmaz (2009)

developed new measures based on forecast error variance decompositions in a VAR framework to

quantify the extent of volatility spillovers across markets, overcoming the limitations of the previous

literature (Wang & Wu, 2018). Furthermore, Diebold and Yilmaz (2012) improve this technique by

introducing volatility spillover measures that are able to dynamically and quantitatively measure the

directional volatility spillovers. In other words, it not only shows the volatility spillover’s direction,

but also the magnitude of the directional volatility spillover between any two markets (Wang &

Wu, 2018). Additionally, according to Diebold and Yilmaz (2012) it avoids the contentious issues

associated with the existence and definition of ’contagion’. The past decade a significant number

of studies have used Diebold and Yilmaz’s (2009, 2012) volatility spillover directional measures to

analyse dynamic spillovers in various financial markets.
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Nonetheless, both of these volatility spillovers have their disadvantages. First of all, Diebold and

Yilmaz’s (2009) spillover measure adopts the popular Cholesky decomposition in order to identify

the VARs and thus, the resulting variance decompositions can be dependent on the variable or-

dering (Diebold & Yilmaz, 2012). Diebold and Yilmaz (2012) overcome this problem by proposing

a spillover measure that is constructed in a generalized VAR framework so that variance decom-

positions are invariant to the variable ordering. However, Diebold and Yilmaz’s (2012) spillover

measure is still not capable of letting the data speak for itself in order to uncover the network of

contemporaneous causal relations among variables (Yang & Zhou, 2017).

To overcome this problem, Yang and Zhou (2017) were one of the first to use the directed

acyclic graph (DAG) technique in combination with a spillover index similar to the one used by

Diebold and Yilmaz (2009, 2012). Using the DAG technique is advantageous because according

to Bessler and Yang (2003), the DAG technique is able to provide a structure of causality among

financial markets in a contemporaneous time and therefore let the data speak for itself. Yang and

Zhou (2017) examine volatility spillovers between commodities, international stock indices and U.S.

Treasury bonds. They find that the stock market in the United States is at the center of the

international volatility spillover network, and that volatility spillovers from the U.S. stock market

to other stock markets have increased since 2008. Similarly, Wang and Wu (2018) use the DAG

technique to investigate asymmetric volatility spillovers between oil and global stock markets in a

VAR framework, finding that bad total volatility spillovers dominate the system and shift over time,

implying that a pessimistic mood and uninformed traders, who tend to increase volatility and thus

increase uncertainty (Avramov et al., 2006), dominate the financial markets.

Although Diebold and Yilmaz’s (2009, 2012) spillover measures in combination with a VAR

framework are extensively adopted in the current literature, a new framework based on the multi-

variate extension of the HAR model (VHAR) proposed by Corsi (2009) is on the rise to examine

asymmetric volatility spillovers. The VHAR model is namely capable of capturing different stylized

facts associated with volatility and its dynamics (Caloia et al., 2018), contrary to the widely used

VAR models. Long memory, or the slow decline of the autocorrelation function, is one of the key

characteristics of volatility series, and the VHAR model is able to capture this by considering many

lags in a parsimonious way (Asai & Brugal, 2013). Furthermore, heterogeneity, or the fact that

low-frequency volatility has a greater effect on subsequent high-frequency volatility than vice versa

(Corsi, 2009), is a distinct feature of a volatility series that is captured by the VHAR specification

since it models a ’cascade structure’ of volatilities at various frequencies.
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For example, Caloia et al. (2018) examine asymmetric volatility spillovers between five Economic

and Monetary Union (EMU) countries their stock markets using a VHAR model in combination with

the Diebold and Yilmaz (2012) methodology. They find that asymmetries in bad and good volatility

are significant and time-varying between 2000 and 2016. Lastly, Souček and Todorova (2013)

propose an orthogonalized VHAR model to examine volatility spillovers between three international

stock markets and the crude oil market. They find significant volatility spillovers between the stock

markets and oil futures that emerge mostly during and after the global financial crisis of 2007-2008.

Moreover, they conclude that volatility spillovers are largely driven by short term shocks.

3 Data

This study analyses the (asymmetric) volatility spillover effects between the crude oil market and

three international stock markets. In order to do so, I include the S&P 500 (SPX) from Standard

and Poor’s in New York for the United States, the Euro Stoxx 50 (STO50) from Stoxx Limited in

Zurich for Europe and the Nikkei 225 (N225) from Nihon Keizai Shimbum Inc. for Japan. The

West Texas Intermediate (WTI) futures traded on the New York Mercantile Exchange is used for

the crude oil market since it provides a benchmark for crude oil that serves as a reference price for

both buyers and sellers (Wang & Wu, 2018). The stock market indices are free-float capitalization

weighted price indices and represent major and highly liquid financial markets in the U.S., Europe

and Asia. The daily realized variance (RV ), negative semivariance (RS−) and positive semivariance

(RS+) series, based on high-frequency five-minute returns, are directly obtained from Wang and Wu

(2018) and range from January 2002 to December 2014 resulting in a total of 2784 total observations.

Given that the distribution of the realized variance and semivariance is not Gaussian, I follow

Andersen et al. (2003) and perform a log-transformation on the data in order to obtain approxi-

mately Gaussian measures. The transformation adopted is obtained by first taking the square root

of the realized variance and then the logarithm. The same transformation is adopted to the positive

and negative realized semivariance.

The descriptive statistics for the log transformation of the volatility measures are presented in

Table 1. First of all, note that the average realized volatility of the crude oil market is higher

compared to that of the three stock markets. This indicates that the crude oil market is much

more volatile than the three stock markets and thus experiences more price fluctuations. Secondly,

the similarity of the mean and standard deviation of the negative and positive semivariance could
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indicate that both types of volatility measures are very similar and asymmetries are not present.

However, this similarity is misleading. Differences in volatility measures namely do not relate to their

individual properties but to their correlations. Additionally, note that due to the log transformation

almost all time series are approximately Gaussian with a skewness and kurtosis close to 0 and 3,

respectively. Nonetheless, normality is still rejected by the Jarque-Bera test. Finally, the null

hypothesis that a unit root is present in the time series is rejected for every volatility measure time

series by the Augmented Dickey-Fuller test. Hence, all time series are stationary.

Table 1

Descriptive statistics for the realized volatility and realized semi-volatility

Series Mean St. dev. Skewness Kurtosis JB Min Max ADF

log
√
RV

WTI -3.503 0.552 0.257 2.706 40.633∗∗∗ -4.703 -2.092 -4.366∗∗∗

SPX -4.997 0.523 0.649 3.284 204.972∗∗∗ -6.030 -3.419 -4.843∗∗∗

N225 -4.844 0.443 0.371 3.253 71.280∗∗∗ -5.803 -3.481 -4.932∗∗∗

STO50 -4.706 0.496 0.374 2.715 74.233∗∗∗ -5.696 -3.416 -3.632∗∗∗

log
√
RS−

WTI -3.850 0.556 0.251 2.710 39.098∗∗∗ -5.084 -2.444 -4.397∗∗∗

SPX -5.370 0.558 0.493 2.973 112.920∗∗∗ -6.473 -3.780 -4.319∗∗∗

N225 -5.238 0.495 0.282 2.989 36.989∗∗∗ -6.361 -3.826 -5.320∗∗∗

STO50 -5.070 0.531 0.309 2.669 57.152∗∗∗ -6.177 -3.714 -3.422∗∗

log
√
RS+

WTI -3.871 0.564 0.257 2.699 41.072∗∗∗ -5.061 -2.415 -4.492∗∗∗

SPX -5.357 0.524 0.712 3.424 256.331∗∗∗ -6.347 -3.732 -4.644∗∗∗

N225 -5.240 0.473 0.373 3.118 66.442∗∗∗ -6.271 -3.840 -5.183∗∗∗

STO50 -5.073 0.497 0.405 2.833 79.307∗∗∗ -6.085 -3.729 -3.385∗∗

Note. The total number of observations for each time series is 2784; JB shows the Jarque-
Bera test statistic for normality; ADF shows the Augmented Dickey-Fuller test statistic for
stationarity; ∗∗ p < 0.05, ∗∗∗ p < 0.01.

4 Methodology

In this section I introduce the concepts of realized variances and semivariances. After that, I describe

the empirical methodology that is based on the VAR model used in Wang and Wu (2018) and the

VHAR model used in Caloia et al. (2018), where I combine both models with the DAG technique

advocated by Swanson and Granger (1997). Then, I describe the volatility spillover indices that are

based on the variance decompositions from the aforementioned models. Finally, I explain how the

models are evaluated.
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4.1 Realized variance and semivariance

This paper analyses volatility asymmetries between the oil market and international stock markets.

To model volatility, I use realized variances because they can be used as a proxy for the integrated

variance (Andersen & Bollerslev, 1998). Then, for a specific trading day t, the daily realized variance

estimator can be calculated as the sum of the squared intraday returns rt,j :

RVt =
M∑
j=1

r2t,j (1)

where M is the number of intraday (equally-spaced) observations and j = 1/M is the given

sampling interval. Note that the larger the number of intraday observations M , the closer the

value of the realized variance lies to the true value of the integrated variance. Barndorff-Nielsen

and Shephard (2002) namely show that the realized variance estimator converges to the integrated

variance as M −→∞.

To determine asymmetries in volatility spillovers, I follow Barndorff-Nielsen et al. (2008) and

decompose the realized variance into negative and positive realized semivariances, RS− and RS+

respectively. The RS− and RS+ are defined as follows:

RS−t =
M∑
j=1

I(rt,j < 0)r2t,j (2)

RS+
t =

M∑
j=1

I(rt,j ≥ 0)r2t,j (3)

where I is an indicator function. Barndorff-Nielsen et al. (2008) show that RVt = RS−t + RS+
t

and as a result, the realized semivariances can be used to measure downside (RS−t ) and upside risk

(RS+
t ). Then, according to Segal et al. (2015) a negative (positive) semivariance corresponds to a

bad (good) state of the underlying variable and can thus serve as a proxy for bad (good) volatility.

4.2 VAR model

To model the volatility dynamics, I employ two models. The starting point for the first model is

the (reduced-form) VAR model of Sims (1980). In a VAR model, each variable is explained by its

own lagged values and the lagged values of the other variables in the system (Das, 2019). Hence,

it is able to examine the dynamic relationships over time that exist between the variables. The

(reduced-form) VAR(p) model with p lags for the realized variance is given by:
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RVt = µ+

p∑
i=1

ΦiRVt−i + εt (4)

where RVt = (RV1t, ..., RVNt)
′ is an N -dimensional vector holding the realized variance of N

market indices, µ is an N -dimensional vector of constants, Φ is the N × N matrix of dynamic

coefficients and εt is an N -dimensional vector of residuals which are assumed to be white noise and

normally distributed. By definition, εt is white noise if E(εt) = 0, E(εtε
′
t) = Σε, and εt and εs are

independent for s 6= t with finite fourth moments (Franses et al., 2014).

The VAR model depends crucially on the choice of the lag order p since all results that follow after

that are based on the chosen lag order (Hatemi-j, 2003). The optimal lag order can be determined

by information criteria that often have one of the two following objectives; to make good forecasts

or to pick the correct VAR order. In the former case, the lag order p should be chosen such that

it minimizes some prediction criterion. In the latter case, the estimator of p should be consistent,

i.e. limT→∞ P (p̂ = p) = 1 (Wang, 2021). Since I want to determine the correct VAR order, I

thus need to use information criteria that find a consistent estimator of p. Therefore, the Bayesian

Information Criterion (BIC) by Schwarz (1978) and the Hannan-Quinn Criterion (HQ) by Hannan

and Quinn (1979) are used, which are consistent for a stationary VAR process with standard white

noise (Wang, 2021). The explicit formulas for the BIC and HQ are included in Appendix B.

Finally, after having selected the number of lags and concluded that the VAR model is stable,

which is described in Section 4.7, the reduced-form parameters in Equation (4) are estimated using

ordinary least squares (OLS).

4.3 VHAR model

In addition to the refined VAR model that was used by Wang and Wu (2018), I also implement

a multivariate extension of the HAR (VHAR) model by Corsi (2009). As mentioned in the intro-

duction, volatility spillovers based on the VHAR model are also considered as this model is able to

capture the different stylized facts associated with volatility. Therefore, this might result in different

asymmetric spillovers. Despite the fact that the VHAR model is not a long memory process, it is

capable of reproducing the long-memory feature of volatility series by parsimoniously considering

many lags (Asai & Brugal, 2013). One might then think that increasing the number of lags in the

VAR also captures the long-memory behaviour of volatility. This is true, however by increasing the

number of lags in the VAR, the dimensionality issue would be severe, especially with large sample

sizes (Caloia et al., 2018).
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The heterogeneous transmission of volatility is another important stylized fact captured by the

VHAR model, as volatility over longer time intervals has a greater explanatory power on volatility

over shorter time intervals than vice versa (Corsi, 2009). This feature is accounted for by assuming a

hierarchical process in which partial volatilities are dependent on previous partial volatilities (Caloia

et al., 2018). The VHAR for the realized variance can be written as follows:

RV
(d)
t = µ+ φ(d)RV

(d)
t−1 + φ(w)RV

(w)
t−1 + φ(m)RV

(m)
t−1 + εt (5)

where εt is an N -dimensional vector of residuals which are assumed to be white noise and nor-

mally distributed, RV
(d)
t =

(
RV

(d)
1t , ..., RV

(d)
Nt

)′
, RV

(w)
t =

(
RV

(w)
1t , ..., RV

(w)
Nt

)′
, RV

(m)
t =

(
RV

(m)
1t , ...,

RV
(m)
Nt

)′
are three N × 1 vectors of daily, weekly and monthly realized variances and φ are N ×N

coefficient matrices. More specifically, RV
(w)
t = 1

5(
∑4

i=0RVt−i) and RV
(w)
t = 1

22(
∑21

i=0RVt−i). Note

that the VHAR model in Equation (5) is essentially a VAR model with exogenous variables of lag

order 1 (VARX(1)) where the exogenous variables are the weekly and monthly realized variances.

Hence, similar to a regular VAR model, Equation (5) can be estimated via OLS. Moreover, the

VHAR model can also be written as a constrained VAR(22) model. This can easily be seen by

noting that the model in Equation (5) can be written as:

RV
(d)
t = µ+

22∑
i=1

β
(d)
i RV

(d)
t−i + εt (6)

where the β coefficients are subject to the following constraints:

βi =


φ(d) + 1

5φ
(w) + 1

22φ
(m) for i = 1

1
5φ

(w) + 1
22φ

(m) for i = 2, ..., 5

1
22φ

(m) for i = 6, ..., 22

(7)

4.4 DAG technique

After having estimated the VAR model and VHAR model, the variance decompositions have to

estimated. In order to do this, note that I can rewrite Equation (4) and Equation (6) as an infinite

moving average process:

RVt =

∞∑
i=1

Aiεt (8)

where Ai is an N×N coefficient matrix, which is obtained from the recursion Ai =
∑p

j=1 ΦjAi−j
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where A0 is the identity matrix A0 = In and Ai = 0 for i < 0. The moving average representation

in Equation (8) is essential for understanding the system’s dynamics, because it allows for variance

decompositions to be computed (Wang & Wu, 2018). In fact, the error term from H-step-ahead

forecast of the RVt conditional on the information available at t − 1 and its variance-covariance

matrix are given by:

ξt,H =
H−1∑
h=0

Ahεt+H−h (9)

Cov(ξt,H) =

H∑
h=0

AhΣεA
′
h (10)

where Σε is the variance-covariance matrix of the error term in Equation (4). Then, using forecast

error variance decompositions, I can determine for each variable how much of its variance is explained

by it’s own shocks and how much of its variance is explained by shocks in the other variables.

Previous research (e.g. Diebold and Yilmaz (2009)) mainly relied on the Cholesky decomposition

for this, which assumes that the underlying shocks have a specific recursive contemporaneous causal

structure. However, Yang and Zhou (2017) note that economic theories seldom offer guidance for

the recursive causal structure and therefore the imposed restrictions are often arbitrary.

To solve this issue, I follow Yang and Zhou (2017) and Wang and Wu (2018) and make use

of the DAG technique advocated by Swanson and Granger (1997) in order to identify the VAR

structure. An advantage of the DAG technique is that it allows the data to speak for itself about

the contemporaneous causality, resulting in a more credible ordering of the variables that identify

the VAR structure (Swanson & Granger, 1997). Pan et al. (2019) describe the basic idea behind

a DAG analysis as follows. A causal relationship between two variables is represented by arrows.

So, the lack of a causal relationship between X and Y is exhibited by an edge missing between

them. If the two variables have a correlation but no causal relationship, an edge without direction

is displayed (X − Y). In addition, the one-sided edge (X → Y) shows that the causal relationship

is from X to Y and that X causes Y. Finally, the two-sided edge (X ↔ Y) denotes the effect of X

and Y on one another at the same time.

To obtain the DAGs, the PC algorithm introduced by Spirtes et al. (2001) is applied to the

residuals of the models. In short, using Hoover (2005), the PC algorithm is performed as follows.

Start with a complete directed graph and then first tests the unconditional correlation between

each pair of variables. If no correlation is found, the edges are removed. Next, correlation between

a pair of variables conditional on pairs, triples and so on is tested. Again, edges are removed if
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the conditional correlation is insignificant and as far as the data allows it. Finally, the algorithm

determines the direction of the remaining edges. For the complete algorithm and a more elaborate

explanation I refer to Spirtes et al. (2001) and Hoover (2005).

4.5 Volatility spillover indices

Following Wang and Wu (2018) I use volatility spillover indices that are similar to Diebold and

Yilmaz (2014) their indices and that follow directly from the familiar notation of forecast error

variance decomposition. The directional volatility spillover from market j to market i is defined as:

SHi←j =

∑H−1
h=0 a

2
h,ij∑H−1

h=0 trace(AhA
′
h)

(11)

where ah,ij is the ijth element in the coefficient matrix of the moving average process Ah at

step h,
∑H−1

h=0 a
2
h,ij is the estimated contribution to the H-step-ahead error variance in forecasting

volatility of market i due to shocks to volatility of market j and trace(AhA
′
h) is the total H-step-

ahead forecast error variation. Hence, the ratio in Equation (11) measures how much of the volatility

spillovers in market i are due to shocks from market j.

Furthermore, the total directional spillover from other markets to market i and the total direc-

tional spillover to other markets from j are respectively defined as

SH•→i =

N∑
j=1,j 6=i

SHi←j (12)

SHj→• =

N∑
i=1,i 6=j

SHi←j (13)

Finally, the total volatility spillover index is defined as:

SH =
1

N

∑N
i,j=1;i 6=j

∑H−1
h=0 a

2
h,ij∑H−1

h=0 trace(AhA
′
h)

(14)

The total spillover index measures the contribution of volatility shock spillovers to the total forecast

error variance across individual markets (Wang & Wu, 2018).

According to Wang and Wu (2018), these volatility spillover indices complement the volatility

measurements by Diebold and Yilmaz (2014) in two dimensions. First of all, the variance de-

compositions are extracted from the DAG-based structural VAR that is data-driven. Diebold and

Yilmaz (2014), on the other hand, use Pesaran and Shin’s (1998) ordering-free generated variance
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decompositions which still results in arbitrary imposed restrictions. Secondly, contrary to Diebold

and Yilmaz (2014), the variance decompositions are estimated recursively for each period with an

expanding sample, after the initial sample period. Estimating the spillovers recursively and with

an expanding window, instead of a rolling window, can namely better capture volatility dynamics.

This follows from Robinson (1995), whose long memory tests indicate that a shock’s effect on early

volatility is very persistent.

4.6 Asymmetric spillover indices

Asymmetric characteristics of the volatility can be examined by replacing the vector of realized

variances RVt = (RV1t, ..., RVNt)
′ in Equations (4) and (6) with the vector of negative semivariances

RS−t = (RS−1t, ..., RS
−
Nt)
′ or the vector of positive semivariances RS+

t = (RS+
1t, ..., RS

+
Nt)
′. Then,

similar to Baruńık et al. (2016), Wang and Wu (2018) define the overall spillover asymmetry measure

(SAM) as the difference between positive and negative spillovers:

SAMH = SH+ − SH− (15)

where SH+ and SH− are total volatility spillover indices due to positive semivariances (RS+)

and negative semivariances (RS−), respectively, with an H-step-ahead forecast at time t. Hence,

when SAM equals zero, spillovers arising from good and bad volatility are equal. Any deviation

from zero gives rise to asymmetry in spillovers due to either good or bad volatility dominating.

Furthermore, to study the source of asymmetry among the markets, I follow Wang and Wu

(2018) and decompose the SAM to obtain directional SAM spillovers. The spillover asymmetry

measure received by market i from all other markets and transmitted by market i to all other

markets are respectively given by:

SAMH
•→i = SH+

•→i − S
H−
•→i (16)

SAMH
i→• = SH+

i→• − S
H−
i→• (17)

These indices can then determine to what extent the volatility between market i and the other

markets spillover asymmetrically. Moreover, it is worth emphasizing that these asymmetric volatility

spillover indices complement the spillover measures of Baruńık et al. (2016) in the same way as for

the volatility spillover indices described at the end of Section 4.5.
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4.7 Model diagnostics

Contrary to Wang and Wu (2018), I provide a more thorough evaluation on whether or not the

VAR and VHAR models are correctly specified. The model is evaluated by checking the stationarity

of the VAR and VHAR models and investigating the white noise properties and normality of the

residuals. This provides valuable information about the model’s fit and is crucial to endorse the

quality of the results.

To check the stationarity of a VAR(p) model, note that first of all any VAR(p) process can be

written in a first-order VAR form: the companion form. Secondly, any VAR(p) process that is stable

is also stationary. Then, for a VAR(p) process to be stable, its reverse characteristic polynomial

must have no roots in or on the complex unit circle (Wang, 2021). The reverse characteristic

polynomial is defined as follows:

det(IK −A1z − ...−Apzp) = 0 (18)

where IK is the K ×K identity matrix and Ai is the ith coefficient matrix of the reduced form

parameters. Moreover, checking if all roots are outside of the complex unit circle is equivalent to

the condition that all eigenvalues of the companion matrix A have modulus less than 1 (Wang,

2021). Therefore, checking the stationarity of the models is done by retrieving the modulus of all

eigenvalues of the companion matrix.

Next, I check the white noise properties of the residuals. The constant mean and variance

property of the residuals can easily be checked by plotting the standardized residuals. To test the

null hypothesis of no serial correlation left in the residuals, I employ the multivariate Portmanteau

test by Hosking (1980). The test statistic is defined as:

Qh = T 2
h∑
i=1

1

T − i
tr(Ĉ ′iĈ0

−1
ĈiĈ0

−1
) ∼ χ2(K2h) (19)

where h is the number of lags for which the autocorrelations are checked and where Ĉi =

T−1
∑T

t=i+1 ûtû
′
t−i with ût being the residuals.

Finally, the normality of the residuals is checked by the multivariate version of the Jarque-Bera

(1987) test. The idea of this test is to compare the skewness and kurtosis of the standardized

residuals with the skewness and kurtosis of the standard normal distribution. Hence, first I have to

obtain the standardized residuals ûst = (ûs1,t, ..., û
s
K,t) =

∑̂−1/2
u ût where

∑̂
u = T−1

∑
t ûtû

′
t. Then,

the multivariate Jarque-Bera test statistic is given by:
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JB = Tb′1b1/6 + T (b2 − 3K)′(b2 − 3K)/24 ∼ χ2(2K) (20)

where b1 = (b11, ..., bK1)
′ with bk1 = T−1

∑
t(û

s
kt)

3, b2 = (b12, ..., bK2)
′ with bk2 = T−1

∑
t(û

s
kt)

4

and 3K = (3, ..., 3)′ is a K × 1 vector.

5 Results

The results of this paper are obtained using the R (2021) software and its general statistical packages.

Additionally, the packages ‘pcalg’ by Kalisch et al. (2012) and ‘vars’ by Pfaff et al. (2008) are used

to obtain the DAGs and construct the VAR and VHAR models respectively. A short description of

the code is provided in Appendix A.

5.1 DAG and SVAR results

The BIC and HQ criteria were used to determine the correct order for all VAR model specifications

under consideration. Based on these criteria, which are shown in Table 8 in Appendix B, the lag

length for all the VAR model specifications is set to p = 5. As mentioned before, the VHAR model

specification is estimated by means of a VARX(1) where the exogenous variables are the weekly

and monthly realized variances or realized semivariances.

The contemporaneous correlation matrices of the innovations from the VAR model in Equation

(4) and the VHAR model in Equation (5) are given in Table 2. For the VAR model, strong correla-

tions exist among the innovations of the STO50 and SPX and the STO50 and N225. Correlations

between the stocks and oil markets on the other hand are small for both negative and positive semi-

variances. Moreover, the correlations for negative and positive semivariances show slightly distinct

patterns. This could be due to asymmetry in the correlations of positive and negative semivari-

ances between the stock and oil markets. Similar conclusions can be drawn for the VHAR model.

Appendix C provides the correlation matrices between the positive and negative semivariances.

Table 2

VAR and VHAR residual correlation matrices
VAR VHAR

RS− RS+ RS− RS+

N225 STO50 WTI SPX N225 STO50 WTI SPX N225 STO50 WTI SPX N225 STO50 WTI SPX

RS− RS+ RS− RS+

N225 1.000 0.153 0.042 0.090 N225 1.000 0.045 0.004 0.064 N225 1.000 0.127 0.022 0.022 N225 1.000 0.079 -0.004 0.028
STO50 0.153 1.000 0.092 0.512 STO50 0.045 1.000 0.071 0.479 STO50 0.127 1.000 0.067 0.458 STO50 0.079 1.000 0.038 0.437
WTI 0.042 0.092 1.000 0.115 WTI 0.004 0.071 1.000 0.166 WTI 0.022 0.067 1.000 0.079 WTI -0.004 0.038 1.000 0.128
SPX 0.090 0.512 0.115 1.000 SPX 0.064 0.479 0.166 1.000 SPX 0.022 0.458 0.079 1.000 SPX 0.028 0.437 0.128 1.000
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Using the correlations between the residuals, the PC algorithm mentioned in Section 4.4 is

applied in order to obtain the DAGs. The resulting directed graphs are shown in Figure 1 at a

10% significance level and display how volatility spreads from one market to another. Figures 1a

and 1b show that according to the VAR model residuals the Japanese stock market (N225) is an

exogenous source of positive as well as negative semivariances. It affects the negative semivariances

in the European stock markets (STO50), while it affects the positive semivariances in the US stock

market (SPX). Contrary to Wang and Wu (2018), the crude oil market (WTI) appears to be a

receiver of negative semivariances. However, the oil market appears to be a transmitter of positive

semivariances and based on the VHAR model, the crude oil market is an exogenous source of both

positive and negative semivariances which is in accordance with Wang and Wu (2018). Similar to

the VAR model, Figures 1c and 1d identify the Japanese stock market as a transmitter of positive

as well as negative semivariances according to the VHAR model. Hence, both models find different

contemporaneous causal flow patterns which in turn will influence the spillover indices.

Figure 1

Contemporaneous causal flow patterns based on the VAR and VHAR model

(a) RS− VAR (b) RS+ VAR (c) RS− VHAR (d) RS+ VHAR

Based on the contemporaneous causal flow patterns shown in Figure 1, zero restrictions are im-

posed on certain coefficients of the contemporaneous coefficient matrix of the SVAR representation.

To ensure that these restrictions are valid and identify the model, LR tests for over-identification

are performed. The results of these tests are shown in Table 3. Since all p-values of the test statistic

are larger than the 10% significance level, the null hypothesis of valid restrictions cannot be rejected.

Hence, the models are identified and the zero restrictions are valid.
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Table 3

LR test for over-identification

Model Chi-square statistic Probability

Negative semivariances VAR 2.616 0.270
Positive semivariances VAR 1.092 0.779
Negative semivariances VHAR 2.455 0.293
Positive semivariances VHAR 0.716 0.699

Forecast error variance decompositions are computed based on the identified causal networks

in Figure 1. Tables 4 and 5 present the forecast error variance decompositions for the VAR and

VHAR at horizon H, which are due to prior shocks from other series as well as itself. The percentage

describes the economic significance or magnitude of the causal relationships. Like Wang and Wu

(2018), three different horizons, contemporaneous time (H = 0), short horizon (H = 1, 2) and long

horizon (H = 10, 30), are used in order to evaluate how the effect of shocks change over time.

Table 4

Forecast error variance decomposition results VAR
Day N225 STO50 WTI SPX Day N225 STO50 WTI SPX

Variance of N225 explained by shocks to realized negative semivariances Variance of N225 explained by shocks to realized positive semivariances
0 100.000 0.000 0.000 0.000 0 100.000 0.000 0.000 0.000
1 96.439 1.481 0.035 2.045 1 97.444 0.297 0.346 1.913
2 95.057 1.675 0.116 3.152 2 96.888 0.313 0.602 2.198
10 86.983 5.116 1.415 6.485 10 89.172 0.635 2.654 7.539
30 67.361 15.048 4.628 12.962 30 68.122 1.843 8.559 21.477

Variance of STO50 explained by shocks to realized negative semivariances Variance of STO50 explained by shocks to realized positive semivariances
0 2.329 97.671 0.000 0.000 0 0.092 77.067 0.629 22.213
1 2.886 94.527 0.054 2.532 1 0.461 69.738 2.375 27.426
2 3.264 93.317 0.119 3.300 2 0.744 66.128 2.521 30.608
10 7.570 86.604 0.583 5.243 10 2.608 53.877 4.331 39.185
30 15.853 72.023 2.540 9.584 30 8.374 37.026 8.177 46.422

Variance of WTI explained by shocks to realized negative semivariances Variance of WTI explained by shocks to realized positive semivariances
0 0.020 0.832 98.524 0.624 0 0.000 0.000 100.000 0.000
1 0.146 1.141 97.409 1.303 1 0.109 0.099 99.504 0.288
2 0.123 0.003 98.548 1.327 2 0.106 0.097 99.466 0.330
10 2.269 2.858 88.618 6.255 10 1.523 0.237 94.170 4.069
30 9.143 7.830 69.540 13.486 30 6.326 0.293 78.812 14.569

Variance of SPX explained by shocks to realized negative semivariances Variance of SPX explained by shocks to realized positive semivariances
0 0.611 25.608 0.000 73.782 0 0.400 0.000 2.742 96.858
1 1.507 26.531 0.168 71.794 1 0.657 0.025 4.548 94.770
2 2.166 26.909 0.217 70.709 2 0.812 0.023 4.851 94.314
10 6.210 31.632 2.580 59.579 10 3.492 0.936 10.047 85.524
30 15.701 34.850 6.094 43.355 30 10.339 2.953 15.012 71.696

Note. The forecast error variance decompositions are reported in percentage points. The variance decomposition is based on the DAGs in Figure 1.

The forecast error variance decompositions results for the VAR model are reported in Table 4.

The variance decomposition of WTI for negative semivariances is rather substantial at day zero

(98.524%) but as the horizon increases, a larger part of the variation is explained by shocks in the

stock markets. This is in line with the earlier finding in Figure 1 that the WTI appears to be

a receiver of negative semivariances. However, the WTI has a weak but growing impact on the
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three stock markets over all time horizons. Furthermore, the three stock markets appear to interact

with one another at all time horizons, with the relationship between SPX and STO50 in particular

appearing to be nontrivial. At all horizons, the shock to STO50 accounts for roughly 25% to 35%

of the variation in SPX, whereas the opposite is noticeably weaker.

The forecast error variance decomposition results among realized positive semivariances are

shown on the right hand side of Table 4. At day zero, the variance decomposition of N225 and

WTI are both 100% explained by themselves, implying that they are solely driven by their own

shocks (Wang & Wu, 2018). This result corresponds with the findings in Figure 1 that depict that

the N225 and WTI are primarily exogenous sources of positive semivariances. Furthermore, both

the STO50 and SPX have a large part of their variation explain by their own shocks at day zero.

At all horizons, about 1% to 22% of N225 variation can be explained by the shock to SPX. This

is noticeably larger than the combined effect of STO50 and WTI. More remarkable evidence is the

result that the WTI shock explains a large percentage of the variation in the SPX, and that this is

also true in the opposite case.

Table 5

Forecast error variance decomposition results VHAR
Day N225 STO50 WTI SPX Day N225 STO50 WTI SPX

Variance of N225 explained by shocks to realized negative semivariances Variance of N225 explained by shocks to realized positive semivariances
0 100.000 0.000 0.000 0.000 0 100.000 0.000 0.000 0.000
1 98.940 0.178 0.036 0.847 1 98.862 0.462 0.121 0.555
2 98.762 0.229 0.041 0.967 2 98.683 0.568 0.124 0.625
10 98.744 0.237 0.042 0.976 10 98.666 0.580 0.124 0.629
30 98.744 0.237 0.042 0.976 30 98.666 0.580 0.124 0.629

Variance of STO50 explained by shocks to realized negative semivariances Variance of STO50 explained by shocks to realized positive semivariances
0 1.353 77.769 0.414 20.464 0 0.000 99.855 0.145 0.000
1 1.431 78.549 0.398 19.622 1 0.002 98.164 0.983 0.851
2 1.433 78.547 0.399 19.621 2 0.002 97.879 1.124 0.996
10 1.433 78.543 0.399 19.625 10 0.002 97.856 1.134 1.008
30 1.433 78.543 0.399 19.625 30 0.002 97.856 1.134 1.008

Variance of WTI explained by shocks to realized negative semivariances Variance of WTI explained by shocks to realized positive semivariances
0 0.000 0.000 100.000 0.000 0 0.000 0.000 100.000 0.000
1 0.013 0.015 99.879 0.093 1 0.000 0.304 99.672 0.024
2 0.018 0.018 99.855 0.109 2 0.000 0.357 99.603 0.040
10 0.019 0.018 99.852 0.111 10 0.000 0.362 99.594 0.045
30 0.019 0.018 99.852 0.111 30 0.000 0.362 99.594 0.045

Variance of SPX explained by shocks to realized negative semivariances Variance of SPX explained by shocks to realized positive semivariances
0 0.000 0.000 0.630 99.370 0 0.046 18.676 1.635 79.644
1 0.143 0.114 0.621 99.121 1 0.112 19.372 1.842 78.674
2 0.168 0.128 0.621 99.083 2 0.122 19.389 1.957 78.533
10 0.171 0.129 0.621 99.080 10 0.122 19.386 1.974 78.517
30 0.171 0.129 0.621 99.080 30 0.122 19.386 1.974 78.517

Note. The forecast error variance decompositions are reported in percentage points. The variance decomposition is based on the DAGs in Figure 1.

Table 5 presents the forecast error variance decompositions results for the VHAR model, which

is able to capture the heterogeneity and long-memory of volatility. The first noticeable difference

compared to the VAR model is the fact that for all series and at all time horizons, the variation of the
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series are largely explained by their own shocks. Two exceptions are the shock of SPX to the STO50

among negative semivariances and the shock of STO50 to SPX among positive semivariances. At

day zero, the variance decomposition of N255 and WTI for negative semivariances are 100%, which

again is in line with the earlier finding in Figure 1 that the N225 and WTI appear to exogenous

sources of negative volatility. Furthermore, it is worth pointing out that as the horizon increases,

a larger part of the variation in one series among negative semivariances is explained by shocks in

other series albeit very small.

The forecast error variance decomposition results among the positive semivariances on the right

hand side of Table 5 show similar results to the negative semivariances case. Variation of series

are largely explained by their own shocks at all horizons, where at day zero 100% of the variation

of N225 and WTI is explained by their own shocks. This is, again, consistent with the findings in

Figure 1. Moreover, significant causal linkage appear to be existing between the STO50 and SPX.

More specifically, about 18% to 20% of the SPX variation is explained by shocks to the STO50.

Based on these findings, it can thus be concluded that the VAR and VHAR models result in

different causal linkages between the oil and stock markets. As a result, it can concluded that based

on the VAR results, the markets are more connected. This follows from the fact that as the horizon

increases, a larger fraction of a market’s volatility is explained by the other markets. The VHAR

results on the other hand indicate that only the STO50 and SPX are highly connected. Previous

research indicates that financial markets and commodity markets have become more connected

over the years (Broadstock et al., 2012; Zhang, 2017), especially after the global financial crisis.

Therefore, the VAR results seem to be more consistent and in accordance with previous research.

5.2 Asymmetric results from DAG-based SVAR

The focus of this paper is the extent to which volatility spillovers are asymmetrical because of RS−

and RS+ and how they differ when using two different models. To this end, a comparison of forecast

error variance decompositions between the negative and positive semivariances presented in Tables 4

and 5 is helpful. According to the results, WTI can explain a much higher percentage of variation in

the other three markets in positive semivariance spillovers than in negative semivariance spillovers.

This shows the dominance of good oil market uncertainties on global stock markets. Asymmetry

in volatility spillovers refers to the differences between good and bad volatility spillovers. The

differences between negative and positive semivariances in Tables 4 and 5 are noteworthy because

they give additional empirical evidence of asymmetries in volatility spillovers between the oil and
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global stock markets (Wang & Wu, 2018). So, how can I compare the forecast error variance

decompositions of both models?

The answer is network centrality and two measures that allow for such a comparison are provided

by Ahern and Harford (2014). The results of these measures are shown in Table 6. In the network’s

adjacency matrix, degree centrality (DC) is defined as the average of the column sum of the off-

diagonal total pairwise spillover intensities. Simply put, if a market’s overall spillover intensity from

and to others is higher, it is more central (Ahern & Harford, 2014). The principal eigenvector of the

network’s adjacency matrix is used to measure eigenvector centrality (EC). Intuitively, if a market

is connected to other central markets, it is considered more central (Ahern & Harford, 2014).

Table 6

Network centrality
VAR VHAR

RS− RS+ RS− RS+

N225 STO50 WTI SPX N225 STO50 WTI SPX N225 STO50 WTI SPX N225 STO50 WTI SPX

RS− RS+ RS− RS+

N225 0.000 12.686 3.684 12.695 N225 0.000 3.243 4.177 11.031 N225 0.000 1.670 0.044 1.147 N225 0.000 0.557 0.124 0.751
STO50 12.686 0.000 3.441 36.875 STO50 3.243 0.000 4.568 40.121 STO50 1.670 0.000 0.418 19.750 STO50 0.557 0.000 0.582 20.394
WTI 3.684 3.441 0.000 8.835 WTI 4.177 4.568 0.000 14.116 WTI 0.044 0.418 0.000 0.732 WTI 0.124 0.582 0.000 2.015
SPX 12.695 36.875 8.835 0.000 SPX 11.031 40.121 14.116 0.000 SPX 1.147 19.750 0.732 0.000 SPX 0.751 20.394 2.015 0.000
DC 9.688 17.667 5.320 19.468 DC 6.150 15.977 7.620 21.756 DC 0.954 7.279 0.398 7.210 DC 0.477 7.178 0.907 7.720
EC 0.369 0.635 0.201 0.648 EC 0.231 0.630 0.288 0.683 EC 0.099 0.704 0.041 0.703 EC 0.045 0.702 0.089 0.705

Note. The upper 4 × 4 submatrices are adjacency matrices in which the diagonal elements are zeros and the off-diagonal elements are 10-day-ahead total pairwise volatility spillover
intensity (in percentage points). For example, the total negative volatility spillover intensity for the VAR model between N225 and STO50 is 12.686%, which is the sum of the N225
spillover to STO50, 7.570%, and the N225 spillover to N225, 5.116%.

For the VAR, both centrality measures are the highest for the SPX, showing that the US

stock market is at the core of the oil and global stock market volatility spillover network. Most

importantly, Table 6 allows for distinguishing between good and bad volatility spillovers in terms of

centrality. The N225 is more central than the WTI in good volatility spillovers, but in bad volatility

spillovers, the opposite is true. Given this evidence, I can expect the oil market to be a greater

source of uncertainty in positive returns in the network than the stock market in Japan.

The network centrality of the VHAR model is slightly different compared to that of the VAR.

Both centrality measures are the highest for the SPX in bad volatility spillovers indicating that the

US stock market is at the core of the oil and global stock market bad volatility spillover network.

For the good volatility spillovers however, both centrality measures are the highest for the STO50,

showing that it is at the heart of the good volatility spillover network. The same pattern regarding

centrality of N225 and WTI as in the VAR case can be found for the VHAR case. Thus, also here

N225 is more central in good volatility spillovers, while the WTI is more central in bad volatility

spillovers. However, it is worth pointing out that the differences (asymmetry) in centrality measures

attributable to good and bad volatility spillovers are small for both models.
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5.3 Volatility spillover indices

Following Wang and Wu (2018), volatility spillover indices are constructed by estimating variance

decompositions recursively each day with an expanding sample. The models are initialized with the

first 200 observations. The 10-step-ahead forecast error variance decomposition matrix can then be

obtained after each recursive estimation using Equation (11).

5.3.1 Total volatility spillover indices results

Before looking into asymmetries, I examine how connected the oil and global stock markets are.

The total spillovers and volatility of individual markets are depicted in Figure 2. One might expect

that rises (or declines) in the volatility of individual markets are matched by rises (or declines) in

total volatility spillovers. Indeed, the individual market’s volatility does play a key role in volatility

spillover analysis. Generally, volatility spillovers increase in response to unexpected increases in the

volatility levels of individual markets as can be seen in Figure 2. However, the sudden increase in

total spillover around 2006 before the global financial crisis is quite remarkable. This applies for

both the VAR and VHAR model and could be explained by the following event. Around this time,

the US housing bubble burst, which eventually became the impetus for the subprime mortgage crisis

in 2007-2008 (Baker, 2008; Levitin & Wachter, 2011) and could therefore have caused the sudden

increase in volatility in the markets.

Figure 2

Total volatility spillover index and realized volatilities plots for the VAR and VHAR

(a) VAR (b) VHAR

Regarding the global financial crisis, the total volatility spillover index based on the VAR model

does indicate sudden increases of volatility in 2007 and 2008. The total volatility spillover index

based on the VHAR model shows different results. Noticeable is the sharp increase of the index
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around 2005. Since the global financial crisis did not happen at that time it seems that the total

volatility spillover index based on the VHAR model overreacts to an increase of the N225 around

2005. However, leading up to and during the global financial crisis, the index does increase sharply.

Also, when comparing the indices based on the underlying model, the index based on the VHAR

model tends to increase more gradually than the one based on the VAR. This result verifies the fact

that the VHAR is better able at capturing the long-memory and heterogeneity of volatility.

A possible explanation for the increase in volatility around the global financial crisis is that it

impacted all financial markets and changed how market participants perceive risk (Burns et al.,

2012). As a result of more homogeneous perceptions among market participants, who now expect

higher levels of risk measured by volatility, market connectedness increases post-crisis (Baruńık et

al., 2016). This follows from the higher levels of total volatility spillover indices post-crisis. Hence,

based on Baruńık et al. (2016) their reasoning, it can be concluded that the volatility spillovers

are much higher due to homogeneous beliefs about growing risk as a result of the global financial

crisis. For investors who have exposure to the oil market and stock markets such as portfolio

managers, this finding can be useful as the strong linkages between oil and stock markets can limit

the diversification benefits substantially (Xu et al., 2019). Moreover, the oil market has, on average,

a higher volatility than stock markets, implying that market participants take on more risk on the

oil market, receive higher returns on the oil market accordingly and are better able at predicting

stock volatility than oil volatility (Wang & Wu, 2018).

5.3.2 Asymmetric volatility spillover indices

The main focus of this paper is asymmetric volatility spillovers. The results for the asymmetry in

spillovers are given in Figure 3. Figures 3a and 3b show the total volatility spillovers as they change

over time. Volatility spillovers from bad and good volatility are depicted in Figures 3c and 3d by

two different lines. If these two lines align, the spillovers are symmetric and equivalent to the total

volatility spillovers in Figures 3a and 3b. Any deviation from this equivalence motivates asymmetry

(SAM) in volatility spillovers (Baruńık et al., 2016). This is demonstrated in Figures 3e and 3f,

which depicts the difference between the good and bad volatility spillovers.
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Figure 3

Spillover measures and spillover asymmetry measures SAM

(a) Total volatility spillover VAR (b) Total volatility spillover VHAR

(c) Total semivariances spillover VAR (d) Total semivariances spillover VHAR

(e) Spillover asymmetry measure VAR (f) Spillover asymmetry measure VHAR

Figures 3a and 3b show that the total volatility spillover is high during and after the global

financial crisis for both models. However, in the period leading up to the global financial crisis,

total volatility spillover is low. More importantly, from Figures 3c and 3d it can be concluded that

volatility spillovers caused by bad and good volatility evolve in different ways, with bad volatility

spillovers dominating good volatility spillovers. According to Avramov et al. (2006), positive returns

are followed by sell activities that are dominated by informed traders who tend to reduce total

volatility. Negative returns, on the other hand, are followed by sell activities that are dominated

by uninformed traders who tend to increase total volatility. Hence, the negative SAMs in Figures

3e and 3f imply that the whole system is dominated by uninformed traders.

The dynamic of the SAM reveals whether negative or positive spillovers are dominant and

according to Wang and Wu (2018), it can therefore be used as a proxy for negative and positive

market expectations. They describe that the SAM assesses how sensitive the majority of market

participants are to bad or good news, as well as how the news spreads across markets. Thus, the

SAM can be used to determine if the markets are in a pessimistic or optimistic mood, as well as
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what the expectations are. Therefore, the presence of negative spillovers shows that a pessimistic

mood prevailed throughout most of the sample period. However, the path of the SAM depicted by

the VAR is clearly different than the one depicted by the VHAR.

The results in Figure 3e namely show that, based on the VAR model, the overall mood on the

market became more pessimistic after the global financial crisis. However, according to the VHAR

results depicted in Figure 3f, the overall mood on the market first becomes more pessimistic after the

global financial crisis before starting to become optimistic around 2014. So, which path seems more

realistic? Previous research has shown that around 2014 bad volatility dominates good volatility

resulting in a negative SAM (Wang & Wu, 2018; Xu et al., 2019). Hence, this indicates that a

pessimistic mood would dominate the market around 2014, which is in accordance with the SAM

based on the VAR model. The pessimistic mood could be explained by the announcement of the

Organization of Petroleum Exporting Countries (OPEC) to not further reduce the oil supply and the

Chinese economy slowing down (Xu et al., 2019). However, arguments can also be made for the path

depicted by the VHAR model, albeit of less power since one would expect the SAM to be of a larger

negative magnitude after the global financial crisis than before. The increasing SAM after the global

financial crisis could be explained by the fact that market participants adjust their expectations,

expect economic growth again and therefore become more optimistic. Nonetheless, based on the

previous literature, a fast recovery of an optimistic mood on the market seems unrealistic and

therefore the SAM based on the VAR model seems to display the market sentiment the best.

Finally, these results are also of interest to portfolio managers as the SAM can help determine

whether a portfolio is well balanced or not (Baruńık et al., 2016). In this case, I have an equally

weighted portfolio consisting of the N225, STO50, WTI and SPX. On the total portfolio level,

Figures 3e and 3f show that the SAM is negative for almost the whole sample period for both

models. This indicates that the portfolio is not well balanced in the sense that the effects of bad

volatility are larger than those of good volatility (Baruńık et al., 2016). Moreover, it indicates that

at the aggregate portfolio level asymmetry is present. Hence, to establish a more well balanced

portfolio, further diversification or rebalancing of the portfolio weights is necessary.

5.3.3 Contribution of individual markets to asymmetry

To round up the analysis, I examine the individual market’s contribution to asymmetry which un-

covers additional information regarding asymmetries. The individual markets’ directional spillover

asymmetry measures SAMH
i→• and SAMH

•→i are shown in Figures 4 and 5 for both models.
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Figure 4

Directional spillover asymmetry measure SAMH
i→• and SAMH

•→i for the VAR model

Figure 4 depicts the SAM results based on the VAR model. In 2006 and 2007, the WTI showed

positive spillovers to other markets and stable spillovers from other markets, reflecting the higher

price of oil as a result of rising conflicts between Israel and Lebanon and the ongoing Iraq war, where

the Iraqi government tried to reclaim control of national security (Spirling, 2007). Stock markets

experienced huge price drops and fluctuations during the global financial crisis, and because they

interacted with one another, this resulted primarily in lower or negative spillovers. The oil market,

on the other hand, continued to perform well throughout the global financial crisis, which could

be attributed to continuing high demand from China and emerging markets (Wang & Wu, 2018).

Moreover, it is worth noting that the SPX transmitted positive spillovers to other markets during

the global financial crisis while the STO50 received positive spillovers from the other markets. This

is in correspondence with the causal flow patterns found in Figure 1b and therefore not surprising.
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Figure 5

Directional spillover asymmetry measure SAMH
i→• and SAMH

•→i for the VHAR model

The directional SAM results based on the VHAR model are given in Figure 5. Similar spillover

results are found for the N225. Moreover, also here the WTI shows positive spillovers to other

markets and increasing spillovers from other markets throughout the global financial crisis. Com-

pared to the SAMs constructed by the VAR, the SPX now receives positive spillovers during the

global financial crisis instead of transmitting them to other markets. Moreover, the STO50 now

transmits positive spillovers to the other markets instead of receiving them. Based on the causal

flow patterns in Figure 1d, this is not surprising. However, explaining this difference compared to

the VAR model is ambiguous as the causal flow patterns are based on the residuals of the models.

One possible explanation could be the fact that the realized semivariances do exhibit long-memory

and heterogeneity, which is only captured by the VHAR model.

To date, a lot of research has been done on uncertainty in the oil market and has shown that
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uncertainty in the oil market has a detrimental impact on the global economy, which jeopardizes the

recovery of global stock markets (Masih et al., 2011; Wang et al., 2013). The prominent negative

spillovers in Figures 4 and 5 reflect the pessimistic market sentiment during the sample period that

was already discovered in Section 5.3.2. Meanwhile, during and after the global financial crisis, the

oil market has mostly seen positive or increasing spillovers from other markets according to both

models. An explanation for this could be that since the commencement of the global financial crisis

and the global economic recovery, the global economy has become increasingly reliant on oil (Wang

& Wu, 2018). As a result of the increased oil demand, oil prices rise which in turn increases the

positive spillovers received from the stock markets. From an investor’s perspective, this finding

indicates that the oil market can be considered as a safe haven or hedge against financial crises.

Including oil futures in a portfolio can therefore offset the decline in returns in the stock markets.

5.4 Model diagnostics and robustness check

To asses whether or not the models are correctly specified, stationarity and the white noise properties

as well as the normality of the residuals are checked. Moreover, a robustness check is performed.

The modulus of all eigenvalues of the companion matrix are displayed in Figure 6. For both models

and both series, all modulus of the eigenvalues are within the unit circle. This indicates that the

models are stable and thus covariance stationary.

Figure 6

Results stability test

(a) RS− VAR (b) RS+ VAR (c) RS− VHAR (d) RS+ VHAR

Table 7 presents the results from the multivariate Portmanteau test for autocorrelation up to

lag 10 and the multivariate Jarque-Bera test for normality. Based on these results, it can be

concluded that for negative as well as positive semivariances and for both model specifications

the null hypotheses are rejected. Hence, significant autocorrelations are still present in both the

residuals of the VAR and VHAR models and the residuals are also not jointly normally distributed.
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To check the white noise properties of a constant mean and variance plots of the standardized

residuals are provided in Appendix D. From these plots it can easily be derived that the residuals

approximately follow a white noise process for both models and semivariances.

Table 7

Residual correlation and normality test results

VAR VHAR
Test statistic RS− RS+ RS− RS+

Q10 252.545∗∗∗ 242.944∗∗∗ 1479.030∗∗∗ 1422.438∗∗∗

JB 379.363∗∗∗ 461.010∗∗∗ 224.811∗∗∗ 257.048∗∗∗

Note. Q10 shows the multivariate Portmanteau test statistic for
residual autocorrelation up to lag 10; JB shows the multivariate
Jarque-Bera test statistic for normality; ∗∗∗ p < 0.01.

Based on these findings, it can thus be concluded that models are stationary, however not

correctly specified because of the significant autocorrelations and non-normality of the residuals.

Therefore, the models fail to capture the data generating process accurately. The results may

therefore be flawed due to the poor specification of the models.

Figure 7

Robustness check spillover measures.

(a) Spillover asymmetry measure VAR (b) Spillover asymmetry measure VHAR

Finally, to check the robustness of the results, I implement two different variance decomposition

forecast horizons, namely one-week-ahead (H = 5) and one-month-ahead (H = 22). The results

of the robustness checks for the spillover asymmetry measures are presented in Figure 7. The

robustness check for the total volatility spillover and total semivariances spillover are provided in

Figure 12 in Appendix D. It becomes apparent that the number of observations used to initialize

the VAR model heavily influences the spillover asymmetry measures in the first year after the

initialization. However, after that the results do not seem to differ depending on their forecast

horizon. Hence, the results from the VAR model can be considered robust. The initialization does

not seem to influence the VHAR model. Given the structure of the VHAR model, this is not

surprising. Hence, it can be concluded that the results from the VHAR model are robust as well.
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6 Conclusion

This paper aims at shedding a new light on asymmetries in volatility spillovers by examining whether

taking into account the different stylized facts associated with volatility leads to better insights

between the crude oil and three global stock markets. The analysis is performed by utilizing the

DAG technique and good and bad volatility in a refined structural VAR and VHAR framework. In

addition to the traditional VAR framework, the VHAR specification is used as it is able to capture

the long-memory and heterogeneity of volatility. Then, based on the DAG and structural VAR and

VHAR results, I examine the static and dynamic characteristics of asymmetric volatility spillovers.

Firstly, according to the DAG results based on the VAR model the Japanese market is an

exogenous source of good and bad volatility in the contemporaneous time. The oil market was

found to be a receiver of negative spillovers, contrary to previous research (Wang & Wu, 2018).

The DAGs based on the VHAR model on the other hand, did indicate that the oil market is an

exogenous source of negative and positive volatility spillovers. This could imply that the oil market

does display the long-memory and heterogeneity characteristics that are captured by the VHAR.

Secondly, asymmetries in volatility spillovers are present throughout the system. The forecast

error variance decomposition for example showed that for both models, the oil market is able to

explain a substantially higher percentage of variation in international stock markets in positive

volatility spillovers than it can in negative volatility spillovers. However, it was found that for the

VHAR model shocks to the realized negative and positive semivariances of the financial markets

are largely explained by themselves which is contrary to previous research. Furthermore, due to the

presence of positive and negative volatility spillovers, asymmetries in network centrality were also

found. Both models found the European market and U.S. market to be the most central.

Thirdly, the spillover indices showed that asymmetries in volatility spillovers change over time.

Both models showed that bad volatility spillovers dominate good volatility spillovers over the sam-

ple period. However, the VAR model showed that after the global financial crisis bad volatility

spillovers became more prominent than good volatility spillovers. This implies that the overall mar-

ket sentiment became more and more pessimistic. The VHAR model on the other hand, showed

that a few years after the global financial crisis good volatility spillovers started dominating the

market indicating that the market became more optimistic. A striking difference between the two

models, which could be explained by the different causal linkages found by the DAGs. The negative

spillover asymmetry measure over the sample period for both models also indicates that a portfolio
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consisting of the N225, STO50, WTI and SPX is not well balanced and that more diversification

benefits can be attained. Furthermore, during and after the global financial crisis prominent posi-

tive spillovers from the oil market to the other markets were found. From an investor’s perspective,

this indicates that oil futures can be considered as a hedge against financial crises. Including oil

futures in a portfolio can therefore offset the price drops in the stock markets.

To summarize, I find that overall bad volatility spillovers tend to dominate good volatility

spillovers. This finding has important implications for investors as this implies that negative volatil-

ity spillovers appear to be the most common risk spillovers in the network. Moreover, including

the VHAR model in the analysis to account for the different stylized facts associated with volatility

does not provide better insights in the asymmetric volatility spillovers. This conclusion is based on

the fact that the VHAR model results are inconsistent with previous research.

7 Discussion

This paper has several limitations. First of all, contrary to Wang and Wu (2018), no restrictions are

imposed to address the non-synchronous trading problem. Hence, the Japanese market could still

influence the U.S. market in the contemporaneous time even though the Japanese market is closed

when the U.S. market is open. This resulted in different DAG results compared to those found by

Wang and Wu (2018). Nonetheless, their DAGs show that show a contemporaneous causal link

between Japan and the U.S. as well. As a result, the spillovers are also different compared to Wang

and Wu (2018) since they are determined by the DAG results. Hence, I was unable to replicate

the results of their paper exactly. Second, the PC algorithm shows very different DAGs based on

the significance level chosen. Therefore, the validity of the contemporaneous causal flow patterns is

questionable. Third, the residuals of both models do not satisfy all white noise properties and are

not normally distributed. To improve further results, structural breaks, a higher lag order or error

distribution with fatter tails such as the Student’s t-distribution should be considered.

For future research it might be interesting to look at the COVID-19 pandemic and see how that

crisis influences volatility spillovers between the oil market and stock markets. Different result are

expected as due to the pandemic a lot of (international) traffic was slowed down or put on hold,

resulting in the economy being less reliant on oil than during the global financial crisis. Oil futures

might therefore not have been able to hedge against stock market declines during the COVID-19

pandemic as they did during the global financial crisis.
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Appendices

A Code description

To obtain the results for this paper, I use the R (2021) software, its general statistical packages,

additional packages (such as ‘pcalg’ and ‘vars’) and my own coding. The code consists of six different

scripts: ‘Main’, ‘VARcode’, ‘VHARcode’, ‘Spillovers’, ‘VARspillovers’ and ‘VHARspillovers’. In

‘Main’ I install all necessary packages and import the realized semivariances and positive and

negative semivariances series into R. Then, in ‘VARcode’ the VAR model is estimated from which the

residuals are used to determine the DAGs using the ‘pcalg’ package. After that the DAG restrictions

for the coefficient matrix of the SVAR representation are implemented and forecast error variance

decompositions are calculated. Finally, the model diagnostics such as the white noise properties of

the residuals are tested. The code for the VHAR model in the script ‘VHARcode’ is similar with the

exception that I first calculate the weekly and monthly realized variances. The script ‘Spillovers’

provides four spillover functions, one for each model and based on an expanding as well a moving

window. Note that for the reasons explained at the end of Section 4.5 only the expanding window

spillover functions are used in this paper. The scripts ‘VARspillovers’ and ‘VHARspillovers’ call

the spillover functions from ‘Spillovers’ to retrieve the spillover indices and plot the results.

In addition to the use of R, the Python software by Van Rossum and Drake (2020) is used to

obtain the descriptive statistics in the file ‘DescriptiveStats’. The ADF test is performed by using

Prabhakaran (2020).
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B Information criteria

The BIC and HQ information criteria are given by the following equations

BIC(m) = ln [detΣ̂u(m)] +
lnT

T
mK2 (21)

HQ(m) = ln [detΣ̂u(m)] +
ln lnT

T
mK2 (22)

where T is the sample size, m the lag order of the VAR process, K the dimension and Σ̂u the

estimated covariance matrix of the VAR residuals. Table 8 presents the results of the selection

criteria of the VAR processes up to lag 10.

Table 8

BIC and HQ values up to lag 10

RV RS− RS+

Lag BIC HQ BIC HQ BIC HQ

1 -9.372 -9.394 -7.844 -7.866 -8.405 -8.426
2 -9.721 -9.764 -8.165 -8.209 -8.749 -8.793
3 -9.845 -9.910 -8.297 -8.363 -8.887 -8.953
4 -9.891 -9.979 -8.357 -8.444 -8.951 -9.039
5 -9.916∗ -10.025 -8.389∗ -8.498 -8.971∗ -9.080
6 -9.891 -10.022 -8.375 -8.506 -8.956 -9.087
7 -9.877 -10.030∗ -8.364 -8.517 -8.942 -9.095
8 -9.850 -10.025 -8.344 -8.518∗ -8.921 -9.095∗
9 -9.819 -10.016 -8.315 -8.512 -8.887 -9.084
10 -9.800 -10.018 -8.290 -8.509 -8.866 -9.084

Note. The minimum value is indicated by an asterisk.
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C VAR and VHAR residuals correlations

Tables 9 and 10 show the simple correlations between the negative and positive semivariances of

the markets for both models. The rows correspond to the negative semivariances and the columns

to the positive semivariances.

Table 9

VAR residual correlations between negative
and positive semivariances

N225 STO50 WTI SPX

N225 0.099 0.141 0.026 0.111
STO50 -0.022 0.386 0.101 0.342
WTI -0.011 0.060 0.883 0.144
SPX -0.006 0.138 0.159 0.444

Table 10

VHAR residual correlations between nega-
tive and positive semivariances

N225 STO50 WTI SPX

N225 0.016 0.147 -0.002 0.106
STO50 -0.028 0.347 0.062 0.323
WTI 0.000 0.055 0.883 0.145
SPX 0.010 0.099 0.119 0.376
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D VAR and VHAR model diagnostics

Figures 8, 9, 10 and 11 show the standardized residuals plots for the negative and positive semi-

variances of the VAR and VHAR models.

Figure 8

Standardized residual plots negative semivariances VAR model

Figure 9

Standardized residual plots positive semivariances VAR model
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Figure 10

Standardized residual plots negative semivariances VHAR model

Figure 11

Standardized residual plots positive semivariances VHAR model
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Figure 12 shows the robustness check for the total volatility spillover and total semivariances

spillover for both models.

Figure 12

Robustness check spillover measures

(a) Total volatility spillover VAR (b) Total volatility spillover VHAR

(c) Total semivariances spillover VAR (d) Total semivariances spillover VHAR
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