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Abstract

The growing number of variables used in macroeconomic forecasting has stimulated the application of different models in diffusion

index forecasting. One still undiscovered field of models are those found in deep learning. This research applies the popular

long short-term memory (LSTM) neural network, the convolutional neural network (CNN) and the CNN-LSTM combination to

macroeconomic forecasting using a large amount of predictors. The ability of these deep learning models to uncover underlying

factors is compared with boosting in a simulated environment. Next to this, the models are used to predict the monthly gross

domestic product (GDP) of the United States (US). The results show that the LSTM is useful, and better than the boosting

algorithm, in situations with clearly defined underlying factors, and not per se the field of macroeconomic forecasting. Oppositely,

the CNN and CNN-LSTM model perform worse than the LSTM model in such simulated environments, when compared to the

boosting algorithm, but are better than the LSTM in macroeconomic forecasting. That said, the deep learning models fail to

significantly outperform boosting in macroeconomic forecasting of the US GDP, but the results indicate that especially CNNs

could be further improved to increase performance. CNN-LSTMs show promising results for longer forecasting horizons, but

also require further optimization. Finally, the feature maps of CNNs prove useful in determining which variables are most useful

in predicting US GDP.

Keywords: macroeconomic forecasting, deep learning, long short-term memory, convolutional neural network, diffusion index
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1 Introduction

Every day, policy makers try to accurately predict economic indicators for use in fiscal and mon-

etary policy decisions. Recent developments in technology have introduced a vast amount of new

macroeconomic data. This vast amount of data, often referred to as big data, has come with a con-

siderable amount of research, as careful selection of the best predictors is now more important than

ever. Bai & Ng (2008) note that this is necessary because the information overload that occurs with

many predictors often brings down performance. To facilitate this selection, several techniques, as

covered by Kim & Swanson (2018), have been introduced and studied over the years. Among these

are the heavily researched techniques of dynamic factor models which reduce the dimensionality by

aggregating the most important information of the variables in factors (Bai & Ng, 2008, 2009; Kim

& Swanson, 2014a,b, 2018; Stock & Watson, 2002a,b). While these have shown very interesting

results, new approaches in the field of machine learning, as surveyed by Stock & Watson (2012) and

Kim & Swanson (2014a, 2018), have shown increased accuracy in a number of cases. One of these

methods, boosting, is especially interesting, as it allows for pre-selection of variables before factor

estimation. First adopted by Bai & Ng (2008), both them and Kim & Swanson (2018) have shown

good results for this technique.

While boosting, and other machine learning methods, have shown promising results, a new

field of research has made its way into macroeconomic prediction: through the application of ad-

vanced neural networks, deep learning models can capture intricate patterns in univariate or low-

dimensional multivariate time series with high accuracy (Alaminos et al., 2021; Theoharidis, 2021;

Cook & Hall, 2017). Originating in other fields, Sezer et al. (2020) mention that these models allow

for automatic feature selection among many inputs, as also done by boosting, and a general-purpose

learning approach that can be applied to many current-day analytical problems. This makes them

very useful in the setting of macroeconomic forecasting with many predictors as they provide an

alternative to the boosting algorithm applied by Kim & Swanson (2018) and Bai & Ng (2009). The

most commonly used models in forecasting are the long short-term memory (LSTM) network (Cook

& Hall, 2017; Koenecke, 2020), the convolutional neural network (CNN) (Theoharidis, 2021; Cook

& Hall, 2017; Koenecke, 2020; X. Yang & Liu, 2021) and a CNN-LSTM combination (Alaminos

et al., 2021; X. Yang & Liu, 2021; Jin et al., 2020; Livieris et al., 2020). The survey by Sezer et

al. (2020) provides further use cases for each of these models in the field of finance. These results

on multivariate cases in other fields offer the potential for promising results for macroeconomic
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forecasting.

While these models offer extensive use on many macroeconomic variables, including economic

growth, interest rates, exports and imports, one of the most important and highly researched

economic indicators is the growth of the gross domestic product (GDP), a key indicator for economic

development. While important at any given time, it is even more important in times of economic

crisis and therefore of considerable value for policy makers. Research using the above techniques

primarily focuses on forecasting GDP growth, and other variables, for the United States (US), with

Stock & Watson (2002a,b, 2012), Kim & Swanson (2014a,b, 2018), Groen & Kapetanios (2016) and

Bai & Ng (2008, 2009) applying a broad range of dimension reduction, variable selection and machine

learning techniques in this country. The value of this research does not only lie in the United States,

but extends beyond this, as many countries experience a spillover effect from the economic growth in

the United States (Maćkowiak, 2007; Georgiadis, 2016; Miranda-Agrippino & Rey, 2020). Bai & Ng

(2009) and Kim & Swanson (2018) dive deeper in forecasting US macroeconomic variables through

the application of boosting, while Alaminos et al. (2021) and Theoharidis (2021) implemented

deep learning using multiple inputs to also predict US macroeconomic indicators. In the current

literature no research exists regarding the use of deep learning methods in a big data setting with

many regressors.

The aim of this paper is therefore to introduce deep learning models, in the form of the popular

LSTM, CNN and CNN-LSTM models, in macroeconomic forecasting. I look at the predictive

accuracy of these models compared to the boosting algorithm used by Kim & Swanson (2014b,

2018) and Bai & Ng (2009). This results in the following research question:

To what extent can a long short-term memory (LSTM) neural network, a convolutional neural

network (CNN) and a CNN-LSTM model outperform boosting in predicting monthly US GDP?

To answer this question, I will first look into the robustness and correctness of the models by

comparing them in a simulation study, which will offer insights into the performance of deep learning

models against boosting models in a simulated environment. Additionally, it will help determine the

ability of these models to uncover underlying factors in data. As such, the following sub-question

helps shape the main research of this paper:

Can an LSTM, CNN and CNN-LSTM uncover simulated underlying factors and outperform

boosting in prediction?

After this, the models are compared in an empirical setting of forecasting the US GDP, which

allows for a relevant integration into the current set of literature. While predictive ability is of vital
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importance for macroeconomic researchers, the ability to find the most important variables used in

prediction also carries considerable value. As such, the final sub-question is as follows:

How can a deep learning model be used to uncover the most important variables in predicting US

GDP growth?

This research adds to the scientific basis by introducing new methods in macroeconomic fore-

casting. On top of this, the comparison with boosting models shows the potential of systematic and

non-linear feature selection by the neural network, compared to the feature selection applied by the

boosting algorithm. Lastly, it opens up the field into new methods of macroeconomic forecasting.

From the perspective of social relevance, it will allow policy makers and economists to use this new

tool in forecasting key economic indicators. This will potentially allow for more accurate fiscal and

monetary policies to be applied, and how to adjust these policies for different scenarios.

The motivation for this research stems from the fact that deep learning has shown great potential

in a range of financial time series, as shown by Sezer et al. (2020), and other fields, but has only

marginally been researched in the field of macroeconomic forecasting. While univariate applications

(Theoharidis, 2021) and multivariate applications with a small number of predictors (Alaminos et

al., 2021; Cook & Hall, 2017) have been researched, these models have not yet been applied in a

setting with a large amount of predictors.

The rest of this thesis is structured as follows. Section 2 contains a review on the literature

surrounding macroeconomic forecasting, deep learning and US economic growth. After this, I cover

the theoretical framework of the models in Section 3. This is followed by the methodology and data

in Section 4. Lastly, the results and discussion thereof will be provided in Section 5, while Section

6 concludes and provides opportunities for future research.

2 Literature Review

Macroeconomic forecasting has a long history. With the increase of data, researchers introduced

several new models for forecasting. This section will briefly cover the background of macroeconomic

forecasting and boosting. Next, the US economic growth is covered, after which deep learning models

in a temporal setting are discussed, where the focus lies on the long short-term memory (LSTM)

neural network, the convolutional neural network (CNN) and an CNN-LSTM combination. For a

more in-depth discussion of the mathematical and theoretical framework of the different models and

components used in this research, I would like to refer to Section 3.
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2.1 Macroeconomic Forecasting with Many Predictors

With the increase in the availability of macroeconomic variables, more data can be used for macroe-

conomic forecasting. Stock & Watson (2002b) note that during the early days of this development,

the existing econometric models would only incorporate a small number of variables. While the use

of variable selection methods can pre-select important variables from the set of predictors, it would

still significantly lack the information present in a large data set. To simplify this high dimensional

problem and allow more information to be used in forecasting, Stock & Watson (2002b) therefore

introduce a method that extracts the covariability through a small number of unobserved latent

factors and uses these factors to forecast key macroeconomic variables. The forecast is related to

the factors through a linear relationship that also includes dependent variables commonly used in

prediction. Stock & Watson (2002b) show that this two-step approach, referred to as index diffusion

models, performs well against a large range of benchmarks. In a related article, Stock & Watson

(2002a) add to this model by showing consistency and asymptotic efficiency. They furthermore

show that the models are consistent during temporal instability, opening this model up to many

macroeconomic variables and situations. Lastly, they look at the finite sample performance of these

methods through a Monte Carlo simulation study.

Since the introduction of index diffusion models, several researchers have used this setup in

combination with new machine learning and factor estimation methods. However, Bai & Ng (2009)

discuss several problems with factor estimation and machine learning methods, and introduce the

concept of boosting in diffusion index forecasting. Their motivation is twofold. First, they describe

that the information criteria which are used in diffusion index models assume that the factor com-

ponents are ordered based on the explained variance they offer for the entire set of predictors. As a

result, choosing the factors that are used in predicting a certain variable are based on which factors

are important for the entire set of macroeconomic predictors, and not based on the actual variable

that is predicted. However, two different dependent variables might have two different sets of best

factors for prediction. In earlier work, Bai & Ng (2008) already showed that different sets are highly

likely for two different dependent variables. Second, they note that the nature of diffusion index

models does not allow a factor to be used in absence of its preceding factors, as the factors are or-

dered by importance of explaining the set of predictors. On top of this, functions of the factors are

not possible in the current setup, which limits the flexibility in choosing which factors and lags are

included in the model. These problems all happen because there is no easy way to select predictors

using a small number of regressions without imposing structure on the predictors (Bai & Ng, 2009).
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To solve this issue, Bai & Ng (2009) found a model-fitting method that performs subset variable

selection on a large set of potential predictors but without relying on a priori ordering: boosting;

a method previously used in genes and spam data analysis. This method was first introduced by

Freund & Schapire (1999) for use in classification problems. The method, as originally proposed,

estimates an unknown function such as the conditional mean using a large amount of stage-wise

regressions. Shortly after the introduction, J. Friedman et al. (2000) improved the original method

and later J. H. Friedman (2001) introduced “L2Boosting”. This method refits base learners to

residuals from previous iterations under quadratic loss. Bühlmann & Yu (2003) slightly adjusted

this algorithm by fitting the learners with only one predictor at a time from a large set of variables.

This last algorithm was modified by Bai & Ng (2009) to handle time-series data in diffusion index

prediction.

With the development of new machine learning methods, Kim & Swanson (2014a, 2018) com-

pared the predictability of several combinations of factor estimation and machine learning tech-

niques. Their study is one of the first to not only apply principal component analysis (PCA) but

also introduce several other factor estimation techniques in macroeconomic research. These include

independent component analysis (ICA), which aims to find independent components over mere un-

correlated components, and sparse principal component analysis (SPCA), which allows for better

interpretation of the components by placing (zero) restrictions on various factor loadings. These

three factor estimation methods are then combined with machine learning techniques used for vari-

able selection and shrinkage. Their idea is that these methods can (pre-)select the most important

macroeconomic predictors and/or principal components and add to the parsimony and accuracy

of the models. Their extensive comparison study combines these two parts in various ways, for

example by first applying factor estimation followed by the machine learning, or vice versa, and by

including lags of the variables, or not.

2.2 Economic Growth in the United States

While macroeconomic forecasting can be applied in a range of cases, properly forecasting economic

growth of the United States has always carried significant value. Largely due to the fact that the

United States (US) economy continues to be the largest economy in the world measured in gross

domestic product (GDP). On top of this, it has long been one of the fastest growing economies,

for which GDP growth is one of the most important indicators. With a GDP of 21.433 trillion

US dollars1 (USD) and growth rate of 2.16%, it contributed approximately 20% of total global

1Data retrieved from The World Bank at https://data.worldbank.org/
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output in 2019 (Economics, 2020). As a traditionally very open and advanced economy, it also

continues to be engaged in extensive trade relationships with a large list of countries. Arora &

Vamvakidis (2006) delve into the impact of these relationships on economic growth and show that

these not only benefitted the US itself, but have also caused extensive economic growth in countries

around the world. These countries do not only include developed nations, but also developing

and emerging countries. Arora & Vamvakidis (2006) continue by showing that up to 2006, and

potentially beyond, the influence of US growth dominates other global shocks that affect growth

across different countries. As a result, the predictability of economic growth in the United States

is not only important for domestic policy makers, but also for many other countries.

Traditionally, especially before the 2009 crisis, the economic growth was mostly fueled by in-

creasing global integration, and an increasing focus on research & development (R&D) and other

technological advances (Economics, 2020). On top of this, Fernald & Jones (2014) note that in-

creased educational attainment and a steep population growth allowed for increased productivity

per employee and a higher general output. In combination with a surge in high-tech companies, this

created a long-lasting economic boom in the 1990s; the longest economic expansion the US has ever

seen. During this time they positioned themselves as an economy dominated by services-oriented

sectors, which accounts for 80% of its output (Economics, 2020). It continues to be one of their

most important trade areas, in which they rank first in the world based on absolute output. As

a result of these developments, the US has become an important trade partner in the world, with

net exports of 1.51 trillion USD and net imports of 2.38 trillion USD in 2019, making them second

and first in the world, respectively2. Their negative trade balance of 870 billion USD makes them

an important source of revenue for other countries in the world. Looking at the different industries

within the US, the most important export products are found to be Refined Petroleum ($84.9B),

Crude Petroleum ($61.9B), Cars ($56.9B), Integrated Circuits ($41.4B), and Vehicle Parts ($41.2B),

and they mostly export to Canada ($252B), Mexico ($235B), China ($103B), Japan ($70.1B), and

Germany ($59.8B). An overview of the exports in 2020 is provided in Figure 1 below.

The economic importance of the US has made its fiscal and monetary policy a very important

economic indicator, and not only for itself. Since the devastating economic recession that ended in

2012, the US has implemented a combination of expansionary fiscal and monetary policy; preventing

further economic downturn through tax cuts and stimulus packages (Economics, 2020). While

monetary policy has large effects on the US economy, it has also been shown to induce comovements

2Data retrieved from the Observatory of Economic Complexity at https://oec.world/en/profile/country/usa.
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Figure 1: US Exports 2020 (Total: 1404.5 billion USD) [Data retrieved from Trading Economics at
https://tradingeconomics.com/united-states/exports-by-category.]

and spillover effects in many other markets. Before the financial crisis, Maćkowiak (2007) shows this

effect in emerging markets, in which the US monetary policy quickly and strongly affects interest

and exchange rates. Similar effects are shown in later research by Obstfeld (2019). Furthermore,

the price level and real output respond by more than these levels in the US itself (Maćkowiak, 2007).

More recent work by Georgiadis (2016) additionally shows sizable output spillovers generated by US

monetary policy and delves deeper in the underlying causes, noting possible solutions. Miranda-

Agrippino & Rey (2020) add to this by defining the ’Global Financial Cycle’ which reflects the

comovements induced by US monetary policy shocks. They give explicit examples of the effects

of such shocks, such as a decline in the provision of domestic credit globally, strong retrenchments

of international credit flows, and tightening of foreign financial conditions, which all follow after a

monetary contraction in the US (Miranda-Agrippino & Rey, 2020).

The high economic growth seen before the economic crisis has slowed down over the years since

and will face several challenges in the upcoming years. Fernald & Jones (2014) primarily attribute

this to a decrease in the traditional growth factors. They specifically mention a slower growth in

R&D intensity, due to cherry picking of easy developments in earlier years, and slowing population

growth. Next to this, the rise of China, India and other emerging economies will continue to shift

economic importance away from the US and towards these countries. Changes in humanity’s focus

on income inequality, climate change and health care might also impact future economic growth

(Fernald & Jones, 2014). On top of these internal and external effects, a growth in economic tension

has caused several countries and the United Nations (UN) to implement drastic economic sanctions

on various countries. An example is the trade war between the US and China during the Trump

presidency. Neuenkirch & Neumeier (2015) show that economic sanctions by the US cause severe
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decline in economic growth both domestically and abroad. The opposite is also highly feasible,

especially by new world powers such as India and China. This adds to the increasing global effect

that economic changes within countries have on economic growth in- and outside the country in

question, especially those of such stature as the US. As said before, this makes economic prediction

of great importance for a large amount of countries.

2.3 Forecasting using Deep Learning

2.3.1 Long Short-Term Memory (LSTM) Neural Network

The LSTM Neural Network, as first introduced by Hochreiter & Schmidhuber (1997), is a type of

recurrent neural network (RNN) designed for temporal forecasting. This commonly used network

architecture has been applied for forecasting in a broad range of fields, including many areas of

finance (Sezer et al., 2020; Selvin et al., 2017; Koenecke, 2020; Jin et al., 2020), energy (Bedi &

Toshniwal, 2019; Qing & Niu, 2018) and traffic (Zhao et al., 2017). This includes both univariate,

as well as multivariate cases. Within macroeconomic forecasting, this approach has been used in a

low-dimension multivariate setting for unemployment by Cook & Hall (2017). Their approach has

shown good results for the LSTM, which offers potential for settings with many predictors. This is

supported by the results in the wide range of applications already mentioned.

2.3.2 Convolutional Neural Networks

Another commonly used type of neural network is the convolutional neural network (CNN). Tra-

ditionally, this architecture was primarily used for image and video recognition/classification tasks

and natural language processing, but it has since expanded into other applications. Among these

applications are time series classification, for example the research done by Zhao et al. (2017), and

time series forecasting, both in a range of scientific fields. The robustness and adaptability of these

models in real world time series is shown by Zhao et al. (2017) and Zhou (2018), which is further

supported by X. Yang & Liu (2021) and a broad range of literature that uses CNNs for time series

prediction. Examples are, among others: univariate revenues (Koenecke, 2020), univariate stocks

(Selvin et al., 2017), multivariate data to predict the S&P500 (Borovykh et al., 2017) and multi-

variate human activity recognition using body-worn sensors (J.-B. Yang et al., 2015). Additionally,

Sezer et al. (2020) provide a broad overview of the use of CNNs, and other deep learning models,

in the most important topics in finance.

While CNNs have seen more and more practical use-cases and interesting developments, the

application to macroeconomic forecasting has only recently seen its introduction. One notable
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contribution is the research by Cook & Hall (2017), who apply a CNN, and several other neural

network architectures, to forecast the US unemployment rate using the time series itself, as well

as differenced series. This is extended by Alaminos et al. (2021), who use a recurrent adoption of

the standard CNN to predict GDP growth rates for a large number of countries. To achieve this,

they use 24 macroeconomic indicators. While the results in the case by Cook & Hall (2017) show

poor results for the CNN, as it is outperformed by an LSTM, the multivariate case by Alaminos

et al. (2021) shows promising results for the CNN, as it is significantly better than four other deep

learning models and not outperformed by any of the other two. These results show potential for

cases where there are many more possible regressors.

With the increasing use of CNNs in time series forecasting, both univariate and multivariate

architectures have been developed, which are both discussed by X. Yang & Liu (2021). While they

focus on non-stationary time series, these models generalize to stationary data. For their CNN

architecture they focus on the Lenet-5 architecture, which is introduced by Lecun et al. (1998) and

has shown promising results in predicting the Dow Jones Industrial Average (DJIA) (X. Yang & Liu,

2021). Similar models are used by Liu et al. (2020) and Cao & Wang (2019), who both show results

that support the use of CNNs. While not in the field of macroeconomic forecasting, the research

done by J.-B. Yang et al. (2015) offers additional insight in the use of CNNs and multivariate time

series input. They use multiple signals from body-worn sensors as temporal input, which can instead

be a series of macroeconomic indicators.

2.3.3 CNN-LSTM Architecture

The temporal characteristics of an LSTM can be combined with the convolution characteristics of

the CNN. By feeding the output of a CNN into an LSTM, the horizontal relationship between the

time series as extracted by the CNN can persist over time in the LSTM (Jin et al., 2020). This model

is further described by X. Yang & Liu (2021), who implement it to predict the DJIA. The approach

is also commonly used in other time series as shown by Jin et al. (2020), who experiment with it on

Beijing meteorological data, and by Livieris et al. (2020) to predict gold prices. In macroeconomic

forecasting the available literature is quite limited, with Alaminos et al. (2021) following a similar

architecture but instead using a regular RNN instead of an LSTM, and Theoharidis (2021) using it

to predict inflation. Due to their good results, this architecture shows potential in macroeconomic

forecasting using a high number of predictors.
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3 Theoretical Framework

3.1 Diffusion Index Models

Stock & Watson (2002b,a) introduced the notion of diffusion index models in macroeconomic fore-

casting. In their approach, they first extract a set of r common latent factors Ft based on the notion

that Xt can be decomposed in Ft by the equation:

Xt = ΛFt + et, (1)

using a certain factor decomposition method. Here, t is the time with t = 1, ..., T and j corresponds

to the index of the predictor with j = 1, ..., N . Then, Xt is an N -dimensional set of candidate

predictors for a time series yt and et is anN×1 vector of idiosyncratic disturbances. The combination

of these factors and several observed macroeconomic predictors, such as the lags of the independent

variable, are then used to forecast future values of yt through the linear relationship:

yt+h = β′FFt + β′wwt + εt+h. (2)

Here, h is the forecast horizon, wt is an m×1 vector of observed variables and εt+h is the resulting

forecast error. Because et is unlikely to be cross-sectionally independent and temporarily indepen-

dent in this macroeconomic forecasting application, Stock & Watson (2002b,a) allow for these error

terms to be serially correlated and (weakly) cross-sectionally correlated. Stock & Watson (2002a)

delve into the theoretical implications and solutions of this assumption and find that general es-

timation and decomposition methods, such as principal component analysis (PCA) explained in

Section 3.2, can be applied without loss of consistency or other important characteristics.

3.2 Factor Estimation and Principal Component Analysis

This section will provide a brief overview of factor estimation and principal component analysis

(PCA). Additional details on these techniques are covered by Bai & Ng (2008, 2009), Kim &

Swanson (2014a) and Stock & Watson (2002a, 2012). Factor models are used to extract a set of

common factors r (r � N) from a high-dimensional set of N predictors, following the idea that this

set of predictors can be represented as in Equation 1, to lower the dimension of the data. Here, the

product of the factor loadings Λj (the jth row of Λ) and common factors Ft is called the common

component of Xtj (the jth variable of Xt), which corresponds to the factor representation of the

data.

A well-known technique to find these common factors Ft is the use of principal components.

PCA uses eigenvalue decomposition to find orthogonal, thus uncorrelated, factors. Before any steps
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of the algorithm are applied, it is very common to normalize the data by subtracting the mean

and dividing by the standard deviation. Following this, the first step in PCA is to estimate the

covariance matrix V̂ (or correlation matrix) of Xt. This matrix is used in the second step to calculate

the eigenvectors ej and corresponding eigenvalues λj , following the equation V̂ ej = λjej , using

singular value decomposition (SVD). Given the eigenvalues and -vectors, the principal components

are given by:

Ptj = e′jXt, (3)

where j = 1, ..., N . The factors determined through PCA can be ranked based on the amount

of variance they explain in the dataset, as PCA tries to explain as much of the variance of the

remaining data in each subsequent principal component. This allows one to select the amount of

principal components to use based on a pre-defined level of explained variance or another selection

criterion. The latter is commonly used in diffusion index forecasting, as also used by Bai & Ng

(2002, 2008, 2009) and Kim & Swanson (2014a, 2018). They use the criterion function SIC3(r)

suggested by Bai & Ng (2002):

SIC(r) = V
(
r, F̂

)
+ rh(N,T ) = V (r, F̂ ) + rσ̂2

(
(N + T − r)ln(NT )

NT

)
, (4)

where h(·) is a penalty function, provided in Equation 4, and V (·) is a function minimizing the

distance between the original variables X and their factor representation. The latter follows the

implementation by Bai & Ng (2002) and described as:

V
(
r, F̂

)
= min

Λ

1

NT

N∑
i=1

T∑
t=1

(
Xit − λr

′
i F̂

r
t

)2
. (5)

Kim & Swanson (2018) add an additional limit of rmax=20 to the number of factors used in their

empirical study, which this research copies.

3.3 Boosting

While originally used in classification problems and later in regression problems, Bai & Ng (2009) use

this method to pre-select the most important variables among a high-dimensional list of predictors

for use in factor augmented autoregressions. Conceptually, boosting builds on a set of many weak

learners and uses this set repeatedly on changed data. A linear combination of these weak learners

is the output of this technique. Similar to Kim & Swanson (2014a,b, 2018), I implement the

“Component-Wise L2Boosting” algorithm by Bai & Ng (2009) as presented in Algorithm 1 below.

This is the algorithm as described in Kim & Swanson (2014b), with the addition of updating the
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estimator β̂i, as described by Bai & Ng (2009), in the last step of the algorithm. Before applying the

boosting algorithm, Bai & Ng (2009) and Kim & Swanson (2014b, 2018) let Z = Y − Ŷ W obtained

from fitting an autoregressive model to the target variable using Wt as regressors.

Algorithm 1 Components-Wise L2Boosting

1: procedure Boosting(Z,ν,r,M)
2: Initialize µ̂0(Ft) = Z̄ for each t = 1, ..., T and β̂0 = 0r
3: for i = 1→M do
4: for t = 1→ T do
5: Compute ut = Zt − µ̂i−1(Dt)
6: end for
7: for j = 1→ r do
8: Regress u (T × 1 residuals) on F̂j (jth factor) to obtain β̂j
9: Compute d̂j = u− F̂j β̂j

10: Compute SSRj = d̂′j d̂j
11: end for
12: Determine j∗i = argminj∈[1,...,r]SSRj

13: Compute ĝi∗(F ) = F̂j∗i β̂j∗i
14: for t = 1→ T do
15: Compute µ̂i = µ̂i−1 + νĝi∗
16: end for
17: Compute β̂i = β̂i−1 + νβ̂j∗i
18: end for
19: end procedure

As Bai & Ng (2009) use 0 < ν < 1, boosting does not only do variable selection but also

shrinkage. Kim & Swanson (2014b, 2018) choose ν = 0.5 and M = 50, which is also used in this

paper.

While this algorithm has shown great potential, Kim & Swanson (2014b) and Bai & Ng (2009)

note the problem of overfitting that may arise if this algorithm is repeated too often. As such,

choosing the stopping parameter M correctly in Algorithm 1 is of great importance. Bai & Ng

(2009) use the following information criterion to determine M :

IC(i) = log
[
σ̂t

2
]

+
log(T ) · dfi

T
, (6)

where σ̂t
2

=
∑T

t=1

(
Yt − µ̂i(F̂t)

)
. Then, using this criterion, M is given by:

M = arg min
i
IC(i) (7)

In this setup, the degrees of freedom dfi is defined as dfi = trace(Bi), where Bi = Bi−1νP
(i)(IT −

Bi−1) with P(i) = F̂ji∗

(
F̂ ′
ji∗
F̂ji∗

)−1
F̂ ′
ji∗

. Starting values for Bi are given as B0 = 1
νP

(0) = 1′T1T /T ,

where 1T is a T × 1 vector of 1s. Using Equation 2, the prediction is then:
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Ŷ Boosting
t+h = Wtβ̂w + µ̂M

(
F̂t

)
. (8)

3.4 Deep Learning Models

The core focus of this research lies in the application of deep learning models in a big data setting of

macroeconomic forecasting. These models are primarily based on the use of neural networks (NN)

in learning complex relationships between input and output data. Based on the literature review

in Section 2, three different types of these neural networks for prediction are used in this research.

First, I will cover long short-term memory (LSTM) neural networks, followed by convolutional

neural networks (CNNs) and lastly a CNN-LSTM combination.

3.4.1 Long Short-Term Memory Neural Network

Neural networks allow complex non-linear relationships to be estimated through the combination

of many simple mathematical expressions in a network-like structure. Following the notation by

Franses & Dijk (2000), such neural network relationships in time-series can be expressed as:

yt = F (xt; θ) + εt, (9)

where traditional neural networks model F (xt; θ) as:

F (xt; θ) = φ0 +

q∑
j=1

βjG(x′tγj). (10)

Here, q corresponds to the number of logistic components, or neurons, used in the network. xt

corresponds to lagged values of yt, manipulations thereof or other variables that may drive yt, and

x′tγt corresponds to a linear combination of the input variables based on the estimated weights γj .

G(·) is the logistic function given by:

G(z) =
1

1 + exp(−z)
. (11)

While these neural networks can estimate a large set of complex relationships in time-series, they

are used similarly to neural networks in classification and model each time step t = 1, ..., T based on

the estimated coefficients of F (·). That is, they do not take into account any updated information

available from previous steps in the time-series process after the model has been estimated. Even

when including many lags, it is difficult for these models to capture short- and long-run time series

dependencies. To solve this problem, recurrent neural networks (RNNs) were developed. These

neural networks have been shown to capture time-dependencies much better by adding a recurrent

component to Equation 9, which uses the output of the previous observation. While this already

allows short term dependencies to be modelled very well, a slight modification of this model, the
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long short term memory (LSTM), allows for much longer time-series dependencies to be modelled.

This is possible due to the introduction of a saved state, which resembles a complex moving average

type of component. The weights and value of this moving average depend on many inputs, but allow

complex information about the development of the time series to be stored over a longer period of

time. These additions cause xt to be replaced in F (·), see Equation 10, by the current state of the

recurrent component ht, such that:

yt = φ0 +

q∑
j=1

βjG(h′j,tγj) + εt, (12)

with q recurrent components. The input xt is instead used in estimating the recurrent value and

the saved state, which determine the time-dependence of the model. Taking inspiration from the

description by Olah (2015), a single recurrent component ht can be calculated by using a linear

combination of the current input xt and the output of the recurrent component one time-step ago

ht−1, as well as the saved state Ct. This results in:

ht = G(φh0 + β′h1xt + β′h2ht−1) · tanh(Ct), (13)

where tanh(·) corresponds to the hyperbolic tangent function given by:

tanh(z) =
sinh(z)

cosh(z)
=
e2z − 1

e2z + 1
, (14)

and β′h1 and β′h2 to the weight parameters of the linear combinations β′h1xt and β′h2ht−1 respectively.

The tanh(·) function is used here because its range (from -1 until 1) allows the recurrent component

to be impacted negatively as might be required within the structure of the time series. Additionally,

it has the added benefit of faster conversion with non-linear optimization methods. Finally, the saved

state Ct is given by the complex moving average type of structure:

Ct = G(φc00 + β′c01xt + β′c02ht) · Ct +G(φc10 + β′c11xt + β′c12ht) · C̃t, (15)

where the first logistic function in the sum determines which part of the old information is forgotten,

also called the ‘forget gate’ in other literature. The second logistic function determines the degree

to which the new candidate state C̃t is added. This candidate state is given by C̃t = tanh(φc20 +

β′c21xt + β′c22ht−1), which is also referred to as the ‘input gate’. Here, the tanh(x) function is used

to again allow for the possibility of a negative impact of the state update.

Before an LSTM is estimated, the time series should be deseasonalised, as forecasts from neu-

ral networks using deseasonalised data are significantly more accurate (Nelson et al., 1999). The

preprocessing steps taken by Kim & Swanson (2018) take care of this.
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3.4.2 Convolutional Neural Networks

Traditionally used for image and natural language processing tasks, Lecun et al. (1998) introduced

the CNN architecture “LeNet-5”, which has since been commonly used in many areas, including

financial and macroeconomic time series forecasting (see Section 2.3.2). These advanced neural

networks allow for images and other 1D/2D signals to be filtered and processed in an efficient way,

much more efficient than by a normal feed-forward neural network. To achieve this computational

feat, CNNs combine three mathematical ideas: local receptive fields, shared weights (also known as

weight replication) and temporal sub-sampling (Lecun et al., 1998).

The “LeNet-5” model consists of several (repeated) components, which are covered in-depth by

Albawi et al. (2017). In this paper, the notation is adjusted to match its application in time series

forecasting. The most important, and perhaps intricate component of the CNN are convolutions,

which use the first two ideas mentioned earlier. A convolutional layer applies several matrix filters

hq(·) to the matrix Xt of regressors, where q = 1, ..., Q refer to the different filters. In this setting,

Xt is a Ts × N matrix that contains a chosen Ts number of lagged values of the N variables at

time t. The filters are then applied by subdividing Xt in small sub-matrices of a predetermined

size and applying the filters to each sub-matrix separately. This concept is also known as local

receptive fields. By using sub-matrices instead of the entire matrix Xt, the number of coefficients

in the model is drastically reduced. However, if the coefficients of these filters would be estimated

separately for each sub-matrix, the model would still contain many coefficients and estimation would

take a considerable time. To further simplify the model, the filters hq(·), q = 1, ..., Q, use the same

coefficients for each sub-matrix of Xt, also referred to as shared weights. This decreases the number

of coefficients to be estimated even more. A numerical example comparing the number of coefficients

between a feed-forward neural layer and a convolutional layer is provided by Albawi et al. (2017).

Although it seems that complexity is lost due to these simplifications, the use of different filters

allows different features to be extracted from the data (Albawi et al., 2017). The convolutional

layer then creates a new matrix of filtered data for each filter hq(·), q = 1, ..., Q, which are often

referred to as feature maps. These matrices are then described by:

Hq,m,n = (Xt · hq)m,n =
∑
j

∑
k

hq,j,kXt,m−j,n−k, q = 1, ..., Q, (16)

with m and n respectively the rows and columns of Xt, and j and k the iterators used to go over

each sub-matrix. By combining this for the different filters in a convolutional layer, the complete

convolutional layer for the lth layer in the network is described by:
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Ztl = Wl ·At,l−1 + bl
and

Atl = gl (Ztl) .

Here, the three-dimensional matrix Ztl is an intermediary step that multiplies the input At,l−1 of

the previous layer with the coefficient matrix Wl and adds a bias term bl, as commonly found in

neural networks. This intermediary step Ztl is then used as input for the non-linear function gl(·)

to be passed to the next layer. In CNNs, gl(·) most commonly corresponds to the ReLU function

(Albawi et al., 2017), given by:

gl(x) = x+ = max(0, x). (17)

The second important component used in CNNs, introduced by Lecun et al. (1998) and described

in detail by Albawi et al. (2017), is the use of pooling to down-sample the data between the different

convolutional layers. This happens without affecting the number of filters, which contain important

information about the features of the data. While there are different types of pooling, the most

common is max-pooling, This method partitions the output matrix Ztl of a previous layer in sub-

regions of a predefined size and returns the maximum value of the sub-region.

The LeNet-5 architecture uses a convolutional layer followed by a max-pooling layer. This

combination of the two layers is repeated once, after which the data from the last layer is flattened

and fed into one or more fully connected layers.

4 Data and Methodology

This research uses both a simulation and an empirical study to compare the models. First, this

section covers the models that will be implemented, after which the data is discussed.

4.1 Simulation

To investigate the ability of deep learning models to uncover underlying factors in data, I imple-

ment a simulation study similar to the simulation approach ‘GDP 1’ (data generating process 1)

implemented by Bai & Ng (2009), which they use to test their boosting algorithm. Following their

approach, I first generate k underlying factors using an AR(1) model, after which I use a factor-based

construction of the observed Xt (T ×N) variables using the generated factors. This corresponds to

the following data generating process (DGP) for t = 1, ..., T :

Xit = Ftλ
′
i +
√
kεit, i = 1, ..., N, and (18)

Fjt = αjFj,t−1 + ujt, j = 1, ..., k. (19)
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Here, I use (εit, ujt) ∼ N(0, I2), following Bai & Ng (2009), and α = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3)′.

For the factor loadings λi (ith row of λ), I follow Bai & Ng (2009) and use λi = 0.5 ·N(0, k). The

predictive accuracy is evaluated by creating a target series y, for t = 1, ..., T from the generated

factors as follows:

yt+h = FtβF + et+h, (20)

where et+h ∼ N(0, 1) and the factor loadings βF = (0.8, 0.5, 0.3,−0.1,−0.3,−0.6,−0.9)′.

To provide an extensive comparison of the deep learning models with the boosting algorithm, I

generate 100 data sets for the combinations of the following parameters: k =3, 5 and 7; T =50, 200

and 500; and N =10, 50 and 100. I start at T = 50 and N = 10 because the CNN model requires

a large enough input matrix Xt of time series data. If Xt is smaller than the kernel size, then the

CNN will not be able to train on the data.

4.2 Empirical Data

As commonly used in the diffusion index literature, I use monthly observations from 144 US macroe-

conomic time series for the same time frame as Kim & Swanson (2014b, 2018). The data ranges

from January 1960 until May 2009 and is retrieved from Wharton Research Data Services (WRDS)

and verified with the data used by Kim & Swanson (2018)3). From these macroeconomic time

series, I focus on predicting the growth rate of the gross domestic product (GDP), for which I take

the log-difference of the GDP. This approach is the same as used by Kim & Swanson (2014b, 2018).

A plot and summary statistics of this data are presented in Figure 2 and Table 1 respectively. The

plot also contains a three-year (red) and ten-year rolling average, which shows that the growth rate

has gone down only very slightly in the entire period, yet the volatility around this mean seems to

have decreased.

Table 1: Summary statistics of the US GDP growth rate from January 1960 until May 2009

T N Mean Median Std. Dev. Min Max Skewness Kurtosis

593 144 0.256 0.265 0.440 -1.354 2.031 -0.217 0.964
Note. Growth rates presented in percentages.

As most of the other macroeconomic variables are also non-stationary, preprocessing is applied

across all time series. As different structures are seen in the time series, different techniques are

applied depending on the time series at hand. A description of the variables, including the prepro-

cessing approach, is provided in Section 6 in Appendix A. This data is then used in two settings.

First, the same initial time frame and expanding window estimation as the approach by Kim &

3Kim & Swanson (2018) and other researchers use this data for a larger range of academic literature, and can be
found at https://sites.google.com/site/khdouble2/research (Kim & Swanson, 2018)
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Figure 2: US growth rates from January 1960 until May 2009, including a 3-year (red) and 10-year (blue) moving
average

Swanson (2018) are used, to verify correct implementation of the boosting method. This corre-

sponds to an expanding window starting with predicting after December 1972. As the main goal of

this research is the application of deep learning models in the context of macroeconomic forecasting,

the second settings follows a deep learning-based concept of training and test data for the second

approach. This is because neural networks generally need a much longer training period to perform

well. As the different deep learning models use different windows as their input, the focus lies on

creating a test set with an equal length for all models. This allows for the different methods to

be compared where necessary. To facilitate this, I predict the last 30% of the data for all models

and horizons, which corresponds to predicting the values from August 1990 until May 2009. As a

result, the training period consists of less than, but approximately, the first 70% of the data from

January 1960 until July 1990. Due to the extensive time deep learning models require for training

and the focus on hyperparameter optimization and model comparison, the deep learning models

will be trained only once on the training period after which predictions are made for the entire

test period. The boosting and autoregressive model, see Section 4.3 below, will be re-estimated for

each time-step as is customary in diffusion index forecasting and also similar to Kim & Swanson

(2014a,b, 2018).

4.3 Models

For this research, I will implement five models. Two of these models will be used as benchmarks

and the other three will be three different deep learning models. This section will first discuss the
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benchmark models, followed by an in-depth discussion regarding the choice of deep learning models.

4.3.1 Benchmark Models

The first benchmark model is an autoregressive (AR) model, which is the main benchmark model

used by Kim & Swanson (2014a,b, 2018). I follow their idea by implementing a univariate AR(p)

computed as Ŷ AR
t+h = α̂+φ̂(L)Yt, where p is the number of lags selected with the Bayesian information

criterion (BIC). It is important to note that two implementations of an AR model are possible:

either by only applying ordinary least squares (OLS) regression, as implemented by Kim & Swanson

(2014a,b, 2018), or by a combination of OLS and maximum likelihood (ML) estimation. After a

brief review of the performance, the latter implementation was found to be better. As such, the

forecasts of this method are used when comparing it to the deep learning models. While the primary

goal is to compare deep learning to boosting, it is interesting to also compare it to the performance

of a common autoregressive model. The AR model is implemented using the programming language

Python and the statsmodels library by Seabold & Perktold (2010). On top of this, the scikit-learn

library by Pedregosa et al. (2011) is used, which is also important for many of the other models and

processing steps in this paper.

For the second model, I opt for the L2 boosting algorithm covered in Section 3.3 and as used

by Kim & Swanson (2014a,b, 2018), for which I will use the SP2 approach by Kim & Swanson

(2014a,b, 2018). The SP2 approach first uses the Boosting algorithm, see Section 3.3, to construct

a subset of the predictors after which factors are constructed using PCA. Diffusion index forecasting

is then used to make predictions, as outlined in Section 3.1. This model is implemented following

the methodology outlined by Kim & Swanson (2014a,b, 2018) using Python.

4.3.2 Deep Learning Models

The three deep learning models that I will implement are an LSTM architecture, a CNN architecture

and a CNN-LSTM combination. More details about the underlying architecture can be found in

Section 3.4.

The LSTM will be designed as follows: one observation for all 144 variables will each be fed

into a recurrent component in an LSTM layer, using the activation functions given in Section 3.4.

Of these components, a random percentage of the recurrent components are turned off using a

dropout layer to prevent overfitting, as is common with these type of neural networks. The number

of neurons in the LSTM and the dropout rate are determined through hyperparameter tuning

discussed in Section 4.3.3 below. The LSTM layer then feeds into an output node corresponding to
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the predicted value.

The second model, the convolutional neural network (CNN), follows the LeNet-5 architecture

described in Section 3.4. Following this architecture, I use two serially connected combinations of

a convolutional layer and a max-pooling layer, after which two fully connected layers and a linear

output layer are added. The convolutional layers both have a filter size of 3× 3 and the number of

filters is varied using hyperparameter tuning. Meanwhile, the max-pooling layer will use a pooling

size of 2 × 2. The input to this model will be three years of past data (36 months) for all 144

macroeconomic variables, resulting in an input matrix Xt of size 144×36. For the simulation study

the input will be 10, 20 and 50, for respectively T equal to 50, 200 and 500. The fully connected

layer has sixteen neurons.

Lastly, I implement a CNN-LSTM combination, following similar approaches by X. Yang & Liu

(2021), Livieris et al. (2020) and Jin et al. (2020). The architecture of the CNN part follows the

same model as the regular CNN above, after which the output of the last hidden max-pooling layer

feeds into an LSTM instead of a fully connected layer. The LSTM then feeds into a fully connected

layer and an output node. The number of filters of the CNN are determined using hyperparameter

tuning, while the number of neurons of the LSTM is fixed at 32 and that of the fully-connected

layer at 16.

All these models are implemented using Python and the TensorFlow library by Abadi et al.

(2015), a common library for the development of (advanced) neural networks. While the implemen-

tation for the CNN and LSTM is fairly straightforward in this library, the CNN-LSTM architecture

requires the use of a TimeDistributed layer for the CNN and max-pooling layers. This adds a time

component to this part of the architecture, which is required to make the connection to the LSTM.

4.3.3 Hyperparameter Tuning

As the performance of deep learning models is highly dependent on the hyperparameters of the

architecture, such as the number of neurons (LSTM) and filters (CNN), hyperparameter tuning is

key to developing a sound model. The most basic method for hyperparameter optimization is grid

search, which refers to testing all hyperparameters options provided by the user to find the best

set of parameters. For cases where speed and efficiency is important, other methods have been

developed that skip several parameters by assuming a distribution of the performance of the neural

network. As efficiency is key in the simulation study of this paper, I use the best model based

on the first data set to forecast the data for all data sets in the particular series; hyperparameter

tuning for each data set would be too computationally heavy and goes beyond the purpose of this
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research. To speed up hyperparameter optimization, I opt for the Hyperband search algorithm

introduced by Li et al. (2018). This algorithm speeds up random search through adaptive resource

allocation such as iterations, samples or features to randomly sampled hyperparameters. Li et al.

(2018) show that Hyperband provides over an order-of-magnitude speedup compared to Bayesian

optimization, which is very desirable for simulations. As I want to delve deeper into the effects of

the hyperparameters in the empirical case, I apply a grid search in this part of my research. The

hyperparameter options used in both the empirical and simulation study can be found in Table 2

below.

Table 2: Hyperparameters used in grid search (empirical study) or Hyperband optimization (simulation study) for
the deep learning models

Panel A: Empirical Study (Grid Search)

LSTM CNN and CNN-LSTM

Num. LSTM Neurons 16 32 64 128 256 Num. Filters Layer 1 4 8 16 32 64
Dropout Rate 0.1 0.2 0.3 Num. Filters Layer 2 4 8 16 32 64
Epochs 100 Epochs 50

Panel B: Simulation Study (Hyperband Optimization)

LSTM CNN and CNN-LSTM

Num. LSTM Neurons [16,32,...,240,256] Num. Filters Layer 1 4 8 16 32 64
Dropout Rate [0.1,0.15,0.2,0.25,0.3] Num. Filters Layer 2 4 8 16 32 64
Epochs 50 Epochs 25

For the empirical study, I opt to vary the number of filters for the CNN layers between 4 and

64 for both layers of the CNN and CNN-LSTM. For the latter model, I choose to keep the number

of recurrent components in the LSTM constant at 32. The LSTM model will use hyperparameter

tuning for the number of recurrent components in the LSTM layer, ranging from 16 to 256, and

the dropout rate of this layer. In the simulation study, I optimize the same parameters in the same

range, but allow for more more options in-between the range for the LSTM, as seen in Panel B of

Table 2. The batch size for the empirical study is set at 64, which is reasonable for the size of the

data set, while the batch size for the simulation study is set at T/10, as the batch size should not

be too large compared to the number of observations in a data set.

All these hyperparameters are of great influence to the performance of the neural networks.

While other options are possible, such as the learning rate of the optimizer and the number of

epochs, I leave these for potential future research. As it is known that an increase in epochs usually

increases performance, with some exceptions, I choose the number of epochs at a considerably large

value such that convergence can be achieved, see Table 2, and do not use hyperparameter tuning

for the number of epochs. For the simulation study, I only perform optimization for the first data

set and use the parameters from the best model for all other data sets. Hyperband optimization is
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contained in TensorFlow by Abadi et al. (2015).

4.4 Forecast Comparison

The models will be used to forecast for three different horizons following Kim & Swanson (2018):

one, three and twelve time steps ahead. I will compare these forecasts using the mean square

forecast errors (MSFE), as applied by Kim & Swanson (2014a,b, 2018). The MSFE implemented

by Kim & Swanson (2014a,b, 2018) is given by:

MSFEi,h =

T−h+1∑
t=R−h+2

(
Yt+h − Ŷi,t+h

)
, (21)

where Ŷi,t+h is the forecast at t of model i for forecast horizon h, while Yt+h is the actual observation

at t+ h, the forecasted value. R is the last index for which no value is predicted.

The MSFE will be used to statistically test the accuracy of the deep learning models against

the AR and boosting model by using the Diebold-Mariano (DM) test as introduced by Diebold

& Mariano (1995) and also used by Kim & Swanson (2018). The test statistic is defined as DM

= d̄/

√
(Var(d̂t+1)/T), where d̄ is the sample mean of dth = L(ŷthi, yt) − L(ŷthj , yt). This is the

difference of a loss function computed with estimates of ŷthi and yt for comparison of model i and

j. Here, h refers to the h-step-ahead forecast estimated for the observation at time t or, differently

stated, ŷthi is the forecast h steps ago. Under H0 of equal accuracy and several weak conditions,

DM
d−→ N (0, 1) and Var(d̂t+1) can be calculated from the sample variance, as described by Diebold

& Mariano (1995). This allows for a direct statistical comparison of the accuracy of two models

using the MSFE as in Equation 21. I use the DM-test with a two-sided alternative hypothesis H1 of

a different accuracy for, separately, the LSTM, CNN and CNN-LSTM model compared to the AR

and boosting model. For the simulation study, I count the number of times the DM-test is rejected

in favor of the deep learning for the different data sets. The test is performed at an α-level of 10%.

5 Results and Discussion

5.1 Simulation

The results of the deep learning model comparison to boosting are presented in Table 3 below. As

the main research goal is to compare the deep learning models to boosting and because boosting

was found to be worse than the AR model, the comparison with AR is omitted but can be found

in Table 7 in Appendix B. The best parameters for each scenario, as found by using Hyperband

optimization, can be found in Table 6, also in Appendix B.
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Table 3: Average MSFE ratios and number of DM-tests that showed significantly better performance for the deep
learning models compared to the boosting algorithm for the simulation scenarios. (E.g. 0.598 in the 2th column, and
4th row corresponds to a 40.2% better accuracy for the LSTM model compared to the boosting model, for the simulation
scenario with K = 3 underlying factors, N = 10 variables and T = 50 number of observations.)

Panel A: LSTM

K=3 K=5 K=7
Num. Obs. N=10 N=50 N=100 N=10 N=50 N=100 N=10 N=50 N=100

50 0.598 (54) 0.468 (53) 0.464 (59) 1.136 (22) 0.809 (29) 0.631 (53) 1.531 (13) 0.788 (24) 0.808 (3)
200 0.522 (93) 0.444 (100) 0.418 (98) 0.832 (39) 0.603 (85) 0.591 (86) 0.785 (57) 0.591 (95) 0.576 (99)
500 0.469 (97) 0.503 (92) 0.498 (97) 0.781 (91) 0.493 (96) 0.501 (92) 0.927 (49) 0.834 (73) 0.9298 (47)

Panel B: CNN

K=3 K=5 K=7
Num. Obs. N=10 N=50 N=100 N=10 N=50 N=100 N=10 N=50 N=100

50 1.680 (18) 1.218 (18) 1.524 (19) 1.633 (6) 1.738 (5) 1.195 (27) 2.177 (17) 1.374 (7) 1.500 (24)
200 0.855 (42) 0.760 (47) 0.687 (65) 1.618 (6) 1.492 (7) 1.399 (12) 1.131 (21) 1.105 (20) 1.309 (11)
500 1.207 (11) 1.198 (10) 1.119 (11) 1.380 (9) 1.174 (23) 1.117 (24) 1.335 (9) 1.259 (12) 1.390 (8)

Panel C: CNN-LSTM

K=3 K=5 K=7
Num. Obs. N=10 N=50 N=100 N=10 N=50 N=100 N=10 N=50 N=100

50 1.587 (17) 1.138 (19) 1.447 (17) 1.750 (13) 1.758 (12) 1.339 (18) 2.711 (8) 1.583 (5) 1.509 (13)
200 1.182 (38) 0.746 (57) 0.740 (55) 1.654 (5) 1.385 (5) 1.340 (13) 1.249 (10) 1.195 (18) 1.264 (9)
500 1.073 (21) 0.713 (63) 0.698 (69) 1.400 (12) 1.300 (19) 1.219 (25) 1.360 (7) 1.296 (12) 1.398 (8)

Note. The count of the Diebold-Mariano tests is depicted in brackets to right of the MSFE ratio. The Diebold-Mariano test
is performed using the MSFEs of each individual data set, comparing the deep learning against the boosting model (Ha: The
accuracy of the deep learning model is better than the boosting model) at a 10%-significance.

Out of the three deep learning models, the LSTM is found to perform the best. It shows a

consistent outperformance of the boosting model, except when the number of observations in the

simulation is 50, the number of variables is 50, and the number of underlying factors is 5 or 7. As can

be expected, the model improves as the number of observations increases. This can be attributed

to the fact that more observations can be used for estimation of the model parameters. On top of

this, the model becomes better in relation to the boosting model when the number of observations

becomes larger. However, as the number of underlying factors grows, the the MSFE ratio becomes

larger if the number of observations and number of variables is kept the same. This means that the

boosting model works better if more underlying factors are introduced into the time series. This is

most probably due to the use of PCA to find these underlying factors. As such, the LSTM is best

used in cases with many observations and many variables, but with a small amount of underlying

factors. Due to the many intricate systems at play in macroeconomics and thus the likelihood of a

big amount of underlying factors, the LSTM seems unsuitable for macroeconomic prediction.

Opposed to the LSTM model, the CNN and CNN-LSTM model perform much worse when

compared to the boosting algorithm. Especially in cases with a low amount of observations, they

fail to attain a higher accuracy than the boosting model. As the number of observations in the

data set increased, the models perform better. The same holds for the number of variables: as

the number of these increases, both the CNN and CNN-LSTM perform better. While both models

perform best when used in cases with three underlying factors, they perform better with seven

underlying factors than for cases with five. As such, while boosting is probably better in situations
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with clear underlying factors, it seems possible that the CNN and CNN-LSTM model perform better

in situation with many underlying factors, such as the macroeconomic environment in this study.

5.2 Replication

Following the specifications described by Kim & Swanson (2018) for the AR and boosting model,

I obtain MSFE ratios of 0.867, 0.864 and 0.870, for the one- (h = 1), three- (h = 3) and twelve-

month-ahead (h = 12) forecasts respectively. This is very similar to the result of Kim & Swanson

(2014b), who find the ratios to be equal to 0.871 and 0.867 for the one- and three-month-ahead

prediction. The ratio for the twelve-month-ahead is unfortunately not available in the literature.

As such, it is reasonable to assume that the methods have been implemented correctly. DM-tests

with an alternative hypothesis of better accuracy give test statistics of 2.662, 3.068 and 2.580 for

the three respective horizons. As such, I find that for all three horizons the null-hypothesis of equal

predictive accuracy is rejected at α = 1% in favor of the boosting model.

5.3 Deep Learning in Macroeconomic Forecasting

As deep learning models generally require a long estimation period to perform well, I use more of

the available data for estimation of the models and less for forecast comparison, see Section 4.2 for

further details on this. The performance of the best model for each architecture is presented in

Table 4 below, along with the parameters that are used for the best model in question. Here, the

best models were chosen based on the MSFE ratio after performing a grid search. The results for

all the possible parameters mentioned in Section 4.3.3 can be found in Table 8 in Appendix C.

Table 4: MSFE ratios and hyperparameters of the best deep learning models compared to the benchmark AR and
boosting models. (E.g. for the entry 1.251 found under LSTM and then AR, this means that the LSTM is 25.1%
worse than the AR model.)

Horizon Boosting LSTM CNN CNN-LSTM
AR Boosting AR Boosting AR Boosting

1 1.017 1.251∗∗ 1.230∗∗ 1.027 1.010 1.175∗∗ 1.156∗∗

3 1.061 1.185∗ 1.118 1.011 0.953 1.118 1.054
12 1.185∗∗∗ 1.318∗∗∗ 1.112 1.156∗∗∗ 0.975 1.127∗ 0.951

Hyperparameters

1 Num. Neurons: 32 Num. Filters 1: 32 Num. Filters 1: 32
Dropout Rate: 0.3 Num. Filters 2: 16 Num. Filters 2: 64

3 Num. Neurons: 32 Num. Filters 1: 8 Num. Filters 1: 8
Dropout Rate: 0.3 Num. Filters 2: 64 Num. Filters 2: 16

12 Num. Neurons: 16 Num. Filters 1: 32 Num. Filters 1: 4
Dropout Rate: 0.1 Num. Filters 2: 64 Num. Filters 2: 64

Note. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; The best models were selected based on hyperparameter optimization, and for the con-
volutional neural network, any models that fell trap to a local minimum were removed prior to selection. A Diebold-Mariano
test is performed using the MSFE, comparing the model against the AR and boosting model separately (Ha: Different from
AR/Boosting). The best deep learning model for each forecast horizon is highlighted in bold.
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Interestingly, it is found that the boosting algorithm now has a ratio higher than one for all three

the forecasting horizons (h = 1, 3, 12), with the twelve month horizon even showing significantly

worse performance at the 1%-level. This can possibly be attributed to the longer estimation window,

and much shorter window for forecast comparison. Another explanation could be that the GDP

followed a more stable autoregressive pattern in later years than it did in earlier decades, which

would greatly decrease the necessity of pre-selecting important macroeconomic variables through

boosting and using PCA to find underlying factors. This possibly affected the performance ratio of

boosting compared to the AR model. One other important notion is that the AR model used by

Kim & Swanson (2014a,b, 2018) is only based on a small number of lags, which makes it difficult to

forecast twelve steps ahead with this method. As a result, these forecasts can be found very close

to a constant value throughout time. If boosting is then estimating several values incorrectly, while

the AR model predicts close to the mean of the series, this can result in the AR model showing

better performance, while this is not the case.

Looking at the deep learning models, the three models can be ranked based on their performance

in comparison to the boosting and AR models. For the one-month and three-month forecasting

horizons (h = 1, 3), I find that the convolutional neural networks (CNN) has the lowest ratios,

when compared to both the AR and boosting models, than the other two deep learning models.

For the twelve month forecast horizon (h = 12), the CNN-LSTM has the lowest ratios. That said,

none of the deep learning models significantly outperforms the AR and boosting models and the

ratios are all very close to one. A possible explanation is, again, the short horizon for which the

forecasts are compared and, in the case of the twelve-month horizon, very constant predictions by

the AR model might have caused improper results for this model. Based on the MSFE ratios and

primarily focusing on the comparison of the deep learning models with boosting, the preferred model

is CNN for the one-month- and three-month-ahead forecasts, while the CNN-LSTM combination is

the preferred option for the twelve-month-ahead forecast.

Next, I will discuss the three models more in-depth, starting with the CNN, the best model out of

the three. The CNN model has a ratio higher than one when compared to the autoregressive model

for all three horizons, but it is only significantly outperformed for the twelve-month horizon, possibly

due to reasons already explained above. That said, the difference between the CNN and AR forecasts

for the one- and three-month-ahead horizons are very small at 2.76% and 1.1% respectively. This

is considerably better than the other two models, which have accuracy differences of percentages

upwards of 11.8%. Compared to the boosting model, the CNN model has a ratio slightly higher
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than one at 1.010 for the one-month forecasting horizon, while it is lower than one for the other

two forecast horizons (h = 3 and 12). None of the three are significantly different based on the

DM-test and therefore none can be said to perform better than boosting. While the CNN has the

best performance out of the three models, it does come with a caveat: the model can sometimes

fall trap to a local minimum for some of the parameters. This results in a constant value for all

predictions or an upper ceiling in the predictions, of which examples found in the grid search can be

seen in Figure 3 below. It could also be possible that lower floors are observed. As such, careful use

of this model is recommended. The cause of this can be most likely attributed to a small learning

rate. While a small learning rate allows for accurate estimation of the best parameters, the small

deviations cannot force the model out of a local minimum. In this research, any of these cases where

filtered out before selecting the best possible model for the CNN, but can be found in Table 8 in

Appendix C. Both the LSTM and CNN-LSTM do not fall trap to this problem.

(a) Constant value predictions of a CNN model (orange) plot-
ted along with the true value (blue) of GDP; CNN model for
one-month-ahead forecasts, with respectively 4 and 16 filters
for the two convolutional layers

(b) Predictions of a CNN model (orange) with a prediction
ceiling, plotted along with the true value (blue) of GDP; CNN
model for three-month-ahead forecasts, with respectively 32
and 16 filters for the two convolutional layers

Figure 3: Possible CNN prediction faults

The model with the second best comparison ratios for the one-month-ahead and three-month-

ahead forecasts is the CNN-LSTM combination, while it is the best model for the twelve-month-

ahead horizon. The model is significantly outperformed at the 5%-level by both the AR and boosting

model for the one-month-ahead horizon. It also has a ratio higher than one for the three-month

ahead forecasts, but is not significantly outperformed at this horizon. For the twelve-month-ahead

forecasts, I find that the AR model significantly outperforms the CNN-LSTM model, but this is

possibly due to the reasons surrounding the AR predictions that were already mentioned above.

Meanwhile, the CNN-LSTM has a ratio lower than one when compared to the boosting algorithm

for this horizon. While the ratio is only slightly lower than in the case of the regular CNN, and

neither are significant, it does show that an additional LSTM component could be beneficial in

cases where the horizon is larger. Future research could focus in on this model and look at much
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longer horizons beyond the current maximum of twelve months.

The last model to be discussed, the LSTM, is also the worst performing model based on the

MSFE ratios. It is significantly outperformed by the AR model on all three horizons and by the

boosting model for the one-month-ahead horizon. At the same time, it is 11.8% and 11.2% worse

than the boosting model for the three-months- and twelve-month-ahead forecast horizons. This

leads to the idea that, while LSTMs offer great value in forecasting time series, it fails to extract

the key underlying factors that occur in such a big data macroeconomic set-up. That said, the

depth of the model, with only one LSTM layer, might have also contributed to the poor results and

lack of ability to find important underlying dependencies.

5.4 Variable Selection in Convolution Neural Networks

Given the predictive accuracy of the CNN, this model seems best at capturing underlying factors

compared to the other two deep learning models. In addition to this, the convolutional layers used

in this architecture allow for interesting insights in terms of the importance of different sections of

the data. This stems from the filters that are applied to the data, for which the parameters are

estimated such that they uncover the most important patterns in the data. The CNN architecture

then learns which of these patterns carries the most value for the task at hand. In image recognition

and classification, these filters learn to distinguish characteristics of the image, such as the snout

of a dog or the ears of a cat, which is used to determine the type of image. Interestingly, the effect

of these filters can be portrayed visually, where the importance of a data point is given by the

brightness of the visual element. To again refer to the example of image recognition, one would for

example be able to see the outline of the snout in a particular filter, while another filter outlines a

cat’s ears.

In time-series prediction, this offers the opportunity to look at which of the data is most im-

portant in predicting future values. This is similar to the notion of influential outliers in regression

modeling, which are those observations that would significantly change the result if omitted. In

finding which of the data is most important for the CNN, I focus on the first horizon and use the

best found model. Before exploring the feature maps, I retrain this model with 100, instead of 50

epochs, to potentially increase accuracy. I then plot the values that the filters give to each data

point for the first observation in the test set. This plot is provided in Figure 4 and also in Figure 5

in Appendix D. In Figure 4, the upper plot contains 32 filters with each 18 (half of the 36 months

used as input to the model) values on the x-axis and 77 (half of the 144 input variables) values on

y-axis. As such, a new filter starts each 18 horizontal steps. A similar construction holds for the
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second convolutional layer. The brighter the color, the higher the value that the filter gives to a

particular data point.

Figure 4: Feature maps of the best CNN model for a one-month-ahead (h = 1) forecast horizon. The plots represents
the values provided to the data points by the filters in the first convolutional layer, the first max-pooling layer and
the second convolutional layers. For the first convolutional layer, the plot contains 32 filters with each 18 (half of the
36 months used as input to the model) values on the x-axis and 77 (half of the 144 input variables) values on y-axis.
As such, a new filter starts each 18 horizontal steps. These values are summarized in a max-pooling layer. The second
convolutional layer contains 16 filters with 8 values each on the x-axis and 38 values on the y-axis. The brighter the
data point is, the more value is attributed to this data point by the filter and subsequently the CNN. Important areas
within the plots are highlighted with red circles.

First and foremost, Figure 4 shows that the convolutional network generally uses many sporadic

parts of the variables and historic data points available. For some filters it even occurs that it is

unable to find any patters. These filters are shown to be completely one color, without bright points.

That said, Figure 4 does show that there are several patches of observations, see the parts circled

in red, that are found to be important by multiple filters. These patches, especially the fact that

they spread vertically, show that several variables are key in the prediction of GDP. Two groups of

variables are found to be important by multiple filters. First, very bright patches are found at the

bottom of some filters, see the bottom red circles in all three plots, which correspond approximately

to the interest rate variables 127-134. The importance of these patches is furthermore strengthened

by the fact that these areas are very dark in other filters, because, in the same way that high values

carry a lot of value for the CNN, very low values have a similar impact. The second patch is found

slightly higher in the three plots and also approximately corresponds to interest rate variables,

this time the variables 53-59. While it is clear that interest rates thus offer considerable value for

the CNN in predicting GDP of the United States. It is important to note that many of the other

variables can be of considerable value, yet through smaller influences instead of large patches. When

looking at the other three forecasting horizons, the same variables are found to be important. For

these forecast horizons, the feature maps for respectively the one- and three-month-ahead forecasts

are found in Figure 6 and 7 in Appendix D.
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6 Conclusion

The initial goal of this research was to apply deep learning to macroeconomic forecasting of the

United States (US) gross domestic product (GDP) in a big data setting and determine if it could

outperform the boosting model by Bai & Ng (2008) and applied by Kim & Swanson (2018). This

comparison included a simulation study, where the models were compared on data with clear under-

lying factors in multiple situations and the application of the deep learning models in the empirical

situation of forecasting monthly US GDP.

In the simulation study, it was found that the long short-term memory (LSTM) neural network

could outperform boosting in settings with a low number of clearly defined underlying factors and

sufficient observations. However, when applying this model to the US macroeconomic data to predict

US GDP, in which many intricate systems are at play, it failed to outperform the boosting model and

even an autoregressive (AR) model. Oppositely, it was found that the convolutional neural network

(CNN) and CNN-LSTM combination could not outperform boosting in the simulated environment

but performed better than the LSTM in the empirical setting. More specifically, it was found in the

empirical study that the three models do not significantly outperform the two benchmark models

for a one-, three- and twelve-month-ahead horizon. Among the three models, especially the LSTM

underperformed, as AR was significantly better at forecasting GDP for all three horizons, while the

boosting algorithm also beat the LSTM model. The CNN-LSTM model proved to be the second

best deep learning model for the one- and three-month-ahead forecasts and best for the twelve-

month-ahead horizon. For the latter, it even proved better than the boosting algorithm, although

not significantly. The best model for the one-month- and three-month-ahead forecasts is the CNN

model, for which it came very close to the predictive accuracy of the AR and boosting models.

It surpassed the boosting method for the three-months- and twelve-month-ahead forecasts. As a

result, it shows potential for such big data time series forecasting. Concluding, the LSTM model

seems best for situations with clearly defined underlying factors, which is generally not the case

for macroeconomic systems, while the CNN and CNN-LSTM perform much better than the LSTM

in more complicated environments. Here, the CNN-LSTM becomes more useful as the forecasting

horizon increases.

As the best model, and due to its capability to display patterns found in the different layers, the

CNN model was used to examine which variables were of greatest importance for predicting GDP.

The most important variables for the CNN model were found to be mostly interest rate variables.
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That said, much more research needs to go into understanding pattern recognition by convolutional

layers, which could help determine the true importance of the different variables. Additionally, it

is important to note that several other variables were also found to be important, but occured in

much smaller quantities.

While interesting insights have been discovered, key limitations existed in this research. First,

the use of several deep learning models limited the depth with which each model could be examined

and optimized. As was seen during optimization, the performance depends heavily on the choice

of model and hyperparameters. With more attention, these models could possibly perform better.

Additionally, by only looking at one macroeconomic variable, it is unclear how deep learning models

perform across macroeconomic forecasting as a whole. By including more of the dependent variables

used by Kim & Swanson (2018), more can be uncovered about the performance of deep learning

models.

Besides these limitations, this research has also uncovered a range of opportunities for future

research to the applicability of deep learning in macroeconomic forecasting. First, and foremost,

deep learning models offer a large range of set-ups and this research has found that hyperparameter

optimization is of considerable importance. As such, different models can be further explored in the

future, for which several options are: the ConvLSTM, a convolutional layer and lstm layer in one, a

combination of one-dimensional convolutional layers for each separate variable, and the list goes on.

While new models can be explored, particularly interesting is also the use of CNNs, as these have

shown promising results for their first-time use in macroeconomic prediction on this scale. This

warrants for interesting other opportunities for this method in time-series prediction, both in- and

outside the field of macroeconomics. On top of this, these models offer a look at how the different

variables add to the final prediction; in essence, which variables offer the most value.

This also leads me to the second option for future research: delving into the meaning of feature

maps and the use of filters in pattern recognition for time series prediction. A lot is known about

this for image recognition and classification, but it could add tremendous value to the use of CNNs

if more is known about filters and their abilitiy to recognize patterns in a time-series domain. A

third point for future research is to look into the combination of factor decomposition methods with

deep learning. By first constructing the underlying factors of the data, the variable selection step

is taken away from the deep learning models. The focus will then lie on finding the best predictive

deep learning model. This research has shown that this could especially benefit the LSTM, which

struggled with the large amount of variables.
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Appendix A. List of Variables used in Empirical Study

Table 5 below contains a description of the used variables in the empirical study, along with their

transformations. The transformation codes (TCodes) correspond to the following transformations:

1. Level of the series

2. First difference of the series

3. Second difference of the series

4. Log of the series

5. First difference of the log of the series

6. Second difference of the log of the series

Finally, the dependent variable in this research is highlighted in bold and corresponds to variable

number 144.

Table 5: List of all variables used in this research, including description and the transformation used during prepro-
cessing of the data

Num. Short Long Description TCodes

1 A0M007 Manufacturer’s New Orders, Durable Goods Industries (Bil. Chain

2000$)

5

2 A0M051 Personal Income Less Transfer Payments (Ar, Bil. Chain 2000 $) 5

3 CCINRV Consumer Credit Outstanding - Nonrevolving(g19) 5

4 CCIPY Consumer Instal Credit to Personal Income, Ratio (%,Sa)(bcd-95) 5

5 CES001 Employees on Nonfarm Payrolls - Total Nonfarm 5

6 CES002 Employees on Nonfarm Payrolls - Total Private 5

7 CES003 Employees on Nonfarm Payrolls - Goods-Producing 5

8 CES006 Employees on Nonfarm Payrolls - Mining 5

9 CES011 Employees on Nonfarm Payrolls - Construction 5

10 CES015 Employees on Nonfarm Payrolls - Manufacturing 5

11 CES017 Employees on Nonfarm Payrolls - Durable Goods 5

12 CES033 Employees on Nonfarm Payrolls - Nondurable Goods 5

13 CES046 Employees on Nonfarm Payrolls - Service-Providing 5

14 CES048 Employees on Nonfarm Payrolls - Trade, Transportation, and Utili-

ties

5

15 CES049 Employees on Nonfarm Payrolls - Wholesale Trade 5

16 CES053 Employees on Nonfarm Payrolls - Retail Trade 5

17 CES088 Employees on Nonfarm Payrolls - Financial Activities 5

18 CES128 Employees on Nonfarm Payrolls - Leisure and Hospitality 5

19 CES140 Employees on Nonfarm Payrolls - Government 5

Page 36



Sean Goedgeluk (443106) Bachelor Thesis BSc2 Econometrics/Economics

Table 5: List of all variables used in this research, including description and the transformation used during prepro-
cessing of the data

Num. Short Long Description TCodes

20 CES151 Average Weekly Hours of Production or Nonsupervisory Workers on

Private Nonfarm Payrolls - Goods-Producing

2

21 CES155 Average Weekly Hours of Production or Nonsupervisory Workers on

Private Nonfarm Payrolls - Manufacturing Overtime Hours

2

22 CES156 Average Weekly Hours of Production or Nonsupervisory Workers on

Private Nonfarm Payrolls - Durable Goods

2

23 CES275 Average Hourly Earnings of Production or Nonsupervisory Workers

on Private Nonfarm Payrolls - Goods

5

24 CES276 Average Hourly Earnings of Production or Nonsupervisory Workers

on Private Nonfarm Payrolls - Natural Resources and Mining Current

Dollars

5

25 CES277 Average Hourly Earnings of Production or Nonsupervisory Workers

on Private Nonfarm Payrolls - Construction

5

26 CES278 Average Hourly Earnings of Production or Nonsupervisory Workers

on Private Nonfarm Payrolls - Manufacturing

5

27 CES295 Indexes of Aggregate Weekly Hours of Production - Goods-Producing 5

28 CES297 Indexes of Aggregate Weekly Hours of Production - Construction 5

29 CES298 Indexes of Aggregate Weekly Hours of Production - Manufacturing 5

30 CES299 Indexes of Aggregate Weekly Hours of Production - Durable Goods 5

31 CES310 Indexes of Aggregate Weekly Hours of Production - Nondurable

Goods

5

32 EXRCAN Foreign Exchange Rate: Canada (Canadian $ per U.s.$) 5

33 EXRJAN Foreign Exchange Rate: Japan (Yen per U.s.$) 5

34 EXRSW Foreign Exchange Rate: Switzerland (Swiss Franc per U.s.$) 5

35 EXRUK Foreign Exchange Rate: United Kingdom (Cents per Pound) 5

36 EXRUS United States;effective Exchange Rate(merm)(Index No.) 5

37 FCLIN Loans & Sec @ All Coml Banks: Loans to Individuals (Bil$, sa) 5

38 FCLRE Loans & Sec @ All Coml Banks: Real Estate Loans (Bil$, sa) 5

39 FCLS Loans & Sec @ All Coml Banks: Total (Bils, sa) 5

40 FCSGV Loans & Sec @ All Coml Banks: U.s. Govt Securities (Bil$, sa) 5

41 FM1 Money Stock: M1(curr,trav.cks,dem Dep,other Checkable

Dep)(bil$,sa)

5

42 FM2 Money Stock:m2(m1+overnite Rps,euro$,g/p&b/d Mmmfs&sav&sm

Time Dep(bil$)

5
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Table 5: List of all variables used in this research, including description and the transformation used during prepro-
cessing of the data

Num. Short Long Description TCodes

43 FMFBA Monetary Base, Adj for Reserve Requirement Changes(mil$,sa) 5

44 FMRRA Depository Inst Reserves:total,adj for Reserve Req Chgs(mil$,sa) 5

45 FSDXP S&p’s Composite Common Stock: Dividend Yield (% per Annum) 2

46 FSPCOM S&p’s Common Stock Price Index: Composite (1941-43=10) 5

47 FSPIN S&p’s Common Stock Price Index: Industrials (1941-43=10) 5

48 FSPXE S&p’s Composite Common Stock: Price-Earnings Ratio (%,nsa) 5

49 FSTE U.S. MDSE Exports: Total Exports (F.A.S. Value) (Mil.$, sa) 5

50 FYAAAC Bond Yield: Moody’s Aaa Corporate (% per Annum) 2

51 FYAC Bond Yield: Moody’s a Corporate (% per Annum) 2

52 FYBAAC Bond Yield: Moody’s Baa Corporate (% per Annum) 2

53 FYFF Interest Rate: Federal Funds (Effective) (% per Annum,nsa) 2

54 FYGM3 Interest Rate: U.S.treasury Bills,sec Mkt,3-Mo.(% per Ann,nsa) 2

55 FYGM6 Interest Rate: U.S.treasury Bills,sec Mkt,6-Mo.(% per Ann,nsa) 2

56 FYGT1 Interest Rate: U.S.treasury Const Maturities,1-Yr.(% per Ann,nsa) 2

57 FYGT10 Interest Rate: U.S.treasury Const Maturities,10-Yr.(% per Ann,nsa) 2

58 FYGT3 Interest Rate: U.S.treasury Const Maturities,3-Yr.(% per Ann,nsa) 2

59 FYGT5 Interest Rate: U.S.treasury Const Maturities,5-Yr.(% per Ann,nsa) 2

60 HHSNTN U. of Mich. Index of Consumer Expectations(bcd-83) 2

61 HMOB Mobile Homes: Manufacturers Shipments (thous. of Units, saar) 5

62 HSBMW Houses Authorized by Build. Permits:midwest(thous.u., sa) 4

63 HSBNE Houses Authorized by Build. Permits:northeast(thous.u., sa) 4

64 HSBR Housing Authorized: Total New Priv Housing Units (thous.,saar) 4

65 HSBSOU Houses Authorized by Build. Permits:south(thous.u.)s.a. 4

66 HSBWST Houses Authorized by Build. Permits:west(thous.u.)s.a. 4

67 HSFR Housing Starts:nonfarm(1947-58); total Farm&nonfarm(1959-)

(thous.)s.a.

4

68 HSMW Housing Starts:midwest(thous.u.)s.a. 4

69 HSNE Housing Starts:northeast (thous.u.)s.a. 4

70 HSSOU Housing Starts:south (thous.u.)s.a. 4

71 HSWST Housing Starts:west (thous.u.)s.a. 4

72 IPS10 Industrial Production Index - Total Index 5

73 IPS11 Industrial Production Index - Products, Total 5

74 IPS12 Industrial Production Index - Consumer Goods 5

75 IPS13 Industrial Production Index - Durable Consumer Goods 5
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Table 5: List of all variables used in this research, including description and the transformation used during prepro-
cessing of the data

Num. Short Long Description TCodes

76 IPS14 Industrial Production Index - Automotive Products 5

77 IPS18 Industrial Production Index - Nondurable Consumer Goods 5

78 IPS22 Industrial Production Index - Chemical Products 5

79 IPS25 Industrial Production Index - Business Equipment 5

80 IPS25 Industrial Production Index - Business Equipment 5

81 IPS26 Industrial Production Index - Transit Equipment 5

82 IPS299 Industrial Production Index - Final Products 5

83 IPS306 Industrial Production Index - Fuels 5

84 IPS307 Industrial Production Index - Residential Utilities 5

85 IPS31 Industrial Production Index - Business Supplies 5

86 IPS32 Industrial Production Index - Materials 5

87 IPS34 Industrial Production Index - Durable Goods Materials 5

88 IPS38 Industrial Production Index - Nondurable Goods Materials 5

89 IPS43 Industrial Production Index - Manufacturing (SIC) 5

90 LHEL Index of Help-Wanted Advertising in Newspapers (1967=100;sa) 2

91 LHELX Employment: Ratio; Help-Wanted Ads:no. Unemployed Clf 2

92 LHEM Civilian Labor Force: Employed, Total (thous.,sa) 5

93 LHNAG Civilian Labor Force: Employed, Nonagric.industries (thous.,sa) 5

94 LHU14 Unemploy.by Duration: Persons Unempl.5 to 14 Wks (thous.,sa) 5

95 LHU15 Unemploy.by Duration: Persons Unempl.15 Wks + (thous.,sa) 5

96 LHU26 Unemploy.by Duration: Persons Unempl.15 to 26 Wks (thous.,sa) 5

97 LHU27 Unemploy.by Duration: Persons Unempl.27 Wks + (Thous,sa) 5

98 LHU5 Unemploy.by Duration: Persons Unempl.less Than 5 Wks (thous.,sa) 5

99 LHU680 Unemploy.by Duration: Average(mean)duration in Weeks (Sa) 2

100 LHUR Unemployment Rate: All Workers, 16 Years & Over (%,Sa) 2

101 MOCMQ New Orders (Net)-Consumer Goods & Materials, 1992 Dollars (BCI) 5

102 MSONDQ New Orders, Nondefense Capital Goods, in 1992 Dollars (BCI) 5

103 PMCP Napm Commodity Prices Index (Percent) 2

104 PMDEL Napm Vendor Deliveries Index (Percent) 2

105 PMEMP Napm Employment Index (Percent) 2

106 PMI Purchasing Managers’ Index (Sa) 2

107 PMNO Napm New Orders Index (Percent) 2

108 PMNV Napm Inventories Index (Percent) 2

109 PMP Napm Production Index (Percent) 2
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Table 5: List of all variables used in this research, including description and the transformation used during prepro-
cessing of the data

Num. Short Long Description TCodes

110 PSCCOM Spot Market Price Index:bls & Crb: All Commodities(1967=100) 5

111 PU45 Cpi-U: New Cars (82-84=100,sa) 5

112 PU83 Cpi-U: Apparel & Upkeep (82-84=100,sa) 5

113 PU84 Cpi-U: Transportation (82-84=100,sa) 5

114 PU85 Cpi-U: Medical Care (82-84=100,sa) 5

115 PUC Cpi-U: Commodities (82-84=100,sa) 5

116 PUCD Cpi-U: Durables (82-84=100,sa) 5

117 PUNEW Cpi-U: All Items (82-84=100,sa) 5

118 PUS Cpi-U: Services (82-84=100,sa) 5

119 PUXE Cpi-U: All Items Less Energy (82-84=100,sa) 5

120 PUXF Cpi-U: All Items Less Food (82-84=100,sa) 5

121 PUXHS Cpi-U: All Items Less Shelter (82-84=100,sa) 5

122 PUXM Cpi-U: All Items Less Medical Care (82-84=100,sa) 5

123 PWCMSA Producer Price Index:crude Materials (82=100,sa) 5

124 PWFCSA Producer Price Index:finished Consumer Goods (82=100,sa) 5

125 PWFSA Producer Price Index: Finished Goods (82=100,sa) 5

126 PWIMSA Producer Price Index:intermed Mat.supplies & Compo-

nents(82=100,sa)

5

127 SFYAAAC FYAAAC-FYFF 1

128 SFYBAAC FYBAAC-FYFF 1

129 SFYBAC FYAC-FYFF 1

130 SFYGM3 FYGM3-FYFF FYGM6-FYFF FYGT1-FYFF 1

131 SFYGM6 FYGM6-FYFF 1

132 SFYGT1 FYGT1-FYFF 1

133 SFYGT10 FYGT10-FYFF 1

134 SFYGT5 FYGT5-FYFF 1

135 UTL11 Capacity Utilization - Manufacturing (SIC),percent of Capacity, Sa,

Frb

2

136 UTL15 Capacity Utilization - Nonmetallic Mineral Product Naics=327, Per-

cent of Capacity, Sa, Frb

2

137 UTL17 Capacity Utilization - Fabricated Metal Product Naics=332, Percent

of Capacity, Sa, Frb

2

138 UTL21 Capacity Utilization - Motor Vehicles and Parts Naics=3361-3, Per-

cent of Capacity, Sa, Frb

2
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Table 5: List of all variables used in this research, including description and the transformation used during prepro-
cessing of the data

Num. Short Long Description TCodes

139 UTL22 Capacity Utilization - Aerospace and Miscellaneous Transportation

Eq., Percent of Capacity, Sa, Frb

2

140 UTL29 Capacity Utilization - Paper Naics=322, Percent of Capacity, Sa, Frb 2

141 UTL31 Capacity Utilization - Petroleum and Coal Products Naics=324 2

142 UTL32 Capacity Utilization - Chemical Naics=325 2

143 UTL33 Capacity Utilization - Plastics and Rubber Products Naics=326 2

144 GDP Gross Domestic Product Extrapolated Under CPI 5
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Appendix B. Supplementary Results Simulation Study

Table 6 contains the hyperparameters which were found to be the best parameters based on Hy-

perband optimization. Furthermore, Table 7 contains the results of the simulation study, including

the average ratio of each data set for each of the simulation scenario’s and a count of the number

of DM-tests that showed significance outperformance of the deep learning model compared to the

benchmark model. The DM-tests were based on a 10% significance level.

Table 6: Best parameters found using Hyperband optimization and used in the simulation study to estimate the
model and forecast over the test set. (E.g. the value 240, found in the fourth row and third column. means that the
best model contained 240 recurrent components for the simulation scenario with 50 observations, 10 variables and 3
underlying factors.)

Panel A: LSTM

K=3 K=5 K=7

Num. Obs. Parameter N=10 N=50 N=100 N=10 N=50 N=100 N=10 N=50 N=100

50 Num. Neurons 240 192 208 192 240 240 240 192 208
Dropout Rate 0.25 0.10 0.20 0.20 0.10 0.20 0.15 0.10 0.25

200 Num. Neurons 128 224 144 160 192 176 240 176 28
Dropout Rate 0.30 0.30 0.25 0.20 0.30 0.20 0.25 0.20 0.25

500 Num. Neurons 192 144 176 176 192 240 208 224 192
Dropout Rate 0.10 0.25 0.25 0.10 0.20 0.10 0.25 0.25 0,20

Panel B: CNN

K=3 K=5 K=7

Num. Obs. Parameter N=10 N=50 N=100 N=10 N=50 N=100 N=10 N=50 N=100

50 Num. Filters 1 32 32 8 32 64 32 4 16 64
Num. Filters 2 64 16 64 64 64 32 64 64 32

200 Num. Filters 1 64 8 64 32 32 16 8 16 32
Num. Filters 2 64 32 16 16 8 8 64 32 64

500 Num. Filters 1 16 32 8 8 64 16 64 8 64
Num. Filters 2 16 32 4 64 4 32 32 16 16

Panel C: CNN-LSTM

K=3 K=5 K=7

Num. Obs. Parameter N=10 N=50 N=100 N=10 N=50 N=100 N=10 N=50 N=100

50 Num. Filters 1 64 32 32 64 4 16 16 32 64
Num. Filters 2 64 16 32 64 64 64 64 32 64

200 Num. Filters 1 64 4 4 64 64 8 64 16 64
Num. Filters 2 64 64 64 32 32 8 32 32 64

500 Num. Filters 1 16 32 8 8 64 64 32 8 64
Num. Filters 2 16 32 32 64 16 4 64 16 4

Note. The best model for each horizon and model is highlighted in bold. In the table, N corresponds to the number of variables
in the simulation data, K corresponds to the number of underlying factors and Num. Obs. refers to the number of observations
T in the data sets.
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Table 7: Average MSFE ratios and number of DM-tests that showed significantly better performance for the deep learning models compared to AR and boosting
for the simulation scenarios. (E.g. 0.598 in the 3rd column, and 5th row corresponds to a 40.2% better accuracy for the LSTM model compared to the boosting
model, for the simulation scenario with K = 3 underlying factors, N = 10 variables and T = 50 number of observations.)

Panel A: LSTM

K=3 K=5 K=7
N=10 N=50 N=100 N=10 N=50 N=100 N=10 N=50 N=100

Num. Obs. AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting

50 0.689 0.598 0.615 0.468 0.614 0.464 1.249 1.136 0.885 0.809 0.719 0.631 1.657 1.531 0.965 0.788 0.996 0.808
(38) (54) (35) (53) (31) (59) (13) (22) (23) (29) (33) (53) (5) (13) (21) (24) (0) (3)

200 0.604 0.522 0.917 0.444 0.509 0.418 0.912 0.831 0.676 0.603 0.593 0.559 0.823 0.784 0.634 0.591 0.591 0.576
(89) (93) (94) (100) (95) (98) (32) (39) (73) (85) (94) (97) (51) (57) (93) (95) (97) (99)

500 0.529 0.469 0.514 0.503 0.534 0.498 0.8145 0.780 0.547 0.493 0.552 0.501 0.955 0.927 0.872 0.834 0.952 0.929
(96) (97) (89) (92) (93) (97) (86) (91) (95) (96) (93) (92) (43) (49) (63) (73) (45) (47)

Panel B: CNN

K=3 K=5 K=7
N=10 N=50 N=100 N=10 N=50 N=100 N=10 N=50 N=100

Num. Obs. AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting

50 1.935 1.680 1.602 1.218 2.022 1.524 1.79602 1.633484 1.902027 1.737654 1.361331 1.194715 2.355088 2.176892 1.682443 1.374065 1.852479 1.50049
(9) (18) (8) (18) (11) (19) (2) (6) (3) (5) (21) (27) (5) (17) (3) (7) (13) (24)

200 0.989 0.855 0.892 0.760 0.838 0.687 1.774094 1.618143 1.672662 1.492298 1.798 1.533 1.186837 1.130816 1.172 1.105 1.351 1.309
(28) (42) (25) (47) (29) (65) (3) (6) (5) (7) (4) (5) (12) (21) (15) (20) (9) (11)

500 1.363 1.207 1.244 1.198 1.168 1.119 1.4405 1.38045 1.302049 1.173969 1.276 1.117 1.376319 1.33536 1.302 1.259 1.421 1.390
(6) (11) (9) (10) (13) (11) (8) (9) (17) (23) (21) (24) (7) (9) (11) (12) (5) (8)

Panel C: CNN-LSTM

K=3 K=5 K=7
N=10 N=50 N=100 N=10 N=50 N=100 N=10 N=50 N=100

Num. Obs. AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting

50 1.828 1.587 1.496 1.138 1.920 1.447 1.923 1.749 1.923 1.757 1.526 1.339 2.932 2.710 1.938 1.583 1.863 1.509
(10) (17) (13) (19) (9) (17) (6) (13) (11) (12) (7) (18) (2) (8) (4) (5) (6) (13)

200 1.326 1.182 0.877 0.746 0.903 0.740 1.813 1.654 1.551 1.384 1.89 1.772 1.311 1.249 1.212 1.195 1.302 1.264
(21) (38) (33) (57) (31) (55) (2) (5) (5) (5) (3) (4) (7) (10) (13) (18) (6) (9)

500 1.211 1.073 0.834 0.713 0.855 0.698 1.461 1.400 1.441 1.299 1.453 1.314 1.401 1.360 1.343 1.296 1.4124 1.398
(9) (21) (51) (63) (60) (69) (9) (12) (13) (19) (10) (18) (6) (7) (11) (12) (5) (8)

Note. The count of the Diebold-Mariano tests is depicted in brackets below of the corresponding MSFE ratio. The Diebold-Mariano test is performed using the MSFEs of each
individual data set, comparing the deep learning against the AR or boosting model separately (Ha: The accuracy of the deep learning model is better than the benchmark
model) at a 10%-significance.
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Appendix C. Supplementary Results Empirical Study

Table 8 on the next page contains the ratio’s of the mean square forecasting errors (MSFEs) of the

deep learning models and the benchmark models. For example, the ratio 1.329 in column 3, row 4

of the table compares the LSTM model to an autoregressive (AR) model. This is given by

Ratio =
MFSELSTM
MFSEAR

, (22)

for the LSTM model with 16 recurrent components and a dropout rate of 0.1 at a one-month-ahead

forecast horizon. The three deep learning are each represented in a separate panel and compared to

both an AR model and the boosting algorithm used in this research. For this model, see Section 3.3.

Several of the convolutional neural networks fell trap to a local minimum or failed to properly

model the time-series. As a result, these models only forecasted a single constant or experienced a

ceiling in the forecasts, above which no predictions could be made. These models were excluded be-

fore selecting the best model for comparison in the results section of this research and are highlighted

by a 1 in Table 8.
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Table 8: MSFE ratios of the deep learning models compared to the benchmark AR and boosting models. (E.g. the
entry 1.329 found in the third column and fourth row, means that the LSTM with 16 neurons and a dropout rate of
0.1 is 32.9% worse than an AR model for predicting one-month-ahead forecasts.)

Panel A: LSTM

D\N 16 32 64 128 256

Horizon AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting

1 0.1 1.329 1.307 1.294 1.272 1.274 1.253 1.394 1.371 1.433 1.410
0.2 1.253 1.232 1.357 1.334 1.278 1.256 1.382 1.359 1.512 1.487
0.3 1.291 1.269 1.251 1.230 1.275 1.253 1.356 1.333 1.455 1.431

3 0.1 1.749 1.648 1.289 1.215 1.343 1.266 1.402 1.321 1.459 1.375
0.2 1.547 1.458 1.398 1.318 1.405 1.325 1.288 1.215 1.454 1.371
0.3 1.388 1.309 1.185 1.118 1.390 1.310 1.440 1.358 1.491 1.406

12 0.1 1.318 1.112 1.500 1.266 1.426 1.203 1.601 1.351 1.791 1.512
0.2 1.433 1.209 1.478 1.247 1.401 1.183 1.534 1.295 1.781 1.503
0.3 1.318 1.113 1.527 1.288 1.339 1.130 1.581 1.335 1.782 1.504

Panel B: CNN

F2\F1 4 8 16 32 64

Horizon AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting

1 4 2.094 2.059 1.508 1.483 1.833 1.803 1.973 1.940 2.509 2.467
8 1.170 1.151 1.711 1.682 1.265 1.244 1.385 1.362 1.850 1.819
16 0.9991 0.9821 1.315 1.293 1.223 1.203 1.027 1.010 1.312 1.290
32 1.254 1.233 0.9981 0.9821 1.144 1.125 0.9981 0.9821 1.633 1.606
64 1.358 1.336 1.406 1.383 1.216 1.196 1.406 1.383 1.814 1.784

3 4 1.653 1.558 1.190 1.122 1.837 1.732 2.238 2.110 1.839 1.734
8 1.370 1.292 1.328 1.252 1.443 1.360 1.710 1.612 1.532 1.445
16 1.090 1.028 1.548 1.459 1.336 1.260 1.015 0.957 1.569 1.479
32 1.0111 0.9531 1.433 1.351 1.0101 0.9521 1.0131 0.9551 1.456 1.373
64 1.105 1.041 1.011 0.953 1.347 1.270 1.211 1.141 1.266 1.194

12 4 1.489 1.257 1.421 1.199 1.942 1.639 1.528 1.290 2.280 1.924
8 1.729 1.459 1.677 1.415 1.734 1.463 1.484 1.252 1.720 1.452
16 1.375 1.160 1.484 1.252 1.429 1.206 1.625 1.372 1.431 1.208
32 1.477 1.247 1.468 1.239 0.9961 0.8411 1.332 1.124 0.9971 0.8421

64 0.9951 0.8401 0.9951 0.8401 1.472 1.242 1.156 0.975 2.233 1.884

Panel C: CNN-LSTM

F2\F1 4 8 16 32 64

Horizon AR Boosting AR Boosting AR Boosting AR Boosting AR Boosting

1 4 1.967 1.934 1.857 1.826 1.419 1.396 1.978 1.945 1.646 1.618
8 1.655 1.628 1.528 1.503 1.398 1.375 1.397 1.374 1.197 1.178
16 1.510 1.485 1.422 1.398 1.316 1.294 1.284 1.263 1.459 1.435
32 1.203 1.183 1.423 1.399 1.300 1.279 1.383 1.360 1.196 1.176
64 1.222 1.201 1.412 1.388 1.365 1.343 1.175 1.156 1.333 1.311

3 4 1.769 1.668 2.235 2.107 1.612 1.520 1.899 1.790 1.654 1.560
8 1.563 1.473 1.583 1.492 1.417 1.336 1.398 1.318 1.591 1.499
16 1.412 1.331 1.118 1.054 1.492 1.407 1.216 1.146 1.396 1.316
32 1.219 1.150 1.212 1.143 1.261 1.189 1.336 1.260 1.358 1.281
64 1.197 1.128 1.323 1.247 1.281 1.208 1.288 1.214 1.382 1.302

12 4 1.919 1.619 1.563 1.319 1.402 1.183 1.989 1.678 1.663 1.404
8 1.581 1.334 1.805 1.523 1.818 1.534 1.497 1.264 1.884 1.590
16 1.392 1.175 1.338 1.130 1.375 1.160 1.492 1.259 1.886 1.592
32 1.250 1.055 1.285 1.084 1.266 1.068 1.335 1.127 1.546 1.305
64 1.127 0.951 1.386 1.170 1.362 1.149 1.392 1.174 1.511 1.276

Note. The best model for each horizon and model is highlighted in bold. In the table, N and d respectively correspond to the
number of neurons and dropout rate of the LSTM layer and. F1 and F2 to the filters in respectively the first and second layer
of the CNN and CNN-LSTM.
1 Cases where the CNN got stuck in a local minimum and therefore only predicted a constant line or the predictions experienced
a ceiling above which no predictions were made. These cases were not taken into account when selecting the best model.
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Appendix D. Feature Maps of the Convolutional Neural Network

Figure 5, 6 and 7 below represent the importance that the filters of a convolutional neural networks

(CNN) give to the different data points of an observation, which is also commonly referred to as

feature maps. For more information about feature maps, see Section 3.4. In this case, the first

observation of the test set is used in the visualization. Figure 5 contains the feature maps based on

the best model for one-month-ahead forecast, Figure 6 those for three-month-ahead forecasts and

Figure 7 those for twelve-month-ahead forecasts.

To illustrate the idea behind these plots, in Figure 5 the upper plot contains 32 filters with

each 18 (half of the 36 months used as input to the model) values on the x-axis and 77 (half of

the 144 input variables) values on y-axis. As such, a new filter starts each 18 horizontal steps. A

similar construction holds for the second convolutional layer, which can be seen in the bottom plot

of Figure 5. The brighter the color, the higher the value that the filter gives to a particular data

point. Important areas within the plots are highlighted with red circles.

Figure 5: Feature maps of the best CNN model for a one-month-ahead (h = 1) forecast horizon. The plots represents
the values provided to the data points by the filters in the first convolutional layer, the first max-pooling layer and
the second convolutional layers. For the first convolutional layer, the plot contains 32 filters with each 18 (half of the
36 months used as input to the model) values on the x-axis and 77 (half of the 144 input variables) values on y-axis.
As such, a new filter starts each 18 horizontal steps. These values are summarized in a max-pooling layer. The second
convolutional layer contains 16 filters with 8 values each on the x-axis and 38 values on the y-axis. The brighter the
data point is, the more value is attributed to this data point by the filter and subsequently the CNN. Important areas
within the plots are highlighted with red circles.
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Figure 6: Feature maps of the best CNN model for a three-month-ahead (h = 3) forecast horizon. The plots represents
the values provided to the data points by the filters in the first convolutional layer, the first max-pooling layer and
the second convolutional layers. For the first convolutional layer, the plot contains 8 filters with each 18 (half of the
36 months used as input to the model) values on the x-axis and 77 (half of the 144 input variables) values on y-axis.
As such, a new filter starts each 18 horizontal steps. These values are summarized in a max-pooling layer. The second
convolutional layer contains 64 filters with 8 values each on the x-axis and 38 values on the y-axis. The brighter the
data point is, the more value is attributed to this data point by the filter and subsequently the CNN. Important areas
within the plots are highlighted with red circles.

Figure 7: Feature maps of the best CNN model for a twelve-month-ahead (h = 12) forecast horizon. The plots
represents the values provided to the data points by the filters in the first convolutional layer, the first max-pooling
layer and the second convolutional layers. For the first convolutional layer, the plot contains 32 filters with each 18
(half of the 36 months used as input to the model) values on the x-axis and 77 (half of the 144 input variables) values
on y-axis. As such, a new filter starts each 18 horizontal steps. These values are summarized in a max-pooling layer.
The second convolutional layer contains 64 filters with 8 values each on the x-axis and 38 values on the y-axis. The
brighter the data point is, the more value is attributed to this data point by the filter and subsequently the CNN.
Important areas within the plots are highlighted with red circles.
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Appendix E. Code Description

This Appendix contains a description of the Python files used for implementing the different methods

used in this thesis. Additional description regarding the code can be found in the individual files.

To prevent a very long appendix with code, I would like to refer to the file “Code Bachelor Thesis

Sean Goedgeluk 443106.zip”, which contains the following Python files:

dataprocess.py

This file contains the necessary functions to import the data set containing the monthly macroe-

conomic data of the United States, as well as import that transformation codes by Kim & Swanson

(2018). On top of this, it contains the function to preprocess the data using the transformation

codes and save this preprocessed data.

boosting.py

This file implements the boosting and principal component analysis (PCA) method. The code

and methods used by Kim & Swanson (2018) were used as inspiration for this.

models.py

This file covers the autoregressive (AR) model by Kim & Swanson (2018) and the AR model

that uses both OLS and maximum likelihood to estimate the model. On top of this, it includes the

Diebold-Mariano test and functions to provide a summary and comparison of the accuracy of the

model(s).

deeplearning.py

This files contains the implementation of the three deep learning models used in this paper:

the long short-term memory (LSTM) neural network, the convolutional neural network (CNN) and

the CNN-LSTM combination. These models are split up into functions for the empirical study,

or estimation of the neural network based on set parameters, and those for the simulation study,

which use Hyperband optimization to find the best possible parameters. Additionally, it contains

scaling and descaling functions for the data, as this is required for proper functioning of the neural

networks. Lastly, it also includes a function to create the input for the neural networks, as this

requires several processing steps.

USreplication.py

This file is used to combine the boosting and AR methods and replicate the study performed

by Kim & Swanson (2018). It does not apply any deep learning models to the data.

USnew.py
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While the previous file looks at the replication of the study by Kim & Swanson (2018). This

file implements the new study performed in this paper. It implements the different models for the

new data setting and generates the forecasts for all models, saving these to the computer. It also

contains a function to plot the feature maps seen in Appendix D.

simulation.py

This file contains the code to create the simulation data sets and create the forecasts for all the

different models. It also performs the comparison of the forecast accuracy.

Page 49


	Introduction
	Literature Review
	Macroeconomic Forecasting with Many Predictors
	Economic Growth in the United States
	Forecasting using Deep Learning
	Long Short-Term Memory (LSTM) Neural Network
	Convolutional Neural Networks
	CNN-LSTM Architecture


	Theoretical Framework
	Diffusion Index Models
	Factor Estimation and Principal Component Analysis
	Boosting
	Deep Learning Models
	Long Short-Term Memory Neural Network
	Convolutional Neural Networks


	Data and Methodology
	Simulation
	Empirical Data
	Models
	Benchmark Models
	Deep Learning Models
	Hyperparameter Tuning

	Forecast Comparison

	Results and Discussion
	Simulation
	Replication
	Deep Learning in Macroeconomic Forecasting
	Variable Selection in Convolution Neural Networks

	Conclusion
	Appendix A. List of Variables Used in Empirical Study
	Appendix B. Supplementary Results Simulation Study
	Appendix C. Supplementary Results Empirical Study
	Appendix D. Feature Maps of the Convolutional Neural Network
	Appendix E. Code Description

