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Abstract 

This bachelor thesis investigates the relationship between the number and quality of patents applied 

for by incumbent firms and the number of patents applied for by entrants. The data used for this 

research is panel dataset of patents applied for in the United States between 1976 and 2006 at the 

patents class level. This research is motivated by the paper from Trajtenberg, Henderson and Jaffe 

(1997) in which they introduce the generality and originality measures of basicness to assess the 

quality of patents. This thesis connects these concepts to the causal effect patents from incumbent 

firms have on patents from entrants and whether the former encourages the latter. This research has 

significant policy implications and adds to scientific research regarding patenting. The key findings 

are that the number of patents from incumbents positively influences the number of patents by 

entrants in a given year and that forward citations of patents in general have a negative impact, 

while backward citations have a positive effect. Moreover, generality and originality do not have 

direct significant effects on the number of patents from entrants. Interestingly, generality becomes 

significant when interacting with the number of entrants, while lacking significance in all other 

models. Lastly, the outcomes of the thesis suggest that all the effects discussed differ per patent 

category. 
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Introduction 

Enhancing firm productivity is an essential component for the survival of a firm. In the current fast-

changing society competitive advantages can practically evaporate overnight if competitors produce 

faster, set lower prices or guarantee a higher quality standard. Modern growth theory states that 

productivity growth consists of three determinants: human capital, physical capital and, most 

important, innovation (Rao et al., 2001). Innovation is a key driver for firm performance and a 

measure for technological advancement at the industry and firm level. Innovation can therefore be 

defined as the process of introducing new ideas to a firm which result in increased firm performance. 

Therefore, innovation is necessary to increase firm performance. 

Innovation is a complex process that covers a broad range of activities that can differ across firms, 

making it a difficult phenomenon to measure. As Simon Kuznets (1962) mentioned: “perhaps the 

greatest obstacle to understanding the role of innovation in economic processes has been the lack of 

meaningful measures of innovative inputs and outputs” Luckily, more recent research has addressed 

this problem. For example, Rogers (1998) divides the measurement into output and input measures, 

like Kuznets suggested. Output measures are the outputs of innovative activity, such as profits, share 

performance, number of new or improved products introduced and intellectual property statistics. 

Examples of input measures are research and development expenditures, acquisition of technology 

from others, marketing expenditures for new products and intangible assets on the balance sheet 

such as increased goodwill. These statistics are all possible ways to quantify the level of innovation in 

a firm or industry. 

However, patents are most often used as a proxy indicator for innovation (Kleinknecht, 2000). A 

patent can be seen as the exclusive right to the inventor that created something new and useful and 

can be used for commercial gain. Therefore, it is an output measure as defined by Rogers (1998). 

Past research has discovered that firms that obtain more patents record higher levels of innovation, 

meaning that having more patents is a good indicator of the innovativeness of a firm (Mansfield, 

1986).  

An interesting aspect of innovation is the environment in which this happens. Is encouraging 

patenting an effective way to boost innovation? Does the government have access to more effective 

tools to achieve this? Moser (2013), for example, has done research on the role the patent system 

plays in encouraging innovation. She shows historical evidence that countries with and without 

strong patent laws still display the same level of innovation. Therefore, she questions the effect 

patenting has on innovation, stating that patents that are too broad can even prevent an industry 

from moving forward in terms of innovation. Still, the fact is that companies must operate in a world 
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where innovations can be patented and they can choose themselves whether or not to trademark 

their new idea or keep it a company secret.  

 

1.1 Research Question 

This thesis focuses on what happens if companies eventually choose to patent their innovation and 

the consequences of this decision for other firms. Governments can impose regulations that boost 

patent applications or encourage innovation in general, but actions like this lead to a manufactured 

innovation environment. The natural environment created by universities and companies themselves 

should have a positive influence on the number of patents that are applied for, while for example 

Moser (2013) showed that it is debatable whether the manufactured innovation environment 

positively influences innovation. This leads to the question whether companies are inspired by other 

patenting companies or feel the need that they cannot be left behind without further innovation. 

Does the decision to patent an innovation have positive spill over effects for other companies? If 

experienced companies that have applied for several patents in previous years apply for a lot of 

patents in a certain year, does that encourage other companies to apply for their first patent? This 

leads to the research question of this thesis: 

 

How do quality and number of patents from incumbent firms impact the amount of firms applying for 

their first patent? 

 

In this research incumbent firms are identified as firms that have applied for patents in previous 

years and entrants are firms applying for the first patent in company history. 

This research is relevant in several different ways. First of all, from a policy point of view; if the 

relationship between the quality and number of patents by incumbent firms and the number of 

patents applied for by entrants is positive, this would mean that policy choices regarding the patent 

system could be effective after all. More patents by incumbents would lead to more firms applying 

for their first patent, which increases the general level of innovation in a country. 

Secondly, the outcome of this research is relevant from a firm point of view as well. If the 

relationship is positive, that would mean that by patenting a new idea, they would be kickstarting 

other firms to patent their innovations as well. This has positive consequences, namely that applying 

for a patent means that a new innovation is introduced to the world instead of kept secret. This can 
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inspire incumbent firms for new innovations as well, creating a positive cycle of innovation 

inspiration. It can also have negative consequences. Incumbents that show high levels of patenting 

encourage competitors to innovate as well by showing the world their innovations via their patents. 

This may deteriorate an incumbents relative competitive advantage. 
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2. Theoretical framework 

This chapter lays out the theoretical underpinnings of patents and their influence on innovation. 

Firstly, the relationship between innovation and patents will be discussed. Secondly, an overview of 

previous research on the impact of the number and quality of patents will be displayed. The 

theoretical framework then moves on by summarizing the paper this thesis builds upon. Lastly, the 

hypotheses of this thesis will be presented.  

2.1 Patents and innovation 

This thesis discusses a relative narrow aspect of patenting, namely how patenting by incumbents 

influences patenting by new entrants,  but its scope is much wider. The implications of this research 

are appropriate in the context of innovation as a whole. Conclusions from this research can have 

policy implications that are applicable to enhancing innovation in an industry and assessing whether 

patents are an adequate tool for governments when enhancing innovation. Therefore, it is important 

to summarize the key findings of previous research regarding the relationship between patents and 

innovation and if more patents lead to more innovation. 

The traditional view of this relationship has emphasized the importance of patents as a primary 

driver of innovation. However, new datasets and advancements in empirical methodology have 

started to challenge this traditional view, according to Moser (2016). The reasoning behind the 

traditional view is that without intellectual property rights to protect new ideas, innovation would 

not or barely exist due to free-rider problems. Without legal protection, every idea can be used by 

anybody, without compensating the original inventor. As a result, the inventor loses incentive to 

invest time and resources in research and development of a new idea, because the inventor does not 

have the power to prevent others from using the idea when it is publicised and can therefore not 

economically benefit from the new idea. A patent solves this issue. It forms a legal basis for the 

inventor to prevent anybody from using the new idea without appropriate compensation. Moser 

(2016) states in her research that these traditional predictions are somewhat ambiguous and are 

supported by little empirical evidence. Using empirical evidence from world fares in the 19th century, 

she concludes that many important innovations occur outside of the patent system and that patent 

laws are not necessary for innovation. Countries that did not have patent protection still contributed 

heavily to the world fare, where traditionally new inventions from each participating country are 

displayed for the world to see. A possible explanation laid out by Moser is that it takes time and 

money to patent an invention, which is saved when the invention is simply kept secret. However, 

empirical evidence shows that in countries with lower patent application costs innovation is not 

higher than when these costs are relatively high. The actual explanation is that enforcement costs of 
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a patent are extremely high due to risk of litigation when the patent is applied for. Applying for a 

patent means that the invention becomes publicly known, opening up the possibility for litigation.  

The question arises why certain companies prefer patenting and others prefer secrecy. Cohen, 

Nelson and Wash (2000) found via a questionnaire that firms protect profits by using patents, 

secrecy, lead time advantages and complementary marketing and manufacturing capabilities. The 

manufacturing firms that were a part of the survey reported that patenting was the least used 

mechanism to protect profits. They find that secrecy now appears to be used much more than 

patenting across most industries than previously. Still patenting is not a tool of the past, there are 

simply other motives than directly profiting from a patented idea. Motives can be the prevention of 

rivals from patenting related inventions (patent blocking), the use of patents in negotiations and the 

prevention of lawsuits. In industries where these motives are not applicable, firms prefer secrecy 

above patenting. Industries that prefer secrecy are telecommunications and semiconductors, while 

chemical and pharmaceutical industries prefer patenting, because the alternative motives are more 

applicable. 

In contradiction to Moser (2016), Lamoreaux & Sokoloff (1999) are more supportive of the role 

patents play in innovation, which is the more traditional view on the topic. In their research, they 

accredit the sharp acceleration of innovative activity in the United States in the nineteenth century to 

the large economic growth in that same period. The evidence for this claim is originated in patent 

records, forming a proxy for innovation that is coupled to accelerated economic growth. The main 

conclusion is twofold. Firstly, they celebrate the patent system for its crucial role in accelerating 

innovation, because of the granting of temporary monopoly rights for the use of their discoveries. 

Secondly, specification in US patent law of tradable assets in technology also benefits innovation. 

However, the traditional view is being debunked lately by scientists such as Moser (2016), Moser 

(2013), Pakes and Griliches (1980), saying: “patents are a flawed measure (of innovative output)  

particularly since not all new innovations are patented and since patents differ greatly in their 

economic impact” and Griliches (1990).  Even early doubt on the positive relationship was expressed 

by Acs and Audretsch (1988). They use research and development (R&D) expenditures to link 

innovation with patented inventions. While first finding that the total number of innovations is 

closely linked to industry R&D expenditures and patented inventions, they also find that the 

relationship between R&D and innovation is somewhat different from that between R&D and 

patents. This is one of the earliest indications that patenting may not directly lead to innovation. 
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These conclusions from previous research indicate how ambiguous the effect patents have on 

innovation truly is. That ambiguity returns when diving deeper into two aspects of patenting: patent 

pools and compulsory licensing. 

Lampe and Moser (2010) researched the influence of patent pools on innovation. A patent pool is 

when several companies agree to use a set of patents in the same industry as if they were jointly and 

equally owned by all members of the pool and license these patents as a package to other firms. The 

benefit is that the patent pool blocks a larger segment of competitors from coming up with 

innovations that make your innovation obsolete. They use evidence from the nineteenth century 

sewing machine industry, because this was the first patent pool in existence. The idea is that pooling 

technologies will prevent excessive litigation by close competitors, thus making it more attractive to 

innovate. In the example of the sewing machine industry, crippling litigation was ended by the patent 

pool, so in theory patent pools should encourage innovation. However, in reality pool members 

patented less in the years the pool existed and non-pool members patented more than usual in those 

years. Therefore, patent pools do not encourage innovation. 

On the other hand, Moser & Voena (2012) find that compulsory licensing does have a positive effect 

on innovation. Compulsory licensing allows firms in developing countries to produce foreign 

inventions without the consent of foreign patent owners or risk of litigation. This is used to recreate 

life-saving drugs and technology to combat climate change, for example. The paper uses the ‘Trading 

with the Enemy Act’ in the Second World War, where US firms were allowed to violate German 

patents if they contributed to the war effort. This means that German patents were compulsory 

licensed. The result was that US domestic firms that licensed more German patents, went on to apply 

for more patents themselves. This shows that compulsory licensing has a positive effect on domestic 

invention, but this effect is lagged with almost a decade.  

In conclusion, patents may not be the perfect encouragement for innovation, but research has found 

a different relationship between innovation and patents. Acs and Audretsch (1989) conclude that 

patents provide a fairly reliable measure of innovation. Hall, Jaffe and Trajtenberg (2001) say that 

patents do not measure economic value of new technologies, but that patents still are a good 

indicator of technology creation. Also, Acs, Anselin & Varga (2002) provide a thorough empirical 

regression analysis that indicates that patents provide a fairly reliable measure of  innovation. They 

also prove this visibly, using the two maps of the continental US in figure 1. The map on the left 

shows the spatial distribution of innovations and the map on the right shows the spatial distribution 
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of patents, both in 1982. The regression and the maps both indicate that patents are a good measure 

of innovation, even though it is ambiguous whether patents encourage innovation. 

 

 

2.2 The number and quality of patents and their relationship with innovation 

This thesis investigates whether the number and quality of patents applied for by incumbents 

influences the number of patents applied for by entrants. Before empirically researching this 

relationship, it is important to survey the literature regarding the impact the number and quality of 

patents on the innovation environment. 

The most commonly used quality measure for patents is number of citations. Just as in academic 

literature, when an inventor applies for a patent, he or she must mention the previous patents that 

the new patent builds upon. This is a backward citation. Forward citations are collected in the years 

after the patent has been approved. If a new patent references an original patent, the original patent 

receives a forward citation. This means that the technological advancement in the earlier patent has 

been built upon in the later innovation. There is a circular relationship between the two citation 

types. For instance, if patent 1 contains patent 2 as a forward citation, then patent 2 contains patent 

1 as a backward citation. Katila (2000) found that citations are a good proxy for patent quality. 

Sterzi (2013) has done research on whether ownership influences the quality of a patent. He uses the 

number of citations as a measure of quality. He found that academic patents owned by private firms 

receive more citations in the first years after the filing date than those owned by universities or other 

public research organizations. This difference decapitates when considering a longer time frame. 

Also, change of ownership is an indicator of patent quality. Academic patents owned by companies 

but originally assigned to universities or other public research organizations show a noticeably higher 

quality. This research indicates that ownership of a patent is a good way to assess its quality. 

Figure 1 

Distribution of innovations (left) and patents (right) in the US in 1982 

Source: Acs, Anselin & Varga (2002). 
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The quality of a patent also influences innovation in a sector. Tseng and Wu (2006) research whether 

innovation quality influences firm performance in the US automobile sector. They start off with 

identifying five indicators of innovation quality, namely patent count, relative citation ratio, citation-

weighted patents, science linkage and scope of innovations. Using these innovation quality 

indicators, they discover that three of the five indicators, patent count, citation-weighted patents 

and scope of innovations, positively and significantly affect firm profits. This means that the quality 

of patents influences firm performance. 

Lanjouw and Schankerman (2004) find that quality of patents owned by firms has a positive effect on 

the stock market value of firms. They also look at research productivity, measured by the ratio of 

patents to R&D expenditures. In the 40 years prior to the paper, this ratio has fallen sharply and they 

try to find an explanation for this. By 1990 the number of patents produced per US scientists and 

engineers had fallen to just 55% compared to its 1970 level. Figure 2 presents the time paths of R&D 

expenditures, unadjusted research productivity (the number of patents divided by R&D), and a 

patent quality-adjusted measure of research productivity for the mechanical industry from 1980 until 

1993. As the graph shows, an increase in the quality of patents accounts for a sizable share of 

declines in research productivity when they are observed at the sector level. They conclude that 

quality of patents, does not appear to have a strong impact on research productivity at the firm level. 

It appears that more patents and higher R&D expenditures do not always lead to higher quality 

patents. The combination of R&D expenditures and quality of patents is therefore not an adequate 

measure for this thesis.  

Figure 2 

The time paths of R&D expenditures, unadjusted research productivity (the number of patents divided by R&D and a patent 
quality-adjusted measure of research productivity for the mechanical industry from 1980–93 

 

 

 

 

 

 

 

 

 

Source: Lanjouw and Schankerman (2004). 
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2.3 Originality and generality  

The most relevant measures of the quality of a patent for this thesis are originality and generality. 

These two measures were introduced by Trajtenberg, Henderson & Jaffe in 1997. They were chosen 

for this thesis because of availability in the data and because they form a variable that portrays 

backward and forward citations. This thesis builds upon their work. 

Trajtenberg, Henderson & Jaffe (1997) research whether universities perform more basic research 

than corporations. They do so by looking at the ‘basicness’ of patents. This is useful because many 

widely used measures until that time, such as simple patent counts or counts of expert identified 

innovations, are limited in the fact that they cannot account for the heterogeneity of research 

projects and outcomes that characterizes the R&D process. They also look at the relationship 

between basicness and appropriability. Basicness refers to originality and generality of a patent and 

appropriability refers to if an inventor can make money off of the patent. Appropriability is a problem 

when making R&D investment decisions and Arrow (1962) stated that appropriability problems get 

larger when patents are more basic. For this thesis basicness measures are important. They are 

based on citations, because that provides evidence of the links between an innovation and its 

technological “antecedents” and “descendants”. In their paper they construct a set of measures to 

capture key aspects of basicness and appropriability and test whether their measures capture 

basicness and appropriability. 

Thus, research is regarded as basic if it “focuses on scientific rather than on technological questions; 

if it seeks to elucidate general laws rather than solving particular technical problems; and if it 

addresses old puzzles with original methods” (Trajtenberg, Henderson & Jaffe, 1997). Research 

outcomes are seen as basic if they have a major impact upon a given field or significant impact across 

a broad range of fields. These outcomes must then be fundamental to much later work and are often 

referred to and relied upon by scientists in the same or other fields. Seminal research is therefore 

basic.  

The measures they create to capture basicness and appropriability can be divided into two 

categories. The first set of measures is backward-looking. These measures use the relationship 

between the patent and the knowledge that preceded it. They are relevant for assessing whether 

research is basic or appropriable. The second set of measures is forward-looking. They use the 

relationship between the patent and the technological developments that build upon it. They are 

relevant for assessing whether research outcomes are basic or appropriable. 
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1. Basicness Measures 

1.1 IMPORTF 

 

 

 

1.2 GENERAL 

 

 

 

Number of citing 

patents, including  

second generation cites 

 

Herfindahl index on 

technological classes of 

citing patents 

 

𝑰𝑴𝑷𝑶𝑹𝑻𝑭𝒊 = 𝑵𝑪𝑰𝑻𝑰𝑵𝑮𝒊 + 𝝀 ∑ 𝑵𝑪𝑰𝑻𝑰𝑵𝑮𝒊+𝟏𝒋

𝒏𝒄𝒊𝒕𝒊𝒏𝒈

𝒋=𝟏

 

 

𝑮𝑬𝑵𝑬𝑹𝑨𝑳𝒊 = 𝟏 − ∑ (
𝑵𝑪𝑰𝑻𝑰𝑵𝑮𝒊𝒌

𝑵𝑪𝑰𝑻𝑰𝑵𝑮𝒊
)

𝟐
𝑵𝒊

𝒌=𝟏

 

2. Distance Measures 

2.1 TECHF 

 

 

2.2 TIMEF 

 

 

Distance in technology 

space 

 

Average citation lag 

 

 

𝑇𝐸𝐶𝐻𝐹𝑖 =  ∑
𝑇𝐸𝐶𝐻𝑗

𝑁𝐶𝐼𝑇𝐼𝑁𝐺𝑖

𝑛𝑐𝑖𝑡𝑖𝑛𝑔

𝑗=1

 

𝑇𝐼𝑀𝐸𝐹𝑖 =  ∑
𝐿𝐴𝐺𝑗

𝑁𝐶𝐼𝑇𝐼𝑁𝐺𝑖

𝑛𝑐𝑖𝑡𝑖𝑛𝑔

𝑗=1

 

 

3. Appropriability 

3.1 PSELF 

Number of self-

citations 

-  

 

 

In figure 3 the forward-looking measures they created to test whether patents are basic or 

appropriable are displayed. The most important forward-looking measure for this thesis is generality. 

This is defined as: “the extent to which the follow-up technical advances are spread across multiple 

technological fields, computed with the Herfindahl-index” (Trajtenberg, Henderson & Jaffe, 1997). 

The other measures describe the amount of citations in later work (IMPORTF), distance in 

technological space and time (more basic innovations take longer to be cited by others) and 

ownership (PSELF). 

The backward-looking measures are the same as the forward-looking measures, only instead of using 

NCITING in formulas, which denotes the number of patents citing the original patent, they use 

NCITED, denoting the number of patents cited by the original patent. Only one backward-looking 

measure has a different name then its forward-looking counterpart: Originality. It is computed by the 

equation in figure 4 and is basically generality, but then looking backwards. The more original a 

patent is, the broader the technological roots of the underlying research. The idea behind this is: “the 

synthesis of divergent ideas is characteristic of research that is highly original and hence basic in that 

sense” (Trajtenberg, Henderson & Jaffe, 1997). 

Figure 3 

Forward looking measures 

Source: Trajtenberg, Henderson & Jaffe (1997). 
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Figure 4 

The formula for calculating the originality of a patent 

𝑂𝑅𝐼𝐺𝐼𝑁𝐴𝐿𝑖 = 1 −  ∑ (
𝑁𝐶𝐼𝑇𝐸𝐷𝑖𝑘

𝑁𝐶𝐼𝑇𝐸𝐷𝑖
)

2
𝑁𝑖

𝑘=1

 

Source: Trajtenberg, Henderson & Jaffe (1997). 

By using originality and generality as measures for the quality of patents, forward- and backward-

looking aspects are captured. In figure 5 a graphical representation of generality and originality are 

provided. 

 

 

 

 

 

 

𝐺𝐸𝑁𝐸𝑅𝐴𝐿 = 1 − [(
2

8
)

2

+ (
3

8
)

2

+ (
1

8
)

2

+ (
2

8
)

2

] =  
23

32
 

𝑂𝑅𝐼𝐺𝐼𝑁𝐴𝐿 = 1 −  [(
1

4
)

2

+ (
2

4
)

2

+ (
1

4
)

2

] =  
5

8
 

After introducing these measures, Trajtenberg, Henderson & Jaffe use them to analyse whether 

university research is more basic than corporate research. They find that this is indeed the case. 

Along the way, they also conclude via econometric analysis that the forward- and backward-looking 

variables are good measures of basicness, appropriability and thus quality of a patent. 

Hall, Jaffe and Trajtenberg (2001) published a paper on the dataset they had been compiling for the 

last decade with 30 years of patent data from US firms. They constructed measures of generality and 

originality based on the concepts and formulas introduced by Trajtenberg, Henderson & Jaffe (1997). 

In calculating these values, they made the concept more applicable to their data. They used 

percentage of citations received by patent I that belong to patent class j, out of ni patent classes. The 

Source: Trajtenberg, Henderson & Jaffe (1997). 

Figure 5 

Graphical representation of cited and citing patents, originality and generality 
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formula is depicted in figure 6. This also goes for originality, except they used backward-looking 

citations instead of forward-looking.  

 

 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦𝑖 = 1 −  ∑ 𝑠𝑖𝑗
2

𝑛𝑖

𝑗

 

 

Hall, Jaffe and Trajtenberg (2001) make a couple of relevant statements regarding these two 

measures. In their dataset, the variable generality will have a high value when the original patent is 

cited by subsequent patents that belong to a wide range of fields. Therefore, a high score means that 

the patent has widespread impact in a variety of technological fields. For the originality variable in 

their dataset, it goes the other way around. If a patent cites previous patents that belong to a narrow 

set of technologies the originality score will be low. The score will be high when cited patents belong 

to  a wide range of fields. 

Figure 7 is taken from their working paper and shows the course of generality and originality.  

Figure 7 

Measures of generality and originality: yearly averages 

 

Source: Hall, Jaffe and Trajtenberg (2001). 

 

 

 

Hall, Jaffe and Trajtenberg (2001). 

Figure 6 

Formula for generality 
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2.4 Hypotheses 

Existing literature shows that patents provide a good indication of innovation, but the causal effect 

patents have on innovation is ambiguous. Also, patent quality positively influences firm performance. 

Patent quality is indicated by basicness measures such as generality and originality. The question still 

remains whether the number and quality of patents by incumbent firms influences the number of 

patents applied for by new entrants. This thesis tries to answer this question. The research question 

of this thesis leads to four hypotheses that together provide a complete picture of the debate of the 

effect patents from incumbents have on patents from entrants. 

The first relationship analysed in this thesis is between the number of patents by incumbents and the 

number of patents by entrants. On the one hand, it is reasonable to assume that the number patents 

applied for by incumbent firms has a positive effect on the number of patents from entrants. 

Patenting ensures that more valuable information and innovations become known to the world. If 

more incumbents apply for patents, more information regarding innovation will be disclosed. This 

can inspire other individuals and firms to innovate themselves. Also, newly disclosed information 

could be the final piece of the puzzle allowing new firms to lay the final hand on their own 

innovations and breakthroughs.  

On the other hand, the relationship could also be expected to be negative. If incumbents apply for 

more patents, these patents will cover a larger area of technological space, creating a natural patent 

pool. As described by Lampe and Moser (2010), patent pools discourage innovation. Also, Moser 

(2016) proved that when there are more patents, the risk of overlap is higher, increasing risk of 

litigation. This discourages other firms from entering the market, thus lowering innovation due to 

more patents from incumbents. This thesis tests whether this relationship is negative or positive. 

Therefore, the first hypothesis will be: 

H1: the number of patents applied for by incumbents has a negative effect on the number of patents 

applied for by entrants. 

For the quality of patents the expectation is different. If the quality of patents is high, the positive 

effect of patents from entrants will kick in. Patents with higher quality, meaning higher generality 

and originality scores, will inspire firms to innovate further. They will also choose for patenting 

instead of secrecy, because a new firm cannot stay behind on other top firms. If a new firm does not 

patent, it appears to others as if they do not innovate.  

Patent quality is measured here by generality and originality. If a patent is general, it means that it is 

quoted by a lot of patents in a wide range of fields in later years. Quoting a patent is the equivalent 
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to building upon the findings in that patent. So if a patent is general, it serves as a starting point for 

new innovations and stimulates others to build upon the finding, thus leading to a positive 

relationship between quality of patents and number of patents by entrants. The same goes for 

originality. If a patent is original, it is built upon a wide base of earlier patents. That means that the 

patent combines findings from a wide range of fields. This allows other inventors to see relationships 

between innovations that they have not seen before, thus stimulating new innovation and patenting. 

Therefore, the second hypothesis will be: 

H2: the quality of patents, measured in generality and originality, applied for by incumbents has a 

positive effect on the number of patents applied for by entrants. 

However, hypothesis three predicts a negative relation, because when patents belonging to 

incumbents have higher levels of generality and originality, they are also more basic and thus crowd 

out the innovations of entrants. Basic patents tend to be broad, thus leading to the negative effect 

on innovation as seen earlier with patent pools. Also, if the firms that have the highest quality 

patents are incumbents, then there is little space left for new entrants to come up with and patent 

new innovations. Therefore, the third hypothesis will be: 

H3: the interaction terms of number of patents by incumbents and respectively generality and 

originality, have a more negative effect on the number of patents applied for by entrants in industries 

where patenting is more common.  

Lastly, the causal effects discovered via analysis will differ per technological category. Lanjouw and 

Schankerman (2004) displayed patent quality‐adjusted measures for five different industries from 

1980 to 1993. The graphs differed substantially for each industry. This gives reason to believe that 

the overall effects from the regression analysis actually differ per industry. Therefore, the final 

hypothesis will be:  

H4: There is a difference between the effects for each industry patent category. 
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3. Data 

3.1 Constructing the dataset 

The data used for the analysis of the effect of the number and quality of patents applied for by 

incumbent firms on new entrants is collected from the National Bureau of Economic Research (NBER) 

patent data project (Hall, Jaffe and Trajtenberg, 2001). This is a well-known program that provides 

detailed information regarding over 3 million patents granted between 1901 and 2006. The raw data 

was obtained from their website.  

The datasets created by NBER contain too much information divided over several datasets, so a new 

dataset had to be constructed for the analysis in this thesis. First, two datasets were merged. The 

first dataset consisted of all utility patents granted between 1901 and 2006 in multiple countries. The 

second dataset contained generality, originality and citation variables regarding patents in the United 

States. The utility patent dataset had a substantially higher amount of observations. After merging 

the two datasets on patent assignee number (pdpass) all observations from the utility dataset that 

did not have matching generality and originality variables were dropped. The dataset that remained 

had over 1.4 million observations of patents granted in the United States. Important to note is that 

these are not only patents applied for by US corporations, but also by universities, research 

institutions and the US government. 

The constructed dataset is a double panel dataset based on patent holder number, which is unique 

for each company. The assignee dataset by NBER matches pdpass number to company name, but 

that is not relevant for this thesis (Bessen, 2009). This posed a problem. The dataset consisted mostly 

of duplicates. For each class there should be only one observation per year. By forcing the statistical 

program to drop duplicates of class and application year, the program knows that the dataset should 

be a panel with patent class as the panel variable and application year as the time variable. Also, all 

observations before 1976 were dropped, to narrow the scope of this research and allow it to be 

more applicable on modern day circumstances. These actions dropped a large amount of 

observations, leaving the dataset in a panel with 12293 observations of patents applied for in the 

United States between 1976 and 2006. The number of observations is the result of 30 years for each 

patents class, because this thesis looks at statistical relationships at the patent class level. There are 

424 observed patent classes, each containing 30 observations for each year, which should bring the 

total number of observations to 12720. However, each class does not have 30 observations, that is 

simply the maximum number of observations per class. Some classes do not have observations for 

each year between 1976 and 2006. Therefore, the actual number of observations is slightly lower, 

namely 12293.   
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In order to analyse whether patents by incumbents influence the number of patents by entrants, a 

few variables had to be created. Firstly, the variable minimum year. This showed the first year in 

which a company applied for a patent. Then a dummy variable was introduced with the value 1 if a 

certain year was the first year in which a certain company applied for a patent. So if the year is 1985 

and in that year a company applied for their first patent, the dummy variable takes on value 1. Then 

the number of entrants per year per patent class is determined by adding all the dummy variables for 

that year and patent class. The rest of the patents applied for in that year and in that patent class 

belong to incumbents. Now the dataset displays how many patents were applied for by incumbents 

and entrants for each year and patent class. 

In conclusion, the panel dataset is sorted on patent class. In the dataset, the viewer would see all the 

patents belonging to patent class one, with the corresponding company number, application 

number, minimum year for that company, the dummy variable whether that year is the minimum 

year and so on. Beneath all the patents from patent class one, the same list continues for patents 

class two.  

 

3.2 Variables 

Due to the extensiveness of the NBER dataset, several variables were dropped that would lead to 

multicollinearity. The variables that remain are presented in table 1: 

Table 1 

List of variables used in this thesis 

Variable name Explanation 

Incumbent firm Firm that has already applied for a patent in an earlier year 
than the observed year 

Entrant Firm that applied for their first patent in the observed year 

 Appyear Application year; year in which the patent was applied for 

cat Patent category; Hall, Jaffe and Trajtenberg technology 
category (1-6), see figure X 

nclass Patent class; US 3-digit current classification code 

patent Patent number; 7-digit patent number 

pdpass Unique patent assignee number; each company has its own 
pdpass number 

general Measure of forward-looking citations, indicates the extent to 
which the follow-up technical advances are spread across 
multiple technological fields  

original Measure of backward-looking citations, indicates how broad 
the technological roots are of the underlying research 



19 
 

nciting Number of patents citing the original patent 

ncited Number of patents cited by the original patent 

minyear Minimum year; the first year a company (identified via unique 
pdpass number) applied for a patent 

d_entry_year Dummy variable; takes on value 1 when the year is equal to 
the minimum year 

n_entrants Number of entrants; the number of patents applied for in a 
certain year by companies for which the pdpass number 
applied for the first patent, so the dummys for minyear added 
together, that are from the same class. 

N_pats_incumbents Number of patents from incumbents; the number of patents 
applied for in a certain year, for the pdpass number was not 
the first patent, that are from the same class 

all_pats All patents; all patents applied for in a certain year and class 

n_pats_entrants Number of patents by entrants;  

int_incumb_gen Interaction effect variable between incumbents and 
generality 

int_incumb_orig Interaction effect variable between incumbents and 
originality 

int_incumb_ncited Interaction effect variable between incumbents and 
backward-looking citations 

int_incumb_nciting Interaction effect variable between incumbents and forward-
looking citations 

 

 

 

Table 2 

Hall, Jaffe Trajtenberg technology categories with corresponding patent classes 
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Cat. 
Code 

Category Name Sub-Cat. 
Code 

Sub-Category Name Patent Classes 

1 Chemical 11 Agriculture, Food, Textiles 8 19. 71. 127. 442, 504 106,118, 401, 427 

12 13 Coating Gas 48.55.95.96 

14 Organic Compounds 534,536 540. 544. 546, 548 
549,552,554.556,558,560, $62,564,568.570 

15 Resins 520, 521. 522, 523, 524,525. 526,527,528.530 

19 Miscellaneous-chemical 23.34,44.102117,149,156, 
159. 162 196, 201, 202 203, 204,205,208,210,216,222, 
252.260,261.349.366,416 422,423,430,436,494,501, 
502.510.512.516,518,585, 588 

2 Computers & 
Communications 

21 Communications 1178.333.340.342.343. 358, 367 370, 375 379, 385 455 

22 Computer Hardware & Software 341, 380. 382. 395, 701, 702. 704, 705. 706. 707 708, 

23 24 Computer Peripherals Information 
Storage 

709. 710. 712. 713. 714 345. 347 360, 365 369, 711 

3 Drugs & 
Medical 

31 Drugs 424, 514 

32 Surgery Medical Instruments 128 600, 601, 602, 604, 606, 607 

33 Biotechnology 435,800 

39 Miscellaneous - Drug&Med 351. 433 623 

4 Electrical & 
Electronic 

41 Electrical Devices 174, 200. 327. 329, 330, 331, 
332. 334, 335. 336. 337. 338. 392, 

42 43 44 Electrical Lighting Measuring Testing 
Nuclear X-rays 

.439 313,314 315 362, 372 445 73. 324, 356, 374 250, 376 
378 

45 Power Systems 60. 136, 290. 310, 318 320 322,323.361,363,388,429 

46 Semiconductor Devices 257 326 438 505 

49 Miscellancous Elec 191. 218. 219, 307. 346, 348, 377,381,386 

5 Mechanical 51 Materials Processing & Handling 65, 82. 83. 125 141 142 144. 173 209, 221, 225 226, 234, 241 
242. 264 271 407 408 409 414.425.451.493 

52 Metal Working 29 72 75 76 140 147 148 163. 164. 228, 266, 270, 413 
419,420 

53 Motors, Engines Parts 191. 92. 123. 185. 188. 192. 251, 303 415, 417 418. 464, 474, 
475,476, 477 

54 Optics 352. 353, 355, 359. 396, 399 

55 Transportation 104. 105. 114 152 180. 187 213. 238, 244, 246. 258, 280, 293, 
295, 296, 298. 301, 305, 410,440 

59 Miscellancous-Mechanical 17 16, 42. 49. 51 74 81, 86. 89 100 124, 157 184 193, 194, 
198.212,227,235.239,254 267.291,294.384.400,402, 406. 
411, 453 454. 470, 482, 483 492, 508 

6 Others 61 Agriculture, Husbandry Food 43. 47. 56 99 III. 119, 131, 426 449, 452 460 

62 Amusement Devices 273 446, 463 472. 473 

  63 Apparel Textile 

2, 12, 24, 26. 28 36, 38 57. 66 68 69 79 87, 112. 139, 223, 450 

64 Earth Working Wells 37 166, 171, 172 405 

65 Furniture House Fixtures 30. 70,132,182,211.256 297.312 

66 Heating 110 122. 126.165.237.373 431,432 

67 Pipes Joints 138,277, 285, 403 

68 Receptacles 53. 206. 215, 217.220.224 229 232. 383 

69 Miscellaneous- Others 11, 14. 15. 27. 33. 40. 52. 54. 59. 62. 63. 84. 101. 108. 109 
116. 134. 135. 137. 150, 160, 168, 169,177.181,186,190,199, 
231.236,245,248.249,269, 276,278,279,281.283,289 292. 
300.368.404.412,428, 434.441.462.503 

Source: Hall, Jaffe & Trajtenberg (2001). 
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In table 2 an overview is provided of the six patent categories Hall, Jaffe and Trajtenberg (2001) 

introduced. In the rightmost column the patent classes belonging to each patent category have been 

listed. 

In the appendix A the descriptive statistics for the relevant variables are provided.  
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4. Methodology 

This chapter will present and explain the research approach used to answer the research question 

and to assess whether the hypotheses can be either accepted or rejected. Several different models 

were used to gain an overall view of the statistical relationship between number of patents by 

entrants and its determinants. These determinants are number of patents by incumbents and quality 

measures of basicness, for example. The formulas for each regression analysis will be displayed and 

explained. 

 

4.1 Linear regression analysis 

This thesis presents several regression models which investigate the determinants of the number of 

patents applied for by first-time patentors. The main aim of regression models is  to formulate the 

relationship between the dependent and the independent variables, based on statistical methods 

(Sykes, 1993). The regression models are built using the data and variables described in the previous 

chapter. The abbreviations used in the formulas below are listed and explained in table 1 in the 

previous chapter 

Firstly, a linear regression with number of patents applied for by entrants as the dependent variable 

and the number of patents applied for by incumbents as the independent variable was performed 

using STATA software. The model is depicted in formulas 1 and 2. 

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝑋𝑖𝑡 + 𝜀𝑖𝑡(1) 

𝑤𝑖𝑡ℎ 𝑡 = 1,2 … . (1902,2006) 𝑎𝑛𝑑 𝜀𝑖𝑡  𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 

𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑏𝑦 𝑒𝑛𝑡𝑟𝑎𝑛𝑡𝑠𝑡 =  𝛽0 + 𝛽1𝑝𝑎𝑡𝑒𝑛𝑡𝑠 𝑏𝑦 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝑠𝑡 + 𝜀𝑖𝑡 (2) 

 

Secondly, a linear regression model was created that controlled for different factors, such as quality 

measures of all patents in the database. Generality and originality are for example indicators of the 

quality of patents. These variables were added to the second regression in order to quantify their 

effect on the relationship researched in this thesis. To control adequately control for these variables, 

mean generality and mean originality were used. The model is depicted in formula 3 . 

𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑏𝑦 𝑒𝑛𝑡𝑟𝑎𝑛𝑡𝑠𝑡

=  𝛽0 + 𝛽1𝑝𝑎𝑡𝑒𝑛𝑡 𝑏𝑦 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝑠𝑡 + 𝛽2𝑔𝑒𝑛𝑒𝑟𝑎𝑙 + 𝛽3𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑦 + 𝜀𝑖𝑡 (3) 

𝑤𝑖𝑡ℎ 𝑡 = 1,2 … . (1902,2006) 
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4.2 Linear regression analysis with interaction effects 

The third model used in this thesis is a linear regression model with interaction effects. The four 

interaction effects used in this thesis are between the number of patents by incumbents and 

generality, originality, number of forward-citations and number of backward-citations. Formally, an 

interaction occurs when an independent variable has a different effect on the outcome depending on 

the values of another independent variable. When using interaction effects, the relationship 

between number of patents from entrants depends on the mean generality of patents from 

incumbents versus mean generality of all patents. Therefore, this method allows the estimation of 

the effect of quality of incumbent patents. If the interaction terms are significant, it will indicate that 

effect of number of patents applied for by incumbents on number of patents applied for by entrants 

is different at different values of generality and originality of the incumbent patents. The interaction 

effect model is depicted in formula 4. 

𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑏𝑦 𝑒𝑛𝑡𝑟𝑎𝑛𝑡𝑠𝑡 =  𝛽0 + 𝛽1𝑝𝑎𝑡𝑒𝑛𝑡 𝑏𝑦 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝑠𝑡 + 𝛽2𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑡 + 𝛽3𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝑡 +

𝛽4𝑛𝑐𝑖𝑡𝑖𝑛𝑔𝑡  + 𝛽5𝑛𝑐𝑖𝑡𝑒𝑑𝑡 + 𝛽6𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 𝑔𝑒𝑛𝑡 + 𝛽7𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 𝑜𝑟𝑖𝑔𝑡 +

𝛽8𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 𝑛𝑐𝑖𝑡𝑒𝑑𝑡 + 𝛽9𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 𝑛𝑐𝑖𝑡𝑖𝑛𝑔𝑡 +  𝜀𝑖𝑡  (4) 

 

4.3 Fixed effects regression analysis 

The last model used is a fixed effects analysis model was used. This type of regression allows 

controlling for time-invariant characteristics when the potential control variables are not available or 

cannot be identified. In this thesis, the relationship between the amount of patents applied for by 

first-time patenting entities and the amount and quality of patents applied for by experienced 

patenting entities might be influenced by time-invariant characteristics differing between companies. 

These time-invariant factors could be patent law, wage levels per industry, foreign direct investments 

in the United States and political system (Chatelain & Ralf, 2021). These variables are relatively fixed 

over time, yet they could influence the amount and quality of patents applied for by first-time 

patenting companies one way or another. Therefore, fixed effects regression is used to reduce the 

omitted variable biases of not accounting for these time-invariant variables. The added relevance is 

that the fixed-effects model transforms the variables by taking time averages. Variables such as 

patents by entrants, patents by incumbents and all the interaction terms will be averaged out from 

1901 until 2006. Thus, the model will control for time-invariant effects, which is necessary because 

the data is collected in the period of more than a century. Due to the design of the dataset, a panel 
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with patent class as the panel variable, patent class fixed effects are used to control for time-

invariant differences. 

Using fixed effects is essential when analysing patent data. Hall, Jaffe and Trajtenberg (2001) use this 

method as a way to rescale the citation data. Due to time-invariant characteristics, it is difficult to 

compare a 1970 patent with three citations with a 2004 patent with 78 citations. A lot has changed 

between 1970 and 2004, too much to control for in a linear regression. 

The fixed effects model is estimated in formulas 5 and 6. 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛽1𝑋𝑖𝑡 + ⋯ + 𝛽𝑘𝑋𝑘 ,𝑖𝑡+ 𝜀𝑖𝑡(5) 

𝑤𝑖𝑡ℎ 𝛼𝑖  𝑏𝑒𝑖𝑛𝑔 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡ℎ𝑎𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑠 𝑝𝑒𝑟 𝑝𝑎𝑡𝑒𝑛𝑡 

 

𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑏𝑦 𝑒𝑛𝑡𝑟𝑎𝑛𝑡𝑠𝑡 =  𝛼𝑖 + 𝛽1𝑝𝑎𝑡𝑒𝑛𝑡 𝑏𝑦 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝑠𝑡 + 𝛽2𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑡 + 𝛽3𝑛𝑐𝑖𝑡𝑖𝑛𝑔𝑡 +

𝛽4𝑛𝑐𝑖𝑡𝑒𝑑𝑡 + 𝛽5𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝑡 + 𝛽6 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 𝑔𝑒𝑛𝑡 +

𝛽7𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 𝑜𝑟𝑖𝑔𝑡 + 𝛽8𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 𝑛𝑐𝑖𝑡𝑒𝑑𝑡 +

 𝛽9𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 𝑛𝑐𝑖𝑡𝑖𝑛𝑔𝑡 + 𝜀𝑖𝑡  (6) 

 

4.4 Analysis whether results differ per industry 

As mentioned in the theoretical framework, Lanjouw and Schankerman (2004) displayed patent 

quality‐adjusted measures for five different industries from 1980 to 1993 and the graphs differed 

substantially for each industry. This gives reason to believe that the overall effects from the 

regression analysis actually differ per industry. To test this, the model depicted in formula 4 was used 

six times, each on a dataset that only held observations belonging to one category of industry. 
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5. Results 

This chapter will present and interpret the most relevant results from the regression analyses 

described in the previous chapter. The following indicators of significance are used in the tables 

presented in this chapter and the appendix. One star indicates significance at the 5% level, two stars 

indicates significance at the 1% level and three starts indicates the significance at the 0.1% level. 

 

5.1 Linear regression model results 

The results of the first two models mentioned in the Methodology chapter provide insights on the 

first two hypotheses. These hypotheses state that the number of patents from incumbents has a 

negative effect on the number of patents from entrants, while the mean quality of patents has a 

positive effect. The results are displayed in table 3.  

Table 3 

Results from linear regression models 1 and 2 

 (1) (2) 
 n_pats_entrants n_pats_entrants 
n_pats_incumbents 0.149*** 0.144*** 
 (0.0140) (0.0159) 
   
Generality  1.121 
  (0.591) 
   
Originality  0.294 
  (0.404) 
   
Constant 12.75*** 13.38*** 
 (1.047) (1.423) 
Observations 12268 6410 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

The first column shows the outcomes of the model using formula 2 and the second column shows 

the same for formula 3. The coefficient belonging to the number of patents by incumbents 

(n_pats_incumbents) is positive and significantly differs from zero at a 0.1% level. However, the sign 

does become smaller in model 2, indicating that the effect of the number of patents by incumbents 

becomes smaller when adding control variables. The coefficient can be interpretated as follows: an 

increase in the number of patents from incumbents by 1 increases the number of patents from 

entrants by 0.149 and in model 2 by 0.144. These results show that the relationship is positive 

between the independent and dependant variable, thus meaning that the first hypothesis must be 

rejected. 
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Model 2 shows a positive and non-significant coefficient for mean generality and mean originality. 

This indicates that there is not enough statistical evidence to assume that generality and originality 

have a significant effect on the number of patents by entrants. If generality for example were to be 

significant, the interpretation would be that if the mean generality score of all patents in the dataset 

increases by 1, than 1.121 more patents are applied for by entrants. Still the sign of both coefficients 

is positive. This indicates, rather than proves, that increased generality and originality of patents 

positively influences new firms to innovate and patent their innovations. However, due to non-

significance it still means that hypothesis 2, that the quality of patents, measured in generality and 

originality, applied for by incumbents has a positive effect on the number of patents applied for by 

entrants, must be rejected. Perhaps when a larger dataset is used, significance can be achieved for 

generality and originality. This thesis only shows an indication of their influence instead of providing 

evidence. 

 

5.2 Linear regression model with interaction variables results 

In table 4 the results for the third regression model from formula 4 are displayed along with the 

earlier models incorporated to allow easy comparison between models. This table can be used to 

draw conclusions regarding hypothesis 3, whether the interaction terms of number of patents by 

incumbents and respectively generality and originality, have a more negative effect on the number of 

patents applied for by entrants in industries in which patenting is more common. The coefficients of 

the interaction terms between number of patents from incumbents and generality (int_incumb_gen) 

and forward citations (int_incumb_nciting) are the only significant interaction terms, the other two 

are non-significant. The sign is positive for the interaction term with generality, indicating that when 

incumbents patents are more general, 0.0330 more patents will be applied for by entrants. This is 

not in line with the third hypothesis. The effect is small, but still significant. The sign is negative for 

the interaction term with forward citations as for the sign of forward citations itself. This is in line 

with the third hypothesis. It also means that it is safe to assume that the researched relationship 

becomes more negative in industries where patenting is more common. More patents means that 

the effect of patents becomes larger.  

Therefore, according to model 3 the third hypothesis must be partially rejected. However, one must 

keep in mind that this outcome is not very reliable. That is because only two of the four interaction 

terms are significant. Two of the four showed a negative sign. Even though these interaction terms 

are non-significant, they do indicate that hypothesis 3 cannot blindly be fully rejected. The only 
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evidence for the third hypothesis lays within the significance and negative sign of the interaction 

term between number of patents from entrants and number of forward citations. 

Table 4 

Results from linear regression models 1,2 and 3 

 (1) (2) (3) 
 n_pats_entrants n_pats_entrants n_pats_entrants 
n_pats_incumbents 0.149*** 0.144*** 0.142*** 
 (0.0140) (0.0159) (0.0199) 
    
Generality  1.121 -1.771 
  (0.591) (1.281) 
    
Originality  0.294 1.688 
  (0.404) (1.211) 
    
Total forward cites to the 
patent 

  -0.0423** 

   (0.0158) 
    
Total backward cites from 
the patent 

  0.156*** 

   (0.0281) 
    
int_incumb_gen   0.0330* 
   (0.0131) 
    
int_incumb_orig   -0.0193 
   (0.0162) 
    
int_incumb_ncited   0.000144 
   (0.000194) 
    
int_incumb_nciting   -0.000239** 
   (0.0000736) 
    
Constant 12.75*** 13.38*** 13.13*** 
 (1.047) (1.423) (1.687) 
Observations 12268 6410 6410 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
 

 

5.3 Fixed effects regression results 

The first three hypotheses are also analysed using the model from formula 6, an individual fixed 

effects regression, based on patent class fixed effects. With this tool, the hypotheses will be assessed 

from an OLS and fixed effects viewpoint. This provides a more complete answer to the research 

question. 

In table 5, the output of the fixed effects regression is displayed. The coefficient for number of 

patents by incumbents (n_pats_incumbents) still is significant and positive and roughly the same size. 

This means that the fixed effects model also rejects hypothesis 1. The coefficients for mean 

generality and mean originality are both not significant. This still results in a rejected second 



28 
 

hypothesis. However, backward and forward citations to patents were included. Backward citations 

has a positive and significant effect. That means that if patents contain on average one more 

citations to previous patents, 0.152 more patents will be applied for by entrants. Forward citations 

has a negative and significant effect. This means that if all patents are cited on average one more 

time in later patents, indicating that the patent provided seminal technological breakthroughs, 

0.0456 less patents will be applied for by entrants. Therefore, the fixed effects model only partially 

rejects hypothesis 2, because it shows some evidence via forward and backward citations. 

Conclusions about the third hypothesis, that the four interaction effects have a more negative 

influence on the number of patents from entrants in industries in which patenting is more common, 

are the same when using a fixed effects model. The interaction effect between incumbent and 

generality is still positive, significant and roughly the same size as in OLS regression. The same goes 

for the interaction effect with forward citations. The first interaction effect still does not support the 

third hypotheses, because it indicates a positive relationship between incumbent patent quality and 

number of patents from entrants. The interaction effect between incumbent and number of forward 

citations (nciting) being negative and significant does support the second hypothesis. Therefore, 

hypothesis still three cannot be fully rejected, only partially. The other two interaction effect 

variables remain non-significant, thus no conclusions can be drawn from their values. 

Table 5 

Results from fixed effects regression 

 (1) 
 n_pats_entrants 
n_pats_incumbents 0.142*** 
 (0.0202) 
  
Generality -1.732 
 (1.275) 
  
Originality 1.566 
 (1.201) 
  
Total forward cites to the 
patent 

-0.0456** 

 (0.0156) 
  
Total backward cites from 
the patent 

0.152*** 

 (0.0278) 
  
int_incumb_gen 0.0306* 
 (0.0127) 
  
int_incumb_orig -0.0192 
 (0.0159) 
  
int_incumb_ncited 0.000153 
 (0.000188) 
  
int_incumb_nciting -0.000228** 
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 (0.0000709) 
  
Constant 14.24*** 
 (1.888) 
Observations 6410 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
 
 

5.4 Test whether effects differ per industry 

Hypothesis 4 states that there is a difference between the effects described in this chapter for each 

category of industry. These category are HJT technology categories, based on Hall, Jaffe and 

Trajtenberg (2001). The six categories are listed in table 2.  

In order to test this hypothesis, the regression in formula 4 was performed six times, each time with 

an edited dataset so it only contained observations where the category was the same. The results are 

displayed below in table 6. The regression tables can be found in appendix C. In this chapter only a 

summary table is presented to illustrate the most relevant results regarding hypothesis 4.  

Table 6 

Overview of all variables in a regression with one category in the dataset 

 Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 

n_pats_incumbents 0.140*** 0.163*** 0.161*** 0.0797*** 0.187*** 0.261*** 

Generality -1.219 4.961 0.841 -7.017** -2.915*** -0.668 

Originality -0.377 -0.779 10.85* 2.680 0.688 0.296 
int_incumb_gen 0.0103 0.00364 0.00643 0.0727*** 0.0844*** 0.00525 

int_incumb_orig 0.00399 0.00156 -0.0736** -0.0104 -0.00261 0.000656 

int_incumb_ncited -0.000245* 0.000601* 0.000333*** -0.000294** -0.000210 -0.000276 

int_incumb_nciting 0.000922* 0.0000676 0.000790*** -0.000175* -0.0000321 -0.000729** 

Observations 1080 880 224 878 1616 1732 

 

It is clear that there are large differences in sign, size and significance per variable in each category. 

For example, generality has a positive sign in two categories and negative in the other four. 

Significance also differs widely, as does size. Only the variables number of patents from incumbents 

(n_pats_incumbents) and the interaction effect between incumbents and generality 

(int_incumb_gen) keep the same sign and roughly the same size in each category. 

N_pats_incumbents even remains highly significant in all categories. 

However, most variables are non-significant, making it difficult to draw conclusions. Still, this table 

indicates, rather than proves, that the effect of these variables on the number of patents from 

entrants differs when the patent belongs in a different HJT technological category. The effect is only 

mostly the same for number of patents from incumbents and the incumbent generality interaction 

effect. Therefore, hypothesis four is largely accepted. 
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6. Conclusion and Discussion 

This bachelor thesis researches how the number and quality of patents from incumbents effects the 

number of new firms applying for their first patent. It uses a panel dataset from NBER with 12293 

observations regarding patents applied for in the United States between 1976 and 2006. One of the 

main findings is that more incumbents applying for patents stimulates companies to apply for their 

first patent. In this chapter, four key conclusions are drawn from this research. Also, their 

implications for economic theory and patent policy are explained. Finally, shortcomings and 

suggestions for further research are described. 

 

6.1 Conclusions hypotheses 1 and 2 

The results of the first regression model, displayed in table 3, indicate that the number of patents 

from incumbents has a positive effect on the number of patents applied for by entrants. Therefore, 

the first hypothesis is rejected. This means that in a year in which more incumbent firms apply for a 

patent, it is more likely that firms will apply for their first patent. This is the most convincing 

conclusion in this thesis. The reason is that the variable that indicates the number of patents applied 

for by incumbents (n_pats_incumbents) remains positive and significant in every regression model. 

Table 6 from hypothesis 4 even shows that this variable remains positive and significant in all six 

patent categories.  

This finding implies that the number patents applied for by incumbents has a larger positive effect 

than negative. The negative effect would be that more patents cover a larger area of technological 

space and create natural patent pools, thus discouraging innovation as stated by Lampe and Moser 

(2010). Apparently, disclosing more innovations inspires other to patent their own innovations. 

This finding also has implications for government policy. As mentioned in the introduction and 

theoretical framework, governments use patent policy as a way to stimulate innovation. It has been 

proved that the relationship between patenting and innovation is ambiguous. However, the 

conclusion for hypothesis 1 suggests that by stimulating companies to patent, more companies will 

follow. This does not prove that innovation is stimulated. It could be the case that companies had the 

innovation in the pipeline and chose for secrecy. Now that competitors chose patenting, they follow. 

Still, if a firm chooses to patent, this will have positive spill over effects. More patents means that 

more innovations become known to the public. This will inspire other firms and individuals to 

innovate for themselves. 
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The second hypothesis is rejected. Models 2, 3 and 4 show a positive and non-significant coefficient 

for mean generality and mean originality. This indicates that there is not enough statistical evidence 

to assume that generality and originality have a significant effect on the number of patents by 

entrants. However, backward and forward citations of a patent are highly significant in the fixed 

effects model. This implies that generality and originality of all patents does not influence the 

number of patents from entrants. However, backward and forward citations, which are also quality 

indicators, do influence the independent variable. This is a key finding and has several implications. 

Using the fixed effects model, backward citations of patents in general have a positive impact. This 

implies that when patents on average are based on a lot of earlier innovations, so have a high 

originality score, they have a positive influence on new entrants. The more original a patent is, the 

broader the technological roots of the underlying research. According to Halle, Jaffe and Trajtenberg 

(2001), a high originality score indicates basicness. This implies that the more basic a patent is 

measured with backward-looking indicators, the more inspiring it does. Innovative and broadly 

supported patents inspire companies and individuals to patent themselves, thus a positive 

coefficient. 

The fixed effects model also shows that forward citations have a negative impact. This indicates that 

when the entire sample of patents is cited on average more in later patents, that this will negatively 

influence the number of patents applied for by entrants. The more forward citations a patent has, 

the higher the generality score. Therefore, generality indirectly negatively influences the 

independent variable in this research. An explanation is that the more forward citations a patent 

later collects, the more crowding out the patent does. Too many innovators are bound by the 

findings in the original patent. In conclusion, hypothesis two must be partially rejected. 

 

6.2 Conclusion hypothesis 3 

Hypothesis 3 predicted that the interaction terms between incumbents and quality indicators have a 

more negative effect on patents from entrants in industries in which patenting is more common. This 

hypothesis is partially rejected. This conclusion is based on the patent class fixed effects model, 

because it controls for time-invariant variables differing per patent class. The notion that when 

patents belonging to incumbents have higher levels of generality and originality, they are more basic 

and thus crowd out the innovations of entrants, is partially true. The interaction effect between 

incumbent and amount of forward citations of a patent is negative, providing proof of this notion. 

The interpretation is as follows: Int_incumb_nciting being negative means that less patents will be 

applied for by entrants if the patents applied for in that year by incumbents receive more forward 
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citations in later years. If more patents are applied for in an industry, this negative effect will 

influence more entrants. Therefore, the negative effect will have more effect in industries with more 

patenting. This effect is very small. However, the results contradict each other. The interaction effect 

between incumbent and generality is positive. As generality is based on forward citations, this 

creates a contradiction. An explanation could be that more patents had corresponding forward 

citation data than generality data coupled to it. Still the results implicate that quality of patents from 

incumbents influences how many entrants apply for their first patent. The question how this 

influences entrants cannot be fully answered. Therefore, this third conclusion is less strong than the 

previous two conclusions. 

 

6.3 Conclusion hypothesis 4 

Hypothesis 4 states that there are differences in the effects of number and quality of patents from 

incumbents on the number of patents from entrants per industry. The results suggest that this is the 

case. The implication of this finding is that patent policy must differ per industry. Industries will most 

likely react differently to changes in patent policy and the consequences will be heterogenous. 

Existing literature on this topic already shows that different industries have a larger bias towards 

secrecy of new innovations, while others prefer patenting (Cohen, Nelson and Wash, 2000). This 

thesis suggests in addition to this finding that effects of quantity and quality measures of patents 

from incumbents on patents from entrants differ per industry. 

 

6.4 Conclusion to the research question 

The research question of this thesis is: “How do quality and number of patents from incumbent firms 

impact the amount of firms applying for their first patent?”. Four hypotheses were created and 

quantitatively tested using several regression models. This research was motivated by the paper 

from Trajtenberg, Henderson and Jaffe (1997) in which they introduce the generality and originality 

measures of basicness to assess the quality of patents. This thesis connected these concepts to the 

causal effect patents from incumbent firms have on patents from entrants and whether the former 

encourages the latter. This research has significant policy implications and adds to scientific research 

regarding patenting. The key findings are that the number of patents from entrants positively 

influences the number of patents by entrants in a given year. Also, forward citations of patents in 

general have a negative impact, while backward citations have a positive effect. These are quality 

measures for all patents. Generality and originality do not have direct significant effects on the 
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number of patents from entrants. When looking into quality measures describing patents from 

incumbents, forward citations also has a negative effect. However, this effect is small. Generality of 

patents from incumbents has a small positive effect. Interestingly, generality becomes significant 

when interacting with the number of entrants, while lacking significance in all other models. Lastly, 

the outcomes of the thesis suggest that all the effects discussed differ per industry. 

 

6.5 Shortcomings and suggestions for future research 

This thesis has several shortcomings. Firstly, the quality measures for patents used in this thesis are 

based on citations. The issue is that there can be a bias in citations. Hall, Jaffe and Trajtenberg (2001) 

explain in their working paper discussing the construction of their dataset that the measures used in 

this thesis tend to be positively correlated with the number of citations a patent receives in general. 

Patents with breakthrough innovations will tend to have more citations and thus have higher 

generality scores. Likewise, patents that use a lot of citations would display on average higher 

originality. Also, when a patent receives more citations, there is a tendency that the patent covers 

more patent classes. This tendency can be real, but still it forms a bias in the dataset. 

Secondly, one of the key findings in this thesis is that the number of patents from incumbents 

positively influences the number of patents by entrants. So it stimulates entrants to apply for their 

first patent, but it remains unsure whether number of patents by incumbents also stimulates 

innovation. An innovation could have already been created and the company could have chosen for 

secrecy, until incumbents applied for a lot of patents which stimulated them to switch from secrecy 

to patenting. Either way, more innovations are patented, which means more innovations become 

known to the public. This inspires individuals and companies to start innovating themselves. The 

causal effect may not have been found, but the inspiration is definitely there. 

Thirdly, there are issues with using patents as a proxy for innovation. This limitation relates to the 

second limitation and makes it broader. This thesis itself is not bothered by that fact, but it does 

when commenting on the applications of this research. Certain relationships have been found in 

patent data. However,  the question remains how applicable this is in the discussion of innovation 

stimulation. For example, Moser (2016) and Acs and Audretsch (1988) suggest that patents do not 

stimulate innovation. Thus making this thesis not applicable to the innovation stimulation discussion. 

Still, patents remain a good measure for innovation. 

Lastly, generality and forward citations should have the same sign, because they are based on each 

other. As shown in the fixed effects regression, generality is negative, forward citations is negative 
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and the interaction effect between incumbent and generality is positive. As generality is based on 

forward citations, this creates a contradiction. An explanation could be that the formula to compute 

the generality measure crosses away negative signs in the effect of forward citations or vice versa. 

Still, this limitation questions the validity of this research.  

For further research hypothesis four can be tested more accurately. This goes beyond the scope of 

this thesis, but it remains an interesting topic to analyse the differences in the effects of patenting 

between industries. Secondly, further research can use time lags to assess the impact of forward 

citations. As mentioned earlier, the effect forward citations has on number of patents from entrants 

differs when looking at the entire sample of patents or just incumbents. This makes the effect rather 

ambiguous. By using time lags in future research, the effect of forward citations may be better 

described. Forward citations are gathered in the years after the patent is applied for. Therefore, time 

lags may provide more insight on the effects forward citations have on other patent-related 

variables. Lastly, further research that may be interesting from a corporate standpoint is focussing 

more on appropriability, rather than basicness and measuring whether you can make money from an 

innovation. This could provide insights for companies on how to allocate resources towards research 

and development. 

 

 

 

 

 

 

 

 

 

 

 



35 
 

List of References 

Acs, Z. J., & Audretsch, D. B. (1988). Innovation in large and small firms: an empirical analysis. The 

American economic review, 78(4), 678-690. 

Acs, Z.J., Anselin, L. & Varga, A. (2002). Patents and innovation counts as measures of regional 

production of new knowledge. Research Policy, 31(7), 1069-1085.  

Arrow, K.J. (1962). Economic Welfare and the Allocation of Resources for Inventions. in R. Nelson 

(ed.) The Rate and Direction of Inventive Activity, Princeton University Press. 

Bessen, J. (2009). NBER PDP project user documentation: Matching Patent Data to Compustat Firms. 

Patent Data Project - DOWNLOADS (google.com)     

Chatelain, J. B., & Ralf, K. (2021). Inference on time-invariant variables using panel data: A pretest 

estimator. Economic Modelling, 97, 157-166.  

Cohen, W.M., Nelson, R.R. & Walsh, J.P. (2000). Protecting their intellectual assets: appropriability 

conditions and why US manufacturing firms patent (or not). (National  Bureau  of  Economic  

Research Working Paper No. 7552). 

Hall, B., Jaffe, A. & Trajtenberg,  M. (2001). The  NBER  patent citations  data  file:  lessons,  insights  

and  methodological  tools. (National  Bureau  of  Economic  Research Working Paper No. 8498) 

Katila, R. (2000). Using patent data to measure innovation performance. International Journal of 

Business Performance Management, 2(1-3), 180-193. 

Kuznets, S. (1962). Quantitative aspects of the economic growth of nations: VII. the share and 

structures of consumption. Economic Development and Cultural Change, 10(2, Part 2), 1-92. 

Lamoreaux, N.R. & Sokoloff, K.L. (1999). Inventive Activity and the Market for Technology in the 

United States. (National  Bureau  of  Economic  Research Working Paper No. 7107). 

Lampe, R. & Moser, P. (2010). Do patent pools encourage innovation? evidence from the nineteenth-

century sewing machine industry. The Journal of Economic History, 70(4), 898-920. 

Lanjouw, J.O. & Schankerman, M. (2004). Patent Quality and Research Productivity: Measuring 

Innovation with Multiple Indicators. The Economic Journal, 114(495), 41-465. 

Moser, P., & Voena, A . (2012). Compulsory Licensing: Evidence from the Trading with the Enemy Act. 

American Economic Review, 102(1),396-427. 

https://sites.google.com/site/patentdataproject/Home/downloads


36 
 

Moser, P. (2013). Patents and Innovation: Evidence from Economic History. Journal of Economic 

Perspectives, 27(1), 23-44. 

Moser, P. (2016). Patents and innovation in economic history. Annual Review of Economics, 8(1), 241-

258. 

Pakes, A. & Griliches, Z. (1980). Patents and R&D at the firm level: a  first  look. (National  Bureau  of  

Economic  Research Working Paper No. 561). 

Rao, S., Ahmad, A., Horsman, W., & Kaptein-Russell, P. (2001). The importance of innovation for 

productivity. International Productivity Monitor, 2(11), 1-59. 

Roger, M. (1998). The definition and measurement of innovation. (Melbourne Institute of Applied 

Economic and Social Research Working Paper No. 10/98).  

Sterzi, V. (2013). Patent quality and ownership: An analysis of UK faculty patenting. Research Policy, 

42(2), 564-576.  

Sykes, A.O. (1993). An introduction to regression analysis. (Coase-Sandor Institute for Law & 

Economics Working Paper No. 20). 

Trajtenberg, M., Henderson, R., & Jaffe, A. (1997). University versus corporate patents: A window on 

the basicness of invention. Economics of Innovation and new technology, 5(1), 19-50. 

Tseng, C.Y. & Wu, L.Y. (2007). Innovation quality in the automobile industry: measurement indicators 

and performance implications. International Journal of Technology Management, 37(1-2), 162-177. 

 

 

 

 

 

 

 

 



37 
 

Appendix 

Appendix A: Descriptive Statistics 

Table 7 

Descriptive statistics of each variable used in the dataset in this thesis 

Variable  Obs  Mean  Std. Dev.  Min  Max 

 appyear 12293 1990.572 8.694 1976 2006 
 cat 12268 4.017 1.871 1 6 
 nclass 12268 309.91 186.689 1 800 
 patent 12293 5359868.7 949777.81 3980120 7155733 
 pdpass 12293 10918490 936420.03 10030609 23152592 
 general 8708 .581 .324 0 1 
 ncited 12293 9.099 17.35 0 536 
 nciting 12293 8.258 14.81 0 367 
 orig 9542 .548 .342 0 1 
 minyear 12293 1983.796 10.346 1903 2006 
 d entry year 12293 .349 .477 0 1 
 n entrants 12293 26.099 34.056 0 369 
 n pats incumbents 12293 86.157 167.968 0 2838 
 all pats 12293 112.256 195.065 1 3124 
 n pats entrants 12293 26.099 34.056 0 369 
 int incumb gen 8708 47.066 100.182 0 2551.5 
 int incumb orig 9542 49.874 114.703 0 2677.5 
 int incumb ncited 12293 834.652 3653.448 0 159668 
 int incumb nciting 12293 928.452 6288.826 0 561968 

 
 

Appendix B: List of STATA commands used in the analysis 

Constructing the dataset: 

 duplicates drop nclass appyear, force 

 bysort company nclass: egen minyear=min(appyear) 

 gen d_entry_year=year==minyear 

 bysort appyear nclass: egen n_entrants=sum(d_entry_year) (to count the number of entrants 

per year) 

 bysort nclass appyear: egen n_pats_incumbents=sum(!d_entry_year) 

 bysort nclass appyear: egen all_pats=sum(1) 

 gen n_pats_entrants=all_pats-n_pats_incumbents 

Hypothesis 1:  

 essto: xtreg n_pats_entrants n_pats_incumbents, robust  

 esttab using regression1.rtf, label se 
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Hypothesis 2: 

 essto: xtreg n_pats_entrants n_pats_incumbents general orig , robust 

 esttab using regression2.rtf, label se 

Hypothesis 3: 

 essto: xtreg n_pats_entrants n_pats_incumbents general orig  ncited nciting int_incumb_gen 

int_incumb_orig int_incumb_ncited int_incumb_nciting, robust  

 esttab using regression3.rtf, label se 

Hypothesis 4:  

 drop if cat==1, drop if cat==2, drop if cat==3, drop if cat==4, drop if cat==5 drop if cat==6 

(perform the regression six times with each time all categories dropped except one) 

 essto: xtreg n_pats_entrants n_pats_incumbents general orig  ncited nciting int_incumb_gen 

int_incumb_orig int_incumb_ncited int_incumb_nciting, robust  

 esttab using regression4.rtf, label se 

Appendix C: Tables used for hypothesis 4 

 Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 

n_pats_incumbents 0.140*** 0.163*** 0.161*** 0.0797*** 0.187*** 0.261*** 

Generality -1.219 4.961 0.841 -7.017** -2.915*** -0.668 

Originality -0.377 -0.779 10.85* 2.680 0.688 0.296 

int_incumb_gen 0.0103 0.00364 0.00643 0.0727*** 0.0844*** 0.00525 

int_incumb_orig 0.00399 0.00156 -0.0736** -0.0104 -0.00261 0.000656 

int_incumb_ncited -0.000245* 0.000601* 0.000333*** -0.000294** -0.000210 -0.000276 

int_incumb_nciting 0.000922* 0.0000676 0.000790*** -0.000175* -0.0000321 -0.000729** 

Observations 1080 880 224 878 1616 1732 
 

Table 8 

Interaction variables regression with category 1 

 (1) 
 n_pats_entrants 
n_pats_incumbents 0.140*** 
 (0.0377) 
  
Generality -1.219 
 (1.175) 
  
Originality -0.377 
 (1.023) 
  
int_incumb_gen 0.0103 
 (0.0152) 
  
int_incumb_orig 0.00399 
 (0.0148) 
  
int_incumb_ncited -0.000245* 
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 (0.000120) 
  
int_incumb_nciting 0.000922* 
 (0.000379) 
  
Constant 10.09*** 
 (2.259) 
Observations 1080 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
 
Table 9 

Interaction variables regression with category 2 
 

 (1) 
 n_pats_entrants 
n_pats_incumbents 0.163*** 
 (0.0358) 
  
Generality 4.961 
 (5.691) 
  
Originality -0.779 
 (2.924) 
  
int_incumb_gen 0.00364 
 (0.0359) 
  
int_incumb_orig 0.00156 
 (0.0235) 
  
int_incumb_ncited 0.000601* 
 (0.000263) 
  
int_incumb_nciting 0.0000676 
 (0.000243) 
  
Constant 7.393 
 (4.289) 
Observations 880 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
 
Table 10 

Interaction variables regression with category 3 

 (1) 
 n_pats_entrants 
n_pats_incumbents 0.161*** 
 (0.0246) 
  
Generality 0.841 
 (4.090) 
  
Originality 10.85* 
 (5.077) 
  
int_incumb_gen 0.00643 
 (0.00553) 
  
int_incumb_orig -0.0736** 
 (0.0276) 
  
int_incumb_ncited 0.000333*** 
 (0.0000810) 
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int_incumb_nciting 0.000790*** 
 (0.000160) 
  
Constant 18.74*** 
 (3.924) 
Observations 224 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
 
Table 11 

Interaction variables regression with category 4 

 (1) 
 n_pats_entrants 
n_pats_incumbents 0.0797*** 
 (0.00946) 
  
Generality -7.017** 
 (2.584) 
  
Originality 2.680 
 (1.701) 
  
int_incumb_gen 0.0727*** 
 (0.0213) 
  
int_incumb_orig -0.0104 
 (0.00968) 
  
int_incumb_ncited -0.000294** 
 (0.000110) 
  
int_incumb_nciting -0.000175* 
 (0.0000746) 
  
Constant 20.80*** 
 (2.976) 
Observations 878 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
 
 

Table 12 

Interaction variables regression with category 5 

 
 (1) 
 n_pats_entrants 
n_pats_incumbents 0.187*** 
 (0.0202) 
  
Generality -2.915*** 
 (0.809) 
  
Originality 0.688 
 (0.559) 
  
int_incumb_gen 0.0844*** 
 (0.0156) 
  
int_incumb_orig -0.00261 
 (0.0143) 
  
int_incumb_ncited -0.000210 
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 (0.000225) 
  
int_incumb_nciting -0.0000321 
 (0.000343) 
  
Constant 11.29*** 
 (1.270) 
Observations 1616 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
 
 
Table 13  

Interaction variables regression with category 6 

  
 (1) 
 n_pats_entrants 
n_pats_incumbents 0.261*** 
 (0.0343) 
  
Generality -0.668 
 (1.295) 
  
Originality 0.296 
 (0.578) 
  
int_incumb_gen 0.00525 
 (0.0304) 
  
int_incumb_orig 0.000656 
 (0.00566) 
  
int_incumb_ncited -0.000276 
 (0.000249) 
  
int_incumb_nciting -0.000729** 
 (0.000253) 
  
Constant 12.20*** 
 (1.605) 
Observations 1732 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Appendix D: Robustness check with negative binomial regression 

To assess the robustness of the results, it is important to check whether the data is robust as well. 

Tabulating the number of patents by entrants by patent class revealed that the conditional variance 

per patent class is larger than the conditional mean. This indicates over-dispersed count data. 

Negative binomial regression is a suitable method to assess whether this phenomenon leads to non-

robustness of the results. Therefore, a negative binomial regression was used to evaluate the 

robustness of the results discussed earlier.  

 

The coefficients in the negative binomial regression show the difference in expected count of 

number of patents by entrants per class compared to the reference group. This information is not 

very relevant for this thesis. More relevant is predicting the margins at each patent class. A part of 

the results of the margin estimation is displayed in table 14. Including all 424 classes would lead to an 

unorganized table, which is why most classes have been left out. The table that remains still gives a 

good indication of the outcomes. The coefficients can be interpreted as follows: a coefficient of 3.012 

for patent class 2 means that the predicted number of patents by entrants in class 2 is 3.012. The full 

table shows that most coefficients are significant. This significance indicates that the negative 

binomial model serves as a testimony to the robustness of the results. If the conditional variance in a 

patent class were too large, then the coefficients would not have been significant. This would mean 

that no conclusions could be made about the relationship between patents by incumbents and 

patents by entrants for a specific patent class without a significant coefficient. A small amount of 

class coefficients are non-significant, which places a check on the robustness of the dataset and the 

results coming from them.  

 

The p-value of the entire negative binomial model is 0.000. This indicates that the model is highly 

significant and that the results are robust according to a negative binomial regression analysis. In 

conclusion, this robustness check proves that the results are robust to negative binomial regression 

and that with this dataset applicable conclusions can be made regarding the relationship between 

number of patents by incumbents and number of patents by entrants.  
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Table 14  

Part of the results of the margin estimation at each patent class in the negative binomial analysis 

 (1) 
 n_pats_entrants 
n_pats_entrants  
n_pats_incumbents 0.00278*** 
 (0.0000528) 
  
US 3-digit current 
classification (CCL)=1 

0 

 (.) 
  
US 3-digit current 
classification (CCL)=2 

3.012*** 

 (0.381) 
  
US 3-digit current 
classification (CCL)=4 

2.485*** 

 (0.381) 
  
US 3-digit current 
classification (CCL)=5 

2.744*** 

 (0.381) 
  
US 3-digit current 
classification (CCL)=7 

0.877* 

 (0.391) 
  
US 3-digit current 
classification (CCL)=8 

2.140*** 

 (0.382) 
  
US 3-digit current 
classification (CCL)=12 

0.238 

 (0.401) 
  
US 3-digit current 
classification (CCL)=14 

1.176** 

 (0.387) 
  
US 3-digit current 
classification (CCL)=15 

2.950*** 

 (0.380) 
  
US 3-digit current 
classification (CCL)=16 

2.735*** 

 (0.381) 
  
US 3-digit current 
classification (CCL)=19 

0.903* 

 (0.392) 
  
Constant 0.511 
 (0.370) 
  
lnalpha -1.512*** 
 (0.0179) 
Observations 12268 

 

 

 

 

 


