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1 Introduction

In practice, research in various fields, such as health, politics and economics, is causal of nature

(Pearl, 2010). This research often boils down to the same idea: ’How does a certain treatment

affect a certain individual?’. This can then be extended to addressing the heterogeneity of these

effects. Namely, how does the treatment affect different groups of people? For example, what

characteristics are important for a new drug to perform best? What is the best time to broadcast

an ad on which platform? These are naturally impactful questions to answer in practice.

Let us look at a recent example, during the current COVID-19 crisis there was a race to develop

a vaccine. When treated with this vaccine the patient should gain some sort of protection. Either

in the form of immunity or reduction of symptoms. However, it might be possible that the vaccine

works better for people with different characteristics, for example, it is best at protecting elderly

people, and worse for others. Since the race to the vaccine was a time-sensitive production process,

the first producer will receive a lot of orders, producers might have an incentive to report only

the most favourable statistics. Assmann et al. (2000)) show that this is not uncommon in clinical

trials, people might look for subgroups in the data with very high treatment effects, to then only

report the results of that group. Therefore, researchers have to predefine the statistical analysis to

prevent illegitimate trial results.

In this paper, we will replicate and extend the research performed in the influential paper of

Wager and Athey (2018). Various advanced non-parametric machine learning and deep learning

methods, such as neural networks and random forests, are often referred to as black-box models.

Meaning that the interactions and the interpretations of the model are not directly observed.

Therefore classical statistical inference is not possible. Recently, Wager and Athey (2018) derived

asymptotics of the estimate this inference is now possible. Allowing to perform model diagnostics

and to create confidence intervals around estimates. These machine learning methods generally

tend to outperform traditional econometric models in terms of point estimates. Since interval

estimates obtain more information than point estimates this derivation is of great value.

Wager and Athey (2018) provide extensive statistical background leading up to their main

finding of growing a random causal forest that is capable of providing consistent and asymptotically

normal estimates for heterogeneous treatment effects. Furthermore, they perform a simulation

experiment which shows that their causal random forests have better performance compared to a

baseline method of k-nearest neighbour estimation. These promising results sparked the idea of

extending the current literature by applying the methodology presented by Wager and Athey (2018)

on preceding research in the estimation of heterogeneous treatment effects based on observational

data and comparing it to a competitive model. More concisely:
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RQ: How do causal random forests perform compared to Bayesian Additive Regression Trees (BART)

when exposed to observational data?

To answer this research question, we will first describe the methodology presented by Wager

and Athey (2018) and define the Bayesian Additive Regression Trees (BART) model. After which

we will replicate their simulation experiment to verify the validity of the performance of the causal

random forest and compare this to the performance of BART. We find that in general the BART

outperforms the random forest. Finally, we will apply both the causal random forest and BART

to observational data of Green and Kern (2012) and compare their performance. The dataset

contains data on respondents of The General Social Survey (GSS), they were asked the following

question: “... are we spending too little, too much or about the right amount on ...?” where for

some respondents the final word was welfare and for the others, the final words were assistance

to the poor. We find that the random forest and BART provide similar estimations, however,

BART seems to be more sensitive to changes in the dependant variables. After this comparison we

will provide some concluding remarks as well as suggest implications for both the academic world

and in practice.

In Section 2 we will describe the dataset for the observational study. Then, in Section 3 we

will define all the models and describe the simulation set-up. After which, we describe the results

of the simulation and the observational study in Section 4. Finally, in Section 5 we provide some

concluding remarks.

2 Data

In this paper, we analyse the performance of a random forest model in a simulation setting and in

an observational setting. Due to the mathematical specificity of the simulation setting, this will be

discussed at the end of the methodology section. In this section, we will describe our observational

setting.

The observational setting is inspired by Green and Kern (2012). In their experimental setup,

they estimate the conditional average treatment effects for the change of wording of a survey

question regarding welfare. Respondents of The General Social Survey (GSS) were asked the

following question: “... are we spending too little, too much or about the right amount on ...?”

where for some respondants the final word was welfare and for the others the final words were

assistance to the poor. Where welfare is considered the treated group and assistance to the poor

is considered the control group.

The GSS is conducted in the United States of America. It is a substantial survey about various

social statements. We will analyse datasets over the period of 1986 until 2016, containing a total of

24209 observations. The dataset contains variables on demographic information, political ideology
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and racist believes. Figure 1 displays density histograms for all the variables. Age is the age in

years of the respondent with mean 46.29. Note that there is an irregular spike for Age at a value

of 89, this is due to the fact that respondents could only answer ‘89 or older’, therefore, all the

older ages are truncated to 89. Year is the year in which the GSS survey was conducted. Education

is the education in years of the respondent, with an average of 13.36. The political party of the

respondent is captured on a 7 point scale in the variable Party, where 1 is ‘Strong democrat’, 4 is

‘Independent’ and 7 is ‘Strong republican’. If the respondent answered with ‘Other party’ this is

given the value 0. Ideology is a variable on a 7 point scale which contains the political ideology,

ranging from ‘Extremely liberal’ as 1 to ‘Extremely conservative’ as 7, with mean 4.11. Racist

is a variable ranging from 0 to 1 where non racist is classified by 0 and racist by 1, with mean

0.38. This variable was computed by averaging answers, where the most racist answer was coded

as 1, of 4 yes-or-no questions about inequality due to race. When one or more answers are missing

the average is computed over the remaining answers. An overview of the precise wording of the

questions can be found in Appendix A.

(a) Age (b) Education (c) Ideology

(d) Party (e) Racist (f) Year

Figure 1: Distribution of variables

3 Methodology

In this section we will first describe the setting of treatment effect estimation along with the

specification of the random forest model. Second, we show that these forests produce asymptotically

normal estimates. Thirdly, we introduce the BART model. After which we compare the random

forest and the BART. Finally, the experimental setup is defined.

4



We define the treatment effect as

τ(x) = E
[
Y

(1)
i − Y (0)

i | Xi = x
]
, (1)

where Y
(1)
i and Y

(0)
i are possible outcomes for individual i when experienced treatment or not

experienced treatment respectively1, and Xi denotes the feature space for individual i. However,

as noted in the introduction, we can only observe one of the possible outcomes Y
(1)
i and Y

(0)
i .

Therefore it is not possible to compute Y
(1)
i − Y (0)

i to directly estimate τ(x). If we define Wi as

a binary treatment variable, taking a value of 1 if individual i has experienced treatment and 0

otherwise. We can then define the treatment outcome Yi as

Yi =

Y
(1)
i , if Wi = 1;

Y
(0)
i , if Wi = 0.

(2)

Then the assumption of unconfoundness, the potential outcomes for Yi are independent of the

treatment assignment conditional on the features Xi, denoted by:

{
Y

(1)
i , Y

(0)
i

}
⊥⊥Wi | Xi. (3)

Rosenbaum and Rubin (1983) found that when this assumption holds, equation 1 can be rewrit-

ten as:

τ(x) = E

[
Yi

(
Wi

e(x)
− 1−Wi

1− e(x)

)
| Xi = x

]
, (4)

where

e(x) = E
[
Wi | Xi = x], (5)

is the propensity score. The expectation over a binary variable can be interpreted as probability.

Therefore, the propensity score e(x) can be interpreted as the probability that an individual expe-

riences treatment given its feature set Xi. Consequently, given equation 4, estimating τ(x) reduces

to estimating e(x). This is the root of various methods for causal inference. However, Wager and

Athey (2018) uses an approach to consistently estimate the treatment effect τ(x), using propensity

trees and the assumption of unconfoundness, without directly estimating e(x). This approach will

now be described.

Wager and Athey (2018) show that they have build trees that are capable of achieving consis-

tency and asymptotic normality. These trees are based of the Classification and Regression Trees

(CART) (Breiman et al., 1984). This is a machine learning method that recursively partitions ob-

servations based on a “splitting criterion”. The algorithm stops once the entire set of observations,

1 In the literature, this is often referred to as ‘control’. We will therefore refer to Y
(0)
i as the control outcome.
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containing (Yi, Xi) pairs, is divided in “leaves” L, containing a small enough amount of observa-

tions. By construction these observations are very similar. Therefore, for a new observation x we

evaluate the prediction Ȳ (x) by finding the leaf L(x) and analysing

Ȳ (x) =
1

|{i : Xi ∈ L(x)}|
∑

{i:Xi∈L(x)}

Yi. (6)

This method is believed to perform well, if the assumption holds that within each leaf, observations

are approximately identically distributed. Such that they seem to all be outcomes of the same

random experiment.

This idea of the CART regression tree can be converted to a causal tree. We want to quantify

the effect of a treatment. Therefore, instead of looking at pairs of (Yi, Xi) observations we will

now consider (Yi,Wi). Following the same procedure as described before we can now estimate the

treatment effect τ(x) for any new observation x in leaf L(x) as

τ̂(x) =
1

|{i : Wi = 1, Xi ∈ L(x)}|
∑

{i:Wi=1,Xi∈L(x)}

Yi−

1

|{i : Wi = 0, Xi ∈ L(x)}|
∑

{i:Wi=0,Xi∈L(x)}

Yi

= Ȳ (1)(x)− Ȳ (0)(x). (7)

Equation 7 shows that the treatment effect τ̂(x) can be estimated by first determining which leaf

x belongs to, then computing the mean treated outcome minus the mean control outcome within

its leaf. Combining multiple of these causal trees creates a causal forest that is consistent for

τ(x). This forest can be grown by taking an ensemble of T causal trees, that all provide individual

estimates τ̂t(x), as: τ̂(x) = T−1
∑T

t=1 τ̂t(x).

These forests are, as shown by Wager and Athey (2018), consistent and asymptotically normal

once the assumption of honesty holds. This assumption is defined as follows (Wager and Athey,

2018): “a tree is honest if, for each training example i, it only uses the response Yi to estimate the

within-leaf treatment effect τ using 7 or to decide where to place the splits, but not both.”

So in order to be able to apply the theoretical findings of Wager and Athey (2018), that guar-

antee consistency and asymptotic normality, we need a procedure to create these honest trees that

combined create a honest forest. Two procedures are suggested by Wager and Athey (2018) which

we will directly quote for reasons of accuracy.
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Procedure 1. Double-Sample Trees Double-sample trees split the available training data

into two parts: one half for estimating the desired response inside each leaf, and another half

for placing splits. Input: n training examples of the form (Xi, Yi) for regression trees or (Xi,

Yi,Wi) for causal trees, where Xi are features, Yi is the response, and Wi is the treatment

assignment. A minimum leaf size k.

1. Draw a random subsample of size s from {1, ..., n} without replacement, and then

divide it into two disjoint sets of size |I| = s/2 and |J | = s/2

2. Grow a tree via recursive partitioning. The splits are chosen using any data from

the J sample and X- or W -observations from the I- sample, but without using Y -

observations from the I-sample.

3. Estimate leafwise responses using only the I-sample observations

The assumption of honesty requires that for every observation i the outcome Yi is only used in

either the placement of the splits within the tree or for the estimation of the treatment effect within

the leaf. Procedure 1 splits a subsample into two disjoint sets I and J . The latter is solely used for

the determination of the splits. Furthermore, all the information in I except the outcome Yi is also

used for placing splits. Finally only the outcome variables Y from I are used for the estimation

of the treatment effect. Therefore, it is clear that the honesty assumption holds for double-sample

trees.

Procedure 2. Propensity Trees Propensity trees use only the treatment assignment indica-

tor Wi to place splits, and save the responses Yi for estimating τ . Input: n training examples

(Xi, Yi, Wi), where Xi are features, Yi is the response, and Wi is the treatment assignment.

A minimum leaf size k.

1. Draw a random subsample I ∈ {1, ..., n} of size |I| = s (no replacement).

2. Train a classification tree using sample I where the outcome is the treatment assign-

ment, that is, on the (Xi, Wi) pairs with i ∈ I. Each leaf of the tree must have k or

more observations of each treatment class.

3. Estimate τ(x) using 7 on the leaf containing x.

In step 2, the splits are chosen by optimizing, for example, the Gini criterion used by CART

for classification.(Breiman et al., 1984)

Since procedure 2 does not use any Yi observations for placing the splits and uses these solely

for estimation of the treatment effect it immediately follows that the honesty assumption holds.
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3.1 Consistency

The first main theoretical finding is that Wager and Athey (2018) found their random forests to

be consistent as long as two more assumptions, besides honesty, hold. The exact mathematical

argument as to why these assumptions have to hold in order to attain consistency is beyond the

scope of this paper, but can be found in Theorem 3.1 of Wager and Athey (2018). However, it is

of importance to know what assumptions lay the foundations for the model. Therefore, we will

intuitively explain the two assumptions needed for consistency. First, we need to assume that both

E
[
Y

(1)
i | Xi = x

]
and E

[
Y

(0)
i | Xi = x

]
, are Lipschitz continuous. Lipschitz continuity limits the

absolute value of the slope of the functions by a certain Lipschitz constant. This implies that all

the derivatives of our outcome variable Y conditioned on X will not surpass a certain magnitude.

Second, we need an overlap assumption. This assumption implies that there are sufficient treated

and non-treated observations close to each observation x. Once these assumptions hold the causal

random forest attains consistency. For large enough datasets we expect these assumptions to both

hold.

3.2 Asymptotic normality

The second main theoretical finding of Wager and Athey (2018) is that the estimated treatment

effect τ̂(x) is assymptotically normally distributed. Namely, they found that

τ̂(x)− τ(x)

σn(x)
→ N (0, 1), for a sequence σn(x)→ 0. (8)

This means that, as long as the sampling standard deviation approaches zero as the sample size n

increases, the estimated treatment effect follows a normal distribution. Furthermore, Equation 8

only holds when the assumptions of consistency hold, as well that the sub-sample size s is in the

same order of magnitude as s � nβ for some βmin < β < 1. Here βmin
2 is a computable quantity

which increases for higher dimensional problems. This implies that β has a higher upperbound for

higher dimensional problems, which would mean that the sub-sample size s is allowed to approach

the sample size n.

In addition, Wager and Athey (2018) find a method to consistently estimate the variance σ2n(x).

This estimator, called the inifinitesimal jackknife variance estimator, is similar to a standard vari-

ance estimator, however it uses a first order Taylor expansion around the true loss function in

order to be computationally more efficient. It is based on the original work of Jaeckel (1972). The

variance estimator is defined as

2 Equation 14 (Wager and Athey, 2018)
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V̂IJ(x) =
n− 1

n

(
n

n− s

)2 n∑
i=1

Cov∗[τ̂
∗
t (x), N∗it]

2. (9)

Here, τ̂∗t (x) is the treatment effect estimate provided by tree t and N∗it ∈ {0, 1} indicates whether the

i’th observation was used in the estimation of the t’th tree. The stars indicate that the covariance

is taken over the entire set of trees t = 1, . . . , T in the forest. This estimate is consistent such that

the estimate converges in probability to the sampling variance as

V̂IJ(x)

σ2n(x)
→p 1. (10)

Since we are now able to estimate the treatment effect as τ̂t(x) and the sample standard deviation

σn(x) via the infinitesimal jackknife estimate as

√
V̂IJ(x), we can now compute confidence intervals

for the estimated treatment effect τ̂t(x). These characteristics allow us to use classical statistical

inference on these non-parametric honest random forests.

3.3 Bayesian Additive Regression Trees (BART)

As an extension on the research of Wager and Athey (2018) we will apply the random forest

algorithm on observational data and we will compare the random forest to a more competitive

model. We will apply the forest to the observational data described in the data. The random

forest model will be compared to a Bayesian Additive Regression Trees model (BART). BART

was used by Green and Kern (2012) to estimate conditional average treatment effects (CATEs) in

the dataset we will also analyse. In order to compare performance of the random forest to BART

on observational data it is reasonable to first compare performance in a controlled environment.

Therefore, we will apply BART to the simulation experiments. In this section we will define BART.

BART is a “sum-of-trees model”, first developed by Chipman et al. (2010). It works similar to

the random forests as it combines estimates of various trees into one final estimate. Let us first

describe some data generating process as

Y = f(x) + ε, ε ∼ N (0, σ2), (11)

where f(·) is some unknown function. We will approximate this function f(·) by a sum-of-trees

model h(·) which is a sum of ‘smaller’ functions g(·) as

Y = f(x) + ε ≈ h(x) + ε =
m∑
j=1

g(x;Tj ,Mj) + ε, ε ∼ N (0, σ2), (12)

where Tj denotes a binary decision tree containing a set of decision rules and a set of terminal

nodes with cardinality b. The set of values of each of the terminal nodes is denoted as Mj , with
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M = {µ1, . . . , µb}. The function g(·) appoints a value µi ∈ M based on characteristics x. The

conditional mean of Y given the characteristics x for the sum-of-trees model E[Y |x] is the sum of

the terminal node values of m trees,
∑m

j=1 µij , where µij is the terminal node value of the j’th tree,

such that each individual tree contributes partly to the total conditional mean E[Y |x]. In order to

complete the initialization of the BART model we need to implement the Bayesian aspect to the

sum-of-trees model. In order to achieve this, we will introduce the basics of Bayesian statistics,

such that even without extensive knowledge on the topic the BART model can be understood.

Bayesian Statistics

Bayesian statistics is a view on statistics based on Bayes’ theorem. In traditional statistics param-

eters are viewed as unknown to-be-estimated quantities. However, Bayesian statistics views these

parameters not as fixed quantities but as unknown random variables. This different perspective

requires a different estimation approach. In order to explain this estimation approach we will first

introduce some required terminology. The prior distribution is a probability distribution appointed

to the unknown parameters θ as p(θ). The distribution of conditioning the parameters θ on obser-

vational data Xn is called the sample distribution, denoted as p(Xn|θ), note that Xn is a sample

containing n observations. The posterior distribution is a probability distribution, denoted as

p(θ|Xn). The posterior is obtained when updating the prior with the sample using Bayes’ theorem.

Bayes’ theorem is defined as

P[A|B] =
P[B|A]P[A]

P[B]
. (13)

In the framework of Bayesian inference this translates to

p(θ|Xn) =
p(Xn|θ)p(θ)
p(Xn)

∝ p(Xn|θ)p(θ), (14)

where p(Xn) can be considered a normalizing constant which makes sure that the posterior is scaled

to be probability density function3.

We can now translate this theory to the BART model. Note that BART is a non-parametric

approach, therefore our choice of θ is not a set of parameters but it is the structure of the sum-

of-trees model. Therefore, we need to determine on what aspect we want to induce a prior. The

entire structure of the sum-of-trees model can be determined by (i) the set of decision rules and

terminal values encapsuled in Tj , (ii) the values of the terminal nodes captured in Mj , (iii) and the

standard deviation of the error term denotes as σ. (i) and (ii) can both be captured for the j’th

tree as one combination of (Tj ,Mj), with j = 1, ...,m. Accordingly, we need to compute a prior

containing these three aspects. As Chipman et al. (2010) suggests, we will look for priors that

3 Guaranteeing that the integral over the posterior is 1.
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assume independence, such that

p((T1,M1), ..., (Tm,Mm), σ) =

[∏
j

p(Tj ,Mj)

]
p(σ) =

[∏
j

p(Mj |Tj)p(Tj)
]
p(σ), (15)

where,

p(Mj |Tj) =
∏
i

p(µij |Tj). (16)

Therefore, we need to define a tree prior (a), a terminal node prior (b) and a σ prior (c), which we

denote as p(Tj), p(µij |Tj) and p(σ) respectively.

(a) Following Chipman et al. (2010) the tree prior, p(Tj), is specified by three elements. First,

the prior for the probability that at depth d = 0, 1, 2, ... a node is nonterminal is given by

α(1 + d)−β, α ∈ (0, 1), β ∈ [0,∞), (17)

α and β are hyperparameters which can be chosen to determine the shape of the above described

function. Chipman et al. (2010) suggests setting α = 0.95 and β = 2. This choice of hyperpa-

rameters makes it such that the probability of having a ’deep’ tree is very unlikely. Consequently,

individual trees in the sum-of-trees model are usually ’shallow’ trees, containing only a few node

layers. As illustration, This construction implicitly prevents overfitting4 to a certain extent.

Second, at each interior node the splitting variable assignments are determined by a uniform

prior distribution. Third, the splitting rules at each interior node are given an uniform prior

distribution on the discrete set of available splitting values.

(b) The prior for µij condtioning on Tj , p(µij |Tj), is a conjugate prior given by

µij ∼ N (0, σµ) where σµ =
0.5

k
√
m

(18)

where m is the number of trees and k is a parameter to be chosen, Chipman et al. (2010) found

that values between 1 and 3 yield good results. A conjugate prior is a prior distribution that causes

the posterior function to be off the same ’family’. In our case, since we chose a normal distribution

as our conjugate distribution this implies that our posterior distribution is a Gaussian distribution.

This prior guarantees that, for a BART model containing a large amount of trees m, the σµ of each

individual tree is small effectively diminishing the impact of a single tree in the model.

(c) The prior for the standard deviation of the error term σ, p(σ) is set to be an inverse chi-

squared distribution with two hyperparameters ν and λ. Such that, σ2 ∼ νλ
χ2
ν
, where ν is the

amount of degrees of freedom and λ is the scale. Chipman et al. (2010) suggest a default setting

of ν = 3 and λ is determined based on a rough estimate of the standard deviation σ̂, for example

4 The process that non-parametric methods capture patterns of a certain dataset, instead of the patterns of the
underlying data generating process.
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by computing the sample standard deviation. Then select a λ such that the q’th quantile of the

quantile is located at this rough estimate, P[σ < σ̂] = q, with a recommended value of q as 0.90.

These settings makes it so that there is not an extreme amount of probability mass around small

values of σ. Since small values of σ enables the model to overfit, this setting counters overfitting.

The posterior distribution of BART given observed data x is defined as

p((T1,M1), ..., (Tm,Mm), σ|x). (19)

In order to compute this posterior Chipman et al. (2010) propose a MCMC backfitting algorithm,

which is in general terms a Gibbs sampler.5 In order to compute estimates of the treatment effect

τ̂(x), the backfitting algorithm will first construct the posterior distribution after which we take S

samples τs(x) from this distribution. Then our estimate will be the mean of these samples, that is

τ̂(x) = S−1
∑S

s=1 τ̂s(x). Since the mathematical specification of the posterior distribution cannot

be directly derived we cannot suggest an estimator of the variance of the estimator. However, we

can still compute confidence intervals around τ̂(x) by calculating the quantiles over the sample for

any level of significance.

3.4 Comparison of random forest and BART

Since the non-parametric approaches used in this paper both look and sound very similar, for

example both using trees for estimation, we want dedicate some attention to a methodological

comparison of the random forest and BART. This might allow for better understanding of the

difference in performance of the models. This comparison is displayed graphically in Figure 2.

First of all, both models use decision trees as tool to partition the feature space. However,

BART restricts the size of these trees by setting a restrictive prior distribution on the depth of

the tree, resulting in shallow trees. Whereas the random forest does not have such a constraint,

allowing for deeper trees.

Secondly, both models use multiple of these trees in their final estimation. Nonetheless, the

models differ in the way they combine the individual trees. The random forest contains T trees,

where each tree t, partitions the data x, to eventually compute the estimated treatment effect τ̂t(x).

The final estimate for the random forest can be calculated by taking the mean of all the individual

trees. In contrast, trees in the BART model ”pass on” their contribution. The first tree takes as

input the data x and all the priors defined in the previous subsection. Since the trees are shallow,

the first tree will slightly update its priors based on the believes, provided in the data. This makes

it so the first tree captures a part of τ(x). Then it passes on the data that it has not yet captured

to the next tree in the form of a residual. This process continues until the last tree. The estimated

treatment effect can the be computed by summing over all the fits of the individual trees.

5 The technical description of this process is beyond the scope of this paper. It can be found in Section 3 of Chipman
et al. (2010).
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(a) Random forest (b) BART

Figure 2: Graphical overview of the models

The left and right panels graphically display how respectively the random forest and BART produce their estimates.
The random forest creates deep, uncorrelated, trees to then ensemble into an estimate. In contrast, each tree in the
BART model explains a fraction of the real effect. This is then summed up and captured as the final estimate.

3.5 Simulation experiments

The simulation study of Wager and Athey (2018) aims to address two types of bias often present in

practice. First, areas of relative stable τ(x) need to be identified. Second, no bias should be created

by varying the propensity scores e(x). To address this they perform to simulation experiments using

a k-nearest neighbors (k-NN) method as baseline

τ̂KNN(x) =
1

l

∑
i∈S1(x)

Yi −
1

k

∑
i∈S0(x)

Yi, (20)

where S1(x) and S0(x) are sets containing the k nearest neighbors for x in treatment group and

control group respectively. The k-NN estimates τ̂KNN (x) are assumed to be normally distributed

τ̂KNN(x)− τ(x)

V̂
(
τ̂KNN(x)

) → N (0, 1), (21)

where

V̂
(
τ̂KNN(x)

)
=
V̂ (S1) + V̂ (S0)

k(k − 1)
, (22)

with V̂ (Si) the sample variance of Si with i = 0, 1.
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The overall setup is as follows, let n and d denote the sample size and dimension of the feature

space respectively. The following functions are defined:

main effect: m(x) = 0.5× E
[
Y (0) + Y (1) | X = x

]
, (23)

treatment effect: τ(x) = E
[
Y

(1)
i − Y (0)

i | X = x
]
, (24)

treatment propensity: e(x) = P
[
W = 1 | X = x

]
. (25)

In all experiments unconfoundness is assumed, X is uniformally distributed X ∼ U([0, 1]d) and

homoskedastic white noise is present Y (i) ∼ N (E[Y (i) | X], 1) with i ∈ {0, 1}. Performance of the

estimates is evaluated by the means of two measures. The first measure is the mean-squared error

(MSE)

MSE =
1

n

n∑
i=1

(τ(xi)− τ̂(xi))
2. (26)

The second measure is the coverage probability, which is defined as the probability of the estimated

treatment effect τ̂(x) lies in the confidence interval of the true treatment effect τ(x). The target

coverage is set to 0.95.

Experiment 1

In practice, there is often correlation between the treatment assignment and the potential outcomes,

creating bias unless the methods used accurately adjust for this. To simulate this setting, the

treatment effect is fixed at τ(x) = 0 in the first experiment, the propensity score is set as

e(X) =
1

4
(1 + β2,4(X1), (27)

where X1 is the first feature and β2,4 is the density function of the beta distribution with shape

parameters 2 and 4. Finally we set the main effect as

m(X) = 2X1 − 1. (28)

Since the main goal of this experiment is to perform accurate propensity matching we use propensity

trees (Procedure 2) as the base learner, growing T = 1000 trees with subsample size s = 50. We

simulated n = 500 observations and varied d between 2 and 30. For the BART model we used the

default settings for the depth prior, that is we set α = 0.95 and β = 2. Furthermore, we set the

number of trees m = 50 and k = 3. We also use the default hyperparameter choice for the σ prior,

meaning we set ν = 3 and q = 0.90.
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Experiment 2

The second goal we want to achieve is to be able to identify neighbourhoods over which the actual

treatment effect τ(x) is relatively stable. Therefore in the second experiment we evaluate the causal

random forests performance when τ(x) is heterogeneous when holding e(x) = 0.5 and m(x) = 0

constant. Holding the propensity constant implies that the treatment assignment is independent of

the features of any observation, reducing the simulation to a randomized experiment. We set τ(x)

to be a smooth function on the first two features, X1 and X2, as

τ(x) = f(X1)f(X2), (29)

where

f(x) = 1 +
1

1 + exp (−20(x− 1/3))
. (30)

Since the goal of this experiment is to assess performance of the causal forests, we use the causal

random forest (Procedure 1) as base learner, growing T = 2000 trees with subsample size s = 2500.

We simulated n = 5000 samples and varied d between 2 and 8. For the BART model, we use the

same setting as experiment 1 however we now use 200 trees, that is m = 200.

However, k-NN and random forests are known to fill valleys and lower peaks of the true treat-

ment effect function τ(x). This shortcoming is most apparent at the edges of the feature space. In

order to demonstrate this, we perform a similar approach as described above, except now we set

the function f(x) as

f(x) =
2

1 + exp (−12(x− 1/2))
, (31)

such that τ(x) has a sharper spike around the region where x1 and x2 are approximately 1. For this

final experiment we keep the settings for the random forest the same. The settings of the BART

model also remain the same except we now use 300 trees, that is m = 300.

4 Results

In this section, we will first provide results to support the theoretical findings. Second, we will

display the outcomes of the three simulation experiments described in the previous section. Finally,

a comparison of the models will be made on observational data.

4.1 Theoretical findings

The left panels, (a) and (b), of Figure 3 display graphical diagnostics for the behaviour of the

sampling variance σ2n(x) and the infinitesimal jackknife estimator, V̂IJ(x). Panel (a) shows that the

sampling variance decreases to 0 when n increases, which suggests that Equation 8 holds, implying
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asymptotic normality. This is confirmed in panel (c) where the QQ-plot strongly resembles a

perfect linear relationship. The middle panel shows that the RMSE of the estimator compared to

the sampling variance, that is
√

E
[
(V̂IJ(x)− σ2n(x))2

]
/σ2n(x), decreases for increasing n.
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(c) Quantile plot

Figure 3: Graphical diagnostics for asymptotic normality
These figures offer graphical diagnostics on the behaviour of the sample variance σ2

n(x)2 in the left panel, the middle
panel displays the decline of the relative RMSE of the Inifinitesimal Jackkinfe compared to the sampling variance and
the left panel shows a QQ-plot of sample quantiles, computed using Equation 8, versus theoretical standard normal
quantiles. Panels (a) and (b) were computed over 50 simulation replications, the forest was trained on training
samples with varying size as displayed on the horizontal axis and tested on 1,000 randomly drawn d = 20 values for
x. Panel (c) was computed over 20 simulation replications, the forest was trained on n = 800 and tested on n = 1000
randomly drawn d = 20 values for x.

4.2 Simulation experiments

In experiment 1 we kept the treatment effect fixed at τ(x) = 0 and allowed correlation between

the treatment assignment and the propensity score. The results of this experiment are displayed

in Table 1. First of all we note that BART has the lowest MSE in the lower dimensional cases.

Both the random forest and BART outperform k-NN with k = 10, 100, implying they provide more

unbiased estimates of the treatment effect. The coverage of the random forest is best in the low

dimensional case of d = 2 and d = 3, reaching the target coverage of 0.95, however this is the only

time it is reached as the coverage decreases when the dimensionality increases, the latter is also

consistent for the nearest neighbour algorithms. BART convincingly reaches the target coverage

independent of dimensionality.

The pattern described in Table 1 extends reasonably to the second experiment. The results of

which are displayed in Table 2. The MSE of the random forest decreases when increasing the di-

mensionality for the lower dimensions, while still maintaining the 0.95 target coverage. This finding

can be explained by the innate property of flexibility of the random forest. When dimensionality in-

creases, individual trees have more flexibility in placing their splits to partition the data, this causes

less similar trees in the forest, which leads to lower correlation between the trees. Furthermore, the
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MSE Coverage

d RF BART 10-NN 100-NN RF BART 10-NN 100-NN

2 0.024 (1) 0.015 (1) 0.204 (2) 0.092 (2) 0.947 (5) 0.991 (2) 0.934 (2) 0.601 (11)
5 0.017 (1) 0.011 (1) 0.240 (3) 0.114 (3) 0.947 (5) 0.993 (2) 0.923 (2) 0.532 (11)
10 0.016 (1) 0.010 (1) 0.288 (3) 0.125 (3) 0.926 (8) 0.992 (3) 0.905 (2) 0.496 (12)
15 0.016 (1) 0.008 (1) 0.308 (3) 0.127 (3) 0.918 (8) 0.996 (2) 0.900 (2) 0.494 (12)
20 0.019 (1) 0.007 (1) 0.326 (4) 0.136 (3) 0.867 (11) 0.997 (1) 0.893 (2) 0.453 (12)
30 0.020 (1) 0.005 (0) 0.337 (4) 0.136 (3) 0.844 (11) 0.999 (1) 0.889 (2) 0.457 (12)
40 0.024 (1) 0.005 (0) 0.337 (4) 0.13 (3) 0.792 (14) 0.999 (1) 0.889 (2) 0.470 (12)

Table 1: Output for simulation experiment 1

This table reports the MSE and coverage of the random forest (RF), BART and k-NN with k = 10, 100 for
experiment 1. The reported values are means calculated over 500 simulations repetitions. The integers between
brackets multiplied by 10−3 denote the standard error of the simulation. Bold values indicate the target coverage is
hit.

product of the variance of the individual trees multiplied by the correlation of all the trees equals

the variance of the random forest. The increase in flexibility of individual trees therefore lowers

the variance of the random forest which allows for a lower MSE. This property does not extend

to BART, due to its additive nature, therefore we note that BART has a slightly increasing MSE.

Furthermore, we find that the coverage decreases when dimensionality increases for the random

forest and for k-NN. The coverage BART dropped compared to the first experiment but it still

managed to hit the target coverage every time, whilst providing the lowest MSE estimates of all

the models.

MSE Coverage

d RF BART 7-NN 50-NN RF BART 7-NN 50-NN

2 0.039 (1) 0.018 (1) 0.282 (3) 0.041 (1) 0.968 (3) 0.964 (7) 0.930 (2) 0.947 (4)
3 0.030 (1) 0.017 (1) 0.289 (3) 0.052 (1) 0.958 (3) 0.967 (8) 0.926 (2) 0.919 (4)
4 0.026 (1) 0.017 (1) 0.296 (3) 0.075 (2) 0.953 (5) 0.971 (7) 0.926 (2) 0.856 (5)
5 0.026 (1) 0.018 (1) 0.312 (4) 0.113 (2) 0.929 (6) 0.970 (6) 0.922 (2) 0.760 (5)
6 0.026 (1) 0.019 (1) 0.337 (3) 0.149 (2) 0.915 (9) 0.956 (9) 0.913 (2) 0.684 (6)
8 0.027 (1) 0.019 (1) 0.383 (4) 0.214 (3) 0.897 (9) 0.967 (6) 0.895 (2) 0.566 (5)

Table 2: Output for simulation experiment 2

This table reports the MSE and coverage of the random forest (RF), BART and k-NN with k = 7, 50 for experiment
2. The reported values are means calculated over 25 simulations repetitions. The integers between brackets
multiplied by 10−3 denote the standard error of the simulation. Bold values indicate the target coverage is hit.

When comparing Table 2 with Table 3 we find some notable similarities and differences. Firstly,

the MSE of the random forest decreases for lower dimensions, after The MSE is lower for a sub-

stantial amount of model predictions, when compared to Table 2. Since this is also apparent for

the k-NN this could be caused by the experimental setup, τ(x) is easier to estimate for a large part

of the sample. Secondly, the target coverage is not hit once by the random forest and decreases

rapidly with d. This implies that the random forest is affected by bias.
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MSE Coverage

d RF BART 10-NN 100-NN RF BART 10-NN 100-NN

2 0.018 (0) 0.017 (0) 0.200 (2) 0.021 (0) 0.936 (3) 0.953 (4) 0.935 (2) 0.946 (2)
3 0.016 (1) 0.018 (1) 0.202 (2) 0.030 (1) 0.898 (6) 0.945 (5) 0.934 (1) 0.898 (4)
4 0.018 (1) 0.018 (1) 0.209 (2) 0.054 (1) 0.857 (8) 0.946 (6) 0.932 (1) 0.790 (4)
5 0.019 (1) 0.018 (1) 0.222 (2) 0.094 (1) 0.811 (10) 0.941 (6) 0.927 (2) 0.666 (5)
6 0.020 (1) 0.018 (1) 0.240 (2) 0.145 (2) 0.796 (9) 0.944 (4) 0.921 (2) 0.579 (5)
8 0.026 (1) 0.019 (1) 0.291 (2) 0.263 (3) 0.716 (14) 0.937 (6) 0.900 (2) 0.447 (6)

Table 3: Output for simulation experiment 2, sharp τ(x)

This table reports the MSE and coverage of the random forest (RF), BART and k-NN with k = 10, 100 for
experiment 2, with the sharp τ(x). The reported values are means calculated over 40 simulations repetitions. The
integers between brackets multiplied by 10−3 denote the standard error of the simulation. Bold values indicate the
target coverage is hit.

To further understand this phenomenon we plotted the response surfaces in Figure 4. When

comparing the rows in the top window we find that the random forest and BART clearly capture the

true response surface better than k-NN. However the second row shows that the random forest is

having trouble to accurately capture the peak in the top right of surface, whereas BART captures

this more accurately. We see that this pattern extends to the bottom pannel, which displays a

higher dimensional problem. In this case, they perform similar to the low dimensionality while the

performance of k-NN decreases more. This illustrates that BART is noticable less affected by the

bias at the edge of the feature space. Therefore, it is able to maintain the target coverage rate

for more than half of the tested dimensions. However, we do note that the coverage tends to be

decreasing, implying that BART would get affected by bias in higher dimensional problems.
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(a) True (b) RF (c) BART (d) KNN

(e) True (f) RF (g) BART (h) KNN

Figure 4: Graphical representation of the treatment effect function response surface

The top half, with columns (a) through (d), corresponds to a low dimensional setting with d = 6. The bottom half,
with columns (e) through (h), corresponds to a high dimensional setting with d = 20.The first and the second row
represent the response surfaces for function τ(x) corresponding with Table 2 and Table 3 respectively. The colors
indicate values of τ(x) for the first column and τ̂(x) for the other columns. On the scale, a red color implies a low
value where a (white) yellow color implies a high value.
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4.3 Model comparison based on observational data

For our BART model we used the default settings for the depth prior, that is we set α = 0.95 and

β = 2. Furthermore, we set the number of trees m = 100 and k = 3. We also use the default

hyperparameter choice for the σ prior, meaning we set ν = 3 and q = 0.90. We will compare the

behaviour of the random forest to BART. Wager and Athey (2018) proposed two procedure to

construct random trees, the first procedure is the double-sample tree and the second procedure is

the propensity tree, recall that when taking an ensemble of these trees our random forest model

is formed. We will compare differences between these two procedure as well as to BART. For

both procedure we set the number of trees T = 2000. For the double-sample forest we set the

subsamplesize s = 0.05n and for the propensity forest we set the subsamplesize s = 0.1n, recall

that n = 24583, which makes the subsamplezie s = 1229 and s = 2458 respectively.

With these settings we estimate the treatment effects for the individuals in the dataset. Since

we are only interested in the estimation of the treatment effect and not in, for example out of sample

performance, we first estimate the models (“train”) for the entire dataset. Then we let the models

predict (“test”) on the same dataset, this will return the models estimates for the treatment effect

since the structure of the models are locked in this stage. The results are displayed in Figure 5,

where each panel presents the treatment effect estimates when conditioned on one of the variables.

Note that the models solely provide point estimates, the lines drawn in the graph are merely present

to more clearly display the trend in the conditional treatment effect.

Firstly, the estimates provided by the propensity forest seem to be quite insensitive to changes

in the variables. It only appears to slightly capture the trend, as can be seen by the curvature in

panel (a) of Figure 5. The propensity forest has a very narrow distribution around its mean, this is

displayed more clearly in Figure 6 panel (c), which displays the distribution of estimated treatment

effect on individual level. 5 also shows that BART and the double-sample forest provide very similar

estimations, where BART displays more sensitivity as it shows more sudden fluctuation than the

double-sample forest. This is paired with more uncertainty about the point estimates for BART

since the 95% confidence interval is broader than the confidence interval of the double-sample forest.

Given this information we can discuss model performance. Firstly, it is clear to see that the

propensity forest (Forest 2) does not seem to accurately capture patterns in the data. Therefore,

this model will be deemed as worst performing. The double-sample forest and BART provide very

similar estimations. An argument could be made that since the double-sample forest has a smaller

confidence interval, it provides the best point estimates. However, we have seen in the simulation

experiment that the coverage probability of the forest is not guaranteed to be 0.95. Especially

not in the case of a sharp peak around the edge of the feature space. Since it is unclear whether

that is the case in this observational setting we find BART to provide the most reliable estimates.

Therefore, we rank BART as the best performing model, followed by the double-sample forest.
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(a) Age (b) Educ

(c) Ideology (d) Party

(e) Racist (f) Year

Figure 5: Conditional treatment effect estimates τ̂(x)

The solid lines represent mean individual treatment effect estimates aggregated over the characteristic displayed on
the horizontal axis. So the first observation in the top left panel corresponds with the mean treatment effect of
respondents with age 18. The black, blue and red line correspond with the models BART, random forest computed
according to procedure 1 (double-sample forest) and random forest computed according to procedure 2
(propensity forest) respectively. The dotted lines represents the 95% confidence interval for the estimates.

For the interpretation of Figure 5, recall that the individuals in the control group and treated

group received a question about money spent on “assistance to the poor” and “welfare” respectively.

Since all the conditional treatment effect estimates, displayed in the graphs, are positive we can

conclude that the average treatment effect is also positive, which takes a value of around 0.33 for

all the models. This means that on average the probability that an individual thinks too much

money is spent on welfare is higher than the probability that an individual thinks too much money

is spent on assistance to the poor. When conditioning on the characteristics of individuals we find
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some notable patterns. Especially for the characteristics political ideology, party affiliation and

racist tendencies, displayed in panels (c), (d) and (e) respectively. We can clearly see an up-sloping

trend for the treatment effect for these characteristics. This means that individuals that are more

conservative have a higher treatment effect compared to more liberal individuals. The same holds for

party affiliation. Note that in the American political system these two variables are often closely

related, liberal often corresponds with democratic affiliation and conservative often corresponds

with republican affiliation. Individuals with more racist tendencies have a higher treatment effect

than individuals with less racist tendencies. For the other characteristics, age of the individual,

years of education and year of the survey, there is no distinct pattern visible. However, there are

increased treatment effect estimates for the years 1993, 1994 and 1996, shown in panel (f). This

peak may be caused by President Bill Clinton’s first term in office (1993-1996). Clinton actively

advocated for welfare reform policies. Therefore, the difference between assistance to the poor and

welfare might have been increased due to the presence of the term welfare in Clinton’s campaign

and during his presidency. This in turn causes increased treatment effect estimates.

(a) BART (b) Double-sample forest (c) Propensity forest

Figure 6: Estimated treatment effect probability distribution

The frequency is displayed on the vertical axis, the treatment effect estimate is displayed on the horizontal axis in
bins with width of 0.01. The colours of the histogram correspond with the colours used in 5. Note that the scale of
panel (c) differs with a factor 4.
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5 Conclusion

Focusing on the issue of treatment effect estimation we have compared the performance of multiple

methods in both a simulation experiment and an observational study. We have introduced three

methods: a double-sample random forest, a propensity forest and BART, to answer the research

question:

RQ: How do causal random forests perform compared to Bayesian Additive Regression Trees (BART)

when exposed to observational data?

We have found that, based on the simulation experiment, the random forests are outperformed

by BART in both mean-squared error (MSE) and statistical coverage. However, the random forests

do, in general, outperform a baseline k-nearest neighbour algorithm. One of the main flaws of the

random forest is that when the response surface of the treatment effect gets sharp around the edges

of the feature space, the performance of the random forest tends to diminish rapidly.

When comparing the performance of the three methods when exposed to observational data, we

find that the double-sample forest and BART provide similar, realistic, estimations. The propensity

forest does not seem to manage to capture the patterns present in the data. Even though the

double-sample forest and BART provide similar estimates, we would still suggest the use of BART

in practice. Since, it has shown to consistently hit the target coverage rate in the simulation

experiment and to maintain the lowest MSE in general, even when the response surface of the

treatment effect gets sharp around the edges of the feature space.

5.1 Future research

It is known that in machine learning the choice of hyperparameters can have substantial effect

on the performance of the methods. Due to computational constraints we did not include any

hyperparameter tuning in our research and used default values suggested by Chipman et al. (2010),

Green and Kern (2012) and Wager and Athey (2018). Hence, in future research, hyperparameter

tuning could be performed to evaluate whether this positively impacts the performance of any of

the methods used. Secondly, we compared the random forests to one competing model. For further

research, a broader array of models could be compared on multiple varying simulation experiments

and multiple observational studies. This creates an overview of the treatment effect estimation

repertoire, which allows researchers to select models that fit their research setting best.
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Appendix A

Below is the formulation of the questions asked on the survey.

• Main question: We are faced with many problems in this country, none of which can be solved

easily or inexpensively. I’m going to name some of these problems, and for each one I’d like

you to name some of these problems, and for each one I’d like you to tell me whether you

think we’re spending too much money on it, too little money, or about the right amount.

First, are we spending too much, too little, or about the right amount on assistance to the

poor (welfare)?

• Ideology : We hear a lot of talk these days about liberals and conservatives. I’m going to show

you a seven-point scale on which the political views that people might hold are arranged from

extremely liberal–point 1–to extremely conservative–point 7. Where would you place yourself

on this scale?

• Party : Generally speaking, do you usually think of yourself as a Republican, Democrat,

Independent, or what?

– Strong democrat (0)

– Not strong democrat (1)

– Independent near democrat (2)

– Independent (3)

– Independent near republican (4)

– Not strong republican (5)

– Strong republican (6)

– Other party (7)

• Racist : On the average (Negroes/Blacks/African-Americans) have worse jobs, income, and

housing than white people.

– Do you think these differences are mainly due to discrimination? (“yes”=0, “no”=1)

– Do you think these differences are because most (Negroes/Blacks/African-Americans)

have less in-born ability to learn? (“yes”=1, “no”=0)

– Do you think these differences are because most (Negroes/Blacks/African-Americans)

don’t have the chance for education that it takes to rise out of poverty? (“yes”=0,

“no”=1)
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– Do you think these differences are because most (Negroes/Blacks/African-Americans)

just don’t have the motivation or will power to pull themselves up out of poverty?

(“yes”=1, “no”=0)
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