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Abstract

This paper evaluates the predictive accuracy of different Holt-Winters methods for a twelve week

time series of electricity demand in England and Wales. Double seasonal Holt-Winters outperforms

Holt-Winters and a well defined multiplicative seasonal ARIMA model. Moreover, this paper

evaluates the performance of the best Holt-Winters method, double seasonal Holt-Winters, with

models utilising the frequency domain. Frequency domain models are not able to outperform

double seasonal Holt-Winters for electricity demand in England and Wales. However, they are

able to outperform double seasonal Holt-Winters for a more complex, five year, electricity demand

time series in France. Short-term electricity demand forecasting utilising the frequency domain is

promising for longer time series with more seasonal variance.
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1 Introduction

Accurate predictions of demand are in general vital across industries. Accurate predictions are bene-

ficial since it reduces the number of times that inventory problems occur for companies, empty taxis

that congest the city for example, Yao et al. (2018). Demand forecasting is especially of importance

for goods where storage is not possible, electricity for example, where forecast errors have significant

impact on profits, Fan and Chen (2006), and where an increase of 1% in the forecast error could lead

to the loss of millions of dollars, Al-Musaylh et al. (2018). Accurate demand predictions for electricity

can greatly reduce financial but also environmental costs. Ghalehkhondabi et al. (2017) show that

much research regarding electricity demand forecasting has been done and different methods have

been proposed to accurately predict the demand for electricity. They further show that research is

still able to continuously improve existing electricity demand methods and successfully introduce new

methods. This is also the goal of this paper.

A key characteristic of many demand functions is seasonality. This is the case for electric-

ity demand as well. Electricity demand shows three seasonal cycles, a within-day, within-week and

within-year seasonal cycle. Taylor (2003) shows that double seasonal exponential smoothing is a viable

method to accurately predict electricity demand and that double seasonal exponential smoothing out-

performs a multiplicative seasonal autoregressive integrated moving average (ARIMA) for predicting

electricity demand for a time series with a within-day and within-week seasonal pattern. Electricity

demand with a within-year seasonal cycle is analysed in Taylor (2010) and it is concluded that a triple

seasonal specification of an autoregressive moving average (ARMA) and Holt-Winters outperform

their double seasonal specification for this time series. These models are of the class time domain

models.

Time domain models display changes in a signal, electricity demand in this case, over time.

Changes in a signal can however also be displayed in the frequency domain, where how much of a signal

is apparent in a frequency band is shown. The two time series discussed in this paper are well suited

for analysis in the frequency domain since they show strong seasonal patterns. Forecasting utilising

the frequency domain means that the time series needs to be expressed as a Fourier series. Bloomfield

(2004) explains that Fourier series that represent time series data can be expressed by a family of

trigonometric functions. This transformed data can be analysed in the frequency domain since the

family of trigonometric functions map the variation of the time series on a frequency band. A benefit

of this approach is that trigonometric functions are able to model complex seasonalities that are not

able to be modelled with exponential smoothing methods, De Livera et al. (2011). For analysis in

the frequency domain many parameters have to be estimated. Therefore, the least absolute shrinkage

and selection operator (LASSO) from Tibshirani (1996) is useful. This criterion shrinks parameter

estimates, reduces the parameter set and therefore improves forecast accuracy and ease of parameter

interpretation.

To my knowledge there is no existing research that compares the performance of time do-

main models with frequency domain models in forecasting short-term electricity demand for a time
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series with three strong seasonal patterns. The aim of this paper is to contribute to existing literature

by answering the following research question: Can models based on Fourier series that incorporate

seasonal patterns outperform a double seasonal Holt-Winters method in forecasting short-term elec-

tricity demand? In this paper I find that a model based on Fourier series that incorporates three

seasonal patterns, which I refer to as a Triple Fourier model, is able to outperform double seasonal

Holt-Winters for a five year time series of electricity demand in France, if error terms are correctly

modelled. A Double Fourier model does not outperform a double seasonal Holt-Winters method.

This paper is split in six sections. Section 1 contains the introduction. In Section 2 I discuss

the current standing in the literature for short-term electricity demand forecasting with time- and

frequency domain models. In Section 3 I give a concise overview of key characteristics of the data that

I use in this research. Then, in Section 4 I introduce the models used in Taylor (2003) that I use for

analysis of electricity demand in England and Wales first. In the second part of Section 4 I introduce

a modification of these models for analysis of electricity demand in France and I conclude Section 4

by introducing the Fourier models, LASSO estimation, and the metrics I use for evaluation. I discuss

my results in Section 5. The last section, Section 6, consists of the discussion and conclusion. Here, I

conclude my research, evaluate my methods and suggest recommended future research.

2 Literature Review

This paper discusses univariate forecasting of short-term electricity demand in the time domain and

in the frequency domain. Short-term electricity forecasting in the time domain is discussed in many

papers and hence literature regarding forecasting in the time domain is discussed first.

This paper mainly builds upon the paper Taylor (2003), therefore that paper will be the start-

ing point for the literature review in the time domain. Taylor (2003) forecasts half-hourly short-term

electricity demand with the standard and an adapted Holt-Winters exponential smoothing formula-

tion and a multiplicative seasonal ARIMA model. Holt-Winters exponential smoothing is introduced

in Winters (1960). The method is introduced to be able to forecast sales that show seasonality. It

is the first method that could accurately do this without the need for extensive storage space at the

time. Holt-Winters is still a popular forecasting procedure for time-series that show seasonality. The

Holt-Winters exponential smoothing procedure introduced in Winters (1960) can only incorporate

one seasonal pattern. Many time series show more seasonal patterns however, one example being

electricity demand. Taylor (2003) therefore introduces double seasonal Holt-Winters to incorporate a

second seasonal pattern. But, electricity demand shows a third seasonal pattern as well, one on yearly

basis. To incorporate that seasonal pattern Taylor (2010) introduces triple seasonal Holt-Winters.

Holt-Winters methods are recursive and initial values for the parameters are important for the fore-

cast accuracy. Trull et al. (2020) provide a framework for initialization methods and which method to

use for the different parameters in Holt-Winters with multiple seasonalities. Another recent paper by

Jiang et al. (2020) shows how Holt-Winters is enhanced for situations with insufficient training data

and that Holt-Winters performs well in such situations. Thus, the Holt-Winters exponential smooth-
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ing formulation is flexible, can forecast time series with multiple seasonal patterns and is particularly

useful for forecasting sales and short-term (electricity) demand, Chatfield and Yar (1988).

The Holt-Winters method belongs to the class of exponential smoothing methods. A key

characteristic of all methods that fall under the umbrella of exponential smoothing is that the fore-

casts are based on a weighted average of past observations. The smoothing methodology is called

‘exponential’ smoothing as the weights decrease exponentially over time, Hyndman et al. (2008). The

exponential smoothing method was first introduced by Brown and Holt in the early 50s. Exponential

smoothing became popular since the method gave good results in comparison with more complicated

forecasting methods such as Box-Jenkins, Gardner Jr (1985). Smooth transition methods are used

for forecasting financial time series as well, one example being a recent paper by Liu et al. (2020).

They provide further empirical evidence, on already existing literature, that exponential smoothing

methods are among the most robust and accurate models for forecasting daily volatility. Lidiema

(2017), De Oliveira and Oliveira (2018), Smyl (2020) and Yang et al. (2018) show other areas in which

(Holt-Winters) exponential smoothing is applied. Thus, exponential smoothing methods are widely

applicable for forecasting different time series, of which Holt-Winters for electricity demand is one of

the many possible applications of exponential smoothing.

Beside Holt-Winters there are other approaches for short-term electricity demand forecast-

ing. Taylor (2003) mentions that ARIMA models are widely used benchmark models for short-term

electricity demand forecasting. Therefore, he implements an ARIMA model for forecasting short-term

electricity demand as well. ARIMA models were introduced in the 1970s by George Box and Gwilym

Jenkins and they are popular for their statistical properties and well explained methodology, according

to Box et al. (2015). In addition, the models are flexible in that they can represent multiple types of

time series, purely autoregressive (AR), purely moving average (MA) but also combined (ARIMA).

A major limitation is that the model assumes as linear correlation structure for the time series obser-

vations, Zhang (2003).

Finally, it is also possible to forecast time series data using the frequency domain instead of

the time domain. To achieve this, data from the time domain is transformed to the frequency domain

through trigonometric functions. The expression of data in the frequency domain via trigonometric

functions is called Fourier analysis. The reason trigonometric functions are mostly used for analysing

time series data is due to their simple behavior when the scale of time changes, Bloomfield (2004).

The foundations for Fourier analysis were laid in Fourier (1822). Fourier methods were however only

widely applicable after Cooley and Tukey (1965) introduced an algorithm that significantly reduced

the computational time. Two well cited books discuss the applications of Fourier series for time

series, Fuller (2009) and Bloomfield (2004). Both books explain well how periodic time series can

be analysed in the frequency domain by extracting cycles from the data via trigonometric functions.

Trigonometric functions are also crucial in the paper by De Livera et al. (2011). They introduce a

new state space modeling framework utilising Fourier series for forecasting time series with complex

seasonalities. De Livera et al. (2011) show that the trigonometric formulation, based on Fourier series,

can decompose the seasonal time series in non-integer cycles, i.e. 365.25. Existing univariate models
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such as Holt-Winters can only incorporate integer cycles, i.e. 365. Together with Box-Cox transfor-

mations and ARMA error correction this modelling framework incorporating trigonometric functions

leads to better out-of-sample performance than traditional seasonal exponential smoothing methods.

Karabiber and Xydis (2019) implement trigonometric functions for time series analysis as well. They

forecast the Danish electricity price. Fourier analysis of time series is also present in other academic

fields. Bush et al. (2017) analyse the effect of climate change on phenological activity in ecosystems

for example. Thus, Fourier analysis is applicable for time series in different academic fields. In this

paper I focus on electricity demand time series. De Livera et al. (2011) consider electricity demand

in Turkey where forecasting based on trigonometric functions proves to provide accurate forecasts. In

this paper I analyse two different electricity demand time series.

3 Data

Two different electricity demand time series are considered in this paper. I use half-hourly electricity

demand from England and Wales and half- and bi-hourly electricity demand from France. Data for

England and Wales is retrieved from the forecast package in R written by Hyndman and Khandakar

(2008). The data from England and Wales, Figure 1, is for a period of twelve weeks and includes 4032

observations. Within this period two seasonal patterns are apparent, a within-day seasonal cycle of 48

half-hour periods and a within-week seasonal cycle of 336 half-hour periods. These cycles are visible

in the seasonal decomposed plot in Figure 10 in Appendix A, where the third box on the left shows

the within-day seasonal cycle and the first box on the right shows the within-week seasonal cycle. The

sample is split into an estimation and evaluation sample. The estimation samples contains the first

eight weeks of observations, namely 2688 observations. The evaluation sample contains the remaining

four weeks of in total 1344 observations.

The data of electricity demand in France, Figure 2, is for a five year period and includes

87648 observations considering half-hourly electricity demand. The estimation sample includes the first

four years and the evaluation sample the last year of observations. Bi-hourly demand is constructed

by taking the average of four consecutive observations. The half- and bi-hourly data show a third

seasonality, namely a within year seasonal cycle of 336 * 52 half-hour periods. Data for France is

retrieved from the website of Réseau de Transport d’Électricité, RTE (2020). The mstl() function

from the forecast package from R does not detect any seasonalities in the time series with electricity

demand in France. Therefore, the time series is more complex than the electricity demand time series

for England and Wales, the output of the mstl() function is presented in Appendix A in Figure

11. Summary statistics of both time series are shown in Table 1. From the summary statistics and

time series plots it is clear that electricity demand is quite constant during late spring, summer and

early autumn, except for August. Electricity demand in August is consistently lower in France since

most people go on vacation during that month. Electricity demand is less consistent during the

winter months since demand is higher and therefore general changes in electricity demand, such as

the Christmas holidays, have a larger influence on overall demand.
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Figure 1: Half-hourly electricity demand in England and Wales from Monday 5th of June 2000 till

Sunday 27th of August 2000.

Figure 2: Half-hourly electricity demand in France from 1st of January 2015 till 31st of December

2019.

Table 1: Summary statistics for the whole sample of England and Wales and France.

Electricity Demand in England and Wales (MW) Electricity Demand in France (MW)

Mean 29617 54274

Maximum 38777 96272

Minimum 18640 29590

Std. Dev. 5567 11911

Skewness -0.077 0.470

Kurtosis 1.659 2.611

Jarque-Bera 306.285 3774.500

4 Methodology

The methodology section is split in three parts. First, the replication part where all models used

in Taylor (2003) are reviewed. Second, the extension part where the adaption of the Holt-Winters

method for yearly data and the approach towards modelling in the frequency domain is explained.

Finally, the metrics that I use for evaluation are clarified.
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4.1 Methods for replication

In this section I review the methods used in Taylor (2003). First, I introduce the multiplicative

seasonal ARIMA model and then I review multiple Holt-Winters methods.

4.1.1 Multiplicative seasonal ARIMA

Within this section the electricity demand at time t is referred to as yt. A multiplicative seasonal

ARIMA model with just one seasonal pattern is written as:

φp(L)ΦP (Ls)∇d∇Ds yt = θq(L)ΘQ(Ls)εt, (1)

where L is the lag operator, ∇ is the difference operator, (1−L), s is the number of periods within a

seasonal cycle, thus ∇s is the seasonal difference operator, d and D are the orders of differencing, εt is

a white noise error term, and φp, Φp, θq and ΘQ are polynomials of orders p, P , q and Q respectively,

Taylor (2003). The model is multiplicative in the sense that the lag operators L and Ls are multiplied

on each side of the equation resulting in a vast collection of lag operators. Within the literature this

model is often referred to as an ARIMA(p, d, q) x (P,D,Q)s model.

Following Box et al. (2015), the multiplicative seasonal ARIMA model can be extended to

incorporate multiple seasonalities. In the case of two seasonalities the model is called multiplicative

double seasonal ARIMA and is written as:

φp(L)ΦP1
(Ls1)ΩP2

(Ls2)∇d∇D1
s1 ∇

D2
s2 yt = θq(L)ΘQ1

(Ls1)ΨQ2
(Ls2)εt, (2)

where the new symbols s1 and s2 refer to the number of periods within the two seasonal cycles, and

ΩP2
and ΨQ2

are polynomial functions of orders P2 and Q2, respectively. This model is referred to

as ARIMA(p, d, q) x (P1, D1, Q1)s1 x (P2, D2, Q2)s2 in Taylor (2003). Just like the extension for two

seasonalities the model can easily be adjusted to include a third seasonality.

In Taylor (2003) the Bayesian information criterion (BIC) from Schwarz et al. (1978) is

compared for an extensive range of ARIMA models and the model with the lowest BIC and satisfactory

residuals is an ARIMA(2, 0, 0) x (2, 0, 2)48 x (2, 0, 2)336 model. Therefore, I use this model in the

empirical analysis. This model is referred to as the double seasonal ARIMA model in Taylor (2003),

in this paper I use the same notation. I estimate the parameters of the double seasonal ARIMA for

electricity demand in England and Wales and I implement the double seasonal ARIMA model in the

R programming language. Parameter estimates are obtained with maximum likelihood estimation via

the msarima() function from the smooth package, written by Svetunkov (2021).

4.1.2 Holt-Winters

Besides ARIMA, I use Holt-Winters methods as well. In this section electricity demand at time t is

referred to as yt. The standard Holt-Winters method is used for series with one seasonal pattern and
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its multiplicative version is written as:

Level St = λ(yt/It−s) + (1− λ)(St−1 + Tt−1),

Trend Tt = γ(St − St−1) + (1− γ)Tt−1,

Seasonality It = δ(yt/St) + (1− δ)It−s,

Forecast ŷt(h) = (St + hTt)It−s+h,

(3)

where λ, γ and δ are smoothing parameters, and ŷt(h) is the h-step ahead forecast. Initial values

for the standard Holt-Winters method are estimated according to methodology of Wheelwright et al.

(1998):

Level S0 =
(y1 + y2 + ...+ ys)

s
,

Trend T0 =
(ys+1 + ys+2 + ...+ ys+s)− (y1 + y2 + ...+ ys)

s2
,

Seasonality I0 = (I1, I2, ..., Is) =

(
y1
S0
,
y2
S0
, ...,

ys
S0

)
,

(4)

where s = 48 for within-day seasonal Holt-Winters and s = 336 for within-week seasonal Holt-Winters.

The daily cycle is of length 48 and the weekly cycle of length 336 since I consider half-hourly demand.

This results in 48 observations per day and 336 per week. After initialisation parameter estimates

can be obtained via equation (3). The Holt-Winters method is multiplicative in the sense that the

underlying level of the series is multiplied with the seasonal index. This is appropriate if the seasonal

variation depends on the level of the series, Taylor (2003). Following Taylor (2003) I implement the

multiplicative version of the model.

Since the standard Holt-Winters method is only able to accommodate one seasonal pattern

I extend the method to incorporate the second seasonal pattern that is apparent from the electricity

demand time series of England and Wales, Figure 1. This seasonal pattern is included in the double

seasonal Holt-Winters method and this method is written as:

Level St = λ{yt/(Dt−s1Wt−s2)}+ (1− λ)(St−1 + Tt−1),

Trend Tt = γ(St − St−1) + (1− γ)Tt−1,

Seasonality 1 Dt = δ{yt/(StWt−s2)}+ (1− δ)Dt−s1 ,

Seasonality 2 Wt = ω{yt/(StDt−s1)}+ (1− ω)Wt−s2 ,

Forecast ŷt(h) = (St + hTt)Dt−s1+hWt−s2+h,

(5)

where λ, γ, δ and ω are the smoothing parameters, and ŷt(h) is the h-step ahead forecast. When this

method is applied to the data of England and Wales, s1 = 48 and s2 = 336. In that case Dt would

represent the within-day and Wt the within-week seasonality. Initial values for Trend and Level are

constructed as:

Trend T0 =
1

2

{ 1

N

( 1

N

N∑
t=1

yt −
1

N

2N∑
t=N+1

yt

)
+

1

N

N∑
t=1

∆yt

}
,

Level S0 =
( 1

2N

2N∑
t=1

yt

)
− (N + 0.5)T0,

(6)

where N = 336. Initial values for the within-day seasonal index, Dt, are set as the average of the

ratios of the actual observation at time t relative to their 48-point centred moving average, taken from
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the same half-hour for each day of the first week. For example, the first of 48 initial values for the

within-day seasonal index is:

D0,1 =
1

7

6∑
k=0

y1+48k

M48
1+48k

, (7)

where M48 is the 48-point centred moving average at time t = 1 + 48k, and k runs from 0 to 6 such

that the average of the same half-hour for each day is computed. Initial values for the within-week

seasonal index, Wt, are set as the average of the ratios of the actual observation at time t relative to

their 336-point centred moving average, taken from the same half-hour period on the same day of the

first two weeks, divided by the initial within-day seasonal index at time t. For example, the first of

336 initial values for the within-week seasonal index is:

W0,1 =
1

2

( y1
M336

1

+
y337
M336

337

) 1

D0,1
, (8)

where M336 is the 336-point centred moving average at time t = 1 and t = 337. Taylor (2003) sets

the initial values accordingly.

The Holt-Winters methods are adjusted for autocorrelation by incorporating an AR(1)

model, εt = ηεt−1 + ζt to the one-step-ahead forecast errors, εt. The h-step ahead forecasts from

the origin τ is also to be adjusted by adding a term, namely: ηhετ . This adjustment is originally

proposed by Reid (1975) and Gilchrist (1976). The forecast for Holt-Winters and the double seasonal

Holt-Winters with an AR(1) model for the one-step-ahead forecast errors is respectively written as:

ŷt(h) = (St + hTt)It−s+h + ηhεt,

ŷt(h) = (St + hTt)Dt−s1+hWt−s2+h + ηhεt.
(9)

Parameters of the Holt-Winters exponential smoothing method are estimated by minimizing

the sum of squared one-step-ahead forecast errors, which is to minimize the following:

λ̂ = arg min
t

∑
t

(yt − ŷt)2. (10)

For double seasonal Holt-Winters without AR(1) adjustment and within-week Holt-Winters without

AR(1) adjustment the parameter estimates are obtained from the R programming language with

functions from the forecast package, Hyndman and Khandakar (2008). These functions follow the

same estimation procedure as I have described Section 4.1.2. Parameter values of the other Holt-

Winters methods are estimated with the fmincon() function of Matlab according to Section 4.1.2 as

well.

4.2 Methods for extension

I this section I discuss the methods I use for the extension. I first discuss the adaption of double

seasonal Holt-Winters for electricity demand in France, which is an annual time series with an addi-

tional seasonal cycle. Then, I introduce the Fourier models that I use for analysis in the frequency

domain. I introduce Fourier models for electricity demand in England and Wales and how to extend

those Fourier models for electricity demand in France.
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4.2.1 Double seasonal Holt-Winters with rolling window

I adjust the double seasonal Holt-Winters method from Section 4.1.2 for analysis of electricity demand

in France by implementing a rolling window. Taylor (2010) considers two annual electricity demand

time series with similar seasonal cycles as I observe for electricity demand in France. In Taylor (2010)

additive and multiplicative formulations of double seasonal Holt-Winters led to similar results. There-

fore, I again use the multiplicative seasonality formulation. The rolling window includes observations

for two months and moves one week at a time. Initial values for the first window are estimated ac-

cording to Section 4.1.2 equations (6) till (8). However, from the second window on-wards the initial

values for Trend, Level and the seasonal indices are estimated differently. The initial values for Trend

and Level are the estimated Trend and Level values at observation 336 from the previous window.

The initial values for the within-day seasonal index are the estimated values from the within-day

seasonal index from the previous window at observations 289 till 336. Similarly, the initial values for

the within-week seasonal index are the estimated values from the within-week seasonal index from the

previous window at observations 1 till 336. This procedure is motivated by observing that the window

moves with 336 half-hour periods at a time and therefore window k essentially starts at observation

337 from window k − 1.

Forecasts are constructed similarly to double seasonal Holt-Winters in Section 4.1.2. How-

ever, since the window moves one week at a time forecasts are essentially constructed on weekly basis

since new forecasts are made for week two till eight of the forecast period of the previous window.

Only for the last window the forecast period is different. The last forecast period consists of one week

plus one additional day since the year consists of 365 days which are 52 weeks plus one day.

4.2.2 Fourier series models

The essence of Fourier series is to express a time series as a function of weighted trigonometric

functions, Bloomfield (2004). Fourier proved that a time series can be completely represented by

weighted average of trigonometric functions. A model that can completely represent the time series

is a Full Fourier series model, based on trigonometric functions from Bloomfield (2004):

yt = c+

K∑
k=1

γ
(1)
k sin

(
2πkt

N

)
+ γ

(2)
k cos

(
2πkt

N

)
, (11)

where yt is electricity demand at time t, c denotes a constant, γ
(1)
k and γ

(2)
k denote the coefficients that

weight the different harmonics, N is the sample size and by setting K = N/2, the model perfectly fits

the data. Since there is no stochastic dependence all h-step ahead forecasts will be the same.

I estimate c, γ
(1)
k and γ

(2)
k in equation (11) with the least absolute shrinkage and selection

operator (LASSO) from Tibshirani (1996):

n∑
i=1

(
yi −

∑
j

xijβj

)2
+ λ

∑
|βj |, (12)

where yi is the response variable for predictors xij and λ is the tuning parameter for the second term,

which is the penalty term for the number of included variables. Hence, when λ is small, LASSO is
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essentially equal to OLS. For the Fourier models this would entail that yi is electricity demand and

xij are the different cycles with their corresponding complexities with estimated coefficients γ
(1)
k and

γ
(2)
k , which are presented in equation (12) by βj . I employ the LASSO instead of ridge regression and

OLS since the Fourier models deal with a large amount of parameters that have to be estimated. OLS

estimates tend to have low bias but high variance in this case. Ridge regression is able to reduce the

variance of OLS estimates but does not shrink parameter estimates to zero. Because LASSO does

shrink parameter estimates to zero, the parameter set is reduced and interpretation of the parameter

estimates is easier. By using LASSO bias will be higher but variance will be substantially lower which

results in more accurate forecasts.

One difficulty with LASSO in this setting is that the choice of the tuning parameter, λ, is

often based on cross-validation. Cross-validation for time-series tends to prove difficult since time

series characteristics are often lost. Therefore, I do selection of the tuning parameter, λ, with LASSO

based on the BIC. This criterion is tailored towards forecasting and is well suited for time series

analysis.

I estimate the parameters with the HDeconometrics package, written by Vasconcelos (2021),

which is able to do selection of the tuning parameter, λ, of LASSO estimation via the glmnet package,

written by Simon et al. (2011), based on the BIC instead of cross-validation. Since LASSO selects

the most important parameters by setting others equal to zero the model from equation (11) does not

perfectly fit the data and residuals are left, the new model is written as:

yt = c+

K∑
k=1

γ
(1)
k sin

(
2πkt

N

)
+ γ

(2)
k cos

(
2πkt

N

)
+ εt. (13)

The residuals of the model in equation (13) can be utilised to improve forecast accuracy of

electricity demand by fitting an AR(p) model to the residuals. The Full Fourier model is fitted with

an AR(1) and AR(48) model to the error terms: εt = φ1εt−1 + φ2εt−48 + ut.

Fourier models can also be estimated by manually constructing cycles and their corresponding

complexities, I call such a Fourier model a Partial Fourier model and this model is written as:

yt = c+

P∑
i=1

Ki∑
k=1

γ
(1)
i,k sin

(
2πkt

pi

)
+ γ

(2)
i,k cos

(
2πkt

pi

)
+ εt, (14)

where c denotes a constant, P the number of cycles that are manually constructed, Ki the complexity

for cycle pi, γ
(1)
i,k and γ

(2)
i,k denote the coefficients that weigh harmonic i with complexity k and εt is the

error term at time t. I model a Partial Fourier model with p1 = 48 and p2 = 336 corresponding to a

within-day cycle and within-week cycle for electricity demand in England and Wales. I call this model

a Double Fourier model. I estimate two different Double Fourier models regarding their complexity

Ki. First, I estimate a Double Fourier model with K1 = 5 and K2 = 10. I choose K1 = 5 because from

the periodogram in Figure 12 in Appendix B I observe that the daily cycle has multiples up to five.

Motivation for K2 = 10 is similar since from Figure 13 in Appendix B I observe that the weekly cycle

has multiples up to ten. Secondly, I estimate a Double Fourier model with K1 = 100 and K2 = 100,

motivation for this is that the daily and weekly cycle have higher multiples but those are not visible

from the periodogram. This means they explain a small portion of the variance. Including many of
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them may however in sum explain a significant portion of the variance. I fit the Double Fourier model

with two AR models for the error terms, an AR(1), AR(48) model: εt = φ1εt−1 + φ2εt−48 + ut, and

an AR(1), AR(48), AR(49), AR(50) model: εt = φ1εt−1 + φ2εt−48 + φ3εt−49 + φ4εt−50 + ut

For electricity demand in France I model a Triple Fourier model where p1 = 48, p2 = 336

and p3 = 17520 corresponding to a within-day, within-week and within-year seasonal cycle where all

complexities Ki are equal to 100. Lastly, since the data of electricity demand in France includes a

leap year, I model a fourth cycle, p4 = 17568, to take the extra day into account. I model the Triple

Fourier model with two different AR models. One fits an AR(1) and AR(48) model to the error terms

and the second fits an AR(1), AR(2), AR(48), AR(49) and AR(50) model to the error terms.

I estimate the coefficients of all Partial Fourier models with LASSO from Tibshirani (1996).

LASSO has a penalty term for the number of parameters and will therefore set coefficients equal to

zero for complexities of cycles that do not contribute towards forecasting accuracy. Consequently,

I expect the parameter estimate for γ
(1)
2,7 and γ

(2)
2,7 for the double Fourier model with K1 = 5 and

K2 = 10 to be zero since this is the same cycle as the daily cycle with k1 = 1.

4.3 Metrics for evaluation

All models are evaluated on the mean absolute percentage error (MAPE). Following Taylor (2003)

this is the most widely used evaluation criteria in electricity demand forecasting, and is written as:

MAPE =
1

n

n∑
t=1

∣∣∣yt − ŷt
yt

∣∣∣. (15)

Motivated by the recommendation from Hippert et al. (2001) three other evaluation criteria are used

in the Taylor (2003) namely, mean absolute error (MAE), root-mean-square error (RMSE), and root-

mean-square percentage error (RMSPE):

MAE =
1

n

n∑
t=1

|yt − ŷt|, (16)

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2, (17)

RMSPE =

√√√√ 1

n

n∑
t=1

( ŷt
yt
− 1
)2

. (18)

Since Taylor (2003) and Taylor (2010) mention that performance for the Holt-Winters methods is very

similar for all four of the criteria the MAE, RMSE and RMSPE are only mentioned when performance

of the Fourier Models is discussed.

5 Results

The results are split in two sections. In the first section the results for the methods discussed in Taylor

(2003), the replication part, are shown and in the second section the results for double seasonal Holt-

Winters with rolling window and the Fourier models, the extension part, are shown.
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5.1 Replication

In this section I first discuss the parameter estimates and MAPE performance of the models without

AR adjustment and afterwards I discuss the performance of the methods with AR adjustment to the

error terms.

For Double Seasonal ARIMA I retrieved the following parameters:

(1− 0.57L− 0.38L2)(1 + 0.28L48 + 0.32L96)(1− 0.52L336 − 0.47L672)yt

= (1 + 0.19L48 + 0.33L96)(1− 0.01L336 + 0.24L672)εt + 0.56.

The derived parameter values for Holt-Winters are presented in Table 2. From Table 2 it is observed

that Holt-Winters with within-week seasonality and double seasonal Holt-Winters have high values

for λ accompanied with zero or very close to zero values for the trend, γ. This seems logical as the

variation in the data is dominated by seasonality, Figure 1. This is also reflected by the parameter

estimates of the seasonal indices. For Holt-Winters with within-day seasonality the value for the trend

is quite high as it is unable to pick up the within-week seasonality and includes this seasonal variance

in the trend.

Table 2: Holt-Winters parameters calculated from the 8-week estimation sample of England and Wales

Level λ Trend γ
Within-Day

seasonality δ

Within-Week

seasonality ω

Holt-Winters for Within-Day Seasonality 0.98 0.80 1.00 -

Holt-Winters for Within-Week Seasonality 0.82 0.00 - 1.00

Double Seasonal Holt-Winters 0.77 0.01 0.99 0.99

No adjustment for autocorrelation in the residuals

The fact that the time series is dominated by within-week seasonality is clearly visible from

the performance of the methods in Figure 3. Performance of Holt-Winters with within-day seasonality

is poor, hence I decided to leave more than three lead times ahead forecasts out of the plot. Holt-

Winters with within-week seasonality performs quite well. Clearly, within-week seasonality dominates

the time series and is essential in models to be able to accurately forecast short-term electricity

demand. Double seasonal Holt-Winters outperforms within-week Holt-Winters for 18 of the 48 lead

times, including the first twelve. This indicates that for the short-run there is benefit in using a method

that is able to pick up two seasonalities. Performance of both Holt-Winters for within-week seasonality

and double seasonal Holt-Winters tends to improve after 12 hours. Consequently, a forecast for 12

hours ahead is more accurate when it is made from an origin 12 hours previous to the current period.

The last method, double seasonal ARIMA, outperforms all Holt-Winters methods for 39 of the 48 lead

times. The (double) seasonal Holt-Winters methods are not able to outperform the double seasonal

ARIMA model.
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Figure 3: Comparison of MAPE for 4 week post sample period. No adjustment for autocorrelation in

the residuals of Holt-Winters.

Taylor (2003) observes that the 1-step-ahead forecast errors in the estimation sample show

sizeable first-order autocorrelation for all three Holt-Winters methods. Hence, I include an AR(1)

model fitted to the 1-step-ahead forecast errors. Results for the three Holt-Winters methods with

adjustment for autocorrelation are shown in Table 3. Comparing parameter estimates of Table 3

with parameter estimates of Table 2 shows that the trend estimate for Holt-Winters for within-day

seasonality is now zero and that the model tries to capture the within-week seasonality with the AR-

term, η. For Holt-Winters for within-week seasonality and double seasonal Holt-Winters the parameter

estimate of the level, λ, and the seasonal indices, δ and γ, drop substantially and the AR-term shows a

very high parameter estimate for both models, indicating that the modelled first-order autocorrelation

is able to explain a high portion of the variance in the time series.

Table 3: Holt-Winters parameters calculated from the 8-week estimation sample of England and Wales

Level λ Trend γ
Within-Day

seasonality δ

Within-Week

seasonality ω

AR-term

η

Holt-Winters for Within-Day Seasonality 0.80 0.00 1.00 - 0.62

Holt-Winters for Within-Week Seasonality 0.01 0.00 - 0.46 0.92

Double Seasonal Holt-Winters 0.03 0.00 0.18 0.27 0.93

Adjustment for autocorrelation with an AR(1) model for the residuals.

The importance of modelling the first-order autocorrelation in the Holt-Winters methods is

reflected in the performance of the models in Figure 4, where all Holt-Winters methods have improved

forecast accuracy for all lead times compared with Figure 3. Relative performance of the methods is

still intact except that double seasonal ARIMA is now outperformed by double seasonal Holt-Winters

and Holt-Winters for within-week seasonality for all 48 lead times. Double seasonal Holt-Winters is

the best performing model for short-term electricity demand forecasting in England and Wales for

every single lead time.
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Figure 4: Comparison of MAPE for 4 week post sample period. Holt-Winters is adjusted for autocor-

relation with an AR(1) model for the residuals.

5.2 Extension

In this section I first present results for the Fourier models for electricity demand in England and Wales

and afterwards I discuss results for electricity demand in France. In this section all the Fourier models

are compared with standard double seasonal Holt-Winters for England and Wales and with double

seasonal Holt-Winters with a rolling window for France. These models are chosen as benchmark since

double seasonal Holt-Winters is the best performing model of Section 5.1.

5.2.1 England and Wales

The benefit of incorporating LASSO instead of OLS is clear from the parameter estimates of the Double

Fourier model. The parameter estimate for γ
(1)
2,7 and γ

(2)
2,7 are equal to zero, indicating that indeed the

weekly cycle with complexity k2 = 7 is equivalent to the daily cycle with k1 = 1 and therefore does

not contribute towards forecasting accuracy. OLS would not have been able to accurately detect this

and shrink one coefficient much more than the other. From Figure 5 it is clear that a Fourier model

with manual modelling of the cycles is more accurate than a Full Fourier model. Furthermore, fitting

an AR(1) and AR(48) model to the error term greatly improves forecasting accuracy.

Figure 5: Comparison of MAPE for 4 week post sample period. Holt-Winters is adjusted with an

AR(1) model for the error terms and the Fourier Models are adjusted with an AR(1) and an AR(48)

term for the error terms. For the Double Fourier model K1 = 5 and K2 = 10.
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When I increase the complexity of both seasonal cycles to K1 = 100 and K2 = 100 for

the Double Fourier model the accuracy improves as is clear from Figure 6. Analysis of the (partial)

autocorrelation plots, Figure 14 and Figure 15 in Appendix C, shows that, additional to the AR(1)

and AR(48) model for the error terms, fitting an AR(49) and AR(50) model to the error terms as

well may improve accuracy. Clearly, implementing an AR(49) and AR(50) model for the error terms

improves the accuracy of the Double Fourier model further, Figure 6. The Double Fourier model is

however still not able to outperform the double seasonal Holt-Winters method for any lead time.

Figure 6: Comparison of MAPE for 4 week post sample period. Holt-Winters is adjusted with an

AR(1) model for the error terms and the Fourier Models are adjusted with an AR model for the error

terms. Complexity of the yellow Double Fourier model is 5 for the daily cycle and 10 for the weekly

cycle. The blue Double Fourier have complexity 100 for both cycles previous to lasso estimation.

5.2.2 France

Estimation of a Full Fourier model for half-hourly electricity demand in France requires the initial-

ization of 87648 parameters. This results in a matrix of 87648 by 87648 for the LASSO estimation.

This makes the computation in the programming language R infeasible since the memory size of the

aforementioned matrix is too large. Therefore, the Full Fourier model is estimated on a bi-hourly

data set. From Figure 7 it is clear that the Triple Fourier model greatly outperforms the Full Fourier

model for every single lead time. Just as with electricity demand in England and Wales the Fourier

model with manually constructed cycles performs best and performance is greatly improved by fitting

an AR(1) and AR(12) model to the error terms.

16



Figure 7: Comparison of MAPE for 1 year post sample period. The error terms of the Fourier Models

are adjusted with an AR(1) and an AR(12) model since the data set is bi-hourly.

I estimate the Triple Fourier model from Figure 7 for the half-hourly data as well and results

are visible in Figure 8. From Figure 8 I conclude that adding a leap year to the Fourier model

specification does not improve forecasting accuracy since I am unable to distinguish the difference

between the MAPE values for the Triple and Quadruple Fourier model. Also, applying a moving

window of five years to the error terms to allow for different parameter estimates through time for

the AR model does not increase forecasting accuracy. However, decreasing the window to two months

shows an increase in forecasting accuracy for lead times further than 39 half-hours ahead and a slight

decrease for lead times less than 39 half-hours ahead. These Fourier models are not able to outperform

the double seasonal Holt-Winters method.

Figure 8: Comparison of MAPE for 1 year post sample period. The error terms of the Fourier Models

are adjusted with an AR(p) model and the error terms of the double seasonal Holt-Winters method

are adjusted with an AR(1) model.

A closer look at the (partial) autocorrelation plots reveals that forecasting accuracy may

be improved with additional terms in the AR model. Motivation for adding an AR(2), AR(49) and

AR(50) model to the error terms is clear from Figure 16 and Figure 17 in Appendix C where I observe

that the autocorrelations are significant and show a slowly declining but seasonal pattern and the

partial autocorrelations are clearly significant for the first, second and 48th till 50th lag. By including

these terms in the AR model for the error terms the performance of the Triple Fourier model improves
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up to the point that it is more accurate than the double seasonal Holt-Winters method for predicting

electricity demand for lead times greater than 10 half-hours ahead. For lead times below 10 half-hours

ahead the double seasonal Holt-Winters method outperforms the Triple Fourier model.

When considering the MAE, RMSE and RMSPE the Triple Fourier model outperforms the

double seasonal Holt-Winters method for similar horizons. From Figure 9 it is clear that the Triple

Fourier model outperforms the double seasonal Holt-Winters method for 40 of the 48 lead times

considering MAE and for 38 of the 48 lead times considering the RMSE. Finally, for the RMSPE,

Figure 18 in Appendix D, the Triple Fourier is more accurate for 36 of the 48 lead times.

Figure 9: Comparison of MAE and RMSE for 1 year post sample period. The Triple Fourier model

is adjusted with an AR(1), AR(2), AR(48), AR(49) and AR(50) model for the error terms and the

double seasonal Holt-Winters method is adjusted with an AR(1) model for the error terms.

6 Discussion and Conclusion

Models based on Fourier series that incorporate seasonal patterns can outperform a double seasonal

Holt-Winters method depending on the number of seasonal patterns included in the Fourier model

and the number of strong seasonal patterns in the time series.

I introduce three types of Fourier models, the Double Fourier model with two seasonal cy-

cles, the Triple Fourier model with three seasonal cycles and the Quadruple Fourier model with four

seasonal cycles. For electricity demand in England and Wales, where I consider a time series of three

months of half-hourly electricity demand during summer, the Double Fourier model is unable to out-

perform the double seasonal Holt-Winters method. The second time series that I consider regards

electricity demand in France. This time series contains half-hourly electricity demand observations

for 5 years. For this time series the Triple Fourier model with five AR terms fitted to the error terms

is able to outperform the double seasonal Holt-Winters method. The time series in France includes

national public holidays, substantially more observations and more seasonal variation since electricity

demand changes substantially throughout the year. Hence, based on this research Fourier models

seem to perform relatively better for long, complex time series than for short, simple time series. I

advise to use double seasonal Holt-Winters for short time series with two seasonal patterns and to

incorporate a Triple Fourier model for time series that include an annual seasonality that the double
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seasonal Holt-Winters method is unable to incorporate.

Furthermore, I find that including a leap year in the Fourier model, i.e. the Quadruple

Fourier model, for electricity demand in France did not improve the accuracy of the predictions.

Next, I find that a two month rolling window improved forecasting accuracy of the Fourier model

with three AR terms for lead times greater than 39 half-hours ahead. Hence, forecasting accuracy

of the Triple Fourier model that currently outperforms double seasonal Holt-Winters may be further

improved by incorporating a rolling window for the AR model that is fitted to the error terms.

Forecasting accuracy of the double seasonal Holt-Winters method may be further improved

as well since the double seasonal Holt-Winters method with rolling window shows unstable param-

eter estimates. These are shown in Figure 19 in Appendix D. The parameter estimates are quite

volatile over time which may indicate that finding the optimum of the objective function is difficult

using my programming setup. I would expect the parameters to change over time but in Figure 19

they sometimes change with over 100% on weekly basis which seems too much. One consequence

of the unstable parameter estimates could be that the forecasting accuracy of the double seasonal

Holt-Winters method for electricity demand can be improved by improving the consistency of the

parameter estimates.

Another venue to improve forecasting performance of the double seasonal Holt-Winters

method is to include a third seasonality for electricity demand in France. Taylor (2010) introduces a

triple seasonal Holt-Winters method which outperforms the double seasonal Holt-Winters method.

In this research I consider electricity demand in France. France has public holidays based

on only the Gregorian calendar. Countries such as Turkey have public holidays for both the Grego-

rian and Hijri calendar and I therefore expect the Triple Fourier model to show relatively stronger

performance than the Holt-Winters methods for such a time series. Empirical research regarding this

observation was however outside the scope of this paper but in my opinion is interesting for future

research.

Beside holidays based on multiple calendars, moving holidays can results in complex seasonal

patterns as well. In my methodology I have not implemented a procedure for indicating moving holi-

days such as Easter. McElroy et al. (2018) discuss the effects and implementation of moving holidays.

Implementation may further improve forecast accuracy.

Finally, for the shortest lead times the double seasonal Holt-Winters method performs best

whilst for longer lead times the Triple Fourier model performs best. Smith (1989) discusses the imple-

mentation of combining forecasts. Taylor (2010) shows a simple average of two univariate procedures

already improves MAPE values, Taylor (2008) shows combining a weather-based Holt-Winters with

double seasonal Holt-Winters improves accuracy and Yang et al. (2016) show that combining methods

that deal with linear and non-linear data is superior to their individual performance and that the

combined method has extensive applicability. Hence, much research indicates that combining fore-

casts improves accuracy and therefore this may very well be the case with combining Fourier and

Holt-Winters as well.
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A Time series data

Figure 10: Seasonal decomposition of electricity demand in England and Wales based on Loess.

Figure 11: Seasonal decomposition of electricity demand in France based on Loess.
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B Periodograms

Figure 12: Spectral density for electricity demand of England and Wales where frequency of 1 is equal

to the daily cycle of length 48.

Figure 13: Spectral density for electricity demand of England and Wales where frequency of 1 is equal

to the weekly cycle of length 336.
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C (Partial) autocorrelation plots

Figure 14: Autocorrelation plot for the 2 month estimation period of the Double Fourier model for

electricity demand in England and Wales.

Figure 15: Partial autocorrelation plot for the 2 month estimation period of the Double Fourier model

for electricity demand in England and Wales.
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Figure 16: Autocorrelation plot for the 4 year estimation period of the Double Fourier model for

electricity demand in France.

Figure 17: Partial autocorrelation plot for the 4 year estimation period of the Double Fourier model

for electricity demand in France.
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D Additional evaluation criteria and parameter estimates

Figure 18: Comparison of RMSPE for 1 year post sample period. The Triple Fourier model is adjusted

with an AR(1), AR(2), AR(48), AR(49) and AR(50) model for the error terms and the Double Seasonal

Holt-Winters method is adjusted with an AR(1) model for the error terms.

Figure 19: Parameter estimates for double seasonal Holt-Winters with a moving window of two months

taking 1 week steps at a time for electricity demand in France.

27


	Introduction
	Literature Review
	Data
	Methodology
	Methods for replication
	Multiplicative seasonal ARIMA
	Holt-Winters

	Methods for extension
	Double seasonal Holt-Winters with rolling window
	Fourier series models

	Metrics for evaluation

	Results
	Replication
	Extension
	England and Wales
	France


	Discussion and Conclusion
	Time series data
	Periodograms
	(Partial) autocorrelation plots
	Additional evaluation criteria and parameter estimates

