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Abstract

In this paper regularized mixtures of predictive densities are used to improve on the density

forecasts, when predicting the outcomes of the FIFA World Cup football matches. Opinion pools

are used to accumulate all available information, and assign optimal weights to each forecaster.

Forecasters in our opinion pool include bookmakers, betting exchanges and FIFA World Ranking.

Although, statistically we fail to significantly improve on the individual forecasters, economically

we obtain promising results, where regularizations give between 10% and 16% expected profits

from betting. Thus, regularizations outperform simple averaging and majority of individual

predictors during the FIFA World Cups of 2014 and 2018.

1



Contents

1 Introduction 3

2 Data 6

3 Methodology 6

3.1 Odds to Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Basic normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.2 FIFA World Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Log Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.2 Expected Betting Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.2 Simplex+Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Monte Carlo 11

5 FIFA World Cup Forecasts 14

5.1 Log Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Expected Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Conclusion 19

References 22

A Appendix 24

2



1 Introduction

Predicting the outcomes of sports events has been of interest for a long time now, particularly,

because of the enormous financial turnovers that are transacted on daily basis, Wunderlich and

Memmert (2016). Similar to stock markets there is a significant element of unpredictability

within the outcome of each event. Particularly in football, experts, such as bookmakers, have

tried to perfect the estimation process of the game outcomes as it directly impacts their profits.

Sports magazines also seek optimal forecasts to attract football fans who are willing to participate

in the open betting markets. Therefore, over time, many alternative forecasting methods have

been discussed in the literature.

Stekler et al. (2010) outlines three main forecasting methods; betting market forecasts, model

forecasts and expert forecasts. The first method is based on the market predictions of the out-

comes, via the odds, which are computed based on participants’ predictions. The second method

uses the (factor) models, which try and capture all possible factors affecting the game outcome.

The third method, is based on the experts’ opinion; experts usually being the bookmakers,

head coaches, commentators, professional players and so on. Particularly bookmakers would

also make use of the statistical models to perfect their forecast accuracy. In addition to those,

Frick and Wicker (2016) consider economic forecasts, which they call ’naive’ forecasters, who

base their predictions not on football expertise but on the team’s wage bills, average age and

occupancy of the stadium. Last but not least, Stekler et al. (2010) gives much credit to the FIFA

World Ranking, which empirically performs as well if not better than the experts’ forecasts. The

list does not end here, however the above forecasts received most credit in the literature.

Our research aims to make use of different forecasting methods, to come up with an optimal

density forecast for the outcome of each game. For this we will consider the work of Diebold

et al. (2021), who constructs regularized mixtures of density forecasts, thus extending the work

of Diebold and Shin (2019). The key idea of Diebold and Shin (2019) is to transform a set

of forecasts of y, f = (f1, . . . , fK)′, into a ”combined” superior forecast c(f, w), where the

weight, wi ∀i ∈ {1, . . . ,K}, on each forecast optimally solves a penalized estimation problem.

While this setting indeed gives optimal weights to univariate point forecasts, thus outperforming

typical averaging for example, in the context of density forecasts further regularized mixtures

yield better probabilistic forecasts, as discussed in Diebold et al. (2021). When predicting

the outcomes of the football matches, we are interested in forecasting the probability of each

possible outcome (win team 1, lose team 1, draw), thus this research makes use of the relevant

regularization settings outlined in Diebold et al. (2021). Specifically, our research question

reads: ”Can regularized mixtures of predictive densities outperform the experts’ forecasts for
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the outcomes of the FIFA World Cup matches, when different sources of forecasts are combined?”

To further motivate the use of regularized mixtures of density forecasts, one can again refer to

work of Wunderlich and Memmert (2016), who proposes combining both, open betting market

and FIFA ranking-based forecasts, to predict the outcome. Furthermore, Frick and Wicker

(2016) suggests that economic and expert forecasts compliment each other, and Štrumbelj (2014)

concludes that it makes a difference as to which bookmaker or betting exchange we choose, when

two or more are available. The above insights indicate that alternative forecasters base their

predictions on different factors, and use different sources of information. Hence, by optimally

combining several forecasters we can make use of the alternative sources of information, and

improve on the accuracy of density forecasts.

We are going to apply the methods proposed by Diebold et al. (2021) to predict the outcomes

of the individual FIFA World Cup matches. Thus, for each game several forecasters are consider,

each of which should provide us with a density forecast. The latter causes difficulties, as the

economic forecasts proposed by Frick and Wicker (2016), for example, do not give density

forecasts, instead they rank teams based on their probability of winning the championship.

Instead, we will refer to the odds from the open betting market, which should include some of the

’naive’ forecasts, as not everyone participating in those bets will have the expertise bookmakers

will have. Furthermore, we will include the density forecasts based on the FIFA World Ranking,

as suggested by Wunderlich and Memmert (2016), which are based solely on the past teams’

performance, thus ignoring the current condition (injuries, home advantage, morale, etc.) of

each participating team. These should compliment the forecasts derived from the open betting

market odds, which, according to Wunderlich and Memmert (2016), are biased towards the most

recent events. Finally, experts will also be treated as separate forecasters, as they are known to

make use of the information the above forecasters ignore or do not have access to. Štrumbelj

(2014) argues for the presence of the insider information, particularly among bookmakers, and

Zeileis et al. (2018) talks about advanced models bookmakers use to maximise their profits.

Again, since bookmakers’ profits are based on the quality of their forecasts, we expect their

predictions to be at the cutting edge amongst others. Note that different experts will also be

biased towards particular teams because of their access to insider and/or available information;

and the information they consider to be relevant, when constructing density forecasts, will also

differ amongst bookmakers, according to Štrumbelj (2014). Therefore, in a similar fashion to

Zeileis et al. (2018), we will consider multiple bookmakers, where each bookmaker will be treated

as a separate forecaster. Therefore, our opinions pool will include multiple bookmakers, FIFA

world Ranking and a couple of open betting exchanges. Bookmakers and betting exchanges will
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provide the odds, which, together with the FIFA World Ranking, can be converted into density

forecasts, as will be shown in section 3.

Finally, several density forecast evaluation methods are proposed by existing literature. In

particular, when forecasting outcomes of football matches, Wheatcroft (2019) considers three

evaluation methods, ranked probability score (RPS), Brier score and the ignorance score. Each

of these scoring rules favours different desired properties of our forecasts. For example the RPS

has a so-called ”sensitive to distance” property, where it makes use of the ordinal outcomes, and

accounts for the fact that a home win is closer to a draw than it is to an away win. For that

reason it is commonly used when evaluating density forecasts of the football games. Brier and

ignorance scores do not have this property. RPS and Brier scores are non-local1, while ignorance

score is. However, following the result of Wheatcroft (2019), the non-locality and sensitivity to

distance as properties of scoring rules can be questioned, as the ignorance score outperforms

both, in the context of football matches. Furthermore, sensitivity to distance only applies to 1

of the 32 teams during the World Cup, as all the other teams are playing away, and even then

no extra points are rewarded for away wins, as they are, for example, in Champions League.

Hence, in the context of our research, using the ignorance score to evaluate the density forecasts

should suffice.

Another approach to measuring forecast accuracy, proposed by Wunderlich and Memmert

(2020), is the so called economic approach, where the profitability of our models is evaluated.

Goddard and Asimakopoulos (2004) point towards a possibility of systematically generating

positive betting returns in the absence of a superior model accuracy. While Wunderlich and

Memmert (2020) also mentions that ”betting returns should not be treated as a valid measure

of model accuracy”, Lessmann et al. (2010) argues that ”a model’s profitability is the primary

indicator of forecasting accuracy” in the context of horse racing. Therefore, given that the

football betting market is much larger than the one of horse racing,2 motivated by the results

of Wunderlich and Memmert (2020), Goddard and Asimakopoulos (2004), Leitch and Tanner

(1991), and Lessmann et al. (2010) we will consider the profitability of our models, in addition

to their accuracy.

After having introduced the problem and explained the relevant literature, we talk about

the data set used for the empirical study. Then all the required methods will be outlined,

which includes obtaining probability forecasts, measuring objectives and introducing different

regularizations. Next, the set up and the results of a simulation study will be presented, followed

1A non-local score takes at least some of the rest of the forecast distribution into account. A local score only

considers the probability at the outcome and disregards the rest of the distribution.
2https://www.pledgesports.org/2020/05/most-popular-sports-to-bet-on/
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by empirical results evaluated at two different objectives. Finally, we will conclude the paper.

2 Data

For the purpose of this research two most recent FIFA World Cups (2014, 2018) are consid-

ered, consisting of 64 games each. Hence, we evaluate density forecasts for 128 games. Each

forecast will be a regularized mixture of 23 predictive densities, thus we consider 23 different

forecasters. This includes 20 expert forecasters, being the bookmakers, 2 betting exchanges,

corresponding to the open betting market, and two sets of FIFA World Rankings, being the

most recent one prior to the 2014 and 2018 World Cups.

The 23 forecasters are somewhat in line with the ones considered by Zeileis et al. (2018),

who took the most well-known and reputable bookmakers. Based on the work of Diebold et al.

(2021), who use a total of 19 forecasters, forming a pool with 23 forecasters seems sufficient. The

data summarizing the relevant bookmakers’ odds is taken from https://www.oddsportal.com/.

Wunderlich and Memmert (2016) suggests the use of many betting exchanges is unnecessary

due to the openness of the online betting markets. Particularly, using the Betfair3 odds should

sufficiently capture the information available in the open markets. In addition to Betfair I will

also consider Matchbook betting exchange, which is more recent. The data summarizing the

relevant odds from the open market is taken from https://historicdata.betfair.com/. Finally,

the relevant World Rankings are obtained from the FIFA website, https://www.fifa.com/fifa-

world-ranking/ranking-table/men/rank/id10887/.

3 Methodology

In this section we explain how the density forecasts are obtained from the betting odds

as well as the FIFA World Ranking. Then the ignorance score is outlined, which will be the

objective function that is optimized in the context of the penalized estimation problem. Finally,

using the work of Diebold et al. (2021), we outline different sets of penalties, which produce

regularized mixtures of predictive densities. Remember that each football match consists of 3

outcomes: win team 1, lose team 1 and draw.

3Oldest and the most well know betting exchange. Betfair has one of largest trading volumes, providing a

good set of market-based odds
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3.1 Odds to Probabilities

3.1.1 Basic normalization

Basic normalization is considered by Štrumbelj (2014) and Wunderlich and Memmert (2016),

where o = (o1, . . . , on) are the odds for each match outcome, for n ≥ 2. Odds can be (roughly)

interpreted as the inverse probability of winning plus the bookmaker’s profit margin. Note that

oi > 1 for all i = 1, . . . , n. Then we define π = (π1, . . . , πn) to be the inverse odds, where πi = 1
oi

.

Note that the inverse odds will sum to more than 1, and hence have to be normalized, removing

the bookmaker’s profit margin. The following is done by dividing by the sum of inverse odds,

thus obtaining pi = πi∑i=n
i=1 πi

to be the set of values adding up to 1, which can be interpreted as

outcome probabilities. Note that during normalization we assume that the bookmaker’s profit

margin is constant across different game outcomes.

3.1.2 FIFA World Ranking

We derive the probabilistic forecasts from the FIFA World Ranking using the model-based

approach proposed by Wunderlich and Memmert (2016). First, we transfer the ranking into

the expected number of goals scored by each team. Second, we transfer the expected goals into

probabilities of each outcome using the bivariate Poisson distribution suggested by Karlis et al.

(2005). Below is the detailed summary of the methodology.

1. For each game we expect the higher ranked team to score more goals. We define the ranking

points of a higher ranked team as ptsmax, and the ranking points of a lower ranked team as

ptsmin. Then the expected number of goals scored by each team can be defined as expmax

and expmin respectively. The following equation should hold:

expmax
expmax + expmin

=
ptsmax

ptsmax + ptsmin
. (1)

Now we need to define the overall expected number of goals scored in each game. Due to

the limited information about special offensive or defensive qualities of teams contained in

the ranking, we treat all teams equally. Therefore, we assumed the expected goals scored

by both teams to be equal in each match and estimated this value by using the average

number of goals scored in the previous World Cup (ĝ). The following equation should

hold:

expmax + expmin = ĝ. (2)

By solving the above system of equations we derive the expected number of goals scored

by each team.
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2. Given that expmax and expmin is the expected number of goals scored by each team, the

probability of the match ending with a result of X : Y is

P [X : Y |λ1, λ2, λ3] = e−(λ1+λ2+λ3)
λ1,

x

x!

λ2,
y

y!

min(x,y)∑
i=0

(
x

i

)(
y

i

)
i!

(
λ3
λ1λ2

)i
, where (3)

λ3 = 0.05(expmax + expmin),

λ1 = expmax − λ3,

λ2 = expmin − λ3.

The probability of each outcome can then be derived from the above probability density

function.

3.2 Objective functions

3.2.1 Log Score

Given the discrete nature of the density forecasts for a scalar variable y, we define m =

1, . . . ,M bins, in which the value of y can be placed. The forecasts are denoted by p =

(p1, . . . , pM )′.

As outlined in section 1, the ignorance score will be used as an objective function, primarily

based on the results of Wheatcroft (2019), and the fact that sensitivity to distance can be

neglected when considering the outcomes of the Word Cup matches. There is no reason to treat

away games any differently to home games, as they are not rewarded with a so called ’away’

bonus.

The ignorance score is equivalent to the log score, defined by Diebold et al. (2021), as

L(p, y) = − log

(
M∑
m=1

pm1(y ∈ bm)

)
, (4)

where pm is the probability assigned to bin bm, and 1(y ∈ bm) = 1 if y ∈ bm and 0 otherwise.

When optimising the objective function the smallest value of L is desired, as it maximises the

probability of the true outcome. Note that the above ignorance score is defined for a single

forecaster in a single period.

We now modify our notation to identify the specific forecaster, k = 1, . . . ,K. Additionally,

we want to compute the scores for a set of football matches, each identified in its own period

t = 1, . . . , T . These additions simply involve summing over time and inserting ”k” subscripts in

relevant places. Hence, we obtain

Lk(pk,y) =
T∑
t=1

(
− log

(
M∑
m=1

pmkt1(yt ∈ bm)

))
, k = 1, . . . ,K, (5)
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where pk = (pk1, . . . , pkT ) is the sequence of density forecasts over time for forecaster k, and

y = (y1, . . . , yT ) is the sequence of realizations over time.

3.2.2 Expected Betting Returns

Another way to examine the quality of our predictions is to look at the profitability of our

models. The following objective is justified from its practical relevance - at the end of the day

we are not solely interested in improving the density forecasts, but primarily in maximising our

expected profits, based on the density forecasts. The idea is that the game outcomes make it

possible to calculate the betting returns that would have been realised if these bets had been

placed prior to the events, as summarized by Wunderlich and Memmert (2020). Betting returns

are used as proxy for the model profitability.

We will maximise the expected betting returns. The objective function is thus defined as

ei = oip̂i − 1 for all i = 1, . . . , n, where ei is the expected value of a bet, oi is the betting odd,

1 is the amount that we bet, and p̂i is the forecasted probability of the outcome we are betting

on. Note that ei, unlike log loss, is not a straightforward function to optimise in the penalised

estimation problem setting, due to its linear and non-smooth qualities. Thus for the purpose of

this research the optimal weights are computed using the log loss objective, and then evaluated

via the betting returns. To maximise the expected betting returns we iterate through every odd

given by different bookmakers for each game outcome. Therefore, for every bet the bookmaker

with the highest available odd for the game outcome, corresponding to the highest expected

value of a bet (ei), will be chosen. The probability distribution used to compute the expected

value of a bet will indeed be computed by our models.

3.3 Penalties

Granger and Ramanathan (1984) have recognized that without the imposition of any restric-

tions on the mixture weights w = (w1, . . . , wK) when optimizing point forecasts, the optimal

set of weights will be obtained. However, according to Brodie et al. (2009) that is not the case

when constructing density forecasts, and essential regularization in the form of simplex con-

straint is required. Diebold et al. (2021) then provides insights into simultaneously imposing

other regularization constraints, which further improve density forecasts.

3.3.1 Simplex

Simplex constraint imposes the non-negativity (wi ≥ 0 ∀i) and sum-to-one (
∑K

i=1wi = 1)

of the mixture weights. The non-negativity constraint avoids pathological results, where, for

example, mixture density can take negative values. While sum-to-one constraint is required to

ensure for the mixture combination to be a valid probability density. These are extensively dis-
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cussed by Diebold et al. (2021). Therefore, simplex constraint provides essential regularization,

which ensures the feasibility of our solution.

Diebold et al. (2021) outlines that the imposition of the simplex constraint is ”not only

necessary to eliminate pathologies, but also desirable to provide regularization”. Adding this

constraint to the ignorance score, we obtain the following optimization problem:

argmin
w

{
−

T∑
t=1

log

(
K∑
k=1

wk

(
M∑
m=1

pmkt1(yt ∈ bm)

))}
(6)

s.t. wk ∈ (0, 1),
K∑
i=1

wi = 1.

As described in Diebold et al. (2021) the L1 simplex regularization formulates a special

case of L1 LASSO regularization, corresponding to a specific choice of LASSO regularization

parameter.

3.3.2 Simplex+Divergence

Next we impose a general penalty based on the divergence between two discrete probability

measures. The estimator can be written as

ŵ = argmin
w

{
−

T∑
t=1

log

(
K∑
k=1

wk

(
M∑
m=1

pmkt1(yt ∈ bm)

))
+ λD(w,w∗)

}
(7)

s.t. wk ∈ [0, 1],
K∑
i=1

wi = 1,

where D(w,w∗) is a measure of divergence between w and w∗. Note that once the simplex

restriction is imposed, w can be interpreted as a discrete probability measure on 1, 2, . . . ,K. We

will consider two different divergence measures D(w,w∗) to obtain new regularized estimators.

1. The L2 norm,

D(w,w∗) =
K∑
k=1

(
wk −

1

K

)2

, (8)

where w∗ = 1
K , shrinking the solution towards equal weights. Diebold et al. (2021) defines

this regularization setting as the simplex plus egalitarian ridge penalty (simplex+ridge).

Due to the nature of the simplex constraint, we obtain sparse models, which only consider

a limited number of forecasters, giving the rest a 0 weight. Therefore, as proposed by

Diebold et al. (2021), ”we may want to shrink all K mixture weights away from 0, thereby

’undoing’ the selection implicit in the LASSO-style L1 penalty”. Thus we will allow for

non-zero weights on all forecasts, which indeed introduces L2 regularization.
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2. Kullback-Leibler divergence (entropy) from w to w∗,

D(w,w∗) = − logK −
K∑
k=1

logwk, (9)

produces a ”simplex+entropy” penalty, −
∑K

k=1 logwk. The simplex+entropy regularized

estimator is derived from the posterior mode in a Bayesian analysis with a log score,

substituting the log likelihood, and a Dirichlet prior, see Diebold et al. (2021) for a detailed

derivation. Note that such formulation puts positive probability only on the unit simplex

and shrinks weights toward equality for a certain configuration of hyperparameters K,

thus resulting in the L2 norm.

The motivation behind the choice of these particular divergence penalties lies in the results

of Diebold et al. (2021). Particularly the two divergence penalties together with the unit simplex

produce the lowest log scores. Moreover, these methods allow for a variety of forecasters to be

included in the set of regularized mixtures, particularly simplex+entropy includes all available

forecasters.

4 Monte Carlo

Before applying the above methods to our football data, we replicate the simulation study

by Diebold et al. (2021), which reveals the potential of our regularizations. The data-generating

process (DGP), assumed to be known by the forecasters, is:


yt = xt + σyet, et ∼ iid N (0, 1)

xt = φxxt−1 + σxνt, νt ∼ iid N (0, 1),

(10)

where e and ν are orthogonal at all leads and lags. The variable that we forecast is y, and

xt is the so called long-run component of yt. Each forecaster receives independent noisy signals

about xt, such that for forecaster k we have

zkt = xt + σzkηkt, ηkt ∼ iid N (0, 1), (11)

where ηk and ηk′ are orthogonal at all leads and lags for all forecasters k and k′. We assume

forecasters agree that the 1-step-ahead predictive density is Gaussian with variance σ2y , and

an unknown mean. Forecaster k uses zkt to predict, thus resulting in the following predictive

density of forecaster k:

pkt(yt+1) = N (zkt, σ
2
y). (12)
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In the same fashion as Diebold et al. (2021), we consider two parameterizations:

1. DGP 1: σzk = 1 for all k

2. DGP 2: σzk = 1 for k = 1, 2, . . . , K2 and σzk = 5 for k = K
2 + 1, . . . ,K,

with φx = 0.9, σx = 1, σy = 0.5. The difference between the DGPs is the number of good quality

signals that are received by forecasters. We expect linear opinion rule to be preferred for DGP 2,

at least asymptotically, giving more weight to the first K
2 forecasters, who receive better signals.

For DGP 1 we can expect equal weights to be assigned to each forecaster, due to the similar

prediction accuracy among all forecasters. Therefore, the benchmark model with equal weights

(Simple K-Average) will be much harder to beat for DGP 1.

We chose K = T = 20, which is around the number of forecasters that we will consider

when predicting the football games outcomes. We proceed with our simulation study by first

generating data according to the DGP and then estimating mixture weights that will be used

for computing the mixture densities. Finally, we generate 1-step-ahead mixture densities and

evaluate them using the log score objective function. We repeat the simulation 10,000 times

and compute the average log score. In our simulation we will test the following regularization

methods: Simplex, Simplex+Ridge and Simplex+Entropy ; and one benchmark method, the so-

called Simple Average. In the latter we simply give the average weight (1/K) to each forecaster.

Finally we choose the penalization strength for simplex+ridge and simplex+entropy in the

same fashion as Diebold et al. (2021). We explore 20 penalization strengths for each method,

where for simplex+ridge we iterate through 10 equispaced points in each of the following inter-

vals: [1e-15,10] and [15,10000]; and for simplex+entropy we iterate through through 10 equis-

paced points in each of the following intervals: [1e-15,0.2] and [0.3,20].

The results of the Monte Carlo simulation are summarized in Table 1, where we present the

optimized log score for each method under DGPs 1 and 2. Under DGP 1, as we expected,

simple averaging performs very well, due to similar forecast accuracy among predictors, while

just simplex performs worse than both simplex+ridge and simplex+entropy. Nevertheless, it

still outperforms the median forecaster or even the forecaster at 25th percentile. Note that

for the benchmarks we evaluate the average performance of each forecaster individually across

simulations. Quite remarkably, both simplex+ridge and simplex+entropy outperform the best

forecaster, and perform as well as the simple averaging method. A possible explanation is that

for the DGP 1, with minimal variation among forecasters, giving every forecaster an average

weight is better than limiting yourself to a subset of forecasters. The latter is evident from the

fact that simplex+ridge includes every forecaster in the model, instead of only having around

12 as in the case with (unregularized) simplex.
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Table 1: Average Log Scores

DGP 1 DGP 2

Regularization group L # λ∗ L # λ∗

Simplex 0.77 11.65 NA 0.78 11.90 NA

Simplex + Ridge 0.49 20.00 7781.11 0.55 17.67 15.0

Simplex + Entropy 0.49 20.00 6.87 0.58 20.00 0.18

Benchmarks L # λ∗ L # λ∗

Best 0.52 1 NA 0.61 1 NA

25th Percentile 0.96 1 NA 1.31 1 NA

Median 1.28 1 NA 9.84 1 NA

75th Percentile 1.65 1 NA inf 1 NA

Worst 2.53 1 NA inf 1 NA

Simple K-Average 0.49 20 NA 0.73 20 NA

Notes: L is the average log score, # is the number of forecasters selected, λ∗ is the ex post optimal penalty

parameter, and K is the total number of forecasters. 10,000 Monte Carlo replications are performed.

Under DGP 2, simple average method performs surprisingly well, although worse than under

DGP 1. Despite our expectations simplex does not outperform simple averaging, however the

two are significantly closer together compared to DGP 1. This result slightly diverges from

the result of Diebold et al. (2021), yet it does show us that under greater variation amongst

forecasters simplex method should be considered. Observe that the log scores for just simplex

are almost the same for both DGPs, which is because for DGP 2 simplex chooses the best

11-12 forecasters, which we know have the same standard deviation (10 of them) as the fore-

casters for DGP 1. Simplex+ridge and simplex+entropy behave as expected. Furthermore,

simplex+entropy outperforms every other method, including simple averaging and the ’best’

forecaster. As expected simplex+ridge chose more forecasters from the opinions pool than just

simplex, yet unlike simplex+entropy, not every predictor. Simplex+ridge gives the first 10 fore-

casters with higher accuracy a greater weight, thus weighing down some of the noise provided

by the remaining 7-8 forecasters, yet keeping various information they carry.

Based on both sets of results, we can claim that regularized simplex indeed outperforms just

simplex. That is because the large estimation error of the unregularized simplex (particularly

DGP 2) causes some relevant forecasters to be dropped from the pool, and regularization brings

them back. Hence, we have almost all of our forecasters included in the pool for regularized

simplex and just over a half for simplex. The best forecaster in the simulated setting could not

be outperformed for DGP 1, which is in line with the results of Diebold et al. (2021), yet it

could for DGP 2.
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As outlined by Diebold et al. (2021) these results are almost impossible to obtain in practice,

however ”they document what can be achieved in principle”. We now turn to the real data set

and see empirically whether these methods are applicable to forecasting the density outcomes

of FIFA World Cup football matches.

5 FIFA World Cup Forecasts

We now present you with the performance of our regularizations when forecasting the football

games outcomes. We will start by evaluating the performance of our methods solely considering

the accuracy of our probability forecasts via the log score. Then we will also consider whether

the hypothetical improvements in probability forecasts can increase our expected returns from

betting. Therefore, we will evaluate the model performance via the expected betting returns;

and see if we can achieve systematic profits when information provided by all predictors is

considered. There is a total of 23 forecasters in our (opinion) pool, including 20 bookmakers, 2

betting exchanges and a FIFA World Ranking.

5.1 Log Score

The results for the forecast accuracy of our methods and benchmarks are shown in Table

2. We consider several benchmarks, including a range of individual forecasters and a simple

average. The latter simply assigns 1/K weight to each forecaster. The best forecaster is the

one, which gives the lowest (individual) out-of-sample log score; the median forecaster gives the

median (individual) out-of-sample log score, and so on.
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Table 2: Log Scores for FIFA World Cup Matches

Regularization group L # λ∗

Simplex 0.96 8.00 NA

Simplex + Ridge 0.97 23 15.00

Simplex + Entropy 0.96 23 0.02

Benchmarks L # λ∗

Best (Matchbook) 0.95 1 NA

25th Percentile (Betway) 0.97 1 NA

Median (bwin) 0.97 1 NA

75th Percentile (BoyleSports) 0.97 1 NA

Worst (FIFA World Ranking) 1.00 1 NA

Simple K-Average 0.96 23 NA

Notes: L is the average log score, # is the number of forecasters selected, λ∗ is the ex post optimal penalty

parameter, and K is the total number of forecasters. The table gives the log scores for 1-game-ahead predictions,

i.e. the bookmakers’ coefficients (+ any other information needed to forecast) are gathered just before the start

of the game. In brackets the names of corresponding forecasters are given. 5-fold cross-validation technique based

on 128 games from the last two FIFA World Cups is used when computing the log scores.

Simplex gives a log score of 0.96, which is as low as simple averaging, yet higher than 0.95

- Matchbook (best forecaster). Simplex+entropy performs just as well as just simplex (0.96),

yet better than simplex+ridge (0.97). Note that simplex chooses 8 forecasters from the 23

available, while simplex+ridge chooses all the available forecasters. It is important to notice

that all of the individual (benchmark) log scores land in between 0.95 and 1.00, which implies

that the original density forecasts offer little variation, hence we do not see major improvements

via regularizations. The lack of variation in the data is also what limits the performance of

regularized simplex. Unlike simplex+entropy, simplex+ridge does not have to choose every

predictor from the (opinion) pool. Interestingly, simplex+ridge gives every predictor a non-zero

weight, yet it fails to outperform simplex+entropy.

To further evaluate our results we examine the weights that were given to every forecaster for

each regularization set up, see Table 4 in appendix A. Simplex, as expected, gives the majority

of forecasters a weight of zero, however what is interesting is the size of the weight received

by two predictors. Particularly, Matchbook betting exchange received the weight ≈ 0.92 and

FIFA World Ranking received the weight ≈ 0.08. Therefore, the remaining six non-zero weights

are arbitrarily close to zero. Given that simplex method selects a subset of predictors, and

distributes non-zero weights amongst them, we conclude that FIFA World Ranking and partic-

ularly Matchbook are (amongst) the most valuable predictors. Note that FIFA World Ranking

gives the worst (individual) log score, yet it is considered to be a valuable predictor by the
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model. This could be due to the additional information (variation) that is provided by FIFA

World Ranking, but not provided by any bookmakers. It is, however, somewhat surprising that

Matchbook betting exchange received such a high weight, while Betfair Exchange received a

weight of zero. The latter disagrees with the results of Wunderlich and Memmert (2016), who

claim Betfair Exchange is more or less the most accurate predictor, as it is the most popular

betting exchange, based on the largest trading volumes.4 However, because Matchbook and Bet-

fair Exchange are both betting exchanges, and they both represent the market-based forecasts,

they are highly correlated. Other reasons as to why Matchbook receives high weight could be

attraction of more experienced betters, or a more consistent profit margin for the odds, mak-

ing the (calculated) density forecasts more accurate. Furthermore, we confirmed the results of

Wunderlich and Memmert (2016), FIFA World Ranking was considered to be just as valuable

(if not more) of a predictor as the bookmakers.

Simplex+entropy has somewhat similar distribution of weights amongst forecasters, except

slightly smaller weight was given to Matchbook betting exchange (≈ 0.60) and the rest of

the bookmakers received approximately equal weights, which lie in between 0.01 and 0.02. The

FIFA World Ranking received almost the same weight as in just simplex (≈ 0.08), which again

highlights its accuracy. Simplex+ridge method has kept every forecaster in the pool, perhaps

due to little variation amongst forecasters. Except for the slightly higher Matchbook and the

FIFA World Ranking weights, the rest of the weights converge towards simple K-averaging. The

FIFA World Ranking received approximately the same weight as earlier (≈ 0.08), while Match-

book received the lowest weight (≈ 0.10) out of all regularized mixtures, yet still the highest

compared to the other forecasters.

5.2 Expected Profit

As suggested by Wheatcroft (2019), Wunderlich and Memmert (2020) and Lessmann et al.

(2010) it is reasonable to measure the forecast accuracy by considering the profitability of our

methods. The results are presented in Table 3. Again, several benchmarks are considered,

including a range of individual forecasters and a simple average. The best forecaster is the one,

which gives the largest (individual) out-of-sample expected profit; the median forecaster gives

the median (individual) out-of-sample expected profit, and so on.

4The more popular the betting exchange the more information from the betting market it will capture, so the

more accurate should be the results.
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Table 3: Expected Profit for FIFA World Cup Matches

Regularization group EP # λ∗

Simplex 0.10 8 NA

Simplex + Ridge 0.11 23 15.00

Simplex + Entropy 0.16 23 0.02

Benchmarks EP # λ∗

Best (Matchbook) 0.24 1 NA

75th Percentile (Betfred) 0.10 1 NA

Median (188Bet) 0.04 1 NA

25th Percentile (Betsson)) -0.09 1 NA

Worst (BoyleSports) -0.22 1 NA

Simple K-Average -0.12 23 NA

Notes: EP is the expected profit made from betting (betting returns - bet size), # is the number of forecasters

selected, λ∗ is the ex post optimal penalty parameter, and K is the total number of forecasters. The table gives

the maximal expected profit we would get if we were to bet under the regularized density forecasts, and we were

to chose the bookmaker with the highest available odds. In brackets the names of corresponding forecasters are

given. Note that log score is still used to compute optimal regularized mixtures of predictive densities, which are

then used to compute the expected profit. 5-fold cross-validation technique based on 128 games from the last two

FIFA World Cups is used when computing the expected profits.

Unlike in section 5.1, we are now maximizing the expected profit from betting. Note, the

density weights are still computed using the log score, however the forecast accuracy is eval-

uated using the expected betting returns function. Such economic evaluation method yields

some interesting results. One of the questions that we considered is whether it is possible to

systematically make positive returns, and another is whether regularizations improve our fore-

casts. For both questions we get positive results. All three sets of regularized mixtures are

positive (profit) and have outperformed every benchmark except for the best forecaster, who in

this case is Matchbook, see Table 5 in appendix A. Interestingly, simple averaging has one of

the worst performances, which is not the case when we evaluate the performance using the log

score. Note that we see much more variation among the results, when considering the expected

profits. Moreover, if one was to pick a forecaster randomly, his/her expected profits would be

around 0 or even negative, as implied by the expected profit of the median forecaster.

In line with our results in Table 3, Matchbook betting exchange (best forecaster) remains

unbeaten. Therefore, one should anticipate the highest expected profit, 24%, when betting using

only the information (odds) provided by Matchbook betting exchange. While it is somewhat an

unexpected result, Matchbook could have achieved such a high expected profit by incorrectly

forecasting a probable event. For example, the outcome could more probable than expected by
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the market (those participating in the exchange), hence there would higher odds for the outcome

that is more likely, yielding higher expected profits. If one considers a good (not best) predictor,

for example Betfred (see Table 3), then he/she can profit from betting no more than around

10%. However, if one was to use the regularizations, particularly simplex+entropy he/she would

expect to profit up to 16% on their bet. Simplex on its own performs as well as Betfred,

giving 10% expected profit. Simplex+ridge, outperforms simplex, and gives expected profit of

11%. Therefore, in terms of profitability, regularizations prove to be somewhat successful when

forecasting the outcome of a football match; or at least more successful than when evaluated

in terms of forecast accuracy. This goes in line with the results of Wunderlich and Memmert

(2020), who argues that often we will observe no improvement in the statistical measure of

forecast accuracy, yet a significant improvement in the economic measure of forecast accuracy.5

Wunderlich and Memmert (2020) points to the fact that profitability is not exactly a mea-

sure of the forecast accuracy. However, Koopman and Lit (2015) and Lessmann et al. (2010)

agree that our end goal of improving density forecasts is to maximise betting returns. Thus,

when choosing optimal forecaster or forecasting method it is absolutely relevant to consider

profitability of the available methods/models. Koopman and Lit (2015) consider whether ”the

forecasts from this model are sufficiently accurate to gain a positive return over the bookmaker’s

odds”, which is indeed true for our regularized mixtures, yet not for simple averaging. Hence,

Table 2 must be viewed with caution because according to the promising results of the simple

average method one should use it to bet on the outcomes of the football matches. However, Ta-

ble 3 clearly shows that such method will lead to negative returns. Instead, Matchbook betting

exchange or simplex+entropy regularization should be used, if the sole goal is to maximise the

expected profitability of one’s bet.

5See Wunderlich and Memmert (2020), Lessmann et al. (2010) for more insights as to why this phenomena

occurs.
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Figure 1: Log Scores and Expected Profits plot for each individual predictor. The plot shows

how the expected profits change as the log score (gradually) increases. The dotted line shows

the linear trend of the Expected Profit.

To further examine our results, we consider the relation between the log score and expected

profit. The changes in the expected profits, as log scores (gradually) increase, are shown in Figure

1. We anticipate the expected profit to decrease as the log score increases. This relationship

is only evident, if we look at the linear trend of the expected profits, which is indeed inversely

related to the log score plot. Otherwise, the inverse relationship between expected profits and

log scores is not necessarily obvious from the plot. For example, looking at the last data point

(FIFA World Ranking), we know that FIFA World Ranking gives the worst log score, yet the

fourth highest expected profit, see Table 5 in appendix A. This type of relationship between log

scores and expected profits follows the results of Wunderlich and Memmert (2020).

6 Conclusion

We examine whether we can improve on density forecasts for the outcomes of FIFA World

Cup football matches, by combining forecasts under regularizations as suggested by Diebold et al.

(2021). Three alternative regularizations are used, simplex, simplex+ridge and simplex+entropy.

23 forecasters are considered, primarily including bookmakers, but also a couple of betting

exchanges and a FIFA World Ranking. To compute optimal weights we use the log score

objective function. Furthermore, we evaluate the forecast accuracy in terms of the log score, and

expected profit from betting on the games outcomes. For comparison, log scores and expected

profits for each individual forecaster are computed, as well as the log scores and expected profits
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of a simple average model.

We evaluate our regularizations based on the last two FIFA World Cups (2014, 2018), which

gives a total of 128 football matches. To compute optimal weights 5-fold cross-validation is used,

and we evaluate and compare only out-of-sample predictions. One of the most notable results, is

little improvement in the statistical accuracy (evaluated using log score) of density forecasts when

regularizations are applied. As outlined in section 5.1, regularizations insignificantly improve on

our benchmarks, meaning that there is no or little advantage considering additional predictors to

improve the statistical accuracy of our forecasts. However, it seems that we do somewhat benefit

from the regularizations, when looking at the expected profits that we make. Unfortunately, as

in the case with the log score evaluation method, none of the regularizations outperform the best

forecaster, i.e. Matchbook betting exchange in both cases. However, every other benchmark is

defeated by simplex+entropy regularization. Moreover, all regularizations give positive expected

profits, which vary between 10% (simplex) and 16% (simplex+ridge). The discrepancy between

the two evaluation methods is separately studied by Wunderlich and Memmert (2020), Goddard

and Asimakopoulos (2004) and Leitch and Tanner (1991).

In addition to the performance of our methods, we evaluate the optimal weights given to

forecasters under each regularization, for results see Table 4 in appendix A. Here, the most

notable result is that Matchbook always receives the highest weight, implying it is the most

valuable forecaster. Matchbook, is indeed the most accurate forecaster, see Table 5 in appendix

A, which justifies it receiving the highest weight. Thus, based on its accuracy (log score) and the

weight it receives under regularizations, it is safe to conclude that for the World Cups in 2014

and 2018, Matchbook gives the best density forecasts compared to other forecasters and simple

averaging. When evaluating Matchbook based on its profitability, its superiority is also notable.

Moreover, FIFA World Ranking always receives the second highest weight, which is another

notable result. The result is notable because, based on its log score, FIFA World Ranking has

the worst accuracy, yet it has one of the highest weights and expected profits. FIFA World

Ranking provides the ’most different’ sets of density forecasts, thus it contains some information

that is not considered by bookmakers or betting exchanges. To make use of that information a

relatively high weight is assigned.

In practice, one can refer to Table 3 to systematically profit from the betting market. Even

though regularizations yield lower profits than Matchbook (best forecaster), it might still be

useful to consider regularizations since we would expect them to be more consistent in terms

of generating the expected profit. Matchbook proved to be very successful in 2014 and 2018

FIFA World Cups, yet that does not mean that for other football tournaments it will be as
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successful. Matchbook is a betting exchange, which depends on people actively participating

in the betting market. Yet, if for some match the Matchbook trading volumes drop, it will

significantly impact the forecast quality as well as the odds, since they are determined by the

open betting market. Whereas regularizations would be less sensitive to each forecaster, and if

more alternative forecasters are added to the opinion pool, the quality of the density forecasts

should increase, both in terms of statistical and economic accuracy. One should be careful,

however, because the distribution of the expected profits is difficult to interpret, and thus we

cannot accurately measure the statistical significance of the results.

Despite our limiting results, we believe that there is definitely room for the above regular-

ization methods for predicting the outcomes of the football matches. For the future, to improve

their performance, one could consider the work of Frick and Wicker (2016), and make use of

the economic forecasts, by adding them to the opinions pool. Furthermore, there are many

model-based density predictions, which will increase the variability of the opinions pool, thus

allowing regularizations to make use of the additional information. Finally, one could look to

apply these methods to other sports or tournaments, possibly try and predict the overall winner;

or perhaps benefit from a larger data sample, which could better estimate the optimal weights.
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E. Štrumbelj. On determining probability forecasts from betting odds. International journal of

forecasting, 30(4):934–943, 2014.

22



E. Wheatcroft. Evaluating probabilistic forecasts of football matches: The case against the

ranked probability score. arXiv preprint arXiv:1908.08980, 2019.

F. Wunderlich and D. Memmert. Analysis of the predictive qualities of betting odds and fifa

world ranking: evidence from the 2006, 2010 and 2014 football world cups. Journal of sports

sciences, 34(24):2176–2184, 2016.

F. Wunderlich and D. Memmert. Are betting returns a useful measure of accuracy in (sports)

forecasting? International Journal of Forecasting, 36(2):713–722, 2020.

A. Zeileis, C. Leitner, and K. Hornik. Probabilistic forecasts for the 2018 fifa world cup based on

the bookmaker consensus model. Technical report, working papers in economics and statistics,

2018.

23



A Appendix

Table 4: Optimal Weights Under Regularizations

Predictor Simplex Simplex+Ridge Simplex+Entropy

10Bet 0.00 0.04 0.02

188Bet 0.00 0.03 0.01

888sport 0.00 0.05 0.02

bet-at-home 0.00 0.03 0.01

bet365 0.00 0.04 0.02

Betclic.fr 0.00 0.05 0.02

Betfred 0.00 0.05 0.02

Betsafe 0.00 0.04 0.01

Betsson 0.00 0.03 0.01

BetVictor 0.00 0.03 0.01

Betway 0.00 0.04 0.02

BoyleSports 0.00 0.03 0.01

bwin 0.00 0.04 0.02

Dafabet 0.00 0.03 0.01

Marathonbet 0.00 0.03 0.01

Pinnacle 0.00 0.03 0.01

SBOBET 0.00 0.04 0.02

Unibet 0.00 0.04 0.02

William Hill 0.00 0.06 0.02

youwin 0.00 0.03 0.01

Betfair Exchange 0.00 0.05 0.02

Matchbook 0.92 0.10 0.60

FIFA World Rankings 0.08 0.08 0.09

Notes: The table summarizes optimal weights computed under each regularization. Bold entries indicate that

the corresponding weight is non-zero. Under simplex regularization many predictors receive a (small) non-zero

weight that simplifies to 0.00, when taken to 2 decimal places.
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Table 5: Expected Profit and Log Score by Predictor

Predictor Log Score Expected Profit

Matchbook 0.95 0.24

888sport 0.96 0.18

Betway 0.97 0.17

FIFA World Ranking 1.00 0.14

William Hill 0.96 0.11

Unibet 0.97 0.11

Betfred 0.96 0.10

SBOBET 0.97 0.10

Dafabet 0.97 0.09

Betfair Exchange 0.97 0.07

bet365 0.97 0.05

188Bet 0.97 0.04

youwin 0.97 0.02

Pinnacle 0.97 -0.03

Betsafe 0.97 -0.03

Marathonbet 0.97 -0.05

BetVictor 0.97 -0.07

Betsson 0.97 -0.09

Betclic.fr 0.96 -0.11

10Bet 0.97 -0.13

bwin 0.97 -0.15

bet-at-home 0.97 -0.16

BoyleSports 0.97 -0.22

Notes: The table summarizes log scores and expected profits for each individual predictor. Predictors are ranked

based on their expected profits; thus betting via Matchbook gives the highest expected profit, and via BoyleSports

the lowest. Note that in calculating the expected profits and log scores for each predictor, only the information

(density forecast/odds) provided by one predictor is considered.
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