
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis BSc2 Econometrics and Economics

Nonlinearities in the cross-section of asset returns

Final version
July 4th 2021

Author

Jody Lesterhuis (470411)

Supervisor

dr. M. Grith

Second assessor

dr. M.D. Zaharieva

Abstract

This paper investigates if and to what extent relaxing the linearity assumption of the method of

Kozak et al. (2020) that the Stochastic Discount Factor is a linear combination of factors improves

the explanation of the cross-section of asset returns. This is investigated by setting the Generalized

Linear Model of Gu et al. (2020) in a risk pricing framework. Namely, the basis functions from

this model are used to approximate nonlinear factors. The paper finds little empirical evidence

that a flexible functional form improves the out-of-sample performance of the model. However, the

model recovers that raw portfolio returns do not allow for a sparse Stochastic Discount Factor (SDF)

representation, but transforming the portfolios into their Principal Components first allows for a

sparse SDF representation.
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1 Introduction

Explaining the cross-section of asset returns by only a few predictors has been a widely discussed topic

in asset pricing literature. Since the number of stock return predictors has grown steadily over the past

decades, selecting only a few predictors to explain the cross-sectional variation of stock returns has become

obsolete. Also, it is not necessarily desirable anymore because the recent introduction of machine learning

techniques in asset pricing has made the use of high-dimensional datasets containing many characteristics

more convenient. Machine learning can avoid overfitting when including a high number of predictors, a

problem that occurs using other, more classical econometric techniques.

Researchers that attempt to account for the cross-sectional variation in stock returns by using a

large set of characteristics are for example Light et al. (2017), Feng et al. (2020) and Kozak et al. (2020).

Kozak et al. (2020) disagree with the vision that the cross-section of asset returns can be explained by

only a few factors, an idea that is widely born in previous research. In contrast, they propose a new

machine learning based estimation procedure that allows for the consideration of many characteristics

but can also return a good characteristic-sparse representation if that is desirable.

Next to Kozak et al. (2020), Gu et al. (2020) offered research that lays out and compares several

machine learning methods that can be used to price assets. Whereas the objective of Gu et al. (2020)

lies in the estimation of risk premia, Kozak et al. (2020) focus on the estimation of risk prices. The risk

premium measures expected return above the risk-free rate, that is, how much a stock characteristic is

exposed to variation in excess returns. The risk price is the extent to which a characteristic helps in

pricing assets by contributing to the variation in the SDF (Kozak et al., 2020).

Albeit Kozak et al. (2020) establish that their proposed model performs significantly better out-

of-sample than characteristic-sparse models, one of the limitations of the paper is that a linear functional

form is assumed to hold. Freyberger et al. (2020), who suggest a nonparametric method that focuses

on assessing which characteristics add additional information to the cross-section of asset returns, note

that assuming linearity is a rather strong assumption and is sensitive to outliers. Furthermore, empirical

research has shown that the characteristics and returns appear to be nonlinearly related (Fama and

French, 2008). These findings point towards the need for more investigation into nonlinear relationships

between stock returns and the SDF. Therefore, my extension lies in investigating whether relaxing the

linearity assumption in the methods proposed by Kozak et al. (2020) still results in good out-of-sample

performance. Kozak et al. (2020) essentially make two linear assumptions. The first one is that the risk

prices are a linear combination of characteristics. The second one is that the SDF is linear in factors, where

the factors are portfolios of stocks constructed based on characteristics. For the scope of this research, I

investigate the relaxation of the second assumption. Hence, I assume that the SDF is a nonlinear function

of the factors. The nonlinear functional form is approximated using the basis functions proposed in the

Generalized Linear Method from Gu et al. (2020). Thus, the investigation answers the question if and

to what extent relaxing the linearity assumption of the method of Kozak et al. (2020) that the SDF is

a linear combination of factors improves the explanation of the cross-section of asset returns. To answer

this question, the following subquestions are answered throughout the research:
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1. How can the risk prices be estimated when it is assumed that the SDF is nonlinear in factors?

2. How can the out-of-sample R2 be calculated for the nonlinear functional form?

3. How does the out-of-sample performance of the nonlinear model compare to the linear model?

I hypothesise that the method including a nonlinear functional form has better out-of-sample

performance because of the earlier mentioned arguments by Freyberger et al. (2020) and Fama and

French (2008). However, to safely draw a conclusion, all methods should be compared on an equal basis.

This is done by comparing the out-of-sample performance of both models via the cross-sectional R2 using

K-fold cross-validation while imposing L1 and L2 penalties to allow for sparsity and impose shrinkage,

respectively. For this purpose, two datasets are used. The first one considered is the Fama-French 25

Size and Book-to-Market sorted portfolios from 1926 until 2017 (French, 2020), and the second is the 50

anomaly zero-investment long-short portfolios from 1973 until 2017 (Kozak et al., 2020).

The paper finds little empirical evidence that a flexible functional form improves the out-of-sample

performance compared to the linear model. However, the paper does find that the raw portfolio returns do

not allow for a sparse SDF representation, but transforming the portfolios into their Principal Components

first does allow for a sparse SDF representation.

The contribution to the literature of this paper is two-fold. First, the paper contributes to the

recently started empirical investigation in using machine learning models in asset pricing. More specif-

ically, the paper extends the research in applying machine learning to estimate risk prices by using the

Generalized Linear Model of Gu et al. (2020) in a risk pricing framework. This is also an extension to

the paper of Kozak et al. (2020), which assume a linear functional form. Secondly, this paper empirically

applies and evaluates a recently introduced machine learning method, a shrinkage technique based on an

economically motivated prior. This allows me to assess the performance and robustness of this model

critically.

The research is economically relevant because increased robustness of cross-sectional return predic-

tions and the opportunity to base the return predictions on many characteristics available in the finance

literature simultaneously can help asset managers to make better decisions regarding the construction

of their portfolios. This could lead to increased Sharpe ratios on the managed portfolios, leading to

increased returns for investors.

The remainder of this paper is divided into the following sections. Section 2 lays out related existing

literature. Section 3 shows the methods used in this research. Section 4 presents the data used for the

empirical application, of which the results are discussed in section 5. The paper concludes in section 6.

2 Literature

In this section, the existing literature in the field of asset pricing is touched upon. In the first part, a

general overview of the existing literature is presented. In the second part, I dive into research applying

machine learning techniques to asset pricing, and I especially focus on nonlinear models.
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The Capital Asset Pricing Model (CAPM) proposed by Sharpe (1964), with contributions from

Lintner (1965) and Mossin (1965), forms the cornerstone of the asset pricing literature. The CAPM

models a linear relationship between the expected return of a stock and systematic risk, measured by

the market risk premium (excess returns beyond the risk-free rate). This model is later extended by

Fama and French (1993), who added A Small-minus-Big (SMB) and High-minus-Low (HML) factor to

the asset pricing model.1 This resulted in a wide appliance of the three-factor model but also gave rise

to the discussion and evaluation of many other factors that could possibly summarize the cross-section

of asset returns. To only name a few examples, Hou et al. (2015) proposed a four-factor model that

next to the three Fama-French factors includes a factor of average returns on low profitability stocks.

Fama and French (2015) extended their own three-factor model with factors representing the profitability

and investment patterns. Barillas and Shanken (2018) argue that a model including a momentum factor

on top of the five-factor model beats all previously mentioned models. These examples are only a small

fraction of the potential factors considered in the asset pricing literature. Thus, the question which factors

are relevant to include in the asset pricing model to explain the cross-section of asset returns accurately

has been an ongoing debate in the literature.

Although explaining the cross-section of asset returns by only a few factors has attractive benefits

such as clear interpretability or lacking overfitting, considering a large number of factors simultaneously

has become a new strand of literature in recent years. Lewellen (2015) forms a starting point in this

strand of literature by considering 15 characteristics to explain the cross-section of expected stock returns

using Fama-MacBeth regressions.2 Furthermore, Light et al. (2017) consider an even larger set of 26

characteristics and use partial least squares to estimate the cross-section of stock returns.

Next to using (variations of) ordinary least squares regressions, there have been proposed methods

using Principal Component Analysis (PCA) to explain the cross-section of stock returns. Fan et al. (2016)

propose a Projected PCA method, in wich PCA is applied to the projected data matrix onto a linear span

of stock predictors. This helps to reduce noise when the dimensionality of the dataset becomes large.

Moreover, Kelly et al. (2019) combine PCA with observable characteristics that are used as instruments

for unobservable dynamic loadings. This results in an Instrumented PCA method that allows for both

latent factors and time-varying loadings because the loadings now depend linearly on the characteristics.

While in the above-named methods the objective is to find out which stock characteristics best

explain the cross-section of returns, Kozak et al. (2020) take a rather different perspective. First of all,

they question whether it is economically rational to explain the cross-section of asset returns by only a

few factors. They argue that it is simply impossible to state beforehand that the cross-section of expected

returns can be explained by only a few factors, as many characteristics contribute individually towards

the expected return. However, they find that applying a Principal Component (PC) transformation

to this set of characteristics allows for a PC characteristic-sparse representation of SDF. This result is

driven by a finding from Kozak et al. (2018), which state that if near arbitrage opportunities do not exist,

1The SMB factor represents the average return on three small-capitalization portfolios minus the average return on three

big capitalization portfolios and the HML factor represents the average return on two value portfolios minus the average

return on two growth portfolios (Fama and French, 1993).
2Fama and MacBeth (1973)
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factors that capture substantial risk premia, which is the case for the first few PCs, explain a large part

of the co-movement of the returns. To take into account a large set of stock return predictors, Kozak

et al. (2020) construct a novel type of SDF. They consider a Bayesian approach that allows setting an

economically motivated prior which, in combination with regularization procedures, avoids overfitting

and leads to good out-of-sample performance.

Next to Kozak et al. (2020), other papers aim to find a solution to deal with a complex and large

set of characteristics. Feng et al. (2020) propose a model selection method, a bootstrap procedure, to

determine which factors contribute significant additional information above a high-dimensional set of

existing factors and therefore should be included. They note that ”A fundamental task facing the asset

pricing field today is to bring more discipline to the proliferation of factors” (Feng et al., 2020, p. 1327).

Similar to Kozak et al. (2020) and in contrast to the majority of papers in the field of asset pricing, they

focus on the estimation of risk prices rather than risk premia.

Kozak et al. (2020) and Feng et al. (2020) are examples of papers in which machine learning tech-

niques are used to explain the cross-section of stock returns while possibly accounting for a large number

of observed characteristics. Machine learning is attractive because it can deal with high-dimensional

datasets while implementing regularization methods to avoid overfitting (Gu et al., 2020). The paper

of Gu et al. (2020) gives an overview of and comparison between most of the existing machine learning

methods in asset pricing to recover which method is best in forecasting asset risk premia. Next to using

machine learning in the form of regularization methods to deal with the high dimensionality problem, Gu

et al. (2020) also propose machine learning methods that can capture nonlinearities. One of the models

they consider is a Generalized Linear Model regularized by the group LASSO, which allows to model ex-

pected returns as a nonlinear function of characteristics. Freyberger et al. (2020) use a similar approach.

They use a nonparametric estimation procedure, an adaptive group LASSO, to select characteristics that

best explain the cross-section and estimate how they affect conditional expected returns while allowing

for high-dimensional datasets and not imposing a strong functional form. The following papers also use

machine learning to capture nonlinearities. Moritz and Zimmermann (2016) Introduce tree-based condi-

tional portfolio sorts to evaluate which variables, out of a large set of stock return predictors and their

interactions, contribute independent information to the prediction of stock returns. Bryzgalova et al.

(2020) also use a tree-based method. They introduce a tree-based asset pricing model to estimate the

SDF while extending the proposed prior of Kozak et al. (2020). They impose not only LASSO and Ridge

shrinkage but also shrink the estimated mean towards the average return. Gu et al. (2021) propose a

latent factor conditional asset pricing model in which they use an autoencoder neural network to price

assets. The neural network shrinks the returns into a low-dimensional set of factors while allowing the

covariates to map nonlinear into factor loadings.

3 Methodology

This section describes the methods used in this paper. First, the methodology for the replication part of

this paper is laid out. Secondly, the methodology for the extension is presented.
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3.1 Asset pricing model

Many models in the finance literature find their origin in the asset pricing definition, in the spirit of

Cochrane (2005). To model the SDF, the price of an asset is defined as

Pt−1 = Et [MtXt], (1)

where Pt−1 is N × 1 vector of the prices of N assets at any point in time t− 1. Mt is the N × 1 SDF, Xt

is the N ×1 vector of pay-offs of the assets at time t, and the subscript t of the expectation indicates that

the expectation is conditional on all information known to the investor at time t−1. This equation states

that the price of an asset at time t − 1 equals the expected payoff of that asset at time t discounted by

the SDF Mt, given all information available until time t. The vector of gross returns of the assets equals

Rt = Xt/Pt−1. Thus, dividing Equation (1) by Pt−1 allows us to express the asset pricing equation in

terms of gross returns

1 = Et [MtRt]. (2)

Using the fundamental asset pricing assumption that there do not exist arbitrage opportunities, the above

equation can be rewritten in terms of excess returns, Ret = Rt−Rft , which equals the return of the assets

over the risk-free rate:

0 = Et [MtR
e
t ]. (3)

Excess returns rather than gross returns are most often used in the finance literature because the effect

a characteristic has on a particular stock is isolated from the effect that characteristic has on all stocks

in the market. For the replication part of the paper, it is assumed, similar to Kozak et al. (2020) and

many other papers in the finance literature, that the SDF is a linear combination of excess returns,

Mt = 1− b′t−1(Ret − E [Ret ]), (4)

where Mt is the SDF, Ret is the N × 1 vector of excess returns at time t, and bt−1 is the vector of SDF

loadings, also the vector of risk prices.

3.2 Characteristic-based factor SDF

Expressing the SDF as a characteristic-based factor model allows the use of financial ratios and char-

acteristics as factors in the SDF to price assets. This enables us to determine which characteristics are

the most important in explaining the cross-sectional variation of asset returns. The characteristic-based

factor SDF used in this paper follows the definitions in line with Kozak et al. (2020). The risk prices in

a characteristic-based SDF are defined as

bt−1 = Zt−1b, (5)

where Zt−1 is an N×H matrix of asset characteristics at time t−1 and b is a H×1 vector of time-invariant

coefficients. Expressing the loadings in this manner allows to contribute the time variation in the loadings
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to the characteristics. Substituting these loadings in Equation (4) and defining the characteristic-based

factor returns as Ft = Z ′t−1R
e
t gives

Mt = 1− b′(Ft − E [Ft]), (6)

in which the SDF is a linear function of Ft. I focus on the unconditional asset pricing equation E [MtFt]

instead of the conditional one because it is more convenient for estimation as noted by, amongst others,

Hansen and Jagannathan (1991). Inserting Equation (6) in the unconditional asset pricing equation and

solving for b gives3

b = Σ−1µ, (7)

where Σ−1 = E [(Ft − E [Ft])(Ft − E [Ft])
′] is the N × N covariance matrix of Ft and µ = E [Ft] is the

H × 1 mean vector of Ft. Thus, b can be expressed in terms of the mean and (co)variance of the factors.

3.3 Bayesian estimator

According to Kozak et al. (2020), using an ordinary cross-sectional regression of mean returns on the

covariances of returns and factors to estimate Equation (7) results in a very imprecise estimate of b and

bad out-of-sample performance. This result is driven by the fact that the factor means are regressed on

the covariances of the factors to get an estimator of b, and the estimates of these factor means are often

noisy. Hence, regressing a large number of variables in the cross-section will falsely overfit this noise. To

prevent this, an economically motivated prior belief about the relationship between the factor means and

variances is set to shrink the SDF coefficients towards zero (Kozak et al., 2020). Furthermore, to isolate

the uncertainty about factor means, the covariance matrix of the factors, Σ, is assumed to be known.

The following family of priors, which appeared in previous asset pricing research and allows to account

for the fact that the factor means and variances are related, is considered:

µ ∼ N (0,
κ2

τ
Ση). (8)

Here, τ = tr[Σ], κ is a constant that controls the ”scale” of µ, and η is a parameter that controls the

”shape” of of the prior. This is the most important parameter, as it shows the relationship between the

factor mean and variance we believe to hold under the prior. In Kozak et al. (2020), it is shown that

the novel parameter specification of η = 2 is both economically motivated and deviates least from prior

assumptions in previous literature, such as Pastor and Stambaugh (2000). This results in a prior belief

b ∼ N (0,
κ2

τ
IN ) (9)

about the SDF coefficients. Combining this prior belief with the sample mean µ̄, assuming a multivariate

normal distribution, results in the posterior estimator of b4:

b̂ = (Σ + γIN )−1µ̄, (10)

3The derivation can be found in appendix A.
4The algorithm of Kozak et al. (2020) is used to calculate b̂.
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where γ = τ
κ2T and IN is an N×N identity matrix. The variance of b equals Var(b) = 1

T (Σ+γIN )−1. To

obtain Equation (10), the posterior mean of µ is needed to calculate b̂. The posterior mean is based on the

formula of the conjugate multivariate normal prior. That is, µ̂ =
(
Σ−10 + TΣ−1

)−1 (
Σ−10 µ0 + TΣ−1µ̄

)
=(

Σ + γΣ(2−η))−1 Σµ̄, where µ0 = 0 and Σ0 = κ2

τ Ση. Plugging µ̂ in b̂ = Σ−1µ̂ and using that η = 2 gives

the desired formula of b̂. The choice of η = 2 results in a root expected maximum squared Sharpe ratio

of E [µΣ−1µ]1/2 = κ. Thus, γ has an implicit economic interpretation.

It can be shown that the Bayesian estimator can be written as a common machine learning es-

timator. A machine learning estimator usually solves an optimization problem constrained with some

penalty function. Hence, we want to write the estimator from Equation (10) in such a way as well. This is

possible because when maximizing the models’ cross-sectional R2 extended by a penalty on the maximum

squared Sharpe ratio,

b̂ = arg max
b
{(µ̄− Σb)′(µ̄− Σb) + γb′Σb}, (11)

the estimator found from in this maximization problem is equivalent to the estimator found in Equation

(10). Also, the estimator resulting from minimizing the HJ-distance (Hansen and Jagannathan, 1991)

extended by an L2 norm penalty,

b̂ = arg min
b
{(µ̄− Σb)′Σ−1(µ̄− Σb) + γb′b}, (12)

is equivalent to the estimator found in Equation (10). It now becomes apparent that the above two

equations are similar to a ridge regression (Hastie et al., 2011).

Although an L2 penalty shrinks the SDF coefficients substantially towards zero, it does not recover

a sparse SDF representation. To recover a sparse SDF, Equation (12) can be extended with an L1 penalty,

γ1
∑H
i=1 |bi|. This causes some coefficients to be set exactly to zero. Thus, combining both the L1 and

L2 penalty results in the minimization problem

b̂ = arg min
b
{(µ̄− Σb)′Σ−1(µ̄− Σb) + γ1

H∑
i=1

|bi|+ γ2b
′b}, (13)

which is similar to the elastic net technique5 (Zou and Hastie, 2005). Imposing both an L1 and L2 penalty

has the benefit of using prior economic beliefs to avoid overfitting as well as to deliver a sparse SDF when

this is desired. Thus, the degree of shrinkage increases when strengthening L2 penalty, whereas the degree

of sparsity is increased when strengthening the L1 penalty.

3.4 Penalty choice and performance evaluation

To choose the penalties γ or γ1 and γ2 such that the out-of-sample (OOS) R2 is maximized, K-fold cross-

validation (CV) is performed. This allows selecting the penalties based on the data instead of determining

them beforehand based on assumptions. The K-fold CV works as follows. First, the historical data is

divided into K equally sized subsamples. Secondly, in K − 1 of those subsamples, for each penalty (γ or

γ1 and γ2), b̂ is estimated. Third, the OOS fit is evaluated based upon the one subsample which is not

5The LARS-EN algorithm from Zou and Hastie (2005) is used to calculate b̂.
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used in the estimation of b̂,

R2
OOS = 1− (µ̄2 − Σ̄2b̂)

′(µ̄2 − Σ̄2b̂)

µ̄′2µ̄2
, (14)

where subscript 2 indicates that the mean or variance are estimated OOS in the withheld subsample.

The previous two steps are repeated K times, each time withholding a different subsample. Then, the

cross-validated out-of-sample R2 is calculated by averaging the K individual R2
OOS . Finally, the penalties

that maximize the cross-validated OOS R2 are chosen. An important thing to note here is that the cross-

validated OOS R2 is an upward biased estimator of the true OOS R2 because all historical data is used

to calculate the estimator (Tibshirani and Tibshirani, 2009).

3.5 Nonlinear factors in a characteristic-based factor SDF

As mentioned in the Introduction Section, previous literature has shown that the cross-section of asset

returns exhibit nonlinearities. Therefore, as an extension to the paper of Kozak et al. (2020), I relax

the assumption that the SDF is linear in factors6. For this purpose, the factors are portfolios evaluated

at some basis functions rather than the portfolios themselves. Using a basis expansion to approximate

nonlinearities in the cross-section has the benefit that the factors are evaluated at one point such that b

can still be estimated utilizing a linear regression. To arrive at an expression of the SDF, I assume that

the SDF is linear in the nonlinear factors, that is

Mt = 1− b′(f(Ft)− E[f(Ft)]), with f (Ft) =


f (Ft,1)

f (Ft,2)
...

f (Ft,N )

 =


c′1p1

c′2p2
...

c′NpN

 , (15)

where Mt is the SDF, b is an N×1 vector of risk prices and f(Ft) is an N×1 vector of linear combinations

of Ft. Compared to the linear case in Equation (6), f(Ft) replaces Ft. However, the assumption that b

is linear in characteristics still holds, which allows b to be time-invariant in this setup. Each element of

f(Ft), f(Fi,t) = c′ipi for all i = 1, ..., N . pi is a K × 1 vector of basis functions evaluated for the factor

Fi,t. That is, each pi is a column of the matrix PF defined as

PF = {pj,i = pj (Fi,t)} =


p1 (F1,t) p1 (F2,t) . . . p1 (FN,t)

p2 (F1,t) p2 (F2,t) . . . p2 (FN,t)
...

...
...

pK (F1,t) pK (F2,t) · · · pK (FN,t)

 , pi =


p1,i

c2,i
...

cK,i

 . (16)

ci is the K × 1 vector of corresponding coefficients. As basis functions, similar to Gu et al. (2020), a

spline series of order two is used: (1, Ft, (Ft − c1)2, (Ft − c2)2, ..., (Ft − cK−2)2), where c1, c2, ..., cK−2 are

6I want to thank Grith (2021a) for her contributions to the methodology of pricing nonlinear factors.
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knots7. Thus, each ci is a column of the matrix C defined as

C = {cj,i} =


c1,1 c1,2 . . . c1,N

c2,1 c2,2 . . . c2,N
...

...
...

cK,1 cK,2 . . . cK,N

 , ci =


c1,i

c2,i
...

cK,i

 . (17)

3.5.1 Derivation coefficients

For the aim of the extension, nonlinear instead of linear factors are priced. This allows us still to obtain

a true variance-covariance matrix of the nonlinear factors. If you would price linear factors, the variance-

covariance matrix is not square, making the implementation to obtain an estimator very difficult. Thus,

from here onwards, I focus on pricing nonlinear factors f(Ft). To start the derivation of the coefficients,

I use the definition of expected returns resulting from the fundamental asset pricing equation. It holds

that the expected value of f(Ft) is related to the covariance between f(Ft) and Mt as

E[f(Ft)] = −Cov[f(Ft),Mt]. (18)

Writing the covariance between f(Ft) and Mt in terms of expected values, the above equation equals

E[f(Ft)] = −E [f(Ft)− E f(Ft)][Mt − E (Mt)]. (19)

Plugging in the definition of the SDF, Mt = 1− b′(f(Ft)− E[f(Ft)]), into this equation results in

E[f(Ft)] = −E [f(Ft)− E f(Ft)][1− b′(f(Ft)− E f(Ft))− E (Mt)]. (20)

Rewriting the equation such that b is outside the expected value and using that E (Mt) = 1 gives

E[f(Ft)] = E[f(Ft)− E f(Ft)][(f(Ft)− E f(Ft)]
′b, (21)

in which the expected value is by definition the variance-covariance matrix of f(Ft). This results in

E[f(Ft)] = Var[f(Ft)]b. (22)

Plugging in the definition of f(Fi,t) = c′ipi into the variance-covariance matrix of f(Ft) results in the

following matrix of variances and covariances of the vectors of basis functions:

Var[f(Ft)] =


c′1R11c1 c′1R12c2 . . . c′1R1NcN

c′2R21c2 c′2R22c2 . . . c′2R2NcN
...

...
...

c′NRN1c1 c′NRN2c2 · · · c′NRNNcN

 , Rij =

 Cov (pi, pj) if i 6= j

Var(pi) if i = j
(23)

Here, the off-diagonal elements Rij represent the covariance between two columns of PF , pi and pj , and

7The basis functions from the algorithm of Gu et al. (2020 & 2021) are used to calculate PF .
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the diagonal elements represent the variance of one column of PF . This representation of the variance-

covariance matrix allows to write the matrices R and C as

R =


R11 R12 . . . R1N

R21 R21 . . . R2N

...
...

...

RN1 PN2 · · · RNN

 , C =


c1 0 . . . 0

0 c2 · · · 0
...

...
...

0 0 · · · cN

 , (24)

where R is an (N ×K)× (N ×K) variance-covariance matrix of PF and C is an (N ×K)×N diagonal

matrix of coefficients. Each ci is K × 1 and equivalent to ci from Equation (17), and each 0 is a K × 1

vector of zeros. These definitions result in the following expression of the variance of f(Ft):

Var[f(Ft)] = C′RC. (25)

Next to that, the definition of f(Fi,t) = c′ipi can also be plugged in the the expected value of f(Ft), which

results in the following representation of the expected value of f(Ft):

E [f(Ft)] =


c′1 E [p1]

c′2 E [p2]
...

c′N E [pN ]

 = C′ E[Pv], where E[Pv] =


E[p1]

E[p2]
...

E[pN ]

 (26)

is the (N × K) × 1 vectorization of the expected values of each pi and C′ is the N × (N × K) matrix

of the transpose of each element in C from Equation (24). Plugging the above derived definitions of the

expected value and the variance-covariance matrix into Equation (22) results in

C′ E[Pv] = C′RCb. (27)

It is assumed that CC′ = I. I elaborate on this assumption in Section 3.5.3. Then, the coefficients C and

b can be isolated and written in terms of the first and second moments of the basis functions evaluated

at each factor as

Cb = R−1 E[Pv]. (28)

However, C and b cannot be separated, which does not allow to estimate the risk price corresponding

to the nonlinear factors separate from the coefficients corresponding to the basis functions. Hence, the

estimates resulting from this method do not represent the risk prices of the factors but rather the risk

price weighted by the coefficients corresponding to the basis function the factor is evaluated at.

3.5.2 Estimator

Although C and b cannot be separated, it is possible to estimate the joint coefficients while applying L2

shrinkage to the variance-covariance matrix of PF , similar to Kozak et al. (2020). This results in the
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following estimator8:

(Ĉb) = R̃−1P̄v, R̃ =

 R̃ii = Rii(1 + γIK) if i = j

R̃ij = Rij if i 6= j
(29)

Here, P̄v is the sample version of E[Pv], R is the second moment of PF as defined in Equation (24), and

IK is a (K ×K) identity matrix. Hence, the diagonal elements of the variance-covariance matrix R are

extended with a penalty γ = τ
κ2T . This penalty comes from an economically motivated prior belief about

the relationship between factor means and (co)variances. This prior belief is set such that the coefficients

are shrunk towards zero. For a thorough explanation of how the penalty results from an economically

motivated prior belief, I refer to Section (3.3).

Next to an L2 penalty, we can also impose an L1 penalty to allow for the possibility to obtain a

sparse SDF representation. Namely, an L2 penalty only shrinks the coefficients towards zero, but does

not set them exactly equal to zero. This is where the L1 penalty comes in place. The stronger the L1

penalty, the more coefficients are set to zero and the sparse the SDF representation. Maximizing the

cross-sectional R2 subject to the L2 penalty of the maximum squared Sharpe ratio as well as an L1

penalty defined as γ1
∑K
j=1

∑N
i=1 |cj,ibi| results in the following estimator of (Cb):

ˆ(Cb) = arg max
Cb

{(P̄v −R(Cb))′(P̄v −R(Cb)) + γ2(Cb)′(Cb) + γ1

K∑
j=1

N∑
i=1

|cj,ibi|} (30)

3.5.3 Penalty choice and performance evaluation

To choose the penalties such that the OOS R2 is optimized, K-fold cross-validation (CV) is performed as

well in the nonlinear setup. For a thorough explanation of cross-validation, I refer to Section (3.4). The

R2
OOS of the withheld subsample in the case of pricing nonlinear factors equals9

R2
OOS = 1− (P̄v,2 − R̄2(Ĉb))′ĈĈ′(P̄v,2 − R̄2(Ĉb))

P̄ ′v,2ĈĈ′P̄v,2
, (31)

where subscript 2 indicates that the mean or variance are estimated OOS in the withheld subsample. P̄v,2

is the OOS mean of Pv and R̄2 is the OOS variance-covariance matrix of PF . Assuming that ĈĈ′ = I

results in

R2
OOS = 1− (P̄v,2 − R̄2(Ĉb)′(P̄v,2 − R̄2(Ĉb))

P̄ ′v,2P̄v,2
. (32)

The assumption that ĈĈ′ = I is made because it is not possible to estimate b and C separately. Hence,

we do not know the isolated estimator of C. Therefore, to calculate the OOS R2, a simplifying assumption

should be made to cancel ĈĈ′. Because the original factors Fi,t are zero-investment long-short portfolios10,

which means that the factors are orthogonal, this assumption is plausible.

8For a more detailed derivation of this estimator I refer to Appendix B.
9A more detailed derivation of the out-of-sample R2 can be found in Appendix C.

10I elaborate on the construction of these portfolios in Section 4.
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4 Data

For the empirical applications of the methodology in this paper, two datasets from Kozak et al. (2020)

are used. The first dataset consists of the Fama-French 25 sorted portfolios, which are retrieved from

French (2020). Daily returns on the 25 Fama-French Size and Book-to-Market sorted portfolios are used.

This dataset consists of stocks listed on the NYSE, AMEX and NASDAQ for which there exists market-

and book equity data. The period considered ranges from 1926/07/01 until 2017/12/29. The stocks are

divided into 5 × 5 portfolios of stocks in a given Size and Book-to-Market quintile. This means that the

stock returns are ordered from high to low based on their size or book-to-market equity ratio and divided

into five equally sized quantiles. Firms that are in the intersection of a certain Size and Book-to-Market

quintile form a portfolio. For example, one portfolio could be all firms in the second quintile of Size and

the fifth quintile of Book-to-Market. The Center for Research in Security Prices (CRSP) value-weighted

index return is subtracted from these portfolio returns, and they are rescaled to have the same standard

deviations as the in-sample standard deviation of the aggregate market index excess return.

The second dataset consists of 50 anomaly portfolios that are constructed by Kozak et al. (2020),

based on frequently used anomalies in the finance literature. Daily returns of the US firms retrieved from

CRSP from a period of 01/11/1973 until 20/12/2017 are considered. At each time t, stocks with a market

capitalization smaller than 0.01% are removed to prevent the results from being driven by high-volatile

penny stocks. To arrive at anomaly portfolios, a set of 50 characteristics is manipulated as follows. First,

for each characteristic, a rank transformation is performed. Let cis,t be a characteristic i of stock s at time

t. All stocks are sorted based on the value of the respective characteristic i and are ranked from 1 until

nt, where nt is the number of stocks at time t. Then the rank-transformed characteristic is calculated as

rcit,s = rank(cis,t)/(1 + nt). Secondly, the rank transformed characteristic is further normalized as

zit,s =
(rcit,s − r̄cit,s)∑nt

s=1|rcit,s − r̄cit,s|
. (33)

This results in zero-investment long-short portfolios per characteristic. All characteristics are combined

in one instrument matrix Zt. Multiplying this with the stock returns gives the desired matrix of anomaly

portfolios.

5 Results

The empirical results using the methods discussed in this paper and the datasets mentioned in the previous

section are reported in this section. First, the results of the replication, and second of the extension are

presented and discussed.

5.1 Replication

The key objective of Kozak et al. (2020) is to show that their proposed method with the use of an

economically motivated prior can conquer the multidimensional challenge (Cochrane, 2011). They want

to show that their method has good out-of-sample performance while considering a large set of stock
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characteristics. They do this by first applying the method to a set of well-known portfolios: the 25

Fama-French Size and Book-to-Market (FF25) portfolios. Thereafter, they consider two sets of stock

anomalies: a self-constructed set of 50 anomaly portfolios based on popular characteristics used in the

finance literature and the WRDS financial ratio set. Lastly, to raise the dimensional challenge, they

supplement each of these sets with second and third powers and linear first-order interactions. In this

section, I focus on replicating the results from Kozak et al. (2020) for the FF25 portfolios and the

self-constructed 50 anomaly portfolios11.

5.1.1 25 Fama-French Size and Book-to-Market portfolios

Before the method from Kozak et al. (2020) is applied to a high-dimensional dataset, its performance is

evaluated for a well-known and commonly used dataset: the FF25 portfolios. For a complete description

of the dataset, I refer to Section 4. These portfolios are considered because their returns are known

to have a clear factor structure. This means that the returns are linear combinations of the SMB and

HML factors12 (Lewellen et al., 2010). Furthermore, the first and second PCs of the FF25 are known to

correspond with the SMB and HML factors. Therefore, it can be assessed whether the method recovers

the expected sparsity. This gives a good first indication of the performance of the model before moving

to the high-dimensional setting.

In Figure 1, contour maps of the FF25 portfolios (a) and the PCs of the FF25 portfolios (b)

are presented. The contour map plots the degree of sparsity, expressed in the number of nonzero SDF

coefficients, against the amount of shrinkage, expressed by κ. The amount of shrinkage is chosen to

be expressed by κ because it has an economic interpretation: it equals the square root of the expected

maximum squared Sharpe ratio. The degree of sparsity corresponds to γ1 and the amount of shrinkage to

γ2 in Equation 13. The values for γ1 and γ2 are depicted on a logarithmic scale. Viewing the map from

along the y-axis, the top shows little sparsity (many factors), whereas the bottom shows extreme sparsity

(only one factor). From along the x-axis, the most left side depicts extreme shrinkage, and the most right

side no shrinkage at all. The third dimension of the map displays the level of the out-of-sample (OOS)

cross-sectional R2. The different levels are expressed in colours, and which colour corresponds to which

level is given by the bar right next to the figures. The darker blue, the smaller the R2 and the more

yellow, the higher the R2. The R2 is bounded by a minimum of −0.1. In summary, for each pair of (γ1,

γ2), the contour map shows the corresponding OOS R2. Thus, this contour map visualizes the levels of

out-of-sample performance of the model expressed by R2 for different degrees of sparsity and shrinkage.

Zooming in on Figure 1a, the somewhat diagonal shape of the yellow grid shows that less sparsity

should be compensated with more shrinkage to arrive at the same level of out-of-sample performance.

Also, a good OOS R2 can be attained for a small number of nonzero coefficients, that is, when only a

few factors are included. This confirms the expectations of the FF25 portfolios, from which it is known

that they have a clear factor structure.

11I want to thank Kozak et al. (2020) for making available most of their code.
12For further explanation of these factors, I refer to the paper of Fama and French (1993) and the website of French

(2020).
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For the PCs of the FF25 portfolios, displayed in Figure 1b, the factor structure becomes even

more clear. The almost vertical yellow grid shows that no additional shrinkage needs to be imposed

to compensate for the use of more factors. This implies that the method can capture many factors

without resulting in overfitting and in turn, worse out-of-sample performance. However, some amount of

shrinkage is needed to arrive at a good level of OOS R2 because the dark blue plane to the right from the

yellow vertical plane indicates that applying no shrinkage at all leads to terrible results. Furthermore,

including many factors is possible but unnecessary, as the optimal OOS R2 is already nearly attained

when including only one factor. This is also expected from a statistical point of view because the first

few PC transformed factors capture the highest proportion of the variance explained in the cross-section

of asset returns. When a set of portfolios already has a clear factor structure, the PCs transformed

portfolios should have an even more sparse structure.

(a) Fama-French 25 portfolios (b) PCs of Fama-French 25 portfolios

Figure 1: Cross-sectional OOS R2 for possible combinations of L1 and L2 penalties considering the linear pricing model.

The left figure (a) displays the OOS R2 for 25 Fama-French Size and Book-to-Market sorted portfolios. The right figure (b)

for their PC transformation. The x-axis in both figures shows the amount of shrinkage (L2 penalty), with no shrinkage at

the right and extreme shrinkage at the left edge of the figure. The y-axis shows the degree of sparsity (L1 penalty), which

is expressed as the number of nonzero coefficients. A small number indicates high sparsity, and a large number indicates

almost no sparsity. The coloured contour map depicts the OOS R2 for combinations of the L1 and L2 penalties, where the

darker blue means the lower the R2 and the lighter yellow the higher the R2. The R2 bounded at a minimum of −0.1.

The aforementioned results are very similar to those of Kozak et al. (2020), which is completely

logical because I use their code and dataset. However, there are made some assumptions in their paper

that I found rather arbitrary. First, the choice of K = 3 in the K-fold CV. Kozak et al. (2020) base

this choice on the fact that they have to compromise between estimation uncertainty in b̂ and Σ̄2. The

estimation precision of the OOS covariance matrix lowers when the withheld sample becomes smaller.

However, they note that their output is robust for values slightly higher than K = 3. It is not clear to

me why they chose K = 3 over for example K = 5. The second decision that I found arbitrary is the

choice of a withheld sample of 31 years. Kozak et al. (2020) do not provide any explanation on why this

sample size is chosen and whether their results are robust to changing this sample size.

Figure 2 shows some cuts along the axes of the contour maps in Figure 1. For the left panel
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(a), a cut is taken along the top of Figure 1a. This means that the cross-sectional R2 of the raw FF25

portfolios is displayed for various levels of shrinkage without imposing any sparsity. Figure 2a shows that

the maximum R2 of approximately 0.45 is attained at a value of κ ≈ 0.25. The plot also shows that

evaluating the in-sample R2 can lead to very different conclusions regarding the amount of shrinkage

necessary for a model to perform well out-of-sample. This indicates that in-sample evaluation is not the

appropriate method to evaluate out-of-sample performance.

The right panel (b) of Figure 2 displays the maximum cross-sectional R2 obtained at various degrees

of sparsity, choosing the amount of shrinkage that maximizes the R2 at a certain level of sparsity. This

is done for both the raw FF25 portfolios and their PC transformations. Thus, in figure 2b, a cut is taken

from the bottom to the top of the maps in Figure 1 along all R2 maximizing amounts of shrinkage. Figure

2b shows that for the FF25 portfolios, a sparse SDF representation, similar to the Fama-French 3-factor

model (indicated by the cross), can be obtained. The PC transformation of the FF portfolios allows for

an even more sparse representation, as an R2 close to the maximum can already be obtained by including

only 1 factor in the model.

In summary, the raw FF25 portfolio returns trade-off shrinkage and sparsity to attain good out-of-

sample performance, whereas the PC transformation of the portfolio returns allows for extreme sparsity

without applying additional shrinkage. However, some shrinkage is needed to ensure good out-of-sample

performance.

(a) Shrinkage (b) Sparsity

Figure 2: Cross-sectional OOS R2 for various levels of shrinkage (a) and sparsity (b), based on the 25 Fama-French Size

and Book-to-Market sorted portfolios. The left panel (a) plots the in-sample and out-of-sample R2 against the amount

of shrinkage (L2 penalty) without imposing sparsity. The dashed blue line displays the in-sample R2, the solid red line

the OOS R2 and the dotted red lines the ± 1 standard error (s.e.) bounds of the OOS R2. The right panel (b) plots the

maximum OOS R2 attained for optimal levels of shrinkage against the degree of sparsity. The solid blue line depicts the R2

for the raw 25 Fama-French portfolios, with the dotted blue line its -1 s.e. The dashed red line depicts the PCs of the 25

Fama-French portfolios, with the dotted red line its -1 s.e. The cross (’X’) indicates the R2 attained for the Fama-French

three-factor model, which includes the risk-free market rate, SMB, and HML factor.
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5.1.2 50 anomaly portfolios

Applying the model to the FF25 portfolios forms a good starting point for evaluating the models’ perfor-

mance. Still, to assess whether the model can tackle the multidimensional challenge, a higher dimensional

dataset should be considered as well. In this section, the results of applying the model to the second

dataset considered in this paper, the 50 anomaly portfolios, are discussed. In Figure 3a and 3b, the

cross-sectional OOS R2 is plotted for various combinations of the degree of sparsity and shrinkage. In

the left panel (a) for the raw 50 anomaly portfolios, and the right panel (b) for their PCs. From Figure

3a, it visible that for the 50 anomaly portfolios, essentially no sparsity can be attained while at the same

time ensuring a good OOS R2. Moreover, the maximum OOS R2 is attained for an SDF representation

including 48 out of 50 factors. This is clear evidence for the observation of Kozak et al. (2020) that

the cross-section of asset returns cannot be summarized by only a few factors. Many characteristics

contribute small parts to the cross-sectional variation; therefore, all characteristics should be taken into

account. Although almost no sparsity is allowed, a substantial degree of shrinkage should be imposed to

attain good OOS performance. This can be seen from the large dark blue plain on the right-hand side

of the contour map. The OOS R2 is bounded by a minimum value of −0.1, and lifting this bound would

show an even worse OOS R2 when almost no shrinkage is applied. Lastly, for the 50 anomaly portfolios,

in contrast to the FF25 portfolios, sparsity and shrinkage are no substitutes anymore in ensuring good

OOS performance.

(a) 50 anomaly portfolios (b) PCs of 50 anomaly portfolios

Figure 3: Cross-sectional OOS R2 for possible combinations of L1 and L2 penalties considering the linear pricing model.

The left figure (a) displays the OOS R2 for 50 anomaly portfolios constructed by Kozak et al. (2020). The right figure (b)

for their PC transformation. The x-axis in both figures shows the amount of shrinkage (L2 penalty), with no shrinkage

at the right and extreme shrinkage at the left edge of the figure. The y-axis shows the degree of sparsity (L1 penalty),

expressed as the number of nonzero coefficients. A small number indicates high sparsity, and a large number indicates

almost no sparsity. The coloured contour map depicts the OOS R2 for combinations of the L1 and L2 penalties, where the

darker blue means the lower the R2 and the lighter yellow the higher the R2. The R2 bounded at a minimum of −0.1.

The right subfigure, Figure 3b, shows a rather different conclusion. When the 50 anomaly portfolios

are transformed into their PCs, the model attains a high OOS R2 even when allowing for substantial

sparsity. This conclusion is seen from the almost vertical yellow plain. The plain ends at a degree of
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around 3/4 factors. Hence, the PCs of 50 anomaly portfolios can be explained well by around 4 factors.

Similar to the raw 50 anomaly portfolios, still substantial shrinkage should be applied to ensure good

OOS performance.

(a) Shrinkage (b) Sparsity

Figure 4: Cross-sectional OOS R2 for various levels of shrinkage (a) and sparsity (b), based on the 50 anomaly portfolios

constructed by Kozak et al. (2020). The left panel (a) plots the in-sample and OOS R2 against the amount of shrinkage

(L2 penalty) without imposing sparsity. The dashed blue line displays the in-sample R2, the solid red line the OOS R2 and

the dotted red lines the ± 1 standard error (s.e.) bounds of the OOS R2. The yellow dash-dotted line shows the OOS R2

based on the proportional shrinkage method from Pastor and Stambaugh (2000). The right panel (b) plots the maximum

OOS R2 attained for possible levels of shrinkage against the degree of sparsity. The solid blue line depicts the R2 for the

raw 50 anomaly portfolios, with the dotted blue line its -1 s.e. bound, and the dashed red line depicts the PCs of the 50

anomaly portfolios, with the dotted red line its -1 s.e. bound.

Figure 4 shows some cuts along the axes of the contour maps in Figure 3. For the left panel (a),

a cut is taken along the top of Figure 3a. This means that the cross-sectional R2 of the raw 50 anomaly

portfolios is displayed for various levels of shrinkage without imposing any sparsity. For comparison

purposes, Figure 4a also includes a plot of the OOS R2 attained by the proportional shrinkage method

from Pastor and Stambaugh (2000). This is equivalent to choosing a prior with η = 1. Figure 4a shows

that the maximum R2 of approximately 0.28 is attained at a value of κ ≈ 0.25. Moreover, it can be seen

that the R2 obtained by the method of Kozak et al. (2020) is substantially higher than the one obtained

by the proportional shrinkage method from Pastor and Stambaugh (2000). However, to obtain this line,

I had to apply various manipulations such as mirroring the line and moving the line to the left. Next to

that, the estimator of b, according to the proportional shrinkage method should be b̂ = (Σ+γΣ)−1µ̄. But

the estimator of b that derives this line in the code of Kozak et al. (2020) equals b̂ = γ(Σ + 0× In)−1µ̄. I

have tried my best to implement the former estimator, but the code keeps giving an error unless the L2

penalty is changed drastically. Hence, I am doubtful about the values the code returns in this perspective.

Next to the OOS R2, the plot shows the in-sample R2. It again becomes apparent that evaluating the in-

sample performance of a method can lead to very different conclusions regarding the amount of shrinkage

necessary for a model to perform well out-of-sample.

The right panel (b) of Figure 4 shows the maximum cross-sectional R2 obtained at various degrees
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of sparsity, choosing the amount of shrinkage that maximizes the R2 at a certain level of sparsity. This

is done for both the raw 50 anomaly portfolios and their PC transformations. Thus, in figure 4b, a cut is

taken from the bottom to the top of the maps in Figure 3 along all R2 maximizing amounts of shrinkage.

Figure 4b shows clearly that applying a PC transformation to the 50 anomaly portfolios leads to

a concave function of the R2 in the number of variables in the SDF, as opposed to a convex function for

the raw portfolios. This means that the PC transformation of the 50 anomaly portfolios can produce a

good out-of-sample R2 with a sparse SDF representation, whereas the raw portfolios cannot and a large

number of variables need to be included in the SDF to produce good out-of-sample results.

In summary, for the 50 anomaly portfolio returns, almost all characteristics need to be considered

to obtain good out-of-sample performance. The PC transformation of the returns allows for more sparsity.

Significant shrinkage should be applied to both return series to ensure good out-of-sample performance.

Table 1: The SDF coefficients and absolute t-statistics of the ten factors with the highest explanatory power

at the optimal value of the prior root expected square Sharpe ratio, ordered in a descending manner on their

t-statistic value. The raw 50 anomaly portfolios are considered on the left (a) and their PCs on the right (b).

(a) 50 anomaly portfolios (b) PCs of 50 anomaly portfolios

b t-stat b t-stat

Industry rel. rev. (L.V.) -0.879 3.527 PC 4 1.014 4.249

Ind. mom-reversals 0.484 1.945 PC 1 -0.537 3.081

Industry rel. reversals -0.425 1.705 PC 2 -0.556 2.653

Seasonality 0.322 1.292 PC 9 0.635 2.514

Earnings surprises 0.323 1.291 PC 15 -0.324 1.265

Value-profitability 0.297 1.184 PC 17 0.303 1.182

Return on market equity 0.299 1.183 PC 6 -0.287 1.176

Investment/Assets -0.238 0.948 PC 11 0.189 0.744

Return on equity 0.238 0.947 PC 13 0.166 0.654

Composite issuance -0.240 0.947 PC 23 0.146 0.564

Momentum (12m) 0.227 0.906 PC 7 -0.140 0.561

Next to evaluating the out-of-sample performance of the SDF representation proposed by Kozak

et al. (2020), it is interesting to see which variables included in the 50 anomaly portfolios have the

highest explanatory power. Therefore, the ten characteristics13 and ten PCs of the 50 anomaly portfolios

with the highest absolute t-statistics, ordered from highest to lowest, are presented in Table 1. The full

table including all 50 characteristics and PCs is shown in appendix B. The left panel (a) of the table

shows the characteristics that contribute most to the cross-sectional variation in asset returns. The list

contains characteristics that are found among the most robust in asset pricing literature. Hence, the

method of Kozak et al. (2020) can retrieve these as well. The right panel (b) of the table shows the PCs

13For a full description of the characteristics used, I refer to the paper of Kozak et al. (2020).
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that contribute most to the cross-sectional variation in asset returns. Among the ten with the highest

t-statistic, six are out of the first ten PCs. This is in line with the finding that the first couple of PCs

represent linear combinations of characteristics such that the combined variance is highest.

5.2 Extension

In this section, I report the results from my extension of the methods of Kozak et al. (2020). As

an extension, I relax the assumption that the SDF is linear in factors by allowing the relationship

between the SDF and the factors to be nonlinear. For this purpose, a number of 5 basis functions are

used. Furthermore, instead of pricing linear factors, I price the nonlinear factors. To compare whether

relaxing the linearity assumption improves the estimation, I use the same two datasets that I used for

the replication section. First, I consider the FF25 portfolios. Secondly, I use the 50 anomaly portfolios.

5.2.1 Fama-French Size and Book-to-Market portfolios

Similar to Section 5.1.1, first the methods are applied to a well-known dataset: the FF25 portfolios.

Because the model is known to have a clear factor structure, it is interesting to see how the performance

of the model changes when nonlinearities are accounted for.

In Figure 5, contour maps of the FF25 portfolios (a) and the PCs of the FF25 portfolios (b) are

shown. The contour map plots the degree of sparsity, expressed as the number of nonzero coefficients,

against the amount of shrinkage, expressed by κ. In the results of the extension, the coefficients are

not the single risk prices, but the joint coefficients of the basis functions with the risk price of each

factor, that is c′ibi. The amount of shrinkage is chosen to be expressed by κ because it has an economic

interpretation: it equals the square root of the expected maximum squared Sharpe ratio. The degree

of sparsity corresponds to γ1 and the amount of shrinkage to γ2 in Equation (30). The values for γ1

and γ2 are depicted on a logarithmic scale. Viewing the map from along the y-axis, the top shows little

sparsity (a lot of factors), whereas the bottom shows extreme sparsity (only one factor). From along the

x-axis, the most left side depicts extreme shrinkage, and the most right side no shrinkage at all. The

third dimension of the map displays the level of the out-of-sample R2. The different levels are expressed

in colours and which colour corresponds to which level is given by the bar right next to the figures. The

darker blue, the smaller the R2 and the more yellow, the higher the R2. The R2 is bounded by a minimum

of −0.1. In summary, for each pair of (γ1, γ2), the contour map shows the corresponding out-of-sample

R2. Thus, this contour map visualizes the levels of out-of-sample performance of the model expressed by

R2 for different degrees of sparsity and shrinkage.

In Figure 5a, it can be seen, from the dark blue plane on the right side of the map, that a substantial

degree of shrinkage is necessary for the model to perform well out-of-sample. However, contrary to the

results of the linear model, no sparsity can be attained, as the model should include at least 12 factors

to still produce a close to maximum OOS R2. Furthermore, the optimal OOS R2 is quite low, attaining

a maximum level of approximately 0.05. Because the FF25 portfolios are known to have a clear factor

structure, it is expected that the portfolios exhibit few nonlinearities. This causes that pricing a nonlinear

function of those factors is less accurate than pricing linear factors.
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Zooming in on Figure 5b, where the contour map using the PCs of the FF25 portfolios is presented,

it is visible that again shrinkage is necessary to attain a high OOS R2. However, in contrast to the linear

method, even without shrinkage, a positive R2 can be attained in an SDF representation of one factor.

Moreover, extreme sparsity of only one factor leads to the best OOS R2, and in contrast to the linear

model, the R2 reduces again when the number of factors included in the model increases. This is evidence

for the fact that when raw portfolios are transformed into their PCs, a sparse SDF representation can

lead to good OOS performance. Also, when the number of nonzero coefficients increases, more shrinkage

is needed to produce a positive OOS R2.

Comparing Figure 5a and 5b, transforming the FF25 portfolios into their PCs results in better

performance of the nonlinear model, especially when the SDF representation is sparse.

(a) Fama-French 25 portfolios (b) PCs of Fama-French 25 portfolios

Figure 5: Cross-sectional OOS R2 for possible combinations of L1 and L2 penalties considering the nonlinear pricing

model. The left figure (a) displays the OOS R2 for 25 Fama-French Size and Book-to-Market sorted portfolios. The right

figure (b) for their PC transformation. The x-axis in both figures shows the amount of shrinkage (L2 penalty), with no

shrinkage at the right and extreme shrinkage at the left edge of the figure. The y-axis shows the degree of sparsity (L1

penalty), which is expressed as the number of nonzero coefficients. A small number indicates high sparsity, and a large

number indicates almost no sparsity. The coloured contour map depicts the OOS R2 for combinations of the L1 and L2

penalties, where the darker blue means the lower the R2 and the lighter yellow the higher the R2. The R2 bounded at a

minimum of −0.1.

Figure 6 shows some cuts along the axes of the contour maps in Figure 5. For the left panel (a),

a cut is taken along the top of Figure 5a. This means that the cross-sectional OOS R2 of the raw FF25

portfolios is displayed for various levels of shrinkage without imposing any sparsity. Figure 6a shows that

an OOS R2 of just above 0.02 is attained when no sparsity is imposed. This level of R2 is attained for a

κ ≈ 0.14. From this figure, it becomes again clear that pricing the nonlinear transformation of the FF25

portfolios result in worse OOS performance compared to pricing the linear portfolios. Furthermore, the

figure shows that using in-sample performance evaluation leads to different conclusions about the amount

of shrinkage needed for the model to perform well out-of-sample. This shows that in-sample performance

evaluation is not a representative measure of out-of-sample performance.

The right panel (b) of Figure 6 displays the maximum cross-sectional R2 obtained at various degrees
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of sparsity, choosing the amount of shrinkage that maximizes the R2 at a certain level of sparsity. This

is done for both the raw FF25 portfolios and their PC transformations. Thus, in figure 6b, a cut is

taken from the bottom to the top of the maps in Figure 5 along all R2 maximizing amounts of shrinkage.

From 6b, it becomes clear that for the raw FF25 portfolios, essentially more sparsity leads to worse

out-of-sample performance, as the blue solid line shows a continuously increasing pattern. Moreover,

transforming the FF25 portfolios into their PCs first always results in a higher OOS R2. However,

contrary to the linear case, the R2 is decreasing in the number of variables included in the SDF.

In summary, the OOS performance of the nonlinear pricing model is worse than that of the lin-

ear pricing model, but transforming the portfolios into their PCs first achieves a higher out-of-sample

performance compared to the raw portfolios and allows for a sparse SDF representation.

(a) Shrinkage (b) Sparsity

Figure 6: Cross-sectional OOS R2 for various levels of shrinkage (a) and sparsity (b), based on the 25 Fama-French Size

and Book-to-Market sorted portfolios. The left panel (a) plots the in-sample and OOS R2 against the amount of shrinkage

(L2 penalty) without imposing sparsity. The dashed blue line displays the in-sample R2, the solid red line the OOS R2 and

the dotted red lines the ± 1 standard error (s.e.) bounds of the OOS R2. The right panel (b) plots the maximum OOS

R2 attained for optimal levels of shrinkage against the degree of sparsity. The solid blue line depicts the R2 for the raw 25

Fama-French portfolios, with the dotted blue line its -1 s.e. The dashed red line depicts the PCs of the 25 Fama-French

portfolios, with the dotted red line its -1 s.e.

Figure 7 shows the plots of the factor values with the most explanatory power according to the

absolute t-statistic corresponding to the coefficient. The values are plotted for the raw FF25 portfolios

in (a) and for their PC transformation in (b). The optimal factor of the raw portfolios is ME3BM314

and of the PC transformed FF25 portfolios PC1. From this figure, it becomes clear that the optimal PC

factor contains way more variation than the raw optimal factor. Thus, this figure visualizes that the PC

transformed factors can better capture the cross-section of asset returns with only a few factors than the

raw factors.

14This is the Market Equity and Book-to-Market both of quintile 3 portfolio. For a thorough explanation of these

portfolios, I refer to Section 4.
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(a) Fama-French 25 portfolios (b) PCs of Fama-French 25 portfolios

Figure 7: Factor values of the factor with the most explanatory power according to the absolute t-statistic for the FF25

portfolios (a) and their PC transformation (b) plotted over time. The optimal factor is ME3BM3 for the raw FF25 portfolios

and PC1 for the PC transformations of the FF25 portfolios. The factor values equal Ft,i = Z′t−1,iR
e
t,i where i is the optimal

factor. The time equivalent to the sample size of the FF25 portfolios data, which ranges from 1926 until 2017.

5.2.2 50 anomaly portfolios

In this section, the results of applying the nonlinear model to the second dataset considered in this paper,

the 50 anomaly portfolios, are discussed. In Figure 8, the cross-sectional OOS R2 is plotted for various

combinations of the degree of sparsity and shrinkage. In the left panel (a), the raw 50 anomaly portfolios

are considered, and in the right panel (b) their PC transformation. Note that the coefficients are not the

single risk prices, but the joint coefficients of the basis functions with the risk price of each factor, c′ibi.

From Figure 8a, it becomes clear that no sparsity can be attained while assuring a good OOS

R2. This supports the finding of Kozak et al. (2020) that the cross-section of asset returns cannot be

summarized by only a few factors. Next to that, the dark blue plane on the right side of the map shows

that a substantial degree of shrinkage should be imposed to attain a good OOS R2. However, imposing

too much shrinkage sets the R2 equal to zero. This can be seen from the large orange plane on the left

side of the contour map. Overall, the maximum R2 of approximately 0.02 shows that pricing nonlinear

factors has worse OOS performance than pricing linear factors, which was not to be expected from this

dataset. Namely, previous research by for example Freyberger et al. (2020) has shown that asset-return

data is subject to nonlinearities.

The above-mentioned results are rather different when transforming the 50 anomaly portfolios

into their PCs first. Figure 8b shows that the model attains a high OOS R2 even when allowing for

substantial sparsity. This conclusion can be drawn from the almost vertical yellow plain. Moreover,

when the SDF representation would contain only one factor, even less shrinkage needed to assure good

OOS performance. The OOS R2 is maximal at an SDF representation of two factors. Hence, the PCs

of 50 anomaly portfolios can be explained best by two factors. Similar to the raw 50 anomaly portfolios,

still substantial shrinkage should be applied to ensure good OOS performance.

Comparing Figure 8a and 8b, transforming the 50 anomaly portfolios into their PCs first results
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in better performance of the nonlinear model, especially when the SDF representation is sparse.

(a) 50 anomaly portfolios (b) PCs of 50 anomaly portfolios

Figure 8: Cross-sectional OOS R2 for possible combinations of L1 and L2 penalties considering the nonlinear pricing

model. The left figure (a) displays the OOS R2 for 50 anomaly portfolios constructed by Kozak et al. (2020). The right

figure (b) for their PC transformation. The x-axis in both figures shows the amount of shrinkage (L2 penalty), with no

shrinkage at the right and extreme shrinkage at the left edge of the figure. The y-axis shows the degree of sparsity (L1

penalty), which is expressed as the number of nonzero coefficients. A small number indicates high sparsity, and a large

number indicates almost no sparsity. The coloured contour map depicts the OOS R2 for combinations of the L1 and L2

penalties, where the darker blue means the lower the R2 and the lighter yellow the higher the R2. The R2 bounded at a

minimum of −0.1.

Figure 9 shows some cuts along the axes of the contour maps in Figure 8. For the left panel (a),

a cut is taken along the top of Figure 8a. This means that the cross-sectional R2 of the raw 50 anomaly

portfolios is displayed for various levels of shrinkage without imposing any sparsity. Figure 9a shows that

a cross-sectional OOS R2 of just below 0.02 is attained when no sparsity is imposed. This level of R2 is

attained for κ ≈ 0.44. From this figure, it becomes again clear that pricing the nonlinear transformation

of the 50 anomaly portfolios result in worse OOS performance compared to pricing the linear portfolios.

Furthermore, the figure shows that using in-sample performance evaluation leads to different conclusions

about the amount of shrinkage needed for the model to perform well out-of-sample. This shows that

in-sample performance evaluation is not a representative measure of out-of-sample performance.

The right panel (b) of Figure 9 displays the maximum cross-sectional R2 obtained at various degrees

of sparsity, choosing the amount of shrinkage that maximizes the R2 at a certain level of sparsity. This

is done for both the raw 50 anomaly portfolios and their PC transformations. Thus, in figure 9b, a cut is

taken from the bottom to the top of the maps in Figure 8 along all R2 maximizing amounts of shrinkage.

From 9b, it becomes clear that for the raw 50 anomaly portfolios, essentially more sparsity leads to worse

out-of-sample performance, as the blue solid line shows a slowly increasing pattern over the number of

variables included in the SDF. Moreover, transforming the 50 anomaly portfolios into their PCs first

always results in a higher OOS R2. However, contrary to the linear case, the R2 first increases until two

factors are included, then decreases again and then stays approximately equal in the number of variables

included in the SDF.
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In summary, the OOS performance of the nonlinear pricing model is worse than that of the lin-

ear pricing model, but transforming the portfolios into their PCs first achieves a higher out-of-sample

performance compared to the raw portfolios and allows for a sparse SDF representation.

(a) Shrinkage (b) Sparsity

Figure 9: Cross-sectional OOS R2 for various levels of shrinkage (a) and sparsity (b), based on the 50 anomaly portfolios

constructed by Kozak et al. (2020). The left panel (a) plots the in-sample and OOS R2 against the amount of shrinkage

(L2 penalty), without imposing sparsity. The dashed blue line displays the in-sample R2, the solid red line the OOS R2

and the dotted red lines the ± 1 standard error (s.e.) bounds of the OOS R2. The right panel (b) plots the maximum OOS

R2 attained for optimal levels of shrinkage against the degree of sparsity. The solid blue line depicts the R2 for the raw 50

anomaly portfolios, with the dotted blue line its -1 s.e. bound, and the dashed red line depicts the PCs of the 50 anomaly

portfolios, with the dotted red line its -1 s.e. bound.

Next to evaluating the out-of-sample performance of the nonlinear SDF representation, it is inter-

esting to see which variables included in the 50 anomaly portfolios have the highest explanatory power.

Therefore, the ten characteristics and ten PCs of the 50 anomaly portfolios with the highest absolute

t-statistics, ordered from highest to lowest based upon the absolute t-statistics corresponding to the

first basis function, are presented in Table 2 and Table 3 respectively. The full table, including all 50

characteristics and PCs, are shown in Appendix F and G respectively.

The choice of ordering the characteristics and PCs of the 50 anomaly portfolios based upon the

absolute t-statistics corresponding to the first basis function comes from the fact that the factor corre-

sponding to the first basis function is equivalent to the linear factors. Therefore, choosing the t-statistics

corresponding to the first basis function to order the anomalies gives the best comparison possible with

the ten best anomalies resulting from the linear method. However, as mentioned earlier in the Methodol-

ogy Section, the risk prices and coefficients corresponding to the basis functions cannot be distinguished.

Thus, the values of the coefficients resulting from the nonlinear method cannot be compared directly with

the linear method, but we can assess whether similar characteristics are present in the first ten anomalies

with the most explanatory power.

Table 2 shows the ten characteristics that contribute most to the cross-sectional variation in asset

returns, based upon their absolute t-statistics corresponding to the first basis function. Among these

ten characteristics, the first five are momentum characteristics. Thus, momentum characteristics are
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important in explaining the cross-section of nonlinear factors. Furthermore, some characteristics found

among the most profound in the asset-pricing literature, such as Price and Value-profitability are present

in Table 2 as well. However, some other characteristics that we would expect to be on this list are not,

such as Return on market equity and Investments/Assets.

Table 2: The Cb coefficients∗ and corresponding absolute t-statistics of the 10 factors with the highest explanatory

power at the optimal level of L2 shrinkage, ordered in a descending manner on their t-statistic value corresponding

to the first basis function. In this table, the raw 50 anomaly portfolios are considered.

Variable name Basis function 1 Basis function 2 Basis function 3 Basis function 4 Basis function 5

Clb t-stat Clb t-stat Clb t-stat Clb t-stat Clb t-stat

Value-momentum-prof. -5.508 14.740 42.217 108.111 -0.046 0.118 -0.070 0.178 -0.070 0.178

Value-momentum -5.171 13.808 51.366 131.631 -0.043 0.109 -0.065 0.166 -0.066 0.169

Momentum (6m) -4.842 12.946 29.391 75.151 -0.030 0.075 -0.055 0.139 -0.058 0.148

Industry momentum -4.698 12.640 36.786 94.180 -0.054 0.137 -0.075 0.190 -0.076 0.193

Momentum (12m) -3.326 8.910 24.758 63.282 -0.005 0.012 -0.035 0.090 -0.042 0.108

Industry rel. reversals -3.172 8.619 23.507 60.113 0.039 0.100 -0.007 0.017 -0.022 0.057

Price -3.112 8.405 37.686 96.513 -0.001 0.001 -0.034 0.087 -0.044 0.113

Value-profitablity -3.090 8.305 32.146 82.267 0.003 0.009 -0.041 0.103 -0.052 0.133

Industry rel. rev. (L.V.) -3.036 8.300 9.802 25.021 0.136 0.347 0.055 0.141 0.021 0.054

Short-term reversals -2.801 7.626 31.153 79.758 0.014 0.036 -0.022 0.055 -0.033 0.085

Note: ∗The coefficients Cb are transformed into a matrix of which each column represents the coefficients in the table.

This procedure is explained in Appendix E.

Table 3 shows the ten PCs that contribute most to the cross-sectional variation in asset returns,

based upon their absolute t-statistic corresponding to the first basis function. Among the ten with the

highest t-statistics, seven are out of the first ten PCs, and the first four are all among the first five PCs.

This is in line with the finding that the first couple of PCs represent linear combinations of characteristics

such that the combined variance is highest. Contrary to the linear method, the nonlinear model recovers

the first PC as the one with the most explanatory power, which is expected from a statistical point

of view. Overall, the PCs in Table 3 are of lower order than those in Table 1, which implies that the

nonlinear method can recover the lower PCs better.

Supplementary to the tables, Figure 10 shows plots of the factor values with the most explanatory

power according to the absolute t-statistic corresponding to the coefficients from the tables. This is done

for the raw 50 anomaly portfolios in (a) and for their PC transformation in (b). The optimal factor

of the raw portfolios, which can be seen from the tables as well, is Value-momentum-prof and of the

PC transformed 50 anomaly portfolios PC1. In this higher-dimensional setting, compared to the FF25

portfolios, Figure 10 shows even better that the optimal PC factor captures way more variation than the

raw optimal factor. This clearly visualizes that factors of the PC transformed portfolios can capture the

cross-section of asset returns with only a few factors than better the raw factors.

In summary, momentum characteristics are important in pricing nonlinear factors. Furthermore,

some characteristics that are found among the most profound in the finance literature are included in
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the list of characteristics with the highest explanatory power, but a few are missed. The PCs with the

highest explanatory power are almost all low-order PCs, which is in line with the expectation from a

statistical point of view.

Table 3: The Cb coefficients∗ and corresponding absolute t-statistics of the 10 factors with the highest explanatory

power at the optimal level of L2 shrinkage, ordered in a descending manner on their t-statistic value corresponding

to the first basis function. In this table, the PCs of the 50 anomaly portfolios are considered.

Variable name Basis function 1 Basis function 2 Basis function 3 Basis function 4 Basis function 5

Clb t-stat Clb t-stat Clb t-stat Clb t-stat Clb t-stat

PC 1 -40.734 219.974 89.522 472.942 -5.367 23.675 -4.855 21.389 -4.336 19.084

PC 3 -10.390 51.147 70.319 325.416 -0.454 1.986 -0.428 1.872 -0.368 1.609

PC 2 -6.292 32.300 30.724 139.564 -0.768 3.364 -0.789 3.454 -0.759 3.325

PC 5 -0.573 2.666 9.395 41.252 0.063 0.276 0.008 0.035 -0.013 0.055

PC 17 0.539 2.386 2.328 10.182 0.014 0.063 0.004 0.019 0.000 0.002

PC 12 -0.488 2.179 1.510 6.603 0.035 0.155 0.018 0.078 0.010 0.042

PC 7 -0.431 1.955 8.338 36.536 0.059 0.258 0.029 0.125 0.014 0.063

PC 15 -0.375 1.662 1.673 7.318 0.018 0.079 0.004 0.017 -0.001 0.006

PC 9 0.300 1.346 3.561 15.581 0.034 0.149 0.014 0.059 0.005 0.022

PC 6 -0.244 1.120 4.869 21.328 0.072 0.314 0.027 0.119 0.008 0.034

Note: ∗The coefficients Cb are transformed into a matrix of which each column represents the coefficients in the table.

This procedure is explained in Appendix E.

(a) 50 anomaly portfolios (b) PCs of 50 anomaly portfolios

Figure 10: Factor values of the factor with the most explanatory power according to the absolute t-statistic. for the 50

anomaly portfolios (a) and their PC transformation (b) plotted over time. The optimal factor is Value-momentum-prof for

the raw 50 anomaly portfolios and PC1 for the PC transformations of the 50 anomaly portfolios. The factor values equal

Ft,i = Z′t−1,iR
e
t,i where i is the optimal factor. The time equivalent to the sample size of the 50 anomaly portfolios data,

which ranges from 1973 until 2017.
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6 Discussion and conclusion

The main goal of this research was to identify whether and to what extent relaxing the linearity assumption

of the method of Kozak et al. (2020) that the SDF is a linear combination of factors improves the

explanation of the cross-section of asset returns. My interest in theoretically extending the methods from

Kozak et al. (2020) was triggered by the paper of Gu et al. (2020), in which a lot of machine learning

methods that can be used in asset-pricing are proposed and discussed. However, the methods by Gu

et al. (2020) are proposed for a risk premia framework. Hence, I was especially interested in setting one

of their models in a risk pricing framework. For this purpose, I have chosen to use the Generalized Linear

Model, as this model conveniently provides a way to implement nonlinearities in the SDF representation.

The method is convenient because the factors are evaluated for some nonlinear functions, which allows

us to keep using a linear regression to estimate the coefficients.

To be able to compare the nonlinear model with the linear one, first the methods from the paper of

Kozak et al. (2020) were implemented. From the empirical application of these methods using the Fama-

French 25 portfolios, it can be concluded that shrinkage and sparsity are substitutes from one another.

The more sparse the SDF representation, the less shrinkage is needed to achieve good out-of-sample

performance and vice versa. Furthermore, transforming the factors into their Principal Components

allows for a sparse SDF representation without additional shrinkage. An SDF representation of only

one factor can explain the cross-section of asset returns well. These results were expected because the

Fama-French portfolios possess a clear factor structure. Hence, the methods from Kozak et al. (2020)

can recover this structure. Moving on to a higher dimensional dataset, the 50 anomaly portfolios are

considered. From this application, it can be concluded that substantial shrinkage is needed to achieve

good out-of-sample performance. Furthermore, transforming the factors into their Principal Components

allows for a sparse SDF representation, whereas the raw factors do not allow for a sparse representation.

Secondly, the methods of the extension were implemented. The following conclusions can be drawn

from the results of the empirical application of these methods. Using the Fama-French 25 portfolios, it can

be concluded that substantial shrinkage is needed to achieve a positive out-of-sample R2. Furthermore,

contrary to the linear methods, shrinkage cannot be substituted with sparsity. The nonlinear method does

not allow for a sparse SDF representation when considering the raw portfolios. However, transforming the

factors into their PCs first does allow for a sparse SDF representation. In fact, an SDF representation

of only one factor performs better than a representation including more factors. Moreover, the PC

transformation generates a positive R2 for an SDF representation of one factor even when no shrinkage is

applied. Overall, the nonlinear method cannot outperform the linear method based on the out-of-sample

R2, particularly for the raw portfolios. This is a logical consequence when using the Fama-French 25

portfolios because those portfolios have a clear factor structure, which is better captured by the linear

method.

Using the 50 anomaly portfolios, it can be concluded that again substantial shrinkage is needed to

achieve a positive out-of-sample R2. Moreover, no sparsity can be obtained to ensure good out-of-sample

performance. These results are similar to the linear method. However, the R2 is substantially lower than
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in the linear case, which is not expected because from previous research of, for example, Freyberger et al.

(2020) we know that asset returns possess nonlinearities. Transforming the portfolios into their PCs and

applying substantial shrinkage results in good out-of-sample performance and allows for sparsity, even

more than in the linear case.

In summary, the nonlinear method results in higher out-of-sample performance when transforming

the portfolios to their PCs first compared to the raw portfolios. Still, overall, the nonlinear model

performs worse than the linear model based on the cross-sectional out-of-sample R2.

The main limitation of this paper is that the risk prices and the coefficients corresponding to the

basis functions cannot be separated in the estimation of the coefficients. This causes the impossibility

to retrieve the actual risk prices but the risk prices weighted by the coefficients corresponding to a basis

function. Hence, the estimates cannot be interpreted directly as risk prices. Next to that, another

limitation is the use of basis functions to approximate the nonlinearities in the portfolios. Using the

Generalized Linear Method still restricts the number of possible nonlinear interactions. Using regression

trees or neural networks would expand the number of possible nonlinear interactions substantially.

Although my results do not conclude that allowing for nonlinearities in the SDF representation

leads to better out-of-sample performance, I think it is important to investigate this further because other

papers have concluded that nonlinearities are important (Fama and French, 2008, and Bryzgalova et al.,

2020). The way I allowed for nonlinearities in the SDF representation might not be the best. Thus,

for further research, I propose incorporating another type of nonlinearity in the SDF representation.

You could consider factors that are nonlinear in characteristics. This method looks promising, but I

have not yet had the chance to implement it because it required retrieving the raw stock returns and

characteristics, which was infeasible time-wise for this thesis. I have made a start on the theoretical setup

of this approach in Appendix H.
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A Derivation SDF coefficients

This appendix shows the derivation of the SDF coefficients based on the unconditional asset pricing

equation. The derivation is based on the notes provided by Grith (2021b).

0 = E [MtFt]

0 = E [(1− b′(Ft − E [Ft]))Ft]

0 = E [(1− b′(Ft − E [Ft]))(Ft − E [Ft]] + E [Mt E [Ft]]

0 = E [(1− b′(Ft − E [Ft]))(Ft − E [Ft]] + E [Mt]E [Ft]]

0 = E [(1− b′(Ft − E [Ft]))(Ft − E [Ft]] + E [Ft]]

0 = E [(Ft − E [Ft])− b′(Ft − E [Ft])(Ft − E [Ft]] + E [Ft]]

0 = E [Ft − b′(Ft − E [Ft])(Ft − E [Ft]]

0 = E [Ft]− b′ E [(Ft − E [Ft])(Ft − E [Ft]]

E [Ft] = b′ E [(Ft − E [Ft])(Ft − E [Ft]]

µ = b′Σ

b = Σ−1µ
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B Derivation estimator Cb

This appendix shows the derivation of the estimator of Cb by making use of an economically motivated

prior. Using the prior belief about Pv that

Pv ∼ N (0,
κ2

τ
R), (B.1)

results in the posterior mean of Pv, which is derived from the formula of the conjugate multivariate

normal prior where R0 = κ2

τ R
η and Pv,0 = 0,

P̂v = (R−10 + TR−1)−1(R−10 Pv,0 + TR−1P̄v) = (R+ γR2−η)−1RP̄v (B.2)

Plugging this formula in Ĉb = R−1P̂v equals

Ĉb = R−1(R+ γR2−η)−1RP̄v. (B.3)

Using that η = 2 gives

Ĉb = (R+ γINK)−1P̄v, (B.4)

where γ = τ
κ2T and INK is an (N ×K) identity matrix. Thus, to each diagonal element of R, a penalty

equal to γ is added. This is equivalent to

(Ĉb) = R̃−1P̄v, R̃ =

 R̃ii = Rii(1 + γIK) if i = j

R̃ij = Rij if i 6= j
(B.5)

because each Rij is a K ×K variance-covariance matrix of each factor evaluated at K basis functions.
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C Derivation out-of-sample R2 with a nonlinear SDF

In this appendix, the derivation of the out-of-sample R2 in case of a nonlinear SDF is shown. Using the

definition from Equation (27) that C′ E[Pv] = C′RCb, the out-of-sample R2 can be expressed as

R2
OOS = 1−

ˆ[C′(P̄v,2 − R̄2Ĉb)]′[Ĉ′(P̄v,2 − R̄2Ĉb)]
[Ĉ′P̄v,2]′[Ĉ′P̄v,2]

(C.1)

which can be written as

R2
OOS = 1− (P̄v,2 − R̄2Ĉb)′ĈĈ′(P̄v,2 − R̄2Ĉb)

P̄ ′v,2ĈĈ′P̄v,2
. (C.2)

Assuming that ĈĈ′ = I results in the final definition

R2
OOS = 1− (P̄v,2 − R̄2Ĉb)′(P̄v,2 − R̄2Ĉb)

P̄ ′v,2P̄v,2
(C.3)
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D Full 50 anomalies coefficients table

Table D4: The SDF coefficients and corresponding absolute t-statistics of all 50 anomaly portfolios at the optimal value of

the prior root expected square Sharpe ratio, ordered in a descending manner on their t-statistic value. The raw 50 anomaly

portfolios are considered on the left (a) and their PCs on the right (b).

(a) 50 anomaly portfolios (b) PCs of 50 anomaly portfolios

b t-stat b t-stat

Industry rel. rev. (L.V.) -0.879 3.527 PC 4 1.014 4.249
Ind. mom-reversals 0.484 1.945 PC 1 -0.537 3.081
Industry rel. reversals -0.425 1.705 PC 2 -0.556 2.653
Seasonality 0.322 1.292 PC 9 0.635 2.514
Earnings surprises 0.323 1.291 PC 15 -0.324 1.265
Value-profitablity 0.297 1.184 PC 17 0.303 1.182
Return on market equity 0.299 1.183 PC 6 -0.287 1.176
Investment/Assets -0.238 0.948 PC 11 0.189 0.744
Return on equity 0.238 0.947 PC 13 0.166 0.654
Composite issuance -0.240 0.947 PC 23 0.146 0.564
Momentum (12m) 0.227 0.906 PC 7 -0.140 0.561
Net issuance (A) -0.215 0.851 PC 25 -0.135 0.523
Investment growth -0.210 0.838 PC 22 0.124 0.479
Net issuance (M) -0.205 0.810 PC 3 -0.084 0.379
Asset growth -0.195 0.772 PC 28 0.087 0.336
Earnings/Price 0.195 0.770 PC 21 -0.086 0.334
F-score 0.193 0.769 PC 33 0.085 0.327
Accruals -0.172 0.690 PC 29 0.079 0.305
Cash Flows/Price 0.171 0.678 PC 24 0.069 0.266
Return on assets 0.170 0.676 PC 5 -0.061 0.253
Short-term reversals -0.162 0.651 PC 31 0.065 0.250
Sales/Price 0.162 0.642 PC 19 -0.057 0.220
Dividend/Price 0.143 0.567 PC 36 -0.055 0.213
Debt issuance 0.141 0.561 PC 35 -0.047 0.183
Share repurchases 0.134 0.531 PC 45 -0.047 0.180
Value (M) 0.123 0.487 PC 38 0.035 0.136
Industry momentum 0.121 0.485 PC 34 -0.034 0.130
Value (A) 0.121 0.477 PC 30 -0.033 0.126
Sales growth -0.118 0.467 PC 18 -0.031 0.122
Momentum-reversals -0.116 0.464 PC 12 0.030 0.118
Value-momentum-prof. 0.114 0.456 PC 26 -0.030 0.114
Gross profitability 0.114 0.453 PC 8 -0.028 0.110
Size -0.111 0.444 PC 32 -0.028 0.109
Asset turnover 0.101 0.406 PC 14 -0.027 0.105
Long-run reversals -0.098 0.391 PC 48 0.025 0.095
Idiosyncratic volatility -0.098 0.384 PC 49 -0.025 0.095
Beta arbitrage -0.088 0.347 PC 37 -0.024 0.092
Value-momentum 0.085 0.341 PC 39 -0.023 0.088
Investment/Capital -0.084 0.331 PC 41 -0.021 0.080
Return on book equity (A) 0.082 0.328 PC 40 -0.020 0.078
Growth in LTNOA -0.068 0.269 PC 46 0.020 0.076
Leverage 0.068 0.269 PC 20 0.017 0.065
Return on assets (A) 0.066 0.266 PC 10 -0.015 0.059
Share volume -0.054 0.213 PC 44 0.013 0.051
Short interest -0.044 0.176 PC 47 -0.013 0.050
Gross margins 0.041 0.162 PC 27 -0.012 0.045
Net operating assets -0.031 0.124 PC 42 -0.010 0.038
Age 0.022 0.086 PC 43 0.007 0.029
Momentum (6m) 0.018 0.070 PC 16 0.004 0.016
Price -0.002 0.007 PC 50 -0.002 0.008
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E Coefficients transformation for tables of nonlinear factors

For the purpose of the visualization of the coefficients in a table, I have chosen to transform the estimated

vector of coefficients Cb such that each coefficient corresponds to a characteristic. Instead of Cb, which

is an (N ×K)× 1 vector, one column of the table corresponds to one column Clb of the matrix

ClbN =


c1,1b1 c2,1b1 . . . cK,1b1

c1,2b2 c2,2b2 . . . cK,2b2
...

...
...

c1,NbN c2,NbN . . . cK,NbN

 , (E.1)

where ClbN is an N ×K matrix of coefficients per basis function corresponding to each characteristic.

Hence, in the tables, each vector of coefficients corresponds to one column Clb of the above matrix.
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F Full 50 anomalies coefficients table for nonlinear factors

Table F5: The Cb coefficients∗ for and corresponding absolute t-statistics of all 50 anomaly factors and

basis functions at the optimal level of L2 shrinkage, ordered in a descending manner on the t-statistic

value of the first basis function.

Variable name Basis function 1 Basis function 2 Basis function 3 Basis function 4 Basis function 5

Clb t-stat Clb t-stat Clb t-stat Clb t-stat Clb t-stat

Value-momentum-prof. -5.508 14.740 42.217 108.111 -0.046 0.118 -0.070 0.178 -0.070 0.178
Value-momentum -5.171 13.808 51.366 131.631 -0.043 0.109 -0.065 0.166 -0.066 0.169
Momentum (6m) -4.842 12.946 29.391 75.151 -0.030 0.075 -0.055 0.139 -0.058 0.148
Industry momentum -4.698 12.640 36.786 94.180 -0.054 0.137 -0.075 0.190 -0.076 0.193
Momentum (12m) -3.326 8.910 24.758 63.282 -0.005 0.012 -0.035 0.090 -0.042 0.108
Industry rel. reversals -3.172 8.619 23.507 60.113 0.039 0.100 -0.007 0.017 -0.022 0.057
Price -3.112 8.405 37.686 96.513 -0.001 0.001 -0.034 0.087 -0.044 0.113
Value-profitablity -3.090 8.305 32.146 82.267 0.003 0.009 -0.041 0.103 -0.052 0.133
Industry rel. rev. (L.V.) -3.036 8.300 9.802 25.021 0.136 0.347 0.055 0.141 0.021 0.054
Short-term reversals -2.801 7.626 31.153 79.758 0.014 0.036 -0.022 0.055 -0.033 0.085
Sales/Price -2.318 6.112 35.340 90.338 -0.025 0.063 -0.059 0.151 -0.068 0.174
Return on equity -1.905 5.098 9.062 23.123 0.044 0.112 -0.002 0.005 -0.018 0.046
Cash Flows/Price -1.934 5.097 30.770 78.618 0.018 0.045 -0.025 0.063 -0.039 0.098
Ind. mom-reversals -1.724 4.707 19.861 50.777 0.058 0.147 0.000 0.001 -0.021 0.054
Earnings/Price -1.777 4.668 19.254 49.149 -0.007 0.018 -0.040 0.103 -0.050 0.129
Value (A) -1.731 4.546 32.319 82.567 0.008 0.021 -0.031 0.080 -0.044 0.113
Return on book equity (A) -1.663 4.484 18.726 47.855 0.055 0.140 -0.011 0.027 -0.035 0.089
Return on assets -1.647 4.399 8.625 22.005 0.079 0.202 0.023 0.060 0.000 0.000
Asset turnover -1.612 4.354 19.316 49.359 0.109 0.277 0.037 0.094 0.008 0.020
Leverage -1.441 3.795 24.086 61.510 0.015 0.038 -0.026 0.065 -0.041 0.103
Age -1.426 3.755 24.408 62.351 -0.019 0.048 -0.056 0.142 -0.069 0.176
Gross margins 1.378 3.704 7.632 19.472 0.140 0.357 0.057 0.147 0.020 0.050
Earnings surprises -1.321 3.570 14.829 37.872 0.077 0.197 0.023 0.058 0.001 0.001
Return on market equity -1.267 3.336 19.447 49.649 -0.020 0.051 -0.046 0.118 -0.054 0.138
Return on assets (A) -1.233 3.314 14.025 35.809 0.127 0.324 0.044 0.113 0.010 0.025
F-score -1.182 3.185 23.244 59.442 0.017 0.042 -0.030 0.077 -0.047 0.121
Accruals -1.109 3.043 11.574 29.558 0.149 0.379 0.055 0.140 0.016 0.041
Size 1.094 2.975 17.525 44.801 0.109 0.278 0.026 0.065 -0.018 0.045
Investment/Capital 1.064 2.787 18.678 47.667 0.065 0.167 0.023 0.058 0.002 0.005
Value (M) 1.010 2.659 16.485 42.081 0.058 0.148 0.011 0.029 -0.012 0.029
Idiosyncratic volatility 0.983 2.566 19.096 48.723 0.058 0.148 0.021 0.052 0.004 0.010
Net issuance (A) 0.949 2.502 16.323 41.662 0.086 0.220 0.034 0.087 0.010 0.025
Net operating assets -0.923 2.438 20.880 53.326 0.009 0.022 -0.039 0.100 -0.059 0.149
Long-run reversals 0.886 2.375 9.696 24.744 0.132 0.336 0.060 0.152 0.026 0.067
Short interest -0.724 1.940 23.418 59.843 0.105 0.268 0.043 0.109 0.015 0.039
Asset growth 0.683 1.799 7.711 19.668 0.108 0.275 0.044 0.111 0.015 0.038
Seasonality 0.567 1.549 8.014 20.454 0.112 0.285 0.040 0.101 0.009 0.022
Beta arbitrage 0.565 1.470 8.699 22.183 0.047 0.120 0.021 0.053 0.008 0.021
Debt issuance 0.523 1.394 34.411 88.025 0.055 0.140 0.001 0.003 -0.021 0.053
Growth in LTNOA -0.510 1.364 16.440 41.976 0.090 0.228 0.031 0.080 0.007 0.018
Gross profitability -0.493 1.319 18.590 47.484 0.115 0.293 0.040 0.103 0.008 0.021
Investment growth 0.488 1.313 7.928 20.227 0.149 0.380 0.067 0.172 0.031 0.078
Share repurchases -0.451 1.192 23.039 58.855 0.019 0.049 -0.020 0.051 -0.035 0.090
Sales growth 0.397 1.051 6.365 16.232 0.108 0.275 0.038 0.096 0.009 0.022
Share volume 0.388 1.013 15.794 40.291 0.054 0.138 0.019 0.048 0.003 0.008
Net issuance (M) 0.346 0.913 26.346 67.293 0.050 0.126 0.005 0.012 -0.014 0.035
Momentum-reversals 0.283 0.766 19.468 49.759 0.083 0.212 0.031 0.078 0.007 0.019
Investment/Assets -0.250 0.671 9.167 23.390 0.136 0.347 0.055 0.140 0.020 0.052
Dividend/Price -0.246 0.654 15.017 38.337 0.090 0.230 0.038 0.096 0.013 0.034
Composite issuance 0.199 0.525 14.160 36.132 0.092 0.235 0.034 0.086 0.008 0.020

Note: ∗The coefficients Cb are transformed into a matrix of which each column represents the coefficients in the table.

This procedure is explained in Appendix E.
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G Full PCs coefficients table for nonlinear factors

Table G6: The Cb coefficients∗ for and corresponding absolute t-statistics of all PC transformed 50

anomaly factors and basis functions at the optimal level of L2 shrinkage, ordered in a descending manner

on the t-statistic value of the first basis function.

Variable name Basis function 1 Basis function 2 Basis function 3 Basis function 4 Basis function 5

Clb t-stat Clb t-stat Clb t-stat Clb t-stat Clb t-stat

PC 1 -40.734 219.974 89.522 472.942 -5.367 23.675 -4.855 21.389 -4.336 19.084
PC 3 -10.390 51.147 70.319 325.416 -0.454 1.986 -0.428 1.872 -0.368 1.609
PC 2 -6.292 32.300 30.724 139.564 -0.768 3.364 -0.789 3.454 -0.759 3.325
PC 5 -0.573 2.666 9.395 41.252 0.063 0.276 0.008 0.035 -0.013 0.055
PC 17 0.539 2.386 2.328 10.182 0.014 0.063 0.004 0.019 0.000 0.002
PC 12 -0.488 2.179 1.510 6.603 0.035 0.155 0.018 0.078 0.010 0.042
PC 7 -0.431 1.955 8.338 36.536 0.059 0.258 0.029 0.125 0.014 0.063
PC 15 -0.375 1.662 1.673 7.318 0.018 0.079 0.004 0.017 -0.001 0.006
PC 9 0.300 1.346 3.561 15.581 0.034 0.149 0.014 0.059 0.005 0.022
PC 6 -0.244 1.120 4.869 21.328 0.072 0.314 0.027 0.119 0.008 0.034
PC 8 0.238 1.075 6.931 30.355 0.060 0.262 0.027 0.119 0.012 0.053
PC 14 -0.225 1.002 2.686 11.749 0.011 0.049 -0.007 0.032 -0.013 0.057
PC 4 -0.179 0.838 18.335 80.870 -0.033 0.144 -0.072 0.316 -0.084 0.367
PC 29 0.169 0.743 0.583 2.550 0.008 0.035 0.003 0.014 0.001 0.005
PC 10 -0.150 0.673 3.589 15.705 -0.006 0.025 -0.025 0.110 -0.031 0.136
PC 25 -0.149 0.657 0.635 2.779 0.010 0.044 0.005 0.021 0.002 0.010
PC 28 0.116 0.508 0.394 1.721 0.007 0.028 0.002 0.007 0.000 0.002
PC 24 0.099 0.437 1.079 4.717 0.013 0.057 0.006 0.024 0.002 0.009
PC 31 0.094 0.413 0.322 1.408 0.006 0.027 0.003 0.013 0.001 0.006
PC 36 -0.087 0.380 0.201 0.877 0.003 0.013 0.001 0.005 0.000 0.001
PC 23 0.085 0.373 0.562 2.459 0.010 0.043 0.003 0.013 0.000 0.002
PC 27 0.074 0.327 0.815 3.563 0.006 0.028 0.002 0.009 0.000 0.002
PC 37 -0.074 0.324 0.270 1.180 0.002 0.008 0.000 0.001 0.000 0.001
PC 11 -0.059 0.263 2.688 11.758 0.029 0.125 0.006 0.024 -0.003 0.014
PC 35 -0.057 0.249 0.257 1.125 0.004 0.016 0.002 0.007 0.001 0.003
PC 41 -0.055 0.239 0.085 0.371 0.001 0.004 0.000 0.000 0.000 0.001
PC 32 -0.051 0.224 0.507 2.217 0.004 0.018 0.001 0.006 0.000 0.002
PC 13 0.050 0.222 3.056 13.371 0.036 0.159 0.018 0.077 0.009 0.040
PC 20 -0.047 0.207 1.022 4.469 0.016 0.068 0.006 0.026 0.002 0.008
PC 19 0.045 0.197 1.661 7.265 0.015 0.066 0.004 0.018 0.000 0.002
PC 40 0.038 0.165 0.155 0.677 0.002 0.009 0.001 0.004 0.000 0.001
PC 26 0.037 0.163 0.372 1.625 0.008 0.035 0.002 0.009 0.000 0.002
PC 34 -0.034 0.149 0.235 1.027 0.003 0.012 0.001 0.003 0.000 0.001
PC 48 0.033 0.146 0.041 0.179 0.001 0.003 0.000 0.001 0.000 0.000
PC 22 0.028 0.123 0.930 4.068 0.012 0.051 0.004 0.016 0.001 0.002
PC 30 -0.025 0.109 0.326 1.426 0.006 0.028 0.002 0.010 0.001 0.003
PC 44 0.020 0.088 0.080 0.349 0.001 0.006 0.001 0.002 0.000 0.001
PC 39 -0.018 0.078 0.285 1.247 0.002 0.010 0.001 0.004 0.000 0.001
PC 47 -0.017 0.076 0.024 0.105 0.001 0.004 0.000 0.002 0.000 0.001
PC 33 -0.017 0.074 0.412 1.803 0.004 0.017 0.002 0.008 0.001 0.004
PC 45 -0.015 0.068 0.138 0.605 0.001 0.004 0.000 0.001 0.000 0.000
PC 21 0.012 0.053 1.992 8.714 0.006 0.027 -0.002 0.009 -0.005 0.022
PC 43 0.012 0.052 0.098 0.430 0.001 0.005 0.000 0.002 0.000 0.000
PC 49 0.012 0.050 0.036 0.156 0.000 0.002 0.000 0.001 0.000 0.000
PC 42 0.008 0.036 0.138 0.604 0.001 0.005 0.000 0.001 0.000 0.000
PC 18 -0.007 0.033 3.277 14.334 0.014 0.063 0.003 0.013 -0.002 0.007
PC 50 0.003 0.014 0.018 0.081 0.000 0.001 0.000 0.000 0.000 0.000
PC 16 -0.003 0.013 3.096 13.542 0.011 0.049 -0.001 0.006 -0.006 0.028
PC 38 0.002 0.010 0.106 0.465 0.002 0.010 0.001 0.004 0.000 0.001
PC 46 -0.001 0.005 0.151 0.660 0.001 0.004 0.000 0.001 0.000 0.000

Note: ∗The coefficients Cb are transformed into a matrix of which each column represents the coefficients in the table.

This procedure is explained in Appendix E.

38



H Nonlinear risk prices

The extension of nonlinear risk prices lies in relaxing the assumption made in Kozak et al. (2020) that

the risk prices are linear combinations of the characteristics, as is shown in Equation 5. Relaxing the

assumption of linear risk prices leads to the following definition of the SDF,

Mt = 1− b′t−1(Ft − E[Ft]), (H.1)

where Mt is the SDF, bt−1 = (bt−1,1, bt−1,2, ..., bt−1,N )′ is an N ×1 vector of factor loadings, each element

corresponding to a factor i = 1, ..., N , and Ft is an N × 1 vector of factors. When assuming that the

factor loadings are nonlinear in characteristics, each element of bt−1 can be written as

bt−1,i = f(Zt−1,i) =

H∑
l=1

K∑
j=1

aj,lpj(Z
l
t−1,i) = A′vPZi,v, (H.2)

where Zt−1 is an N × H matrix of H characteristics observed for each of the N factors, Av is the

vectorization of the coefficient matrix A given below, resulting in Av being a (K × H) × 1 vector of

coefficients and PZi,v is a vectorization of the K×H matrix PZi
given below. Thus, PZi,v is a (K×H)×1

vector. Each column of PZi is a K×1 vector of basis functions (p1(·), p2(·), ..., pK(·))′. As basis functions,

a spline series of order two, in the spirit of Gu et al. (2020), is chosen: (1, Zt−1, (Zt−1 − c1)2, (Zt−1 −

c2)2, ..., (Zt−1 − cK−2)2), where c1, c2, ..., cK−2 are knots.

A = {aj,l}j=1:K;l=1:H =


a1,1 a1,2 . . . a1,H

a2,1 a2,2 . . . a2,H
...

...
...

aK,1 aK,2 . . . aK,H

 (H.3)

PZi =
{
pj,l = pj

(
Zlt−1,i

)}
j=1:K;l=1:H

=


p1
(
Z1
t−1,i

)
p1
(
Z2
t−1,i

)
. . . p1

(
ZHt−1,i

)
p2
(
Z1
t−1,i

)
p2
(
Z2
t−1,i

)
. . . p2(ZHt−1,i)

...
...

...

pK
(
Z1
t−1,i

)
pK
(
Z2
t−1,i

)
· · · pK

(
ZHt−1,i

)

 (H.4)

Thus, in order to estimate bt−1,i, an expression of Av is needed.

H.1 Derivation expression Av

By the definition of expected returns, resulting from the fundamental asset pricing equation, it holds that

for all i = 1, ..., N

E[Fi,t] = −Cov(Fi,t,Mt). (H.5)

Writing the covariance matrix in terms of expected values and defining µi = E[Fi,t] gives

µi = −E [Fi,t − E (Fi,t)][Mt − E (Mt)]. (H.6)

Plugging the definition of SDF, Mt = 1− b′t−1,i(Ft,i − EFt,i), into this equation results in

µi = −E [Fi,t − EFi,t][1− bt−1,i(Fi,t − EFi,t)− E (Mt)] (H.7)
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Using that E (Mt) = 1 and rewriting the equation such that bt−1,i is outside the expected value gives

µi = bt−1,i E [Fi,t − EFi,t][Fi,t − EFi,t], (H.8)

from which it becomes clear that the expectation can be written in terms of the variance of Fi,t as

µi = bt−1,iVar(Fi,t) (H.9)

Isolating bt−1,i and defining the variance as σ2
i = Var(Fi,t) results in

bt−1,i =
µi
σ2
i

. (H.10)

Now plugging in Equation (H.2), the definition of nonlinear risk prices, gives

f(Zt−1,i) = A′vPZi,v =
µi
σ2
i

. (H.11)

Isolating the coefficient matrix A′v in this equation results in a final definition of A′v:

A′v =
µi
σ2
i

PZi,v(PZi,vPZi,v)
′. (H.12)

Thus, to estimate the SDF coefficients when it is assumed that the risk prices are nonlinear in charac-

teristics, the coefficient matrix Av needs to be estimated and in turn can be used to retrieve the SDF

coefficients when plugging Av into Equation (H.2).
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