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Abstract
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stochastic discount factor (SDF) to find the joint explanatory power of many cross-sectional stock

return predictors in the US stock market. Their research is extended by applying a novel type model

introduced by Chen et al. (2019); Quantile factor analysis. The high dimensionality problem of the

data is overcome by setting a novel type Bayesian prior that shrinks the contribution of low variance

principle components of the characteristic-based factors. The results indicate that raw characteristics,

principal components, and quantile factors cannot adequately describe the cross-section of stock

returns in a characteristic-sparse SDF specification when the data has no inherently strong factor

structure. Furthermore, the quantile analysis shows that there is a relatively higher explanatory

power in the tails of the distribution. The tail quantiles are also able to create beneficial portfolio

properties for characteristic-based portfolios.
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1 Introduction

It has been an ongoing practice in asset pricing literature to seek stock characteristics that can explain

the cross-sectional variation in stock returns. Many have sought to explain this variation with as little

characteristics as possible. This, in essence, means that they have tried to find a characteristic-sparse

stochastic discount factor (SDF) representation, that captures the linear relationship between a small

number of factors and the cross-sectional variation in stock returns. These so-called factor models have

developed tremendously over time. As Kozak et al. (2020) point out, each time a new cross-sectional

factor is developed, the models need to be extended and modified to take into account this new evidence.

Furthermore, these new models are tested in a universe where only a small number of predictors are

considered and it is therefore not clear how they behave in a setting with a large number of possible

explanatory characteristics. Statistical inference for this problem is challenging, as we are confronted

with high dimensionality, which can lead to overfitting.

In their paper, Kozak et al. (2020) question the economic rationale behind characteristic-sparse SDF

models. The main motivation for their research is that there would be extreme redundancy among the

well-known anomalies in asset pricing if the cross-sectional variation in asset returns could be explained

by a small number of factors. The present-value identity or q-theory, that many models are based on,

does predominantly not imply that only a small set of characteristics matters. For example, present-

value identities can show that expected profitability plays a major role in explaining expected return.

However, expected profitability is not observable and, theoretically, many observable stock characteristics

could have an influence on the variation of expected profitability and hence also on expected returns.

Therefore, Kozak et al. (2020) set out to investigate whether these characteristic-sparse SDF models can

adequately describe the cross-sectional variation in stock returns.

The high-dimensional nature of the data, that is the great number of possible factors, could result

in spurious overfitting when conventional cross-sectional regression would be used to estimate the SDF

coefficients. Kozak et al. (2020) overcome this problem by introducing a Bayesian approach that uses a

novel prior. Their Bayesian posterior shrinks the SDF coefficients to zero in a way that satisfies economic

beliefs. That is, more shrinkage is applied to the SDFs corresponding to low eigenvalue (i.e. low variance)

principal components (PCs) because they typically explain the variation in the SDF less well than the high

eigenvalue PCs. The Bayesian estimator of Kozak et al. (2020) bears some resemblance with the ridge

regression procedure, but with a difference. In the least squares objective function, the penalty added

in the ridge regression would be the L2-Norm, whereas in this estimator it is based on the maximum

squared Sharpe Ratio as implied by the SDF.

In itself, the aforementioned estimator is not tailored for characteristic-sparse SDF at all because

the weight of any candidate characteristic is never set exactly equal to 0. Kozak et al. (2020) also allow

for sparsity by employing a second penalty factor in the least squares objective function. This penalty

is based on the L1-Norm of the SDF, which is often used in lasso regressions (R. Tibshirani, 1996),

and introduces automatic factor selection. Inherently, this penalty sets some of the weights to 0, which

leads to sparse outcomes. In their combined penalty specification (L1- and L2-Norm), the penalization
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strength, of both shrinkage and sparsity, is chosen by maximizing the out-of-sample (OOS) R2. This type

of penalization bears resemblance to the elastic net regression by Zou and Hastie (2005), which combines

lasso and ridge regression penalties.

In an empirical framework, Kozak et al. (2020) consider dozens of portfolios based on well-known

anomalies and financial ratios and thousands of powers and interactions of these characteristics to examine

OOS performance. Next to the raw data, also the PCs of these characteristics-portfolios are considered.

It is economically sensible that there is greater evidence for sparsity in characteristics when using PCs

instead of the original data. All in all, the results of Kozak et al. (2020) show that characteristic-sparse

SDF cannot adequately describe the cross-sectional variation in stock returns. This image changes when

the PCs are considered, where it is found that a successful sparse SDF can be achieved.

A recent innovation in factor model estimation for dimension reduction comes from Chen et al.

(2019). They consider a quantile factor model (QFM), that represents a new class of factor models for

high-dimensional panel data. This model makes use of quantile factor analysis (QFA), which can capture

factors that shift other parts of the underlying distribution than just the location. In comparison,

PCA only captures factors that allow for a shift in mean. The research of Chen et al. (2019) shows

promising results in the fields of macroeconomic forecasting, climate research, and, most importantly for

this research, financial factor models. Since the results of Kozak et al. (2020) show that PCA can result

in a well-performing sparse SDF, it seems viable that QFA models can achieve the same.

This research aims to reproduce, verify, and critically evaluate a part of the results found by Kozak

et al. (2020). This results in the following research question:

To what extent can a characteristic-sparse stochastic discount factor representation successfully

summarize the cross-sectional variation in stock returns?

Next to that, this paper extends the research of Kozak et al. (2020) by considering a novel type of

factor model introduced by Chen et al. (2019). The QFA model is used to answer the following research

question:

In what manner can quantile factor analysis be applied to characteristic-based factors to summarize the

cross-sectional variation in stock returns?

The relevance of this research has two sides. Firstly, the paper is academically relevant, because it

verifies an important finding in the field of factor model research and extends this finding by including

a promising, new, and novel model. To the best of my knowledge, I am the first one who investigates

whether QFA can successfully create a meaningful sparse SDF representation. Secondly, the paper is

socially relevant, because it extends the knowledge of factor models which are, in one form or another,

used by practitioners throughout the world. Insights into the value of sparse factor models are useful in

terms of risk management and investment choices.

The theoretical models used consist of 11 different factor specifications: raw characteristics, princi-

pal components, and nine decile specifications of quantile factors. The estimation of the quantile factors

follows an equivalent strategy as Chen et al. (2019), who introduce an estimation algorithm called the
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Iterative Quantile Regression. The estimation of the SDF for all models follows the original work of

Kozak et al. (2020), which makes use of the aforementioned novel Bayesian specification that results

in a dual penalty specification. The estimation is conducted in a three-fold cross-validation setting to

maximise the out-of-sample R2 values of the dual penalty specification.

For further insight, the quantile factors are compared as characteristic-based portfolios. For every

individual factor as well as the complete MVE portfolios for each decile a Sharpe Ratio (SR) can be

calculated. The maximum SR is statistically compared for equality with all other SRs within each decile

and across the MVE portfolios by making use of prewhitened HAC inference by Ledoit and Wolf (2008).

Furthermore, within its own factor universe, each characteristic-based portfolio is utilized to plot an

efficient frontier combined with a scatter plot of the portfolios.

Two sets of data are considered in this research. These consist of the daily data of the 25 ME-

BM-sorted Fama and French portfolios from July 1926 to December 2017, provided in the French (2021)

online data library, and daily data of 50 different stock characteristics that underlie certain anomalies in

the period November 1973 to December 2017, supplied by Kozak et al. (2020).

All in all, the 25 Fama and French portfolios have such an inherently strong factor structure

that a characteristic-sparse specification can adequately capture the variation in the SDF. For data sets

with no inherently strong factor structure, i.e. the 50 anomaly portfolios, a characteristic-sparse SDF

specification cannot successfully be created. The QFA models are able to attain an overall better out-

of-sample performance. Hence, there is a great explanatory power in moments higher than the mean for

the variation in the SDF. Furthermore, the estimation results show that the relative outliers (tails) have

an important role in this. This result is in accordance with the original quantile factor model research of

Chen et al. (2019). Additionally, the factors across different deciles show extremely high levels of canonical

correlation, indicating that only a few factors account for the difference between deciles. Lastly, it is also

shown that quantile factors create beneficial properties for characteristic-based portfolios.

The remainder of this paper starts with a description of all relevant literature related to this

research in Section 2. Secondly, Section 3 outlines the theoretical models. After that, all estimation

and statistical comparison techniques are explained in Section 4. Consequently, the data is discussed in

Section 5, after which the results are presented in Section 6. Finally, Section 7 provides a discussion and

conclusion of the research and an examination of limitations and suggestions for further work.

2 Literature

The search for explaining variation in stock returns starts with the disruptive work of H. Markowitz

(1952). In this early work, H. Markowitz (1952) shows via his mean-variance model that higher returns

can only be expected when an investor takes more risk. This principle is widely known today as the

risk-return trade-off. H. M. Markowitz (1959) already proposes the idea that returns can be explained

by a single-factor model, often referred to today as an index model. The first ’real’ factor model is

presented by Sharpe (1963), namely the capital asset pricing model (CAPM). In this model, a single type

of risk, known as the market risk, has influence on the expected asset returns. This research distinguishes

between systemic and idiosyncratic risk factors and presents that only an increase in systemic risk should
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lead to an increase in return because idiosyncratic risk can be diversified away. A major step forward

in asset pricing literature comes from Roll and Ross (1980), who present the arbitrage pricing theory

(APT). The APT also has a focus on systemic risk, yet it proposes that not one, but multiple risk factors

have an influence on security returns. This innovation is combined with the fact that the factors used

are not readily observable variables as is the case for the CAPM.

Following these groundbreaking papers, many researchers have proposed different factor model

specifications to explain the variation in the cross-section of stock returns. An important example to

discuss in the framework of this research is the work of Fama and French (1993). They extend the

CAPM model of Sharpe (1963) with two systemic risk factors based on size (SMB) and book-to-market

(B/M) ratio (HML). With these two factors, Fama and French (1993) take into account that, in general,

companies with a small market cap outperform larger companies and companies with a high B/M ratio

perform better than companies with a low B/M ratio in terms of returns. In essence, the SMB and HML

factors capture a part of systemic risk that can explain the cross-sectional variation in returns.

The above-mentioned factor specifications are all examples of observed factor models, i.e. the

explanatory variables are known and the loadings need to be estimated. A key part of this research

lies in another class of factor models, namely latent factor models. In these types of models both the

factors and their corresponding loadings are unknown and need to be estimated. The most common

technique to estimate latent factor models is principal component analysis (PCA), which was originally

set out by Pearson (1901) and Hotelling (1933). PCA plays a major role in modern finance literature

because of its ease of use and interpretability. Stock and Watson (2002), for example, use PCA to forecast

macroeconomic variables. Kozak et al. (2020) explain that a characteristic-sparse model containing high-

variance principal components (PCs) can explain the variation in cross-sectional asset return quite well.

Kozak et al. (2018) present an economic reason for this. They state that, in the absence of near-arbitrage

opportunities, a factor with high explanatory power should be a major source of co-movement itself.

Therefore, when portfolio returns have a strong factor structure that can be explained by a few high-

variance PCs, a successful characteristic-sparse SDF can be attained with only a few high-variance PCs.

Furthermore, Kozak et al. (2018) state that this is true for models with either rational investor behaviour

or biased investor beliefs.

The major contribution of this paper is considering another novel type of latent factor model,

namely quantile factor analysis (QFA) by Chen et al. (2019). The class of quantile factor models (QFM)

is a generalization of other latent factor models. This implies that QFA relates to PCA as a quantile

regression (QR), introduced by Koenker and Bassett (1978), relates to least squares (LS) (Chen et al.,

2019)). The motivation of Koenker and Bassett (1978) to consider QR, lies in the fact that LS does not

work well if error terms are non-normally distributed, which is a well-known stylized fact of stock returns.

In further literature, many advantages of QR are presented. Chiang and Li (2012) find that, when you

move from low to high return quantiles, the risk-return relation turns from negative to positive for the

US stock market. Barnes and Hughes (2002) find that many of the known problems of CAPM, such as

heteroskedasticity due to omitted variables, strong sensitivity to outliers, and non-normally distributed

error terms become less critical when applying QR to the CAPM.
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Chen et al. (2019) proof that they can produce asymptotically normal and consistent estimators for

factors and their loadings in a QFA framework. They also present that the rate of average convergence

for QFA equals the one of PCA by Bai and Ng (2002). Nevertheless, the most important innovation

of QFA is that the factors can capture the shifting of higher moments in the underlying distribution,

whereas PCA can only capture shifts in location. This is useful because asset returns often have a

heavy-tailed underlying distribution. Chen et al. (2019) show promising empirical results in the fields of

macroeconomic forecasting, climate research, and, most importantly, financial factor models.

The common ground of all aforementioned papers is that they focus on the estimation of risk

premia. This implies that they investigate to what extent a factor corresponding to a certain variable

can explain the variation in stock returns. This research follows Kozak et al. (2020) and focuses on the

estimation of risk prices instead of risk premia. Risk prices indicate to what extent a factor contributes

to the variation of the SDF and hence the price of an asset. The fundamental difference is that a factor

can earn a high risk premium because it is correlated with the pricing factors in the SDF, while it is not

one of the pricing factors itself. The SDF model, introduced by Cochrane (1996), proposes that the price

of an asset can be computed by taking the expectation of future cash flows discounted by some stochastic

factor. My research, along the lines of Kozak et al. (2020), focuses on characteristic-based SDF models.

These models try to estimate the risk prices of certain characteristic-based factors on the SDF, whereas

the original SDF model uses the asset returns. In this way, the factors can be seen as characteristic-based

portfolios for which we want to explain the variation in returns, as well as the candidate explanatory

variables to explain this variation. The estimated coefficients of any SDF model correspond to the weights

of a mean-variance efficient portfolio, as mentioned by H. Markowitz (1952). One of the key contributions

of the paper of Kozak et al. (2020) is to adapt the standard ridge and lasso regression estimators’ objective

functions to be suitable for a characteristic-based SDF and to be consistent with their choice of prior.

The regular estimation for an SDF model would be to take a simple cross-sectional regression.

However, spurious overfitting could occur because this research employs a large number of possible ex-

planatory variables. To overcome this problem, this research takes a Bayesian estimation approach with

a novel prior, as by Kozak et al. (2020). In the literature, the considered prior bears resemblance to the

prior described in Pástor and Stambaugh (2000) and Pástor (2000). A key difference with these two pa-

pers is that they consider all shrinkage of any asset to be equal, whereas this is not the case with the prior

of Kozak et al. (2020). Kozak et al. (2018) provide an economic reason for this difference. They show

that a substantial risk price is attributable to high-variance principal components of explanatory factors.

The posterior that follows from the prior of Kozak et al. (2020) takes this into account by shrinking the

SDF coefficients of the low variance principal components more significantly.

The Bayesian estimator that follows has similarities to a standard ridge regression, but imposes a

penalty based on the maximum squared Sharpe Ratio as implied by the SDF. This is, in turn, equivalent

to a minimization of the Hansen and Jagannathan (1991) distance with an L2-Norm penalty on the

sum of squared SDF coefficients. This estimator maps into the estimator of the MVE portfolio weights

constrained by an L2-Norm as by Brandt et al. (2009) and DeMiguel et al. (2009). Moreover, DeMiguel et

al. (2009) show that these weights also bear resemblance to a portfolio optimization where the covariance
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matrix is shrunk towards an identity matrix, as in e.g. Ledoit and Wolf (2004). However, there is an

important difference with covariance shrinkage literature. The amount of shrinkage in covariance-based

models depends on the uncertainty in covariance estimation. This paper, as in Kozak et al. (2020),

assumes a known covariance matrix and lets the amount of shrinkage depend on the uncertainty in

the estimation of the mean. Kozak et al. (2020) show that the uncertainty in the covariance matrix is

negligible when the uncertainty in the mean estimation is accounted for.

Since this estimator is still not tailored for sparsity, another penalty term based on the L1-Norm

of the SDF coefficients is considered. This term is based on lasso type regressions as in R. Tibshirani

(1996). When combining the L1- and L2-norm penalties, the resulting estimator is similar to the elastic

net technique as by Zou and Hastie (2005), which is often used in machine learning. An example of another

research that uses machine learning techniques to overcome the high dimensionality challenge in asset

pricing comes from Rapach et al. (2013). They set out to forecast global stock market returns by applying

a lasso technique to select a few explanatory variables from a large set of candidate variables. In other

literature, DeMiguel et al. (2020), Freyberger et al. (2020), and Feng et al. (2017) apply lasso estimation

techniques on characteristic-based factors. All three papers find that there is a large redundancy among

explanatory characteristics. However, as the result of Kozak et al. (2020) and other statistical literature

suggests, an estimation where only the L1-Norm is considered is inferior to an L2-Norm or elastic net

estimation when the candidate factors are correlated (R. Tibshirani, 1996 & Zou and Hastie, 2005).

As is explained by Kozak et al. (2020), this research also relates to literature that concerns itself

with the problem of data-mining return predictors. This type of literature seeks statistical significance

of individual factors, when researchers may have tried many possible factors. For example, Harvey et al.

(2016) and Green et al. (2017) make an adjustment to the significance range to account for data-mining.

This research does not directly adjust for data-mining. However, as stated by Kozak et al. (2020), there is

no basis for first and second moments for data-mined factors to have a relation. By tying them together in

the Bayesian prior, the effect of data-mined factors is downweighed. Next to that, the period considered

in this research has a minimal overlap to the periods that the anomalies, on which the characteristic-based

factors are based, were revealed (McLean and Pontiff, 2016).

3 Theoretical model

This section presents the theoretical SDF model and the PCA & QFA specifications. Firstly, the model

for the replication is discussed. After that, the model specification for the extension is shown.

3.1 Replication

The factor returns of the stocks are defined as

Ft = Z ′t−1Rt, (1)

where Zt−1 is an N ×H matrix of stock characteristics at time t− 1 and Rt corresponds to the N ×H

matrix of asset returns. Section 5 elaborates on the specification and computation of these matrices.

The SDF in a linear span of excess returns, in the spirit of Hansen and Jagannathan (1991), can be
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transformed into a characteristic-based SDF in the linear span of H stock characteristic returns, when

we solve

Mt = 1− b′(Ft − EFt), (2)

for the N × 1 vector of time-invariant SDF loadings b. In line with the literature, this paper focuses on

the unconditional asset pricing equation constraint when solving the above equation. That is,

E[MtFt] = 0, (3)

where the factors Ft serve simultaneously as the assets for which we want to explain the returns, as

well as possible explanatory factors that are priced in the SDF. For interpretability, each column of Z is

demeaned such that each Ft can be seen as a long-short zero-investment portfolio. Also, each factor Ft

is orthogonalized with respect to the market factor. Appendix A shows the derivation from the original

model of Hansen and Jagannathan (1991) in more detail.

The general model specification can be extended to adhere to a PCA structure. The PC factors

are based on the eigenvalue decomposition of the covariance matrix of the factors

Σ = V DV ′, with D = diag[d1, . . . , dH ], (4)

where each column of V equals an eigenvector of Σ and each element of the diagonal matrix D equals an

eigenvalue in decreasing order. Then the PC factors are created as follows:

Pt = V ′Ft. (5)

Normally, one would try to select a certain optimal number of PC factors to add as explanatory variable

based on e.g. Information Criteria. For the sake of this research, the number of PCs is set equal to the

number of raw characteristics, which equals the maximum number of PCs possible. When taking into

account all PCs, the SDF is constructed in the spirit of Kozak et al. (2020) as

Mt = 1− b′p(Pt − EPt), with E[MtPt] = 0. (6)

3.2 Extension

The QFA approach is not as straightforward as PCA and does not follow immediately from an eigenvalue

decomposition. The quantile factor model structure in the spirit of Chen et al. (2019) is as follows:

Ft(τ) = λ′(τ)qt(τ) + ut(τ), (7)

where the factor returns of quantile τ (∈ [0, 1]) are dependent on the N × 1 vector of unobserved random

variables qt(τ), a N × 1 vector of non-random factor loadings λ(τ), plus a N × 1 vector of error terms

ut(τ). These error terms follow the following property:

P [uit(τ) ≤ 0|qt(τ)] = τ, (8)

where i indicates the error term belonging to characteristic i. Following Chen et al. (2019), this means

that the probability that the fitted model overestimates the factor return is equal to τ .
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The vector of quantile factors qt(τ) can now be treated equivalent as the factors in the original

SDF and the PC specification of Equation (2) and Equation (6), respectively, that is

Mt = 1− b′p(qt(τ)− Eqt(τ)), with E[Mtqt(τ)] = 0. (9)

This notation still seeks an SDF in a linear span of the returns as the quantile factors are constructed

linearly with respect to the quantiles of the returns.

This research focuses on 8 different QFA specifications at every decile. This implies that

τ ∈ ζ = {0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90}. (10)

4 Estimation Methodology

This section outlines the estimation techniques for the SDF coefficients. Again, this section is split up

into two parts that define the methodology needed for the replication and the extension. Firstly, for the

replication, the basic estimation for the raw data and PCA is discussed. After that, the Bayesian approach

to overcome the high dimensionality problem is explained. This is followed by the penalty definitions of

the estimator and the statistical technique to compare different levels of sparsity and shrinkage. Secondly,

the extension part starts with the estimation method for a QFM. Lastly, a statistical comparison technique

between different decile estimators is elaborated on.

4.1 Replication

This subsection outlines all estimation techniques necessary for the replication of Kozak et al. (2020).

4.1.1 Naive SDF coefficient estimation

When population moments are known, b (Equation (2)) can be solved as

b = (ΣΣ)−1ΣEFt. (11)

Note that, without any knowledge about the population moments, taking this result as the cross-sectional

regression of the expected factor returns on the covariance of the factors would result in over-fitting due

to the high dimensionality this regression faces.

A similar solution can be given for the PCA framework. When taking into account all PCs and

with knowledge about population moments, bp (Equation (6)) can be solved as

bp = D−1EPt, (12)

whereD equals a diagonal matrix whose elements correspond to the eigenvalues of the factors in decreasing

order and Pt refers to the matrix of PC factors as in Equation (5).

4.1.2 L2-norm Bayesian and penalization approach

As previously mentioned, a simple sample estimator of b would yield very imprecise results, according

to Kozak et al. (2020), because of too much uncertainty about the expected values of the used factors
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(i.e. regular, PC or QF). This uncertainty in mean values could lead to spurious overfitting. Kozak et al.

(2020) solve this problem by creating a Bayesian framework with a well-motivated prior. Due to the

extra information of this prior, the estimation procedure becomes robust to overfitting. Assuming that

Σ is known, the family of priors for the mean µ of the factors is considered as

µ ∼ N
(

0,
κ2

θ
Ση
)
, (13)

where θ = tr[Σ] and κ is ’scaling’ constant of µ that can depend on θ and H.

Kozak et al. (2020) set η = 2, which yields the independent and identically distributed prior on

the SDF coefficients as

b ∼ N
(

0,
κ2

θ
I
)
. (14)

These prior beliefs together with information about the sample mean of the factors µ̄ form, when assuming

a multivariate-normal likelihood, a posterior mean of b as

b̂ = (Σ + γI)−1µ̄, (15)

with γ =
θ

κ2T
. (16)

which is also a visible result from the algebraic derivation as shown in Equation (B.4) in Appendix B.

The posterior variance of b is given as:

var(b) =
1

T
(Σ + γI)−1, (17)

which is used for the construction of confidence intervals in the empirical results. Note that, the Σ in the

aforementioned and the subsequent equations refers to a sample covariance matrix of the factors which

is regularized with a flat Wishart prior.

The economic interpretation of γ is more understandable when b̂ is written as a penalized estimator.

The penalized estimator, in the spirit of Kozak et al. (2020), maximizes the models’ R2, with a penalty

on the models’ implied maximum Sharpe Ratio (SR) as

b̂ = argminb{(µ̄− Σb)(µ̄− Σb)′ + γb′Σb}, (18)

which leads to the same specification as Equation (15). It can also be written as the minimization of a

HJ-distance, as by Hansen and Jagannathan (1991), subject to an L2-Norm penalty γb′b as

b̂ = argminb{(µ̄− Σb)Σ−1(µ̄− Σb)′ + γb′b}, (19)

which is again an equivalent notation. This estimator introduces shrinkage in the estimation by the choice

of κ, which is inversely related to γ. In terms of shrinkage, the lower the choice of κ the more shrinkage

there takes place. Under the prior with η = 2, the maximum root expected squared Sharpe Ratio equals:

E[µΣ−1µ] = κ. (20)

Thus, the expected squared Sharpe Ratio has a direct effect on the level of shrinkage imposed. In other

words, a low expected squared Sharpe Ratio implies a low κ, which in turn implies a high γ. So, a low

expected squared Sharpe Ratio actually indicates a high degree of shrinkage.
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If one considers the PC space of factors, it becomes clear how the shrinkage works. Suppose, the

weight of a low-variance (eigenvalue) PC is shrunk towards 0. This creates a certain benefit for the

penalty term but has little cost in terms of the explanatory power of the volatility in the SDF. If one

would shrink a high-variance PC with the same magnitude, the benefit in terms of the penalty would be

equal. However, the cost would be much greater because this PC has more explanatory power over the

variance of the SDF. Hence, this estimator is tilted towards shrinking low-variance PCs more heavily.

4.1.3 L1- and L2-norm penalty estimator

All in all, the aforementioned model is still not tailored for any sparsity in characteristics as it never sets

any of the MVE weights in b̂ exactly equal to 0. For this, Kozak et al. (2020) introduce a second penalty

term in the penalized estimator based on lasso regression as follows:

b̂ = argminb{(µ̄− Σb)Σ−1(µ̄− Σb)′ + γ2b
′b+ γ1

H∑
i=1

|bi|}, (21)

where γ2 equals the L2-Norm penalty (γ in Equation (18)) and γ1 controls the degree of sparsity of the

estimation.

4.1.4 Model evaluation

To evaluate the estimation of b for different degrees of shrinkage and sparsity, a K-fold cross validation

approach is taken. First, the data is split into 3 (k = 3) sub-samples. For each possible γ or pair of

γ1 & γ2 the estimator b̂ is computed with the data of 2 of these sub-samples. This estimator is used to

calculate an OOS R2 on the withheld data (whose moments are indicated with subscript ’o’) as follows:

R2
oos = 1− (µ̄o − Σ̄ob̂)

′(µ̄o − Σ̄ob̂)

µ̄′oµ̄o
. (22)

This is repeated 3 times such that every single one of the sub-samples is considered as out-of-sample once.

Then, the OOS R2 estimates of the repetitions are averaged, which yields the cross-validated (CV) OOS

R2. To obtain the optimal model, the γ or pair of γ1 & γ2 is chosen that maximizes the OOS R2.

This research follows the choice of k = 3 from Kozak et al. (2020). They explain that this choice

is a compromise between estimation uncertainty of b̂ and estimation uncertainty of Σ̄o. When the choice

of k would become too high, the estimation sample would become too short to get a well-behaved Σ̄o.

It is important to emphasise that all models for both the replication and extension are evaluated

with these criteria. Since OOS R2 is a metric that tests predictive ability for out-of-sample data, it can

be compared directly across different models. In this sense, the chosen factor specification is the only

differentiating element across the results.

It has to be noted that this practice is not a clean out-of-sample estimation as the whole sample

is used to calculate the penalty terms. This implies that the CV OOS R2 at the optimal penalties is

usually upward-biased when compared to a true out-of-sample estimate of the R2 (R. J. Tibshirani and

Tibshirani, 2009 & Varma and Simon, 2006). However, the interest of this paper, in the spirit of Kozak

et al. (2020), is the relative performance between different levels of sparsity and shrinkage and not the

absolute level of the OOS R2. Hence, the slight upward bias is not a drawback for this research.
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4.2 Extension

This subsection presents the methodology for the QFA model and certain statistical tests to compare the

different QFA specifications at every decile.

4.2.1 QFA estimation

As is the case for any statistical factor model, the factors and loadings cannot be estimated separately

(Bai and Ng, 2002). In the spirit of Chen et al. (2019) the following normalizations are introduced,

without loss of generality:

1

T

T∑
t=1

qt(τ)q′t(τ) = IH−1,
1

N

N∑
i=1

λi(τ)λ′i(τ) is diagonal with non-increasing elements, (23)

where the subscript H − 1 refers to the number of factors. This number cannot equal H because then

the estimation algorithm cannot differentiate different quantile specifications.

Now, let G = (N +T )r and θ = (λ′1(τ), . . . , λ′N (τ), q′1(τ), . . . , q′T (τ)). Note that, the dependence of

θ on G is suppressed, as in Chen et al. (2019). For ease of notation, let A,Q ∈ Rr and let:

Θr = {θ ∈ RG : λi(τ) ∈ A, qt(τ) ∈ Q for all i, t and {λt(τ), qt(τ)} satisfy Equation (23)}. (24)

With this notation, the objective function can be defined as:

MNT (θ) =
1

NT

N∑
i=1

T∑
t=1

ρτ (fi,t − λ′i(τ)qt(τ)), (25)

where the parameters should satisfy the constraints of Equation (23) and ρτ (u) = (τ−1{u ≤ 0})u, where

1 corresponds to an indicator function that equals 1 when the statement between the accolades is true

and 0 otherwise. This check function, as by Koenker and Bassett (1978), is a type of loss function that

retrieves the requested quantile τ in the objective function.

The estimator of θ0 can now be expressed as:

θ̂ = (λ̂′1(τ), . . . , λ̂′N (τ), q̂′1(τ), . . . , q̂′T (τ)) = argminθ∈ΘrMNT (θ). (26)

On a sidetrack, it is now visible how QFA relates to PCA. To visualize this, let τ = 0.50, which corresponds

to the median quantile. Following the theory of Koenker and Hallock (2001), in a regular QR, the objective

function at the 0.50th quantile is equivalent to the minimization of the sum of absolute errors, or an L1-

Norm. For an LS regression, the objective function is the minimization of the sum of squared residuals,

or an L2-Norm. This framework can be extended into the universe of factor models in exactly the same

way. Filling in τ = 0.50 in the check function of Equation (25) yields a minimization of the sum of

absolute error terms, whereas a minimization of the sum of squared residuals is required in the PCA

framework. Hence, it can be stated that QFA relates to PCA as QR relates to LS. The structure of

this objective function also, again, shows that QFA is less sensitive to outliers and can better handle

heavy-tailed distributions than PCA.

As Chen et al. (2019) state, the estimator θ̂ of Equation (26) has no closed-form analytical so-

lution, whereas this is the case for PCA. To overcome the estimation problem, Chen et al. (2019) in-

troduce the iterative quantile regression procedure (IQR). In the same spirit as their research, define
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Λ = (λ1(τ), . . . , λN (τ))′, Q = (q1(τ), . . . , qT (τ))′ and introduce the averages:

Mi,T (λ,Q) =
1

T

T∑
t=1

ρτ (fi,t − λ′(τ)qt(τ)), (27)

Mt,N (Λ, q) =
1

N

N∑
i=1

ρτ (fi,t − λ′i(τ)q(τ)), (28)

where MNT (θ) = N−1
∑N
i=1 Mi,T (λi, Q) = T−1

∑T
t=1 Mt,N (Λ, qt). The greatest hurdle in the minimiza-

tion of Equation (25) is that the function is not convex in θ. However, as by Chen et al. (2019), for a

given Q, the function Mi,T (λ,Q) is convex in λ for every i, and for a given Λ, the function Mt,N (Λ, q) is

convex in q for every t. Hence, both these functions can efficiently be optimized. This paper follows the

proposed method of Chen et al. (2019) to estimate the QFA, which goes as follows:

Iterative quantile regression procedure (IQR):

1. Set random starting parameters Q(0)

2. Given a Q(l−1), solve λ
(l−1)
i (τ) = argminλMi,T (λ,Q(l−1)) for i = 1, . . . , N . Then, given Λ(l−1),

solve q
(l)
t (τ) = argminqMt,N (Λ(l−1), q) for t = 1, . . . , T .

3. Iterate the second step for l = 1, . . . L, where L equals the iteration such that the difference between

MNT (θ(L)) and MNT (θ(L−1)) is less than or equal 0.0001, i.e. convergence.

Note that, θ(l) = (vech(Λ(l))′, vech(Q(l))′)′.

4. Normalize Λ(L) and Q(L), such that they satisfy Equation (23).

Via this procedure, the quantile factors (QFs) qt(τ) can be retrieved for every decile. These factors are

then used as described in Section 3.2 in the estimation of the SDF coefficients explained in Section 4.1.

4.2.2 Comparison of QFA factors and SDF coefficients

Just as the raw characteristics and PCs, the QFs can be seen as characteristic-based portfolios. This

implies that Sharpe Ratios can be computed for each individual factor and can be compared with each

other. First, I consider the Sharpe Ratios for the factors of each decile τ separately, which are expected

to be different. These Sharpe Ratios can be tested for (in)equality with the pairwise test inference of

Ledoit and Wolf (2008). I use the inference based on HAC standard errors with a prewhitened QS kernel.

Ledoit and Wolf (2008) note that this method is often too liberal when sample sizes are moderate to

small. However, this is not a problem for this research as sample sizes are relatively large. To avoid

a multiple testing problem only the largest Sharpe Ratio is compared with all others per decile. For

clearance, a set of 50 factors would require 1225 pairwise tests, which would result in a total of 9800 tests

for 8 deciles. This results in the following testing hypothesis:

H0 : max(SRτ,m) = SRτ,i,∀i = 1, . . . , N, with i 6= m (29)

where τ corresponds to the decile for which this test in conducted and m to the index of the factor that

attains the highest Sharpe Ratio.
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It is also of interest to compare performance throughout different deciles. This is not straightfor-

ward, as the QFs of different deciles do not necessarily have to have the same underlying interpretation,

which makes a direct comparison impossible. However, each model returns an optimal SDF specification

for which the highest OOS R2 is obtained. With these coefficients, an MVE portfolio can be constructed

for every decile. The Sharpe Ratios of these portfolios can be compared via the prewhitened HAC

inference of Ledoit and Wolf (2008). This results in the following hypothesis:

H0 : max(SRτ∗) = SR ζ∩τ∗c , (30)

where τ∗ is the decile with the maximum Sharpe Ratio and ζ is defined as in Equation (10).

For a further evaluation across deciles, canonical correlation analysis introduced by Hotelling (1992)

is considered. In essence, this method tries to find linear combinations of two matrices for which their

correlation is maximized and hence whether the factors span the same linear space, that is

(a, b) = argmax(a,b)corr(a
′X, b′Y ), (31)

where X and Y correspond to some chosen matrices with equal dimension.

The correlations are sorted (high to low) and can then be tested to be significantly different from

0, which yields

H0 : ρ̂i = 0, (32)

where ρ̂i is the estimated correlation of the factors at index i.

In this paper, this implies that every combination of decile factor matrices, within its data subset,

can be compared. For clearance, the first element of the vector of the retrieved canonical correlations

corresponds to the maximum attainable correlation of a linear combination between the factors of different

deciles at the same index. Since this method only considers correlation, it is also an indirect comparison

method in the sense that the underlying factors do not necessarily have to have the same interpretation.

The test statistic for each characteristic i, following Martin and Maes (1979), equals:

−(T − 0.5−H)ln

H∏
j=1

(1− ρ̂2
j ) ∼ χ2(1), (33)

under the assumption of a large number of independent observations T, which is true for the considered

data subsets.

5 Data

The factor returns Ft used in the analysis of this research consist of different characteristic-based portfolio

returns. These portfolios are divided into two subsets based on different characteristics and well-known

anomalies in the same spirit as Kozak et al. (2020). The data is retrieved from the website of S. Kozak.1

The first subset of portfolios considered is made up of the daily data of the 25 ME-BM-sorted

Fama and French portfolios from July 1926 to December 2017, provided in the French (2021) online

data library. As explained by French (2021), the data underlying these portfolios contains all stocks listed

1Data and variable descriptions have been made available by S. Kozak on https://sites.google.com/site/serhiykozak/data
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on the NYSE, AMEX, and NASDAQ with two constraints. Firstly, at time t, for a portfolio from July

of year t until June of year t+ 1, information about the market equity should be available for December

of year t− 1 until June of year t. Secondly, there should be available information about the book equity

of year t − 1, where the BE/ME ratio in June of year t is defined as the book equity of the last fiscal

year end in t − 1 divided by the market equity in December of year t − 1. All available stocks are then

simultaneously divided into 5 different size and 5 different BE/ME classes, for which the NYSE quintiles

serve as breakpoints. The 25 portfolios are then constructed as the intersects of the 5 size and 5 book-

to-market groups. Lewellen et al. (2010) show that these portfolio returns have an extremely high factor

structure, such that factors considered can be the portfolio returns themselves. Then, the membership

of one of these portfolios is the underlying characteristic.

The other subset of portfolios is based on the universe of US firms in the Center for Research in

Security Prices (CRSP) database. This subset constructs the factor returns corresponding to one of 50

different stock characteristics that underlie certain anomalies in the period November 1973 to

December 2017. This paper uses the same 50 definitions as Kozak et al. (2020), which are based on

the standard anomaly definitions of Novy-Marx and Velikov (2016), Hou et al. (2015), Kogan and Tian

(2015), and McLean and Pontiff (2016).

For both portfolio subsets, the factor returns are orthogonalized with respect to the value-weighted

index returns of CRSP, where the βs estimated over the full sample are used. After this, the standard

deviation of the Fama and French portfolios is further rescaled to have a standard deviation equal to the

in-sample excess return of the market index.

In the spirit of Kozak et al. (2020), the focus of this paper is on the cross-sectional aspect of the

predictability in return. To remove certain outliers and to keep constant leverage, normalizations are

performed that define the characteristic-based factors Ft for the 50 anomalies.

First, as by Asness et al. (2019) and Freyberger et al. (2020) a rank transformation for each

characteristic is performed. Let cis,t denote characteristic i for stock s at time t. Across all stocks s,

the values of a characteristic are sorted and assigned a rank from 1 to nt, where nt corresponds to the

number of stocks that have this certain characteristic available at time t. Note, the rank 1 is assigned to

the lowest and rank nt to the highest value. When a tie in rank would occur, average rank is assigned to

both. Then, the ranks are normalized to get the value of the rank transformation as

rcis,t =
rank(cis,t)

nt + 1
. (34)

Second, the rank-transformed characteristics are normalized by taking the deviation from the cross-

sectional mean and dividing it by the absolute sum of deviations from this mean for all stocks as follows:

zis,t =
rcis,t − r̄cit∑nt

s=1 |rcis,t − r̄cit|
, (35)

where r̄cit = 1
nt

∑nt

s=1 rc
i
s,t. All the elements zis,t are combined into the instrument matrix Zt that is used

to construct the factor returns as Ft = Z ′t−1Rt, such that each characteristic has its own factor. Now

the factor returns can be seen as characteristic-based portfolio returns. Finally, stocks with a market cap

lower than 0.01% of the aggregate market value are excluded from the data at each point in time.
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Appendix C shows the descriptive statistics for both sets of portfolios. The mean returns equal

the results in the Internet Appendices of Kozak et al. (2020). For every portfolio, it is visible that there

exists excess skewness and kurtosis, which hints at a heavy-tailed underlying distribution. This gives an

indication that QFA models can be successfully used in this context for dimension-reduction purposes.

6 Results

This section discusses the results obtained by applying the estimation as described in Section 4.1. Again,

this section is split up into two main parts that contain the replication and extension. Firstly, the main

results of Kozak et al. (2020) are recreated, extended and evaluated. After that, the results of the

extension on QFA models are presented in a similar way. All results are obtained with a modified version

of the codes provided by S. Kozak and L. Chen2.

6.1 Replication

This subsection presents a recreation and evaluation of the results of Kozak et al. (2020).

6.1.1 Fama and French portfolios

The first considered set of portfolios contains 25 Fama and French BE/ME sorted portfolios. Table 1

shows the estimated SDF coefficients and their corresponding t-statistics for the raw portfolio returns

and the PCs at the optimal level of shrinkage for the dual penalty estimation.

Table 1: Largest SDF factors for the 25 Fama and French ME/BM sorted portfolios.

Coefficient estimates and their absolute t-statistics at the optimal prior root expected squared Sharpe Ratio (shrinkage).

The left part of the table depicts the raw return portfolios. In the right part the returns are pre-rotated in the PC space

and the corresponding estimates are shown. The sample period is daily from July 1926 to December 2017.

Portfolio b t-stat Portfolio b t-stat

SMALLHiBM 0.357 1.310 PC 1 -0.534 3.077***

ME3BM4 0.270 0.993 PC 6 0.305 1.136

ME1BM4 0.266 0.979 PC 7 0.222 0.823

ME2BM4 0.226 0.828 PC 11 -0.210 0.764

ME3BM3 0.213 0.784 PC 5 0.185 0.696

ME2BM5 0.209 0.768 PC 2 0.126 0.564

ME4BM4 0.207 0.765 PC 14 -0.148 0.533

ME3BM2 0.207 0.764 PC 10 0.139 0.507

ME5BM4 -0.180 0.672 PC 19 -0.140 0.501

ME2BM1 -0.176 0.655 PC 16 0.139 0.499

Note. * = p < .10, ** = p < 0.05,*** = p < 0.01, where the p-value is two-sided based.

2The code provided by S. Kozak is accessible on https://sites.google.com/site/serhiykozak/data and the code of L. Chen

is available at https://onlinelibrary-wiley-com.eur.idm.oclc.org/doi/10.3982/ECTA15746?af=R.
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This table is not included in the work of Kozak et al. (2020), so the results cannot be compared

directly. It is noteworthy that only the first PC is significantly different from 0 at regular statistical

significance levels. None of the raw portfolios has a coefficient significantly different from 0, but, as

Kozak et al. (2020) mention, the joint significance of linear combinations matters most in the estimation

of the SDF.

The OOS R2 results for the combined L1- and L2-Norm are shown in Figure 1.

Figure 1: OOS R2 values for the combined L1- and L2-Norm specification for the 25 Fama and French ME/BM sorted

portfolios in the period July 1926 to December 2017 (daily). The left panel depicts the OOS cross-sectional R2 of the

dual-penalty specification for the raw portfolio returns, whereas the right panel shows these values for their corresponding

PCs. The strength of shrinkage (L2-Norm) is quantified on the x-axis as the prior root expected squared Sharpe Ratio (κ).

The amount of sparsity (L1-Norm) is quantified on the y-axis as the number of retained variables in the SDF. Note that

both axis are on the logarithmic scale and there is a hard minimum of −0.1 imposed on the OOS R2.

To start, it is important to note how these figures can be interpreted in terms of sparsity and

shrinkage. The x-axis of both figures represents the quantity of shrinkage applied to the model defined as

the root expected squared Sharpe Ratio or κ. The left side of the figure indicates high levels of shrinkage

and the right side corresponds to no shrinkage. The y-axis of both figures designates the levels of sparsity

in terms of the number of retained variables in the model. The top of the figure indicates no sparsity,

whereas the bottom indicates extreme sparsity.

The figures match the figures of Kozak et al. (2020) exactly. First, consider the left figure, which

represents the OOS R2 values for the raw 25 Fama and French BE/ME sorted portfolio returns. The

yellow colours indicate a relatively higher OOS R2. Shrinkage and sparsity are to some extent substitutes

for this data set in terms of a relatively high OOS R2. This substitution effect is clearly visible as the

diagonal yellow stripe. In the top-left of this strip, there is no sparsity and a high level of shrinkage

applied, whereas on the bottom-right no shrinkage and high levels of sparsity are applied. As Kozak

et al. (2020) state, this result is in line with the expectation for this data set. Due to its extremely

high factor structure (Lewellen et al., 2010), it is natural that a high explanatory power can be achieved

by taking into account only two or three portfolios. When more portfolios are added, the performance

becomes worse unless there is more shrinkage applied to overcome the problem of overfitting.

The right figure considers the PCs of the 25 Fama and French BE/ME sorted portfolios. This figure
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Figure 2: L2 model selection and the degree of sparsity for the 25 Fama and French ME/BM sorted portfolios in the

period July 1926 to December 2017 (daily). The left panel shows the in-sample R2 as a dashed blue line, together with the

cross-validated (CV) OOS cross-sectional R2 as a solid orange line when no sparsity is imposed. The dotted orange lines

indicate the CV OOS cross-sectional R2 ± 1 standard error bound of the estimator. The right panel shows the maximum

OOS R2 across all possible L2 values for models with n factors as specified on the x-axis. The orange dashed line indicates

the PCs, the solid blue line indicates the raw characteristics, the dotted lines depict −1 standard error bound for the CV

estimator, and the ’x’ indicates the performance of the Fama and French three-factor model.

implies that high levels of sparsity can attain a relatively good OOS performance. When the degree of

sparsity is decreased, this performance stays stable as long as some shrinkage is applied. However,

the substitution effect of the left figure is not present. This is also in line with expectations because

PCs inherently down-weight low-eigenvalue PCs. Hence, to maintain a high OOS R2, a higher level of

shrinkage is not required when retaining more variables in the model.

Kozak et al. (2020) restrict these figures to have a hard minimum bound on the OOS R2 of -0.1.

Figure D1 in Appendix D shows the contour maps when this bound is removed. Clearly, Kozak et al.

(2020) impose this bound because the image is heavily distorted by the relatively extreme low outliers.

That is, this figure contains almost exactly the same information as Figure 1, but the main conclusion

has become invisible. The reason, I added these graphs is that it highlights how serious the problem

of overfitting is in this high-dimensional setting. When no shrinkage is applied in combination with no

sparsity, the relative performance of the models becomes substantially inferior.

Figure 2 presents two cuts of the contour plot. The left figure matches the figure of Kozak et al.

(2020) precisely. It illustrates the horizontal cut of the raw 25 portfolio returns contour plot at the

top edge, i.e. where no sparsity is imposed. Most interestingly to note about this figure is that the

difference between the orange and blue lines shows that an in-sample R2 can be very misleading about

the performance of an SDF model. Especially, when no shrinkage is applied. The orange line shows that

the maximum OOS R2 is attained at κ ≈ 0.23, whereas maximising the in-sample R2 would imply no

shrinkage at all.

The right panel of Figure 2 shows the maximum OOS R2 for different levels of sparsity over all

possible values of shrinkage. This graph confirms the results that are visible in Figure 1. The raw

characteristics can attain almost identical maximum OOS R2 values to the PCs when more than 3

18



variables are included, whereas they perform worse than the PCs when less than 3 variables are included.

This indicates that PCs can successfully achieve a characteristic-sparse SDF specification. The graph

also shows a cross that indicates the performance of the Fama and French three-factor model. Except

for this cross, this figure is identical to the figure of Kozak et al. (2020). In their research, the cross is on

the same level, but one point to the left of the cross in this figure. This difference comes from the fact

that I decided to include all three factors instead of only the HML and SMB. With this, I have chosen

to do no orthogonalization with respect to the market instead of a conditional orthogonalization to the

market. The reason for this is that conditional orthogonalization is not documented in their research or

code. However, the introduction of the excess market return as a factor yields an equivalent result.

6.1.2 Anomaly portfolios

The second considered set of portfolios contains the 50 anomaly portfolios, as described by Kozak et al.

(2020). Table 2 contains the estimated SDF coefficients and their corresponding t-statistics for the raw

returns and the PCs for the optimal level of shrinkage in the dual penalty specification. The results

Table 2: Largest SDF factors for the 50 anomaly portfolios.

Coefficient estimates and their absolute t-statistics at the optimal prior root expected squared Sharpe Ratio (shrinkage).

The left part of the table depicts the raw return portfolios. In the right part the returns are pre-rotated in the PC space

and the corresponding estimates are shown. The sample period is daily from November 1973 to December 2017.

Portfolio b t-stat Portfolio b t-stat

Industry rel. rev. (L.V.) -0.879 3.527*** PC 4 1.014 4.249***

Ind. mom-reversals 0.484 1.945** PC 1 -0.537 3.081***

Industry rel. reversals -0.425 1.705* PC 2 -0.556 2.653***

Seasonality 0.322 1.292 PC 9 0.635 2.514**

Earnings surprises 0.323 1.291 PC 15 -0.324 1.265

Value-profitability 0.297 1.184 PC 17 0.303 1.182

Return on market equity 0.299 1.183 PC 6 -0.287 1.176

Investment/Assets -0.238 0.948 PC 11 0.189 0.744

Return on equity 0.238 0.947 PC 13 0.166 0.653

Composite issuance -0.240 0.947 PC 23 0.146 0.564

Note. * = p < .10, ** = p < 0.05,*** = p < 0.01, where the p-value is two-sided based.

in this table are equivalent to the results from Kozak et al. (2020), except for the number of decimals.

As Kozak et al. (2020) state, it is not surprising that the characteristics shown in the table have the

most significant SDF coefficients, as they are among the most robust anomalies found in the literature.

Note that, only ’Industry relative reversals (low vol)’, has a coefficient that significantly differs from 0

at conventional significance levels. Kozak et al. (2020) mention that the joint, and not the individual,

significance of linear combinations matters most for the SDF. On the other hand, there are four significant

SDF coefficients for the PCS, namely PC4, PC1, PC2, and PC9.

Figure 3 shows the OOS R2 values for the combined L1- and L2-Norm specification, which bears
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exactly the same interpretation as Figure 1 in terms of shrinkage and sparsity.

Figure 3: OOS R2 values for the combined L1- and L2-Norm specification for the 50 anomaly portfolios in the period

November 1973 to December 2017 (daily). The left panel depicts the OOS cross-sectional R2 of the dual-penalty specification

for the raw portfolio returns, whereas the right panel shows these values for their corresponding PCs. The strength of

shrinkage (L2-Norm) is quantified on the x-axis as the prior root expected squared Sharpe Ratio (κ). The amount of

sparsity (L1-Norm) is quantified on the y-axis as the number of retained variables in the SDF. Note that both axis are on

the logarithmic scale and there is a hard minimum of −0.1 imposed on the OOS R2.

Both figures are again equivalent to the figures of Kozak et al. (2020). The left panel of Figure 3

shows the contour map of the OOS R2 for the raw 50 anomaly portfolio returns. It is immediately visible

that this set of portfolios leads to different conclusions than the Fama and French portfolios. This is not

strange, as these anomalies do not have an inherently strong factor structure. The figure shows that a

maximum OOS R2 can only be attained with a high degree of shrinkage combined with the inclusion of

almost all variables. This indicates that almost none of the 50 characteristics are redundant for explaining

the variation in the SDF.

The right panel of Figure 3 shows the contour map of the OOS R2 for the PCs of the 50 anomaly

portfolios. The PCs can attain a much higher degree of sparsity for a relatively high OOS R2 values

than the raw characteristics. However, there still needs to be a substantial amount of shrinkage to obtain

these high values. Also, the degree of sparsity that can result in an optimal performance is not as high

as for the Fama and French portfolios, i.e. still ten PCs are required to come close to the maximum OOS

R2. Figure D2 in Appendix D shows the contour maps without the hard minimum bound on the OOS

R2 of -0.1. This figure again shows the seriousness of the problem of overfitting even more than Figure

D2. The OOS R2 values for models with no shrinkage and no sparsity are extremely low.

Figure 4 shows two cuts of the contour plots, which are defined in exactly the same way as Figure

2. Both figures, again, match the figures of Kozak et al. (2020), except that the figure in the right panel

has an extended y − axis. The left panel of Figure 4 shows the horizontal cut of the OOS R2 contour

map at the point of no sparsity. It is once more visible that the in-sample R2 can lead to a misleading

conclusion when no shrinkage is imposed. This graph also shows the OOS R2 when the more commonly

used prior of η = 1, by Pástor and Stambaugh (2000) would have been used. There is a slight difference

with the same line in the graph of Kozak et al. (2020). This is due to the fact that it is impossible to
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Figure 4: L2 model selection and the degree of sparsity for the 50 anomaly portfolios in the period November 1973 to

December 2017 (daily). The left panel shows the in-sample R2 as a dashed blue line, together with the cross-validated

(CV) OOS cross-sectional (CS) R2 as a solid orange line when no sparsity is imposed. The dotted orange lines indicate

the CV OOS CS R2 ± 1 standard error bound of the estimator. The yellow line indicates the CV OOS CS R2 when equal

shrinkage, as by Pástor and Stambaugh (2000), with η = 1 is imposed. The right panel shows the maximum OOS R2 across

all possible L2 values for models with n factors as specified on the x-axis. The orange dashed line indicates the PCs, the

solid blue line indicates the raw characteristics, and the dotted lines depict −1 standard error bound for the CV estimator.

recreate the exact settings of the positioning of the line with respect to the x− axis because this is not

documented in the paper or in the code. To recreate the graph, I have chosen to position the line with

the help of the level of κ that achieves the overall optimum for this model. With this line, it can be

concluded that the chosen prior specification improves the OOS R2 substantially. Note that, the x-axis

for this line does not bear the interpretation of κ anymore, since, under the prior of η = 1, κ does not

equal the root expected squared Sharpe Ratio.

The right panel of Figure 4 shows the maximum OOS R2 for different levels of sparsity across

all possible levels of shrinkage. This graph yields a similar conclusion as Figure 3. The raw return

portfolios can only attain an optimal OOS R2 when almost all characteristics are included. The PCs

have a relatively better performance for more characteristic-sparse SDF specifications. The maximum

OOS R2 stays at a rather constant level when more than ten PCs are retained in the model.

6.2 Extension

This section presents an extension of the analysis of Kozak et al. (2020) by considering a QFA type factor

model by Chen et al. (2019).

6.2.1 General analysis

The analysis is split up into two parts. First, every decile is considered as its own separate universe.

Secondly, all factors of all deciles are combined into one large set of factors. This combination takes the

full distribution, split up in deciles, of the returns. It can show what the effect is of taking into account a

lot of information without considering the explanatory structure of the individual models and correlation

between factors first.
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Figure 5 presents the contour maps for the OOS R2 of the dual penalty specification for each

decile for the 25 ME/BM sorted Fama and French portfolios for the period July 1926 to December 2017,

similar to Figure 1. The interpretation of these figures is equivalent to Figures 1 and 3. The QFA factors

are not orthogonal since they follow the standardization of Equation (23). There are clear differences

present between the OOS R2 patterns for different deciles. Overall, the deciles further away from the

median perform better in terms of achieving a characteristic-sparse model with a relatively high OOS

R2. The earlier discussed relation between the median quantile and PCA now gives a useful insight.

Namely, relative outliers seem to have a higher explanatory power in the SDF. This is also visible from

the fact that the tails have a better performance. Still, there is quite some degree of shrinkage necessary

to obtain a relatively high OOS R2. Interestingly, the tails have a better optimal OOS R2 than the raw

characteristics and the PCs.

Figure 5: OOS R2 values for the combined L1- and L2-Norm specification for the 25 Fama and French ME/BM sorted

portfolios in the period July 1926 to December 2017 (daily). The strength of shrinkage (L2-Norm) is quantified on the

x-axis as the prior root expected squared Sharpe Ratio (κ). Also, the decile τ is specified on the x-axis. The amount of

sparsity (L1-Norm) is quantified on the y-axis as the number of retained variables in the SDF. Note that both axis are on

the logarithmic scale, there is a hard minimum of −0.1 imposed on the OOS R2 and the legend is standardised to be equal

across figures.

Figure 6 presents the contour maps for the OOS R2 of the dual penalty specification for each decile

for the 50 anomaly portfolios for the period November 1973 to December 2017, similar to Figure 3. The

interpretation of these figures is equal to Figures 1, 3 and 5. Again, the deciles that lie further away

from the median can obtain a higher optimal OOS R2 value, which hints that there is more explanatory
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power in the relative outliers. However, there is not a clear cut conclusion about which decile can obtain

a characteristic-sparse SDF most successfully. Overall, all QFA specifications show that there is almost

no redundancy among the anomalies as explanatory factors, similar to the raw characteristics case as in

the left panel of Figure 3. Even though there is no characteristic-sparse specification that can obtain a

relatively high OOS R2 within the model, the optimal values are still higher than the optimal values for

the raw characteristics and PCs.

Figure 6: OOS R2 values for the combined L1- and L2-Norm specification for the 50 anomaly portfolios in the period

November 1973 to December 2017 (daily). The strength of shrinkage (L2-Norm) is quantified on the x-axis as the prior

root expected squared Sharpe Ratio (κ). Also, the decile τ is specified on the x-axis. The amount of sparsity (L1-Norm) is

quantified on the y-axis as the number of retained variables in the SDF. Note that both axis are on the logarithmic scale,

there is a hard minimum of −0.1 imposed on the OOS R2 and the legend is standardised to be equal across figures.

Since it is difficult to compare the deciles precisely from these contour maps, Figure 7 shows

the maximum attainable OOS R2 values for all levels of possible shrinkage and for every QFA decile.

These figures confirm the results of the contour plots of Figures 5 and 6. The deciles in the tails of the

distribution can attain high levels of OOS R2, whereas the median decile and the deciles closest to the

median perform substantially worse. Note that, in the right panel, the values for the 5th and 6th are so

similar that the lines overlap. It is striking that, compared to Figures 2 and 4, the maximum achievable

values for QFA models are approximately 12% and 36% higher for the Fama & French and anomaly

portfolios, respectively. Figure 7 also shows that the contour maps actually paint a distorted image

because all aforementioned analysis states relative results within models. The contour maps of Section

6.1 are for the purpose of reproduction not standardized. To get a better idea of the comparison across
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different techniques, Appendix E shows the contour maps of the reproduction on the same standardised

scale as Figures 5, 6, and 8. Overall, for both subsets, there always exists a QFA model that outperforms

both the raw characteristics and PCs for every possible number of retained variables in terms of maximum

OOS R2. This leads to the conclusion that the reasoning of Kozak et al. (2020) is only consistent within

the framework of their chosen models and is not robust to changes in the statistical construction of the

factors. The results suggest that the SDF of the 50 anomaly portfolios cannot adequately be described

by a characteristic-sparse specification, even when the PCs are considered as factors.

Figure 7: The maximum OOS R2 across all possible L2 values for models with n factors as specified on the x-axis. The

left panel depicts the values of all QFA deciles for the 25 Fama and French ME/BM sorted portfolios in the period July

1926 to December 2017 (daily), whereas the right panel depicts this information for the 50 anomaly portfolios in the period

November 1973 to December 2017 (daily). The graphs of right panels of Figures 2 and 4 are indicated with asterisks.

Figure 8 shows the contour maps of the OOS R2 for both data sets when combining all QFA factors

of each decile into one large set. The overall conclusions already drawn from the contour maps in Figures

5 and 6 do not change. However, the optimal OOS R2 values are lower than in some of the separate decile

models. Note that this comparison can be made because the OOS R2 is a metric that tests predictive

ability for out-of-sample data, dimension has no role in this. This shows that a random combination

of models does not per se outperform the individual models. The methods and algorithm have two

drawbacks that lead to this result. Firstly, by creating this space of factors, one is not only extending

the explanatory variables but also the variables to be explained, so the results do not have to be at least

as good as some individual models. The second drawback comes from the fact that the algorithm selects

the next most significant factor to be retained in the model when increasing the total number of retained

variables. This in itself does not take into account any sort of correlation or joint significance between

the factors. It may very well be the case that for any number of retained variables there is a combination

possible that outperforms the results presented here in terms of OOS R2. However, this algorithm is

not designed to be optimal in terms of OOS R2, only to be optimal for the minimization of the penalty

specification. It does prove that using the full distribution is not the optimal strategy and that the

explanatory power of the tails is substantially higher. This re-confirms what is also visible in Figures 5,

6, and 7. Note that this conclusion can only be drawn because all factors of one combined set are based

on the same underlying data set and that this does not prove that the chosen model methodology is not
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robust to changes in the data.

Figure 8: OOS R2 values for the combined L1- and L2-Norm specification. The left panel depicts the OOS cross-sectional

R2 of the dual-penalty specification for all QFA factors for each decile combined into one set for the 25 Fama and French

ME/BM sorted portfolios in the period July 1926 to December 2017 (daily), whereas the right panel shows these values for

the 50 anomaly portfolios in the period November 1973 to December 2017 (daily). The strength of shrinkage (L2-Norm)

is quantified on the x-axis as the prior root expected squared Sharpe Ratio (κ). The amount of sparsity (L1-Norm) is

quantified on the y-axis as the number of retained variables in the SDF. Note that both axis are on the logarithmic scale,

there is a hard minimum of −0.1 imposed on the OOS R2 and the legend is standardised to be equal across figures.

To gain more in-depth insights into the correlation of different deciles, canonical correlation analysis

is considered. It can be seen from Figures 5 and 6 that some deciles follow patterns that very much look

alike. Hence, it can be expected that there is some kind of relation between the factors of different deciles.

This is also the case. The canonical correlation shows extremely high levels of correlation between factors

of any combination of deciles (i.e. there are 36 unique combinations per data subset). Firstly, for the

Fama and French portfolios, the average correlation of factors from different deciles at the same index

equals 0.959. Only a few correlations differ absolutely from 1, that is, on average, 1.806 per combination.

The number of correlations that absolutely deviates from 1 never exceeds 3. From the total number

of 864 tested correlations, only 4 cannot be said to be significantly different from 0. Secondly, for the

anomaly portfolios, the average correlation equals 0.978, with an average number of correlations that

deviate absolutely from 1 being equal to 2.361 per combination. Again, this number never exceeds 3.

From the total number of 1764 tested correlations, only 5 do not differ significantly from 0.

These results show that only a few of the factors make the difference between the deciles in terms

of their out-of-sample explanatory power. If factors are perfectly correlated (within a linear combination

framework), it should not matter which one is used in the pricing of the SDF and hence, this does not

account for any difference. Ultimately, this also explains why the combination of all deciles does not

perform well. As previously mentioned, the algorithm does not account for any correlation but only

absolute significance.
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6.2.2 Statistical comparison of QFA specifications

The individual factors in all QFA models can be seen as characteristic-based portfolios. Furthermore,

by construction, they are linear with respect to the deciles of the characteristics. Table 3 shows the

maximum Sharpe Ratio for each decile and the proportion of Sharpe Ratios of other factors for that

respective decile that is significantly lower at a 5% level. Thus, the second and fourth columns show

the fraction of the other factors within each decile that has a significantly lower Sharpe Ratio than the

maximum. The significance is determined by the prewhitened HAC inference of Ledoit and Wolf (2008).

This paper makes use of an adaptation of the code of Ledoit and Wolf (2008) to obtain the results.3

Table 3: Maximum attainable Sharpe Ratio for the individual factors of each quantile and the corresponding proportion of

factors that have a significantly lower Sharpe Ratio at a 5% level. The significance is determined based on pre-whitened

HAC test statistic of Ledoit and Wolf (2008). The maximum Sharpe Ratio per subset is indicated in bold.

Fama and French Anomalies

τ Max. SR Proportion sign. higher Max. SR Proportion sign. higher

0.10 0.066 0.96 0.251 1.00

0.20 0.038 0.78 0.219 1.00

0.30 0.361 1.00 0.322 1.00

0.40 0.351 1.00 0.206 1.00

0.50 0.014 0.26 0.039 0.56

0.60 0.024 0.65 0.097 0.98

0.70 0.029 0.78 0.157 1.00

0.80 0.026 0.70 0.130 0.90

0.90 0.580 1.00 0.267 0.98

There is no clear pattern visible regarding which decile can outperform in terms of Sharpe Ratio.

However, it can be stated that, for the anomaly subset, when a factor achieves the highest Sharpe Ratio,

this value is almost always significantly higher than all other Sharpe Ratios. This image is a bit different

for the Fama and French subset, but the maximum Sharpe Ratios are still significantly higher than the

majority. For a more in-depth view of these Sharpe Ratios, Figure 9 presents the efficient frontiers and

scatter plots of the individual QFs as characteristic-based portfolios.

3The code of Ledoit and Wolf (2008) is available at https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html#9.
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Figure 9: Efficient frontiers combined with a scatter plot of the individual characteristic-based portfolios in the QFA

universe. The left panel depicts the frontier and scatter plot for QFs of the 25 Fama and French ME/BM sorted portfolios

in the period July 1926 to December 2017 (daily), whereas the right panel shows these values for the QFs of the 50 anomaly

portfolios in the period November 1973 to December 2017 (daily). All deciles are included.

There is a sideways parabola structure visible for both subsets of portfolios in the standard devia-

tions. The factors with a standard deviation that deviate most from 1 correspond to the deciles furthest

away from the median, that is τ = 0.10, 0.20, 0.80 and 0.90. This result is in accordance with the empiri-

cal findings of Chen et al. (2019). They do not focus on SR, but the results for the volatility are similar.

Namely, they find that the tail distribution of financial data is more stable than the median. It has to

be noted that Chen et al. (2019) find a much greater difference in volatility, but this is due to the fact

that they use more extreme quantiles, i.e. τ = 0.01 and 0.99. There exists one portfolio that lies exactly

on the efficient frontier and that is the one with the highest Sharpe Ratio as indicated in bold in Table

3. This implies that for both data sets the factor with the highest Sharpe Ratio is an efficient portfolio.

Since the optimal SDF coefficients can be seen as the weights of the MVE portfolio, the returns of

these portfolios can be constructed. Table 4 shows the Sharpe Ratios of the MVE portfolios per decile.

The main difference when compared to the individual Sharpe Ratios of Table 3 is that the Sharpe Ratios

of the MVE portfolios are always larger, sometimes even substantially, than the individual maximum

Sharpe Ratios. In this portfolio universe, it is again visible that the tails furthest away from the median

have the best relative performance in terms of Sharpe Ratio. The decile for which the maximum SR is

attained differs between the data subsets, but the SR of the first and ninth decile have no significant

difference for the Fama and French portfolios. This gives the indication that the relative outliers are

more useful for the construction of MVE portfolios.
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Table 4: Sharpe ratios of the full SDF MVE portfolios. The highest value is indicated in bold. Asterisks indicate a

significant difference with the maximum Sharpe Ratio as by the prewhitened HAC inference of Ledoit and Wolf (2008).

τ Fama and French Anomalies

0.10 0.616 0.769

0.20 0.505** 0.556**

0.30 0.445** 0.595**

0.40 0.418** 0.454**

0.50 0.047** 0.226**

0.60 0.047** 0.226**

0.70 0.388** 0.501**

0.80 0.428** 0.390**

0.90 0.651 0.736*

Note. * = p < 0.05,** = p < 0.01, where the p-value is based on prewhitened HAC inference of Ledoit and Wolf (2008)

Figure 10 shows the efficient frontiers combined with a scatter plot of the MVE portfolios. Even

though all the separate portfolios are mean-variant efficient within the deciles, only one of them lies

exactly on the efficient frontier for both subsets. This is in both cases the portfolio of the 9th decile.

Once again, the combined data set under-performs the individual factors, since the efficient frontiers in

Figure 10 lie below the frontiers in Figure 9.

All in all, the results of the statistical comparison share a similar conclusion with the contour maps

of Figures 5 and 6. The tail deciles can produce the most stable and best-performing output in terms of

OOS R2 values and portfolio properties for both data subsets. This is in line with the empirical results

on financial data of Chen et al. (2019).

Figure 10: Efficient frontiers combined with a scatter plot of the MVE portfolios in the QFA universe. The left panel depicts

the frontier and scatter plot for MVE portfolios based on the 25 Fama and French ME/BM sorted portfolios in the period

July 1926 to December 2017 (daily), whereas the right panel shows these values for the MVE portfolios based on the 50

anomaly portfolios in the period November 1973 to December 2017 (daily).

28



7 Discussion and Conclusion

The goal of this paper is to answer two main research questions. The first research question aims to

reproduce, verify, and evaluate the main results found by Kozak et al. (2020) as follows:

To what extent can a characteristic-sparse stochastic discount factor representation successfully

summarize the cross-sectional variation in stock returns?

The second research question extends the research of Kozak et al. (2020) by considering a novel type of

factor model introduced by Chen et al. (2019). This results in the following research question:

In what manner can quantile factor analysis be applied to characteristic-based factors to summarize the

cross-sectional variation in stock returns?

To answer both questions, two sets of data are considered. These consist of the daily data of the 25 ME-

BM-sorted Fama and French portfolios from July 1926 to December 2017, provided in the French (2021)

online data library, and daily data of 50 different stock characteristics that underlie certain anomalies

in the period November 1973 to December 2017. There are 11 different factor specifications examined:

raw characteristics, principal components, and nine decile specifications of quantile factors. For the

estimation of the stochastic discount factor, this paper uses the same principle as Kozak et al. (2020),

which consists of maximising the out-of-sample R2 values for a dual penalty specification based on a novel

prior that penalizes with an L1− and L2−norm penalty. This estimation is executed via a three-fold

cross-validation.

This research confirms the main results found by Kozak et al. (2020). The Fama and French

portfolios have a strong inherent factor structure. For the raw characteristics of this data set, there exists

a trade-off between sparsity and shrinkage for achieving a high out-of-sample R2, i.e. more shrinkage

is necessary when less sparsity is applied. For the principle components and the quantile factors of the

tails of the distribution, this trade-off is not present. With a relatively high amount of shrinkage, these

specifications can relatively, within the models themselves, yield a successful characteristic-sparse SDF

specification.

The anomaly portfolios have no inherently strong factor structure and hence yield a different

conclusion. The raw characteristics and all quantile factor deciles show that there is relatively, within the

model, no redundancy among the factors to obtain a high out-of-sample R2. The principal components,

on the other hand, can achieve a characteristic-sparse SDF specification within its own universe.

I have found that the relative performances within the model can result in a distortion of the

appropriate conclusion. For any number of retained variables in the model, there always exists a quantile

factor decile specification that can outperform the raw characteristics and principal components in terms

of out-of-sample R2. This implies that the results of Kozak et al. (2020) are not robust to changes in the

statistical construction of the factors.

Furthermore, the quantile factor analysis shows that the tails of the distribution provide more stable

results in terms volatility when the factors are treated as characteristic-based portfolios. Additionally, the

factors across different deciles show extremely high levels of canonical correlation, i.e. there exist linear
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combinations of the factors that are almost perfectly correlated with each other. This indicates only a

few of the factors are accountable for the difference in results across deciles. Next to that, the factors and

the full mean-variant efficient portfolios of the tail deciles provide a significantly higher Sharpe Ratio and

are sometimes part of the efficient frontier. In the out-of-sample analysis, the tail deciles also provide the

highest out-of-sample R2.

All in all, it can be stated that, for data sets with no inherently strong factor structure, a

characteristic-sparse SDF specification cannot adequately capture the variation in this SDF. In this

conclusion, there is no distinction between raw data, principle components or quantile factors. Quantile

factors may not be able to provide a characteristic-sparse specification successfully, but the results show

that there is a great explanatory power for the variation in the SDF in moments higher than the mean

and that relative outliers (tails) have an important role in this. This result is in accordance with the

original quantile factor model research of Chen et al. (2019). Lastly, it is also shown that quantile factors

create beneficial properties for the construction of characteristic-based portfolios.

The main limitation of this paper is that the results are not robust to changes in the statistical

construction of the factors. There may or may not exist certain factor specifications which can yield

even higher out-of-sample R2. These models could be able to prove that a successful characteristic-sparse

SDF specification can be created. The canonical correlation analysis has shown an inherently strong

linear correlation between different deciles. It can be expected that a model consisting of only, relatively,

uncorrelated factors can outperform all other models in terms of OOS R2. Thus, a suggestion for future

research is to try and find such a specification. One should approach this type of research with great care

because data-mining or lucky exceptions lie in wait.

Another limitation of this research to consider is the rather narrow scope of data. The US market,

on which the data is based, is a well-developed and highly researched area. It could very well be the case

that, for example, emerging market data can lead to different conclusions. It would be worthwhile to

conduct this research for different markets or financial products and to qualitatively and quantitatively

investigate any differences in results.

The last limitation of this research to discuss is whether the applied Bayesian structure and shrink-

age is a suitable method for quantile factor analysis. Since the factors are linear with respect to the

quantiles but non-linear with respect to the full set of data, it is unclear if all methods applied behave as

they are expected to in this framework. To investigate this goes beyond the scope of this research and is

a suggestion for further research.
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A Derivation of characteristic based SDF

The SDF in a linear span of excess returns, in the spirit of Hansen and Jagannathan (1991), can be found

by solving

Mt = 1− b′t−1(Rt − ERt), (A.1)

for the N × 1 vector of SDF loadings b, such that

Et−1[MtRt] = 0. (A.2)

The equation needs be transformed into a characteristic-based SDF, which implies

bt−1 = Zt−1b, (A.3)

where Zt−1 is an N ×H matrix of stock characteristics and b equals the H × 1 vector of time-invariant

loadings. Now, in the spirit of Kozak et al. (2020), combining the above-mentioned equations, the SDF

can be expressed in the linear span of the H stock characteristic returns (Ft = Z ′t−1Rt) as follows:

Mt = 1− b′(Ft − EFt). (A.4)

This paper focuses on the unconditional asset pricing equation constraint when solving the above equation.

That is,

E[MtFt] = 0, (A.5)
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B Derivation of Bayesian posterior

Firstly, to derive the posterior, as by Kozak et al. (2020), the posterior mean of µ is specified based on a

conjugate multivariate normal prior, where the covariance matrix is assumed known. That is, the prior

parameters equal

µ0 = 0 and Σ0 =
κ2

θ
Ση. (B.1)

Then, the posterior mean of µ can be constructed as

µ̂ = (Σ−1
0 + TΣ−1)−1(Σ−1

0 µ0 + TΣ−1µ) = (Σ + γΣ(η−2))−1Σµ̄, (B.2)

with γ =
θ

κ2T
. (B.3)

When the above-mentioned equation is combined with b̂ = Σ−1µ̂, the following result is obtained:

b̂ = (Σ + γΣ(η−2))−1µ̄. (B.4)
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C Descriptive statistics

Table C5: Descriptive statistics for the 25 Fama and French ME/BM sorted portfolios. The portfolio returns correspond

to a monthly buy-and-hold strategy and are rescaled to have a standard deviation equal to the in-sample standard deviation

of the excess returns on the market index. There are 24140 daily observations from July 1926 to December 2017. Note

that, the Mean and St. Dev. are annualized numbers for ease of interpretation.

(N=24140) Mean St. Dev. Skewness Kurtosis Min Max JB P-value JB

1 0,100 0,4865 6,820 247,948 -0,484 1,275 62024197,001 0,000

2 0,077 0,312 1,924 51,620 -0,269 0,458 2695010,392 0,000

3 0,100 0,236 0,824 34,937 -0,198 0,371 1230471,839 0,000

4 0,120 0,208 0,580 28,471 -0,142 0,245 816684,963 0,000

5 0,133 0,208 0,590 30,225 -0,187 0,289 920302,637 0,000

6 0,064 0,232 0,535 25,094 -0,155 0,282 634514,369 0,000

7 0,095 0,196 0,637 30,093 -0,133 0,310 912496,415 0,000

8 0,102 0,190 -0,074 15,670 -0,147 0,190 246996,740 0,000

9 0,111 0,193 0,361 28,299 -0,154 0,293 806014,185 0,000

10 0,130 0,232 0,582 23,375 -0,157 0,270 550926,137 0,000

11 0,072 0,201 -0,311 10,629 -0,136 0,138 114032,001 0,000

12 0,096 0,179 -0,384 13,588 -0,138 0,156 186298,864 0,000

13 0,100 0,181 0,188 29,452 -0,194 0,234 872640,352 0,000

14 0,109 0,188 0,296 22,146 -0,152 0,232 493655,478 0,000

15 0,120 0,239 0,506 24,147 -0,191 0,303 587498,283 0,000

16 0,078 0,187 -0,428 16,049 -0,187 0,141 259804,321 0,000

17 0,081 0,174 -0,018 23,307 -0,158 0,218 546367,495 0,000

18 0,093 0,182 0,295 29,197 -0,158 0,269 857809,322 0,000

19 0,105 0,197 0,394 20,302 -0,138 0,214 415214,340 0,000

20 0,112 0,260 0,478 22,420 -0,169 0,336 506519,375 0,000

21 0,072 0,179 -0,132 14,571 -0,184 0,136 213614,613 0,000

22 0,072 0,172 -0,142 20,049 -0,208 0,168 404400,672 0,000

23 0,080 0,181 0,380 22,939 -0,186 0,208 529862,942 0,000

24 0,074 0,214 0,463 24,791 -0,204 0,236 619028,941 0,000

25 0,110 0,280 0,533 19,000 -0,183 0,240 364246,228 0,000
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Table C6: Descriptive statistics for the 50 portfolios linear in one of the stated anomaly characteristics. The portfolio

returns correspond to a monthly buy-and-hold strategy and are rescaled to have a standard deviation equal to the in-sample

standard deviation of the excess returns on the market index. There are 11141 daily observations from November 1973 to

December 2017. Note that, the Mean and St. Dev. are annualized numbers for ease of interpretation.

(N = 11141) Mean St. Dev. Skewness Kurtosis Min. Max. JB P-Value JB

Size -0,023 0,167 1,328 23,822 -0,099 0,176 266706,650 0,000

Value (A) 0,062 0,167 -0,392 19,483 -0,156 0,101 176498,775 0,000

Gross profitability 0,036 0,167 -0,083 8,433 -0,100 0,098 33023,053 0,000

Value-profitability 0,132 0,165 -0,447 22,034 -0,149 0,119 225748,712 0,000

F-score 0,081 0,168 0,747 25,875 -0,131 0,145 311838,683 0,000

Debt issuance 0,018 0,157 -0,428 22,048 -0,142 0,112 225997,498 0,000

Share repurchases 0,069 0,157 0,681 24,410 -0,126 0,125 277455,166 0,000

Net issuance (A) -0,095 0,168 0,238 23,780 -0,113 0,154 262605,545 0,000

Accruals -0,056 0,159 0,051 4,002 -0,082 0,080 7441,185 0,000

Asset growth -0,086 0,164 0,451 14,497 -0,075 0,155 97940,047 0,000

Asset turnover 0,053 0,164 -0,197 9,876 -0,107 0,111 45348,874 0,000

Gross margins -0,012 0,163 0,437 9,437 -0,068 0,118 41696,338 0,000

Dividend/Price 0,036 0,161 0,159 8,383 -0,096 0,103 32667,218 0,000

Earnings/Price 0,083 0,166 0,085 16,496 -0,130 0,108 126331,587 0,000

Cash flow/Price 0,079 0,167 -0,419 16,177 -0,154 0,094 121806,873 0,000

Net operating assets 0,019 0,170 0,587 21,784 -0,120 0,137 220935,158 0,000

Investment/Assets -0,100 0,165 0,112 6,367 -0,069 0,105 18844,327 0,000

Investment/Capital -0,041 0,170 0,295 18,739 -0,099 0,147 163169,511 0,000

Investment growth -0,090 0,166 0,196 9,004 -0,074 0,115 37702,704 0,000

Sales growth -0,057 0,166 0,213 9,717 -0,071 0,128 43914,736 0,000

Leverage 0,049 0,169 -0,080 15,096 -0,133 0,102 105805,691 0,000

Return on assets (A) 0,024 0,166 0,109 6,955 -0,094 0,086 22476,600 0,000

Return on book equity (A) 0,047 0,167 0,505 12,115 -0,110 0,138 68605,131 0,000

Sales/Price 0,094 0,168 -0,435 25,939 -0,157 0,114 312676,336 0,000

Growth in LTNOA -0,025 0,125 -0,200 7,056 -0,100 0,062 23188,341 0,000

Momentum (6m) 0,021 0,166 -1,321 21,171 -0,133 0,101 211299,666 0,000

Industry momentum 0,056 0,169 -1,346 23,586 -0,157 0,097 261612,413 0,000

Value momentum 0,051 0,166 -1,357 26,697 -0,189 0,099 334262,249 0,000

Value-momentum-prof. 0,065 0,165 -1,046 21,225 -0,167 0,089 211161,666 0,000

Short interest 0,003 0,154 0,057 3,999 -0,074 0,085 7430,229 0,000

Momentum (12m) 0,090 0,166 -0,929 14,496 -0,122 0,082 99143,331 0,000

Momentum-reversals -0,057 0,166 0,077 20,758 -0,102 0,146 200043,621 0,000

Continued on the next page
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(N=11141) Mean St. Dev. Skewness Kurtosis Min Max JB P-value JB

Long-run reversals -0,054 0,164 0,501 16,142 -0,085 0,156 121426,076 0,000

Value (M) 0,055 0,168 0,905 21,227 -0,107 0,136 210692,739 0,000

Net issuance (M) -0,087 0,169 -0,183 27,595 -0,129 0,150 353554,575 0,000

Earnings surprises 0,120 0,156 -0,394 11,654 -0,093 0,097 63338,297 0,000

Return on equity 0,105 0,153 0,125 8,547 -0,077 0,081 33943,033 0,000

Return on market equity 0,122 0,158 0,321 23,555 -0,125 0,120 257750,785 0,000

Return on assets 0,071 0,154 -0,037 7,113 -0,074 0,081 23490,626 0,000

Short-term reversals -0,080 0,166 -1,016 20,977 -0,145 0,102 206194,234 0,000

Idiosyncratic volatility -0,031 0,163 -0,184 13,049 -0,105 0,120 79107,230 0,000

Beta arbitrage -0,007 0,160 0,269 8,358 -0,079 0,123 32565,561 0,000

Seasonality 0,115 0,163 0,120 9,013 -0,071 0,130 37740,220 0,000

Industry rel. reversals -0,178 0,164 -0,755 17,067 -0,127 0,091 136276,710 0,000

Industry rel. rev. (L.V.) -0,349 0,163 -0,207 6,646 -0,085 0,082 20580,165 0,000

Ind. mom-reversals 0,201 0,166 -0,572 11,490 -0,108 0,135 61889,897 0,000

Composite issuance -0,084 0,160 -0,054 7,553 -0,086 0,095 26483,982 0,000

Price -0,011 0,167 -1,180 20,162 -0,152 0,090 191289,291 0,000

Age 0,035 0,170 0,711 29,817 -0,135 0,150 413651,001 0,000

Share volume -0,012 0,160 -0,065 11,005 -0,098 0,113 56227,137 0,000
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D Contour maps without hard minimum

Figure D1: OOS R2 values for the combined L1- and L2-Norm specification for the 25 Fama and French ME/BM sorted

portfolios in the period July 1926 to December 2017 (daily) with no hard minimum imposed. The left panel depicts the OOS

cross-sectional R2 of the dual-penalty specification for the raw portfolio returns, whereas the right panel shows these values

for their corresponding PCs. The strength of shrinkage (L2-Norm) is quantified on the x-axis as the prior root expected

squared Sharpe Ratio (κ). The amount of sparsity (L1-Norm) is quantified on the y-axis as the number of retained variables

in the SDF. Observe that both axis are on the logarithmic scale.

Figure D2: OOS R2 values for the combined L1- and L2-Norm specification for the 50 anomaly portfolios in the period

November 1973 to December 2017 (daily) with no hard minimum imposed. The left panel depicts the OOS cross-sectional

R2 of the dual-penalty specification for the raw portfolio returns, whereas the right panel shows these values for their

corresponding PCs. The strength of shrinkage (L2-Norm) is quantified on the x-axis as the prior root expected squared

Sharpe Ratio (κ). The amount of sparsity (L1-Norm) is quantified on the y-axis as the number of retained variables in the

SDF. Observe that both axis are on the logarithmic scale.
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E Contour maps of replication with a standardised scale

Figure E1: OOS R2 values for the combined L1- and L2-Norm specification for the 25 Fama and French ME/BM sorted

portfolios in the period July 1926 to December 2017 (daily). The left panel depicts the OOS cross-sectional R2 of the

dual-penalty specification for the raw portfolio returns, whereas the right panel shows these values for their corresponding

PCs. The strength of shrinkage (L2-Norm) is quantified on the x-axis as the prior root expected squared Sharpe Ratio

(κ). The amount of sparsity (L1-Norm) is quantified on the y-axis as the number of retained variables in the SDF. Note

that both axis are on the logarithmic scale, there is a hard minimum of −0.1 imposed on the OOS R2 and the legend is

standardised to be equal across figures.

Figure E2: OOS R2 values for the combined L1- and L2-Norm specification for the 50 anomaly portfolios in the period

November 1973 to December 2017 (daily). The left panel depicts the OOS cross-sectional R2 of the dual-penalty specification

for the raw portfolio returns, whereas the right panel shows these values for their corresponding PCs. The strength of

shrinkage (L2-Norm) is quantified on the x-axis as the prior root expected squared Sharpe Ratio (κ). The amount of

sparsity (L1-Norm) is quantified on the y-axis as the number of retained variables in the SDF. Note that both axis are on

the logarithmic scale, there is a hard minimum of −0.1 imposed on the OOS R2 and the legend is standardised to be equal

across figures.
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