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Abstract

I investigate incorporating the Analytical Nonlinear Shrinkage (ANS) estimator in the Stochastic

Discount Factor (SDF) framework in a high dimensional setting and find no evidence that using

the ANS estimator to estimate covariance matrices leads to improved performance. To arrive at

this conclusion, interaction portfolios are created based on financial ratios of all stocks in the three

largest US stock exchanges. The covariance matrix of the portfolios is estimated using ANS, which is

consequently used in the SDF framework to summarize the joint, cross-sectional explanatory power

of stock return predictors. I find no substantial difference between using the ANS estimator or the

sample covariance estimator in the SDF based on Sharpe Ratios and out-of-sample R2 values. When

splitting up the entire sample into shorter sample periods, there is strong evidence that different

characteristics best explain the SDF in different periods. Furthermore, different periods require

different degrees of shrinkage. The SDF performs best for smaller periods in which specific industries

have abnormal returns.

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second assessor,

Erasmus School of Economics or Erasmus University Rotterdam.



Contents

1 Introduction 2

2 Literature 4

3 Methodology 6

3.1 Theoretical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Estimation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Extension: covariance matrix uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Incorporation of the ANS estimator in the SDF framework . . . . . . . . . . . . . . . . . 11

4 Data 11

4.1 Data replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Data extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Results 14

5.1 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1.1 Fama-French portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1.2 Anomaly portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.1 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.2 Interactions with covariance matrix uncertainty . . . . . . . . . . . . . . . . . . . . 22

6 Conclusion and discussion 27

A Proofs and derivations 32

A.1 SDF coefficients with population moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.2 Derivation of the Kernel density and Hilbert transform . . . . . . . . . . . . . . . . . . . . 32

B Pastor specification 34

C 50 anomalies variable description overview 35

D WRDS variable description overview 37

E Additional tables 39

1



1 Introduction

Since the introduction of the Capital Asset Pricing Model (CAPM) by Sharpe (1964) and Lintner (1965),

hundreds of alternative stock characteristics have been published in asset pricing literature, claiming to

add value in better capturing stock returns (J. Cochrane, 2011). One way to derive the price of an asset

is by discounting its future cash flows using stochastic discount factors (SDF). With many proposed stock

characteristics claiming to perform well as a factor in the SDF model, a common approach is to introduce

sparsity in characteristic based factor models, that is, including a small number of factors. These models

tackle the problem of high dimensionality due to too many stock characteristics.

When the sparse factor representation assumption is relaxed, and potentially hundreds of factors

are considered, conventional methods to estimate factor loadings become infeasible due to their high di-

mensionality (Feng et al., 2020). Machine learning techniques like lasso-style estimation, ridge regression,

and a combination thereof, an elastic net, have been proposed to overcome this problem. These techniques

are frequently used in risk premia estimation and applied directly on cross-sectional regressions.

In contrast to applying these techniques directly on the cross-sectional regressions, Kozak et al.

(2020) recently investigated the estimation of risk prices and applied these machine learning techniques

on the SDF. In their 2020 paper, Kozak et al. investigate the construction of an SDF that consists of a

sparse amount of factors and shrinks the factors with low explanatory power. Moreover, in contrast to

the majority of literature, they pose no prior restrictions on the sparsity of the SDF model and hence

consider the possibility that it includes many factors.

This paper elaborates upon the work of Kozak et al. (2020) and mainly focuses on a data set

constructed of interactions. First, I replicate the research of Kozak et al. (2020), after which I extend

their research by shifting the focus to the incorporation of covariance matrix estimation into the SDF

framework, in contrast to their assumption of known covariance matrices. Specifically for the interaction

data set, which has a high dimension relative to the sample size, sample covariance matrices are well known

to provide poor estimation results (Ledoit and Wolf, 2020c). This leads to the motivation of this research,

namely that in this high dimensional setting sample, more extensive covariance matrix estimators are

likely to provide more accurate results and hence lead to additional, more accurate insights. A second

considered area of improvement is the estimation of the SDF in three different, non-overlapping periods.

Instead of estimating one set of parameters for the entire sample size, parameters are re-estimated for

the three samples of equal length. The interest in doing this is two folded. Firstly, it is of interest to

evaluate whether different periods require different levels of shrinkage. A second interesting aspect is

to assess if the characteristics that best explain the cross sectional returns differ across periods. The

Internet Appendix of Kozak et al. (2019) already gives an indication of a changing impact of certain

characteristics when comparing pre-2005 annualized returns to post-2005 annualized returns for different

characteristics. The aforementioned areas of improvement lead to the following research question that is

answered throughout this paper:

”To what extent does the allowance of covariance matrix uncertainty influence the performance of a

characteristic based stochastic discount factor in a high-dimensional framework?”
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This research is relevant in two different areas. Firstly, it is of academic relevance as a novel type

of SDF model is used for estimating cross sectional stock returns. As this is a relatively new method and

results of Kozak et al. (2020) are promising, further researching the performance of these SDF models

bears importance. Conducting more in-depth research on the effect of covariance matrix uncertainty

robustifies the outcomes of Kozak et al. (2020) and places their method in a more general framework.

Secondly, this research is of practical relevance as it gives portfolio managers a new, potentially better

technique to construct SDF models and consequently estimate and forecast the cross section of equity

returns. It is worthwhile to allow for covariance uncertainty and shift the focus to constructing models

that estimate parameters better. In turn, this can provide higher Sharpe Ratios, which leads to better

investment decisions when considering the mean-variance portfolios of Markowitz (1952).

This paper considers the Analytical Nonlinear Shrinkage (ANS) estimator of Ledoit and Wolf

(2020a) for covariance matrix estimation. Nonlinear shrinkage estimators estimate N free parameters for

a portfolio of size N , whereas linear shrinkage estimators estimate only one free parameter. This paper

opts for a nonlinear shrinkage estimator as opposed to a linear shrinkage estimator due to its higher

flexibility and its dominant performance over linear shrinkage estimators (Ledoit and Wolf, 2017). This

state-of-the-art nonlinear shrinkage estimator is the first with an analytical as opposed to a numerical

form and is the first that can handle covariance matrix estimation well for dimensions above 1000. In

fact, it can handle dimensions up to 10000. This directly leads to the justification of using the ANS

estimator: it is the first of its kind to be able to handle the dimensions of the interaction data set well.

Furthermore, the ANS estimator is asymptotically optimal and performs well when the dimension of the

covariance matrix corresponds in size to the sample size.

In this research, three different data sets are considered. The first data set contains the daily returns

of 25 portfolios based on the intersections of five market equity portfolios and five book-to-market ratio

portfolios of Fama and French. Secondly, a data set based on anomaly stock characteristics as provided

by Kozak (2020) is considered. These two data sets are used for replication purposes in this paper. The

last data set is a self-constructed data set based on the interactions of 70 financial ratios retrieved from

Wharton Research Data Services (WRDS). This data set is used in the extension and split up into three

different subsamples with a sample size of 15 years each, i.e. 3780 days. With the covariance matrix of

interactions having a dimension of approximately 2500, the sample size and covariance matrix dimensions

correspond in size.

As an initial test, the Fama-French 25 portfolios and the 50 anomaly portfolios are considered. For

the raw characteristics of the Fama-French 25 portfolios, two to three characteristics already describe the

SDF well. In the PC transformed case, one factor already explains the SDF almost optimally. For the

raw characteristics of the 50 anomaly portfolios, sparse models perform poorly out of sample. In contrast,

the PC transformed 50 anomaly characteristics do allow for a relatively sparse SDF representation.

Next, an interaction data set is considered, which shows good OOS behaviour. For the interactions

set as given, substantial shrinkage is needed to allow for good OOS performance, and sparse models

do not perform well. In the case of a PC transformed interactions set, high out-of-sample performance

can be attained with a sparse model and little shrinkage, and hence a sparse representation of the SDF
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exists. When the sample is split up into three periods, the dual-shrinkage estimator performs most

along the lines of expectations in the 1989-2004 period. A likely explanation for this is that this period

contains abnormal returns due to industry-specific conditions periods. Incorporating the ANS estimator

logically leads to different coefficients, but OOS performance is influenced little, also in the three smaller

subsamples.

All in all, I find no evidence that implementing the Analytical Nonlinear Shrinkage (ANS) esti-

mator of Ledoit and Wolf (2020a) into a high-dimensional SDF framework leads to better performance.

Furthermore, the SDF performs best for periods in which specific industries have abnormal returns.

The remainder of this paper is organised as follows. In Section 2, the existing literature relevant

to the scope of this paper is outlined. Thereafter, Section 3 elaborates upon the used methods and

techniques, after which the data used in this research is presented in Section 4. Next, results are presented

in Section 5. Lastly, concluding remarks are made in Section 6.

2 Literature

The introduction of the CAPM and the test of its significance by Fama and MacBeth (1973) is generally

seen as a starting point of asset pricing literature. Since then, extensive literature has been written on

this subject, and many models to estimate asset prices in different situations have been proposed.

One of these models is the SDF model. An SDF is a random variable that discounts future payoffs

of portfolios or assets and consequently takes the expected value. This estimates the present value of

a portfolio or asset by considering its future cash flows. As already touched upon in Section 1, many

proposed SDF representations try to tackle the problem of many stock characteristics by introducing

sparsity; models with a small number of factors based on stock characteristics that try to explain the

present value of an asset as well as possible. Famous examples are the three-factor model proposed by

Fama and French (1996) and the five-factor model from the same authors in 2015. The two aforementioned

factor models of Fama and French are examples of observed or characteristic based factor models, which

use a set of observed parameters as input. Factor models are widely used in various fields and are also

used in stock return prediction frameworks.

Discussion on the validity of sparse SDF is still ongoing. Lin and Zhang (2013) try to motivate

the use of a characteristic sparse representation of the SDF. Their q-theory model provides a strategy

where one forecasts returns based on expected profitability and future investments. Hou et al. (2015) for

example pursue this strategy and find better performance than the Fama French three-factor model in

most cases. Although the q-theory model provides good results, both expected profitability and future

investments are unobservable, as mentioned by Kozak et al. (2020). However, many other characteristics

can likely capture these variables and hence can also estimate expected returns. Therefore, Kozak et al.

(2020) reason many factors are likely required to approximate the SDF.

More and more stock characteristics that claim to predict stock returns well are being proposed

in the literature. Many of these are significant when considered individually but become redundant

when compared to already existing factors (Hou et al., 2015, Harvey et al., 2016 and Feng et al., 2020).

This ever-increasing literature results in the multidimensional challenge, as described by J. Cochrane
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(2011). This challenge arises when one considers constructing a factor model based on a large number

of potential cross-section return predictors: using a conventional cross-sectional regression with a large

number of predictors results in spurious overfitting of SDF coefficients.

An interesting approach to tackling the high dimensionality problem is using a Bayesian approach

that incorporates a prior specification in an asset pricing model. A prior specification is the probability

distribution that represents beliefs about a certain variable before evidence or data is taken into account.

These prior beliefs are used to construct posterior beliefs, that is, after taking into account evidence.

Harvey et al. (2008) show that a Bayesian approach works well for one-period ahead asset allocation.

Pastor and Stambaugh (2000) and Pastor (2000) use sample evidence to update the prior and shrink all

SDF coefficients towards zero with an equal degree of shrinkage. Kozak et al. (2020) impose a prior similar

to the ones in Pastor and Stambaugh (2000), but impose relatively more shrinkage on low-eigenvalue

principal components (PCs) compared to high-eigenvalue PCs.

Another relatively new development in asset pricing literature that regards tackling high dimen-

sionality is the use of machine learning techniques. Kelly et al. (2019) provide a dimensionality reduction

method, Instrumented Principal Component Analysis, for modelling the cross section of returns. This

model, which describes the SDF with only a few PCs, explains the cross section significantly better com-

pared to existing factor models. Kozak et al. (2018), who also use a principal component (PC) based

SDF, come to a similar conclusion. Gu et al. (2020) show that machine learning techniques also work

well empirically, and large economic gains can be made using machine learning forecasts.

One of the machine learning techniques frequently used to tackle high dimensionality is the lasso-

style estimation as introduced by Tibshirani (1996). This method minimizes the residual sum of squares

and imposes a constraint on the absolute value of coefficients. This constraint is constructed such that

some coefficients are set to zero, which therefore automatically provides sparse solutions. For example,

Rapach et al. (2013) apply lasso to select a sparse amount of predictors from a high number of potential

predictors to forecast international stock markets. Freyberger and Weber (2020), Feng et al. (2020)

and DeMiguel et al. (2020) use a lasso-style estimation to select characteristics-based factors and include

penalties to ensure sparsity. Their findings back the views of amongst others Harvey et al. (2016), namely

that relatively many cross-sectional stock return predictors are redundant. A drawback of lasso is its poor

performance when regressors are correlated. Other machine learning techniques like ridge regression and

an elastic net do perform well in this case (Zou and Hastie, 2005). Originally introduced by Hoerl and

Kennard (1970), ridge regression shrinks coefficients with varying degrees to zero. Zou and Hastie (2005)

propose the use of an elastic net, which combines the penalties constructed in ridge regression and lasso

estimation. The elastic net outperforms lasso, while it still has a sparse representation.

As discussed, there is economic support to allow relaxing the assumption of a sparse SDF. Kozak

et al. (2020) recently proposed an SDF representation that potentially allows for many factors to be

included in an SDF. Their research is at the intersection of Bayesian approaches and machine learning.

They construct a Bayesian prior for the factor means, the biggest source of estimation uncertainty.

Consequently, they calculate the corresponding posterior SDF coefficients. Their estimator is constructed

using two different penalties, one that controls the amount of shrinkage imposed on the coefficients and
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one that controls the model’s sparsity. This dual penalty specification is in a similar fashion to the elastic

net of Zou and Hastie (2005). By combining prior beliefs with shrinkage and sparsity penalties, their

estimator performs well out of sample while allowing for many SDF coefficients to be potentially included.

The estimator of Kozak et al. (2020) is equivalent to an estimator that minimizes the distance of Hansen

and Jagannathan (1991) and penalizes the amount of SDF coefficients via the sum of squared coefficients.

Next to estimation uncertainty in the mean, which is the focus of Kozak et al. (2020), another part

of finance literature focuses on uncertainty in the covariance, the second biggest contributor to estimation

uncertainty. When the dimensionality of analysed assets increases compared to the sample size, sample

covariance matrices are known to have poor performance (Engle et al., 2019). One of the many proposed

methods to enhance the performance of large covariance matrix estimators in this high dimensional

framework is called shrinkage methods. Ledoit and Wolf are at the forefront of academic research in

this field. Ledoit and Wolf (2020c) summarize their most important work in this field over the last two

decades. A widely applied method in literature is the linear shrinkage estimator to estimate the covariance

matrix by Ledoit and Wolf (2004). Building upon their own research, Ledoit and Wolf (2012, 2015) turn

to the more complicated but better performing nonlinear shrinkage estimators, providing robust results.

In contrast to the linear case where the transformation of sample eigenvalues is optimised in a two-

dimensional space, nonlinear estimators put no constraint on the size of this dimension and consider

nonlinear transformations of the sample eigenvalues to estimate covariance matrices. Another nonlinear

shrinkage method with adequate results is the Nonparametric Eigenvalue-Regularized Covariance Matrix

Estimator (NERCOME) proposed by Lam (2016). This estimator builds upon the work of Abadir et al.

(2014) and splits the data into two independent sets; one to estimate the eigenvectors and the other to

estimate the corresponding eigenvalues. This is repeated for a large number of sample splits and then

averaged. The main advantage of the NERCOME is that it is much neater than other estimators. Both

the NL-shrinkage estimator of Ledoit and Wolf and the NERCOME are numerical estimators.

In a recent paper, Ledoit and Wolf (2020a) proposed the already mentioned ANS estimator. This

is the first analytical nonlinear shrinkage estimator for high-dimension covariance matrices. It has the

speed of the linear shrinkage estimator of Ledoit and Wolf (2004) due to its analytical form, performs

as well as the NL-shrinkage estimator of Ledoit and Wolf, and has the simplicity of the NERCOME

estimator. Furthermore, it estimates covariance matrices of dimension 10000 and beyond, in contrast to

other nonlinear shrinkage estimators working for dimensions up to 1000.

3 Methodology

This section presents the methods and techniques used in this paper. First, Section 3.1 discusses the

theoretical background of the SDF. Thereafter, Section 3.2 elaborates upon the SDF estimation. Lastly,

the methodology of the ANS estimator and its incorporation into the SDF framework are discussed in

Section 3.3 and Section 3.4, respectively.
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3.1 Theoretical model

Following J. H. Cochrane (2001), one can express the basic asset pricing formula as

Pt−1 = Et−1[Mtxt], (1)

where Pt−1 denotes an N × 1 vector of the prices of N assets at time t− 1 and xt is defined as the payoff

of an N × 1 asset vector at future time t. The SDF Mt is defined as a random variable that discounts

the future payoffs of the N portfolios. This formula holds for both individual assets and for portfolios, as

proven in Back (2017). Using that returns Rt equal xt

Pt−1
and assuming all prices are positive, Equation

(1) simplifies to

Et−1[MtRt] = 1, (2)

as in accordance with Back (2017). Consequently defining excess returns for the for N×1 vector of stocks

R∗t as Rt −Rm,t, the conditional pricing equation can be defined as

Et−1[MtR
∗
t ] = 0, (3)

where R∗t is defined as the excess returns for N stocks. Throughout the remainder of this paper, excess

returns are used. Following Kozak et al. (2020), an SDF is created in the linear span of excess returns in

the spirit of Hansen and Jagannathan (1991), which is defined as

Mt = 1− b′t−1(R∗t − ER∗t ), (4)

where bt−1 is defined as the N × 1 vector of time-varying SDF loadings that satisfies the conditional

pricing equation in Equation (3). As in accordance with Kozak et al. (2020), it is assumed that factors

are observable and based on N × H characteristic matrix Zt, which contains elements zis,t, defined as

the value corresponding to characteristics i for stock s at time t. This leads to the definition of an SDF

linear in the span of factor returns as

Ft = Z ′t−1R
∗
t . (5)

The interpretation of factors Ft is two folded here. The factors represent the assets of which the stock

returns are tried to be predicted as well as the potential factors that can be included in the SDF.

Furthermore, slope coefficients bt of the SDF are assumed to depend on characteristics Zt, such that for

a characteristic based asset pricing model, the SDF loadings are defined as

bt = Ztb, (6)

where b is an H × 1 time invariant coefficient vector and H is the amount of characteristic based factor

returns. Combining Equation (4) and Equation (6) and deriving from Equation (5) that R∗t is equal to

(Z ′t−1Zt−1)−1Z ′t−1Ft, leads to the following representation of the SDF:

Mt = 1− b′(Ft − EFt). (7)

When the first and second population moments are known, the SDF of Equation (7) can be solved for

SDF coefficients b defined as

b = Σ−1E(Ft), (8)
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where Σ ≡ E[(Ft−EFt)(Ft−EFt)′]. A complete derivation of Equation (8) is included in Appendix A.1.

However, population moments are unknown, and sample moments give poor, overfitted estimates of b

since H is not extremely small relative to T . Therefore, alternative estimation methods are needed, as

stated by Kozak et al. (2020). 1

3.2 Estimation methodology

To avoid the problem of overfitted estimates when calculating b̂ using sample moments, Kozak et al.

(2020) suggest introducing economic prior beliefs on the expected returns of the factors. A prior is

partially shaped by an investor’s beliefs on the accuracy of a pricing model. Next to the prior beliefs,

one can form posterior beliefs that are based upon the actual data. These posterior beliefs eventually

form the posterior SDF coefficients. Choosing informative priors helps reduce the uncertainty about the

posterior SDF coefficients. To ensure a closed form of the posterior distribution, that is, to ensure the

prior and the posterior follow the same distribution, I consider the multivariate normal family of priors.

This is defined identically to Kozak et al. (2020) as

µ ∼ N
(

0,
κ2

τ
Ση
)
, (9)

where κ is a constant controlling the scale of the prior µ, τ is the trace of Σ and η a constant controlling

the shape of the prior.

In the spirit of Kozak et al. (2020), the posterior mean of µ is calculated using the standard formula

for a conjugate multivariate normal prior with known covariance matrix.2 This boils down to the formula

µ̂ = (Σ−1
0 + TΣ−1)−1(Σ−1

0 µ0 + TΣ−1µ̄)−1. Here, the prior parameters equal µ0 = 0 and Σ0 = k2

τ Ση.

Plugging in these prior parameters gives µ̂ = (I + γΣ1−η)−1µ̄. For the prior specification of Kozak et al.

(2020), η = 2, and using b̂ = Σ−1µ̂, this simplifies to

b̂ = (Σ + γI)−1µ̄, (10)

where γ = τ
κ2T and I is the identity matrix of dimension N . In accordance with Kozak et al. (2020), the

posterior variance is given by

var(b) =
1

T
(Σ + γI)−1. (11)

This posterior specification with η = 2 imposes stronger shrinkage on lower-variance coefficients and

less shrinkage on high-variance coefficients. In contrast, the more commonly used η = 1 by Pastor and

Stambaugh (2000) applies constant shrinkage across all coefficients.

The Bayesian estimator of Equation (10) is identical to a lasso-style based estimator, which is

frequently used in machine learning. It is also equivalent to imposing shrinkage L2 via penalty γb′b and

minimizing the HJ distance of Hansen and Jagannathan (1991) of the model. This leads to the equation

written as

b̂ = arg min
b

(µ̄− Σb)′Σ−1(µ̄− Σb) + γb′b. (12)

1The estimation methods in Section 3.2 make use of the code published by Kozak (2020). The read me file attached to

this paper contains a more in-depth explanation of the entire code and the utilization thereof.
2A prior that gives closed forms is called a conjugate prior
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Next to imposing shrinkage on the model to account for high dimensionality, one also wants to

consider the possibility that some factors do not contribute in explaining the SDF. Therefore, the focus is

now shifted to a model where also sparsity can be imposed with an additional L1 penalty via γ1

∑H
i=1 |bi|.

When combining both L1 and L2 penalties, this results in the following estimator:

b̂ = arg min
b

(µ̄− Σb)′Σ−1(µ̄− Σb) + γ2b
′b+ γ1

H∑
i=1

|bi|, (13)

where b denotes the vector of SDF coefficients, b̂ the estimator of b, Σ the covariance matrix and γi the

Li penalty specification.3 Note that one can attain the sole L1 or L2 penalty by setting respectively γ2 or

γ1 to 0. For the prior specification η = 2 and penalty parameter γ = τ
κ2T , the expected squared Sharpe

Ratio can be defined as

E[µΣ−1µ]1/2 = κ, (14)

which implies that γ indirectly represents the expected squared Sharpe Ratio via an inverse relation.

When the expected maximum Sharpe Ratio is high, the corresponding k is also high, which implies γ is

low and hence little shrinkage is imposed on the model and vice versa. γ1 and γ2 are chosen such that

they maximize the k-fold cross-validated out of sample R2, which is given by

R2
OOS =

(µ̄2 − Σ̄2b̂)
′(µ̄2 − Σ̄2b̂)

µ̄′2µ̄2
, (15)

where b̄ is computed by applying Equation (10) on the K − 1 training sets. The subscript 2 indicates an

OOS sample moment, in accordance with Kozak et al. (2020).

3.3 Extension: covariance matrix uncertainty

This paper builds upon Kozak et al. (2020) by including covariance matrix uncertainty in their framework.

As mentioned in their Internet Appendix B, Kozak et al. (2020) already conducted some initial research on

using the linear shrinkage methods in Ledoit and Wolf (2004) to shrink the sample covariance. This paper

considers an alternative, newer method to estimate the covariance matrix. In particular, the Analytical

Nonlinear Shrinkage model of Ledoit and Wolf (2020a) is considered. 4 This method provides a static

estimator of the covariance matrix in a similar fashion to Ledoit and Wolf (2004) but has the potential

to capture the true variance much better. The ANS covariance matrix estimator is as fast as the linear

shrinkage method of Ledoit and Wolf (2004), has almost identical performance to the QUEST function

and has a clear interpretation in line with the NERCOME. Therefore, it combines the optimal properties

of these three estimators.

This method performs well for dimensions up to 10000, whereas other nonlinear shrinkage esti-

mators only work well for dimensions up to 1000. This consequently leads to the justification of using

this method. It has the potential to perform well in this framework, where a data set consisting of 2553

interactions is considered. The ANS estimator of Ledoit and Wolf (2020a) uses a kernel distribution and

3This estimator is solved using the LARS-EN algorithm of Zou and Hastie (2005). See read me for more information
4This paper makes use of the code for the ANS method published by Ledoit and Wolf (2020b). The read me file attached

to this paper contains a more in-depth explanation of this code and the utilization thereof.

9



its corresponding Hilbert transform. A Hilbert transform of a distribution k(x) can be interpreted as its

convolution with dt
πt , also known as the Cauchy kernel (Ledoit and Wolf, 2020a).

To arrive at an analytical solution to the non-linear shrinkage estimator, the kernel distribution

and Hilbert transform must satisfy two requirements. Let k(x) be a continuous, symmetric kernel that

has a non-negative probability density function and has bounded support [−R, R]. Furthermore, k(x) is

defined to have a zero mean and variance one. The kernel k(x) and Hilbert transform Hk are assumed

to satisfy the following requirements:

1. The kernel’s Hilbert transform Hk exists and is continuous on R.

2. Both the kernel and its Hilbert transform are functions whose total variation is bounded, i.e. finite.

The sample covariance matrix of observed factors F = (f1, . . . , fT ) with sample size T is computed

as Σ̄ = F ′F/T , which makes use the fact that the observations in F are all demeaned. Along the lines

of Ledoit and Wolf (2020a), the covariance matrix is factorised into its eigenvalues and its corresponding

eigenvectors as a first step. This eigendecomposition of the sample covariance matrix is computed as

Σ̄ =: UΛU ′, (16)

where Λ is a diagonal matrix with as elements the eigenvalues (λ1, . . . λn) sorted in nondecreasing order

and U is an orthogonal matrix with columns [u1, . . . un] representing the n eigenvectors corresponding to

the eigenvalues of Σ̄.

Before defining the kernel estimator, the bandwidth used in the kernel estimator is defined. The

bandwidth is a free parameter, that is, one which is not pre-defined by the model, that strongly influences

the estimator. The bandwidth used is variable and proportional to the sample eigenvalue, that is

hj = λjh ∀j = 1, . . . , T, (17)

where hj is the locally adaptive bandwidth, λj the jth sample eigenvalue and h is defined as the global

bandwidth which takes on the form h = T z. The global bandwidth h is chosen in correspondence with

Jing et al. (2010) and Ledoit and Wolf (2020a). For the kernel estimator to nonlinearly shrink the sample

eigenvalues, the following two conditions must be satisfied:

lim
T→∞

Th5/2 =∞ and lim
T→∞

h = 0. (18)

To satisfy the first condition, the absolute value of the exponent z in h = T z must be strictly smaller

than 2
5 . The second condition is satisfied when h is a negative exponent of T . From all possible values

for the exponent, − 2
5 < z < 0, z = − 1

3 is chosen as it is the first simple fraction in this bounded region

above − 2
5 . This leads to the global bandwidth being defined as:

h = T−1/3. (19)

The kernel estimator is now defined as follows. Following the reasoning of Ledoit and Wolf (2020a),

the kernel of Epanechnikov (1967) is chosen for the density estimation. This Epanechnikov kernel satisfies
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the two kernel requirements mentioned earlier. From this, the eigenvalue density is estimated with the

Epanechnikov kernel as

f̂ (λi) =
1

n

n∑
j=1

3

4
√

5hj

[
1− 1

5

(
λi − λj
hj

)2
]+

, (20)

where f̂ (λi) is the estimated eigenvalue density of the eigenvalue λi, hj is the locally adaptive bandwidth

and [x]+ is the positive part of a real number, that is [x]+ = max(x, 0). Consequently, the kernel

distribution of its Hilbert transform is derived as by Ledoit and Wolf (2020a) is as follows:

Hf̂ (λi) =
1

n

n∑
j=1

{
−3 (λi − λj)

10πh2
j

+
3

4
√

5πhj

[
1− 1

5

(
λi − λj
hj

)2
]
× log

∣∣∣∣∣
√

5hj − λi + λj√
5hj + λi − λj

∣∣∣∣∣
}
. (21)

A more in-depth derivation of the Kernel estimator for the eigenvalue density and its correspond-

ing Hilbert transform are provided in Appendix A.2. The eigenvalue density and Hilbert transform

computed using Equation (20) and (21), respectively, are now used to estimate the shrunk eigenvalues.

The eigenvalues are shrunk according to the oracle asymptotically optimal nonlinear shrinkage formula

as per Ledoit and Wolf (2020a):

d̂i =
λi[

π nT λif̂ (λi)
]2

+
[
1− n

T − π
n
T λiHf̂ (λi)

]2 ∀i = 1, . . . , n. (22)

The diagonal of matrix D̂T is filled with the elements d̂T,i for i = 1, . . . , n computed in Equation (22). As

a last step, the covariance matrix estimator is recomposed in accordance with Equation (16) as follows:

Σ̂ = UΛU ′ =

n∑
i=1

d̂i · uiu′i, (23)

where d̂i is the ith shrunk eigenvalue, and ui represents the ith eigenvector corresponding to the ith

eigenvalue of Σ̄ for i = 1, . . . , n.

3.4 Incorporation of the ANS estimator in the SDF framework

The focus is now shifted back to the paper of Kozak et al. (2020). In a similar fashion to Kozak’s

Internet Appendix (Kozak et al., 2019), the estimated covariance matrix from Section 3.3 is treated

in the same way as the known covariance matrix in the estimation of b̂. This means the estimated

covariance matrix from Equation (23) is used as a plugin estimator for the dual penalty case in Equation

(13). The analytical nonlinear shrinkage estimator performs well when the sample size has a dimension

corresponding to the dimension of the covariance matrix. With the covariance matrix of interactions

having a dimension of approximately 2500, three subsamples are chosen with a sample size of 15 years

each, which is approximately 3780 days. Here, it is assumed a year contains 252 trading days, as is

common in asset pricing literature. The dimensions of the sample size and the covariance matrix coincide

in that case, which justifies using the ANS estimator.

4 Data

This section elaborates upon the data used in this paper. Three different data sets are considered, two of

which are identical to the ones used in Kozak et al. (2020) to allow for a clear replication and comparison.

The third data set is used for the extension and deviates from Kozak et al. (2020).
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4.1 Data replication

The first data set contains the daily returns of 25 portfolios based on the intersections of five market equity

portfolios and five book-to-market ratio portfolios of Fama and French, as provided by French (2020).

The portfolios include all stocks from the three major U.S. exchanges, NASDAQ, NYSE, and AMEX, for

which the required data is available. The data coincides with Kozak et al. (2020) for replication purposes

and ranges from 07/1926 to 12/2017.

Secondly, a data set based on anomaly stock characteristics as provided by Kozak (2020) is con-

sidered. In the replication part of this paper, a daily data set of 50 portfolios is used, which ranges from

02/07/1963 until 29/12/2017. These portfolios are based on U.S. firms in the CRSP universe, which

includes stocks from the NASDAQ, NYSE, and AMEX. Due to some missing values, the sample used

ranges from 11/01/1973 until 12/29/2017 in accordance with Kozak et al. (2020). This data set is useful

for the scope of this paper as its 50 characteristics are known to be related to average returns, as described

in existing literature. Table C1 in Appendix C contains a list of the 50 anomaly stock characteristics and

their mean annualized returns.

4.2 Data extension

The last data set is a constructed data set based on the interactions of the 70 WRDS financial ratios. This

set is based on monthly financial ratios on a firm level for U.S. firms in the CRSP universe, which includes

stocks from the NASDAQ, NYSE, and AMEX. The final set consists of 69 monthly updated, managed

portfolios linked to the daily returns of corresponding stocks. The ratios and their mean annualized

returns are provided in Table D1 Appendix D.

The data set used deviates in two ways from the WRDS data set considered by Kozak et al. (2020).

The first difference lies within the ratios used. Whereas Kozak et al. (2020) consider 70 financial ratios on

an industry level, this paper considers the same 70 financial ratios on a firm level. This allows for a more

precise representation of specific firms, as characteristics are now tailored to a specific company instead

of aggregated over an entire industry. Secondly, the data used ranges from 31/01/1970 to 31/12/2020

instead of ranging from 09/1964 until 12/2017. The starting date is later since the minimum allowed

date for the 70 financial ratios is 31/01/1970 in the WRDS database. Using data up until 2020 allows

for more recent observations to be included.

The WRDS 70 financial ratios data set needs to be altered before it is used in the SDF model. First,

stocks with non-existing or non-logical market capitalizations are removed from the investment universe.

Secondly, a bound on minimum market capitalization is set in accordance with Kozak et al. (2020), by

excluding all stocks with a market capitalization smaller than 0.01% of the total market capitalization at

each point in time. For the stocks left in the universe, the firm-specific financial ratios are linked to the

corresponding stock data. The date of the ratios assigned to a stock precedes the stock return date. 5

The raw data characteristics are transformed to ensure the focus of this research stays on the cross-

sectional aspect of return prediction, to provide results that are insensitive to outliers and to keep leverage

5For example, the daily return of a stock on 10 May 1975 is linked to the financial ratios of that stock of April 1975
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fixed across all portfolios (Kozak et al., 2020). Along the lines of Kozak et al. (2020) and Freyberger and

Weber (2020), the characteristics are first ranked as follows:

rcis,t =
rank(cis,t)

nt + 1
, (24)

where cis,t is defined as characteristic i for stock s at time t, and nt is the number of stocks at time t for

which characteristic i is available. Furthermore, the rank is calculated as rank(mini=1,...,Nt(c
i
s,t)) = 1 and

rank(maxi=1,...,Nt(c
i
s,t)) = Nt. Two characteristics cis,t and cjs,t with identical values are both assigned

their average rank. Consequently, the procedure of Kozak et al. (2020) is followed to normalize the rank-

transformed characteristics rcis,t. That is, first the mean rank is deducted from all ranks after which they

are divided by the sum of absolute differences with respect to the mean:

zis,t =
rcis,t − r̄cis,t∑nt

s=1 |rcis,t − r̄cis,t|
, (25)

where the mean rank is defined as r̄cit = 1
nt

∑nt

s=1 rc
i
s,t. As a last step, the matrix of transformed

characteristics zis,t is multiplied with returns to get one factor for each characteristic at time t, that is

Ft = Z ′t−1Rt. (26)

In accordance with Kozak et al. (2020), the WRDS data set is extended by considering the linear

first-order interactions of characteristics. That is, for two characteristics i and j of a stock s at time t, also

the normalized product of both characteristics is considered. This leads to an exponential increase in the

number of characteristics to potentially explain the SDF. When considering first-order interactions and

the second power of characteristics next to the characteristics themselves, the total number of candidate

factors equals
∑n
i=1 i+ n, where

∑n
i=1 i is the number of first-order interactions and second powers, and

n is the number of original characteristics.
∑n
i=1 i can be rewritten to 1

2n(n + 1), leading to the total

candidate factors being equal to 1
2n

2 + 2 1
2n.

There are three reasons to use this interaction-based data set. Firstly, it is statistically more

challenging to use this data set due to its high dimension. Secondly, the linearity assumption of the

factor portfolio weights of the characteristics can be relaxed, which is an assumption without a solid

foundation (Kozak et al., 2020). Thirdly, it justifies using the ANS estimator for covariance matrix

estimation, as this is specifically designed for high dimensional covariance matrices. Using the sample

covariance matrix is known to work relatively well for covariance matrices with a low dimension relative

to the sample size. However, in the case of using interactions, the sample covariance matrix is more likely

to perform relatively poor.

The interactions are constructed in line with Kozak et al. (2020) as follows. For two rank char-

acteristics zis,t and zjs,t that are transformed and normalized according to Equation (??) and (25), the

interaction characteristic zijs,t is defined as the product of both individual characteristics that is normalized

in accordance with Equation (25). That is:

zijs,t =

(
zis,tz

j
s,t − 1

nt

∑nt

s=1 z
i
s,tz

j
s,t

)
∑nt

s=1 |zis,tz
j
s,t − 1

nt

∑nt

s=1 z
i
s,tz

j
s,t|

. (27)
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Again, as a last step, the matrix Zt−1 is multiplied with returns to get one factor for each characteristic

at each point in time, as in Equation (26).

Figure 1: De-marketed monthly return series of the WRDS data set for the period 31/01/1970 to 31/12/2020

I now turn to the justification of the three different periods for the WRDS data set. As already

mentioned in Section 1, three non-overlapping periods of equal length are chosen to evaluate whether

different periods require different levels of shrinkage and whether different characteristics best explain

the cross sectional return in different periods. In Figure 1, the de-marketed return series of the WRDS

data set is shown. Based on this figure and on macroeconomic conditions, the following three different

periods are chosen:

1. 31/01/1970 to 31/01/1986: Figure 1 shows a relatively volatile return series for this period. Fur-

thermore, this period has no significant financial crises for U.S. based firms.

2. 01/01/1990 to 31/12/2004: Figure 1 shows a period with large growth at first and a drop in growth

thereafter. This coincides with the boom and bust of the dot-com bubble.

3. 01/01/2005 to 31/12/2020: Figure 1 shows a relatively low-volatile period. Two volatile periods in

the graph correspond to two big crises, the great financial crisis of 2007 and the COVID-19 crisis.

These three periods are chosen as they have different macroeconomic conditions and their return series

behave differently. Furthermore, no large economic events overlap the samples and are present in more

periods. For these reasons, these periods are appropriate for the evaluation of the model in different

periods and allow for a clear comparison.

5 Results

This section presents the research results. Firstly, the replication of the models considered in Kozak et al.

(2020) is shown in Section 5.1. Secondly, the extension is elaborated upon in Section 5.2.

5.1 Replication

5.1.1 Fama-French portfolio

As an initial test, the Fama and French 25 portfolios, as described in Section 4, are considered. This data

set is well-documented in literature, making it easy to compare the results of this research to existing

literature and verify whether the proposed methods perform as desired.

Figure 2 contains results of the estimator based on both the L1 sparsity penalty and the L2

shrinkage penalty. The left-hand side of the figure contains the results of the SDF based directly on the
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factor returns. The right-hand side considers the SDF in the space of PCs of the factor returns. Along

the x-axis of a contour plot, the root of the expected squared Sharpe Ratio of the prior is indicated. As

stated in Equation (14), this equals κ for η = 2. Due to the inverse relationship between κ and the L2

shrinkage penalty γ2, a higher γ2 and hence stronger shrinkage is obtained when moving to the left along

the x-axis. The y-axis indicates the amount of sparsity imposed by the estimator, where moving up allows

for more nonzero coefficients and hence represents less sparsity. This is regulated through the strength of

the L1 penalty. A point on the contour map represents the OOS R2, calculated using Equation (15) for

given penalties γ1 and γ2. A higher OOS R2 value is represented by a more yellow colour, as indicated

by the colour bar on the right of the contour map.

Figure 2a shows OOS results for an SDF based on the raw Fama-French 25 portfolios. The diagonal

area from the mid top to bottom right shows combinations of penalties for which the estimator provides

the highest OOS R2 values. A sparse model including two to three factors performs well, which coincides

with Lewellen et al. (2010) who find that the 25 portfolios are approximately linear combinations of the

Small-Minus-Big (SMB) and High-Minus-Low (HML) factors of the Fama-French three factor model.

Because of this linearity and the fact that the Fama-French three factor model performs well OOS, two

to three out of 25 portfolios should span the SDF and perform well. The empirical findings in Figure 2a

back up this theory. Furthermore, from the diagonal slope of the high OOS R2, it can be concluded that

shrinkage and sparsity are interchangeable to ensure good OOS performance. That is, when less sparsity

is imposed but at the same time stronger shrinkage is enforced or vice versa, OOS R2 values stay optimal.

For non-shrunk, non-sparse models, shown in the top right, OOS performance is extremely poor. This

is due to the overfitting of noise in the in-sample (IS) data when almost all factors are included and the

absence of shrinkage to offset overfitting. Models with both strong L1 and L2 shrinkage perform poorly.

Figure 2b shows OOS results for an SDF based on the PCs of the Fama-French 25 portfolios. A

straight area from mid top to mid bottom gives maximal OOS R2 values. Even one PC already gives

almost optimal OOS results (OOS R2 of 0.4427 for a model based on one PC compared to the absolute

maximum of 0.4462 for a model based on 24 PCs). Since the area performing best is almost straight,

models with a varying number of variables all require a similar level of shrinkage. This is due to the fact

that the SDF coefficients of low-variance PCs are already set close to zero by the estimator b̂. Therefore,

the impact of setting them to exactly zero by imposing additional sparsity is minimal (Kozak et al.,

2020). As in Figure 2a, non-shrunk, non-sparse models in the top right of the graph give poor OOS

performance. Models with both strong L1 and L2 shrinkage also perform poorly. Comparing the results

from Figure 2 to the results from Kozak et al. (2020), the output is identical, which in turn also leads to

similar conclusions.
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(a) Raw Fama-French 25 portfolios (b) Principal Components of Fama-French 25 portfolios

Figure 2: OOS R2 for models with different levels of L1 and L2 shrinkage for the Fama-French 25 portfolios. The x-

axis shows the square root of the expected SR2. Due to the inverse relationship between κ and L2, the x-axis indirectly

represents levels of L2 penalties, where more shrinkage is obtained when moving to the left along the x-axis. The y-axis

indicates the number of nonzero coefficients in the model, which is regulated through penalty L1. More nonzero coefficients

imply the model is less sparse and the L1 penalty is less strong. The colour bar on the right indicates the value of the OOS

R2, where more yellow colours indicate higher values. A minimum bound for OOS R2 in the graph is set at -0.1. Some

values can be even lower, but since one can interpret all values lower than -0.1 as poor performing, and to allow for a clear

comparison, a minimum bound is set at -0.1. The data used ranges from July 1926 to December 2017 and is daily.

Figure 3 zooms in on more specific cuts from Figure 2. Figure 3a corresponds with a cut through

the top of Figure 2a. That is, no sparsity is included in the model, and the maximum R2 for different

levels of shrinkage is reported. In accordance with the results from Figure 2, one can see that the R2

attains its maximum of 0.44 for k ≈ 0.25. From the graph, one can clearly see the distorted view one

gets when solely considering the IS R2 when evaluating a model. For IS performance, R2 values are

much higher than for OOS R2, and less shrinkage coincides with better performance, while this is not

true when the OOS R2 of a test set is computed. The red dotted lines indicate the ±1 standard error

(s.e.) upper and lower bounds for the OOS R2. Note that the lower and upper bounds at first glance

seem to intersect at κ ≈ 0.49. Although the values come very close together around κ = 0.49, they do

not actually intersect, which makes sense mathematically.

Figure 3b contains a plot of the maximum OOS R2 for different numbers of variables included in

the model. This is obtained by considering different levels of L2 shrinkage for an SDF with a certain

number of variables and choosing the maximal corresponding OOS R2. The characteristics based model

represented by the solid red line shows good OOS R2 performance from two to three variables in the

SDF onward, which corresponds with the results in Figure 2a. A PC based model already performs

close to optimal with one variable in the SDF. The black cross indicates the performance of the Fama-

French three factor model, which gives an OOS R2 of 0.42. This seems to be slightly higher than the
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performance noted by Kozak et al. (2020), although the difference seems to be negligible.6 In line with

Kozak et al. (2020), both the Characteristic and the PC based model outperform the Fama-French three

factor benchmark model. A PC based model outperforms the Fama-French three factor model even when

one variable is included. Comparing the other results from Figure 3 to Kozak et al. (2020), identical

model performance is found, which in turn also leads to similar conclusions.

(a) IS/OOS R2 for different levels of L2 penalties (b) OOS R2 for different levels of sparsity

Figure 3: Maximal cross sectional R2 values for different levels of L2 shrinkage and L1 sparsity for the 25 Fama-French

portfolios. Panel (a) shows the IS R2 and cross-validated OOS R2 for different root expected SR2 values with the blue

dashed line and solid red line, respectively. It poses no restrictions on sparsity. Due to the inverse relationship between κ

and L2, the x-axis indirectly represents the strength of the L2 penalty, where more shrinkage is obtained when moving to

the left along the x-axis. The red dotted lines indicate the 1 s.e. lower and upper bounds of the cross-validated OOS cross

sectional R2. Panel (b) shifts the focus from L2 shrinkage in panel (a) towards L1 shrinkage. That is, for all number of

variables in the SDF denoted on the x-axis, the maximum OOS R2 is projected by considering all levels of L2 shrinkage on

the y-axis. The solid red line shows the OOS R2 values of a characteristic based model with corresponding −1 s.e. lower

bound denoted by the dotted red line. The solid and dotted blue lines show these values for a PC based model. The black

cross indicates the OOS performance of the Fama-French three factor model with the SMB and HML factor next to the

market factor. The data used ranges from July 1926 to December 2017 and is daily.

5.1.2 Anomaly portfolio

The focus is now shifted to the second data set considered, the 50 anomaly portfolios. Table 1 shows

the coefficients and t-statistics of the most significant SDF coefficients. The left side of the table shows

the coefficients and t-statistics of the 50 anomaly factors. The right-hand side contains coefficients and

t-statistics of their PCs. The results of Table 1 are identical to the results from Kozak et al. (2020).

The characteristics with the highest significance for the raw results are found in literature to be the most

robust in explaining the SDF (Kozak et al., 2020). This implies that the SDF reveals the best-explaining

characteristics naturally. The PC results show that low-index PCs, and hence high-variance PCs, have the

highest absolute values. The first four PCs are significantly different from zero based on a 5% significance

level.

6Kozak et al. (2020) do not mention the actual value in their paper, and this is also not directly retrievable from their

code. From Figure 2b in Kozak et al. (2020), their found value seems to be around 0.415, although it is difficult to pinpoint

the exact value based on the graph.
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Table 1: Largest factors in the SDF for the 50 anomaly portfolios. The left hand side of the table indicates the biggest

coefficients and their corresponding t-statistics for estimation based on the raw portfolios. The right hand side of the table

shows the biggest coefficients and their corresponding t-statistics of the portfolios that are first transformed into their PCs.

Raw 50 anomaly portfolios PCs of 50 anomaly portfolios

b t-statistic b t-statistic

Industry rel. rev. (L.V.) -0.88 3.53 PC 4 1.01 4.25

Ind. mom-reversals 0.48 1.94 PC 1 -0.54 3.08

Ind. rel. reversals -0.43 1.70 PC 2 -0.56 2.65

Seasonality 0.32 1.29 PC 9 -0.63 2.51

Earnings surprises 0.32 1.29 PC 15 0.32 1.27

Value-profitability 0.30 1.18 PC 17 -0.30 1.18

Return on market equity 0.30 1.18 PC 6 -0.30 1.18

Investments/Assets -0.24 0.95 PC 11 -0.19 0.74

Return on equity 0.24 0.95 PC 13 -0.17 0.65

Composite issuance -0.24 0.95 PC 23 0.15 0.56

Momentum (12 months) 0.23 0.91 PC 7 0.14 0.56

(a) Raw 50 anomaly portfolios (b) Principal Components of 50 anomaly portfolios

Figure 4: OOS R2 for models with different levels of L1 and L2 penalties for the 50 anomaly portfolios. The x-axis shows

the square root of the expected SR2. Due to the inverse relationship between κ and L2, the x-axis indirectly represents

levels of L2 penalties, where more shrinkage is obtained when moving to the left along the x-axis. The y-axis indicates the

number of nonzero coefficients in the model, which is regulated through penalty L1. More nonzero coefficients imply the

model is less sparse and the L1 penalty is less strong. The colour bar on the right indicates the value of the OOS R2, where

more yellow colours indicate higher values. A minimum bound for OOS R2 in the graph is set at -0.1. Some values can be

even lower, but since one can interpret all values lower than -0.1 as poor performing, and to allow for a clear comparison,

a minimum bound is set at -0.1. The data used ranges from November 1973 to December 2017 and is daily.

Figure 4 contains results of the estimator based on both penalties for the 50 anomaly portfolios constructed

by Kozak et al. (2020). The left-hand side of the figure contains the results of the SDF based directly on the

factor returns. The right-hand side considers the SDF in the space of PCs of the factor returns. As for Figure
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2, the x-axis indicates the root of the expected squared Sharpe Ratio of the prior, where stronger shrinkage is

obtained when moving to the left. The y-axis indicates the amount of sparsity imposed by the estimator, where

moving up represents less sparsity. A point on the contour plot represents the OOS R2, calculated using Equation

(15) for given penalties γ1 and γ2. A higher OOS R2 value is represented by a more yellow colour, as indicated

by the colour bar on the right.

Figure 4a shows OOS results for an SDF based on the raw 50 anomaly portfolios. A relatively small area

at the mid top contains OOS R2 values that are high. Models that impose no shrinkage perform extremely poor

for all levels of sparsity. Non-sparse models with κ ≈ 0.33 perform best, indicated by the yellow area. When

sparsity is imposed for this level of shrinkage, performance decreases drastically. Compared to the 25 Fama-French

portfolios in Figure 2a, similar results are found on the poor performance of completely unrestricted models. These

non-shrunk, non-sparse models in the top right of the graph have poor OOS performance. This is again due to the

overfitting of noise in the IS data when almost all factors are included and the absence of shrinkage to offset this

overfitting. Furthermore, very restricted models perform equally poor as well. A clear difference is the absence

of the interchangeability of shrinkage and sparsity to ensure good OOS performance in the 50 anomaly portfolio

case. Another difference is that while Fama-French portfolios allowed for significant shrinkage and still gave good

results, this is not the case for the anomaly portfolios.

Figure 4b shows OOS results for an SDF based on the PCs of the 50 anomaly portfolios. Similar to the PC

based model for the 25 Fama-French portfolios in Figure 2b, a straight area from mid top to mid bottom gives

maximal OOS R2 values. A model containing around eight PCs already gives reasonable OOS results, while this

is not the case for the raw 50 anomaly portfolios. Since the yellow area is almost straight, models with a different

number of variables all require a similar level of shrinkage. The same reasoning holds here as for the Fama-French

portfolios, namely that the SDF coefficients of low-variance PCs are already set close to zero by the estimator b̂.

Similar to the Fama-French portfolios, non-shrunk models show extremely poor performance. However, shrinkage

must be stronger compared to the Fama-French portfolios before good OOS R2 results are obtained. Note that

the colour bar in Figure 4 has a different scale than in Figure 2, where maximal OOS R2 values are approximately

twice as high. The results of Figure 4 are identical to Kozak et al. (2020), leading to similar conclusions drawn.

Figure 5 contains specific cuts from Figure 4. Figure 5a corresponds with a cut through the top of Figure

4a. That is, no sparsity is included in the model, and the R2 for different levels of shrinkage is reported. The

blue dashed line indicates the IS R2. The OOS R2 is indicated by the red line, and the red dotted line shows

its corresponding lower and upper bounds. The maximum OOS R2 is found around k ≈ 0.28. In contrast to

Kozak et al. (2020), the level shrinkage using η = 1 by Pastor and Stambaugh (2000), is not included in this

graph. Through a rather arbitrary trial and error procedure, the same output is eventually found. Using posterior

specification b̂ = (γΣ)−1µ̄ gives values that have similarities to the values from Kozak et al. (2020). However, this

is a different posterior specification than the theoretically correct one using η = 1, as shown in Equation (B.1).

When mirroring the output and manipulating the x-axis, eventually the same output as by Kozak et al. (2020)

is obtained. However, the choices made here seem rather arbitrary and the results are obtained through a trial

and error procedure. Therefore, no other conclusion can be drawn than that this part of Kozak et al. (2020) is

not well replicable. For the sake of completeness, the graph and a more detailed explanation of its arbitrarity are

included in Appendix B.

Figure 5b contains a plot of the maximum OOS R2 for different numbers of variables included in the model.

This is obtained by considering different levels of L2 shrinkage for an SDF with a certain number of variables and

choosing the maximal corresponding OOS R2. The graph shows that for many included variables, a characteristics
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based model (solid red) and PC based model (solid blue) attain a similar OOS R2. For sparse models, the PC

model already performs well, while the characteristics model gives poor results. Compared to Kozak et al. (2020),

similar results are found. However, the way they are displayed differs slightly. Whereas Kozak et al. (2020) pose a

minimum bound of the y-axis at zero and thereby exclude all values smaller than 0, this graph shows all attained

values. A characteristic based model with few variables in the SDF shows negative values for the -1 s.e. bound.

This means it is well within the margin of error that OOS R2 values of a sparse characteristic based model can be

negative, which indicates these models potentially perform very poor. It is important to keep this in mind when

considering this model, and it further indicates the relatively better performance of a PC based model.

(a) IS/OOS R2 for different levels of L2 penalties (b) OOS R2 for different levels of sparsity

Figure 5: Maximal cross sectional R2 values for different levels of L2 shrinkage and L1 sparsity for the 50 anomaly portfolios.

Panel (a) shows the IS R2 and cross-validated OOS R2 for different root expected SR2 values with the blue dashed line

and solid red line, respectively. It poses no restrictions on sparsity. Due to the inverse relationship between κ and L2,

the x-axis indirectly represents levels of L2 penalties, where more shrinkage is obtained when moving to the left along the

x-axis. The red dotted lines indicate the 1 s.e. lower and upper bounds of the cross-validated OOS R2. Panel (b) shifts

the focus from L2 shrinkage in panel (a) towards L1 shrinkage. That is, for all number of variables in the SDF denoted on

the x-axis, the maximum OOS R2 is projected by considering all levels of L2 shrinkage on the y-axis. The solid red line

shows the OOS R2 values of a characteristic based model with corresponding −1 s.e. lower bound denoted by the dotted

red line. The solid and dotted blue lines show these values for a PC based model. The data used ranges from November

1973 to December 2017 and is daily.

5.2 Extension

The focus is now shifted to the last data set, the interactions of the WRDS portfolios. This data set is evaluated in

two different scenarios. The first case considers the interaction portfolios without covariance matrix uncertainty,

which is elaborated upon in Section 5.2.1. The second scenario considers the interactions portfolios with covariance

matrix estimation using the ANS estimator. These results are presented in Section 5.2.2.

5.2.1 Interactions

Table 2 shows the coefficients and t-statistics of the most significant SDF coefficients for the raw and PC-

transformed interactions data set in the left part and right part of the graph, respectively. The raw interaction

coefficients show that out of the 69 most significant factors, 64 are the characteristics themselves, and only five

are the factors based on the interactions. This provides some foundation that the assumption of linearity in

characteristics made in Section 5.1 is not a completely arbitrary one. The best performing PCs are different
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from the interaction data set Kozak et al. (2020). The PC results show that overall low-index PCs, and hence

high-variance PCs, have the highest t-statistics. Compared to Kozak et al. (2020), a difference exists in coefficient

b, although t-statistics are similar. These differences may be due to the different sample period used, due to the

absence of lagged returns in the data set of this paper or due to the use of financial ratios on a firm level instead

of on an industry level.

Table 2: Largest factors in the SDF for the model with interactions based on the 70 WRDS financial ratios. The left

hand side of the table indicates the biggest coefficients and their corresponding t-statistics for estimation based on the raw

interaction portfolios. The right hand side of the table shows the biggest coefficients and their corresponding t-statistics of

the portfolios that are first transformed into their PCs.

Raw interactions PCs of interactions

b t-statistic b t-statistic

Price/Sales -1.48 2.72 PC 2 -4.30 10.40

Cash flow margin -1.46 2.66 PC 3 3.00 5.88

Profit before depreciation / current liabilities -1.31 2.39 PC 1 1.43 4.12

Net profit margin -1.27 2.31 PC 6 -0.98 1.83

Enterprise value multiple -1.22 2.21 PC 4 0.93 1.77

Book/Market 1.19 2.18 PC 14 -0.84 1.52

Pre-tax profit margin -1.17 2.12 PC 19 0.81 1.46

Operating profit margin before depreciation -1.15 2.09 PC 8 0.78 1.44

Labor expenses/ Sales -1.13 2.06 PC 17 -0.64 1.16

Operating cash flow/Current liabilities -1.11 2.03 PC 24 0.60 1.09

Figure 6 contains results of the estimator based on both penalties for the interactions of the WRDS data

set. As for Figure 2, the x-axis indicates the root of the expected squared Sharpe Ratio of the prior, where

stronger shrinkage is obtained when moving to the left. The y-axis indicates the amount of sparsity imposed by

the estimator, where moving up represents less sparsity. A point on the contour plot represents the OOS R2,

calculated using Equation (15) for given penalties γ1 and γ2. A higher OOS R2 value is represented by a more

yellow colour, as indicated by the colour bar on the right.

Figure 6a shows OOS results for an SDF based on the raw interactions of the WRDS data set. A small

area from the mid top to the middle and consequently from the middle to the right bottom contains OOS R2

values that are high. Non-sparse models with strong shrinkage of κ ≈ 0.29 perform best. A model with around

90 variables gives high OOS R2 values when the corresponding L2 penalty is chosen optimally, but more sparse

models perform poorly OOS. For all levels of sparsity, substantial shrinkage is needed to allow for good OOS

performance. This is to offset the overfitting of noise when estimating parameters using in-sample data.

Figure 6b shows OOS results for an SDF based on the PCs of interactions of the WRDS data set. An

L-shaped area from the mid top to the bottom right contains maximum OOS R2 values. It is notable that the

bottom right of the figure, that is sparse models with little shrinkage, performs best OOS. A possible explanation

for this is that this data set is based on a variety of financial ratios, and not only on financial ratios that are

known to explain the SDF well. This means the overfitting of noise in the in-sample estimation, which is present

in the anomaly portfolios, is not as strong in this case. Therefore, less shrinkage may be needed to offset the

overvalued significance of factors. The findings from Figure 6b are in line with those for the WRDS portfolios
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of Kozak et al. (2020), although not for the interactions of the WRDS data set. Non-sparse, non-shrunk models

have poor performance, as is in line with Kozak et al. (2020). Models with both strong shrinkage and sparsity

also perform relatively poor.

(a) Raw interactions of 70 WRDS portfolios (b) Principal Components of interactions of 70 WRDS portfolios

Figure 6: OOS R2 for models with different levels of L1 and L2 shrinkage for the interactions of the WRDS data set. The

x-axis shows the square root of the expected SR2. Due to the inverse relationship between κ and L2, the x-axis indirectly

represents levels of L2 penalties, where more shrinkage is obtained when moving to the left along the x-axis. The y-axis

indicates the number of nonzero coefficients in the model, which is regulated through penalty L1. More nonzero coefficients

imply the model is less sparse and the L1 penalty is less strong. The colour bar on the right indicates the value of the OOS

R2, where more yellow colours indicate higher values. A minimum bound for OOS R2 in the graph is set at -0.1. Some

values can be even lower, but since one can interpret all values lower than -0.1 as poor performing, and to allow for a clear

comparison, a minimum bound is set at -0.1. The data used ranges from February 1970 to December 2020 and is daily.

All in all, it can be concluded that this interaction data set behaves well, but different with respect to

the interaction portfolio created by Kozak et al. (2020). There are several possible explanations for this. These

differences may, for example, be due to a different sample period used, due to using financial ratios on a firm level

instead of on an industry level. Another explanation is the absence of interactions of lagged returns and third

powers in this data set of this paper. Those have been incorporated in an initial setup but led to uninterpretable

results such that they have been left out. The differences between these interactions constructed for this paper

and Kozak et al. (2020) could for example be to due undocumented data constructing steps that they performed.

5.2.2 Interactions with covariance matrix uncertainty

Table 3 contains the coefficients and t-statistics of the most significant SDF coefficients for the interactions data

set with ANS estimator to estimate the covariance matrix. The raw and PC-transformed interactions data set

in the left part and right part of the graph, respectively. Compared to Table 2, all coefficients and t-statistics

are higher. Higher coefficients make sense since b̂ is now estimated using a shrunk covariance matrix. Due to the

inverse relation between b̂ and Σ̂ this leads to higher b̂ values. The higher t-statistics indicate the characteristics

have a higher significance in the ANS estimator case. For the raw characteristics, eight out of ten variables are

the same in Table 2 and 3. For the PC transformed variables, all PCs are the same. This indicates that the model

with an ANS estimator picks the same characteristics as best explaining variables as the model without an ANS

estimator.
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Table 3: Largest factors in the SDF for the model with interactions and the Analytical Nonlinear Shrinkage Estimator based

on the 70 WRDS financial ratios. The left hand side of the table indicates the biggest coefficients and their corresponding

t-statistics for estimation based on the raw interaction portfolios. The right hand side of the table shows the biggest

coefficients and their corresponding t-statistics of the portfolios that are first transformed into their PCs.

Raw interactions PCs of interactions

b t-statistic b t-statistic

Cash flow margin -2.54 4.26 PC 2 -8.34 13.97

Profit before depreciation/Current liabilities -2.43 4.07 PC 1 4.23 7.09

Dividend payout ratio -2.39 4.00 PC 3 4.11 6.88

Pre-tax profit margin -2.28 3.82 PC 6 -1.22 2.05

Operating profit margin before depreciation -2.16 3.61 PC 4 1.20 2.01

Pre-tax return on total earning assets -2.15 3.61 PC 14 -0.98 1.64

Operating profit margin after depreciation -2.13 3.58 PC 8 0.94 1.58

Operating cash flow/Current liabilities -2.08 3.49 PC 19 0.94 1.58

Price/Sales 2.04 3.42 PC 17 -0.75 1.25

Enterprise value multiple -1.97 3.31 PC 24 0.70 1.17

Figure 7 contains results of the estimator for three different samples based on both penalties for the

interactions of the WRDS data set. Furthermore, the ANS estimator is used to estimate the covariance matrix.

Note that only the figures for the ANS estimator are included as the ones without the ANS estimator are almost

identical and therefore provide no additional insights. As for Figure 2, the x-axis indicates the root of the

expected squared Sharpe Ratio of the prior, where stronger shrinkage is obtained when moving to the left. The

y-axis indicates the amount of sparsity imposed by the estimator, where moving up represents less sparsity. A

point on the contour plot represents the OOS R2, calculated using Equation (15) for given penalties γ1 and γ2. A

higher OOS R2 value is represented by a more yellow colour, as indicated by the colour bar. For all subsamples,

R2 values are much higher than for the full sample. This makes sense as the model is more specifically tailored

to a given period. Figures 7a and 7d show OOS results for an SDF based on the interactions of the WRDS

data set from 1970 until 1986. Figure 7a contains the raw interactions and shows an area from the mid top

to the middle containing high OOS R2 values. Non-sparse models with κ = 2.61 perform best. Models with

a sparse amount of factors perform poorly, as is in line with expectations for the raw interaction set. Models

with both strong shrinkage and sparsity have poor performance. Figure 7d contains the PCs of interactions and

shows an area from the mid top to the mid bottom containing high OOS R2 values. Compared to Figure 7a,

the PC based model performs better with more sparsity imposed, as is expected. Strongly shrunk models again

perform poorly. As opposed to the findings in Kozak et al. (2020), non-shrunk, non-sparse models still perform

relatively well in this sample period. A possible explanation for this is that the overfitting of noise in the in-sample

estimation is not as strong for this sample size. Therefore, less shrinkage may be needed to offset the overvalued

significance of factors. Another possible explanation is that there is a relatively large amount of missing values

in this early sample. Especially when considering interactions, the number of ill-behaved characteristics also

increases exponentially. All in all, the SDF does not perform as expected for the sample of 1970-1986 in the

non-shrunk case. However, when comparing the raw and PC based model, performance is as expected.
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(a) Raw interactions 1970-1986 (b) Raw interactions 1989-2004 (c) Raw interactions 2005-2020

(d) PCs 1970-1986 (e) PCs 1989-2004 (f) PCs 2005-2020

Figure 7: OOS R2 for models with different levels of L1 and L2 shrinkage for the interactions of the WRDS data set

where the covariance matrix is estimated using the ANS Estimator. Three different, non-overlapping periods are used

to evaluate the models. The left two figures, Figure 7a and 7d, contain the models evaluated based on the sample from

1970 until 1986. Figures 7b and 7e are based on the sample from 1989 until 2004. Figures 7c and 7f are based on the

2005-2020 sample. The top figures, Figure 7a, 7b and 7c, are based on the raw characteristics of the interactions. Figure

7d, 7e and 7f are the interactions first transformed into their PCs. The x-axis shows the square root of the expected SR2.

Due to the inverse relationship between κ and L2, the x-axis indirectly represents levels of L2 penalties, where more

shrinkage is obtained when moving to the left along the x-axis. The y-axis indicates the number of nonzero coefficients

in the model, which is regulated through penalty L1. More nonzero coefficients imply the model is less sparse and the

L1 penalty is less strong. The colour bar on the right indicates the value of the OOS R2, where more yellow colours

indicate higher values. Note that the scale for some graphs differs from each other. A minimum bound for OOS R2 in

the graph is set at -0.1. Some values can be even lower, but since one can interpret all values lower than -0.1 as poor

performing, and to allow for a clear comparison, a minimum bound is set at -0.1.

Figures 7b and 7e show OOS results for an SDF based on the interactions of the WRDS data set from 1989 until

2004. Figure 7b contains the raw interactions and shows an area from the mid top to the middle and from the

middle to the right bottom containing high OOS R2 values. This model performs similar to the model in Figure

6a. That is, models with more than 100 coefficients must all be shrunk in a similar fashion and perform well.

From the diagonal slope of the high OOS R2 for models with eight to 50 characteristics, it can be concluded that

shrinkage and sparsity are interchangeable to ensure good OOS performance. Models with strong shrinkage have

poor performance. Figure 7e contains the PCs of interactions and shows an area from the mid top to mid bottom

where OOS R2 are maximized. This model performs very well when sparsity is imposed, as one PC already

explains the SDF almost optimally. For all number of variables included, a similar shrinkage is needed
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corresponding to κ ≈ 0.9. Non-shrunk and non-sparse models perform poorly OOS for both models from 1989-

2004. The models for this sub-sample perform very similar to the interaction results from Kozak et al. (2020) and

also perform along the lines of expectations. Furthermore, it behaves in accordance with theoretical expectations.7

Therefore, it can be concluded that the model performs very well for this sample period.

Figures 7c and 7f show OOS results for an SDF based on the interactions of the WRDS data set from

2005 until 2020. Figure 7c contains the raw interactions and shows an area from the mid top to the middle, and

from the middle to the right bottom containing high OOS R2 values. This model performs in a similar fashion

to the model in the sample 1989-2004 regarding sparsity and shrinkage combinations that lead to a maximum

OOS R2. For L1 and L2 penalty combinations diverging from the optimal ones, values differ. That is, models

with no L1 and L2 penalties perform relatively well. Figure 7f contains the PCs of interactions and shows an

L-shaped area from the mid top to the right bottom where OOS R2 are high. Especially non-shrunk models with

a small number of variables explain the SDF well. For more than ten variables included, similar shrinkage is

needed. Strong shrinkage gives poor performance for both models from 2005-2020. All in all, the models for this

subsample perform better than the subsample from 1970-1986 but still not completely as expected.

Overall, the OOS performance of the three subsamples is very different. For the first period, non-restricted

models already perform relatively well, but shrinkage does improve the OOS performance. In contrast, the second

period requires substantial shrinkage before good OOS performance. The last period has similarities to the first

period, as non-restricted models perform reasonably. However, the performance of non-shrunk models is better

in the first period. For the 1989-2004 period, the dual-shrinkage estimator of Kozak et al. (2020) performs most

along the lines of expectations. A possible explanation for this performance is the economic conditions during

this period. Internet companies went through a period of massive growth and were highly valued. In 2000, these

same companies collapsed. With one group of quickly growing companies, a clear characteristic-based estimation

can be made for cross sectional returns in this period. This would mean that this period is best described by

any characteristic based SDF, not just the one by Kozak et al. (2020). With the great financial crisis and the

COVID-19 crisis, the more recent period might be more difficult to describe, as almost all companies suffered

from this in 2007 and 2020 to a strong degree and not just companies with specific characteristics.

Table 4 contains the optimal output parameters for the three subsamples with and without the ANS

estimator for covariance matrix uncertainty. Based on these values, using the ANS estimator does not seem to

have a large impact on model performance. The kappa values are higher for the first and last period and similar

for the second period. This indicates that the model with ANS estimator shrinks parameters less strong in the

two periods that are less good behaved based on Figure 7. Sharpe Ratios differ slightly between the three different

periods, but no consistent conclusion can be drawn from this. OOS R2 values are equal for both models. When

comparing the three different periods, it can be seen that the 1970-1986 period shrinks parameters least. 2005-

2020 also imposes little shrinkage on the SDF. The middle period, from 1989 until 2004, shrinks the parameters

the strongest. The difference in shrinkage could be due to the smaller IS bias of parameters in the first and last

periods. Sharpe Ratios and R2 values are much higher in the first and last period than in the first period. Overall,

there is no evidence for the better performance of the SDF model with the incorporation of the ANS estimator.

7See Figure 7b and 7d of Kozak et al. (2020)
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Table 4: Output values for the SDF model with interactions of the 70 WRDS financial ratios. The left part of the graph

contains the information for an SDF without ANS estimator. The right hand side is an SDF using the ANS estimator for

covariance matrix estimation. Different rows correspond to different sample periods.

No ANS estimator ANS estimator

Kappa Sharpe Ratio R2 Kappa Sharpe Ratio R2

Sample Period 1970-1986 2.42 7.69 0.76 2.61 7.74 0.76

1990-2004 0.91 1.98 0.66 0.89 1.98 0.66

2005-2020 1.70 6.48 0.77 1.83 6.46 0.77

Table 5 contains the coefficients and t-statistics of the most significant SDF coefficients for the raw inter-

actions data set with ANS estimator to estimate the covariance matrix. The 1970-1986, 1989-2004 and 2005-2020

samples are shown in the table’s left, middle, and right column, respectively. Compared to the scenario with-

out ANS estimator, the coefficients are much higher. This makes sense as the coefficients are inversely related

to the estimated covariance matrix, which is now shrunken with the ANS estimator. In the three subsamples,

where the dimension of the covariance matrix is relatively big compared to the sample size, this effect is stronger

and coefficients are higher than in the full sample case. Comparing the characteristics between periods, very

few characteristics are shown to be in common. The 1970-1986 period has some in common with the 1989-2004

period, and the 1970-1986 period has some in common with the period from 2005 to 2020. The last two periods

have none in common. From these differences, it can be concluded that the different subperiods have different

characteristics that best describe the cross sectional return. In line with the strongest shrinkage for the 1989-2004

period in Table 4, the coefficients of that period are the smallest.

Table 5: Largest factors in the SDF with ANS estimator for the interactions of 70 WRDS portfolios. The table contains

three columns corresponding to the three sub periods. The table indicates the biggest coefficients and their corresponding

t-statistics for estimation based on the raw portfolios.

1970-1986 1990-2004 2005-2020

b t-statistic b t-statistic b t-statistic

Price/Sales -374.95 33.64 Cash ratio -7.05 5.50 Pre-tax return on total earning assets -91.94 23.58

Book/Market 363.72 32.64 Sales/Working capital 6.81 5.31 Profit before depreciation/current liabilities -90.35 23.17

Cash flow margin -357.07 32.04 Cash balance/Total liabilities -6.64 5.18 Operating cash flow/Current liabilities -88.04 22.58

Net profit margin -350.54 31.45 Quick ratio (acid test) -6.53 5.09 Operating profit margin after depreciation -76.27 19.56

Pre-tax profit margin -334.15 29.98 Current ratio -5.94 4.63 Return on assets -74.85 19.19

Shillers cyclically adjusted P/E ratio -329.85 29.60 Price/Sales -5.64 4.40 Operating profit margin before depreciation -74.46 19.09

P/E (diluted, inc. extr. items) -328.62 29.49 Total debt / EBITDA 5.59 4.36 Return on equity -74.17 19.02

Price / Book -325.80 29.23 Research and development/Sales -5.53 4.31 After-tax return on invested capital -74.02 18.98

After-tax return on total stockholders equity -325.03 29.16 Total debt/Total assets 5.40 4.22 Pre-tax profit margin -73.69 18.90

After-tax return on average common equity -320.93 28.80 Total debt/Equity 5.18 4.04 Pre-tax return on net operating assets -73.32 18.80

Table 6 contains the coefficients and t-statistics of the most significant SDF coefficients for the raw in-

teractions data set without ANS estimator. The 1970-1986, 1989-2004 and 2005-2020 samples are shown in the

table’s left, middle, and right column, respectively. The characteristics ”Enterprise value multiple” and ”Quick

ratio (acid test)” reappear in different periods. The other best-explaining characteristics are all different.
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Table 6: Largest factors in the SDF without ANS estimator for the interactions of 70 WRDS portfolios. The table contains

three columns corresponding to the three sub periods. The table indicates the biggest coefficients and their corresponding

t-statistics for estimation based on the raw portfolios.

1970-1986 1990-2004 2005-2020

b t-statistic b t-statistic b t-statistic

Labor expenses/Sales -90.72 10.52 Sales/Stockholders equity 1.64 1.28 Operating cash flow/Current liabilities -16.53 4.88

Free cash flow/Operating cash flow 70.98 8.37 Research and development/Sales -1.53 1.20 Pre-tax return on total earning assets -11.72 3.42

Quick ratio (acid test) 54.47 5.96 Cash ratio -1.50 1.18 Enterprise value multiple -10.79 3.26

Cash balance/Total liabilities 51.83 5.55 Price/Sales -1.45 1.15 Pre-tax return on net operating assets -10.27 3.06

Enterprise value multiple -45.71 5.41 Sales/Invested capital 1.43 1.11 Cash flow/ Total debt -10.12 2.99

Trailing P/E to growth (PEG) ratio -43.95 5.27 Asset turnover 1.42 1.10 Profit before depreciation/current liabilities -10.03 2.93

P/E (diluted, including extraordinary items) -44.78 5.09 Sales/Working capital 1.27 1.00 Total debt / EBITDA -9.11 2.69

Effective tax rate 45.39 5.06 Quick ratio (acid test) -1.22 0.96 Current liabilities/Total liabilities 8.40 2.49

Cash flow margin -48.04 5.05 Total debt/Total assets 1.14 0.89 Operating profit margin before depreciation -8.52 2.48

Accruals/Average assets 40.72 4.55 Operating profit margin after depreciation 1.14 0.89 Total debt/Equity -8.41 2.47

Comparing Table 5 to Table 6, the first period has only two best explaining characteristics that overlap

between the models with and without ANS estimator. The second and third period have five overlapping char-

acteristics. From this, it can be concluded that a substantial difference exists in best explaining characteristics

for the case with and without ANS estimator. Appendix E contains the tables of the PC based models with and

without ANS estimator.

6 Conclusion and discussion

This paper’s goal is to identify how the stochastic discount factor (SDF) framework of Kozak et al. (2020) performs

when allowing for covariance matrix uncertainty. The motivation for this research comes from the relatively poor

estimation results of sample covariance matrices when considering high dimensional data sets (Ledoit and Wolf,

2020c). This motivation leads to the following research question:

”To what extent does the allowance of covariance matrix uncertainty influence the performance of a

characteristic based stochastic discount factor in a high-dimensional framework?”

As an initial test, the Fama-French 25 portfolios and the 50 anomaly portfolios are considered. For the raw

characteristics of the Fama-French 25 portfolios, two to three characteristics already describe the SDF well. From

the diagonal slope of the high OOS R2, it can be concluded that shrinkage and sparsity are interchangeable to

ensure good OOS performance. In the PC transformed case, one factor already explains the SDF almost optimally.

For the raw characteristics of the 50 anomaly portfolios, substantial shrinkage is needed for all sparsity levels,

and sparse models perform poorly out of sample. In contrast, the PC transformed 50 anomaly characteristics do

allow for a relatively sparse SDF representation.

Next, an interaction data set is considered, which ensures a high dimensional covariance matrix. For the

entire sample period, that is, from 1970 until 2020, the interaction data set behaves well, although different from

the interaction portfolio created by Kozak et al. (2020). For the interactions set as given, substantial shrinkage

is needed to allow for good OOS performance, and sparse models do not perform well. This is in line with

the 50 anomaly portfolio. In the case of a PC transformed interactions set, high out-of-sample performance

can be attained with a sparse model and little shrinkage, and hence a sparse representation of the SDF exists.

Implementing the Analytical Nonlinear Shrinkage (ANS) estimator of Ledoit and Wolf (2020a) into the SDF

framework, no evidence for better performance of the SDF is found.
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Consequently, the sample is split up into three non-overlapping periods of equal length, such that the sample

corresponds in size to the dimensionality of the covariance matrix. Comparing the OOS performance of these

three subsamples, very different results are found. Similar results for the 1970-1986 and 2005-2020 periods are

found, namely that non-restricted models already perform relatively well, but shrinkage does improve the OOS

performance. In contrast, the 1989-2004 period requires substantial shrinkage before good OOS performance.

For the 1989-2004 period, the dual-shrinkage estimator of Kozak et al. (2020) performs most along the lines

of expectations. A likely explanation for this is that this period contains abnormal returns due to industry-

specific boom or bust periods. Implementing the ANS estimator in the SDF framework logically leads to different

coefficients, but OOS performance is influenced little, also in the three smaller subsamples.

All in all, it must therefore be concluded that there is no evidence that the ANS estimator affects the

performance of the SDF in a high-dimensional framework. Furthermore, the SDF performs best for periods in

which specific industries have abnormal returns.

The main limitation of this research lies within the comparability of the constructed interaction data set.

For example, lagged returns and third powers are excluded from this research, as the inclusion of these interactions

led to uninterpretable results. This might be due to a difference in the construction of these interactions between

this paper and Kozak et al. (2020). Furthermore, the current data range allowed by WRDS differs from the

data range considered by Kozak et al. (2020). For these reasons, a direct comparison between the interaction

data set in this paper and Kozak et al. (2020) stays difficult. Therefore, a first suggestion for future research is

to replicate this paper with the exact interaction data set as constructed by Kozak et al. (2020). That way, it

becomes easier to compare the papers and pinpoint more specific areas of improvement for this research within

the data construction or within the methodology.

Another limitation of this research is the sole use of static covariance matrix estimation. Shifting the

focus to dynamic covariance matrix estimators instead of static estimators could better capture the time-varying

component of volatility. For example, the Dynamic Conditional Correlation Non-Linear (DCC-NL) method of

Engle et al. (2019) can be considered as a suggestion for future research. It has to be noted that when daily data

is used to forecast the covariance matrices but these forecasts are used one month ahead, a mismatch exists for

this dynamic model, as explained by De Nard et al. (2019). Therefore, the three-step procedure of De Nard et al.

(2019) should be followed when one considers implementing the DCC-NL method.

A last suggestion is to research whether other values for the global bandwidth of the ANS estimator provide

different results. The assumptions made regarding the global bandwidth in Ledoit and Wolf (2020a) are rather

arbitrary and are chosen only as they coincide with existing literature. Choosing other values could provide

insightful results.
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A Proofs and derivations

This appendix includes proofs and derivations that are used in the paper.

A.1 SDF coefficients with population moments

The derivation of b = Σ−1E(Ft) makes use of the notes graciously provided by Grith (2021). Combining the

fact that Et−1[MtR
∗
t ] = 0, as stated in Equation (3) with Mt = 1 − b′(Ft − EFt) in Equation (7), and rewriting

Equation (5) to Rt = (Z′t−1Zt−1)−1Z′t−1Ft, it holds that

Et−1

(
[1− b′(Ft − EFt)]Ft

)
= 0 (A.1)

This equation can be rewritten as follows:

Et−1

(
1− b′(Ft − EFt)(Ft − EFt)

)
+ Et−1

(
MtEt−1(Ft)

)
= 0

Et−1

(
1− b′(Ft − EFt)(Ft − EFt)

)
+ Et−1(Mt)Et−1(Ft) = 0

Et−1

(
(Ft − EFt)− b′(Ft − EFt)(Ft − EFt)

)
+ Et−1(Ft) = 0

Et−1

(
Ft − b′(Ft − EFt)(Ft − EFt)

)
= 0

Et−1(Ft) = b′(Ft − EFt)(Ft − EFt)

µ = b′Covt(FtFt)

µ = ΣF b

This eventually leads to the formula as it is written as in the paper:

b = Σ−1E(Ft), (A.2)

A.2 Derivation of the Kernel density and Hilbert transform

This section provides a more in-depth derivation of the Kernel estimator for the eigenvalue density and its

corresponding Hilbert transform as by Ledoit and Wolf (2020a). The Hilbert transform is defined as a convolution

with the Cauchy kernel dt
πt

, and can for a real function g be defined as

Hg(x) =
1

π
PV

∫ +∞

−∞
g(t)

dt

t− x ∀x ∈ R, (A.3)

where PV is defined as the Cauchy principal value. This Cauchy principal value evaluates the improper integral

as follows:

PV

∫ +∞

−∞
g(t)

dt

t− x = lim
ε→0+

[∫ x−ε

−∞
g(t)

dt

t− x +

∫ +∞

x+ε

g(t)
dt

t− x

]
, (A.4)

where ε is defined as the error term corresponding to g(x). Next to the Hilbert transform, the kernel estimator

of the sample spectral p.d.f. f is defined as follows:

f̂(x) =
1

n

n∑
i=1

1

hi
k

(
x− λi
hi

)
=

1

n

n∑
i=1

1

λihT
k

(
x− λi
λih

)
∀x ∈ R, (A.5)

where n is the amount of characteristics included, λi is the ith eigenvalue, hj is the locally adaptive bandwidth, h

is the global bandwidth, and k(x) the kernel distribution of x. The kernel estimator of its corresponding Hilbert

transform, Hf , is then defined as

Hf (x) =
1

n

n∑
i=1

1

hi
Hk
(
x− λi
hi

)
=

1

n

n∑
i=1

1

λih
Hk
(
x− λi
λihn

)
=

1

π
PV

∫
f̂(t)

x− tdt, (A.6)

where Hk is defined as in Equation (A.3), PV is defined as in Equation (A.4) and all other variables are defined

as in Equation (A.5).
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In this paper, the kernel as originally introduced by Epanechnikov (1967) is considered. This kernel with

unit variance and support [−
√

5,
√

5] has the following density function:

κE(x) =
3

4
√

5

[
1− x2

5

]+
∀x ∈ R, (A.7)

where [x]+ is again defined as a real number’s positive part. This is the default kernel used in many univariate

density estimation frameworks. Its corresponding Hilbert transform is defined by Ledoit and Wolf (2020a) as

follows:

HκE (x) =

 −
3x
10π

+ 3

4
√
5π

(
1− x2

5

)
log
∣∣∣√5−x√

5+x

∣∣∣ if |x| 6=
√

5

− 3x
10π

if |x| =
√

5
∀x ∈ R. (A.8)

From this, the eigenvalue density and its corresponding Hilbert transformation can be deducted for all character-

istics i = 1, . . . , n along the lines of Ledoit and Wolf (2020a). These are stated in Equation (20) and Equation

(21) of Section 3.3, respectively.
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B Pastor specification

This appendix elaborates upon the calculation of the cross-sectional R2 when using the prior specification of

Pastor and Stambaugh (2000), that is η = 1. In the spirit of Kozak et al. (2020), the posterior mean of b is

calculated using the standard formula for a conjugate multivariate normal prior with known covariance matrix.

This boils down to the formula µ̂ = (Σ−1
0 + TΣ−1)−1(Σ−1

0 µ0 + TΣ−1µ̄)−1. Here, the prior parameters equal

µ0 = 0 and Σ0 = k2

τ
Ση. Plugging in these prior parameters gives µ̂ = (I + γΣ1−η)−1µ̄. For the prior specification

of Pastor and Stambaugh (2000), η = 1, and using b̂ = Σ−1µ̂, this simplifies to

b̂ = (Σ + γΣ)−1µ̄, (B.1)

where γ = τ
k2T

. Simply changing the estimator b̂ to its new specification does not lead to the correct OOS

R2. Through a rather arbitrary trial and error procedure, eventually the same line as by Kozak et al. (2020)

is found. b̂ = (γΣ)−1µ̄ gives values that seemingly have similarities to Kozak et al. (2020). However, this is a

different posterior specification than the theoretically correct one in Equation (B.1). When mirroring the output

and manipulating the x-axis, eventually the same output as by Kozak et al. (2020) is obtained. The choices made

here seem rather arbitrary, and the results are obtained through a trial and error procedure. Therefore, no other

conclusion can be drawn than this part of Kozak et al. (2020) being unreplicable.

Figure B1: IS and cross-validated OOS R2 for different root expected SR2 values with the blue dashed line and solid red

line, respectively. It poses no restrictions on sparsity. The red dotted lines indicate the 1 s.e. lower and upper bounds of the

cross validation OOS cross-sectional R2. The yellow line indicates the cross-sectional R2 when using the prior specification

of Pastor and Stambaugh (2000).For the yellow line, the inverse relationship between κ and L2 does not hold.

Kozak et al. (2020) do mention that due the the different prior specification η = 1, the relation E(SR2) = κ

no longer holds. This could explain the shift of the graph along the x-axis but does not explain the alternative

posterior specification and need for mirroring. For the sake of completeness, Figure B1 contains the specification

of Pastor and Stambaugh (2000) in addition to the values already explained in Figure 5a of Section 5.1.
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C 50 anomalies variable description overview

This appendix contains the variables included in the data set provided by Kozak (2020) and their corresponding

annualized mean returns (in %) for all characteristics in the full sample.

Table C1: Anomaly characteristics used in the replication part of this paper. These characteristics are taken from Kozak

et al. (2020). Next to the characteristics, the annualized mean returns (in %) on managed portfolios are shown for all

characteristics in the full sample. All returns are based on a monthly-rebalanced buy-and-hold strategy, annualized assuming

252 trading days a year, and are further rescaled to have normalized standard deviations. The data used ranges from

November 1973 to December 2017 and is daily.

Characteristic Mean annualized return (in %)

1. Size -2,29

2. Value (annual) 6,21

3. Gross profitability 3,64

4. Value-profitablity 13,23

5. Piotroski’s F-score 8,15

6. Debt issuance 1,77

7. Share repurchases 6,93

8. Net share issuance (annual) -9,48

9. Accruals -5,59

10. Asset growth -8,57

11. Asset turnover 5,30

12. Gross margins -1,15

13. Dividend/Price 3,55

14. Earnings/Price 8,28

15. Cash flows/ Market value of equity 7,91

16. Net operating assets 1,90

17. Investment/Assets -9,96

18. Investment/Capital -4,11

19. Investment growth -9,00

20. Sales growth -5,71

21. Leverage 4,87

22. Return on assets (annual) 2,43

23. Return on book equity (annual) 4,72

24. Sales/Price 9,39

25. Growth in long term net operating assets (LTNOA) -2,53

26. Momentum (6 months) 2,10

27. Industry momentum 5,63

28. Value-momentum 5,12

29. Value-momentum-profitability 6,55

30. Short interest 0,28

31. Momentum (12 months) 9,00
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Characteristic Mean annualized return (in %)

32. Momentum-reversals -5,74

33. Long-run reversals -5,44

34. Value (monthly) 5,48

35. Net issuance (monthly) -8,73

36. Earnings surprises 12,04

37. Return on equity 10,52

38. Return on market equity 12,24

39. Return on assets 7,07

40. Short-term reversals -8,04

41. Idiosyncratic volatility -3,06

42. Beta arbitrage -0,68

43. Seasonality 11,51

44. Industry relative reversals -17,85

45. Industry relative reversals (low volatility) -34,91

46. Industry momentum-reversals 20,06

47. Composite issuance -8,43

48. Price -1,11

49. Firm age 3,47

50. Share volume -1,21
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D WRDS variable description overview

This appendix contains the variables included in the data set based on the WRDS 70 financial ratios and their

corresponding annualized mean returns (in %) for all characteristics in the full sample.

Table D1: WRDS characteristics used in the extension part of this paper. These characteristics are 70 financial ratios for

individual stocks taken from WRDS. Next to the characteristics, the annualized mean returns (in %) on managed portfolios

are shown for all characteristics in the full sample. All returns are based on a monthly-rebalanced buy-and-hold strategy,

annualized assuming 252 trading days a year, and are further rescaled to have normalized standard deviations. The data

used ranges from November 1970 to December 2020 and is daily.

Characteristic Mean annualized return (in %)

1. Shillers cyclically adjusted P/E Ratio -10,39

2. Book/Market -7,60

3. Enterprise value multiple -7,44

4. Price/Operating Earnings (basic, excluding extraordinary items) -10,58

5. Price/Operating Earnings (diluted, excluding extraordinary items) -12,20

6. P/E (diluted, excluding extraordinary items) -11,49

7. P/E (diluted, including extraordinary items) -13,22

8. Price/Sales -8,32

9. Price/Cash flow -18,33

10. Dividend payout ratio -15,87

11. Net profit margin -16,84

12. Operating profit margin before depreciation -6,63

13. Operating profit margin after depreciation -17,67

14. Gross profit margin -17,88

15. Pre-tax profit margin -12,99

16. Cash flow margin -14,46

17. Return on assets -14,28

18. Return on equity 5,01

19. Return on capital employed -13,40

20. Effective tax rate -12,18

21. After-tax return on average common equity -13,25

22. After-tax return on invested capital -12,52

23. After-tax return on total stockholders equity -16,33

24. Pre-tax return on net operating assets -2,53

25. Pre-tax return on total earning assets 0,67

26. Gross Profit / Total Assets -0,53

27. Common equity/Invested capital 1,30

28. Long-term debt/Invested capital -1,04

29. Total debt/Invested capital 7,72

30. Capitalization Ratio 7,04

31. Interest/Average long-term debt 4,08
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Characteristic Mean annualized return (in %)

32. Interest/Average total debt -1,13

33. Cash balance/Total liabilities -4,60

34. Inventory/Current assets 1,63

35. Receivables/Current assets -2,68

36. Total debt/Total assets 3,00

37. Total debt / EBITDA 6,66

38. Short-term debt/Total debt -1,89

39. Current liabilities/Total liabilities -17,19

40. Long-term debt/Total liabilities -14,62

41. Profit before depreciation/current liabilities -10,59

42. Operating cash flow/Current liabilities 2,58

43. Cash flow/Total debt 6,61

44. Free cash flow/Operating cash flow -0,91

45. Total liabilities/Total tangible assets 1,05

46. Long-term debt/Book equity 1,74

47. Total debt/Total assets -1,62

48. Total debt/capital -14,42

49. Total debt/Equity -13,93

50. After-tax interest coverage 2,34

51. Interest coverage ratio 4,32

52. Cash ratio 5,26

53. Quick ratio (acid test) 4,84

54. Current ratio -2,96

55. Cash conversion cycle (days) 3,25

56. Inventory turnover -2,20

57. Asset turnover 0,78

58. Receivables turnover 3,37

59. Payables turnover 5,18

60. Sales/Invested capital -6,45

61. Sales/Stockholders equity -0,84

62. Sales/Working capital -2,67

63. Research and development/Sales -8,68

64. Advertising expenses/Sales 5,37

65. Labor expenses/Sales -8,51

66. Accruals/Average assets -12,58

67. Price/Book -2,67

68. Trailing P/E to growth (PEG) ratio -2,60

69. Dividend yield -0,55
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E Additional tables

This appendix contains the tables regarding the estimation of the SDF for the three different subperiods when

first the characteristics are transformed into their PCs.

Table E1: Largest factors in the SDF with ANS estimator for the interactions of 70 WRDS portfolios. The table contains

three columns corresponding to the three sub periods. The table indicates the biggest coefficients and their corresponding

t-statistics for the portfolios that are first transformed into their PCs.

1970-1986 1990-2004 2005-2020

b t-statistic b t-statistic b t-statistic

PC 1 1314.40 117.94 PC 1 -30.30 23.64 PC 1 392.85 100.73

PC 2 -610.38 54.77 PC 4 -3.22 2.51 PC 4 53.02 13.60

PC 6 -452.07 40.56 PC 3 2.53 1.97 PC 5 -24.55 6.30

PC 4 -291.95 26.20 PC 7 -1.35 1.05 PC 7 -22.26 5.71

PC 5 -254.09 22.80 PC 28 -0.78 0.61 PC 13 11.29 2.90

PC 9 147.19 13.21 PC 6 0.71 0.55 PC 2 -10.82 2.78

PC 19 -83.01 7.45 PC 5 0.67 0.53 PC 23 -9.51 2.44

PC 7 81.06 7.27 PC 25 -0.65 0.51 PC 17 9.15 2.35

PC 25 -69.62 6.25 PC 13 -0.59 0.46 PC 25 8.92 2.29

PC 15 64.19 5.76 PC 22 0.57 0.44 PC 24 -6.82 1.75

Table E2: Largest factors in the SDF without ANS estimator for the interactions of 70 WRDS portfolios. The table contains

three columns corresponding to the three sub periods. The table indicates the biggest coefficients and their corresponding

t-statistics for the portfolios that are first transformed into their PCs.

1970-1986 1990-2004 2005-2020

b t-statistic b t-statistic b t-statistic

PC 1 57.99 24.77 PC 1 -5.23 9.96 PC 1 37.10 30.40

PC 6 -134.23 22.10 PC 4 -1.93 1.86 PC 4 16.55 7.59

PC 2 -52.35 16.04 PC 3 1.45 1.42 PC 7 -12.16 4.22

PC 5 -66.67 11.68 PC 7 0.62 0.56 PC 5 -9.48 3.91

PC 4 -45.91 10.39 PC 5 0.59 0.55 PC 13 8.10 2.45

PC 9 63.67 8.69 PC 28 -0.59 0.52 PC 23 -7.59 2.18

PC 19 -55.31 6.08 PC 18 0.54 0.48 PC 25 7.17 2.05

PC 25 -50.31 5.31 PC 11 0.46 0.41 PC 17 6.88 2.03

PC 15 38.81 4.48 PC 22 0.39 0.34 PC 24 -5.46 1.56

PC 7 26.62 4.17 PC 13 -0.36 0.32 PC 8 3.92 1.29

Table E1 contains the coefficients and t-statistics of the most significant SDF coefficients for the PCs of

the interactions data set. The ANS estimator is used for covariance matrix estimation. The 1970-1986, 1989-2004
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and 2005-2020 samples are shown in the table’s left, middle, and right column, respectively. Table E2 shows the

coefficients and t-statistics of the most significant SDF coefficients for the PC transformed interactions data set

without ANS estimator. The 1970-1986, 1989-2004 and 2005-2020 samples are shown in the table’s left, middle,

and right column, respectively. Comparing Table E1 to Table E2, it can be noted that PCs with the highest

explanatory power are the same in the first period, although some are in a different order. The second period has

all but one PC the same. For the last period, some PCs are different.
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